1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef CPU_X86_MACROASSEMBLER_X86_HPP
  26 #define CPU_X86_MACROASSEMBLER_X86_HPP
  27 
  28 #include "asm/assembler.hpp"
  29 #include "utilities/macros.hpp"
  30 #include "runtime/rtmLocking.hpp"
  31 #include "runtime/signature.hpp"
  32 
  33 // MacroAssembler extends Assembler by frequently used macros.
  34 //
  35 // Instructions for which a 'better' code sequence exists depending
  36 // on arguments should also go in here.
  37 
  38 class MacroAssembler: public Assembler {
  39   friend class LIR_Assembler;
  40   friend class Runtime1;      // as_Address()
  41 
  42  public:
  43   // Support for VM calls
  44   //
  45   // This is the base routine called by the different versions of call_VM_leaf. The interpreter
  46   // may customize this version by overriding it for its purposes (e.g., to save/restore
  47   // additional registers when doing a VM call).
  48 
  49   virtual void call_VM_leaf_base(
  50     address entry_point,               // the entry point
  51     int     number_of_arguments        // the number of arguments to pop after the call
  52   );
  53 
  54  protected:
  55   // This is the base routine called by the different versions of call_VM. The interpreter
  56   // may customize this version by overriding it for its purposes (e.g., to save/restore
  57   // additional registers when doing a VM call).
  58   //
  59   // If no java_thread register is specified (noreg) than rdi will be used instead. call_VM_base
  60   // returns the register which contains the thread upon return. If a thread register has been
  61   // specified, the return value will correspond to that register. If no last_java_sp is specified
  62   // (noreg) than rsp will be used instead.
  63   virtual void call_VM_base(           // returns the register containing the thread upon return
  64     Register oop_result,               // where an oop-result ends up if any; use noreg otherwise
  65     Register java_thread,              // the thread if computed before     ; use noreg otherwise
  66     Register last_java_sp,             // to set up last_Java_frame in stubs; use noreg otherwise
  67     address  entry_point,              // the entry point
  68     int      number_of_arguments,      // the number of arguments (w/o thread) to pop after the call
  69     bool     check_exceptions          // whether to check for pending exceptions after return
  70   );
  71 
  72   void call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions = true);
  73 
  74   // helpers for FPU flag access
  75   // tmp is a temporary register, if none is available use noreg
  76   void save_rax   (Register tmp);
  77   void restore_rax(Register tmp);
  78 
  79  public:
  80   MacroAssembler(CodeBuffer* code) : Assembler(code) {}
  81 
  82  // These routines should emit JVMTI PopFrame and ForceEarlyReturn handling code.
  83  // The implementation is only non-empty for the InterpreterMacroAssembler,
  84  // as only the interpreter handles PopFrame and ForceEarlyReturn requests.
  85  virtual void check_and_handle_popframe(Register java_thread);
  86  virtual void check_and_handle_earlyret(Register java_thread);
  87 
  88   Address as_Address(AddressLiteral adr);
  89   Address as_Address(ArrayAddress adr);
  90 
  91   // Support for NULL-checks
  92   //
  93   // Generates code that causes a NULL OS exception if the content of reg is NULL.
  94   // If the accessed location is M[reg + offset] and the offset is known, provide the
  95   // offset. No explicit code generation is needed if the offset is within a certain
  96   // range (0 <= offset <= page_size).
  97 
  98   void null_check(Register reg, int offset = -1);
  99   static bool needs_explicit_null_check(intptr_t offset);
 100   static bool uses_implicit_null_check(void* address);
 101 
 102   void test_klass_is_value(Register klass, Register temp_reg, Label& is_value);
 103 
 104   void test_field_is_flattenable(Register flags, Register temp_reg, Label& is_flattenable);
 105   void test_field_is_not_flattenable(Register flags, Register temp_reg, Label& notFlattenable);
 106   void test_field_is_flattened(Register flags, Register temp_reg, Label& is_flattened);
 107 
 108   // Check klass/oops is flat value type array (oop->_klass->_layout_helper & vt_bit)
 109   void test_flat_array_klass(Register klass, Register temp_reg, Label& is_flat_array);
 110   void test_flat_array_oop(Register oop, Register temp_reg, Label& is_flat_array);
 111 
 112   // Required platform-specific helpers for Label::patch_instructions.
 113   // They _shadow_ the declarations in AbstractAssembler, which are undefined.
 114   void pd_patch_instruction(address branch, address target, const char* file, int line) {
 115     unsigned char op = branch[0];
 116     assert(op == 0xE8 /* call */ ||
 117         op == 0xE9 /* jmp */ ||
 118         op == 0xEB /* short jmp */ ||
 119         (op & 0xF0) == 0x70 /* short jcc */ ||
 120         op == 0x0F && (branch[1] & 0xF0) == 0x80 /* jcc */ ||
 121         op == 0xC7 && branch[1] == 0xF8 /* xbegin */,
 122         "Invalid opcode at patch point");
 123 
 124     if (op == 0xEB || (op & 0xF0) == 0x70) {
 125       // short offset operators (jmp and jcc)
 126       char* disp = (char*) &branch[1];
 127       int imm8 = target - (address) &disp[1];
 128       guarantee(this->is8bit(imm8), "Short forward jump exceeds 8-bit offset at %s:%d", file, line);
 129       *disp = imm8;
 130     } else {
 131       int* disp = (int*) &branch[(op == 0x0F || op == 0xC7)? 2: 1];
 132       int imm32 = target - (address) &disp[1];
 133       *disp = imm32;
 134     }
 135   }
 136 
 137   // The following 4 methods return the offset of the appropriate move instruction
 138 
 139   // Support for fast byte/short loading with zero extension (depending on particular CPU)
 140   int load_unsigned_byte(Register dst, Address src);
 141   int load_unsigned_short(Register dst, Address src);
 142 
 143   // Support for fast byte/short loading with sign extension (depending on particular CPU)
 144   int load_signed_byte(Register dst, Address src);
 145   int load_signed_short(Register dst, Address src);
 146 
 147   // Support for sign-extension (hi:lo = extend_sign(lo))
 148   void extend_sign(Register hi, Register lo);
 149 
 150   // Load and store values by size and signed-ness
 151   void load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2 = noreg);
 152   void store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2 = noreg);
 153 
 154   // Support for inc/dec with optimal instruction selection depending on value
 155 
 156   void increment(Register reg, int value = 1) { LP64_ONLY(incrementq(reg, value)) NOT_LP64(incrementl(reg, value)) ; }
 157   void decrement(Register reg, int value = 1) { LP64_ONLY(decrementq(reg, value)) NOT_LP64(decrementl(reg, value)) ; }
 158 
 159   void decrementl(Address dst, int value = 1);
 160   void decrementl(Register reg, int value = 1);
 161 
 162   void decrementq(Register reg, int value = 1);
 163   void decrementq(Address dst, int value = 1);
 164 
 165   void incrementl(Address dst, int value = 1);
 166   void incrementl(Register reg, int value = 1);
 167 
 168   void incrementq(Register reg, int value = 1);
 169   void incrementq(Address dst, int value = 1);
 170 
 171 #ifdef COMPILER2
 172   // special instructions for EVEX
 173   void setvectmask(Register dst, Register src);
 174   void restorevectmask();
 175 #endif
 176 
 177   // Support optimal SSE move instructions.
 178   void movflt(XMMRegister dst, XMMRegister src) {
 179     if (UseXmmRegToRegMoveAll) { movaps(dst, src); return; }
 180     else                       { movss (dst, src); return; }
 181   }
 182   void movflt(XMMRegister dst, Address src) { movss(dst, src); }
 183   void movflt(XMMRegister dst, AddressLiteral src);
 184   void movflt(Address dst, XMMRegister src) { movss(dst, src); }
 185 
 186   void movdbl(XMMRegister dst, XMMRegister src) {
 187     if (UseXmmRegToRegMoveAll) { movapd(dst, src); return; }
 188     else                       { movsd (dst, src); return; }
 189   }
 190 
 191   void movdbl(XMMRegister dst, AddressLiteral src);
 192 
 193   void movdbl(XMMRegister dst, Address src) {
 194     if (UseXmmLoadAndClearUpper) { movsd (dst, src); return; }
 195     else                         { movlpd(dst, src); return; }
 196   }
 197   void movdbl(Address dst, XMMRegister src) { movsd(dst, src); }
 198 
 199   void incrementl(AddressLiteral dst);
 200   void incrementl(ArrayAddress dst);
 201 
 202   void incrementq(AddressLiteral dst);
 203 
 204   // Alignment
 205   void align(int modulus);
 206   void align(int modulus, int target);
 207 
 208   // A 5 byte nop that is safe for patching (see patch_verified_entry)
 209   void fat_nop();
 210 
 211   // Stack frame creation/removal
 212   void enter();
 213   void leave();
 214 
 215   // Support for getting the JavaThread pointer (i.e.; a reference to thread-local information)
 216   // The pointer will be loaded into the thread register.
 217   void get_thread(Register thread);
 218 
 219 
 220   // Support for VM calls
 221   //
 222   // It is imperative that all calls into the VM are handled via the call_VM macros.
 223   // They make sure that the stack linkage is setup correctly. call_VM's correspond
 224   // to ENTRY/ENTRY_X entry points while call_VM_leaf's correspond to LEAF entry points.
 225 
 226 
 227   void call_VM(Register oop_result,
 228                address entry_point,
 229                bool check_exceptions = true);
 230   void call_VM(Register oop_result,
 231                address entry_point,
 232                Register arg_1,
 233                bool check_exceptions = true);
 234   void call_VM(Register oop_result,
 235                address entry_point,
 236                Register arg_1, Register arg_2,
 237                bool check_exceptions = true);
 238   void call_VM(Register oop_result,
 239                address entry_point,
 240                Register arg_1, Register arg_2, Register arg_3,
 241                bool check_exceptions = true);
 242 
 243   // Overloadings with last_Java_sp
 244   void call_VM(Register oop_result,
 245                Register last_java_sp,
 246                address entry_point,
 247                int number_of_arguments = 0,
 248                bool check_exceptions = true);
 249   void call_VM(Register oop_result,
 250                Register last_java_sp,
 251                address entry_point,
 252                Register arg_1, bool
 253                check_exceptions = true);
 254   void call_VM(Register oop_result,
 255                Register last_java_sp,
 256                address entry_point,
 257                Register arg_1, Register arg_2,
 258                bool check_exceptions = true);
 259   void call_VM(Register oop_result,
 260                Register last_java_sp,
 261                address entry_point,
 262                Register arg_1, Register arg_2, Register arg_3,
 263                bool check_exceptions = true);
 264 
 265   void get_vm_result  (Register oop_result, Register thread);
 266   void get_vm_result_2(Register metadata_result, Register thread);
 267 
 268   // These always tightly bind to MacroAssembler::call_VM_base
 269   // bypassing the virtual implementation
 270   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, int number_of_arguments = 0, bool check_exceptions = true);
 271   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, bool check_exceptions = true);
 272   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, bool check_exceptions = true);
 273   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, bool check_exceptions = true);
 274   void super_call_VM(Register oop_result, Register last_java_sp, address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4, bool check_exceptions = true);
 275 
 276   void call_VM_leaf0(address entry_point);
 277   void call_VM_leaf(address entry_point,
 278                     int number_of_arguments = 0);
 279   void call_VM_leaf(address entry_point,
 280                     Register arg_1);
 281   void call_VM_leaf(address entry_point,
 282                     Register arg_1, Register arg_2);
 283   void call_VM_leaf(address entry_point,
 284                     Register arg_1, Register arg_2, Register arg_3);
 285 
 286   // These always tightly bind to MacroAssembler::call_VM_leaf_base
 287   // bypassing the virtual implementation
 288   void super_call_VM_leaf(address entry_point);
 289   void super_call_VM_leaf(address entry_point, Register arg_1);
 290   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2);
 291   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3);
 292   void super_call_VM_leaf(address entry_point, Register arg_1, Register arg_2, Register arg_3, Register arg_4);
 293 
 294   // last Java Frame (fills frame anchor)
 295   void set_last_Java_frame(Register thread,
 296                            Register last_java_sp,
 297                            Register last_java_fp,
 298                            address last_java_pc);
 299 
 300   // thread in the default location (r15_thread on 64bit)
 301   void set_last_Java_frame(Register last_java_sp,
 302                            Register last_java_fp,
 303                            address last_java_pc);
 304 
 305   void reset_last_Java_frame(Register thread, bool clear_fp);
 306 
 307   // thread in the default location (r15_thread on 64bit)
 308   void reset_last_Java_frame(bool clear_fp);
 309 
 310   // jobjects
 311   void clear_jweak_tag(Register possibly_jweak);
 312   void resolve_jobject(Register value, Register thread, Register tmp);
 313 
 314   // C 'boolean' to Java boolean: x == 0 ? 0 : 1
 315   void c2bool(Register x);
 316 
 317   // C++ bool manipulation
 318 
 319   void movbool(Register dst, Address src);
 320   void movbool(Address dst, bool boolconst);
 321   void movbool(Address dst, Register src);
 322   void testbool(Register dst);
 323 
 324   void resolve_oop_handle(Register result, Register tmp = rscratch2);
 325   void load_mirror(Register mirror, Register method, Register tmp = rscratch2);
 326 
 327   // oop manipulations
 328   void load_klass(Register dst, Register src);
 329   void store_klass(Register dst, Register src);
 330 
 331   void access_load_at(BasicType type, DecoratorSet decorators, Register dst, Address src,
 332                       Register tmp1, Register thread_tmp);
 333   void access_store_at(BasicType type, DecoratorSet decorators, Address dst, Register src,
 334                        Register tmp1, Register tmp2);
 335 
 336   // Resolves obj access. Result is placed in the same register.
 337   // All other registers are preserved.
 338   void resolve(DecoratorSet decorators, Register obj);
 339 
 340   void load_heap_oop(Register dst, Address src, Register tmp1 = noreg,
 341                      Register thread_tmp = noreg, DecoratorSet decorators = 0);
 342   void load_heap_oop_not_null(Register dst, Address src, Register tmp1 = noreg,
 343                               Register thread_tmp = noreg, DecoratorSet decorators = 0);
 344   void store_heap_oop(Address dst, Register src, Register tmp1 = noreg,
 345                       Register tmp2 = noreg, DecoratorSet decorators = 0);
 346 
 347   // Used for storing NULL. All other oop constants should be
 348   // stored using routines that take a jobject.
 349   void store_heap_oop_null(Address dst);
 350 
 351   void load_prototype_header(Register dst, Register src);
 352 
 353 #ifdef _LP64
 354   void store_klass_gap(Register dst, Register src);
 355 
 356   // This dummy is to prevent a call to store_heap_oop from
 357   // converting a zero (like NULL) into a Register by giving
 358   // the compiler two choices it can't resolve
 359 
 360   void store_heap_oop(Address dst, void* dummy);
 361 
 362   void encode_heap_oop(Register r);
 363   void decode_heap_oop(Register r);
 364   void encode_heap_oop_not_null(Register r);
 365   void decode_heap_oop_not_null(Register r);
 366   void encode_heap_oop_not_null(Register dst, Register src);
 367   void decode_heap_oop_not_null(Register dst, Register src);
 368 
 369   void set_narrow_oop(Register dst, jobject obj);
 370   void set_narrow_oop(Address dst, jobject obj);
 371   void cmp_narrow_oop(Register dst, jobject obj);
 372   void cmp_narrow_oop(Address dst, jobject obj);
 373 
 374   void encode_klass_not_null(Register r);
 375   void decode_klass_not_null(Register r);
 376   void encode_klass_not_null(Register dst, Register src);
 377   void decode_klass_not_null(Register dst, Register src);
 378   void set_narrow_klass(Register dst, Klass* k);
 379   void set_narrow_klass(Address dst, Klass* k);
 380   void cmp_narrow_klass(Register dst, Klass* k);
 381   void cmp_narrow_klass(Address dst, Klass* k);
 382 
 383   // Returns the byte size of the instructions generated by decode_klass_not_null()
 384   // when compressed klass pointers are being used.
 385   static int instr_size_for_decode_klass_not_null();
 386 
 387   // if heap base register is used - reinit it with the correct value
 388   void reinit_heapbase();
 389 
 390   DEBUG_ONLY(void verify_heapbase(const char* msg);)
 391 
 392 #endif // _LP64
 393 
 394   // Int division/remainder for Java
 395   // (as idivl, but checks for special case as described in JVM spec.)
 396   // returns idivl instruction offset for implicit exception handling
 397   int corrected_idivl(Register reg);
 398 
 399   // Long division/remainder for Java
 400   // (as idivq, but checks for special case as described in JVM spec.)
 401   // returns idivq instruction offset for implicit exception handling
 402   int corrected_idivq(Register reg);
 403 
 404   void int3();
 405 
 406   // Long operation macros for a 32bit cpu
 407   // Long negation for Java
 408   void lneg(Register hi, Register lo);
 409 
 410   // Long multiplication for Java
 411   // (destroys contents of eax, ebx, ecx and edx)
 412   void lmul(int x_rsp_offset, int y_rsp_offset); // rdx:rax = x * y
 413 
 414   // Long shifts for Java
 415   // (semantics as described in JVM spec.)
 416   void lshl(Register hi, Register lo);                               // hi:lo << (rcx & 0x3f)
 417   void lshr(Register hi, Register lo, bool sign_extension = false);  // hi:lo >> (rcx & 0x3f)
 418 
 419   // Long compare for Java
 420   // (semantics as described in JVM spec.)
 421   void lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo); // x_hi = lcmp(x, y)
 422 
 423 
 424   // misc
 425 
 426   // Sign extension
 427   void sign_extend_short(Register reg);
 428   void sign_extend_byte(Register reg);
 429 
 430   // Division by power of 2, rounding towards 0
 431   void division_with_shift(Register reg, int shift_value);
 432 
 433   // Compares the top-most stack entries on the FPU stack and sets the eflags as follows:
 434   //
 435   // CF (corresponds to C0) if x < y
 436   // PF (corresponds to C2) if unordered
 437   // ZF (corresponds to C3) if x = y
 438   //
 439   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 440   // tmp is a temporary register, if none is available use noreg (only matters for non-P6 code)
 441   void fcmp(Register tmp);
 442   // Variant of the above which allows y to be further down the stack
 443   // and which only pops x and y if specified. If pop_right is
 444   // specified then pop_left must also be specified.
 445   void fcmp(Register tmp, int index, bool pop_left, bool pop_right);
 446 
 447   // Floating-point comparison for Java
 448   // Compares the top-most stack entries on the FPU stack and stores the result in dst.
 449   // The arguments are in reversed order on the stack (i.e., top of stack is first argument).
 450   // (semantics as described in JVM spec.)
 451   void fcmp2int(Register dst, bool unordered_is_less);
 452   // Variant of the above which allows y to be further down the stack
 453   // and which only pops x and y if specified. If pop_right is
 454   // specified then pop_left must also be specified.
 455   void fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right);
 456 
 457   // Floating-point remainder for Java (ST0 = ST0 fremr ST1, ST1 is empty afterwards)
 458   // tmp is a temporary register, if none is available use noreg
 459   void fremr(Register tmp);
 460 
 461   // dst = c = a * b + c
 462   void fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 463   void fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c);
 464 
 465   void vfmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 466   void vfmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c, int vector_len);
 467   void vfmad(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 468   void vfmaf(XMMRegister dst, XMMRegister a, Address b, XMMRegister c, int vector_len);
 469 
 470 
 471   // same as fcmp2int, but using SSE2
 472   void cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 473   void cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less);
 474 
 475   // branch to L if FPU flag C2 is set/not set
 476   // tmp is a temporary register, if none is available use noreg
 477   void jC2 (Register tmp, Label& L);
 478   void jnC2(Register tmp, Label& L);
 479 
 480   // Pop ST (ffree & fincstp combined)
 481   void fpop();
 482 
 483   // Load float value from 'address'. If UseSSE >= 1, the value is loaded into
 484   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 485   void load_float(Address src);
 486 
 487   // Store float value to 'address'. If UseSSE >= 1, the value is stored
 488   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 489   void store_float(Address dst);
 490 
 491   // Load double value from 'address'. If UseSSE >= 2, the value is loaded into
 492   // register xmm0. Otherwise, the value is loaded onto the FPU stack.
 493   void load_double(Address src);
 494 
 495   // Store double value to 'address'. If UseSSE >= 2, the value is stored
 496   // from register xmm0. Otherwise, the value is stored from the FPU stack.
 497   void store_double(Address dst);
 498 
 499   // pushes double TOS element of FPU stack on CPU stack; pops from FPU stack
 500   void push_fTOS();
 501 
 502   // pops double TOS element from CPU stack and pushes on FPU stack
 503   void pop_fTOS();
 504 
 505   void empty_FPU_stack();
 506 
 507   void push_IU_state();
 508   void pop_IU_state();
 509 
 510   void push_FPU_state();
 511   void pop_FPU_state();
 512 
 513   void push_CPU_state();
 514   void pop_CPU_state();
 515 
 516   // Round up to a power of two
 517   void round_to(Register reg, int modulus);
 518 
 519   // Callee saved registers handling
 520   void push_callee_saved_registers();
 521   void pop_callee_saved_registers();
 522 
 523   // allocation
 524   void eden_allocate(
 525     Register thread,                   // Current thread
 526     Register obj,                      // result: pointer to object after successful allocation
 527     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 528     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 529     Register t1,                       // temp register
 530     Label&   slow_case                 // continuation point if fast allocation fails
 531   );
 532   void tlab_allocate(
 533     Register thread,                   // Current thread
 534     Register obj,                      // result: pointer to object after successful allocation
 535     Register var_size_in_bytes,        // object size in bytes if unknown at compile time; invalid otherwise
 536     int      con_size_in_bytes,        // object size in bytes if   known at compile time
 537     Register t1,                       // temp register
 538     Register t2,                       // temp register
 539     Label&   slow_case                 // continuation point if fast allocation fails
 540   );
 541   void zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp);
 542 
 543   // interface method calling
 544   void lookup_interface_method(Register recv_klass,
 545                                Register intf_klass,
 546                                RegisterOrConstant itable_index,
 547                                Register method_result,
 548                                Register scan_temp,
 549                                Label& no_such_interface,
 550                                bool return_method = true);
 551 
 552   // virtual method calling
 553   void lookup_virtual_method(Register recv_klass,
 554                              RegisterOrConstant vtable_index,
 555                              Register method_result);
 556 
 557   // Test sub_klass against super_klass, with fast and slow paths.
 558 
 559   // The fast path produces a tri-state answer: yes / no / maybe-slow.
 560   // One of the three labels can be NULL, meaning take the fall-through.
 561   // If super_check_offset is -1, the value is loaded up from super_klass.
 562   // No registers are killed, except temp_reg.
 563   void check_klass_subtype_fast_path(Register sub_klass,
 564                                      Register super_klass,
 565                                      Register temp_reg,
 566                                      Label* L_success,
 567                                      Label* L_failure,
 568                                      Label* L_slow_path,
 569                 RegisterOrConstant super_check_offset = RegisterOrConstant(-1));
 570 
 571   // The rest of the type check; must be wired to a corresponding fast path.
 572   // It does not repeat the fast path logic, so don't use it standalone.
 573   // The temp_reg and temp2_reg can be noreg, if no temps are available.
 574   // Updates the sub's secondary super cache as necessary.
 575   // If set_cond_codes, condition codes will be Z on success, NZ on failure.
 576   void check_klass_subtype_slow_path(Register sub_klass,
 577                                      Register super_klass,
 578                                      Register temp_reg,
 579                                      Register temp2_reg,
 580                                      Label* L_success,
 581                                      Label* L_failure,
 582                                      bool set_cond_codes = false);
 583 
 584   // Simplified, combined version, good for typical uses.
 585   // Falls through on failure.
 586   void check_klass_subtype(Register sub_klass,
 587                            Register super_klass,
 588                            Register temp_reg,
 589                            Label& L_success);
 590 
 591   // method handles (JSR 292)
 592   Address argument_address(RegisterOrConstant arg_slot, int extra_slot_offset = 0);
 593 
 594   //----
 595   void set_word_if_not_zero(Register reg); // sets reg to 1 if not zero, otherwise 0
 596 
 597   // Debugging
 598 
 599   // only if +VerifyOops
 600   // TODO: Make these macros with file and line like sparc version!
 601   void verify_oop(Register reg, const char* s = "broken oop");
 602   void verify_oop_addr(Address addr, const char * s = "broken oop addr");
 603 
 604   // TODO: verify method and klass metadata (compare against vptr?)
 605   void _verify_method_ptr(Register reg, const char * msg, const char * file, int line) {}
 606   void _verify_klass_ptr(Register reg, const char * msg, const char * file, int line){}
 607 
 608 #define verify_method_ptr(reg) _verify_method_ptr(reg, "broken method " #reg, __FILE__, __LINE__)
 609 #define verify_klass_ptr(reg) _verify_klass_ptr(reg, "broken klass " #reg, __FILE__, __LINE__)
 610 
 611   // only if +VerifyFPU
 612   void verify_FPU(int stack_depth, const char* s = "illegal FPU state");
 613 
 614   // Verify or restore cpu control state after JNI call
 615   void restore_cpu_control_state_after_jni();
 616 
 617   // prints msg, dumps registers and stops execution
 618   void stop(const char* msg);
 619 
 620   // prints msg and continues
 621   void warn(const char* msg);
 622 
 623   // dumps registers and other state
 624   void print_state();
 625 
 626   static void debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg);
 627   static void debug64(char* msg, int64_t pc, int64_t regs[]);
 628   static void print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip);
 629   static void print_state64(int64_t pc, int64_t regs[]);
 630 
 631   void os_breakpoint();
 632 
 633   void untested()                                { stop("untested"); }
 634 
 635   void unimplemented(const char* what = "");
 636 
 637   void should_not_reach_here()                   { stop("should not reach here"); }
 638 
 639   void print_CPU_state();
 640 
 641   // Stack overflow checking
 642   void bang_stack_with_offset(int offset) {
 643     // stack grows down, caller passes positive offset
 644     assert(offset > 0, "must bang with negative offset");
 645     movl(Address(rsp, (-offset)), rax);
 646   }
 647 
 648   // Writes to stack successive pages until offset reached to check for
 649   // stack overflow + shadow pages.  Also, clobbers tmp
 650   void bang_stack_size(Register size, Register tmp);
 651 
 652   // Check for reserved stack access in method being exited (for JIT)
 653   void reserved_stack_check();
 654 
 655   virtual RegisterOrConstant delayed_value_impl(intptr_t* delayed_value_addr,
 656                                                 Register tmp,
 657                                                 int offset);
 658 
 659   // If thread_reg is != noreg the code assumes the register passed contains
 660   // the thread (required on 64 bit).
 661   void safepoint_poll(Label& slow_path, Register thread_reg, Register temp_reg);
 662 
 663   void verify_tlab();
 664 
 665   // Biased locking support
 666   // lock_reg and obj_reg must be loaded up with the appropriate values.
 667   // swap_reg must be rax, and is killed.
 668   // tmp_reg is optional. If it is supplied (i.e., != noreg) it will
 669   // be killed; if not supplied, push/pop will be used internally to
 670   // allocate a temporary (inefficient, avoid if possible).
 671   // Optional slow case is for implementations (interpreter and C1) which branch to
 672   // slow case directly. Leaves condition codes set for C2's Fast_Lock node.
 673   // Returns offset of first potentially-faulting instruction for null
 674   // check info (currently consumed only by C1). If
 675   // swap_reg_contains_mark is true then returns -1 as it is assumed
 676   // the calling code has already passed any potential faults.
 677   int biased_locking_enter(Register lock_reg, Register obj_reg,
 678                            Register swap_reg, Register tmp_reg,
 679                            bool swap_reg_contains_mark,
 680                            Label& done, Label* slow_case = NULL,
 681                            BiasedLockingCounters* counters = NULL);
 682   void biased_locking_exit (Register obj_reg, Register temp_reg, Label& done);
 683 #ifdef COMPILER2
 684   // Code used by cmpFastLock and cmpFastUnlock mach instructions in .ad file.
 685   // See full desription in macroAssembler_x86.cpp.
 686   void fast_lock(Register obj, Register box, Register tmp,
 687                  Register scr, Register cx1, Register cx2,
 688                  BiasedLockingCounters* counters,
 689                  RTMLockingCounters* rtm_counters,
 690                  RTMLockingCounters* stack_rtm_counters,
 691                  Metadata* method_data,
 692                  bool use_rtm, bool profile_rtm);
 693   void fast_unlock(Register obj, Register box, Register tmp, bool use_rtm);
 694 #if INCLUDE_RTM_OPT
 695   void rtm_counters_update(Register abort_status, Register rtm_counters);
 696   void branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel);
 697   void rtm_abort_ratio_calculation(Register tmp, Register rtm_counters_reg,
 698                                    RTMLockingCounters* rtm_counters,
 699                                    Metadata* method_data);
 700   void rtm_profiling(Register abort_status_Reg, Register rtm_counters_Reg,
 701                      RTMLockingCounters* rtm_counters, Metadata* method_data, bool profile_rtm);
 702   void rtm_retry_lock_on_abort(Register retry_count, Register abort_status, Label& retryLabel);
 703   void rtm_retry_lock_on_busy(Register retry_count, Register box, Register tmp, Register scr, Label& retryLabel);
 704   void rtm_stack_locking(Register obj, Register tmp, Register scr,
 705                          Register retry_on_abort_count,
 706                          RTMLockingCounters* stack_rtm_counters,
 707                          Metadata* method_data, bool profile_rtm,
 708                          Label& DONE_LABEL, Label& IsInflated);
 709   void rtm_inflated_locking(Register obj, Register box, Register tmp,
 710                             Register scr, Register retry_on_busy_count,
 711                             Register retry_on_abort_count,
 712                             RTMLockingCounters* rtm_counters,
 713                             Metadata* method_data, bool profile_rtm,
 714                             Label& DONE_LABEL);
 715 #endif
 716 #endif
 717 
 718   Condition negate_condition(Condition cond);
 719 
 720   // Instructions that use AddressLiteral operands. These instruction can handle 32bit/64bit
 721   // operands. In general the names are modified to avoid hiding the instruction in Assembler
 722   // so that we don't need to implement all the varieties in the Assembler with trivial wrappers
 723   // here in MacroAssembler. The major exception to this rule is call
 724 
 725   // Arithmetics
 726 
 727 
 728   void addptr(Address dst, int32_t src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)) ; }
 729   void addptr(Address dst, Register src);
 730 
 731   void addptr(Register dst, Address src) { LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src)); }
 732   void addptr(Register dst, int32_t src);
 733   void addptr(Register dst, Register src);
 734   void addptr(Register dst, RegisterOrConstant src) {
 735     if (src.is_constant()) addptr(dst, (int) src.as_constant());
 736     else                   addptr(dst,       src.as_register());
 737   }
 738 
 739   void andptr(Register dst, int32_t src);
 740   void andptr(Register src1, Register src2) { LP64_ONLY(andq(src1, src2)) NOT_LP64(andl(src1, src2)) ; }
 741 
 742   void cmp8(AddressLiteral src1, int imm);
 743 
 744   // renamed to drag out the casting of address to int32_t/intptr_t
 745   void cmp32(Register src1, int32_t imm);
 746 
 747   void cmp32(AddressLiteral src1, int32_t imm);
 748   // compare reg - mem, or reg - &mem
 749   void cmp32(Register src1, AddressLiteral src2);
 750 
 751   void cmp32(Register src1, Address src2);
 752 
 753 #ifndef _LP64
 754   void cmpklass(Address dst, Metadata* obj);
 755   void cmpklass(Register dst, Metadata* obj);
 756   void cmpoop(Address dst, jobject obj);
 757   void cmpoop_raw(Address dst, jobject obj);
 758 #endif // _LP64
 759 
 760   void cmpoop(Register src1, Register src2);
 761   void cmpoop(Register src1, Address src2);
 762   void cmpoop(Register dst, jobject obj);
 763   void cmpoop_raw(Register dst, jobject obj);
 764 
 765   // NOTE src2 must be the lval. This is NOT an mem-mem compare
 766   void cmpptr(Address src1, AddressLiteral src2);
 767 
 768   void cmpptr(Register src1, AddressLiteral src2);
 769 
 770   void cmpptr(Register src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 771   void cmpptr(Register src1, Address src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 772   // void cmpptr(Address src1, Register src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 773 
 774   void cmpptr(Register src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 775   void cmpptr(Address src1, int32_t src2) { LP64_ONLY(cmpq(src1, src2)) NOT_LP64(cmpl(src1, src2)) ; }
 776 
 777   // cmp64 to avoild hiding cmpq
 778   void cmp64(Register src1, AddressLiteral src);
 779 
 780   void cmpxchgptr(Register reg, Address adr);
 781 
 782   void locked_cmpxchgptr(Register reg, AddressLiteral adr);
 783 
 784 
 785   void imulptr(Register dst, Register src) { LP64_ONLY(imulq(dst, src)) NOT_LP64(imull(dst, src)); }
 786   void imulptr(Register dst, Register src, int imm32) { LP64_ONLY(imulq(dst, src, imm32)) NOT_LP64(imull(dst, src, imm32)); }
 787 
 788 
 789   void negptr(Register dst) { LP64_ONLY(negq(dst)) NOT_LP64(negl(dst)); }
 790 
 791   void notptr(Register dst) { LP64_ONLY(notq(dst)) NOT_LP64(notl(dst)); }
 792 
 793   void shlptr(Register dst, int32_t shift);
 794   void shlptr(Register dst) { LP64_ONLY(shlq(dst)) NOT_LP64(shll(dst)); }
 795 
 796   void shrptr(Register dst, int32_t shift);
 797   void shrptr(Register dst) { LP64_ONLY(shrq(dst)) NOT_LP64(shrl(dst)); }
 798 
 799   void sarptr(Register dst) { LP64_ONLY(sarq(dst)) NOT_LP64(sarl(dst)); }
 800   void sarptr(Register dst, int32_t src) { LP64_ONLY(sarq(dst, src)) NOT_LP64(sarl(dst, src)); }
 801 
 802   void subptr(Address dst, int32_t src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 803 
 804   void subptr(Register dst, Address src) { LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src)); }
 805   void subptr(Register dst, int32_t src);
 806   // Force generation of a 4 byte immediate value even if it fits into 8bit
 807   void subptr_imm32(Register dst, int32_t src);
 808   void subptr(Register dst, Register src);
 809   void subptr(Register dst, RegisterOrConstant src) {
 810     if (src.is_constant()) subptr(dst, (int) src.as_constant());
 811     else                   subptr(dst,       src.as_register());
 812   }
 813 
 814   void sbbptr(Address dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 815   void sbbptr(Register dst, int32_t src) { LP64_ONLY(sbbq(dst, src)) NOT_LP64(sbbl(dst, src)); }
 816 
 817   void xchgptr(Register src1, Register src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 818   void xchgptr(Register src1, Address src2) { LP64_ONLY(xchgq(src1, src2)) NOT_LP64(xchgl(src1, src2)) ; }
 819 
 820   void xaddptr(Address src1, Register src2) { LP64_ONLY(xaddq(src1, src2)) NOT_LP64(xaddl(src1, src2)) ; }
 821 
 822 
 823 
 824   // Helper functions for statistics gathering.
 825   // Conditionally (atomically, on MPs) increments passed counter address, preserving condition codes.
 826   void cond_inc32(Condition cond, AddressLiteral counter_addr);
 827   // Unconditional atomic increment.
 828   void atomic_incl(Address counter_addr);
 829   void atomic_incl(AddressLiteral counter_addr, Register scr = rscratch1);
 830 #ifdef _LP64
 831   void atomic_incq(Address counter_addr);
 832   void atomic_incq(AddressLiteral counter_addr, Register scr = rscratch1);
 833 #endif
 834   void atomic_incptr(AddressLiteral counter_addr, Register scr = rscratch1) { LP64_ONLY(atomic_incq(counter_addr, scr)) NOT_LP64(atomic_incl(counter_addr, scr)) ; }
 835   void atomic_incptr(Address counter_addr) { LP64_ONLY(atomic_incq(counter_addr)) NOT_LP64(atomic_incl(counter_addr)) ; }
 836 
 837   void lea(Register dst, AddressLiteral adr);
 838   void lea(Address dst, AddressLiteral adr);
 839   void lea(Register dst, Address adr) { Assembler::lea(dst, adr); }
 840 
 841   void leal32(Register dst, Address src) { leal(dst, src); }
 842 
 843   // Import other testl() methods from the parent class or else
 844   // they will be hidden by the following overriding declaration.
 845   using Assembler::testl;
 846   void testl(Register dst, AddressLiteral src);
 847 
 848   void orptr(Register dst, Address src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 849   void orptr(Register dst, Register src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 850   void orptr(Register dst, int32_t src) { LP64_ONLY(orq(dst, src)) NOT_LP64(orl(dst, src)); }
 851   void orptr(Address dst, int32_t imm32) { LP64_ONLY(orq(dst, imm32)) NOT_LP64(orl(dst, imm32)); }
 852 
 853   void testptr(Register src, int32_t imm32) {  LP64_ONLY(testq(src, imm32)) NOT_LP64(testl(src, imm32)); }
 854   void testptr(Register src1, Address src2) { LP64_ONLY(testq(src1, src2)) NOT_LP64(testl(src1, src2)); }
 855   void testptr(Register src1, Register src2);
 856 
 857   void xorptr(Register dst, Register src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 858   void xorptr(Register dst, Address src) { LP64_ONLY(xorq(dst, src)) NOT_LP64(xorl(dst, src)); }
 859 
 860   // Calls
 861 
 862   void call(Label& L, relocInfo::relocType rtype);
 863   void call(Register entry);
 864 
 865   // NOTE: this call transfers to the effective address of entry NOT
 866   // the address contained by entry. This is because this is more natural
 867   // for jumps/calls.
 868   void call(AddressLiteral entry);
 869 
 870   // Emit the CompiledIC call idiom
 871   void ic_call(address entry, jint method_index = 0);
 872 
 873   // Jumps
 874 
 875   // NOTE: these jumps tranfer to the effective address of dst NOT
 876   // the address contained by dst. This is because this is more natural
 877   // for jumps/calls.
 878   void jump(AddressLiteral dst);
 879   void jump_cc(Condition cc, AddressLiteral dst);
 880 
 881   // 32bit can do a case table jump in one instruction but we no longer allow the base
 882   // to be installed in the Address class. This jump will tranfers to the address
 883   // contained in the location described by entry (not the address of entry)
 884   void jump(ArrayAddress entry);
 885 
 886   // Floating
 887 
 888   void andpd(XMMRegister dst, Address src) { Assembler::andpd(dst, src); }
 889   void andpd(XMMRegister dst, AddressLiteral src);
 890   void andpd(XMMRegister dst, XMMRegister src) { Assembler::andpd(dst, src); }
 891 
 892   void andps(XMMRegister dst, XMMRegister src) { Assembler::andps(dst, src); }
 893   void andps(XMMRegister dst, Address src) { Assembler::andps(dst, src); }
 894   void andps(XMMRegister dst, AddressLiteral src);
 895 
 896   void comiss(XMMRegister dst, XMMRegister src) { Assembler::comiss(dst, src); }
 897   void comiss(XMMRegister dst, Address src) { Assembler::comiss(dst, src); }
 898   void comiss(XMMRegister dst, AddressLiteral src);
 899 
 900   void comisd(XMMRegister dst, XMMRegister src) { Assembler::comisd(dst, src); }
 901   void comisd(XMMRegister dst, Address src) { Assembler::comisd(dst, src); }
 902   void comisd(XMMRegister dst, AddressLiteral src);
 903 
 904   void fadd_s(Address src)        { Assembler::fadd_s(src); }
 905   void fadd_s(AddressLiteral src) { Assembler::fadd_s(as_Address(src)); }
 906 
 907   void fldcw(Address src) { Assembler::fldcw(src); }
 908   void fldcw(AddressLiteral src);
 909 
 910   void fld_s(int index)   { Assembler::fld_s(index); }
 911   void fld_s(Address src) { Assembler::fld_s(src); }
 912   void fld_s(AddressLiteral src);
 913 
 914   void fld_d(Address src) { Assembler::fld_d(src); }
 915   void fld_d(AddressLiteral src);
 916 
 917   void fld_x(Address src) { Assembler::fld_x(src); }
 918   void fld_x(AddressLiteral src);
 919 
 920   void fmul_s(Address src)        { Assembler::fmul_s(src); }
 921   void fmul_s(AddressLiteral src) { Assembler::fmul_s(as_Address(src)); }
 922 
 923   void ldmxcsr(Address src) { Assembler::ldmxcsr(src); }
 924   void ldmxcsr(AddressLiteral src);
 925 
 926 #ifdef _LP64
 927  private:
 928   void sha256_AVX2_one_round_compute(
 929     Register  reg_old_h,
 930     Register  reg_a,
 931     Register  reg_b,
 932     Register  reg_c,
 933     Register  reg_d,
 934     Register  reg_e,
 935     Register  reg_f,
 936     Register  reg_g,
 937     Register  reg_h,
 938     int iter);
 939   void sha256_AVX2_four_rounds_compute_first(int start);
 940   void sha256_AVX2_four_rounds_compute_last(int start);
 941   void sha256_AVX2_one_round_and_sched(
 942         XMMRegister xmm_0,     /* == ymm4 on 0, 1, 2, 3 iterations, then rotate 4 registers left on 4, 8, 12 iterations */
 943         XMMRegister xmm_1,     /* ymm5 */  /* full cycle is 16 iterations */
 944         XMMRegister xmm_2,     /* ymm6 */
 945         XMMRegister xmm_3,     /* ymm7 */
 946         Register    reg_a,      /* == eax on 0 iteration, then rotate 8 register right on each next iteration */
 947         Register    reg_b,      /* ebx */    /* full cycle is 8 iterations */
 948         Register    reg_c,      /* edi */
 949         Register    reg_d,      /* esi */
 950         Register    reg_e,      /* r8d */
 951         Register    reg_f,      /* r9d */
 952         Register    reg_g,      /* r10d */
 953         Register    reg_h,      /* r11d */
 954         int iter);
 955 
 956   void addm(int disp, Register r1, Register r2);
 957   void gfmul(XMMRegister tmp0, XMMRegister t);
 958   void schoolbookAAD(int i, Register subkeyH, XMMRegister data, XMMRegister tmp0,
 959                      XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3);
 960   void generateHtbl_one_block(Register htbl);
 961   void generateHtbl_eight_blocks(Register htbl);
 962  public:
 963   void sha256_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 964                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 965                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 966                    bool multi_block, XMMRegister shuf_mask);
 967   void avx_ghash(Register state, Register htbl, Register data, Register blocks);
 968 #endif
 969 
 970 #ifdef _LP64
 971  private:
 972   void sha512_AVX2_one_round_compute(Register old_h, Register a, Register b, Register c, Register d,
 973                                      Register e, Register f, Register g, Register h, int iteration);
 974 
 975   void sha512_AVX2_one_round_and_schedule(XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
 976                                           Register a, Register b, Register c, Register d, Register e, Register f,
 977                                           Register g, Register h, int iteration);
 978 
 979   void addmq(int disp, Register r1, Register r2);
 980  public:
 981   void sha512_AVX2(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 982                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 983                    Register buf, Register state, Register ofs, Register limit, Register rsp, bool multi_block,
 984                    XMMRegister shuf_mask);
 985 #endif
 986 
 987   void fast_sha1(XMMRegister abcd, XMMRegister e0, XMMRegister e1, XMMRegister msg0,
 988                  XMMRegister msg1, XMMRegister msg2, XMMRegister msg3, XMMRegister shuf_mask,
 989                  Register buf, Register state, Register ofs, Register limit, Register rsp,
 990                  bool multi_block);
 991 
 992 #ifdef _LP64
 993   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 994                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
 995                    Register buf, Register state, Register ofs, Register limit, Register rsp,
 996                    bool multi_block, XMMRegister shuf_mask);
 997 #else
 998   void fast_sha256(XMMRegister msg, XMMRegister state0, XMMRegister state1, XMMRegister msgtmp0,
 999                    XMMRegister msgtmp1, XMMRegister msgtmp2, XMMRegister msgtmp3, XMMRegister msgtmp4,
1000                    Register buf, Register state, Register ofs, Register limit, Register rsp,
1001                    bool multi_block);
1002 #endif
1003 
1004   void fast_exp(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1005                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1006                 Register rax, Register rcx, Register rdx, Register tmp);
1007 
1008 #ifdef _LP64
1009   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1010                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1011                 Register rax, Register rcx, Register rdx, Register tmp1, Register tmp2);
1012 
1013   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1014                   XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1015                   Register rax, Register rcx, Register rdx, Register r11);
1016 
1017   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1018                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1019                 Register rdx, Register tmp1, Register tmp2, Register tmp3, Register tmp4);
1020 
1021   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1022                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1023                 Register rax, Register rbx, Register rcx, Register rdx, Register tmp1, Register tmp2,
1024                 Register tmp3, Register tmp4);
1025 
1026   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1027                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1028                 Register rax, Register rcx, Register rdx, Register tmp1,
1029                 Register tmp2, Register tmp3, Register tmp4);
1030   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1031                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1032                 Register rax, Register rcx, Register rdx, Register tmp1,
1033                 Register tmp2, Register tmp3, Register tmp4);
1034 #else
1035   void fast_log(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1036                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1037                 Register rax, Register rcx, Register rdx, Register tmp1);
1038 
1039   void fast_log10(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1040                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1041                 Register rax, Register rcx, Register rdx, Register tmp);
1042 
1043   void fast_pow(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3, XMMRegister xmm4,
1044                 XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7, Register rax, Register rcx,
1045                 Register rdx, Register tmp);
1046 
1047   void fast_sin(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1048                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1049                 Register rax, Register rbx, Register rdx);
1050 
1051   void fast_cos(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1052                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1053                 Register rax, Register rcx, Register rdx, Register tmp);
1054 
1055   void libm_sincos_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1056                         Register edx, Register ebx, Register esi, Register edi,
1057                         Register ebp, Register esp);
1058 
1059   void libm_reduce_pi04l(Register eax, Register ecx, Register edx, Register ebx,
1060                          Register esi, Register edi, Register ebp, Register esp);
1061 
1062   void libm_tancot_huge(XMMRegister xmm0, XMMRegister xmm1, Register eax, Register ecx,
1063                         Register edx, Register ebx, Register esi, Register edi,
1064                         Register ebp, Register esp);
1065 
1066   void fast_tan(XMMRegister xmm0, XMMRegister xmm1, XMMRegister xmm2, XMMRegister xmm3,
1067                 XMMRegister xmm4, XMMRegister xmm5, XMMRegister xmm6, XMMRegister xmm7,
1068                 Register rax, Register rcx, Register rdx, Register tmp);
1069 #endif
1070 
1071   void increase_precision();
1072   void restore_precision();
1073 
1074 private:
1075 
1076   // these are private because users should be doing movflt/movdbl
1077 
1078   void movss(Address dst, XMMRegister src)     { Assembler::movss(dst, src); }
1079   void movss(XMMRegister dst, XMMRegister src) { Assembler::movss(dst, src); }
1080   void movss(XMMRegister dst, Address src)     { Assembler::movss(dst, src); }
1081   void movss(XMMRegister dst, AddressLiteral src);
1082 
1083   void movlpd(XMMRegister dst, Address src)    {Assembler::movlpd(dst, src); }
1084   void movlpd(XMMRegister dst, AddressLiteral src);
1085 
1086 public:
1087 
1088   void addsd(XMMRegister dst, XMMRegister src)    { Assembler::addsd(dst, src); }
1089   void addsd(XMMRegister dst, Address src)        { Assembler::addsd(dst, src); }
1090   void addsd(XMMRegister dst, AddressLiteral src);
1091 
1092   void addss(XMMRegister dst, XMMRegister src)    { Assembler::addss(dst, src); }
1093   void addss(XMMRegister dst, Address src)        { Assembler::addss(dst, src); }
1094   void addss(XMMRegister dst, AddressLiteral src);
1095 
1096   void addpd(XMMRegister dst, XMMRegister src)    { Assembler::addpd(dst, src); }
1097   void addpd(XMMRegister dst, Address src)        { Assembler::addpd(dst, src); }
1098   void addpd(XMMRegister dst, AddressLiteral src);
1099 
1100   void divsd(XMMRegister dst, XMMRegister src)    { Assembler::divsd(dst, src); }
1101   void divsd(XMMRegister dst, Address src)        { Assembler::divsd(dst, src); }
1102   void divsd(XMMRegister dst, AddressLiteral src);
1103 
1104   void divss(XMMRegister dst, XMMRegister src)    { Assembler::divss(dst, src); }
1105   void divss(XMMRegister dst, Address src)        { Assembler::divss(dst, src); }
1106   void divss(XMMRegister dst, AddressLiteral src);
1107 
1108   // Move Unaligned Double Quadword
1109   void movdqu(Address     dst, XMMRegister src);
1110   void movdqu(XMMRegister dst, Address src);
1111   void movdqu(XMMRegister dst, XMMRegister src);
1112   void movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg = rscratch1);
1113   // AVX Unaligned forms
1114   void vmovdqu(Address     dst, XMMRegister src);
1115   void vmovdqu(XMMRegister dst, Address src);
1116   void vmovdqu(XMMRegister dst, XMMRegister src);
1117   void vmovdqu(XMMRegister dst, AddressLiteral src);
1118   void evmovdquq(XMMRegister dst, Address src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1119   void evmovdquq(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1120   void evmovdquq(Address dst, XMMRegister src, int vector_len) { Assembler::evmovdquq(dst, src, vector_len); }
1121   void evmovdquq(XMMRegister dst, AddressLiteral src, int vector_len, Register rscratch);
1122 
1123   // Move Aligned Double Quadword
1124   void movdqa(XMMRegister dst, Address src)       { Assembler::movdqa(dst, src); }
1125   void movdqa(XMMRegister dst, XMMRegister src)   { Assembler::movdqa(dst, src); }
1126   void movdqa(XMMRegister dst, AddressLiteral src);
1127 
1128   void movsd(XMMRegister dst, XMMRegister src) { Assembler::movsd(dst, src); }
1129   void movsd(Address dst, XMMRegister src)     { Assembler::movsd(dst, src); }
1130   void movsd(XMMRegister dst, Address src)     { Assembler::movsd(dst, src); }
1131   void movsd(XMMRegister dst, AddressLiteral src);
1132 
1133   void mulpd(XMMRegister dst, XMMRegister src)    { Assembler::mulpd(dst, src); }
1134   void mulpd(XMMRegister dst, Address src)        { Assembler::mulpd(dst, src); }
1135   void mulpd(XMMRegister dst, AddressLiteral src);
1136 
1137   void mulsd(XMMRegister dst, XMMRegister src)    { Assembler::mulsd(dst, src); }
1138   void mulsd(XMMRegister dst, Address src)        { Assembler::mulsd(dst, src); }
1139   void mulsd(XMMRegister dst, AddressLiteral src);
1140 
1141   void mulss(XMMRegister dst, XMMRegister src)    { Assembler::mulss(dst, src); }
1142   void mulss(XMMRegister dst, Address src)        { Assembler::mulss(dst, src); }
1143   void mulss(XMMRegister dst, AddressLiteral src);
1144 
1145   // Carry-Less Multiplication Quadword
1146   void pclmulldq(XMMRegister dst, XMMRegister src) {
1147     // 0x00 - multiply lower 64 bits [0:63]
1148     Assembler::pclmulqdq(dst, src, 0x00);
1149   }
1150   void pclmulhdq(XMMRegister dst, XMMRegister src) {
1151     // 0x11 - multiply upper 64 bits [64:127]
1152     Assembler::pclmulqdq(dst, src, 0x11);
1153   }
1154 
1155   void pcmpeqb(XMMRegister dst, XMMRegister src);
1156   void pcmpeqw(XMMRegister dst, XMMRegister src);
1157 
1158   void pcmpestri(XMMRegister dst, Address src, int imm8);
1159   void pcmpestri(XMMRegister dst, XMMRegister src, int imm8);
1160 
1161   void pmovzxbw(XMMRegister dst, XMMRegister src);
1162   void pmovzxbw(XMMRegister dst, Address src);
1163 
1164   void pmovmskb(Register dst, XMMRegister src);
1165 
1166   void ptest(XMMRegister dst, XMMRegister src);
1167 
1168   void sqrtsd(XMMRegister dst, XMMRegister src)    { Assembler::sqrtsd(dst, src); }
1169   void sqrtsd(XMMRegister dst, Address src)        { Assembler::sqrtsd(dst, src); }
1170   void sqrtsd(XMMRegister dst, AddressLiteral src);
1171 
1172   void sqrtss(XMMRegister dst, XMMRegister src)    { Assembler::sqrtss(dst, src); }
1173   void sqrtss(XMMRegister dst, Address src)        { Assembler::sqrtss(dst, src); }
1174   void sqrtss(XMMRegister dst, AddressLiteral src);
1175 
1176   void subsd(XMMRegister dst, XMMRegister src)    { Assembler::subsd(dst, src); }
1177   void subsd(XMMRegister dst, Address src)        { Assembler::subsd(dst, src); }
1178   void subsd(XMMRegister dst, AddressLiteral src);
1179 
1180   void subss(XMMRegister dst, XMMRegister src)    { Assembler::subss(dst, src); }
1181   void subss(XMMRegister dst, Address src)        { Assembler::subss(dst, src); }
1182   void subss(XMMRegister dst, AddressLiteral src);
1183 
1184   void ucomiss(XMMRegister dst, XMMRegister src) { Assembler::ucomiss(dst, src); }
1185   void ucomiss(XMMRegister dst, Address src)     { Assembler::ucomiss(dst, src); }
1186   void ucomiss(XMMRegister dst, AddressLiteral src);
1187 
1188   void ucomisd(XMMRegister dst, XMMRegister src) { Assembler::ucomisd(dst, src); }
1189   void ucomisd(XMMRegister dst, Address src)     { Assembler::ucomisd(dst, src); }
1190   void ucomisd(XMMRegister dst, AddressLiteral src);
1191 
1192   // Bitwise Logical XOR of Packed Double-Precision Floating-Point Values
1193   void xorpd(XMMRegister dst, XMMRegister src);
1194   void xorpd(XMMRegister dst, Address src)     { Assembler::xorpd(dst, src); }
1195   void xorpd(XMMRegister dst, AddressLiteral src);
1196 
1197   // Bitwise Logical XOR of Packed Single-Precision Floating-Point Values
1198   void xorps(XMMRegister dst, XMMRegister src);
1199   void xorps(XMMRegister dst, Address src)     { Assembler::xorps(dst, src); }
1200   void xorps(XMMRegister dst, AddressLiteral src);
1201 
1202   // Shuffle Bytes
1203   void pshufb(XMMRegister dst, XMMRegister src) { Assembler::pshufb(dst, src); }
1204   void pshufb(XMMRegister dst, Address src)     { Assembler::pshufb(dst, src); }
1205   void pshufb(XMMRegister dst, AddressLiteral src);
1206   // AVX 3-operands instructions
1207 
1208   void vaddsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddsd(dst, nds, src); }
1209   void vaddsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddsd(dst, nds, src); }
1210   void vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1211 
1212   void vaddss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vaddss(dst, nds, src); }
1213   void vaddss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vaddss(dst, nds, src); }
1214   void vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1215 
1216   void vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1217   void vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len);
1218 
1219   void vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1220   void vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1221 
1222   void vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1223   void vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1224 
1225   void vpand(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1226   void vpand(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vpand(dst, nds, src, vector_len); }
1227   void vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1228 
1229   void vpbroadcastw(XMMRegister dst, XMMRegister src, int vector_len);
1230   void vpbroadcastw(XMMRegister dst, Address src, int vector_len) { Assembler::vpbroadcastw(dst, src, vector_len); }
1231 
1232   void vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1233 
1234   void vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1235 
1236   void vpmovzxbw(XMMRegister dst, Address src, int vector_len);
1237   void vpmovzxbw(XMMRegister dst, XMMRegister src, int vector_len) { Assembler::vpmovzxbw(dst, src, vector_len); }
1238 
1239   void vpmovmskb(Register dst, XMMRegister src);
1240 
1241   void vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1242   void vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1243 
1244   void vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1245   void vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1246 
1247   void vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len);
1248   void vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len);
1249 
1250   void vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1251   void vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1252 
1253   void vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1254   void vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1255 
1256   void vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len);
1257   void vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len);
1258 
1259   void vptest(XMMRegister dst, XMMRegister src);
1260 
1261   void punpcklbw(XMMRegister dst, XMMRegister src);
1262   void punpcklbw(XMMRegister dst, Address src) { Assembler::punpcklbw(dst, src); }
1263 
1264   void pshufd(XMMRegister dst, Address src, int mode);
1265   void pshufd(XMMRegister dst, XMMRegister src, int mode) { Assembler::pshufd(dst, src, mode); }
1266 
1267   void pshuflw(XMMRegister dst, XMMRegister src, int mode);
1268   void pshuflw(XMMRegister dst, Address src, int mode) { Assembler::pshuflw(dst, src, mode); }
1269 
1270   void vandpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandpd(dst, nds, src, vector_len); }
1271   void vandpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandpd(dst, nds, src, vector_len); }
1272   void vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1273 
1274   void vandps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vandps(dst, nds, src, vector_len); }
1275   void vandps(XMMRegister dst, XMMRegister nds, Address src, int vector_len)     { Assembler::vandps(dst, nds, src, vector_len); }
1276   void vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1277 
1278   void vdivsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivsd(dst, nds, src); }
1279   void vdivsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivsd(dst, nds, src); }
1280   void vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1281 
1282   void vdivss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vdivss(dst, nds, src); }
1283   void vdivss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vdivss(dst, nds, src); }
1284   void vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1285 
1286   void vmulsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulsd(dst, nds, src); }
1287   void vmulsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulsd(dst, nds, src); }
1288   void vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1289 
1290   void vmulss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vmulss(dst, nds, src); }
1291   void vmulss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vmulss(dst, nds, src); }
1292   void vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1293 
1294   void vsubsd(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubsd(dst, nds, src); }
1295   void vsubsd(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubsd(dst, nds, src); }
1296   void vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1297 
1298   void vsubss(XMMRegister dst, XMMRegister nds, XMMRegister src) { Assembler::vsubss(dst, nds, src); }
1299   void vsubss(XMMRegister dst, XMMRegister nds, Address src)     { Assembler::vsubss(dst, nds, src); }
1300   void vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1301 
1302   void vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1303   void vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src);
1304 
1305   // AVX Vector instructions
1306 
1307   void vxorpd(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1308   void vxorpd(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorpd(dst, nds, src, vector_len); }
1309   void vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1310 
1311   void vxorps(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1312   void vxorps(XMMRegister dst, XMMRegister nds, Address src, int vector_len) { Assembler::vxorps(dst, nds, src, vector_len); }
1313   void vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len);
1314 
1315   void vpxor(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1316     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1317       Assembler::vpxor(dst, nds, src, vector_len);
1318     else
1319       Assembler::vxorpd(dst, nds, src, vector_len);
1320   }
1321   void vpxor(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
1322     if (UseAVX > 1 || (vector_len < 1)) // vpxor 256 bit is available only in AVX2
1323       Assembler::vpxor(dst, nds, src, vector_len);
1324     else
1325       Assembler::vxorpd(dst, nds, src, vector_len);
1326   }
1327 
1328   // Simple version for AVX2 256bit vectors
1329   void vpxor(XMMRegister dst, XMMRegister src) { Assembler::vpxor(dst, dst, src, true); }
1330   void vpxor(XMMRegister dst, Address src) { Assembler::vpxor(dst, dst, src, true); }
1331 
1332   void vinserti128(XMMRegister dst, XMMRegister nds, XMMRegister src, uint8_t imm8) {
1333     if (UseAVX > 2) {
1334       Assembler::vinserti32x4(dst, dst, src, imm8);
1335     } else if (UseAVX > 1) {
1336       // vinserti128 is available only in AVX2
1337       Assembler::vinserti128(dst, nds, src, imm8);
1338     } else {
1339       Assembler::vinsertf128(dst, nds, src, imm8);
1340     }
1341   }
1342 
1343   void vinserti128(XMMRegister dst, XMMRegister nds, Address src, uint8_t imm8) {
1344     if (UseAVX > 2) {
1345       Assembler::vinserti32x4(dst, dst, src, imm8);
1346     } else if (UseAVX > 1) {
1347       // vinserti128 is available only in AVX2
1348       Assembler::vinserti128(dst, nds, src, imm8);
1349     } else {
1350       Assembler::vinsertf128(dst, nds, src, imm8);
1351     }
1352   }
1353 
1354   void vextracti128(XMMRegister dst, XMMRegister src, uint8_t imm8) {
1355     if (UseAVX > 2) {
1356       Assembler::vextracti32x4(dst, src, imm8);
1357     } else if (UseAVX > 1) {
1358       // vextracti128 is available only in AVX2
1359       Assembler::vextracti128(dst, src, imm8);
1360     } else {
1361       Assembler::vextractf128(dst, src, imm8);
1362     }
1363   }
1364 
1365   void vextracti128(Address dst, XMMRegister src, uint8_t imm8) {
1366     if (UseAVX > 2) {
1367       Assembler::vextracti32x4(dst, src, imm8);
1368     } else if (UseAVX > 1) {
1369       // vextracti128 is available only in AVX2
1370       Assembler::vextracti128(dst, src, imm8);
1371     } else {
1372       Assembler::vextractf128(dst, src, imm8);
1373     }
1374   }
1375 
1376   // 128bit copy to/from high 128 bits of 256bit (YMM) vector registers
1377   void vinserti128_high(XMMRegister dst, XMMRegister src) {
1378     vinserti128(dst, dst, src, 1);
1379   }
1380   void vinserti128_high(XMMRegister dst, Address src) {
1381     vinserti128(dst, dst, src, 1);
1382   }
1383   void vextracti128_high(XMMRegister dst, XMMRegister src) {
1384     vextracti128(dst, src, 1);
1385   }
1386   void vextracti128_high(Address dst, XMMRegister src) {
1387     vextracti128(dst, src, 1);
1388   }
1389 
1390   void vinsertf128_high(XMMRegister dst, XMMRegister src) {
1391     if (UseAVX > 2) {
1392       Assembler::vinsertf32x4(dst, dst, src, 1);
1393     } else {
1394       Assembler::vinsertf128(dst, dst, src, 1);
1395     }
1396   }
1397 
1398   void vinsertf128_high(XMMRegister dst, Address src) {
1399     if (UseAVX > 2) {
1400       Assembler::vinsertf32x4(dst, dst, src, 1);
1401     } else {
1402       Assembler::vinsertf128(dst, dst, src, 1);
1403     }
1404   }
1405 
1406   void vextractf128_high(XMMRegister dst, XMMRegister src) {
1407     if (UseAVX > 2) {
1408       Assembler::vextractf32x4(dst, src, 1);
1409     } else {
1410       Assembler::vextractf128(dst, src, 1);
1411     }
1412   }
1413 
1414   void vextractf128_high(Address dst, XMMRegister src) {
1415     if (UseAVX > 2) {
1416       Assembler::vextractf32x4(dst, src, 1);
1417     } else {
1418       Assembler::vextractf128(dst, src, 1);
1419     }
1420   }
1421 
1422   // 256bit copy to/from high 256 bits of 512bit (ZMM) vector registers
1423   void vinserti64x4_high(XMMRegister dst, XMMRegister src) {
1424     Assembler::vinserti64x4(dst, dst, src, 1);
1425   }
1426   void vinsertf64x4_high(XMMRegister dst, XMMRegister src) {
1427     Assembler::vinsertf64x4(dst, dst, src, 1);
1428   }
1429   void vextracti64x4_high(XMMRegister dst, XMMRegister src) {
1430     Assembler::vextracti64x4(dst, src, 1);
1431   }
1432   void vextractf64x4_high(XMMRegister dst, XMMRegister src) {
1433     Assembler::vextractf64x4(dst, src, 1);
1434   }
1435   void vextractf64x4_high(Address dst, XMMRegister src) {
1436     Assembler::vextractf64x4(dst, src, 1);
1437   }
1438   void vinsertf64x4_high(XMMRegister dst, Address src) {
1439     Assembler::vinsertf64x4(dst, dst, src, 1);
1440   }
1441 
1442   // 128bit copy to/from low 128 bits of 256bit (YMM) vector registers
1443   void vinserti128_low(XMMRegister dst, XMMRegister src) {
1444     vinserti128(dst, dst, src, 0);
1445   }
1446   void vinserti128_low(XMMRegister dst, Address src) {
1447     vinserti128(dst, dst, src, 0);
1448   }
1449   void vextracti128_low(XMMRegister dst, XMMRegister src) {
1450     vextracti128(dst, src, 0);
1451   }
1452   void vextracti128_low(Address dst, XMMRegister src) {
1453     vextracti128(dst, src, 0);
1454   }
1455 
1456   void vinsertf128_low(XMMRegister dst, XMMRegister src) {
1457     if (UseAVX > 2) {
1458       Assembler::vinsertf32x4(dst, dst, src, 0);
1459     } else {
1460       Assembler::vinsertf128(dst, dst, src, 0);
1461     }
1462   }
1463 
1464   void vinsertf128_low(XMMRegister dst, Address src) {
1465     if (UseAVX > 2) {
1466       Assembler::vinsertf32x4(dst, dst, src, 0);
1467     } else {
1468       Assembler::vinsertf128(dst, dst, src, 0);
1469     }
1470   }
1471 
1472   void vextractf128_low(XMMRegister dst, XMMRegister src) {
1473     if (UseAVX > 2) {
1474       Assembler::vextractf32x4(dst, src, 0);
1475     } else {
1476       Assembler::vextractf128(dst, src, 0);
1477     }
1478   }
1479 
1480   void vextractf128_low(Address dst, XMMRegister src) {
1481     if (UseAVX > 2) {
1482       Assembler::vextractf32x4(dst, src, 0);
1483     } else {
1484       Assembler::vextractf128(dst, src, 0);
1485     }
1486   }
1487 
1488   // 256bit copy to/from low 256 bits of 512bit (ZMM) vector registers
1489   void vinserti64x4_low(XMMRegister dst, XMMRegister src) {
1490     Assembler::vinserti64x4(dst, dst, src, 0);
1491   }
1492   void vinsertf64x4_low(XMMRegister dst, XMMRegister src) {
1493     Assembler::vinsertf64x4(dst, dst, src, 0);
1494   }
1495   void vextracti64x4_low(XMMRegister dst, XMMRegister src) {
1496     Assembler::vextracti64x4(dst, src, 0);
1497   }
1498   void vextractf64x4_low(XMMRegister dst, XMMRegister src) {
1499     Assembler::vextractf64x4(dst, src, 0);
1500   }
1501   void vextractf64x4_low(Address dst, XMMRegister src) {
1502     Assembler::vextractf64x4(dst, src, 0);
1503   }
1504   void vinsertf64x4_low(XMMRegister dst, Address src) {
1505     Assembler::vinsertf64x4(dst, dst, src, 0);
1506   }
1507 
1508   // Carry-Less Multiplication Quadword
1509   void vpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1510     // 0x00 - multiply lower 64 bits [0:63]
1511     Assembler::vpclmulqdq(dst, nds, src, 0x00);
1512   }
1513   void vpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1514     // 0x11 - multiply upper 64 bits [64:127]
1515     Assembler::vpclmulqdq(dst, nds, src, 0x11);
1516   }
1517   void vpclmullqhqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1518     // 0x10 - multiply nds[0:63] and src[64:127]
1519     Assembler::vpclmulqdq(dst, nds, src, 0x10);
1520   }
1521   void vpclmulhqlqdq(XMMRegister dst, XMMRegister nds, XMMRegister src) {
1522     //0x01 - multiply nds[64:127] and src[0:63]
1523     Assembler::vpclmulqdq(dst, nds, src, 0x01);
1524   }
1525 
1526   void evpclmulldq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1527     // 0x00 - multiply lower 64 bits [0:63]
1528     Assembler::evpclmulqdq(dst, nds, src, 0x00, vector_len);
1529   }
1530   void evpclmulhdq(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
1531     // 0x11 - multiply upper 64 bits [64:127]
1532     Assembler::evpclmulqdq(dst, nds, src, 0x11, vector_len);
1533   }
1534 
1535   // Data
1536 
1537   void cmov32( Condition cc, Register dst, Address  src);
1538   void cmov32( Condition cc, Register dst, Register src);
1539 
1540   void cmov(   Condition cc, Register dst, Register src) { cmovptr(cc, dst, src); }
1541 
1542   void cmovptr(Condition cc, Register dst, Address  src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1543   void cmovptr(Condition cc, Register dst, Register src) { LP64_ONLY(cmovq(cc, dst, src)) NOT_LP64(cmov32(cc, dst, src)); }
1544 
1545   void movoop(Register dst, jobject obj);
1546   void movoop(Address dst, jobject obj);
1547 
1548   void mov_metadata(Register dst, Metadata* obj);
1549   void mov_metadata(Address dst, Metadata* obj);
1550 
1551   void movptr(ArrayAddress dst, Register src);
1552   // can this do an lea?
1553   void movptr(Register dst, ArrayAddress src);
1554 
1555   void movptr(Register dst, Address src);
1556 
1557 #ifdef _LP64
1558   void movptr(Register dst, AddressLiteral src, Register scratch=rscratch1);
1559 #else
1560   void movptr(Register dst, AddressLiteral src, Register scratch=noreg); // Scratch reg is ignored in 32-bit
1561 #endif
1562 
1563   void movptr(Register dst, intptr_t src);
1564   void movptr(Register dst, Register src);
1565   void movptr(Address dst, intptr_t src);
1566 
1567   void movptr(Address dst, Register src);
1568 
1569   void movptr(Register dst, RegisterOrConstant src) {
1570     if (src.is_constant()) movptr(dst, src.as_constant());
1571     else                   movptr(dst, src.as_register());
1572   }
1573 
1574 #ifdef _LP64
1575   // Generally the next two are only used for moving NULL
1576   // Although there are situations in initializing the mark word where
1577   // they could be used. They are dangerous.
1578 
1579   // They only exist on LP64 so that int32_t and intptr_t are not the same
1580   // and we have ambiguous declarations.
1581 
1582   void movptr(Address dst, int32_t imm32);
1583   void movptr(Register dst, int32_t imm32);
1584 #endif // _LP64
1585 
1586   // to avoid hiding movl
1587   void mov32(AddressLiteral dst, Register src);
1588   void mov32(Register dst, AddressLiteral src);
1589 
1590   // to avoid hiding movb
1591   void movbyte(ArrayAddress dst, int src);
1592 
1593   // Import other mov() methods from the parent class or else
1594   // they will be hidden by the following overriding declaration.
1595   using Assembler::movdl;
1596   using Assembler::movq;
1597   void movdl(XMMRegister dst, AddressLiteral src);
1598   void movq(XMMRegister dst, AddressLiteral src);
1599 
1600   // Can push value or effective address
1601   void pushptr(AddressLiteral src);
1602 
1603   void pushptr(Address src) { LP64_ONLY(pushq(src)) NOT_LP64(pushl(src)); }
1604   void popptr(Address src) { LP64_ONLY(popq(src)) NOT_LP64(popl(src)); }
1605 
1606   void pushoop(jobject obj);
1607   void pushklass(Metadata* obj);
1608 
1609   // sign extend as need a l to ptr sized element
1610   void movl2ptr(Register dst, Address src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(movl(dst, src)); }
1611   void movl2ptr(Register dst, Register src) { LP64_ONLY(movslq(dst, src)) NOT_LP64(if (dst != src) movl(dst, src)); }
1612 
1613   // C2 compiled method's prolog code.
1614   void verified_entry(Compile* C, int sp_inc = 0);
1615 
1616   enum RegState {
1617     reg_readonly,
1618     reg_writable,
1619     reg_written
1620   };
1621 
1622   // Unpack all value type arguments passed as oops
1623   void unpack_value_args(Compile* C, bool receiver_only);
1624   bool move_helper(VMReg from, VMReg to, BasicType bt, RegState reg_state[], int ret_off);
1625   bool unpack_value_helper(const GrowableArray<SigEntry>* sig, int& sig_index, VMReg from, VMRegPair* regs_to, int& to_index, RegState reg_state[], int ret_off);
1626   void restore_stack(Compile* C);
1627 
1628   // clear memory of size 'cnt' qwords, starting at 'base';
1629   // if 'is_large' is set, do not try to produce short loop
1630   void clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp, bool is_large, bool word_copy_only);
1631 
1632   // clear memory of size 'cnt' qwords, starting at 'base' using XMM/YMM registers
1633   void xmm_clear_mem(Register base, Register cnt, Register val, XMMRegister xtmp);
1634 
1635 #ifdef COMPILER2
1636   void string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
1637                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp);
1638 
1639   // IndexOf strings.
1640   // Small strings are loaded through stack if they cross page boundary.
1641   void string_indexof(Register str1, Register str2,
1642                       Register cnt1, Register cnt2,
1643                       int int_cnt2,  Register result,
1644                       XMMRegister vec, Register tmp,
1645                       int ae);
1646 
1647   // IndexOf for constant substrings with size >= 8 elements
1648   // which don't need to be loaded through stack.
1649   void string_indexofC8(Register str1, Register str2,
1650                       Register cnt1, Register cnt2,
1651                       int int_cnt2,  Register result,
1652                       XMMRegister vec, Register tmp,
1653                       int ae);
1654 
1655     // Smallest code: we don't need to load through stack,
1656     // check string tail.
1657 
1658   // helper function for string_compare
1659   void load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
1660                           Address::ScaleFactor scale, Address::ScaleFactor scale1,
1661                           Address::ScaleFactor scale2, Register index, int ae);
1662   // Compare strings.
1663   void string_compare(Register str1, Register str2,
1664                       Register cnt1, Register cnt2, Register result,
1665                       XMMRegister vec1, int ae);
1666 
1667   // Search for Non-ASCII character (Negative byte value) in a byte array,
1668   // return true if it has any and false otherwise.
1669   void has_negatives(Register ary1, Register len,
1670                      Register result, Register tmp1,
1671                      XMMRegister vec1, XMMRegister vec2);
1672 
1673   // Compare char[] or byte[] arrays.
1674   void arrays_equals(bool is_array_equ, Register ary1, Register ary2,
1675                      Register limit, Register result, Register chr,
1676                      XMMRegister vec1, XMMRegister vec2, bool is_char);
1677 
1678 #endif
1679 
1680   // Fill primitive arrays
1681   void generate_fill(BasicType t, bool aligned,
1682                      Register to, Register value, Register count,
1683                      Register rtmp, XMMRegister xtmp);
1684 
1685   void encode_iso_array(Register src, Register dst, Register len,
1686                         XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1687                         XMMRegister tmp4, Register tmp5, Register result);
1688 
1689 #ifdef _LP64
1690   void add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2);
1691   void multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
1692                              Register y, Register y_idx, Register z,
1693                              Register carry, Register product,
1694                              Register idx, Register kdx);
1695   void multiply_add_128_x_128(Register x_xstart, Register y, Register z,
1696                               Register yz_idx, Register idx,
1697                               Register carry, Register product, int offset);
1698   void multiply_128_x_128_bmi2_loop(Register y, Register z,
1699                                     Register carry, Register carry2,
1700                                     Register idx, Register jdx,
1701                                     Register yz_idx1, Register yz_idx2,
1702                                     Register tmp, Register tmp3, Register tmp4);
1703   void multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
1704                                Register yz_idx, Register idx, Register jdx,
1705                                Register carry, Register product,
1706                                Register carry2);
1707   void multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
1708                        Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5);
1709   void square_rshift(Register x, Register len, Register z, Register tmp1, Register tmp3,
1710                      Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1711   void multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry,
1712                             Register tmp2);
1713   void multiply_add_64(Register sum, Register op1, Register op2, Register carry,
1714                        Register rdxReg, Register raxReg);
1715   void add_one_64(Register z, Register zlen, Register carry, Register tmp1);
1716   void lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1717                        Register tmp3, Register tmp4);
1718   void square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2,
1719                      Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg);
1720 
1721   void mul_add_128_x_32_loop(Register out, Register in, Register offset, Register len, Register tmp1,
1722                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1723                Register raxReg);
1724   void mul_add(Register out, Register in, Register offset, Register len, Register k, Register tmp1,
1725                Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg,
1726                Register raxReg);
1727   void vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
1728                            Register result, Register tmp1, Register tmp2,
1729                            XMMRegister vec1, XMMRegister vec2, XMMRegister vec3);
1730 #endif
1731 
1732   // CRC32 code for java.util.zip.CRC32::updateBytes() intrinsic.
1733   void update_byte_crc32(Register crc, Register val, Register table);
1734   void kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp);
1735   // CRC32C code for java.util.zip.CRC32C::updateBytes() intrinsic
1736   // Note on a naming convention:
1737   // Prefix w = register only used on a Westmere+ architecture
1738   // Prefix n = register only used on a Nehalem architecture
1739 #ifdef _LP64
1740   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1741                        Register tmp1, Register tmp2, Register tmp3);
1742 #else
1743   void crc32c_ipl_alg4(Register in_out, uint32_t n,
1744                        Register tmp1, Register tmp2, Register tmp3,
1745                        XMMRegister xtmp1, XMMRegister xtmp2);
1746 #endif
1747   void crc32c_pclmulqdq(XMMRegister w_xtmp1,
1748                         Register in_out,
1749                         uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
1750                         XMMRegister w_xtmp2,
1751                         Register tmp1,
1752                         Register n_tmp2, Register n_tmp3);
1753   void crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
1754                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1755                        Register tmp1, Register tmp2,
1756                        Register n_tmp3);
1757   void crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
1758                          Register in_out1, Register in_out2, Register in_out3,
1759                          Register tmp1, Register tmp2, Register tmp3,
1760                          XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1761                          Register tmp4, Register tmp5,
1762                          Register n_tmp6);
1763   void crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
1764                             Register tmp1, Register tmp2, Register tmp3,
1765                             Register tmp4, Register tmp5, Register tmp6,
1766                             XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
1767                             bool is_pclmulqdq_supported);
1768   // Fold 128-bit data chunk
1769   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1770   void fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf);
1771   // Fold 8-bit data
1772   void fold_8bit_crc32(Register crc, Register table, Register tmp);
1773   void fold_8bit_crc32(XMMRegister crc, Register table, XMMRegister xtmp, Register tmp);
1774   void fold_128bit_crc32_avx512(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset);
1775 
1776   // Compress char[] array to byte[].
1777   void char_array_compress(Register src, Register dst, Register len,
1778                            XMMRegister tmp1, XMMRegister tmp2, XMMRegister tmp3,
1779                            XMMRegister tmp4, Register tmp5, Register result);
1780 
1781   // Inflate byte[] array to char[].
1782   void byte_array_inflate(Register src, Register dst, Register len,
1783                           XMMRegister tmp1, Register tmp2);
1784 
1785 };
1786 
1787 /**
1788  * class SkipIfEqual:
1789  *
1790  * Instantiating this class will result in assembly code being output that will
1791  * jump around any code emitted between the creation of the instance and it's
1792  * automatic destruction at the end of a scope block, depending on the value of
1793  * the flag passed to the constructor, which will be checked at run-time.
1794  */
1795 class SkipIfEqual {
1796  private:
1797   MacroAssembler* _masm;
1798   Label _label;
1799 
1800  public:
1801    SkipIfEqual(MacroAssembler*, const bool* flag_addr, bool value);
1802    ~SkipIfEqual();
1803 };
1804 
1805 #endif // CPU_X86_MACROASSEMBLER_X86_HPP