/* * Copyright (c) 2000, 2017, Oracle and/or its affiliates. All rights reserved. * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER. * * This code is free software; you can redistribute it and/or modify it * under the terms of the GNU General Public License version 2 only, as * published by the Free Software Foundation. * * This code is distributed in the hope that it will be useful, but WITHOUT * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License * version 2 for more details (a copy is included in the LICENSE file that * accompanied this code). * * You should have received a copy of the GNU General Public License version * 2 along with this work; if not, write to the Free Software Foundation, * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA. * * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA * or visit www.oracle.com if you need additional information or have any * questions. * */ #include "precompiled.hpp" #include "compiler/compileLog.hpp" #include "compiler/oopMap.hpp" #include "memory/allocation.inline.hpp" #include "memory/resourceArea.hpp" #include "opto/addnode.hpp" #include "opto/block.hpp" #include "opto/callnode.hpp" #include "opto/cfgnode.hpp" #include "opto/chaitin.hpp" #include "opto/coalesce.hpp" #include "opto/connode.hpp" #include "opto/idealGraphPrinter.hpp" #include "opto/indexSet.hpp" #include "opto/machnode.hpp" #include "opto/memnode.hpp" #include "opto/movenode.hpp" #include "opto/opcodes.hpp" #include "opto/rootnode.hpp" #include "utilities/align.hpp" #ifndef PRODUCT void LRG::dump() const { ttyLocker ttyl; tty->print("%d ",num_regs()); _mask.dump(); if( _msize_valid ) { if( mask_size() == compute_mask_size() ) tty->print(", #%d ",_mask_size); else tty->print(", #!!!_%d_vs_%d ",_mask_size,_mask.Size()); } else { tty->print(", #?(%d) ",_mask.Size()); } tty->print("EffDeg: "); if( _degree_valid ) tty->print( "%d ", _eff_degree ); else tty->print("? "); if( is_multidef() ) { tty->print("MultiDef "); if (_defs != NULL) { tty->print("("); for (int i = 0; i < _defs->length(); i++) { tty->print("N%d ", _defs->at(i)->_idx); } tty->print(") "); } } else if( _def == 0 ) tty->print("Dead "); else tty->print("Def: N%d ",_def->_idx); tty->print("Cost:%4.2g Area:%4.2g Score:%4.2g ",_cost,_area, score()); // Flags if( _is_oop ) tty->print("Oop "); if( _is_float ) tty->print("Float "); if( _is_vector ) tty->print("Vector "); if( _was_spilled1 ) tty->print("Spilled "); if( _was_spilled2 ) tty->print("Spilled2 "); if( _direct_conflict ) tty->print("Direct_conflict "); if( _fat_proj ) tty->print("Fat "); if( _was_lo ) tty->print("Lo "); if( _has_copy ) tty->print("Copy "); if( _at_risk ) tty->print("Risk "); if( _must_spill ) tty->print("Must_spill "); if( _is_bound ) tty->print("Bound "); if( _msize_valid ) { if( _degree_valid && lo_degree() ) tty->print("Trivial "); } tty->cr(); } #endif // Compute score from cost and area. Low score is best to spill. static double raw_score( double cost, double area ) { return cost - (area*RegisterCostAreaRatio) * 1.52588e-5; } double LRG::score() const { // Scale _area by RegisterCostAreaRatio/64K then subtract from cost. // Bigger area lowers score, encourages spilling this live range. // Bigger cost raise score, prevents spilling this live range. // (Note: 1/65536 is the magic constant below; I dont trust the C optimizer // to turn a divide by a constant into a multiply by the reciprical). double score = raw_score( _cost, _area); // Account for area. Basically, LRGs covering large areas are better // to spill because more other LRGs get freed up. if( _area == 0.0 ) // No area? Then no progress to spill return 1e35; if( _was_spilled2 ) // If spilled once before, we are unlikely return score + 1e30; // to make progress again. if( _cost >= _area*3.0 ) // Tiny area relative to cost return score + 1e17; // Probably no progress to spill if( (_cost+_cost) >= _area*3.0 ) // Small area relative to cost return score + 1e10; // Likely no progress to spill return score; } #define NUMBUCKS 3 // Straight out of Tarjan's union-find algorithm uint LiveRangeMap::find_compress(uint lrg) { uint cur = lrg; uint next = _uf_map.at(cur); while (next != cur) { // Scan chain of equivalences assert( next < cur, "always union smaller"); cur = next; // until find a fixed-point next = _uf_map.at(cur); } // Core of union-find algorithm: update chain of // equivalences to be equal to the root. while (lrg != next) { uint tmp = _uf_map.at(lrg); _uf_map.at_put(lrg, next); lrg = tmp; } return lrg; } // Reset the Union-Find map to identity void LiveRangeMap::reset_uf_map(uint max_lrg_id) { _max_lrg_id= max_lrg_id; // Force the Union-Find mapping to be at least this large _uf_map.at_put_grow(_max_lrg_id, 0); // Initialize it to be the ID mapping. for (uint i = 0; i < _max_lrg_id; ++i) { _uf_map.at_put(i, i); } } // Make all Nodes map directly to their final live range; no need for // the Union-Find mapping after this call. void LiveRangeMap::compress_uf_map_for_nodes() { // For all Nodes, compress mapping uint unique = _names.length(); for (uint i = 0; i < unique; ++i) { uint lrg = _names.at(i); uint compressed_lrg = find(lrg); if (lrg != compressed_lrg) { _names.at_put(i, compressed_lrg); } } } // Like Find above, but no path compress, so bad asymptotic behavior uint LiveRangeMap::find_const(uint lrg) const { if (!lrg) { return lrg; // Ignore the zero LRG } // Off the end? This happens during debugging dumps when you got // brand new live ranges but have not told the allocator yet. if (lrg >= _max_lrg_id) { return lrg; } uint next = _uf_map.at(lrg); while (next != lrg) { // Scan chain of equivalences assert(next < lrg, "always union smaller"); lrg = next; // until find a fixed-point next = _uf_map.at(lrg); } return next; } PhaseChaitin::PhaseChaitin(uint unique, PhaseCFG &cfg, Matcher &matcher, bool scheduling_info_generated) : PhaseRegAlloc(unique, cfg, matcher, #ifndef PRODUCT print_chaitin_statistics #else NULL #endif ) , _live(0) , _spilled_once(Thread::current()->resource_area()) , _spilled_twice(Thread::current()->resource_area()) , _lo_degree(0), _lo_stk_degree(0), _hi_degree(0), _simplified(0) , _oldphi(unique) #ifndef PRODUCT , _trace_spilling(C->directive()->TraceSpillingOption) #endif , _lrg_map(Thread::current()->resource_area(), unique) , _scheduling_info_generated(scheduling_info_generated) , _sched_int_pressure(0, INTPRESSURE) , _sched_float_pressure(0, FLOATPRESSURE) , _scratch_int_pressure(0, INTPRESSURE) , _scratch_float_pressure(0, FLOATPRESSURE) { Compile::TracePhase tp("ctorChaitin", &timers[_t_ctorChaitin]); _high_frequency_lrg = MIN2(double(OPTO_LRG_HIGH_FREQ), _cfg.get_outer_loop_frequency()); // Build a list of basic blocks, sorted by frequency _blks = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks()); // Experiment with sorting strategies to speed compilation double cutoff = BLOCK_FREQUENCY(1.0); // Cutoff for high frequency bucket Block **buckets[NUMBUCKS]; // Array of buckets uint buckcnt[NUMBUCKS]; // Array of bucket counters double buckval[NUMBUCKS]; // Array of bucket value cutoffs for (uint i = 0; i < NUMBUCKS; i++) { buckets[i] = NEW_RESOURCE_ARRAY(Block *, _cfg.number_of_blocks()); buckcnt[i] = 0; // Bump by three orders of magnitude each time cutoff *= 0.001; buckval[i] = cutoff; for (uint j = 0; j < _cfg.number_of_blocks(); j++) { buckets[i][j] = NULL; } } // Sort blocks into buckets for (uint i = 0; i < _cfg.number_of_blocks(); i++) { for (uint j = 0; j < NUMBUCKS; j++) { if ((j == NUMBUCKS - 1) || (_cfg.get_block(i)->_freq > buckval[j])) { // Assign block to end of list for appropriate bucket buckets[j][buckcnt[j]++] = _cfg.get_block(i); break; // kick out of inner loop } } } // Dump buckets into final block array uint blkcnt = 0; for (uint i = 0; i < NUMBUCKS; i++) { for (uint j = 0; j < buckcnt[i]; j++) { _blks[blkcnt++] = buckets[i][j]; } } assert(blkcnt == _cfg.number_of_blocks(), "Block array not totally filled"); } // union 2 sets together. void PhaseChaitin::Union( const Node *src_n, const Node *dst_n ) { uint src = _lrg_map.find(src_n); uint dst = _lrg_map.find(dst_n); assert(src, ""); assert(dst, ""); assert(src < _lrg_map.max_lrg_id(), "oob"); assert(dst < _lrg_map.max_lrg_id(), "oob"); assert(src < dst, "always union smaller"); _lrg_map.uf_map(dst, src); } void PhaseChaitin::new_lrg(const Node *x, uint lrg) { // Make the Node->LRG mapping _lrg_map.extend(x->_idx,lrg); // Make the Union-Find mapping an identity function _lrg_map.uf_extend(lrg, lrg); } int PhaseChaitin::clone_projs(Block* b, uint idx, Node* orig, Node* copy, uint& max_lrg_id) { assert(b->find_node(copy) == (idx - 1), "incorrect insert index for copy kill projections"); DEBUG_ONLY( Block* borig = _cfg.get_block_for_node(orig); ) int found_projs = 0; uint cnt = orig->outcnt(); for (uint i = 0; i < cnt; i++) { Node* proj = orig->raw_out(i); if (proj->is_MachProj()) { assert(proj->outcnt() == 0, "only kill projections are expected here"); assert(_cfg.get_block_for_node(proj) == borig, "incorrect block for kill projections"); found_projs++; // Copy kill projections after the cloned node Node* kills = proj->clone(); kills->set_req(0, copy); b->insert_node(kills, idx++); _cfg.map_node_to_block(kills, b); new_lrg(kills, max_lrg_id++); } } return found_projs; } // Renumber the live ranges to compact them. Makes the IFG smaller. void PhaseChaitin::compact() { Compile::TracePhase tp("chaitinCompact", &timers[_t_chaitinCompact]); // Current the _uf_map contains a series of short chains which are headed // by a self-cycle. All the chains run from big numbers to little numbers. // The Find() call chases the chains & shortens them for the next Find call. // We are going to change this structure slightly. Numbers above a moving // wave 'i' are unchanged. Numbers below 'j' point directly to their // compacted live range with no further chaining. There are no chains or // cycles below 'i', so the Find call no longer works. uint j=1; uint i; for (i = 1; i < _lrg_map.max_lrg_id(); i++) { uint lr = _lrg_map.uf_live_range_id(i); // Ignore unallocated live ranges if (!lr) { continue; } assert(lr <= i, ""); _lrg_map.uf_map(i, ( lr == i ) ? j++ : _lrg_map.uf_live_range_id(lr)); } // Now change the Node->LR mapping to reflect the compacted names uint unique = _lrg_map.size(); for (i = 0; i < unique; i++) { uint lrg_id = _lrg_map.live_range_id(i); _lrg_map.map(i, _lrg_map.uf_live_range_id(lrg_id)); } // Reset the Union-Find mapping _lrg_map.reset_uf_map(j); } void PhaseChaitin::Register_Allocate() { // Above the OLD FP (and in registers) are the incoming arguments. Stack // slots in this area are called "arg_slots". Above the NEW FP (and in // registers) is the outgoing argument area; above that is the spill/temp // area. These are all "frame_slots". Arg_slots start at the zero // stack_slots and count up to the known arg_size. Frame_slots start at // the stack_slot #arg_size and go up. After allocation I map stack // slots to actual offsets. Stack-slots in the arg_slot area are biased // by the frame_size; stack-slots in the frame_slot area are biased by 0. _trip_cnt = 0; _alternate = 0; _matcher._allocation_started = true; ResourceArea split_arena(mtCompiler); // Arena for Split local resources ResourceArea live_arena(mtCompiler); // Arena for liveness & IFG info ResourceMark rm(&live_arena); // Need live-ness for the IFG; need the IFG for coalescing. If the // liveness is JUST for coalescing, then I can get some mileage by renaming // all copy-related live ranges low and then using the max copy-related // live range as a cut-off for LIVE and the IFG. In other words, I can // build a subset of LIVE and IFG just for copies. PhaseLive live(_cfg, _lrg_map.names(), &live_arena, false); // Need IFG for coalescing and coloring PhaseIFG ifg(&live_arena); _ifg = &ifg; // Come out of SSA world to the Named world. Assign (virtual) registers to // Nodes. Use the same register for all inputs and the output of PhiNodes // - effectively ending SSA form. This requires either coalescing live // ranges or inserting copies. For the moment, we insert "virtual copies" // - we pretend there is a copy prior to each Phi in predecessor blocks. // We will attempt to coalesce such "virtual copies" before we manifest // them for real. de_ssa(); #ifdef ASSERT // Veify the graph before RA. verify(&live_arena); #endif { Compile::TracePhase tp("computeLive", &timers[_t_computeLive]); _live = NULL; // Mark live as being not available rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_lrg_map.max_lrg_id()); // Empty IFG gather_lrg_masks( false ); // Collect LRG masks live.compute(_lrg_map.max_lrg_id()); // Compute liveness _live = &live; // Mark LIVE as being available } // Base pointers are currently "used" by instructions which define new // derived pointers. This makes base pointers live up to the where the // derived pointer is made, but not beyond. Really, they need to be live // across any GC point where the derived value is live. So this code looks // at all the GC points, and "stretches" the live range of any base pointer // to the GC point. if (stretch_base_pointer_live_ranges(&live_arena)) { Compile::TracePhase tp("computeLive (sbplr)", &timers[_t_computeLive]); // Since some live range stretched, I need to recompute live _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_lrg_map.max_lrg_id()); gather_lrg_masks(false); live.compute(_lrg_map.max_lrg_id()); _live = &live; } // Create the interference graph using virtual copies build_ifg_virtual(); // Include stack slots this time // The IFG is/was triangular. I am 'squaring it up' so Union can run // faster. Union requires a 'for all' operation which is slow on the // triangular adjacency matrix (quick reminder: the IFG is 'sparse' - // meaning I can visit all the Nodes neighbors less than a Node in time // O(# of neighbors), but I have to visit all the Nodes greater than a // given Node and search them for an instance, i.e., time O(#MaxLRG)). _ifg->SquareUp(); // Aggressive (but pessimistic) copy coalescing. // This pass works on virtual copies. Any virtual copies which are not // coalesced get manifested as actual copies { Compile::TracePhase tp("chaitinCoalesce1", &timers[_t_chaitinCoalesce1]); PhaseAggressiveCoalesce coalesce(*this); coalesce.coalesce_driver(); // Insert un-coalesced copies. Visit all Phis. Where inputs to a Phi do // not match the Phi itself, insert a copy. coalesce.insert_copies(_matcher); if (C->failing()) { return; } } // After aggressive coalesce, attempt a first cut at coloring. // To color, we need the IFG and for that we need LIVE. { Compile::TracePhase tp("computeLive", &timers[_t_computeLive]); _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_lrg_map.max_lrg_id()); gather_lrg_masks( true ); live.compute(_lrg_map.max_lrg_id()); _live = &live; } // Build physical interference graph uint must_spill = 0; must_spill = build_ifg_physical(&live_arena); // If we have a guaranteed spill, might as well spill now if (must_spill) { if(!_lrg_map.max_lrg_id()) { return; } // Bail out if unique gets too large (ie - unique > MaxNodeLimit) C->check_node_count(10*must_spill, "out of nodes before split"); if (C->failing()) { return; } uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere _lrg_map.set_max_lrg_id(new_max_lrg_id); // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) // or we failed to split C->check_node_count(2*NodeLimitFudgeFactor, "out of nodes after physical split"); if (C->failing()) { return; } NOT_PRODUCT(C->verify_graph_edges();) compact(); // Compact LRGs; return new lower max lrg { Compile::TracePhase tp("computeLive", &timers[_t_computeLive]); _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_lrg_map.max_lrg_id()); // Build a new interference graph gather_lrg_masks( true ); // Collect intersect mask live.compute(_lrg_map.max_lrg_id()); // Compute LIVE _live = &live; } build_ifg_physical(&live_arena); _ifg->SquareUp(); _ifg->Compute_Effective_Degree(); // Only do conservative coalescing if requested if (OptoCoalesce) { Compile::TracePhase tp("chaitinCoalesce2", &timers[_t_chaitinCoalesce2]); // Conservative (and pessimistic) copy coalescing of those spills PhaseConservativeCoalesce coalesce(*this); // If max live ranges greater than cutoff, don't color the stack. // This cutoff can be larger than below since it is only done once. coalesce.coalesce_driver(); } _lrg_map.compress_uf_map_for_nodes(); #ifdef ASSERT verify(&live_arena, true); #endif } else { ifg.SquareUp(); ifg.Compute_Effective_Degree(); #ifdef ASSERT set_was_low(); #endif } // Prepare for Simplify & Select cache_lrg_info(); // Count degree of LRGs // Simplify the InterFerence Graph by removing LRGs of low degree. // LRGs of low degree are trivially colorable. Simplify(); // Select colors by re-inserting LRGs back into the IFG in reverse order. // Return whether or not something spills. uint spills = Select( ); // If we spill, split and recycle the entire thing while( spills ) { if( _trip_cnt++ > 24 ) { DEBUG_ONLY( dump_for_spill_split_recycle(); ) if( _trip_cnt > 27 ) { C->record_method_not_compilable("failed spill-split-recycle sanity check"); return; } } if (!_lrg_map.max_lrg_id()) { return; } uint new_max_lrg_id = Split(_lrg_map.max_lrg_id(), &split_arena); // Split spilling LRG everywhere _lrg_map.set_max_lrg_id(new_max_lrg_id); // Bail out if unique gets too large (ie - unique > MaxNodeLimit - 2*NodeLimitFudgeFactor) C->check_node_count(2 * NodeLimitFudgeFactor, "out of nodes after split"); if (C->failing()) { return; } compact(); // Compact LRGs; return new lower max lrg // Nuke the live-ness and interference graph and LiveRanGe info { Compile::TracePhase tp("computeLive", &timers[_t_computeLive]); _live = NULL; rm.reset_to_mark(); // Reclaim working storage IndexSet::reset_memory(C, &live_arena); ifg.init(_lrg_map.max_lrg_id()); // Create LiveRanGe array. // Intersect register masks for all USEs and DEFs gather_lrg_masks(true); live.compute(_lrg_map.max_lrg_id()); _live = &live; } must_spill = build_ifg_physical(&live_arena); _ifg->SquareUp(); _ifg->Compute_Effective_Degree(); // Only do conservative coalescing if requested if (OptoCoalesce) { Compile::TracePhase tp("chaitinCoalesce3", &timers[_t_chaitinCoalesce3]); // Conservative (and pessimistic) copy coalescing PhaseConservativeCoalesce coalesce(*this); // Check for few live ranges determines how aggressive coalesce is. coalesce.coalesce_driver(); } _lrg_map.compress_uf_map_for_nodes(); #ifdef ASSERT verify(&live_arena, true); #endif cache_lrg_info(); // Count degree of LRGs // Simplify the InterFerence Graph by removing LRGs of low degree. // LRGs of low degree are trivially colorable. Simplify(); // Select colors by re-inserting LRGs back into the IFG in reverse order. // Return whether or not something spills. spills = Select(); } // Count number of Simplify-Select trips per coloring success. _allocator_attempts += _trip_cnt + 1; _allocator_successes += 1; // Peephole remove copies post_allocate_copy_removal(); // Merge multidefs if multiple defs representing the same value are used in a single block. merge_multidefs(); #ifdef ASSERT // Veify the graph after RA. verify(&live_arena); #endif // max_reg is past the largest *register* used. // Convert that to a frame_slot number. if (_max_reg <= _matcher._new_SP) { _framesize = C->out_preserve_stack_slots(); } else { _framesize = _max_reg -_matcher._new_SP; } assert((int)(_matcher._new_SP+_framesize) >= (int)_matcher._out_arg_limit, "framesize must be large enough"); // This frame must preserve the required fp alignment _framesize = align_up(_framesize, Matcher::stack_alignment_in_slots()); assert(_framesize <= 1000000, "sanity check"); #ifndef PRODUCT _total_framesize += _framesize; if ((int)_framesize > _max_framesize) { _max_framesize = _framesize; } #endif // Convert CISC spills fixup_spills(); // Log regalloc results CompileLog* log = Compile::current()->log(); if (log != NULL) { log->elem("regalloc attempts='%d' success='%d'", _trip_cnt, !C->failing()); } if (C->failing()) { return; } NOT_PRODUCT(C->verify_graph_edges();) // Move important info out of the live_arena to longer lasting storage. alloc_node_regs(_lrg_map.size()); for (uint i=0; i < _lrg_map.size(); i++) { if (_lrg_map.live_range_id(i)) { // Live range associated with Node? LRG &lrg = lrgs(_lrg_map.live_range_id(i)); if (!lrg.alive()) { set_bad(i); } else if (lrg.num_regs() == 1) { set1(i, lrg.reg()); } else { // Must be a register-set if (!lrg._fat_proj) { // Must be aligned adjacent register set // Live ranges record the highest register in their mask. // We want the low register for the AD file writer's convenience. OptoReg::Name hi = lrg.reg(); // Get hi register OptoReg::Name lo = OptoReg::add(hi, (1-lrg.num_regs())); // Find lo // We have to use pair [lo,lo+1] even for wide vectors because // the rest of code generation works only with pairs. It is safe // since for registers encoding only 'lo' is used. // Second reg from pair is used in ScheduleAndBundle on SPARC where // vector max size is 8 which corresponds to registers pair. // It is also used in BuildOopMaps but oop operations are not // vectorized. set2(i, lo); } else { // Misaligned; extract 2 bits OptoReg::Name hi = lrg.reg(); // Get hi register lrg.Remove(hi); // Yank from mask int lo = lrg.mask().find_first_elem(); // Find lo set_pair(i, hi, lo); } } if( lrg._is_oop ) _node_oops.set(i); } else { set_bad(i); } } // Done! _live = NULL; _ifg = NULL; C->set_indexSet_arena(NULL); // ResourceArea is at end of scope } void PhaseChaitin::de_ssa() { // Set initial Names for all Nodes. Most Nodes get the virtual register // number. A few get the ZERO live range number. These do not // get allocated, but instead rely on correct scheduling to ensure that // only one instance is simultaneously live at a time. uint lr_counter = 1; for( uint i = 0; i < _cfg.number_of_blocks(); i++ ) { Block* block = _cfg.get_block(i); uint cnt = block->number_of_nodes(); // Handle all the normal Nodes in the block for( uint j = 0; j < cnt; j++ ) { Node *n = block->get_node(j); // Pre-color to the zero live range, or pick virtual register const RegMask &rm = n->out_RegMask(); _lrg_map.map(n->_idx, rm.is_NotEmpty() ? lr_counter++ : 0); } } // Reset the Union-Find mapping to be identity _lrg_map.reset_uf_map(lr_counter); } void PhaseChaitin::mark_ssa() { // Use ssa names to populate the live range maps or if no mask // is available, use the 0 entry. uint max_idx = 0; for ( uint i = 0; i < _cfg.number_of_blocks(); i++ ) { Block* block = _cfg.get_block(i); uint cnt = block->number_of_nodes(); // Handle all the normal Nodes in the block for ( uint j = 0; j < cnt; j++ ) { Node *n = block->get_node(j); // Pre-color to the zero live range, or pick virtual register const RegMask &rm = n->out_RegMask(); _lrg_map.map(n->_idx, rm.is_NotEmpty() ? n->_idx : 0); max_idx = (n->_idx > max_idx) ? n->_idx : max_idx; } } _lrg_map.set_max_lrg_id(max_idx+1); // Reset the Union-Find mapping to be identity _lrg_map.reset_uf_map(max_idx+1); } // Gather LiveRanGe information, including register masks. Modification of // cisc spillable in_RegMasks should not be done before AggressiveCoalesce. void PhaseChaitin::gather_lrg_masks( bool after_aggressive ) { // Nail down the frame pointer live range uint fp_lrg = _lrg_map.live_range_id(_cfg.get_root_node()->in(1)->in(TypeFunc::FramePtr)); lrgs(fp_lrg)._cost += 1e12; // Cost is infinite // For all blocks for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); // For all instructions for (uint j = 1; j < block->number_of_nodes(); j++) { Node* n = block->get_node(j); uint input_edge_start =1; // Skip control most nodes bool is_machine_node = false; if (n->is_Mach()) { is_machine_node = true; input_edge_start = n->as_Mach()->oper_input_base(); } uint idx = n->is_Copy(); // Get virtual register number, same as LiveRanGe index uint vreg = _lrg_map.live_range_id(n); LRG& lrg = lrgs(vreg); if (vreg) { // No vreg means un-allocable (e.g. memory) // Check for float-vs-int live range (used in register-pressure // calculations) const Type *n_type = n->bottom_type(); if (n_type->is_floatingpoint()) { lrg._is_float = 1; } // Check for twice prior spilling. Once prior spilling might have // spilled 'soft', 2nd prior spill should have spilled 'hard' and // further spilling is unlikely to make progress. if (_spilled_once.test(n->_idx)) { lrg._was_spilled1 = 1; if (_spilled_twice.test(n->_idx)) { lrg._was_spilled2 = 1; } } #ifndef PRODUCT // Collect bits not used by product code, but which may be useful for // debugging. // Collect has-copy bit if (idx) { lrg._has_copy = 1; uint clidx = _lrg_map.live_range_id(n->in(idx)); LRG& copy_src = lrgs(clidx); copy_src._has_copy = 1; } if (trace_spilling() && lrg._def != NULL) { // collect defs for MultiDef printing if (lrg._defs == NULL) { lrg._defs = new (_ifg->_arena) GrowableArray(_ifg->_arena, 2, 0, NULL); lrg._defs->append(lrg._def); } lrg._defs->append(n); } #endif // Check for a single def LRG; these can spill nicely // via rematerialization. Flag as NULL for no def found // yet, or 'n' for single def or -1 for many defs. lrg._def = lrg._def ? NodeSentinel : n; // Limit result register mask to acceptable registers const RegMask &rm = n->out_RegMask(); lrg.AND( rm ); uint ireg = n->ideal_reg(); assert( !n->bottom_type()->isa_oop_ptr() || ireg == Op_RegP, "oops must be in Op_RegP's" ); // Check for vector live range (only if vector register is used). // On SPARC vector uses RegD which could be misaligned so it is not // processes as vector in RA. if (RegMask::is_vector(ireg)) lrg._is_vector = 1; assert(n_type->isa_vect() == NULL || lrg._is_vector || ireg == Op_RegD || ireg == Op_RegL, "vector must be in vector registers"); // Check for bound register masks const RegMask &lrgmask = lrg.mask(); if (lrgmask.is_bound(ireg)) { lrg._is_bound = 1; } // Check for maximum frequency value if (lrg._maxfreq < block->_freq) { lrg._maxfreq = block->_freq; } // Check for oop-iness, or long/double // Check for multi-kill projection switch (ireg) { case MachProjNode::fat_proj: // Fat projections have size equal to number of registers killed lrg.set_num_regs(rm.Size()); lrg.set_reg_pressure(lrg.num_regs()); lrg._fat_proj = 1; lrg._is_bound = 1; break; case Op_RegP: #ifdef _LP64 lrg.set_num_regs(2); // Size is 2 stack words #else lrg.set_num_regs(1); // Size is 1 stack word #endif // Register pressure is tracked relative to the maximum values // suggested for that platform, INTPRESSURE and FLOATPRESSURE, // and relative to other types which compete for the same regs. // // The following table contains suggested values based on the // architectures as defined in each .ad file. // INTPRESSURE and FLOATPRESSURE may be tuned differently for // compile-speed or performance. // Note1: // SPARC and SPARCV9 reg_pressures are at 2 instead of 1 // since .ad registers are defined as high and low halves. // These reg_pressure values remain compatible with the code // in is_high_pressure() which relates get_invalid_mask_size(), // Block::_reg_pressure and INTPRESSURE, FLOATPRESSURE. // Note2: // SPARC -d32 has 24 registers available for integral values, // but only 10 of these are safe for 64-bit longs. // Using set_reg_pressure(2) for both int and long means // the allocator will believe it can fit 26 longs into // registers. Using 2 for longs and 1 for ints means the // allocator will attempt to put 52 integers into registers. // The settings below limit this problem to methods with // many long values which are being run on 32-bit SPARC. // // ------------------- reg_pressure -------------------- // Each entry is reg_pressure_per_value,number_of_regs // RegL RegI RegFlags RegF RegD INTPRESSURE FLOATPRESSURE // IA32 2 1 1 1 1 6 6 // IA64 1 1 1 1 1 50 41 // SPARC 2 2 2 2 2 48 (24) 52 (26) // SPARCV9 2 2 2 2 2 48 (24) 52 (26) // AMD64 1 1 1 1 1 14 15 // ----------------------------------------------------- #if defined(SPARC) lrg.set_reg_pressure(2); // use for v9 as well #else lrg.set_reg_pressure(1); // normally one value per register #endif if( n_type->isa_oop_ptr() ) { lrg._is_oop = 1; } break; case Op_RegL: // Check for long or double case Op_RegD: lrg.set_num_regs(2); // Define platform specific register pressure #if defined(SPARC) || defined(ARM32) lrg.set_reg_pressure(2); #elif defined(IA32) if( ireg == Op_RegL ) { lrg.set_reg_pressure(2); } else { lrg.set_reg_pressure(1); } #else lrg.set_reg_pressure(1); // normally one value per register #endif // If this def of a double forces a mis-aligned double, // flag as '_fat_proj' - really flag as allowing misalignment // AND changes how we count interferences. A mis-aligned // double can interfere with TWO aligned pairs, or effectively // FOUR registers! if (rm.is_misaligned_pair()) { lrg._fat_proj = 1; lrg._is_bound = 1; } break; case Op_RegF: case Op_RegI: case Op_RegN: case Op_RegFlags: case 0: // not an ideal register lrg.set_num_regs(1); #ifdef SPARC lrg.set_reg_pressure(2); #else lrg.set_reg_pressure(1); #endif break; case Op_VecS: assert(Matcher::vector_size_supported(T_BYTE,4), "sanity"); assert(RegMask::num_registers(Op_VecS) == RegMask::SlotsPerVecS, "sanity"); lrg.set_num_regs(RegMask::SlotsPerVecS); lrg.set_reg_pressure(1); break; case Op_VecD: assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecD), "sanity"); assert(RegMask::num_registers(Op_VecD) == RegMask::SlotsPerVecD, "sanity"); assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecD), "vector should be aligned"); lrg.set_num_regs(RegMask::SlotsPerVecD); lrg.set_reg_pressure(1); break; case Op_VecX: assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecX), "sanity"); assert(RegMask::num_registers(Op_VecX) == RegMask::SlotsPerVecX, "sanity"); assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecX), "vector should be aligned"); lrg.set_num_regs(RegMask::SlotsPerVecX); lrg.set_reg_pressure(1); break; case Op_VecY: assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecY), "sanity"); assert(RegMask::num_registers(Op_VecY) == RegMask::SlotsPerVecY, "sanity"); assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecY), "vector should be aligned"); lrg.set_num_regs(RegMask::SlotsPerVecY); lrg.set_reg_pressure(1); break; case Op_VecZ: assert(Matcher::vector_size_supported(T_FLOAT,RegMask::SlotsPerVecZ), "sanity"); assert(RegMask::num_registers(Op_VecZ) == RegMask::SlotsPerVecZ, "sanity"); assert(lrgmask.is_aligned_sets(RegMask::SlotsPerVecZ), "vector should be aligned"); lrg.set_num_regs(RegMask::SlotsPerVecZ); lrg.set_reg_pressure(1); break; default: ShouldNotReachHere(); } } // Now do the same for inputs uint cnt = n->req(); // Setup for CISC SPILLING uint inp = (uint)AdlcVMDeps::Not_cisc_spillable; if( UseCISCSpill && after_aggressive ) { inp = n->cisc_operand(); if( inp != (uint)AdlcVMDeps::Not_cisc_spillable ) // Convert operand number to edge index number inp = n->as_Mach()->operand_index(inp); } // Prepare register mask for each input for( uint k = input_edge_start; k < cnt; k++ ) { uint vreg = _lrg_map.live_range_id(n->in(k)); if (!vreg) { continue; } // If this instruction is CISC Spillable, add the flags // bit to its appropriate input if( UseCISCSpill && after_aggressive && inp == k ) { #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" use_cisc_RegMask: "); n->dump(); } #endif n->as_Mach()->use_cisc_RegMask(); } if (is_machine_node && _scheduling_info_generated) { MachNode* cur_node = n->as_Mach(); // this is cleaned up by register allocation if (k >= cur_node->num_opnds()) continue; } LRG &lrg = lrgs(vreg); // // Testing for floating point code shape // Node *test = n->in(k); // if( test->is_Mach() ) { // MachNode *m = test->as_Mach(); // int op = m->ideal_Opcode(); // if (n->is_Call() && (op == Op_AddF || op == Op_MulF) ) { // int zzz = 1; // } // } // Limit result register mask to acceptable registers. // Do not limit registers from uncommon uses before // AggressiveCoalesce. This effectively pre-virtual-splits // around uncommon uses of common defs. const RegMask &rm = n->in_RegMask(k); if (!after_aggressive && _cfg.get_block_for_node(n->in(k))->_freq > 1000 * block->_freq) { // Since we are BEFORE aggressive coalesce, leave the register // mask untrimmed by the call. This encourages more coalescing. // Later, AFTER aggressive, this live range will have to spill // but the spiller handles slow-path calls very nicely. } else { lrg.AND( rm ); } // Check for bound register masks const RegMask &lrgmask = lrg.mask(); uint kreg = n->in(k)->ideal_reg(); bool is_vect = RegMask::is_vector(kreg); assert(n->in(k)->bottom_type()->isa_vect() == NULL || is_vect || kreg == Op_RegD || kreg == Op_RegL, "vector must be in vector registers"); if (lrgmask.is_bound(kreg)) lrg._is_bound = 1; // If this use of a double forces a mis-aligned double, // flag as '_fat_proj' - really flag as allowing misalignment // AND changes how we count interferences. A mis-aligned // double can interfere with TWO aligned pairs, or effectively // FOUR registers! #ifdef ASSERT if (is_vect && !_scheduling_info_generated) { if (lrg.num_regs() != 0) { assert(lrgmask.is_aligned_sets(lrg.num_regs()), "vector should be aligned"); assert(!lrg._fat_proj, "sanity"); assert(RegMask::num_registers(kreg) == lrg.num_regs(), "sanity"); } else { assert(n->is_Phi(), "not all inputs processed only if Phi"); } } #endif if (!is_vect && lrg.num_regs() == 2 && !lrg._fat_proj && rm.is_misaligned_pair()) { lrg._fat_proj = 1; lrg._is_bound = 1; } // if the LRG is an unaligned pair, we will have to spill // so clear the LRG's register mask if it is not already spilled if (!is_vect && !n->is_SpillCopy() && (lrg._def == NULL || lrg.is_multidef() || !lrg._def->is_SpillCopy()) && lrgmask.is_misaligned_pair()) { lrg.Clear(); } // Check for maximum frequency value if (lrg._maxfreq < block->_freq) { lrg._maxfreq = block->_freq; } } // End for all allocated inputs } // end for all instructions } // end for all blocks // Final per-liverange setup for (uint i2 = 0; i2 < _lrg_map.max_lrg_id(); i2++) { LRG &lrg = lrgs(i2); assert(!lrg._is_vector || !lrg._fat_proj, "sanity"); if (lrg.num_regs() > 1 && !lrg._fat_proj) { lrg.clear_to_sets(); } lrg.compute_set_mask_size(); if (lrg.not_free()) { // Handle case where we lose from the start lrg.set_reg(OptoReg::Name(LRG::SPILL_REG)); lrg._direct_conflict = 1; } lrg.set_degree(0); // no neighbors in IFG yet } } // Set the was-lo-degree bit. Conservative coalescing should not change the // colorability of the graph. If any live range was of low-degree before // coalescing, it should Simplify. This call sets the was-lo-degree bit. // The bit is checked in Simplify. void PhaseChaitin::set_was_low() { #ifdef ASSERT for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) { int size = lrgs(i).num_regs(); uint old_was_lo = lrgs(i)._was_lo; lrgs(i)._was_lo = 0; if( lrgs(i).lo_degree() ) { lrgs(i)._was_lo = 1; // Trivially of low degree } else { // Else check the Brigg's assertion // Brigg's observation is that the lo-degree neighbors of a // hi-degree live range will not interfere with the color choices // of said hi-degree live range. The Simplify reverse-stack-coloring // order takes care of the details. Hence you do not have to count // low-degree neighbors when determining if this guy colors. int briggs_degree = 0; IndexSet *s = _ifg->neighbors(i); IndexSetIterator elements(s); uint lidx; while((lidx = elements.next()) != 0) { if( !lrgs(lidx).lo_degree() ) briggs_degree += MAX2(size,lrgs(lidx).num_regs()); } if( briggs_degree < lrgs(i).degrees_of_freedom() ) lrgs(i)._was_lo = 1; // Low degree via the briggs assertion } assert(old_was_lo <= lrgs(i)._was_lo, "_was_lo may not decrease"); } #endif } // Compute cost/area ratio, in case we spill. Build the lo-degree list. void PhaseChaitin::cache_lrg_info( ) { Compile::TracePhase tp("chaitinCacheLRG", &timers[_t_chaitinCacheLRG]); for (uint i = 1; i < _lrg_map.max_lrg_id(); i++) { LRG &lrg = lrgs(i); // Check for being of low degree: means we can be trivially colored. // Low degree, dead or must-spill guys just get to simplify right away if( lrg.lo_degree() || !lrg.alive() || lrg._must_spill ) { // Split low degree list into those guys that must get a // register and those that can go to register or stack. // The idea is LRGs that can go register or stack color first when // they have a good chance of getting a register. The register-only // lo-degree live ranges always get a register. OptoReg::Name hi_reg = lrg.mask().find_last_elem(); if( OptoReg::is_stack(hi_reg)) { // Can go to stack? lrg._next = _lo_stk_degree; _lo_stk_degree = i; } else { lrg._next = _lo_degree; _lo_degree = i; } } else { // Else high degree lrgs(_hi_degree)._prev = i; lrg._next = _hi_degree; lrg._prev = 0; _hi_degree = i; } } } // Simplify the IFG by removing LRGs of low degree. void PhaseChaitin::Simplify( ) { Compile::TracePhase tp("chaitinSimplify", &timers[_t_chaitinSimplify]); while( 1 ) { // Repeat till simplified it all // May want to explore simplifying lo_degree before _lo_stk_degree. // This might result in more spills coloring into registers during // Select(). while( _lo_degree || _lo_stk_degree ) { // If possible, pull from lo_stk first uint lo; if( _lo_degree ) { lo = _lo_degree; _lo_degree = lrgs(lo)._next; } else { lo = _lo_stk_degree; _lo_stk_degree = lrgs(lo)._next; } // Put the simplified guy on the simplified list. lrgs(lo)._next = _simplified; _simplified = lo; // If this guy is "at risk" then mark his current neighbors if( lrgs(lo)._at_risk ) { IndexSetIterator elements(_ifg->neighbors(lo)); uint datum; while ((datum = elements.next()) != 0) { lrgs(datum)._risk_bias = lo; } } // Yank this guy from the IFG. IndexSet *adj = _ifg->remove_node( lo ); // If any neighbors' degrees fall below their number of // allowed registers, then put that neighbor on the low degree // list. Note that 'degree' can only fall and 'numregs' is // unchanged by this action. Thus the two are equal at most once, // so LRGs hit the lo-degree worklist at most once. IndexSetIterator elements(adj); uint neighbor; while ((neighbor = elements.next()) != 0) { LRG *n = &lrgs(neighbor); #ifdef ASSERT if( VerifyOpto || VerifyRegisterAllocator ) { assert( _ifg->effective_degree(neighbor) == n->degree(), "" ); } #endif // Check for just becoming of-low-degree just counting registers. // _must_spill live ranges are already on the low degree list. if( n->just_lo_degree() && !n->_must_spill ) { assert(!(*_ifg->_yanked)[neighbor],"Cannot move to lo degree twice"); // Pull from hi-degree list uint prev = n->_prev; uint next = n->_next; if( prev ) lrgs(prev)._next = next; else _hi_degree = next; lrgs(next)._prev = prev; n->_next = _lo_degree; _lo_degree = neighbor; } } } // End of while lo-degree/lo_stk_degree worklist not empty // Check for got everything: is hi-degree list empty? if( !_hi_degree ) break; // Time to pick a potential spill guy uint lo_score = _hi_degree; double score = lrgs(lo_score).score(); double area = lrgs(lo_score)._area; double cost = lrgs(lo_score)._cost; bool bound = lrgs(lo_score)._is_bound; // Find cheapest guy debug_only( int lo_no_simplify=0; ); for( uint i = _hi_degree; i; i = lrgs(i)._next ) { assert( !(*_ifg->_yanked)[i], "" ); // It's just vaguely possible to move hi-degree to lo-degree without // going through a just-lo-degree stage: If you remove a double from // a float live range it's degree will drop by 2 and you can skip the // just-lo-degree stage. It's very rare (shows up after 5000+ methods // in -Xcomp of Java2Demo). So just choose this guy to simplify next. if( lrgs(i).lo_degree() ) { lo_score = i; break; } debug_only( if( lrgs(i)._was_lo ) lo_no_simplify=i; ); double iscore = lrgs(i).score(); double iarea = lrgs(i)._area; double icost = lrgs(i)._cost; bool ibound = lrgs(i)._is_bound; // Compare cost/area of i vs cost/area of lo_score. Smaller cost/area // wins. Ties happen because all live ranges in question have spilled // a few times before and the spill-score adds a huge number which // washes out the low order bits. We are choosing the lesser of 2 // evils; in this case pick largest area to spill. // Ties also happen when live ranges are defined and used only inside // one block. In which case their area is 0 and score set to max. // In such case choose bound live range over unbound to free registers // or with smaller cost to spill. if( iscore < score || (iscore == score && iarea > area && lrgs(lo_score)._was_spilled2) || (iscore == score && iarea == area && ( (ibound && !bound) || (ibound == bound && (icost < cost)) )) ) { lo_score = i; score = iscore; area = iarea; cost = icost; bound = ibound; } } LRG *lo_lrg = &lrgs(lo_score); // The live range we choose for spilling is either hi-degree, or very // rarely it can be low-degree. If we choose a hi-degree live range // there better not be any lo-degree choices. assert( lo_lrg->lo_degree() || !lo_no_simplify, "Live range was lo-degree before coalesce; should simplify" ); // Pull from hi-degree list uint prev = lo_lrg->_prev; uint next = lo_lrg->_next; if( prev ) lrgs(prev)._next = next; else _hi_degree = next; lrgs(next)._prev = prev; // Jam him on the lo-degree list, despite his high degree. // Maybe he'll get a color, and maybe he'll spill. // Only Select() will know. lrgs(lo_score)._at_risk = true; _lo_degree = lo_score; lo_lrg->_next = 0; } // End of while not simplified everything } // Is 'reg' register legal for 'lrg'? static bool is_legal_reg(LRG &lrg, OptoReg::Name reg, int chunk) { if (reg >= chunk && reg < (chunk + RegMask::CHUNK_SIZE) && lrg.mask().Member(OptoReg::add(reg,-chunk))) { // RA uses OptoReg which represent the highest element of a registers set. // For example, vectorX (128bit) on x86 uses [XMM,XMMb,XMMc,XMMd] set // in which XMMd is used by RA to represent such vectors. A double value // uses [XMM,XMMb] pairs and XMMb is used by RA for it. // The register mask uses largest bits set of overlapping register sets. // On x86 with AVX it uses 8 bits for each XMM registers set. // // The 'lrg' already has cleared-to-set register mask (done in Select() // before calling choose_color()). Passing mask.Member(reg) check above // indicates that the size (num_regs) of 'reg' set is less or equal to // 'lrg' set size. // For set size 1 any register which is member of 'lrg' mask is legal. if (lrg.num_regs()==1) return true; // For larger sets only an aligned register with the same set size is legal. int mask = lrg.num_regs()-1; if ((reg&mask) == mask) return true; } return false; } // Choose a color using the biasing heuristic OptoReg::Name PhaseChaitin::bias_color( LRG &lrg, int chunk ) { // Check for "at_risk" LRG's uint risk_lrg = _lrg_map.find(lrg._risk_bias); if( risk_lrg != 0 ) { // Walk the colored neighbors of the "at_risk" candidate // Choose a color which is both legal and already taken by a neighbor // of the "at_risk" candidate in order to improve the chances of the // "at_risk" candidate of coloring IndexSetIterator elements(_ifg->neighbors(risk_lrg)); uint datum; while ((datum = elements.next()) != 0) { OptoReg::Name reg = lrgs(datum).reg(); // If this LRG's register is legal for us, choose it if (is_legal_reg(lrg, reg, chunk)) return reg; } } uint copy_lrg = _lrg_map.find(lrg._copy_bias); if( copy_lrg != 0 ) { // If he has a color, if( !(*(_ifg->_yanked))[copy_lrg] ) { OptoReg::Name reg = lrgs(copy_lrg).reg(); // And it is legal for you, if (is_legal_reg(lrg, reg, chunk)) return reg; } else if( chunk == 0 ) { // Choose a color which is legal for him RegMask tempmask = lrg.mask(); tempmask.AND(lrgs(copy_lrg).mask()); tempmask.clear_to_sets(lrg.num_regs()); OptoReg::Name reg = tempmask.find_first_set(lrg.num_regs()); if (OptoReg::is_valid(reg)) return reg; } } // If no bias info exists, just go with the register selection ordering if (lrg._is_vector || lrg.num_regs() == 2) { // Find an aligned set return OptoReg::add(lrg.mask().find_first_set(lrg.num_regs()),chunk); } // CNC - Fun hack. Alternate 1st and 2nd selection. Enables post-allocate // copy removal to remove many more copies, by preventing a just-assigned // register from being repeatedly assigned. OptoReg::Name reg = lrg.mask().find_first_elem(); if( (++_alternate & 1) && OptoReg::is_valid(reg) ) { // This 'Remove; find; Insert' idiom is an expensive way to find the // SECOND element in the mask. lrg.Remove(reg); OptoReg::Name reg2 = lrg.mask().find_first_elem(); lrg.Insert(reg); if( OptoReg::is_reg(reg2)) reg = reg2; } return OptoReg::add( reg, chunk ); } // Choose a color in the current chunk OptoReg::Name PhaseChaitin::choose_color( LRG &lrg, int chunk ) { assert( C->in_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP-1)), "must not allocate stack0 (inside preserve area)"); assert(C->out_preserve_stack_slots() == 0 || chunk != 0 || lrg._is_bound || lrg.mask().is_bound1() || !lrg.mask().Member(OptoReg::Name(_matcher._old_SP+0)), "must not allocate stack0 (inside preserve area)"); if( lrg.num_regs() == 1 || // Common Case !lrg._fat_proj ) // Aligned+adjacent pairs ok // Use a heuristic to "bias" the color choice return bias_color(lrg, chunk); assert(!lrg._is_vector, "should be not vector here" ); assert( lrg.num_regs() >= 2, "dead live ranges do not color" ); // Fat-proj case or misaligned double argument. assert(lrg.compute_mask_size() == lrg.num_regs() || lrg.num_regs() == 2,"fat projs exactly color" ); assert( !chunk, "always color in 1st chunk" ); // Return the highest element in the set. return lrg.mask().find_last_elem(); } // Select colors by re-inserting LRGs back into the IFG. LRGs are re-inserted // in reverse order of removal. As long as nothing of hi-degree was yanked, // everything going back is guaranteed a color. Select that color. If some // hi-degree LRG cannot get a color then we record that we must spill. uint PhaseChaitin::Select( ) { Compile::TracePhase tp("chaitinSelect", &timers[_t_chaitinSelect]); uint spill_reg = LRG::SPILL_REG; _max_reg = OptoReg::Name(0); // Past max register used while( _simplified ) { // Pull next LRG from the simplified list - in reverse order of removal uint lidx = _simplified; LRG *lrg = &lrgs(lidx); _simplified = lrg->_next; #ifndef PRODUCT if (trace_spilling()) { ttyLocker ttyl; tty->print_cr("L%d selecting degree %d degrees_of_freedom %d", lidx, lrg->degree(), lrg->degrees_of_freedom()); lrg->dump(); } #endif // Re-insert into the IFG _ifg->re_insert(lidx); if( !lrg->alive() ) continue; // capture allstackedness flag before mask is hacked const int is_allstack = lrg->mask().is_AllStack(); // Yeah, yeah, yeah, I know, I know. I can refactor this // to avoid the GOTO, although the refactored code will not // be much clearer. We arrive here IFF we have a stack-based // live range that cannot color in the current chunk, and it // has to move into the next free stack chunk. int chunk = 0; // Current chunk is first chunk retry_next_chunk: // Remove neighbor colors IndexSet *s = _ifg->neighbors(lidx); debug_only(RegMask orig_mask = lrg->mask();) IndexSetIterator elements(s); uint neighbor; while ((neighbor = elements.next()) != 0) { // Note that neighbor might be a spill_reg. In this case, exclusion // of its color will be a no-op, since the spill_reg chunk is in outer // space. Also, if neighbor is in a different chunk, this exclusion // will be a no-op. (Later on, if lrg runs out of possible colors in // its chunk, a new chunk of color may be tried, in which case // examination of neighbors is started again, at retry_next_chunk.) LRG &nlrg = lrgs(neighbor); OptoReg::Name nreg = nlrg.reg(); // Only subtract masks in the same chunk if( nreg >= chunk && nreg < chunk + RegMask::CHUNK_SIZE ) { #ifndef PRODUCT uint size = lrg->mask().Size(); RegMask rm = lrg->mask(); #endif lrg->SUBTRACT(nlrg.mask()); #ifndef PRODUCT if (trace_spilling() && lrg->mask().Size() != size) { ttyLocker ttyl; tty->print("L%d ", lidx); rm.dump(); tty->print(" intersected L%d ", neighbor); nlrg.mask().dump(); tty->print(" removed "); rm.SUBTRACT(lrg->mask()); rm.dump(); tty->print(" leaving "); lrg->mask().dump(); tty->cr(); } #endif } } //assert(is_allstack == lrg->mask().is_AllStack(), "nbrs must not change AllStackedness"); // Aligned pairs need aligned masks assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity"); if (lrg->num_regs() > 1 && !lrg->_fat_proj) { lrg->clear_to_sets(); } // Check if a color is available and if so pick the color OptoReg::Name reg = choose_color( *lrg, chunk ); #ifdef SPARC debug_only(lrg->compute_set_mask_size()); assert(lrg->num_regs() < 2 || lrg->is_bound() || is_even(reg-1), "allocate all doubles aligned"); #endif //--------------- // If we fail to color and the AllStack flag is set, trigger // a chunk-rollover event if(!OptoReg::is_valid(OptoReg::add(reg,-chunk)) && is_allstack) { // Bump register mask up to next stack chunk chunk += RegMask::CHUNK_SIZE; lrg->Set_All(); goto retry_next_chunk; } //--------------- // Did we get a color? else if( OptoReg::is_valid(reg)) { #ifndef PRODUCT RegMask avail_rm = lrg->mask(); #endif // Record selected register lrg->set_reg(reg); if( reg >= _max_reg ) // Compute max register limit _max_reg = OptoReg::add(reg,1); // Fold reg back into normal space reg = OptoReg::add(reg,-chunk); // If the live range is not bound, then we actually had some choices // to make. In this case, the mask has more bits in it than the colors // chosen. Restrict the mask to just what was picked. int n_regs = lrg->num_regs(); assert(!lrg->_is_vector || !lrg->_fat_proj, "sanity"); if (n_regs == 1 || !lrg->_fat_proj) { assert(!lrg->_is_vector || n_regs <= RegMask::SlotsPerVecZ, "sanity"); lrg->Clear(); // Clear the mask lrg->Insert(reg); // Set regmask to match selected reg // For vectors and pairs, also insert the low bit of the pair for (int i = 1; i < n_regs; i++) lrg->Insert(OptoReg::add(reg,-i)); lrg->set_mask_size(n_regs); } else { // Else fatproj // mask must be equal to fatproj bits, by definition } #ifndef PRODUCT if (trace_spilling()) { ttyLocker ttyl; tty->print("L%d selected ", lidx); lrg->mask().dump(); tty->print(" from "); avail_rm.dump(); tty->cr(); } #endif // Note that reg is the highest-numbered register in the newly-bound mask. } // end color available case //--------------- // Live range is live and no colors available else { assert( lrg->alive(), "" ); assert( !lrg->_fat_proj || lrg->is_multidef() || lrg->_def->outcnt() > 0, "fat_proj cannot spill"); assert( !orig_mask.is_AllStack(), "All Stack does not spill" ); // Assign the special spillreg register lrg->set_reg(OptoReg::Name(spill_reg++)); // Do not empty the regmask; leave mask_size lying around // for use during Spilling #ifndef PRODUCT if( trace_spilling() ) { ttyLocker ttyl; tty->print("L%d spilling with neighbors: ", lidx); s->dump(); debug_only(tty->print(" original mask: ")); debug_only(orig_mask.dump()); dump_lrg(lidx); } #endif } // end spill case } return spill_reg-LRG::SPILL_REG; // Return number of spills } // Set the 'spilled_once' or 'spilled_twice' flag on a node. void PhaseChaitin::set_was_spilled( Node *n ) { if( _spilled_once.test_set(n->_idx) ) _spilled_twice.set(n->_idx); } // Convert Ideal spill instructions into proper FramePtr + offset Loads and // Stores. Use-def chains are NOT preserved, but Node->LRG->reg maps are. void PhaseChaitin::fixup_spills() { // This function does only cisc spill work. if( !UseCISCSpill ) return; Compile::TracePhase tp("fixupSpills", &timers[_t_fixupSpills]); // Grab the Frame Pointer Node *fp = _cfg.get_root_block()->head()->in(1)->in(TypeFunc::FramePtr); // For all blocks for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); // For all instructions in block uint last_inst = block->end_idx(); for (uint j = 1; j <= last_inst; j++) { Node* n = block->get_node(j); // Dead instruction??? assert( n->outcnt() != 0 ||// Nothing dead after post alloc C->top() == n || // Or the random TOP node n->is_Proj(), // Or a fat-proj kill node "No dead instructions after post-alloc" ); int inp = n->cisc_operand(); if( inp != AdlcVMDeps::Not_cisc_spillable ) { // Convert operand number to edge index number MachNode *mach = n->as_Mach(); inp = mach->operand_index(inp); Node *src = n->in(inp); // Value to load or store LRG &lrg_cisc = lrgs(_lrg_map.find_const(src)); OptoReg::Name src_reg = lrg_cisc.reg(); // Doubles record the HIGH register of an adjacent pair. src_reg = OptoReg::add(src_reg,1-lrg_cisc.num_regs()); if( OptoReg::is_stack(src_reg) ) { // If input is on stack // This is a CISC Spill, get stack offset and construct new node #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" reg-instr: "); n->dump(); } #endif int stk_offset = reg2offset(src_reg); // Bailout if we might exceed node limit when spilling this instruction C->check_node_count(0, "out of nodes fixing spills"); if (C->failing()) return; // Transform node MachNode *cisc = mach->cisc_version(stk_offset)->as_Mach(); cisc->set_req(inp,fp); // Base register is frame pointer if( cisc->oper_input_base() > 1 && mach->oper_input_base() <= 1 ) { assert( cisc->oper_input_base() == 2, "Only adding one edge"); cisc->ins_req(1,src); // Requires a memory edge } block->map_node(cisc, j); // Insert into basic block n->subsume_by(cisc, C); // Correct graph // ++_used_cisc_instructions; #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" cisc-instr: "); cisc->dump(); } #endif } else { #ifndef PRODUCT if( TraceCISCSpill ) { tty->print(" using reg-instr: "); n->dump(); } #endif ++_unused_cisc_instructions; // input can be on stack } } } // End of for all instructions } // End of for all blocks } // Helper to stretch above; recursively discover the base Node for a // given derived Node. Easy for AddP-related machine nodes, but needs // to be recursive for derived Phis. Node *PhaseChaitin::find_base_for_derived( Node **derived_base_map, Node *derived, uint &maxlrg ) { // See if already computed; if so return it if( derived_base_map[derived->_idx] ) return derived_base_map[derived->_idx]; // See if this happens to be a base. // NOTE: we use TypePtr instead of TypeOopPtr because we can have // pointers derived from NULL! These are always along paths that // can't happen at run-time but the optimizer cannot deduce it so // we have to handle it gracefully. assert(!derived->bottom_type()->isa_narrowoop() || derived->bottom_type()->make_ptr()->is_ptr()->offset() == 0, "sanity"); const TypePtr *tj = derived->bottom_type()->isa_ptr(); // If its an OOP with a non-zero offset, then it is derived. if (tj == NULL || tj->offset() == 0) { derived_base_map[derived->_idx] = derived; return derived; } // Derived is NULL+offset? Base is NULL! if( derived->is_Con() ) { Node *base = _matcher.mach_null(); assert(base != NULL, "sanity"); if (base->in(0) == NULL) { // Initialize it once and make it shared: // set control to _root and place it into Start block // (where top() node is placed). base->init_req(0, _cfg.get_root_node()); Block *startb = _cfg.get_block_for_node(C->top()); uint node_pos = startb->find_node(C->top()); startb->insert_node(base, node_pos); _cfg.map_node_to_block(base, startb); assert(_lrg_map.live_range_id(base) == 0, "should not have LRG yet"); // The loadConP0 might have projection nodes depending on architecture // Add the projection nodes to the CFG for (DUIterator_Fast imax, i = base->fast_outs(imax); i < imax; i++) { Node* use = base->fast_out(i); if (use->is_MachProj()) { startb->insert_node(use, ++node_pos); _cfg.map_node_to_block(use, startb); new_lrg(use, maxlrg++); } } } if (_lrg_map.live_range_id(base) == 0) { new_lrg(base, maxlrg++); } assert(base->in(0) == _cfg.get_root_node() && _cfg.get_block_for_node(base) == _cfg.get_block_for_node(C->top()), "base NULL should be shared"); derived_base_map[derived->_idx] = base; return base; } // Check for AddP-related opcodes if (!derived->is_Phi()) { assert(derived->as_Mach()->ideal_Opcode() == Op_AddP, "but is: %s", derived->Name()); Node *base = derived->in(AddPNode::Base); derived_base_map[derived->_idx] = base; return base; } // Recursively find bases for Phis. // First check to see if we can avoid a base Phi here. Node *base = find_base_for_derived( derived_base_map, derived->in(1),maxlrg); uint i; for( i = 2; i < derived->req(); i++ ) if( base != find_base_for_derived( derived_base_map,derived->in(i),maxlrg)) break; // Went to the end without finding any different bases? if( i == derived->req() ) { // No need for a base Phi here derived_base_map[derived->_idx] = base; return base; } // Now we see we need a base-Phi here to merge the bases const Type *t = base->bottom_type(); base = new PhiNode( derived->in(0), t ); for( i = 1; i < derived->req(); i++ ) { base->init_req(i, find_base_for_derived(derived_base_map, derived->in(i), maxlrg)); t = t->meet(base->in(i)->bottom_type()); } base->as_Phi()->set_type(t); // Search the current block for an existing base-Phi Block *b = _cfg.get_block_for_node(derived); for( i = 1; i <= b->end_idx(); i++ ) {// Search for matching Phi Node *phi = b->get_node(i); if( !phi->is_Phi() ) { // Found end of Phis with no match? b->insert_node(base, i); // Must insert created Phi here as base _cfg.map_node_to_block(base, b); new_lrg(base,maxlrg++); break; } // See if Phi matches. uint j; for( j = 1; j < base->req(); j++ ) if( phi->in(j) != base->in(j) && !(phi->in(j)->is_Con() && base->in(j)->is_Con()) ) // allow different NULLs break; if( j == base->req() ) { // All inputs match? base = phi; // Then use existing 'phi' and drop 'base' break; } } // Cache info for later passes derived_base_map[derived->_idx] = base; return base; } // At each Safepoint, insert extra debug edges for each pair of derived value/ // base pointer that is live across the Safepoint for oopmap building. The // edge pairs get added in after sfpt->jvmtail()->oopoff(), but are in the // required edge set. bool PhaseChaitin::stretch_base_pointer_live_ranges(ResourceArea *a) { int must_recompute_live = false; uint maxlrg = _lrg_map.max_lrg_id(); Node **derived_base_map = (Node**)a->Amalloc(sizeof(Node*)*C->unique()); memset( derived_base_map, 0, sizeof(Node*)*C->unique() ); // For all blocks in RPO do... for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); // Note use of deep-copy constructor. I cannot hammer the original // liveout bits, because they are needed by the following coalesce pass. IndexSet liveout(_live->live(block)); for (uint j = block->end_idx() + 1; j > 1; j--) { Node* n = block->get_node(j - 1); // Pre-split compares of loop-phis. Loop-phis form a cycle we would // like to see in the same register. Compare uses the loop-phi and so // extends its live range BUT cannot be part of the cycle. If this // extended live range overlaps with the update of the loop-phi value // we need both alive at the same time -- which requires at least 1 // copy. But because Intel has only 2-address registers we end up with // at least 2 copies, one before the loop-phi update instruction and // one after. Instead we split the input to the compare just after the // phi. if( n->is_Mach() && n->as_Mach()->ideal_Opcode() == Op_CmpI ) { Node *phi = n->in(1); if( phi->is_Phi() && phi->as_Phi()->region()->is_Loop() ) { Block *phi_block = _cfg.get_block_for_node(phi); if (_cfg.get_block_for_node(phi_block->pred(2)) == block) { const RegMask *mask = C->matcher()->idealreg2spillmask[Op_RegI]; Node *spill = new MachSpillCopyNode(MachSpillCopyNode::LoopPhiInput, phi, *mask, *mask); insert_proj( phi_block, 1, spill, maxlrg++ ); n->set_req(1,spill); must_recompute_live = true; } } } // Get value being defined uint lidx = _lrg_map.live_range_id(n); // Ignore the occasional brand-new live range if (lidx && lidx < _lrg_map.max_lrg_id()) { // Remove from live-out set liveout.remove(lidx); // Copies do not define a new value and so do not interfere. // Remove the copies source from the liveout set before interfering. uint idx = n->is_Copy(); if (idx) { liveout.remove(_lrg_map.live_range_id(n->in(idx))); } } // Found a safepoint? JVMState *jvms = n->jvms(); if( jvms ) { // Now scan for a live derived pointer IndexSetIterator elements(&liveout); uint neighbor; while ((neighbor = elements.next()) != 0) { // Find reaching DEF for base and derived values // This works because we are still in SSA during this call. Node *derived = lrgs(neighbor)._def; const TypePtr *tj = derived->bottom_type()->isa_ptr(); assert(!derived->bottom_type()->isa_narrowoop() || derived->bottom_type()->make_ptr()->is_ptr()->offset() == 0, "sanity"); // If its an OOP with a non-zero offset, then it is derived. if (tj && tj->offset() != 0 && tj->isa_oop_ptr()) { Node *base = find_base_for_derived(derived_base_map, derived, maxlrg); assert(base->_idx < _lrg_map.size(), ""); // Add reaching DEFs of derived pointer and base pointer as a // pair of inputs n->add_req(derived); n->add_req(base); // See if the base pointer is already live to this point. // Since I'm working on the SSA form, live-ness amounts to // reaching def's. So if I find the base's live range then // I know the base's def reaches here. if ((_lrg_map.live_range_id(base) >= _lrg_map.max_lrg_id() || // (Brand new base (hence not live) or !liveout.member(_lrg_map.live_range_id(base))) && // not live) AND (_lrg_map.live_range_id(base) > 0) && // not a constant _cfg.get_block_for_node(base) != block) { // base not def'd in blk) // Base pointer is not currently live. Since I stretched // the base pointer to here and it crosses basic-block // boundaries, the global live info is now incorrect. // Recompute live. must_recompute_live = true; } // End of if base pointer is not live to debug info } } // End of scan all live data for derived ptrs crossing GC point } // End of if found a GC point // Make all inputs live if (!n->is_Phi()) { // Phi function uses come from prior block for (uint k = 1; k < n->req(); k++) { uint lidx = _lrg_map.live_range_id(n->in(k)); if (lidx < _lrg_map.max_lrg_id()) { liveout.insert(lidx); } } } } // End of forall instructions in block liveout.clear(); // Free the memory used by liveout. } // End of forall blocks _lrg_map.set_max_lrg_id(maxlrg); // If I created a new live range I need to recompute live if (maxlrg != _ifg->_maxlrg) { must_recompute_live = true; } return must_recompute_live != 0; } // Extend the node to LRG mapping void PhaseChaitin::add_reference(const Node *node, const Node *old_node) { _lrg_map.extend(node->_idx, _lrg_map.live_range_id(old_node)); } #ifndef PRODUCT void PhaseChaitin::dump(const Node *n) const { uint r = (n->_idx < _lrg_map.size()) ? _lrg_map.find_const(n) : 0; tty->print("L%d",r); if (r && n->Opcode() != Op_Phi) { if( _node_regs ) { // Got a post-allocation copy of allocation? tty->print("["); OptoReg::Name second = get_reg_second(n); if( OptoReg::is_valid(second) ) { if( OptoReg::is_reg(second) ) tty->print("%s:",Matcher::regName[second]); else tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second)); } OptoReg::Name first = get_reg_first(n); if( OptoReg::is_reg(first) ) tty->print("%s]",Matcher::regName[first]); else tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first)); } else n->out_RegMask().dump(); } tty->print("/N%d\t",n->_idx); tty->print("%s === ", n->Name()); uint k; for (k = 0; k < n->req(); k++) { Node *m = n->in(k); if (!m) { tty->print("_ "); } else { uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0; tty->print("L%d",r); // Data MultiNode's can have projections with no real registers. // Don't die while dumping them. int op = n->Opcode(); if( r && op != Op_Phi && op != Op_Proj && op != Op_SCMemProj) { if( _node_regs ) { tty->print("["); OptoReg::Name second = get_reg_second(n->in(k)); if( OptoReg::is_valid(second) ) { if( OptoReg::is_reg(second) ) tty->print("%s:",Matcher::regName[second]); else tty->print("%s+%d:",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(second)); } OptoReg::Name first = get_reg_first(n->in(k)); if( OptoReg::is_reg(first) ) tty->print("%s]",Matcher::regName[first]); else tty->print("%s+%d]",OptoReg::regname(OptoReg::c_frame_pointer), reg2offset_unchecked(first)); } else n->in_RegMask(k).dump(); } tty->print("/N%d ",m->_idx); } } if( k < n->len() && n->in(k) ) tty->print("| "); for( ; k < n->len(); k++ ) { Node *m = n->in(k); if(!m) { break; } uint r = (m->_idx < _lrg_map.size()) ? _lrg_map.find_const(m) : 0; tty->print("L%d",r); tty->print("/N%d ",m->_idx); } if( n->is_Mach() ) n->as_Mach()->dump_spec(tty); else n->dump_spec(tty); if( _spilled_once.test(n->_idx ) ) { tty->print(" Spill_1"); if( _spilled_twice.test(n->_idx ) ) tty->print(" Spill_2"); } tty->print("\n"); } void PhaseChaitin::dump(const Block *b) const { b->dump_head(&_cfg); // For all instructions for( uint j = 0; j < b->number_of_nodes(); j++ ) dump(b->get_node(j)); // Print live-out info at end of block if( _live ) { tty->print("Liveout: "); IndexSet *live = _live->live(b); IndexSetIterator elements(live); tty->print("{"); uint i; while ((i = elements.next()) != 0) { tty->print("L%d ", _lrg_map.find_const(i)); } tty->print_cr("}"); } tty->print("\n"); } void PhaseChaitin::dump() const { tty->print( "--- Chaitin -- argsize: %d framesize: %d ---\n", _matcher._new_SP, _framesize ); // For all blocks for (uint i = 0; i < _cfg.number_of_blocks(); i++) { dump(_cfg.get_block(i)); } // End of per-block dump tty->print("\n"); if (!_ifg) { tty->print("(No IFG.)\n"); return; } // Dump LRG array tty->print("--- Live RanGe Array ---\n"); for (uint i2 = 1; i2 < _lrg_map.max_lrg_id(); i2++) { tty->print("L%d: ",i2); if (i2 < _ifg->_maxlrg) { lrgs(i2).dump(); } else { tty->print_cr("new LRG"); } } tty->cr(); // Dump lo-degree list tty->print("Lo degree: "); for(uint i3 = _lo_degree; i3; i3 = lrgs(i3)._next ) tty->print("L%d ",i3); tty->cr(); // Dump lo-stk-degree list tty->print("Lo stk degree: "); for(uint i4 = _lo_stk_degree; i4; i4 = lrgs(i4)._next ) tty->print("L%d ",i4); tty->cr(); // Dump lo-degree list tty->print("Hi degree: "); for(uint i5 = _hi_degree; i5; i5 = lrgs(i5)._next ) tty->print("L%d ",i5); tty->cr(); } void PhaseChaitin::dump_degree_lists() const { // Dump lo-degree list tty->print("Lo degree: "); for( uint i = _lo_degree; i; i = lrgs(i)._next ) tty->print("L%d ",i); tty->cr(); // Dump lo-stk-degree list tty->print("Lo stk degree: "); for(uint i2 = _lo_stk_degree; i2; i2 = lrgs(i2)._next ) tty->print("L%d ",i2); tty->cr(); // Dump lo-degree list tty->print("Hi degree: "); for(uint i3 = _hi_degree; i3; i3 = lrgs(i3)._next ) tty->print("L%d ",i3); tty->cr(); } void PhaseChaitin::dump_simplified() const { tty->print("Simplified: "); for( uint i = _simplified; i; i = lrgs(i)._next ) tty->print("L%d ",i); tty->cr(); } static char *print_reg( OptoReg::Name reg, const PhaseChaitin *pc, char *buf ) { if ((int)reg < 0) sprintf(buf, "", (int)reg); else if (OptoReg::is_reg(reg)) strcpy(buf, Matcher::regName[reg]); else sprintf(buf,"%s + #%d",OptoReg::regname(OptoReg::c_frame_pointer), pc->reg2offset(reg)); return buf+strlen(buf); } // Dump a register name into a buffer. Be intelligent if we get called // before allocation is complete. char *PhaseChaitin::dump_register( const Node *n, char *buf ) const { if( this == NULL ) { // Not got anything? sprintf(buf,"N%d",n->_idx); // Then use Node index } else if( _node_regs ) { // Post allocation, use direct mappings, no LRG info available print_reg( get_reg_first(n), this, buf ); } else { uint lidx = _lrg_map.find_const(n); // Grab LRG number if( !_ifg ) { sprintf(buf,"L%d",lidx); // No register binding yet } else if( !lidx ) { // Special, not allocated value strcpy(buf,"Special"); } else { if (lrgs(lidx)._is_vector) { if (lrgs(lidx).mask().is_bound_set(lrgs(lidx).num_regs())) print_reg( lrgs(lidx).reg(), this, buf ); // a bound machine register else sprintf(buf,"L%d",lidx); // No register binding yet } else if( (lrgs(lidx).num_regs() == 1) ? lrgs(lidx).mask().is_bound1() : lrgs(lidx).mask().is_bound_pair() ) { // Hah! We have a bound machine register print_reg( lrgs(lidx).reg(), this, buf ); } else { sprintf(buf,"L%d",lidx); // No register binding yet } } } return buf+strlen(buf); } void PhaseChaitin::dump_for_spill_split_recycle() const { if( WizardMode && (PrintCompilation || PrintOpto) ) { // Display which live ranges need to be split and the allocator's state tty->print_cr("Graph-Coloring Iteration %d will split the following live ranges", _trip_cnt); for (uint bidx = 1; bidx < _lrg_map.max_lrg_id(); bidx++) { if( lrgs(bidx).alive() && lrgs(bidx).reg() >= LRG::SPILL_REG ) { tty->print("L%d: ", bidx); lrgs(bidx).dump(); } } tty->cr(); dump(); } } void PhaseChaitin::dump_frame() const { const char *fp = OptoReg::regname(OptoReg::c_frame_pointer); const TypeTuple *domain = C->tf()->domain_cc(); const int argcnt = domain->cnt() - TypeFunc::Parms; // Incoming arguments in registers dump for( int k = 0; k < argcnt; k++ ) { OptoReg::Name parmreg = _matcher._parm_regs[k].first(); if( OptoReg::is_reg(parmreg)) { const char *reg_name = OptoReg::regname(parmreg); tty->print("#r%3.3d %s", parmreg, reg_name); parmreg = _matcher._parm_regs[k].second(); if( OptoReg::is_reg(parmreg)) { tty->print(":%s", OptoReg::regname(parmreg)); } tty->print(" : parm %d: ", k); domain->field_at(k + TypeFunc::Parms)->dump(); tty->cr(); } } // Check for un-owned padding above incoming args OptoReg::Name reg = _matcher._new_SP; if( reg > _matcher._in_arg_limit ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: pad0, owned by CALLER", reg, fp, reg2offset_unchecked(reg)); } // Incoming argument area dump OptoReg::Name begin_in_arg = OptoReg::add(_matcher._old_SP,C->out_preserve_stack_slots()); while( reg > begin_in_arg ) { reg = OptoReg::add(reg, -1); tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); int j; for( j = 0; j < argcnt; j++) { if( _matcher._parm_regs[j].first() == reg || _matcher._parm_regs[j].second() == reg ) { tty->print("parm %d: ",j); domain->field_at(j + TypeFunc::Parms)->dump(); if (!C->FIRST_STACK_mask().Member(reg)) { // Reserved entry in the argument stack area that is not used because // it may hold the return address (see Matcher::init_first_stack_mask()). tty->print(" [RESERVED] "); } tty->cr(); break; } } if( j >= argcnt ) tty->print_cr("HOLE, owned by SELF"); } // Old outgoing preserve area while( reg > _matcher._old_SP ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: old out preserve",reg,fp,reg2offset_unchecked(reg)); } // Old SP tty->print_cr("# -- Old %s -- Framesize: %d --",fp, reg2offset_unchecked(OptoReg::add(_matcher._old_SP,-1)) - reg2offset_unchecked(_matcher._new_SP)+jintSize); // Preserve area dump int fixed_slots = C->fixed_slots(); OptoReg::Name begin_in_preserve = OptoReg::add(_matcher._old_SP, -(int)C->in_preserve_stack_slots()); OptoReg::Name return_addr = _matcher.return_addr(); reg = OptoReg::add(reg, -1); while (OptoReg::is_stack(reg)) { tty->print("#r%3.3d %s+%2d: ",reg,fp,reg2offset_unchecked(reg)); if (return_addr == reg) { tty->print_cr("return address"); } else if (reg >= begin_in_preserve) { // Preserved slots are present on x86 if (return_addr == OptoReg::add(reg, VMRegImpl::slots_per_word)) tty->print_cr("saved fp register"); else if (return_addr == OptoReg::add(reg, 2*VMRegImpl::slots_per_word) && VerifyStackAtCalls) tty->print_cr("0xBADB100D +VerifyStackAtCalls"); else tty->print_cr("in_preserve"); } else if ((int)OptoReg::reg2stack(reg) < fixed_slots) { tty->print_cr("Fixed slot %d", OptoReg::reg2stack(reg)); } else { tty->print_cr("pad2, stack alignment"); } reg = OptoReg::add(reg, -1); } // Spill area dump reg = OptoReg::add(_matcher._new_SP, _framesize ); while( reg > _matcher._out_arg_limit ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: spill",reg,fp,reg2offset_unchecked(reg)); } // Outgoing argument area dump while( reg > OptoReg::add(_matcher._new_SP, C->out_preserve_stack_slots()) ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: outgoing argument",reg,fp,reg2offset_unchecked(reg)); } // Outgoing new preserve area while( reg > _matcher._new_SP ) { reg = OptoReg::add(reg, -1); tty->print_cr("#r%3.3d %s+%2d: new out preserve",reg,fp,reg2offset_unchecked(reg)); } tty->print_cr("#"); } void PhaseChaitin::dump_bb( uint pre_order ) const { tty->print_cr("---dump of B%d---",pre_order); for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); if (block->_pre_order == pre_order) { dump(block); } } } void PhaseChaitin::dump_lrg( uint lidx, bool defs_only ) const { tty->print_cr("---dump of L%d---",lidx); if (_ifg) { if (lidx >= _lrg_map.max_lrg_id()) { tty->print("Attempt to print live range index beyond max live range.\n"); return; } tty->print("L%d: ",lidx); if (lidx < _ifg->_maxlrg) { lrgs(lidx).dump(); } else { tty->print_cr("new LRG"); } } if( _ifg && lidx < _ifg->_maxlrg) { tty->print("Neighbors: %d - ", _ifg->neighbor_cnt(lidx)); _ifg->neighbors(lidx)->dump(); tty->cr(); } // For all blocks for (uint i = 0; i < _cfg.number_of_blocks(); i++) { Block* block = _cfg.get_block(i); int dump_once = 0; // For all instructions for( uint j = 0; j < block->number_of_nodes(); j++ ) { Node *n = block->get_node(j); if (_lrg_map.find_const(n) == lidx) { if (!dump_once++) { tty->cr(); block->dump_head(&_cfg); } dump(n); continue; } if (!defs_only) { uint cnt = n->req(); for( uint k = 1; k < cnt; k++ ) { Node *m = n->in(k); if (!m) { continue; // be robust in the dumper } if (_lrg_map.find_const(m) == lidx) { if (!dump_once++) { tty->cr(); block->dump_head(&_cfg); } dump(n); } } } } } // End of per-block dump tty->cr(); } #endif // not PRODUCT int PhaseChaitin::_final_loads = 0; int PhaseChaitin::_final_stores = 0; int PhaseChaitin::_final_memoves= 0; int PhaseChaitin::_final_copies = 0; double PhaseChaitin::_final_load_cost = 0; double PhaseChaitin::_final_store_cost = 0; double PhaseChaitin::_final_memove_cost= 0; double PhaseChaitin::_final_copy_cost = 0; int PhaseChaitin::_conserv_coalesce = 0; int PhaseChaitin::_conserv_coalesce_pair = 0; int PhaseChaitin::_conserv_coalesce_trie = 0; int PhaseChaitin::_conserv_coalesce_quad = 0; int PhaseChaitin::_post_alloc = 0; int PhaseChaitin::_lost_opp_pp_coalesce = 0; int PhaseChaitin::_lost_opp_cflow_coalesce = 0; int PhaseChaitin::_used_cisc_instructions = 0; int PhaseChaitin::_unused_cisc_instructions = 0; int PhaseChaitin::_allocator_attempts = 0; int PhaseChaitin::_allocator_successes = 0; #ifndef PRODUCT uint PhaseChaitin::_high_pressure = 0; uint PhaseChaitin::_low_pressure = 0; void PhaseChaitin::print_chaitin_statistics() { tty->print_cr("Inserted %d spill loads, %d spill stores, %d mem-mem moves and %d copies.", _final_loads, _final_stores, _final_memoves, _final_copies); tty->print_cr("Total load cost= %6.0f, store cost = %6.0f, mem-mem cost = %5.2f, copy cost = %5.0f.", _final_load_cost, _final_store_cost, _final_memove_cost, _final_copy_cost); tty->print_cr("Adjusted spill cost = %7.0f.", _final_load_cost*4.0 + _final_store_cost * 2.0 + _final_copy_cost*1.0 + _final_memove_cost*12.0); tty->print("Conservatively coalesced %d copies, %d pairs", _conserv_coalesce, _conserv_coalesce_pair); if( _conserv_coalesce_trie || _conserv_coalesce_quad ) tty->print(", %d tries, %d quads", _conserv_coalesce_trie, _conserv_coalesce_quad); tty->print_cr(", %d post alloc.", _post_alloc); if( _lost_opp_pp_coalesce || _lost_opp_cflow_coalesce ) tty->print_cr("Lost coalesce opportunity, %d private-private, and %d cflow interfered.", _lost_opp_pp_coalesce, _lost_opp_cflow_coalesce ); if( _used_cisc_instructions || _unused_cisc_instructions ) tty->print_cr("Used cisc instruction %d, remained in register %d", _used_cisc_instructions, _unused_cisc_instructions); if( _allocator_successes != 0 ) tty->print_cr("Average allocation trips %f", (float)_allocator_attempts/(float)_allocator_successes); tty->print_cr("High Pressure Blocks = %d, Low Pressure Blocks = %d", _high_pressure, _low_pressure); } #endif // not PRODUCT