1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "c1/c1_CodeStubs.hpp"
  27 #include "c1/c1_FrameMap.hpp"
  28 #include "c1/c1_LIRAssembler.hpp"
  29 #include "c1/c1_MacroAssembler.hpp"
  30 #include "c1/c1_Runtime1.hpp"
  31 #include "nativeInst_x86.hpp"
  32 #include "oops/objArrayKlass.hpp"
  33 #include "runtime/sharedRuntime.hpp"
  34 #include "utilities/align.hpp"
  35 #include "utilities/macros.hpp"
  36 #include "vmreg_x86.inline.hpp"
  37 
  38 
  39 #define __ ce->masm()->
  40 
  41 float ConversionStub::float_zero = 0.0;
  42 double ConversionStub::double_zero = 0.0;
  43 
  44 void ConversionStub::emit_code(LIR_Assembler* ce) {
  45   __ bind(_entry);
  46   assert(bytecode() == Bytecodes::_f2i || bytecode() == Bytecodes::_d2i, "other conversions do not require stub");
  47 
  48 
  49   if (input()->is_single_xmm()) {
  50     __ comiss(input()->as_xmm_float_reg(),
  51               ExternalAddress((address)&float_zero));
  52   } else if (input()->is_double_xmm()) {
  53     __ comisd(input()->as_xmm_double_reg(),
  54               ExternalAddress((address)&double_zero));
  55   } else {
  56     LP64_ONLY(ShouldNotReachHere());
  57     __ push(rax);
  58     __ ftst();
  59     __ fnstsw_ax();
  60     __ sahf();
  61     __ pop(rax);
  62   }
  63 
  64   Label NaN, do_return;
  65   __ jccb(Assembler::parity, NaN);
  66   __ jccb(Assembler::below, do_return);
  67 
  68   // input is > 0 -> return maxInt
  69   // result register already contains 0x80000000, so subtracting 1 gives 0x7fffffff
  70   __ decrement(result()->as_register());
  71   __ jmpb(do_return);
  72 
  73   // input is NaN -> return 0
  74   __ bind(NaN);
  75   __ xorptr(result()->as_register(), result()->as_register());
  76 
  77   __ bind(do_return);
  78   __ jmp(_continuation);
  79 }
  80 
  81 void CounterOverflowStub::emit_code(LIR_Assembler* ce) {
  82   __ bind(_entry);
  83   Metadata *m = _method->as_constant_ptr()->as_metadata();
  84   ce->store_parameter(m, 1);
  85   ce->store_parameter(_bci, 0);
  86   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::counter_overflow_id)));
  87   ce->add_call_info_here(_info);
  88   ce->verify_oop_map(_info);
  89   __ jmp(_continuation);
  90 }
  91 
  92 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index, LIR_Opr array)
  93   : _index(index), _array(array), _throw_index_out_of_bounds_exception(false) {
  94   assert(info != NULL, "must have info");
  95   _info = new CodeEmitInfo(info);
  96 }
  97 
  98 RangeCheckStub::RangeCheckStub(CodeEmitInfo* info, LIR_Opr index)
  99   : _index(index), _array(NULL), _throw_index_out_of_bounds_exception(true) {
 100   assert(info != NULL, "must have info");
 101   _info = new CodeEmitInfo(info);
 102 }
 103 
 104 void RangeCheckStub::emit_code(LIR_Assembler* ce) {
 105   __ bind(_entry);
 106   if (_info->deoptimize_on_exception()) {
 107     address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 108     __ call(RuntimeAddress(a));
 109     ce->add_call_info_here(_info);
 110     ce->verify_oop_map(_info);
 111     debug_only(__ should_not_reach_here());
 112     return;
 113   }
 114 
 115   // pass the array index on stack because all registers must be preserved
 116   if (_index->is_cpu_register()) {
 117     ce->store_parameter(_index->as_register(), 0);
 118   } else {
 119     ce->store_parameter(_index->as_jint(), 0);
 120   }
 121   Runtime1::StubID stub_id;
 122   if (_throw_index_out_of_bounds_exception) {
 123     stub_id = Runtime1::throw_index_exception_id;
 124   } else {
 125     stub_id = Runtime1::throw_range_check_failed_id;
 126     ce->store_parameter(_array->as_pointer_register(), 1);
 127   }
 128   __ call(RuntimeAddress(Runtime1::entry_for(stub_id)));
 129   ce->add_call_info_here(_info);
 130   ce->verify_oop_map(_info);
 131   debug_only(__ should_not_reach_here());
 132 }
 133 
 134 PredicateFailedStub::PredicateFailedStub(CodeEmitInfo* info) {
 135   _info = new CodeEmitInfo(info);
 136 }
 137 
 138 void PredicateFailedStub::emit_code(LIR_Assembler* ce) {
 139   __ bind(_entry);
 140   address a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 141   __ call(RuntimeAddress(a));
 142   ce->add_call_info_here(_info);
 143   ce->verify_oop_map(_info);
 144   debug_only(__ should_not_reach_here());
 145 }
 146 
 147 void DivByZeroStub::emit_code(LIR_Assembler* ce) {
 148   if (_offset != -1) {
 149     ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 150   }
 151   __ bind(_entry);
 152   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::throw_div0_exception_id)));
 153   ce->add_call_info_here(_info);
 154   debug_only(__ should_not_reach_here());
 155 }
 156 
 157 
 158 // Implementation of LoadFlattenedArrayStub
 159 
 160 LoadFlattenedArrayStub::LoadFlattenedArrayStub(LIR_Opr array, LIR_Opr index, LIR_Opr result, CodeEmitInfo* info) {
 161   _array = array;
 162   _index = index;
 163   _result = result;
 164   // Tell the register allocator that the runtime call will scratch rax.
 165   _scratch_reg = FrameMap::rax_oop_opr;
 166   _info = new CodeEmitInfo(info);
 167 }
 168 
 169 void LoadFlattenedArrayStub::emit_code(LIR_Assembler* ce) {
 170   assert(__ rsp_offset() == 0, "frame size should be fixed");
 171   __ bind(_entry);
 172   ce->store_parameter(_array->as_register(), 1);
 173   ce->store_parameter(_index->as_register(), 0);
 174   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::load_flattened_array_id)));
 175   ce->add_call_info_here(_info);
 176   ce->verify_oop_map(_info);
 177   if (_result->as_register() != rax) {
 178     __ movptr(_result->as_register(), rax);
 179   }
 180   __ jmp(_continuation);
 181 }
 182 
 183 
 184 // Implementation of StoreFlattenedArrayStub
 185 
 186 StoreFlattenedArrayStub::StoreFlattenedArrayStub(LIR_Opr array, LIR_Opr index, LIR_Opr value, CodeEmitInfo* info) {
 187   _array = array;
 188   _index = index;
 189   _value = value;
 190   // Tell the register allocator that the runtime call will scratch rax.
 191   _scratch_reg = FrameMap::rax_oop_opr;
 192   _info = new CodeEmitInfo(info);
 193 }
 194 
 195 
 196 void StoreFlattenedArrayStub::emit_code(LIR_Assembler* ce) {
 197   assert(__ rsp_offset() == 0, "frame size should be fixed");
 198   __ bind(_entry);
 199   ce->store_parameter(_array->as_register(), 2);
 200   ce->store_parameter(_index->as_register(), 1);
 201   ce->store_parameter(_value->as_register(), 0);
 202   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::store_flattened_array_id)));
 203   ce->add_call_info_here(_info);
 204   ce->verify_oop_map(_info);
 205   __ jmp(_continuation);
 206 }
 207 
 208 
 209 // Implementation of NewInstanceStub
 210 
 211 NewInstanceStub::NewInstanceStub(LIR_Opr klass_reg, LIR_Opr result, ciInstanceKlass* klass, CodeEmitInfo* info, Runtime1::StubID stub_id) {
 212   _result = result;
 213   _klass = klass;
 214   _klass_reg = klass_reg;
 215   _info = new CodeEmitInfo(info);
 216   assert(stub_id == Runtime1::new_instance_id                 ||
 217          stub_id == Runtime1::fast_new_instance_id            ||
 218          stub_id == Runtime1::fast_new_instance_init_check_id,
 219          "need new_instance id");
 220   _stub_id   = stub_id;
 221 }
 222 
 223 
 224 void NewInstanceStub::emit_code(LIR_Assembler* ce) {
 225   assert(__ rsp_offset() == 0, "frame size should be fixed");
 226   __ bind(_entry);
 227   __ movptr(rdx, _klass_reg->as_register());
 228   __ call(RuntimeAddress(Runtime1::entry_for(_stub_id)));
 229   ce->add_call_info_here(_info);
 230   ce->verify_oop_map(_info);
 231   assert(_result->as_register() == rax, "result must in rax,");
 232   __ jmp(_continuation);
 233 }
 234 
 235 
 236 // Implementation of NewTypeArrayStub
 237 
 238 NewTypeArrayStub::NewTypeArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result, CodeEmitInfo* info) {
 239   _klass_reg = klass_reg;
 240   _length = length;
 241   _result = result;
 242   _info = new CodeEmitInfo(info);
 243 }
 244 
 245 
 246 void NewTypeArrayStub::emit_code(LIR_Assembler* ce) {
 247   assert(__ rsp_offset() == 0, "frame size should be fixed");
 248   __ bind(_entry);
 249   assert(_length->as_register() == rbx, "length must in rbx,");
 250   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 251   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_type_array_id)));
 252   ce->add_call_info_here(_info);
 253   ce->verify_oop_map(_info);
 254   assert(_result->as_register() == rax, "result must in rax,");
 255   __ jmp(_continuation);
 256 }
 257 
 258 
 259 // Implementation of NewObjectArrayStub
 260 
 261 NewObjectArrayStub::NewObjectArrayStub(LIR_Opr klass_reg, LIR_Opr length, LIR_Opr result,
 262                                        CodeEmitInfo* info, bool is_value_type) {
 263   _klass_reg = klass_reg;
 264   _result = result;
 265   _length = length;
 266   _info = new CodeEmitInfo(info);
 267   _is_value_type = is_value_type;
 268 }
 269 
 270 
 271 void NewObjectArrayStub::emit_code(LIR_Assembler* ce) {
 272   assert(__ rsp_offset() == 0, "frame size should be fixed");
 273   __ bind(_entry);
 274   assert(_length->as_register() == rbx, "length must in rbx,");
 275   assert(_klass_reg->as_register() == rdx, "klass_reg must in rdx");
 276   if (_is_value_type) {
 277     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_value_array_id)));
 278   } else {
 279     __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::new_object_array_id)));
 280   }
 281   ce->add_call_info_here(_info);
 282   ce->verify_oop_map(_info);
 283   assert(_result->as_register() == rax, "result must in rax,");
 284   __ jmp(_continuation);
 285 }
 286 
 287 
 288 // Implementation of MonitorAccessStubs
 289 
 290 MonitorEnterStub::MonitorEnterStub(LIR_Opr obj_reg, LIR_Opr lock_reg, CodeEmitInfo* info, CodeStub* throw_imse_stub, LIR_Opr scratch_reg)
 291 : MonitorAccessStub(obj_reg, lock_reg)
 292 {
 293   _info = new CodeEmitInfo(info);
 294   _throw_imse_stub = throw_imse_stub;
 295   _scratch_reg = scratch_reg;
 296   if (_throw_imse_stub != NULL) {
 297     assert(_scratch_reg != LIR_OprFact::illegalOpr, "must be");
 298   }
 299 }
 300 
 301 
 302 void MonitorEnterStub::emit_code(LIR_Assembler* ce) {
 303   assert(__ rsp_offset() == 0, "frame size should be fixed");
 304   __ bind(_entry);
 305   if (_throw_imse_stub != NULL) {
 306     // When we come here, _obj_reg has already been checked to be non-null.
 307     Register mark = _scratch_reg->as_register();
 308     __ movptr(mark, Address(_obj_reg->as_register(), oopDesc::mark_offset_in_bytes()));
 309     __ testl(mark, markOopDesc::always_locked_pattern);
 310     __ jcc(Assembler::notZero, *_throw_imse_stub->entry());
 311   }
 312   ce->store_parameter(_obj_reg->as_register(),  1);
 313   ce->store_parameter(_lock_reg->as_register(), 0);
 314   Runtime1::StubID enter_id;
 315   if (ce->compilation()->has_fpu_code()) {
 316     enter_id = Runtime1::monitorenter_id;
 317   } else {
 318     enter_id = Runtime1::monitorenter_nofpu_id;
 319   }
 320   __ call(RuntimeAddress(Runtime1::entry_for(enter_id)));
 321   ce->add_call_info_here(_info);
 322   ce->verify_oop_map(_info);
 323   __ jmp(_continuation);
 324 }
 325 
 326 
 327 void MonitorExitStub::emit_code(LIR_Assembler* ce) {
 328   __ bind(_entry);
 329   if (_compute_lock) {
 330     // lock_reg was destroyed by fast unlocking attempt => recompute it
 331     ce->monitor_address(_monitor_ix, _lock_reg);
 332   }
 333   ce->store_parameter(_lock_reg->as_register(), 0);
 334   // note: non-blocking leaf routine => no call info needed
 335   Runtime1::StubID exit_id;
 336   if (ce->compilation()->has_fpu_code()) {
 337     exit_id = Runtime1::monitorexit_id;
 338   } else {
 339     exit_id = Runtime1::monitorexit_nofpu_id;
 340   }
 341   __ call(RuntimeAddress(Runtime1::entry_for(exit_id)));
 342   __ jmp(_continuation);
 343 }
 344 
 345 
 346 // Implementation of patching:
 347 // - Copy the code at given offset to an inlined buffer (first the bytes, then the number of bytes)
 348 // - Replace original code with a call to the stub
 349 // At Runtime:
 350 // - call to stub, jump to runtime
 351 // - in runtime: preserve all registers (rspecially objects, i.e., source and destination object)
 352 // - in runtime: after initializing class, restore original code, reexecute instruction
 353 
 354 int PatchingStub::_patch_info_offset = -NativeGeneralJump::instruction_size;
 355 
 356 void PatchingStub::align_patch_site(MacroAssembler* masm) {
 357   // We're patching a 5-7 byte instruction on intel and we need to
 358   // make sure that we don't see a piece of the instruction.  It
 359   // appears mostly impossible on Intel to simply invalidate other
 360   // processors caches and since they may do aggressive prefetch it's
 361   // very hard to make a guess about what code might be in the icache.
 362   // Force the instruction to be double word aligned so that it
 363   // doesn't span a cache line.
 364   masm->align(align_up((int)NativeGeneralJump::instruction_size, wordSize));
 365 }
 366 
 367 void PatchingStub::emit_code(LIR_Assembler* ce) {
 368   assert(NativeCall::instruction_size <= _bytes_to_copy && _bytes_to_copy <= 0xFF, "not enough room for call");
 369 
 370   Label call_patch;
 371 
 372   // static field accesses have special semantics while the class
 373   // initializer is being run so we emit a test which can be used to
 374   // check that this code is being executed by the initializing
 375   // thread.
 376   address being_initialized_entry = __ pc();
 377   if (CommentedAssembly) {
 378     __ block_comment(" patch template");
 379   }
 380   if (_id == load_klass_id) {
 381     // produce a copy of the load klass instruction for use by the being initialized case
 382 #ifdef ASSERT
 383     address start = __ pc();
 384 #endif
 385     Metadata* o = NULL;
 386     __ mov_metadata(_obj, o);
 387 #ifdef ASSERT
 388     for (int i = 0; i < _bytes_to_copy; i++) {
 389       address ptr = (address)(_pc_start + i);
 390       int a_byte = (*ptr) & 0xFF;
 391       assert(a_byte == *start++, "should be the same code");
 392     }
 393 #endif
 394   } else if (_id == load_mirror_id) {
 395     // produce a copy of the load mirror instruction for use by the being
 396     // initialized case
 397 #ifdef ASSERT
 398     address start = __ pc();
 399 #endif
 400     jobject o = NULL;
 401     __ movoop(_obj, o);
 402 #ifdef ASSERT
 403     for (int i = 0; i < _bytes_to_copy; i++) {
 404       address ptr = (address)(_pc_start + i);
 405       int a_byte = (*ptr) & 0xFF;
 406       assert(a_byte == *start++, "should be the same code");
 407     }
 408 #endif
 409   } else {
 410     // make a copy the code which is going to be patched.
 411     for (int i = 0; i < _bytes_to_copy; i++) {
 412       address ptr = (address)(_pc_start + i);
 413       int a_byte = (*ptr) & 0xFF;
 414       __ emit_int8(a_byte);
 415       *ptr = 0x90; // make the site look like a nop
 416     }
 417   }
 418 
 419   address end_of_patch = __ pc();
 420   int bytes_to_skip = 0;
 421   if (_id == load_mirror_id) {
 422     int offset = __ offset();
 423     if (CommentedAssembly) {
 424       __ block_comment(" being_initialized check");
 425     }
 426     assert(_obj != noreg, "must be a valid register");
 427     Register tmp = rax;
 428     Register tmp2 = rbx;
 429     __ push(tmp);
 430     __ push(tmp2);
 431     // Load without verification to keep code size small. We need it because
 432     // begin_initialized_entry_offset has to fit in a byte. Also, we know it's not null.
 433     __ movptr(tmp2, Address(_obj, java_lang_Class::klass_offset_in_bytes()));
 434     __ get_thread(tmp);
 435     __ cmpptr(tmp, Address(tmp2, InstanceKlass::init_thread_offset()));
 436     __ pop(tmp2);
 437     __ pop(tmp);
 438     __ jcc(Assembler::notEqual, call_patch);
 439 
 440     // access_field patches may execute the patched code before it's
 441     // copied back into place so we need to jump back into the main
 442     // code of the nmethod to continue execution.
 443     __ jmp(_patch_site_continuation);
 444 
 445     // make sure this extra code gets skipped
 446     bytes_to_skip += __ offset() - offset;
 447   }
 448   if (CommentedAssembly) {
 449     __ block_comment("patch data encoded as movl");
 450   }
 451   // Now emit the patch record telling the runtime how to find the
 452   // pieces of the patch.  We only need 3 bytes but for readability of
 453   // the disassembly we make the data look like a movl reg, imm32,
 454   // which requires 5 bytes
 455   int sizeof_patch_record = 5;
 456   bytes_to_skip += sizeof_patch_record;
 457 
 458   // emit the offsets needed to find the code to patch
 459   int being_initialized_entry_offset = __ pc() - being_initialized_entry + sizeof_patch_record;
 460 
 461   __ emit_int8((unsigned char)0xB8);
 462   __ emit_int8(0);
 463   __ emit_int8(being_initialized_entry_offset);
 464   __ emit_int8(bytes_to_skip);
 465   __ emit_int8(_bytes_to_copy);
 466   address patch_info_pc = __ pc();
 467   assert(patch_info_pc - end_of_patch == bytes_to_skip, "incorrect patch info");
 468 
 469   address entry = __ pc();
 470   NativeGeneralJump::insert_unconditional((address)_pc_start, entry);
 471   address target = NULL;
 472   relocInfo::relocType reloc_type = relocInfo::none;
 473   switch (_id) {
 474     case access_field_id:  target = Runtime1::entry_for(Runtime1::access_field_patching_id); break;
 475     case load_klass_id:    target = Runtime1::entry_for(Runtime1::load_klass_patching_id); reloc_type = relocInfo::metadata_type; break;
 476     case load_mirror_id:   target = Runtime1::entry_for(Runtime1::load_mirror_patching_id); reloc_type = relocInfo::oop_type; break;
 477     case load_appendix_id:      target = Runtime1::entry_for(Runtime1::load_appendix_patching_id); reloc_type = relocInfo::oop_type; break;
 478     default: ShouldNotReachHere();
 479   }
 480   __ bind(call_patch);
 481 
 482   if (CommentedAssembly) {
 483     __ block_comment("patch entry point");
 484   }
 485   __ call(RuntimeAddress(target));
 486   assert(_patch_info_offset == (patch_info_pc - __ pc()), "must not change");
 487   ce->add_call_info_here(_info);
 488   int jmp_off = __ offset();
 489   __ jmp(_patch_site_entry);
 490   // Add enough nops so deoptimization can overwrite the jmp above with a call
 491   // and not destroy the world. We cannot use fat nops here, since the concurrent
 492   // code rewrite may transiently create the illegal instruction sequence.
 493   for (int j = __ offset() ; j < jmp_off + 5 ; j++ ) {
 494     __ nop();
 495   }
 496   if (_id == load_klass_id || _id == load_mirror_id || _id == load_appendix_id) {
 497     CodeSection* cs = __ code_section();
 498     RelocIterator iter(cs, (address)_pc_start, (address)(_pc_start + 1));
 499     relocInfo::change_reloc_info_for_address(&iter, (address) _pc_start, reloc_type, relocInfo::none);
 500   }
 501 }
 502 
 503 
 504 void DeoptimizeStub::emit_code(LIR_Assembler* ce) {
 505   __ bind(_entry);
 506   ce->store_parameter(_trap_request, 0);
 507   __ call(RuntimeAddress(Runtime1::entry_for(Runtime1::deoptimize_id)));
 508   ce->add_call_info_here(_info);
 509   DEBUG_ONLY(__ should_not_reach_here());
 510 }
 511 
 512 
 513 void ImplicitNullCheckStub::emit_code(LIR_Assembler* ce) {
 514   address a;
 515   if (_info->deoptimize_on_exception()) {
 516     // Deoptimize, do not throw the exception, because it is probably wrong to do it here.
 517     a = Runtime1::entry_for(Runtime1::predicate_failed_trap_id);
 518   } else {
 519     a = Runtime1::entry_for(Runtime1::throw_null_pointer_exception_id);
 520   }
 521 
 522   ce->compilation()->implicit_exception_table()->append(_offset, __ offset());
 523   __ bind(_entry);
 524   __ call(RuntimeAddress(a));
 525   ce->add_call_info_here(_info);
 526   ce->verify_oop_map(_info);
 527   debug_only(__ should_not_reach_here());
 528 }
 529 
 530 
 531 void SimpleExceptionStub::emit_code(LIR_Assembler* ce) {
 532   assert(__ rsp_offset() == 0, "frame size should be fixed");
 533 
 534   __ bind(_entry);
 535   // pass the object on stack because all registers must be preserved
 536   if (_obj->is_cpu_register()) {
 537     ce->store_parameter(_obj->as_register(), 0);
 538   }
 539   __ call(RuntimeAddress(Runtime1::entry_for(_stub)));
 540   ce->add_call_info_here(_info);
 541   debug_only(__ should_not_reach_here());
 542 }
 543 
 544 
 545 void ArrayCopyStub::emit_code(LIR_Assembler* ce) {
 546   //---------------slow case: call to native-----------------
 547   __ bind(_entry);
 548   // Figure out where the args should go
 549   // This should really convert the IntrinsicID to the Method* and signature
 550   // but I don't know how to do that.
 551   //
 552   VMRegPair args[5];
 553   BasicType signature[5] = { T_OBJECT, T_INT, T_OBJECT, T_INT, T_INT};
 554   SharedRuntime::java_calling_convention(signature, args, 5, true);
 555 
 556   // push parameters
 557   // (src, src_pos, dest, destPos, length)
 558   Register r[5];
 559   r[0] = src()->as_register();
 560   r[1] = src_pos()->as_register();
 561   r[2] = dst()->as_register();
 562   r[3] = dst_pos()->as_register();
 563   r[4] = length()->as_register();
 564 
 565   // next registers will get stored on the stack
 566   for (int i = 0; i < 5 ; i++ ) {
 567     VMReg r_1 = args[i].first();
 568     if (r_1->is_stack()) {
 569       int st_off = r_1->reg2stack() * wordSize;
 570       __ movptr (Address(rsp, st_off), r[i]);
 571     } else {
 572       assert(r[i] == args[i].first()->as_Register(), "Wrong register for arg ");
 573     }
 574   }
 575 
 576   ce->align_call(lir_static_call);
 577 
 578   ce->emit_static_call_stub();
 579   if (ce->compilation()->bailed_out()) {
 580     return; // CodeCache is full
 581   }
 582   AddressLiteral resolve(SharedRuntime::get_resolve_static_call_stub(),
 583                          relocInfo::static_call_type);
 584   __ call(resolve);
 585   ce->add_call_info_here(info());
 586 
 587 #ifndef PRODUCT
 588   __ incrementl(ExternalAddress((address)&Runtime1::_arraycopy_slowcase_cnt));
 589 #endif
 590 
 591   __ jmp(_continuation);
 592 }
 593 
 594 #undef __