1 /*
   2  * Copyright (c) 2003, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #ifndef _WINDOWS
  27 #include "alloca.h"
  28 #endif
  29 #include "asm/macroAssembler.hpp"
  30 #include "asm/macroAssembler.inline.hpp"
  31 #include "code/debugInfoRec.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/nativeInst.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "gc/shared/collectedHeap.hpp"
  36 #include "gc/shared/gcLocker.hpp"
  37 #include "gc/shared/barrierSet.hpp"
  38 #include "gc/shared/barrierSetAssembler.hpp"
  39 #include "interpreter/interpreter.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/resourceArea.hpp"
  42 #include "oops/compiledICHolder.hpp"
  43 #include "runtime/safepointMechanism.hpp"
  44 #include "runtime/sharedRuntime.hpp"
  45 #include "runtime/vframeArray.hpp"
  46 #include "utilities/align.hpp"
  47 #include "utilities/formatBuffer.hpp"
  48 #include "vm_version_x86.hpp"
  49 #include "vmreg_x86.inline.hpp"
  50 #ifdef COMPILER1
  51 #include "c1/c1_Runtime1.hpp"
  52 #endif
  53 #ifdef COMPILER2
  54 #include "opto/runtime.hpp"
  55 #endif
  56 #if INCLUDE_JVMCI
  57 #include "jvmci/jvmciJavaClasses.hpp"
  58 #endif
  59 
  60 #define __ masm->
  61 
  62 const int StackAlignmentInSlots = StackAlignmentInBytes / VMRegImpl::stack_slot_size;
  63 
  64 class SimpleRuntimeFrame {
  65 
  66   public:
  67 
  68   // Most of the runtime stubs have this simple frame layout.
  69   // This class exists to make the layout shared in one place.
  70   // Offsets are for compiler stack slots, which are jints.
  71   enum layout {
  72     // The frame sender code expects that rbp will be in the "natural" place and
  73     // will override any oopMap setting for it. We must therefore force the layout
  74     // so that it agrees with the frame sender code.
  75     rbp_off = frame::arg_reg_save_area_bytes/BytesPerInt,
  76     rbp_off2,
  77     return_off, return_off2,
  78     framesize
  79   };
  80 };
  81 
  82 class RegisterSaver {
  83   // Capture info about frame layout.  Layout offsets are in jint
  84   // units because compiler frame slots are jints.
  85 #define XSAVE_AREA_BEGIN 160
  86 #define XSAVE_AREA_YMM_BEGIN 576
  87 #define XSAVE_AREA_ZMM_BEGIN 1152
  88 #define XSAVE_AREA_UPPERBANK 1664
  89 #define DEF_XMM_OFFS(regnum) xmm ## regnum ## _off = xmm_off + (regnum)*16/BytesPerInt, xmm ## regnum ## H_off
  90 #define DEF_YMM_OFFS(regnum) ymm ## regnum ## _off = ymm_off + (regnum)*16/BytesPerInt, ymm ## regnum ## H_off
  91 #define DEF_ZMM_OFFS(regnum) zmm ## regnum ## _off = zmm_off + (regnum-16)*64/BytesPerInt, zmm ## regnum ## H_off
  92   enum layout {
  93     fpu_state_off = frame::arg_reg_save_area_bytes/BytesPerInt, // fxsave save area
  94     xmm_off       = fpu_state_off + XSAVE_AREA_BEGIN/BytesPerInt,            // offset in fxsave save area
  95     DEF_XMM_OFFS(0),
  96     DEF_XMM_OFFS(1),
  97     // 2..15 are implied in range usage
  98     ymm_off = xmm_off + (XSAVE_AREA_YMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
  99     DEF_YMM_OFFS(0),
 100     DEF_YMM_OFFS(1),
 101     // 2..15 are implied in range usage
 102     zmm_high = xmm_off + (XSAVE_AREA_ZMM_BEGIN - XSAVE_AREA_BEGIN)/BytesPerInt,
 103     zmm_off = xmm_off + (XSAVE_AREA_UPPERBANK - XSAVE_AREA_BEGIN)/BytesPerInt,
 104     DEF_ZMM_OFFS(16),
 105     DEF_ZMM_OFFS(17),
 106     // 18..31 are implied in range usage
 107     fpu_state_end = fpu_state_off + ((FPUStateSizeInWords-1)*wordSize / BytesPerInt),
 108     fpu_stateH_end,
 109     r15_off, r15H_off,
 110     r14_off, r14H_off,
 111     r13_off, r13H_off,
 112     r12_off, r12H_off,
 113     r11_off, r11H_off,
 114     r10_off, r10H_off,
 115     r9_off,  r9H_off,
 116     r8_off,  r8H_off,
 117     rdi_off, rdiH_off,
 118     rsi_off, rsiH_off,
 119     ignore_off, ignoreH_off,  // extra copy of rbp
 120     rsp_off, rspH_off,
 121     rbx_off, rbxH_off,
 122     rdx_off, rdxH_off,
 123     rcx_off, rcxH_off,
 124     rax_off, raxH_off,
 125     // 16-byte stack alignment fill word: see MacroAssembler::push/pop_IU_state
 126     align_off, alignH_off,
 127     flags_off, flagsH_off,
 128     // The frame sender code expects that rbp will be in the "natural" place and
 129     // will override any oopMap setting for it. We must therefore force the layout
 130     // so that it agrees with the frame sender code.
 131     rbp_off, rbpH_off,        // copy of rbp we will restore
 132     return_off, returnH_off,  // slot for return address
 133     reg_save_size             // size in compiler stack slots
 134   };
 135 
 136  public:
 137   static OopMap* save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors = false);
 138   static void restore_live_registers(MacroAssembler* masm, bool restore_vectors = false);
 139 
 140   // Offsets into the register save area
 141   // Used by deoptimization when it is managing result register
 142   // values on its own
 143 
 144   static int rax_offset_in_bytes(void)    { return BytesPerInt * rax_off; }
 145   static int rdx_offset_in_bytes(void)    { return BytesPerInt * rdx_off; }
 146   static int rbx_offset_in_bytes(void)    { return BytesPerInt * rbx_off; }
 147   static int xmm0_offset_in_bytes(void)   { return BytesPerInt * xmm0_off; }
 148   static int return_offset_in_bytes(void) { return BytesPerInt * return_off; }
 149 
 150   // During deoptimization only the result registers need to be restored,
 151   // all the other values have already been extracted.
 152   static void restore_result_registers(MacroAssembler* masm);
 153 };
 154 
 155 OopMap* RegisterSaver::save_live_registers(MacroAssembler* masm, int additional_frame_words, int* total_frame_words, bool save_vectors) {
 156   int off = 0;
 157   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 158   if (UseAVX < 3) {
 159     num_xmm_regs = num_xmm_regs/2;
 160   }
 161 #if COMPILER2_OR_JVMCI
 162   if (save_vectors) {
 163     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 164     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 165   }
 166 #else
 167   assert(!save_vectors, "vectors are generated only by C2 and JVMCI");
 168 #endif
 169 
 170   // Always make the frame size 16-byte aligned, both vector and non vector stacks are always allocated
 171   int frame_size_in_bytes = align_up(reg_save_size*BytesPerInt, num_xmm_regs);
 172   // OopMap frame size is in compiler stack slots (jint's) not bytes or words
 173   int frame_size_in_slots = frame_size_in_bytes / BytesPerInt;
 174   // CodeBlob frame size is in words.
 175   int frame_size_in_words = frame_size_in_bytes / wordSize;
 176   *total_frame_words = frame_size_in_words;
 177 
 178   // Save registers, fpu state, and flags.
 179   // We assume caller has already pushed the return address onto the
 180   // stack, so rsp is 8-byte aligned here.
 181   // We push rpb twice in this sequence because we want the real rbp
 182   // to be under the return like a normal enter.
 183 
 184   __ enter();          // rsp becomes 16-byte aligned here
 185   __ push_CPU_state(); // Push a multiple of 16 bytes
 186 
 187   // push cpu state handles this on EVEX enabled targets
 188   if (save_vectors) {
 189     // Save upper half of YMM registers(0..15)
 190     int base_addr = XSAVE_AREA_YMM_BEGIN;
 191     for (int n = 0; n < 16; n++) {
 192       __ vextractf128_high(Address(rsp, base_addr+n*16), as_XMMRegister(n));
 193     }
 194     if (VM_Version::supports_evex()) {
 195       // Save upper half of ZMM registers(0..15)
 196       base_addr = XSAVE_AREA_ZMM_BEGIN;
 197       for (int n = 0; n < 16; n++) {
 198         __ vextractf64x4_high(Address(rsp, base_addr+n*32), as_XMMRegister(n));
 199       }
 200       // Save full ZMM registers(16..num_xmm_regs)
 201       base_addr = XSAVE_AREA_UPPERBANK;
 202       off = 0;
 203       int vector_len = Assembler::AVX_512bit;
 204       for (int n = 16; n < num_xmm_regs; n++) {
 205         __ evmovdqul(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n), vector_len);
 206       }
 207     }
 208   } else {
 209     if (VM_Version::supports_evex()) {
 210       // Save upper bank of ZMM registers(16..31) for double/float usage
 211       int base_addr = XSAVE_AREA_UPPERBANK;
 212       off = 0;
 213       for (int n = 16; n < num_xmm_regs; n++) {
 214         __ movsd(Address(rsp, base_addr+(off++*64)), as_XMMRegister(n));
 215       }
 216     }
 217   }
 218   __ vzeroupper();
 219   if (frame::arg_reg_save_area_bytes != 0) {
 220     // Allocate argument register save area
 221     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 222   }
 223 
 224   // Set an oopmap for the call site.  This oopmap will map all
 225   // oop-registers and debug-info registers as callee-saved.  This
 226   // will allow deoptimization at this safepoint to find all possible
 227   // debug-info recordings, as well as let GC find all oops.
 228 
 229   OopMapSet *oop_maps = new OopMapSet();
 230   OopMap* map = new OopMap(frame_size_in_slots, 0);
 231 
 232 #define STACK_OFFSET(x) VMRegImpl::stack2reg((x))
 233 
 234   map->set_callee_saved(STACK_OFFSET( rax_off ), rax->as_VMReg());
 235   map->set_callee_saved(STACK_OFFSET( rcx_off ), rcx->as_VMReg());
 236   map->set_callee_saved(STACK_OFFSET( rdx_off ), rdx->as_VMReg());
 237   map->set_callee_saved(STACK_OFFSET( rbx_off ), rbx->as_VMReg());
 238   // rbp location is known implicitly by the frame sender code, needs no oopmap
 239   // and the location where rbp was saved by is ignored
 240   map->set_callee_saved(STACK_OFFSET( rsi_off ), rsi->as_VMReg());
 241   map->set_callee_saved(STACK_OFFSET( rdi_off ), rdi->as_VMReg());
 242   map->set_callee_saved(STACK_OFFSET( r8_off  ), r8->as_VMReg());
 243   map->set_callee_saved(STACK_OFFSET( r9_off  ), r9->as_VMReg());
 244   map->set_callee_saved(STACK_OFFSET( r10_off ), r10->as_VMReg());
 245   map->set_callee_saved(STACK_OFFSET( r11_off ), r11->as_VMReg());
 246   map->set_callee_saved(STACK_OFFSET( r12_off ), r12->as_VMReg());
 247   map->set_callee_saved(STACK_OFFSET( r13_off ), r13->as_VMReg());
 248   map->set_callee_saved(STACK_OFFSET( r14_off ), r14->as_VMReg());
 249   map->set_callee_saved(STACK_OFFSET( r15_off ), r15->as_VMReg());
 250   // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 251   // on EVEX enabled targets, we get it included in the xsave area
 252   off = xmm0_off;
 253   int delta = xmm1_off - off;
 254   for (int n = 0; n < 16; n++) {
 255     XMMRegister xmm_name = as_XMMRegister(n);
 256     map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg());
 257     off += delta;
 258   }
 259   if(UseAVX > 2) {
 260     // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 261     off = zmm16_off;
 262     delta = zmm17_off - off;
 263     for (int n = 16; n < num_xmm_regs; n++) {
 264       XMMRegister zmm_name = as_XMMRegister(n);
 265       map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg());
 266       off += delta;
 267     }
 268   }
 269 
 270 #if COMPILER2_OR_JVMCI
 271   if (save_vectors) {
 272     off = ymm0_off;
 273     int delta = ymm1_off - off;
 274     for (int n = 0; n < 16; n++) {
 275       XMMRegister ymm_name = as_XMMRegister(n);
 276       map->set_callee_saved(STACK_OFFSET(off), ymm_name->as_VMReg()->next(4));
 277       off += delta;
 278     }
 279   }
 280 #endif // COMPILER2_OR_JVMCI
 281 
 282   // %%% These should all be a waste but we'll keep things as they were for now
 283   if (true) {
 284     map->set_callee_saved(STACK_OFFSET( raxH_off ), rax->as_VMReg()->next());
 285     map->set_callee_saved(STACK_OFFSET( rcxH_off ), rcx->as_VMReg()->next());
 286     map->set_callee_saved(STACK_OFFSET( rdxH_off ), rdx->as_VMReg()->next());
 287     map->set_callee_saved(STACK_OFFSET( rbxH_off ), rbx->as_VMReg()->next());
 288     // rbp location is known implicitly by the frame sender code, needs no oopmap
 289     map->set_callee_saved(STACK_OFFSET( rsiH_off ), rsi->as_VMReg()->next());
 290     map->set_callee_saved(STACK_OFFSET( rdiH_off ), rdi->as_VMReg()->next());
 291     map->set_callee_saved(STACK_OFFSET( r8H_off  ), r8->as_VMReg()->next());
 292     map->set_callee_saved(STACK_OFFSET( r9H_off  ), r9->as_VMReg()->next());
 293     map->set_callee_saved(STACK_OFFSET( r10H_off ), r10->as_VMReg()->next());
 294     map->set_callee_saved(STACK_OFFSET( r11H_off ), r11->as_VMReg()->next());
 295     map->set_callee_saved(STACK_OFFSET( r12H_off ), r12->as_VMReg()->next());
 296     map->set_callee_saved(STACK_OFFSET( r13H_off ), r13->as_VMReg()->next());
 297     map->set_callee_saved(STACK_OFFSET( r14H_off ), r14->as_VMReg()->next());
 298     map->set_callee_saved(STACK_OFFSET( r15H_off ), r15->as_VMReg()->next());
 299     // For both AVX and EVEX we will use the legacy FXSAVE area for xmm0..xmm15,
 300     // on EVEX enabled targets, we get it included in the xsave area
 301     off = xmm0H_off;
 302     delta = xmm1H_off - off;
 303     for (int n = 0; n < 16; n++) {
 304       XMMRegister xmm_name = as_XMMRegister(n);
 305       map->set_callee_saved(STACK_OFFSET(off), xmm_name->as_VMReg()->next());
 306       off += delta;
 307     }
 308     if (UseAVX > 2) {
 309       // Obtain xmm16..xmm31 from the XSAVE area on EVEX enabled targets
 310       off = zmm16H_off;
 311       delta = zmm17H_off - off;
 312       for (int n = 16; n < num_xmm_regs; n++) {
 313         XMMRegister zmm_name = as_XMMRegister(n);
 314         map->set_callee_saved(STACK_OFFSET(off), zmm_name->as_VMReg()->next());
 315         off += delta;
 316       }
 317     }
 318   }
 319 
 320   return map;
 321 }
 322 
 323 void RegisterSaver::restore_live_registers(MacroAssembler* masm, bool restore_vectors) {
 324   int num_xmm_regs = XMMRegisterImpl::number_of_registers;
 325   if (UseAVX < 3) {
 326     num_xmm_regs = num_xmm_regs/2;
 327   }
 328   if (frame::arg_reg_save_area_bytes != 0) {
 329     // Pop arg register save area
 330     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 331   }
 332 
 333 #if COMPILER2_OR_JVMCI
 334   if (restore_vectors) {
 335     assert(UseAVX > 0, "Vectors larger than 16 byte long are supported only with AVX");
 336     assert(MaxVectorSize <= 64, "Only up to 64 byte long vectors are supported");
 337   }
 338 #else
 339   assert(!restore_vectors, "vectors are generated only by C2");
 340 #endif
 341 
 342   __ vzeroupper();
 343 
 344   // On EVEX enabled targets everything is handled in pop fpu state
 345   if (restore_vectors) {
 346     // Restore upper half of YMM registers (0..15)
 347     int base_addr = XSAVE_AREA_YMM_BEGIN;
 348     for (int n = 0; n < 16; n++) {
 349       __ vinsertf128_high(as_XMMRegister(n), Address(rsp, base_addr+n*16));
 350     }
 351     if (VM_Version::supports_evex()) {
 352       // Restore upper half of ZMM registers (0..15)
 353       base_addr = XSAVE_AREA_ZMM_BEGIN;
 354       for (int n = 0; n < 16; n++) {
 355         __ vinsertf64x4_high(as_XMMRegister(n), Address(rsp, base_addr+n*32));
 356       }
 357       // Restore full ZMM registers(16..num_xmm_regs)
 358       base_addr = XSAVE_AREA_UPPERBANK;
 359       int vector_len = Assembler::AVX_512bit;
 360       int off = 0;
 361       for (int n = 16; n < num_xmm_regs; n++) {
 362         __ evmovdqul(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)), vector_len);
 363       }
 364     }
 365   } else {
 366     if (VM_Version::supports_evex()) {
 367       // Restore upper bank of ZMM registers(16..31) for double/float usage
 368       int base_addr = XSAVE_AREA_UPPERBANK;
 369       int off = 0;
 370       for (int n = 16; n < num_xmm_regs; n++) {
 371         __ movsd(as_XMMRegister(n), Address(rsp, base_addr+(off++*64)));
 372       }
 373     }
 374   }
 375 
 376   // Recover CPU state
 377   __ pop_CPU_state();
 378   // Get the rbp described implicitly by the calling convention (no oopMap)
 379   __ pop(rbp);
 380 }
 381 
 382 void RegisterSaver::restore_result_registers(MacroAssembler* masm) {
 383 
 384   // Just restore result register. Only used by deoptimization. By
 385   // now any callee save register that needs to be restored to a c2
 386   // caller of the deoptee has been extracted into the vframeArray
 387   // and will be stuffed into the c2i adapter we create for later
 388   // restoration so only result registers need to be restored here.
 389 
 390   // Restore fp result register
 391   __ movdbl(xmm0, Address(rsp, xmm0_offset_in_bytes()));
 392   // Restore integer result register
 393   __ movptr(rax, Address(rsp, rax_offset_in_bytes()));
 394   __ movptr(rdx, Address(rsp, rdx_offset_in_bytes()));
 395 
 396   // Pop all of the register save are off the stack except the return address
 397   __ addptr(rsp, return_offset_in_bytes());
 398 }
 399 
 400 // Is vector's size (in bytes) bigger than a size saved by default?
 401 // 16 bytes XMM registers are saved by default using fxsave/fxrstor instructions.
 402 bool SharedRuntime::is_wide_vector(int size) {
 403   return size > 16;
 404 }
 405 
 406 size_t SharedRuntime::trampoline_size() {
 407   return 16;
 408 }
 409 
 410 void SharedRuntime::generate_trampoline(MacroAssembler *masm, address destination) {
 411   __ jump(RuntimeAddress(destination));
 412 }
 413 
 414 // The java_calling_convention describes stack locations as ideal slots on
 415 // a frame with no abi restrictions. Since we must observe abi restrictions
 416 // (like the placement of the register window) the slots must be biased by
 417 // the following value.
 418 static int reg2offset_in(VMReg r) {
 419   // Account for saved rbp and return address
 420   // This should really be in_preserve_stack_slots
 421   return (r->reg2stack() + 4) * VMRegImpl::stack_slot_size;
 422 }
 423 
 424 static int reg2offset_out(VMReg r) {
 425   return (r->reg2stack() + SharedRuntime::out_preserve_stack_slots()) * VMRegImpl::stack_slot_size;
 426 }
 427 
 428 // ---------------------------------------------------------------------------
 429 // Read the array of BasicTypes from a signature, and compute where the
 430 // arguments should go.  Values in the VMRegPair regs array refer to 4-byte
 431 // quantities.  Values less than VMRegImpl::stack0 are registers, those above
 432 // refer to 4-byte stack slots.  All stack slots are based off of the stack pointer
 433 // as framesizes are fixed.
 434 // VMRegImpl::stack0 refers to the first slot 0(sp).
 435 // and VMRegImpl::stack0+1 refers to the memory word 4-byes higher.  Register
 436 // up to RegisterImpl::number_of_registers) are the 64-bit
 437 // integer registers.
 438 
 439 // Note: the INPUTS in sig_bt are in units of Java argument words, which are
 440 // either 32-bit or 64-bit depending on the build.  The OUTPUTS are in 32-bit
 441 // units regardless of build. Of course for i486 there is no 64 bit build
 442 
 443 // The Java calling convention is a "shifted" version of the C ABI.
 444 // By skipping the first C ABI register we can call non-static jni methods
 445 // with small numbers of arguments without having to shuffle the arguments
 446 // at all. Since we control the java ABI we ought to at least get some
 447 // advantage out of it.
 448 
 449 int SharedRuntime::java_calling_convention(const BasicType *sig_bt,
 450                                            VMRegPair *regs,
 451                                            int total_args_passed,
 452                                            int is_outgoing) {
 453 
 454   // Create the mapping between argument positions and
 455   // registers.
 456   static const Register INT_ArgReg[Argument::n_int_register_parameters_j] = {
 457     j_rarg0, j_rarg1, j_rarg2, j_rarg3, j_rarg4, j_rarg5
 458   };
 459   static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_j] = {
 460     j_farg0, j_farg1, j_farg2, j_farg3,
 461     j_farg4, j_farg5, j_farg6, j_farg7
 462   };
 463 
 464 
 465   uint int_args = 0;
 466   uint fp_args = 0;
 467   uint stk_args = 0; // inc by 2 each time
 468 
 469   for (int i = 0; i < total_args_passed; i++) {
 470     switch (sig_bt[i]) {
 471     case T_BOOLEAN:
 472     case T_CHAR:
 473     case T_BYTE:
 474     case T_SHORT:
 475     case T_INT:
 476       if (int_args < Argument::n_int_register_parameters_j) {
 477         regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
 478       } else {
 479         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 480         stk_args += 2;
 481       }
 482       break;
 483     case T_VOID:
 484       // halves of T_LONG or T_DOUBLE
 485       assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
 486       regs[i].set_bad();
 487       break;
 488     case T_LONG:
 489       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 490       // fall through
 491     case T_OBJECT:
 492     case T_ARRAY:
 493     case T_ADDRESS:
 494       if (int_args < Argument::n_int_register_parameters_j) {
 495         regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
 496       } else {
 497         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 498         stk_args += 2;
 499       }
 500       break;
 501     case T_FLOAT:
 502       if (fp_args < Argument::n_float_register_parameters_j) {
 503         regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
 504       } else {
 505         regs[i].set1(VMRegImpl::stack2reg(stk_args));
 506         stk_args += 2;
 507       }
 508       break;
 509     case T_DOUBLE:
 510       assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
 511       if (fp_args < Argument::n_float_register_parameters_j) {
 512         regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
 513       } else {
 514         regs[i].set2(VMRegImpl::stack2reg(stk_args));
 515         stk_args += 2;
 516       }
 517       break;
 518     default:
 519       ShouldNotReachHere();
 520       break;
 521     }
 522   }
 523 
 524   return align_up(stk_args, 2);
 525 }
 526 
 527 // Patch the callers callsite with entry to compiled code if it exists.
 528 static void patch_callers_callsite(MacroAssembler *masm) {
 529   Label L;
 530   __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 531   __ jcc(Assembler::equal, L);
 532 
 533   // Save the current stack pointer
 534   __ mov(r13, rsp);
 535   // Schedule the branch target address early.
 536   // Call into the VM to patch the caller, then jump to compiled callee
 537   // rax isn't live so capture return address while we easily can
 538   __ movptr(rax, Address(rsp, 0));
 539 
 540   // align stack so push_CPU_state doesn't fault
 541   __ andptr(rsp, -(StackAlignmentInBytes));
 542   __ push_CPU_state();
 543   __ vzeroupper();
 544   // VM needs caller's callsite
 545   // VM needs target method
 546   // This needs to be a long call since we will relocate this adapter to
 547   // the codeBuffer and it may not reach
 548 
 549   // Allocate argument register save area
 550   if (frame::arg_reg_save_area_bytes != 0) {
 551     __ subptr(rsp, frame::arg_reg_save_area_bytes);
 552   }
 553   __ mov(c_rarg0, rbx);
 554   __ mov(c_rarg1, rax);
 555   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::fixup_callers_callsite)));
 556 
 557   // De-allocate argument register save area
 558   if (frame::arg_reg_save_area_bytes != 0) {
 559     __ addptr(rsp, frame::arg_reg_save_area_bytes);
 560   }
 561 
 562   __ vzeroupper();
 563   __ pop_CPU_state();
 564   // restore sp
 565   __ mov(rsp, r13);
 566   __ bind(L);
 567 }
 568 
 569 
 570 static void gen_c2i_adapter(MacroAssembler *masm,
 571                             int total_args_passed,
 572                             int comp_args_on_stack,
 573                             const BasicType *sig_bt,
 574                             const VMRegPair *regs,
 575                             Label& skip_fixup) {
 576   // Before we get into the guts of the C2I adapter, see if we should be here
 577   // at all.  We've come from compiled code and are attempting to jump to the
 578   // interpreter, which means the caller made a static call to get here
 579   // (vcalls always get a compiled target if there is one).  Check for a
 580   // compiled target.  If there is one, we need to patch the caller's call.
 581   patch_callers_callsite(masm);
 582 
 583   __ bind(skip_fixup);
 584 
 585   // Since all args are passed on the stack, total_args_passed *
 586   // Interpreter::stackElementSize is the space we need. Plus 1 because
 587   // we also account for the return address location since
 588   // we store it first rather than hold it in rax across all the shuffling
 589 
 590   int extraspace = (total_args_passed * Interpreter::stackElementSize) + wordSize;
 591 
 592   // stack is aligned, keep it that way
 593   extraspace = align_up(extraspace, 2*wordSize);
 594 
 595   // Get return address
 596   __ pop(rax);
 597 
 598   // set senderSP value
 599   __ mov(r13, rsp);
 600 
 601   __ subptr(rsp, extraspace);
 602 
 603   // Store the return address in the expected location
 604   __ movptr(Address(rsp, 0), rax);
 605 
 606   // Now write the args into the outgoing interpreter space
 607   for (int i = 0; i < total_args_passed; i++) {
 608     if (sig_bt[i] == T_VOID) {
 609       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 610       continue;
 611     }
 612 
 613     // offset to start parameters
 614     int st_off   = (total_args_passed - i) * Interpreter::stackElementSize;
 615     int next_off = st_off - Interpreter::stackElementSize;
 616 
 617     // Say 4 args:
 618     // i   st_off
 619     // 0   32 T_LONG
 620     // 1   24 T_VOID
 621     // 2   16 T_OBJECT
 622     // 3    8 T_BOOL
 623     // -    0 return address
 624     //
 625     // However to make thing extra confusing. Because we can fit a long/double in
 626     // a single slot on a 64 bt vm and it would be silly to break them up, the interpreter
 627     // leaves one slot empty and only stores to a single slot. In this case the
 628     // slot that is occupied is the T_VOID slot. See I said it was confusing.
 629 
 630     VMReg r_1 = regs[i].first();
 631     VMReg r_2 = regs[i].second();
 632     if (!r_1->is_valid()) {
 633       assert(!r_2->is_valid(), "");
 634       continue;
 635     }
 636     if (r_1->is_stack()) {
 637       // memory to memory use rax
 638       int ld_off = r_1->reg2stack() * VMRegImpl::stack_slot_size + extraspace;
 639       if (!r_2->is_valid()) {
 640         // sign extend??
 641         __ movl(rax, Address(rsp, ld_off));
 642         __ movptr(Address(rsp, st_off), rax);
 643 
 644       } else {
 645 
 646         __ movq(rax, Address(rsp, ld_off));
 647 
 648         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 649         // T_DOUBLE and T_LONG use two slots in the interpreter
 650         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 651           // ld_off == LSW, ld_off+wordSize == MSW
 652           // st_off == MSW, next_off == LSW
 653           __ movq(Address(rsp, next_off), rax);
 654 #ifdef ASSERT
 655           // Overwrite the unused slot with known junk
 656           __ mov64(rax, CONST64(0xdeadffffdeadaaaa));
 657           __ movptr(Address(rsp, st_off), rax);
 658 #endif /* ASSERT */
 659         } else {
 660           __ movq(Address(rsp, st_off), rax);
 661         }
 662       }
 663     } else if (r_1->is_Register()) {
 664       Register r = r_1->as_Register();
 665       if (!r_2->is_valid()) {
 666         // must be only an int (or less ) so move only 32bits to slot
 667         // why not sign extend??
 668         __ movl(Address(rsp, st_off), r);
 669       } else {
 670         // Two VMREgs|OptoRegs can be T_OBJECT, T_ADDRESS, T_DOUBLE, T_LONG
 671         // T_DOUBLE and T_LONG use two slots in the interpreter
 672         if ( sig_bt[i] == T_LONG || sig_bt[i] == T_DOUBLE) {
 673           // long/double in gpr
 674 #ifdef ASSERT
 675           // Overwrite the unused slot with known junk
 676           __ mov64(rax, CONST64(0xdeadffffdeadaaab));
 677           __ movptr(Address(rsp, st_off), rax);
 678 #endif /* ASSERT */
 679           __ movq(Address(rsp, next_off), r);
 680         } else {
 681           __ movptr(Address(rsp, st_off), r);
 682         }
 683       }
 684     } else {
 685       assert(r_1->is_XMMRegister(), "");
 686       if (!r_2->is_valid()) {
 687         // only a float use just part of the slot
 688         __ movflt(Address(rsp, st_off), r_1->as_XMMRegister());
 689       } else {
 690 #ifdef ASSERT
 691         // Overwrite the unused slot with known junk
 692         __ mov64(rax, CONST64(0xdeadffffdeadaaac));
 693         __ movptr(Address(rsp, st_off), rax);
 694 #endif /* ASSERT */
 695         __ movdbl(Address(rsp, next_off), r_1->as_XMMRegister());
 696       }
 697     }
 698   }
 699 
 700   // Schedule the branch target address early.
 701   __ movptr(rcx, Address(rbx, in_bytes(Method::interpreter_entry_offset())));
 702   __ jmp(rcx);
 703 }
 704 
 705 static void range_check(MacroAssembler* masm, Register pc_reg, Register temp_reg,
 706                         address code_start, address code_end,
 707                         Label& L_ok) {
 708   Label L_fail;
 709   __ lea(temp_reg, ExternalAddress(code_start));
 710   __ cmpptr(pc_reg, temp_reg);
 711   __ jcc(Assembler::belowEqual, L_fail);
 712   __ lea(temp_reg, ExternalAddress(code_end));
 713   __ cmpptr(pc_reg, temp_reg);
 714   __ jcc(Assembler::below, L_ok);
 715   __ bind(L_fail);
 716 }
 717 
 718 void SharedRuntime::gen_i2c_adapter(MacroAssembler *masm,
 719                                     int total_args_passed,
 720                                     int comp_args_on_stack,
 721                                     const BasicType *sig_bt,
 722                                     const VMRegPair *regs) {
 723 
 724   // Note: r13 contains the senderSP on entry. We must preserve it since
 725   // we may do a i2c -> c2i transition if we lose a race where compiled
 726   // code goes non-entrant while we get args ready.
 727   // In addition we use r13 to locate all the interpreter args as
 728   // we must align the stack to 16 bytes on an i2c entry else we
 729   // lose alignment we expect in all compiled code and register
 730   // save code can segv when fxsave instructions find improperly
 731   // aligned stack pointer.
 732 
 733   // Adapters can be frameless because they do not require the caller
 734   // to perform additional cleanup work, such as correcting the stack pointer.
 735   // An i2c adapter is frameless because the *caller* frame, which is interpreted,
 736   // routinely repairs its own stack pointer (from interpreter_frame_last_sp),
 737   // even if a callee has modified the stack pointer.
 738   // A c2i adapter is frameless because the *callee* frame, which is interpreted,
 739   // routinely repairs its caller's stack pointer (from sender_sp, which is set
 740   // up via the senderSP register).
 741   // In other words, if *either* the caller or callee is interpreted, we can
 742   // get the stack pointer repaired after a call.
 743   // This is why c2i and i2c adapters cannot be indefinitely composed.
 744   // In particular, if a c2i adapter were to somehow call an i2c adapter,
 745   // both caller and callee would be compiled methods, and neither would
 746   // clean up the stack pointer changes performed by the two adapters.
 747   // If this happens, control eventually transfers back to the compiled
 748   // caller, but with an uncorrected stack, causing delayed havoc.
 749 
 750   // Pick up the return address
 751   __ movptr(rax, Address(rsp, 0));
 752 
 753   if (VerifyAdapterCalls &&
 754       (Interpreter::code() != NULL || StubRoutines::code1() != NULL)) {
 755     // So, let's test for cascading c2i/i2c adapters right now.
 756     //  assert(Interpreter::contains($return_addr) ||
 757     //         StubRoutines::contains($return_addr),
 758     //         "i2c adapter must return to an interpreter frame");
 759     __ block_comment("verify_i2c { ");
 760     Label L_ok;
 761     if (Interpreter::code() != NULL)
 762       range_check(masm, rax, r11,
 763                   Interpreter::code()->code_start(), Interpreter::code()->code_end(),
 764                   L_ok);
 765     if (StubRoutines::code1() != NULL)
 766       range_check(masm, rax, r11,
 767                   StubRoutines::code1()->code_begin(), StubRoutines::code1()->code_end(),
 768                   L_ok);
 769     if (StubRoutines::code2() != NULL)
 770       range_check(masm, rax, r11,
 771                   StubRoutines::code2()->code_begin(), StubRoutines::code2()->code_end(),
 772                   L_ok);
 773     const char* msg = "i2c adapter must return to an interpreter frame";
 774     __ block_comment(msg);
 775     __ stop(msg);
 776     __ bind(L_ok);
 777     __ block_comment("} verify_i2ce ");
 778   }
 779 
 780   // Must preserve original SP for loading incoming arguments because
 781   // we need to align the outgoing SP for compiled code.
 782   __ movptr(r11, rsp);
 783 
 784   // Cut-out for having no stack args.  Since up to 2 int/oop args are passed
 785   // in registers, we will occasionally have no stack args.
 786   int comp_words_on_stack = 0;
 787   if (comp_args_on_stack) {
 788     // Sig words on the stack are greater-than VMRegImpl::stack0.  Those in
 789     // registers are below.  By subtracting stack0, we either get a negative
 790     // number (all values in registers) or the maximum stack slot accessed.
 791 
 792     // Convert 4-byte c2 stack slots to words.
 793     comp_words_on_stack = align_up(comp_args_on_stack*VMRegImpl::stack_slot_size, wordSize)>>LogBytesPerWord;
 794     // Round up to miminum stack alignment, in wordSize
 795     comp_words_on_stack = align_up(comp_words_on_stack, 2);
 796     __ subptr(rsp, comp_words_on_stack * wordSize);
 797   }
 798 
 799 
 800   // Ensure compiled code always sees stack at proper alignment
 801   __ andptr(rsp, -16);
 802 
 803   // push the return address and misalign the stack that youngest frame always sees
 804   // as far as the placement of the call instruction
 805   __ push(rax);
 806 
 807   // Put saved SP in another register
 808   const Register saved_sp = rax;
 809   __ movptr(saved_sp, r11);
 810 
 811   // Will jump to the compiled code just as if compiled code was doing it.
 812   // Pre-load the register-jump target early, to schedule it better.
 813   __ movptr(r11, Address(rbx, in_bytes(Method::from_compiled_offset())));
 814 
 815 #if INCLUDE_JVMCI
 816   if (EnableJVMCI || UseAOT) {
 817     // check if this call should be routed towards a specific entry point
 818     __ cmpptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 819     Label no_alternative_target;
 820     __ jcc(Assembler::equal, no_alternative_target);
 821     __ movptr(r11, Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())));
 822     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_alternate_call_target_offset())), 0);
 823     __ bind(no_alternative_target);
 824   }
 825 #endif // INCLUDE_JVMCI
 826 
 827   // Now generate the shuffle code.  Pick up all register args and move the
 828   // rest through the floating point stack top.
 829   for (int i = 0; i < total_args_passed; i++) {
 830     if (sig_bt[i] == T_VOID) {
 831       // Longs and doubles are passed in native word order, but misaligned
 832       // in the 32-bit build.
 833       assert(i > 0 && (sig_bt[i-1] == T_LONG || sig_bt[i-1] == T_DOUBLE), "missing half");
 834       continue;
 835     }
 836 
 837     // Pick up 0, 1 or 2 words from SP+offset.
 838 
 839     assert(!regs[i].second()->is_valid() || regs[i].first()->next() == regs[i].second(),
 840             "scrambled load targets?");
 841     // Load in argument order going down.
 842     int ld_off = (total_args_passed - i)*Interpreter::stackElementSize;
 843     // Point to interpreter value (vs. tag)
 844     int next_off = ld_off - Interpreter::stackElementSize;
 845     //
 846     //
 847     //
 848     VMReg r_1 = regs[i].first();
 849     VMReg r_2 = regs[i].second();
 850     if (!r_1->is_valid()) {
 851       assert(!r_2->is_valid(), "");
 852       continue;
 853     }
 854     if (r_1->is_stack()) {
 855       // Convert stack slot to an SP offset (+ wordSize to account for return address )
 856       int st_off = regs[i].first()->reg2stack()*VMRegImpl::stack_slot_size + wordSize;
 857 
 858       // We can use r13 as a temp here because compiled code doesn't need r13 as an input
 859       // and if we end up going thru a c2i because of a miss a reasonable value of r13
 860       // will be generated.
 861       if (!r_2->is_valid()) {
 862         // sign extend???
 863         __ movl(r13, Address(saved_sp, ld_off));
 864         __ movptr(Address(rsp, st_off), r13);
 865       } else {
 866         //
 867         // We are using two optoregs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 868         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 869         // So we must adjust where to pick up the data to match the interpreter.
 870         //
 871         // Interpreter local[n] == MSW, local[n+1] == LSW however locals
 872         // are accessed as negative so LSW is at LOW address
 873 
 874         // ld_off is MSW so get LSW
 875         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 876                            next_off : ld_off;
 877         __ movq(r13, Address(saved_sp, offset));
 878         // st_off is LSW (i.e. reg.first())
 879         __ movq(Address(rsp, st_off), r13);
 880       }
 881     } else if (r_1->is_Register()) {  // Register argument
 882       Register r = r_1->as_Register();
 883       assert(r != rax, "must be different");
 884       if (r_2->is_valid()) {
 885         //
 886         // We are using two VMRegs. This can be either T_OBJECT, T_ADDRESS, T_LONG, or T_DOUBLE
 887         // the interpreter allocates two slots but only uses one for thr T_LONG or T_DOUBLE case
 888         // So we must adjust where to pick up the data to match the interpreter.
 889 
 890         const int offset = (sig_bt[i]==T_LONG||sig_bt[i]==T_DOUBLE)?
 891                            next_off : ld_off;
 892 
 893         // this can be a misaligned move
 894         __ movq(r, Address(saved_sp, offset));
 895       } else {
 896         // sign extend and use a full word?
 897         __ movl(r, Address(saved_sp, ld_off));
 898       }
 899     } else {
 900       if (!r_2->is_valid()) {
 901         __ movflt(r_1->as_XMMRegister(), Address(saved_sp, ld_off));
 902       } else {
 903         __ movdbl(r_1->as_XMMRegister(), Address(saved_sp, next_off));
 904       }
 905     }
 906   }
 907 
 908   // 6243940 We might end up in handle_wrong_method if
 909   // the callee is deoptimized as we race thru here. If that
 910   // happens we don't want to take a safepoint because the
 911   // caller frame will look interpreted and arguments are now
 912   // "compiled" so it is much better to make this transition
 913   // invisible to the stack walking code. Unfortunately if
 914   // we try and find the callee by normal means a safepoint
 915   // is possible. So we stash the desired callee in the thread
 916   // and the vm will find there should this case occur.
 917 
 918   __ movptr(Address(r15_thread, JavaThread::callee_target_offset()), rbx);
 919 
 920   // put Method* where a c2i would expect should we end up there
 921   // only needed becaus eof c2 resolve stubs return Method* as a result in
 922   // rax
 923   __ mov(rax, rbx);
 924   __ jmp(r11);
 925 }
 926 
 927 // ---------------------------------------------------------------
 928 AdapterHandlerEntry* SharedRuntime::generate_i2c2i_adapters(MacroAssembler *masm,
 929                                                             int total_args_passed,
 930                                                             int comp_args_on_stack,
 931                                                             const BasicType *sig_bt,
 932                                                             const VMRegPair *regs,
 933                                                             AdapterFingerPrint* fingerprint) {
 934   address i2c_entry = __ pc();
 935 
 936   gen_i2c_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs);
 937 
 938   // -------------------------------------------------------------------------
 939   // Generate a C2I adapter.  On entry we know rbx holds the Method* during calls
 940   // to the interpreter.  The args start out packed in the compiled layout.  They
 941   // need to be unpacked into the interpreter layout.  This will almost always
 942   // require some stack space.  We grow the current (compiled) stack, then repack
 943   // the args.  We  finally end in a jump to the generic interpreter entry point.
 944   // On exit from the interpreter, the interpreter will restore our SP (lest the
 945   // compiled code, which relys solely on SP and not RBP, get sick).
 946 
 947   address c2i_unverified_entry = __ pc();
 948   Label skip_fixup;
 949   Label ok;
 950 
 951   Register holder = rax;
 952   Register receiver = j_rarg0;
 953   Register temp = rbx;
 954 
 955   {
 956     __ load_klass(temp, receiver);
 957     __ cmpptr(temp, Address(holder, CompiledICHolder::holder_klass_offset()));
 958     __ movptr(rbx, Address(holder, CompiledICHolder::holder_metadata_offset()));
 959     __ jcc(Assembler::equal, ok);
 960     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 961 
 962     __ bind(ok);
 963     // Method might have been compiled since the call site was patched to
 964     // interpreted if that is the case treat it as a miss so we can get
 965     // the call site corrected.
 966     __ cmpptr(Address(rbx, in_bytes(Method::code_offset())), (int32_t)NULL_WORD);
 967     __ jcc(Assembler::equal, skip_fixup);
 968     __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
 969   }
 970 
 971   address c2i_entry = __ pc();
 972 
 973   gen_c2i_adapter(masm, total_args_passed, comp_args_on_stack, sig_bt, regs, skip_fixup);
 974 
 975   __ flush();
 976   return AdapterHandlerLibrary::new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
 977 }
 978 
 979 int SharedRuntime::c_calling_convention(const BasicType *sig_bt,
 980                                          VMRegPair *regs,
 981                                          VMRegPair *regs2,
 982                                          int total_args_passed) {
 983   assert(regs2 == NULL, "not needed on x86");
 984 // We return the amount of VMRegImpl stack slots we need to reserve for all
 985 // the arguments NOT counting out_preserve_stack_slots.
 986 
 987 // NOTE: These arrays will have to change when c1 is ported
 988 #ifdef _WIN64
 989     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 990       c_rarg0, c_rarg1, c_rarg2, c_rarg3
 991     };
 992     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
 993       c_farg0, c_farg1, c_farg2, c_farg3
 994     };
 995 #else
 996     static const Register INT_ArgReg[Argument::n_int_register_parameters_c] = {
 997       c_rarg0, c_rarg1, c_rarg2, c_rarg3, c_rarg4, c_rarg5
 998     };
 999     static const XMMRegister FP_ArgReg[Argument::n_float_register_parameters_c] = {
1000       c_farg0, c_farg1, c_farg2, c_farg3,
1001       c_farg4, c_farg5, c_farg6, c_farg7
1002     };
1003 #endif // _WIN64
1004 
1005 
1006     uint int_args = 0;
1007     uint fp_args = 0;
1008     uint stk_args = 0; // inc by 2 each time
1009 
1010     for (int i = 0; i < total_args_passed; i++) {
1011       switch (sig_bt[i]) {
1012       case T_BOOLEAN:
1013       case T_CHAR:
1014       case T_BYTE:
1015       case T_SHORT:
1016       case T_INT:
1017         if (int_args < Argument::n_int_register_parameters_c) {
1018           regs[i].set1(INT_ArgReg[int_args++]->as_VMReg());
1019 #ifdef _WIN64
1020           fp_args++;
1021           // Allocate slots for callee to stuff register args the stack.
1022           stk_args += 2;
1023 #endif
1024         } else {
1025           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1026           stk_args += 2;
1027         }
1028         break;
1029       case T_LONG:
1030         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1031         // fall through
1032       case T_OBJECT:
1033       case T_ARRAY:
1034       case T_ADDRESS:
1035       case T_METADATA:
1036         if (int_args < Argument::n_int_register_parameters_c) {
1037           regs[i].set2(INT_ArgReg[int_args++]->as_VMReg());
1038 #ifdef _WIN64
1039           fp_args++;
1040           stk_args += 2;
1041 #endif
1042         } else {
1043           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1044           stk_args += 2;
1045         }
1046         break;
1047       case T_FLOAT:
1048         if (fp_args < Argument::n_float_register_parameters_c) {
1049           regs[i].set1(FP_ArgReg[fp_args++]->as_VMReg());
1050 #ifdef _WIN64
1051           int_args++;
1052           // Allocate slots for callee to stuff register args the stack.
1053           stk_args += 2;
1054 #endif
1055         } else {
1056           regs[i].set1(VMRegImpl::stack2reg(stk_args));
1057           stk_args += 2;
1058         }
1059         break;
1060       case T_DOUBLE:
1061         assert((i + 1) < total_args_passed && sig_bt[i + 1] == T_VOID, "expecting half");
1062         if (fp_args < Argument::n_float_register_parameters_c) {
1063           regs[i].set2(FP_ArgReg[fp_args++]->as_VMReg());
1064 #ifdef _WIN64
1065           int_args++;
1066           // Allocate slots for callee to stuff register args the stack.
1067           stk_args += 2;
1068 #endif
1069         } else {
1070           regs[i].set2(VMRegImpl::stack2reg(stk_args));
1071           stk_args += 2;
1072         }
1073         break;
1074       case T_VOID: // Halves of longs and doubles
1075         assert(i != 0 && (sig_bt[i - 1] == T_LONG || sig_bt[i - 1] == T_DOUBLE), "expecting half");
1076         regs[i].set_bad();
1077         break;
1078       default:
1079         ShouldNotReachHere();
1080         break;
1081       }
1082     }
1083 #ifdef _WIN64
1084   // windows abi requires that we always allocate enough stack space
1085   // for 4 64bit registers to be stored down.
1086   if (stk_args < 8) {
1087     stk_args = 8;
1088   }
1089 #endif // _WIN64
1090 
1091   return stk_args;
1092 }
1093 
1094 // On 64 bit we will store integer like items to the stack as
1095 // 64 bits items (sparc abi) even though java would only store
1096 // 32bits for a parameter. On 32bit it will simply be 32 bits
1097 // So this routine will do 32->32 on 32bit and 32->64 on 64bit
1098 static void move32_64(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1099   if (src.first()->is_stack()) {
1100     if (dst.first()->is_stack()) {
1101       // stack to stack
1102       __ movslq(rax, Address(rbp, reg2offset_in(src.first())));
1103       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1104     } else {
1105       // stack to reg
1106       __ movslq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1107     }
1108   } else if (dst.first()->is_stack()) {
1109     // reg to stack
1110     // Do we really have to sign extend???
1111     // __ movslq(src.first()->as_Register(), src.first()->as_Register());
1112     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1113   } else {
1114     // Do we really have to sign extend???
1115     // __ movslq(dst.first()->as_Register(), src.first()->as_Register());
1116     if (dst.first() != src.first()) {
1117       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1118     }
1119   }
1120 }
1121 
1122 static void move_ptr(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1123   if (src.first()->is_stack()) {
1124     if (dst.first()->is_stack()) {
1125       // stack to stack
1126       __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1127       __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1128     } else {
1129       // stack to reg
1130       __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_in(src.first())));
1131     }
1132   } else if (dst.first()->is_stack()) {
1133     // reg to stack
1134     __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1135   } else {
1136     if (dst.first() != src.first()) {
1137       __ movq(dst.first()->as_Register(), src.first()->as_Register());
1138     }
1139   }
1140 }
1141 
1142 // An oop arg. Must pass a handle not the oop itself
1143 static void object_move(MacroAssembler* masm,
1144                         OopMap* map,
1145                         int oop_handle_offset,
1146                         int framesize_in_slots,
1147                         VMRegPair src,
1148                         VMRegPair dst,
1149                         bool is_receiver,
1150                         int* receiver_offset) {
1151 
1152   // must pass a handle. First figure out the location we use as a handle
1153 
1154   Register rHandle = dst.first()->is_stack() ? rax : dst.first()->as_Register();
1155 
1156   // See if oop is NULL if it is we need no handle
1157 
1158   if (src.first()->is_stack()) {
1159 
1160     // Oop is already on the stack as an argument
1161     int offset_in_older_frame = src.first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1162     map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + framesize_in_slots));
1163     if (is_receiver) {
1164       *receiver_offset = (offset_in_older_frame + framesize_in_slots) * VMRegImpl::stack_slot_size;
1165     }
1166 
1167     __ cmpptr(Address(rbp, reg2offset_in(src.first())), (int32_t)NULL_WORD);
1168     __ lea(rHandle, Address(rbp, reg2offset_in(src.first())));
1169     // conditionally move a NULL
1170     __ cmovptr(Assembler::equal, rHandle, Address(rbp, reg2offset_in(src.first())));
1171   } else {
1172 
1173     // Oop is in an a register we must store it to the space we reserve
1174     // on the stack for oop_handles and pass a handle if oop is non-NULL
1175 
1176     const Register rOop = src.first()->as_Register();
1177     int oop_slot;
1178     if (rOop == j_rarg0)
1179       oop_slot = 0;
1180     else if (rOop == j_rarg1)
1181       oop_slot = 1;
1182     else if (rOop == j_rarg2)
1183       oop_slot = 2;
1184     else if (rOop == j_rarg3)
1185       oop_slot = 3;
1186     else if (rOop == j_rarg4)
1187       oop_slot = 4;
1188     else {
1189       assert(rOop == j_rarg5, "wrong register");
1190       oop_slot = 5;
1191     }
1192 
1193     oop_slot = oop_slot * VMRegImpl::slots_per_word + oop_handle_offset;
1194     int offset = oop_slot*VMRegImpl::stack_slot_size;
1195 
1196     map->set_oop(VMRegImpl::stack2reg(oop_slot));
1197     // Store oop in handle area, may be NULL
1198     __ movptr(Address(rsp, offset), rOop);
1199     if (is_receiver) {
1200       *receiver_offset = offset;
1201     }
1202 
1203     __ cmpptr(rOop, (int32_t)NULL_WORD);
1204     __ lea(rHandle, Address(rsp, offset));
1205     // conditionally move a NULL from the handle area where it was just stored
1206     __ cmovptr(Assembler::equal, rHandle, Address(rsp, offset));
1207   }
1208 
1209   // If arg is on the stack then place it otherwise it is already in correct reg.
1210   if (dst.first()->is_stack()) {
1211     __ movptr(Address(rsp, reg2offset_out(dst.first())), rHandle);
1212   }
1213 }
1214 
1215 // A float arg may have to do float reg int reg conversion
1216 static void float_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1217   assert(!src.second()->is_valid() && !dst.second()->is_valid(), "bad float_move");
1218 
1219   // The calling conventions assures us that each VMregpair is either
1220   // all really one physical register or adjacent stack slots.
1221   // This greatly simplifies the cases here compared to sparc.
1222 
1223   if (src.first()->is_stack()) {
1224     if (dst.first()->is_stack()) {
1225       __ movl(rax, Address(rbp, reg2offset_in(src.first())));
1226       __ movptr(Address(rsp, reg2offset_out(dst.first())), rax);
1227     } else {
1228       // stack to reg
1229       assert(dst.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1230       __ movflt(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_in(src.first())));
1231     }
1232   } else if (dst.first()->is_stack()) {
1233     // reg to stack
1234     assert(src.first()->is_XMMRegister(), "only expect xmm registers as parameters");
1235     __ movflt(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1236   } else {
1237     // reg to reg
1238     // In theory these overlap but the ordering is such that this is likely a nop
1239     if ( src.first() != dst.first()) {
1240       __ movdbl(dst.first()->as_XMMRegister(),  src.first()->as_XMMRegister());
1241     }
1242   }
1243 }
1244 
1245 // A long move
1246 static void long_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1247 
1248   // The calling conventions assures us that each VMregpair is either
1249   // all really one physical register or adjacent stack slots.
1250   // This greatly simplifies the cases here compared to sparc.
1251 
1252   if (src.is_single_phys_reg() ) {
1253     if (dst.is_single_phys_reg()) {
1254       if (dst.first() != src.first()) {
1255         __ mov(dst.first()->as_Register(), src.first()->as_Register());
1256       }
1257     } else {
1258       assert(dst.is_single_reg(), "not a stack pair");
1259       __ movq(Address(rsp, reg2offset_out(dst.first())), src.first()->as_Register());
1260     }
1261   } else if (dst.is_single_phys_reg()) {
1262     assert(src.is_single_reg(),  "not a stack pair");
1263     __ movq(dst.first()->as_Register(), Address(rbp, reg2offset_out(src.first())));
1264   } else {
1265     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1266     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1267     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1268   }
1269 }
1270 
1271 // A double move
1272 static void double_move(MacroAssembler* masm, VMRegPair src, VMRegPair dst) {
1273 
1274   // The calling conventions assures us that each VMregpair is either
1275   // all really one physical register or adjacent stack slots.
1276   // This greatly simplifies the cases here compared to sparc.
1277 
1278   if (src.is_single_phys_reg() ) {
1279     if (dst.is_single_phys_reg()) {
1280       // In theory these overlap but the ordering is such that this is likely a nop
1281       if ( src.first() != dst.first()) {
1282         __ movdbl(dst.first()->as_XMMRegister(), src.first()->as_XMMRegister());
1283       }
1284     } else {
1285       assert(dst.is_single_reg(), "not a stack pair");
1286       __ movdbl(Address(rsp, reg2offset_out(dst.first())), src.first()->as_XMMRegister());
1287     }
1288   } else if (dst.is_single_phys_reg()) {
1289     assert(src.is_single_reg(),  "not a stack pair");
1290     __ movdbl(dst.first()->as_XMMRegister(), Address(rbp, reg2offset_out(src.first())));
1291   } else {
1292     assert(src.is_single_reg() && dst.is_single_reg(), "not stack pairs");
1293     __ movq(rax, Address(rbp, reg2offset_in(src.first())));
1294     __ movq(Address(rsp, reg2offset_out(dst.first())), rax);
1295   }
1296 }
1297 
1298 
1299 void SharedRuntime::save_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1300   // We always ignore the frame_slots arg and just use the space just below frame pointer
1301   // which by this time is free to use
1302   switch (ret_type) {
1303   case T_FLOAT:
1304     __ movflt(Address(rbp, -wordSize), xmm0);
1305     break;
1306   case T_DOUBLE:
1307     __ movdbl(Address(rbp, -wordSize), xmm0);
1308     break;
1309   case T_VOID:  break;
1310   default: {
1311     __ movptr(Address(rbp, -wordSize), rax);
1312     }
1313   }
1314 }
1315 
1316 void SharedRuntime::restore_native_result(MacroAssembler *masm, BasicType ret_type, int frame_slots) {
1317   // We always ignore the frame_slots arg and just use the space just below frame pointer
1318   // which by this time is free to use
1319   switch (ret_type) {
1320   case T_FLOAT:
1321     __ movflt(xmm0, Address(rbp, -wordSize));
1322     break;
1323   case T_DOUBLE:
1324     __ movdbl(xmm0, Address(rbp, -wordSize));
1325     break;
1326   case T_VOID:  break;
1327   default: {
1328     __ movptr(rax, Address(rbp, -wordSize));
1329     }
1330   }
1331 }
1332 
1333 static void save_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1334     for ( int i = first_arg ; i < arg_count ; i++ ) {
1335       if (args[i].first()->is_Register()) {
1336         __ push(args[i].first()->as_Register());
1337       } else if (args[i].first()->is_XMMRegister()) {
1338         __ subptr(rsp, 2*wordSize);
1339         __ movdbl(Address(rsp, 0), args[i].first()->as_XMMRegister());
1340       }
1341     }
1342 }
1343 
1344 static void restore_args(MacroAssembler *masm, int arg_count, int first_arg, VMRegPair *args) {
1345     for ( int i = arg_count - 1 ; i >= first_arg ; i-- ) {
1346       if (args[i].first()->is_Register()) {
1347         __ pop(args[i].first()->as_Register());
1348       } else if (args[i].first()->is_XMMRegister()) {
1349         __ movdbl(args[i].first()->as_XMMRegister(), Address(rsp, 0));
1350         __ addptr(rsp, 2*wordSize);
1351       }
1352     }
1353 }
1354 
1355 
1356 static void save_or_restore_arguments(MacroAssembler* masm,
1357                                       const int stack_slots,
1358                                       const int total_in_args,
1359                                       const int arg_save_area,
1360                                       OopMap* map,
1361                                       VMRegPair* in_regs,
1362                                       BasicType* in_sig_bt) {
1363   // if map is non-NULL then the code should store the values,
1364   // otherwise it should load them.
1365   int slot = arg_save_area;
1366   // Save down double word first
1367   for ( int i = 0; i < total_in_args; i++) {
1368     if (in_regs[i].first()->is_XMMRegister() && in_sig_bt[i] == T_DOUBLE) {
1369       int offset = slot * VMRegImpl::stack_slot_size;
1370       slot += VMRegImpl::slots_per_word;
1371       assert(slot <= stack_slots, "overflow");
1372       if (map != NULL) {
1373         __ movdbl(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1374       } else {
1375         __ movdbl(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1376       }
1377     }
1378     if (in_regs[i].first()->is_Register() &&
1379         (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_ARRAY)) {
1380       int offset = slot * VMRegImpl::stack_slot_size;
1381       if (map != NULL) {
1382         __ movq(Address(rsp, offset), in_regs[i].first()->as_Register());
1383         if (in_sig_bt[i] == T_ARRAY) {
1384           map->set_oop(VMRegImpl::stack2reg(slot));;
1385         }
1386       } else {
1387         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
1388       }
1389       slot += VMRegImpl::slots_per_word;
1390     }
1391   }
1392   // Save or restore single word registers
1393   for ( int i = 0; i < total_in_args; i++) {
1394     if (in_regs[i].first()->is_Register()) {
1395       int offset = slot * VMRegImpl::stack_slot_size;
1396       slot++;
1397       assert(slot <= stack_slots, "overflow");
1398 
1399       // Value is in an input register pass we must flush it to the stack
1400       const Register reg = in_regs[i].first()->as_Register();
1401       switch (in_sig_bt[i]) {
1402         case T_BOOLEAN:
1403         case T_CHAR:
1404         case T_BYTE:
1405         case T_SHORT:
1406         case T_INT:
1407           if (map != NULL) {
1408             __ movl(Address(rsp, offset), reg);
1409           } else {
1410             __ movl(reg, Address(rsp, offset));
1411           }
1412           break;
1413         case T_ARRAY:
1414         case T_LONG:
1415           // handled above
1416           break;
1417         case T_OBJECT:
1418         default: ShouldNotReachHere();
1419       }
1420     } else if (in_regs[i].first()->is_XMMRegister()) {
1421       if (in_sig_bt[i] == T_FLOAT) {
1422         int offset = slot * VMRegImpl::stack_slot_size;
1423         slot++;
1424         assert(slot <= stack_slots, "overflow");
1425         if (map != NULL) {
1426           __ movflt(Address(rsp, offset), in_regs[i].first()->as_XMMRegister());
1427         } else {
1428           __ movflt(in_regs[i].first()->as_XMMRegister(), Address(rsp, offset));
1429         }
1430       }
1431     } else if (in_regs[i].first()->is_stack()) {
1432       if (in_sig_bt[i] == T_ARRAY && map != NULL) {
1433         int offset_in_older_frame = in_regs[i].first()->reg2stack() + SharedRuntime::out_preserve_stack_slots();
1434         map->set_oop(VMRegImpl::stack2reg(offset_in_older_frame + stack_slots));
1435       }
1436     }
1437   }
1438 }
1439 
1440 // Pin object, return pinned object or null in rax
1441 static void gen_pin_object(MacroAssembler* masm,
1442                            VMRegPair reg) {
1443   __ block_comment("gen_pin_object {");
1444 
1445   // rax always contains oop, either incoming or
1446   // pinned.
1447   Register tmp_reg = rax;
1448 
1449   Label is_null;
1450   VMRegPair tmp;
1451   VMRegPair in_reg = reg;
1452 
1453   tmp.set_ptr(tmp_reg->as_VMReg());
1454   if (reg.first()->is_stack()) {
1455     // Load the arg up from the stack
1456     move_ptr(masm, reg, tmp);
1457     reg = tmp;
1458   } else {
1459     __ movptr(rax, reg.first()->as_Register());
1460   }
1461   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1462   __ jccb(Assembler::equal, is_null);
1463 
1464   if (reg.first()->as_Register() != c_rarg1) {
1465     __ movptr(c_rarg1, reg.first()->as_Register());
1466   }
1467 
1468   __ call_VM_leaf(
1469     CAST_FROM_FN_PTR(address, SharedRuntime::pin_object),
1470     r15_thread, c_rarg1);
1471 
1472   __ bind(is_null);
1473   __ block_comment("} gen_pin_object");
1474 }
1475 
1476 // Unpin object
1477 static void gen_unpin_object(MacroAssembler* masm,
1478                              VMRegPair reg) {
1479   __ block_comment("gen_unpin_object {");
1480   Label is_null;
1481 
1482   if (reg.first()->is_stack()) {
1483     __ movptr(c_rarg1, Address(rbp, reg2offset_in(reg.first())));
1484   } else if (reg.first()->as_Register() != c_rarg1) {
1485     __ movptr(c_rarg1, reg.first()->as_Register());
1486   }
1487 
1488   __ testptr(c_rarg1, c_rarg1);
1489   __ jccb(Assembler::equal, is_null);
1490 
1491   __ call_VM_leaf(
1492     CAST_FROM_FN_PTR(address, SharedRuntime::unpin_object),
1493     r15_thread, c_rarg1);
1494 
1495   __ bind(is_null);
1496   __ block_comment("} gen_unpin_object");
1497 }
1498 
1499 // Check GCLocker::needs_gc and enter the runtime if it's true.  This
1500 // keeps a new JNI critical region from starting until a GC has been
1501 // forced.  Save down any oops in registers and describe them in an
1502 // OopMap.
1503 static void check_needs_gc_for_critical_native(MacroAssembler* masm,
1504                                                int stack_slots,
1505                                                int total_c_args,
1506                                                int total_in_args,
1507                                                int arg_save_area,
1508                                                OopMapSet* oop_maps,
1509                                                VMRegPair* in_regs,
1510                                                BasicType* in_sig_bt) {
1511   __ block_comment("check GCLocker::needs_gc");
1512   Label cont;
1513   __ cmp8(ExternalAddress((address)GCLocker::needs_gc_address()), false);
1514   __ jcc(Assembler::equal, cont);
1515 
1516   // Save down any incoming oops and call into the runtime to halt for a GC
1517 
1518   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1519   save_or_restore_arguments(masm, stack_slots, total_in_args,
1520                             arg_save_area, map, in_regs, in_sig_bt);
1521 
1522   address the_pc = __ pc();
1523   oop_maps->add_gc_map( __ offset(), map);
1524   __ set_last_Java_frame(rsp, noreg, the_pc);
1525 
1526   __ block_comment("block_for_jni_critical");
1527   __ movptr(c_rarg0, r15_thread);
1528   __ mov(r12, rsp); // remember sp
1529   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
1530   __ andptr(rsp, -16); // align stack as required by ABI
1531   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::block_for_jni_critical)));
1532   __ mov(rsp, r12); // restore sp
1533   __ reinit_heapbase();
1534 
1535   __ reset_last_Java_frame(false);
1536 
1537   save_or_restore_arguments(masm, stack_slots, total_in_args,
1538                             arg_save_area, NULL, in_regs, in_sig_bt);
1539   __ bind(cont);
1540 #ifdef ASSERT
1541   if (StressCriticalJNINatives) {
1542     // Stress register saving
1543     OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
1544     save_or_restore_arguments(masm, stack_slots, total_in_args,
1545                               arg_save_area, map, in_regs, in_sig_bt);
1546     // Destroy argument registers
1547     for (int i = 0; i < total_in_args - 1; i++) {
1548       if (in_regs[i].first()->is_Register()) {
1549         const Register reg = in_regs[i].first()->as_Register();
1550         __ xorptr(reg, reg);
1551       } else if (in_regs[i].first()->is_XMMRegister()) {
1552         __ xorpd(in_regs[i].first()->as_XMMRegister(), in_regs[i].first()->as_XMMRegister());
1553       } else if (in_regs[i].first()->is_FloatRegister()) {
1554         ShouldNotReachHere();
1555       } else if (in_regs[i].first()->is_stack()) {
1556         // Nothing to do
1557       } else {
1558         ShouldNotReachHere();
1559       }
1560       if (in_sig_bt[i] == T_LONG || in_sig_bt[i] == T_DOUBLE) {
1561         i++;
1562       }
1563     }
1564 
1565     save_or_restore_arguments(masm, stack_slots, total_in_args,
1566                               arg_save_area, NULL, in_regs, in_sig_bt);
1567   }
1568 #endif
1569 }
1570 
1571 // Unpack an array argument into a pointer to the body and the length
1572 // if the array is non-null, otherwise pass 0 for both.
1573 static void unpack_array_argument(MacroAssembler* masm, VMRegPair reg, BasicType in_elem_type, VMRegPair body_arg, VMRegPair length_arg) {
1574   Register tmp_reg = rax;
1575   assert(!body_arg.first()->is_Register() || body_arg.first()->as_Register() != tmp_reg,
1576          "possible collision");
1577   assert(!length_arg.first()->is_Register() || length_arg.first()->as_Register() != tmp_reg,
1578          "possible collision");
1579 
1580   __ block_comment("unpack_array_argument {");
1581 
1582   // Pass the length, ptr pair
1583   Label is_null, done;
1584   VMRegPair tmp;
1585   tmp.set_ptr(tmp_reg->as_VMReg());
1586   if (reg.first()->is_stack()) {
1587     // Load the arg up from the stack
1588     move_ptr(masm, reg, tmp);
1589     reg = tmp;
1590   }
1591   __ testptr(reg.first()->as_Register(), reg.first()->as_Register());
1592   __ jccb(Assembler::equal, is_null);
1593   __ lea(tmp_reg, Address(reg.first()->as_Register(), arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1594   move_ptr(masm, tmp, body_arg);
1595   // load the length relative to the body.
1596   __ movl(tmp_reg, Address(tmp_reg, arrayOopDesc::length_offset_in_bytes() -
1597                            arrayOopDesc::base_offset_in_bytes(in_elem_type)));
1598   move32_64(masm, tmp, length_arg);
1599   __ jmpb(done);
1600   __ bind(is_null);
1601   // Pass zeros
1602   __ xorptr(tmp_reg, tmp_reg);
1603   move_ptr(masm, tmp, body_arg);
1604   move32_64(masm, tmp, length_arg);
1605   __ bind(done);
1606 
1607   __ block_comment("} unpack_array_argument");
1608 }
1609 
1610 
1611 // Different signatures may require very different orders for the move
1612 // to avoid clobbering other arguments.  There's no simple way to
1613 // order them safely.  Compute a safe order for issuing stores and
1614 // break any cycles in those stores.  This code is fairly general but
1615 // it's not necessary on the other platforms so we keep it in the
1616 // platform dependent code instead of moving it into a shared file.
1617 // (See bugs 7013347 & 7145024.)
1618 // Note that this code is specific to LP64.
1619 class ComputeMoveOrder: public StackObj {
1620   class MoveOperation: public ResourceObj {
1621     friend class ComputeMoveOrder;
1622    private:
1623     VMRegPair        _src;
1624     VMRegPair        _dst;
1625     int              _src_index;
1626     int              _dst_index;
1627     bool             _processed;
1628     MoveOperation*  _next;
1629     MoveOperation*  _prev;
1630 
1631     static int get_id(VMRegPair r) {
1632       return r.first()->value();
1633     }
1634 
1635    public:
1636     MoveOperation(int src_index, VMRegPair src, int dst_index, VMRegPair dst):
1637       _src(src)
1638     , _dst(dst)
1639     , _src_index(src_index)
1640     , _dst_index(dst_index)
1641     , _processed(false)
1642     , _next(NULL)
1643     , _prev(NULL) {
1644     }
1645 
1646     VMRegPair src() const              { return _src; }
1647     int src_id() const                 { return get_id(src()); }
1648     int src_index() const              { return _src_index; }
1649     VMRegPair dst() const              { return _dst; }
1650     void set_dst(int i, VMRegPair dst) { _dst_index = i, _dst = dst; }
1651     int dst_index() const              { return _dst_index; }
1652     int dst_id() const                 { return get_id(dst()); }
1653     MoveOperation* next() const       { return _next; }
1654     MoveOperation* prev() const       { return _prev; }
1655     void set_processed()               { _processed = true; }
1656     bool is_processed() const          { return _processed; }
1657 
1658     // insert
1659     void break_cycle(VMRegPair temp_register) {
1660       // create a new store following the last store
1661       // to move from the temp_register to the original
1662       MoveOperation* new_store = new MoveOperation(-1, temp_register, dst_index(), dst());
1663 
1664       // break the cycle of links and insert new_store at the end
1665       // break the reverse link.
1666       MoveOperation* p = prev();
1667       assert(p->next() == this, "must be");
1668       _prev = NULL;
1669       p->_next = new_store;
1670       new_store->_prev = p;
1671 
1672       // change the original store to save it's value in the temp.
1673       set_dst(-1, temp_register);
1674     }
1675 
1676     void link(GrowableArray<MoveOperation*>& killer) {
1677       // link this store in front the store that it depends on
1678       MoveOperation* n = killer.at_grow(src_id(), NULL);
1679       if (n != NULL) {
1680         assert(_next == NULL && n->_prev == NULL, "shouldn't have been set yet");
1681         _next = n;
1682         n->_prev = this;
1683       }
1684     }
1685   };
1686 
1687  private:
1688   GrowableArray<MoveOperation*> edges;
1689 
1690  public:
1691   ComputeMoveOrder(int total_in_args, VMRegPair* in_regs, int total_c_args, VMRegPair* out_regs,
1692                     BasicType* in_sig_bt, GrowableArray<int>& arg_order, VMRegPair tmp_vmreg) {
1693     // Move operations where the dest is the stack can all be
1694     // scheduled first since they can't interfere with the other moves.
1695     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
1696       if (in_sig_bt[i] == T_ARRAY) {
1697         c_arg--;
1698         if (out_regs[c_arg].first()->is_stack() &&
1699             out_regs[c_arg + 1].first()->is_stack()) {
1700           arg_order.push(i);
1701           arg_order.push(c_arg);
1702         } else {
1703           if (out_regs[c_arg].first()->is_stack() ||
1704               in_regs[i].first() == out_regs[c_arg].first()) {
1705             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg + 1]);
1706           } else {
1707             add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1708           }
1709         }
1710       } else if (in_sig_bt[i] == T_VOID) {
1711         arg_order.push(i);
1712         arg_order.push(c_arg);
1713       } else {
1714         if (out_regs[c_arg].first()->is_stack() ||
1715             in_regs[i].first() == out_regs[c_arg].first()) {
1716           arg_order.push(i);
1717           arg_order.push(c_arg);
1718         } else {
1719           add_edge(i, in_regs[i].first(), c_arg, out_regs[c_arg]);
1720         }
1721       }
1722     }
1723     // Break any cycles in the register moves and emit the in the
1724     // proper order.
1725     GrowableArray<MoveOperation*>* stores = get_store_order(tmp_vmreg);
1726     for (int i = 0; i < stores->length(); i++) {
1727       arg_order.push(stores->at(i)->src_index());
1728       arg_order.push(stores->at(i)->dst_index());
1729     }
1730  }
1731 
1732   // Collected all the move operations
1733   void add_edge(int src_index, VMRegPair src, int dst_index, VMRegPair dst) {
1734     if (src.first() == dst.first()) return;
1735     edges.append(new MoveOperation(src_index, src, dst_index, dst));
1736   }
1737 
1738   // Walk the edges breaking cycles between moves.  The result list
1739   // can be walked in order to produce the proper set of loads
1740   GrowableArray<MoveOperation*>* get_store_order(VMRegPair temp_register) {
1741     // Record which moves kill which values
1742     GrowableArray<MoveOperation*> killer;
1743     for (int i = 0; i < edges.length(); i++) {
1744       MoveOperation* s = edges.at(i);
1745       assert(killer.at_grow(s->dst_id(), NULL) == NULL, "only one killer");
1746       killer.at_put_grow(s->dst_id(), s, NULL);
1747     }
1748     assert(killer.at_grow(MoveOperation::get_id(temp_register), NULL) == NULL,
1749            "make sure temp isn't in the registers that are killed");
1750 
1751     // create links between loads and stores
1752     for (int i = 0; i < edges.length(); i++) {
1753       edges.at(i)->link(killer);
1754     }
1755 
1756     // at this point, all the move operations are chained together
1757     // in a doubly linked list.  Processing it backwards finds
1758     // the beginning of the chain, forwards finds the end.  If there's
1759     // a cycle it can be broken at any point,  so pick an edge and walk
1760     // backward until the list ends or we end where we started.
1761     GrowableArray<MoveOperation*>* stores = new GrowableArray<MoveOperation*>();
1762     for (int e = 0; e < edges.length(); e++) {
1763       MoveOperation* s = edges.at(e);
1764       if (!s->is_processed()) {
1765         MoveOperation* start = s;
1766         // search for the beginning of the chain or cycle
1767         while (start->prev() != NULL && start->prev() != s) {
1768           start = start->prev();
1769         }
1770         if (start->prev() == s) {
1771           start->break_cycle(temp_register);
1772         }
1773         // walk the chain forward inserting to store list
1774         while (start != NULL) {
1775           stores->append(start);
1776           start->set_processed();
1777           start = start->next();
1778         }
1779       }
1780     }
1781     return stores;
1782   }
1783 };
1784 
1785 static void verify_oop_args(MacroAssembler* masm,
1786                             const methodHandle& method,
1787                             const BasicType* sig_bt,
1788                             const VMRegPair* regs) {
1789   Register temp_reg = rbx;  // not part of any compiled calling seq
1790   if (VerifyOops) {
1791     for (int i = 0; i < method->size_of_parameters(); i++) {
1792       if (sig_bt[i] == T_OBJECT ||
1793           sig_bt[i] == T_ARRAY) {
1794         VMReg r = regs[i].first();
1795         assert(r->is_valid(), "bad oop arg");
1796         if (r->is_stack()) {
1797           __ movptr(temp_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1798           __ verify_oop(temp_reg);
1799         } else {
1800           __ verify_oop(r->as_Register());
1801         }
1802       }
1803     }
1804   }
1805 }
1806 
1807 static void gen_special_dispatch(MacroAssembler* masm,
1808                                  const methodHandle& method,
1809                                  const BasicType* sig_bt,
1810                                  const VMRegPair* regs) {
1811   verify_oop_args(masm, method, sig_bt, regs);
1812   vmIntrinsics::ID iid = method->intrinsic_id();
1813 
1814   // Now write the args into the outgoing interpreter space
1815   bool     has_receiver   = false;
1816   Register receiver_reg   = noreg;
1817   int      member_arg_pos = -1;
1818   Register member_reg     = noreg;
1819   int      ref_kind       = MethodHandles::signature_polymorphic_intrinsic_ref_kind(iid);
1820   if (ref_kind != 0) {
1821     member_arg_pos = method->size_of_parameters() - 1;  // trailing MemberName argument
1822     member_reg = rbx;  // known to be free at this point
1823     has_receiver = MethodHandles::ref_kind_has_receiver(ref_kind);
1824   } else if (iid == vmIntrinsics::_invokeBasic) {
1825     has_receiver = true;
1826   } else {
1827     fatal("unexpected intrinsic id %d", iid);
1828   }
1829 
1830   if (member_reg != noreg) {
1831     // Load the member_arg into register, if necessary.
1832     SharedRuntime::check_member_name_argument_is_last_argument(method, sig_bt, regs);
1833     VMReg r = regs[member_arg_pos].first();
1834     if (r->is_stack()) {
1835       __ movptr(member_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1836     } else {
1837       // no data motion is needed
1838       member_reg = r->as_Register();
1839     }
1840   }
1841 
1842   if (has_receiver) {
1843     // Make sure the receiver is loaded into a register.
1844     assert(method->size_of_parameters() > 0, "oob");
1845     assert(sig_bt[0] == T_OBJECT, "receiver argument must be an object");
1846     VMReg r = regs[0].first();
1847     assert(r->is_valid(), "bad receiver arg");
1848     if (r->is_stack()) {
1849       // Porting note:  This assumes that compiled calling conventions always
1850       // pass the receiver oop in a register.  If this is not true on some
1851       // platform, pick a temp and load the receiver from stack.
1852       fatal("receiver always in a register");
1853       receiver_reg = j_rarg0;  // known to be free at this point
1854       __ movptr(receiver_reg, Address(rsp, r->reg2stack() * VMRegImpl::stack_slot_size + wordSize));
1855     } else {
1856       // no data motion is needed
1857       receiver_reg = r->as_Register();
1858     }
1859   }
1860 
1861   // Figure out which address we are really jumping to:
1862   MethodHandles::generate_method_handle_dispatch(masm, iid,
1863                                                  receiver_reg, member_reg, /*for_compiler_entry:*/ true);
1864 }
1865 
1866 // ---------------------------------------------------------------------------
1867 // Generate a native wrapper for a given method.  The method takes arguments
1868 // in the Java compiled code convention, marshals them to the native
1869 // convention (handlizes oops, etc), transitions to native, makes the call,
1870 // returns to java state (possibly blocking), unhandlizes any result and
1871 // returns.
1872 //
1873 // Critical native functions are a shorthand for the use of
1874 // GetPrimtiveArrayCritical and disallow the use of any other JNI
1875 // functions.  The wrapper is expected to unpack the arguments before
1876 // passing them to the callee and perform checks before and after the
1877 // native call to ensure that they GCLocker
1878 // lock_critical/unlock_critical semantics are followed.  Some other
1879 // parts of JNI setup are skipped like the tear down of the JNI handle
1880 // block and the check for pending exceptions it's impossible for them
1881 // to be thrown.
1882 //
1883 // They are roughly structured like this:
1884 //    if (GCLocker::needs_gc())
1885 //      SharedRuntime::block_for_jni_critical();
1886 //    tranistion to thread_in_native
1887 //    unpack arrray arguments and call native entry point
1888 //    check for safepoint in progress
1889 //    check if any thread suspend flags are set
1890 //      call into JVM and possible unlock the JNI critical
1891 //      if a GC was suppressed while in the critical native.
1892 //    transition back to thread_in_Java
1893 //    return to caller
1894 //
1895 nmethod* SharedRuntime::generate_native_wrapper(MacroAssembler* masm,
1896                                                 const methodHandle& method,
1897                                                 int compile_id,
1898                                                 BasicType* in_sig_bt,
1899                                                 VMRegPair* in_regs,
1900                                                 BasicType ret_type) {
1901   if (method->is_method_handle_intrinsic()) {
1902     vmIntrinsics::ID iid = method->intrinsic_id();
1903     intptr_t start = (intptr_t)__ pc();
1904     int vep_offset = ((intptr_t)__ pc()) - start;
1905     gen_special_dispatch(masm,
1906                          method,
1907                          in_sig_bt,
1908                          in_regs);
1909     int frame_complete = ((intptr_t)__ pc()) - start;  // not complete, period
1910     __ flush();
1911     int stack_slots = SharedRuntime::out_preserve_stack_slots();  // no out slots at all, actually
1912     return nmethod::new_native_nmethod(method,
1913                                        compile_id,
1914                                        masm->code(),
1915                                        vep_offset,
1916                                        frame_complete,
1917                                        stack_slots / VMRegImpl::slots_per_word,
1918                                        in_ByteSize(-1),
1919                                        in_ByteSize(-1),
1920                                        (OopMapSet*)NULL);
1921   }
1922   bool is_critical_native = true;
1923   address native_func = method->critical_native_function();
1924   if (native_func == NULL) {
1925     native_func = method->native_function();
1926     is_critical_native = false;
1927   }
1928   assert(native_func != NULL, "must have function");
1929 
1930   // An OopMap for lock (and class if static)
1931   OopMapSet *oop_maps = new OopMapSet();
1932   intptr_t start = (intptr_t)__ pc();
1933 
1934   // We have received a description of where all the java arg are located
1935   // on entry to the wrapper. We need to convert these args to where
1936   // the jni function will expect them. To figure out where they go
1937   // we convert the java signature to a C signature by inserting
1938   // the hidden arguments as arg[0] and possibly arg[1] (static method)
1939 
1940   const int total_in_args = method->size_of_parameters();
1941   int total_c_args = total_in_args;
1942   if (!is_critical_native) {
1943     total_c_args += 1;
1944     if (method->is_static()) {
1945       total_c_args++;
1946     }
1947   } else {
1948     for (int i = 0; i < total_in_args; i++) {
1949       if (in_sig_bt[i] == T_ARRAY) {
1950         total_c_args++;
1951       }
1952     }
1953   }
1954 
1955   BasicType* out_sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_c_args);
1956   VMRegPair* out_regs   = NEW_RESOURCE_ARRAY(VMRegPair, total_c_args);
1957   BasicType* in_elem_bt = NULL;
1958 
1959   int argc = 0;
1960   if (!is_critical_native) {
1961     out_sig_bt[argc++] = T_ADDRESS;
1962     if (method->is_static()) {
1963       out_sig_bt[argc++] = T_OBJECT;
1964     }
1965 
1966     for (int i = 0; i < total_in_args ; i++ ) {
1967       out_sig_bt[argc++] = in_sig_bt[i];
1968     }
1969   } else {
1970     Thread* THREAD = Thread::current();
1971     in_elem_bt = NEW_RESOURCE_ARRAY(BasicType, total_in_args);
1972     SignatureStream ss(method->signature());
1973     for (int i = 0; i < total_in_args ; i++ ) {
1974       if (in_sig_bt[i] == T_ARRAY) {
1975         // Arrays are passed as int, elem* pair
1976         out_sig_bt[argc++] = T_INT;
1977         out_sig_bt[argc++] = T_ADDRESS;
1978         Symbol* atype = ss.as_symbol(CHECK_NULL);
1979         const char* at = atype->as_C_string();
1980         if (strlen(at) == 2) {
1981           assert(at[0] == '[', "must be");
1982           switch (at[1]) {
1983             case 'B': in_elem_bt[i]  = T_BYTE; break;
1984             case 'C': in_elem_bt[i]  = T_CHAR; break;
1985             case 'D': in_elem_bt[i]  = T_DOUBLE; break;
1986             case 'F': in_elem_bt[i]  = T_FLOAT; break;
1987             case 'I': in_elem_bt[i]  = T_INT; break;
1988             case 'J': in_elem_bt[i]  = T_LONG; break;
1989             case 'S': in_elem_bt[i]  = T_SHORT; break;
1990             case 'Z': in_elem_bt[i]  = T_BOOLEAN; break;
1991             default: ShouldNotReachHere();
1992           }
1993         }
1994       } else {
1995         out_sig_bt[argc++] = in_sig_bt[i];
1996         in_elem_bt[i] = T_VOID;
1997       }
1998       if (in_sig_bt[i] != T_VOID) {
1999         assert(in_sig_bt[i] == ss.type(), "must match");
2000         ss.next();
2001       }
2002     }
2003   }
2004 
2005   // Now figure out where the args must be stored and how much stack space
2006   // they require.
2007   int out_arg_slots;
2008   out_arg_slots = c_calling_convention(out_sig_bt, out_regs, NULL, total_c_args);
2009 
2010   // Compute framesize for the wrapper.  We need to handlize all oops in
2011   // incoming registers
2012 
2013   // Calculate the total number of stack slots we will need.
2014 
2015   // First count the abi requirement plus all of the outgoing args
2016   int stack_slots = SharedRuntime::out_preserve_stack_slots() + out_arg_slots;
2017 
2018   // Now the space for the inbound oop handle area
2019   int total_save_slots = 6 * VMRegImpl::slots_per_word;  // 6 arguments passed in registers
2020   if (is_critical_native) {
2021     // Critical natives may have to call out so they need a save area
2022     // for register arguments.
2023     int double_slots = 0;
2024     int single_slots = 0;
2025     for ( int i = 0; i < total_in_args; i++) {
2026       if (in_regs[i].first()->is_Register()) {
2027         const Register reg = in_regs[i].first()->as_Register();
2028         switch (in_sig_bt[i]) {
2029           case T_BOOLEAN:
2030           case T_BYTE:
2031           case T_SHORT:
2032           case T_CHAR:
2033           case T_INT:  single_slots++; break;
2034           case T_ARRAY:  // specific to LP64 (7145024)
2035           case T_LONG: double_slots++; break;
2036           default:  ShouldNotReachHere();
2037         }
2038       } else if (in_regs[i].first()->is_XMMRegister()) {
2039         switch (in_sig_bt[i]) {
2040           case T_FLOAT:  single_slots++; break;
2041           case T_DOUBLE: double_slots++; break;
2042           default:  ShouldNotReachHere();
2043         }
2044       } else if (in_regs[i].first()->is_FloatRegister()) {
2045         ShouldNotReachHere();
2046       }
2047     }
2048     total_save_slots = double_slots * 2 + single_slots;
2049     // align the save area
2050     if (double_slots != 0) {
2051       stack_slots = align_up(stack_slots, 2);
2052     }
2053   }
2054 
2055   int oop_handle_offset = stack_slots;
2056   stack_slots += total_save_slots;
2057 
2058   // Now any space we need for handlizing a klass if static method
2059 
2060   int klass_slot_offset = 0;
2061   int klass_offset = -1;
2062   int lock_slot_offset = 0;
2063   bool is_static = false;
2064 
2065   if (method->is_static()) {
2066     klass_slot_offset = stack_slots;
2067     stack_slots += VMRegImpl::slots_per_word;
2068     klass_offset = klass_slot_offset * VMRegImpl::stack_slot_size;
2069     is_static = true;
2070   }
2071 
2072   // Plus a lock if needed
2073 
2074   if (method->is_synchronized()) {
2075     lock_slot_offset = stack_slots;
2076     stack_slots += VMRegImpl::slots_per_word;
2077   }
2078 
2079   // Now a place (+2) to save return values or temp during shuffling
2080   // + 4 for return address (which we own) and saved rbp
2081   stack_slots += 6;
2082 
2083   // Ok The space we have allocated will look like:
2084   //
2085   //
2086   // FP-> |                     |
2087   //      |---------------------|
2088   //      | 2 slots for moves   |
2089   //      |---------------------|
2090   //      | lock box (if sync)  |
2091   //      |---------------------| <- lock_slot_offset
2092   //      | klass (if static)   |
2093   //      |---------------------| <- klass_slot_offset
2094   //      | oopHandle area      |
2095   //      |---------------------| <- oop_handle_offset (6 java arg registers)
2096   //      | outbound memory     |
2097   //      | based arguments     |
2098   //      |                     |
2099   //      |---------------------|
2100   //      |                     |
2101   // SP-> | out_preserved_slots |
2102   //
2103   //
2104 
2105 
2106   // Now compute actual number of stack words we need rounding to make
2107   // stack properly aligned.
2108   stack_slots = align_up(stack_slots, StackAlignmentInSlots);
2109 
2110   int stack_size = stack_slots * VMRegImpl::stack_slot_size;
2111 
2112   // First thing make an ic check to see if we should even be here
2113 
2114   // We are free to use all registers as temps without saving them and
2115   // restoring them except rbp. rbp is the only callee save register
2116   // as far as the interpreter and the compiler(s) are concerned.
2117 
2118 
2119   const Register ic_reg = rax;
2120   const Register receiver = j_rarg0;
2121 
2122   Label hit;
2123   Label exception_pending;
2124 
2125   assert_different_registers(ic_reg, receiver, rscratch1);
2126   __ verify_oop(receiver);
2127   __ load_klass(rscratch1, receiver);
2128   __ cmpq(ic_reg, rscratch1);
2129   __ jcc(Assembler::equal, hit);
2130 
2131   __ jump(RuntimeAddress(SharedRuntime::get_ic_miss_stub()));
2132 
2133   // Verified entry point must be aligned
2134   __ align(8);
2135 
2136   __ bind(hit);
2137 
2138   int vep_offset = ((intptr_t)__ pc()) - start;
2139 
2140 #ifdef COMPILER1
2141   // For Object.hashCode, System.identityHashCode try to pull hashCode from object header if available.
2142   if ((InlineObjectHash && method->intrinsic_id() == vmIntrinsics::_hashCode) || (method->intrinsic_id() == vmIntrinsics::_identityHashCode)) {
2143     inline_check_hashcode_from_object_header(masm, method, j_rarg0 /*obj_reg*/, rax /*result*/);
2144   }
2145 #endif // COMPILER1
2146 
2147   // The instruction at the verified entry point must be 5 bytes or longer
2148   // because it can be patched on the fly by make_non_entrant. The stack bang
2149   // instruction fits that requirement.
2150 
2151   // Generate stack overflow check
2152 
2153   if (UseStackBanging) {
2154     __ bang_stack_with_offset((int)JavaThread::stack_shadow_zone_size());
2155   } else {
2156     // need a 5 byte instruction to allow MT safe patching to non-entrant
2157     __ fat_nop();
2158   }
2159 
2160   // Generate a new frame for the wrapper.
2161   __ enter();
2162   // -2 because return address is already present and so is saved rbp
2163   __ subptr(rsp, stack_size - 2*wordSize);
2164 
2165   BarrierSetAssembler* bs = BarrierSet::barrier_set()->barrier_set_assembler();
2166   bs->nmethod_entry_barrier(masm);
2167 
2168   // Frame is now completed as far as size and linkage.
2169   int frame_complete = ((intptr_t)__ pc()) - start;
2170 
2171     if (UseRTMLocking) {
2172       // Abort RTM transaction before calling JNI
2173       // because critical section will be large and will be
2174       // aborted anyway. Also nmethod could be deoptimized.
2175       __ xabort(0);
2176     }
2177 
2178 #ifdef ASSERT
2179     {
2180       Label L;
2181       __ mov(rax, rsp);
2182       __ andptr(rax, -16); // must be 16 byte boundary (see amd64 ABI)
2183       __ cmpptr(rax, rsp);
2184       __ jcc(Assembler::equal, L);
2185       __ stop("improperly aligned stack");
2186       __ bind(L);
2187     }
2188 #endif /* ASSERT */
2189 
2190 
2191   // We use r14 as the oop handle for the receiver/klass
2192   // It is callee save so it survives the call to native
2193 
2194   const Register oop_handle_reg = r14;
2195 
2196   if (is_critical_native && !Universe::heap()->supports_object_pinning()) {
2197     check_needs_gc_for_critical_native(masm, stack_slots, total_c_args, total_in_args,
2198                                        oop_handle_offset, oop_maps, in_regs, in_sig_bt);
2199   }
2200 
2201   //
2202   // We immediately shuffle the arguments so that any vm call we have to
2203   // make from here on out (sync slow path, jvmti, etc.) we will have
2204   // captured the oops from our caller and have a valid oopMap for
2205   // them.
2206 
2207   // -----------------
2208   // The Grand Shuffle
2209 
2210   // The Java calling convention is either equal (linux) or denser (win64) than the
2211   // c calling convention. However the because of the jni_env argument the c calling
2212   // convention always has at least one more (and two for static) arguments than Java.
2213   // Therefore if we move the args from java -> c backwards then we will never have
2214   // a register->register conflict and we don't have to build a dependency graph
2215   // and figure out how to break any cycles.
2216   //
2217 
2218   // Record esp-based slot for receiver on stack for non-static methods
2219   int receiver_offset = -1;
2220 
2221   // This is a trick. We double the stack slots so we can claim
2222   // the oops in the caller's frame. Since we are sure to have
2223   // more args than the caller doubling is enough to make
2224   // sure we can capture all the incoming oop args from the
2225   // caller.
2226   //
2227   OopMap* map = new OopMap(stack_slots * 2, 0 /* arg_slots*/);
2228 
2229   // Mark location of rbp (someday)
2230   // map->set_callee_saved(VMRegImpl::stack2reg( stack_slots - 2), stack_slots * 2, 0, vmreg(rbp));
2231 
2232   // Use eax, ebx as temporaries during any memory-memory moves we have to do
2233   // All inbound args are referenced based on rbp and all outbound args via rsp.
2234 
2235 
2236 #ifdef ASSERT
2237   bool reg_destroyed[RegisterImpl::number_of_registers];
2238   bool freg_destroyed[XMMRegisterImpl::number_of_registers];
2239   for ( int r = 0 ; r < RegisterImpl::number_of_registers ; r++ ) {
2240     reg_destroyed[r] = false;
2241   }
2242   for ( int f = 0 ; f < XMMRegisterImpl::number_of_registers ; f++ ) {
2243     freg_destroyed[f] = false;
2244   }
2245 
2246 #endif /* ASSERT */
2247 
2248   // This may iterate in two different directions depending on the
2249   // kind of native it is.  The reason is that for regular JNI natives
2250   // the incoming and outgoing registers are offset upwards and for
2251   // critical natives they are offset down.
2252   GrowableArray<int> arg_order(2 * total_in_args);
2253   // Inbound arguments that need to be pinned for critical natives
2254   GrowableArray<int> pinned_args(total_in_args);
2255   // Current stack slot for storing register based array argument
2256   int pinned_slot = oop_handle_offset;
2257 
2258   VMRegPair tmp_vmreg;
2259   tmp_vmreg.set2(rbx->as_VMReg());
2260 
2261   if (!is_critical_native) {
2262     for (int i = total_in_args - 1, c_arg = total_c_args - 1; i >= 0; i--, c_arg--) {
2263       arg_order.push(i);
2264       arg_order.push(c_arg);
2265     }
2266   } else {
2267     // Compute a valid move order, using tmp_vmreg to break any cycles
2268     ComputeMoveOrder cmo(total_in_args, in_regs, total_c_args, out_regs, in_sig_bt, arg_order, tmp_vmreg);
2269   }
2270 
2271   int temploc = -1;
2272   for (int ai = 0; ai < arg_order.length(); ai += 2) {
2273     int i = arg_order.at(ai);
2274     int c_arg = arg_order.at(ai + 1);
2275     __ block_comment(err_msg("move %d -> %d", i, c_arg));
2276     if (c_arg == -1) {
2277       assert(is_critical_native, "should only be required for critical natives");
2278       // This arg needs to be moved to a temporary
2279       __ mov(tmp_vmreg.first()->as_Register(), in_regs[i].first()->as_Register());
2280       in_regs[i] = tmp_vmreg;
2281       temploc = i;
2282       continue;
2283     } else if (i == -1) {
2284       assert(is_critical_native, "should only be required for critical natives");
2285       // Read from the temporary location
2286       assert(temploc != -1, "must be valid");
2287       i = temploc;
2288       temploc = -1;
2289     }
2290 #ifdef ASSERT
2291     if (in_regs[i].first()->is_Register()) {
2292       assert(!reg_destroyed[in_regs[i].first()->as_Register()->encoding()], "destroyed reg!");
2293     } else if (in_regs[i].first()->is_XMMRegister()) {
2294       assert(!freg_destroyed[in_regs[i].first()->as_XMMRegister()->encoding()], "destroyed reg!");
2295     }
2296     if (out_regs[c_arg].first()->is_Register()) {
2297       reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2298     } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2299       freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2300     }
2301 #endif /* ASSERT */
2302     switch (in_sig_bt[i]) {
2303       case T_ARRAY:
2304         if (is_critical_native) {
2305           // pin before unpack
2306           if (Universe::heap()->supports_object_pinning()) {
2307             save_args(masm, total_c_args, 0, out_regs);
2308             gen_pin_object(masm, in_regs[i]);
2309             pinned_args.append(i);
2310             restore_args(masm, total_c_args, 0, out_regs);
2311 
2312             // rax has pinned array
2313             VMRegPair result_reg;
2314             result_reg.set_ptr(rax->as_VMReg());
2315             move_ptr(masm, result_reg, in_regs[i]);
2316             if (!in_regs[i].first()->is_stack()) {
2317               assert(pinned_slot <= stack_slots, "overflow");
2318               move_ptr(masm, result_reg, VMRegImpl::stack2reg(pinned_slot));
2319               pinned_slot += VMRegImpl::slots_per_word;
2320             }
2321           }
2322           unpack_array_argument(masm, in_regs[i], in_elem_bt[i], out_regs[c_arg + 1], out_regs[c_arg]);
2323           c_arg++;
2324 #ifdef ASSERT
2325           if (out_regs[c_arg].first()->is_Register()) {
2326             reg_destroyed[out_regs[c_arg].first()->as_Register()->encoding()] = true;
2327           } else if (out_regs[c_arg].first()->is_XMMRegister()) {
2328             freg_destroyed[out_regs[c_arg].first()->as_XMMRegister()->encoding()] = true;
2329           }
2330 #endif
2331           break;
2332         }
2333       case T_OBJECT:
2334         assert(!is_critical_native, "no oop arguments");
2335         object_move(masm, map, oop_handle_offset, stack_slots, in_regs[i], out_regs[c_arg],
2336                     ((i == 0) && (!is_static)),
2337                     &receiver_offset);
2338         break;
2339       case T_VOID:
2340         break;
2341 
2342       case T_FLOAT:
2343         float_move(masm, in_regs[i], out_regs[c_arg]);
2344           break;
2345 
2346       case T_DOUBLE:
2347         assert( i + 1 < total_in_args &&
2348                 in_sig_bt[i + 1] == T_VOID &&
2349                 out_sig_bt[c_arg+1] == T_VOID, "bad arg list");
2350         double_move(masm, in_regs[i], out_regs[c_arg]);
2351         break;
2352 
2353       case T_LONG :
2354         long_move(masm, in_regs[i], out_regs[c_arg]);
2355         break;
2356 
2357       case T_ADDRESS: assert(false, "found T_ADDRESS in java args");
2358 
2359       default:
2360         move32_64(masm, in_regs[i], out_regs[c_arg]);
2361     }
2362   }
2363 
2364   int c_arg;
2365 
2366   // Pre-load a static method's oop into r14.  Used both by locking code and
2367   // the normal JNI call code.
2368   if (!is_critical_native) {
2369     // point c_arg at the first arg that is already loaded in case we
2370     // need to spill before we call out
2371     c_arg = total_c_args - total_in_args;
2372 
2373     if (method->is_static()) {
2374 
2375       //  load oop into a register
2376       __ movoop(oop_handle_reg, JNIHandles::make_local(method->method_holder()->java_mirror()));
2377 
2378       // Now handlize the static class mirror it's known not-null.
2379       __ movptr(Address(rsp, klass_offset), oop_handle_reg);
2380       map->set_oop(VMRegImpl::stack2reg(klass_slot_offset));
2381 
2382       // Now get the handle
2383       __ lea(oop_handle_reg, Address(rsp, klass_offset));
2384       // store the klass handle as second argument
2385       __ movptr(c_rarg1, oop_handle_reg);
2386       // and protect the arg if we must spill
2387       c_arg--;
2388     }
2389   } else {
2390     // For JNI critical methods we need to save all registers in save_args.
2391     c_arg = 0;
2392   }
2393 
2394   // Change state to native (we save the return address in the thread, since it might not
2395   // be pushed on the stack when we do a a stack traversal). It is enough that the pc()
2396   // points into the right code segment. It does not have to be the correct return pc.
2397   // We use the same pc/oopMap repeatedly when we call out
2398 
2399   intptr_t the_pc = (intptr_t) __ pc();
2400   oop_maps->add_gc_map(the_pc - start, map);
2401 
2402   __ set_last_Java_frame(rsp, noreg, (address)the_pc);
2403 
2404 
2405   // We have all of the arguments setup at this point. We must not touch any register
2406   // argument registers at this point (what if we save/restore them there are no oop?
2407 
2408   {
2409     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2410     // protect the args we've loaded
2411     save_args(masm, total_c_args, c_arg, out_regs);
2412     __ mov_metadata(c_rarg1, method());
2413     __ call_VM_leaf(
2414       CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_entry),
2415       r15_thread, c_rarg1);
2416     restore_args(masm, total_c_args, c_arg, out_regs);
2417   }
2418 
2419   // RedefineClasses() tracing support for obsolete method entry
2420   if (log_is_enabled(Trace, redefine, class, obsolete)) {
2421     // protect the args we've loaded
2422     save_args(masm, total_c_args, c_arg, out_regs);
2423     __ mov_metadata(c_rarg1, method());
2424     __ call_VM_leaf(
2425       CAST_FROM_FN_PTR(address, SharedRuntime::rc_trace_method_entry),
2426       r15_thread, c_rarg1);
2427     restore_args(masm, total_c_args, c_arg, out_regs);
2428   }
2429 
2430   // Lock a synchronized method
2431 
2432   // Register definitions used by locking and unlocking
2433 
2434   const Register swap_reg = rax;  // Must use rax for cmpxchg instruction
2435   const Register obj_reg  = rbx;  // Will contain the oop
2436   const Register lock_reg = r13;  // Address of compiler lock object (BasicLock)
2437   const Register old_hdr  = r13;  // value of old header at unlock time
2438 
2439   Label slow_path_lock;
2440   Label lock_done;
2441 
2442   if (method->is_synchronized()) {
2443     assert(!is_critical_native, "unhandled");
2444 
2445 
2446     const int mark_word_offset = BasicLock::displaced_header_offset_in_bytes();
2447 
2448     // Get the handle (the 2nd argument)
2449     __ mov(oop_handle_reg, c_rarg1);
2450 
2451     // Get address of the box
2452 
2453     __ lea(lock_reg, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2454 
2455     // Load the oop from the handle
2456     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2457 
2458     __ resolve(IS_NOT_NULL, obj_reg);
2459     if (UseBiasedLocking) {
2460       __ biased_locking_enter(lock_reg, obj_reg, swap_reg, rscratch1, false, lock_done, &slow_path_lock);
2461     }
2462 
2463     // Load immediate 1 into swap_reg %rax
2464     __ movl(swap_reg, 1);
2465 
2466     // Load (object->mark() | 1) into swap_reg %rax
2467     __ orptr(swap_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2468 
2469     // Save (object->mark() | 1) into BasicLock's displaced header
2470     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2471 
2472     // src -> dest iff dest == rax else rax <- dest
2473     __ lock();
2474     __ cmpxchgptr(lock_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2475     __ jcc(Assembler::equal, lock_done);
2476 
2477     // Hmm should this move to the slow path code area???
2478 
2479     // Test if the oopMark is an obvious stack pointer, i.e.,
2480     //  1) (mark & 3) == 0, and
2481     //  2) rsp <= mark < mark + os::pagesize()
2482     // These 3 tests can be done by evaluating the following
2483     // expression: ((mark - rsp) & (3 - os::vm_page_size())),
2484     // assuming both stack pointer and pagesize have their
2485     // least significant 2 bits clear.
2486     // NOTE: the oopMark is in swap_reg %rax as the result of cmpxchg
2487 
2488     __ subptr(swap_reg, rsp);
2489     __ andptr(swap_reg, 3 - os::vm_page_size());
2490 
2491     // Save the test result, for recursive case, the result is zero
2492     __ movptr(Address(lock_reg, mark_word_offset), swap_reg);
2493     __ jcc(Assembler::notEqual, slow_path_lock);
2494 
2495     // Slow path will re-enter here
2496 
2497     __ bind(lock_done);
2498   }
2499 
2500 
2501   // Finally just about ready to make the JNI call
2502 
2503 
2504   // get JNIEnv* which is first argument to native
2505   if (!is_critical_native) {
2506     __ lea(c_rarg0, Address(r15_thread, in_bytes(JavaThread::jni_environment_offset())));
2507   }
2508 
2509   // Now set thread in native
2510   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native);
2511 
2512   __ call(RuntimeAddress(native_func));
2513 
2514   // Verify or restore cpu control state after JNI call
2515   __ restore_cpu_control_state_after_jni();
2516 
2517   // Unpack native results.
2518   switch (ret_type) {
2519   case T_BOOLEAN: __ c2bool(rax);            break;
2520   case T_CHAR   : __ movzwl(rax, rax);      break;
2521   case T_BYTE   : __ sign_extend_byte (rax); break;
2522   case T_SHORT  : __ sign_extend_short(rax); break;
2523   case T_INT    : /* nothing to do */        break;
2524   case T_DOUBLE :
2525   case T_FLOAT  :
2526     // Result is in xmm0 we'll save as needed
2527     break;
2528   case T_ARRAY:                 // Really a handle
2529   case T_OBJECT:                // Really a handle
2530       break; // can't de-handlize until after safepoint check
2531   case T_VOID: break;
2532   case T_LONG: break;
2533   default       : ShouldNotReachHere();
2534   }
2535 
2536   // unpin pinned arguments
2537   pinned_slot = oop_handle_offset;
2538   if (pinned_args.length() > 0) {
2539     // save return value that may be overwritten otherwise.
2540     save_native_result(masm, ret_type, stack_slots);
2541     for (int index = 0; index < pinned_args.length(); index ++) {
2542       int i = pinned_args.at(index);
2543       assert(pinned_slot <= stack_slots, "overflow");
2544       if (!in_regs[i].first()->is_stack()) {
2545         int offset = pinned_slot * VMRegImpl::stack_slot_size;
2546         __ movq(in_regs[i].first()->as_Register(), Address(rsp, offset));
2547         pinned_slot += VMRegImpl::slots_per_word;
2548       }
2549       gen_unpin_object(masm, in_regs[i]);
2550     }
2551     restore_native_result(masm, ret_type, stack_slots);
2552   }
2553 
2554   // Switch thread to "native transition" state before reading the synchronization state.
2555   // This additional state is necessary because reading and testing the synchronization
2556   // state is not atomic w.r.t. GC, as this scenario demonstrates:
2557   //     Java thread A, in _thread_in_native state, loads _not_synchronized and is preempted.
2558   //     VM thread changes sync state to synchronizing and suspends threads for GC.
2559   //     Thread A is resumed to finish this native method, but doesn't block here since it
2560   //     didn't see any synchronization is progress, and escapes.
2561   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_native_trans);
2562 
2563   // Force this write out before the read below
2564   __ membar(Assembler::Membar_mask_bits(
2565               Assembler::LoadLoad | Assembler::LoadStore |
2566               Assembler::StoreLoad | Assembler::StoreStore));
2567 
2568   Label after_transition;
2569 
2570   // check for safepoint operation in progress and/or pending suspend requests
2571   {
2572     Label Continue;
2573     Label slow_path;
2574 
2575     __ safepoint_poll(slow_path, r15_thread, rscratch1);
2576 
2577     __ cmpl(Address(r15_thread, JavaThread::suspend_flags_offset()), 0);
2578     __ jcc(Assembler::equal, Continue);
2579     __ bind(slow_path);
2580 
2581     // Don't use call_VM as it will see a possible pending exception and forward it
2582     // and never return here preventing us from clearing _last_native_pc down below.
2583     // Also can't use call_VM_leaf either as it will check to see if rsi & rdi are
2584     // preserved and correspond to the bcp/locals pointers. So we do a runtime call
2585     // by hand.
2586     //
2587     __ vzeroupper();
2588     save_native_result(masm, ret_type, stack_slots);
2589     __ mov(c_rarg0, r15_thread);
2590     __ mov(r12, rsp); // remember sp
2591     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2592     __ andptr(rsp, -16); // align stack as required by ABI
2593     if (!is_critical_native) {
2594       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans)));
2595     } else {
2596       __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, JavaThread::check_special_condition_for_native_trans_and_transition)));
2597     }
2598     __ mov(rsp, r12); // restore sp
2599     __ reinit_heapbase();
2600     // Restore any method result value
2601     restore_native_result(masm, ret_type, stack_slots);
2602 
2603     if (is_critical_native) {
2604       // The call above performed the transition to thread_in_Java so
2605       // skip the transition logic below.
2606       __ jmpb(after_transition);
2607     }
2608 
2609     __ bind(Continue);
2610   }
2611 
2612   // change thread state
2613   __ movl(Address(r15_thread, JavaThread::thread_state_offset()), _thread_in_Java);
2614   __ bind(after_transition);
2615 
2616   Label reguard;
2617   Label reguard_done;
2618   __ cmpl(Address(r15_thread, JavaThread::stack_guard_state_offset()), JavaThread::stack_guard_yellow_reserved_disabled);
2619   __ jcc(Assembler::equal, reguard);
2620   __ bind(reguard_done);
2621 
2622   // native result if any is live
2623 
2624   // Unlock
2625   Label unlock_done;
2626   Label slow_path_unlock;
2627   if (method->is_synchronized()) {
2628 
2629     // Get locked oop from the handle we passed to jni
2630     __ movptr(obj_reg, Address(oop_handle_reg, 0));
2631     __ resolve(IS_NOT_NULL, obj_reg);
2632 
2633     Label done;
2634 
2635     if (UseBiasedLocking) {
2636       __ biased_locking_exit(obj_reg, old_hdr, done);
2637     }
2638 
2639     // Simple recursive lock?
2640 
2641     __ cmpptr(Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size), (int32_t)NULL_WORD);
2642     __ jcc(Assembler::equal, done);
2643 
2644     // Must save rax if if it is live now because cmpxchg must use it
2645     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2646       save_native_result(masm, ret_type, stack_slots);
2647     }
2648 
2649 
2650     // get address of the stack lock
2651     __ lea(rax, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2652     //  get old displaced header
2653     __ movptr(old_hdr, Address(rax, 0));
2654 
2655     // Atomic swap old header if oop still contains the stack lock
2656     __ lock();
2657     __ cmpxchgptr(old_hdr, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
2658     __ jcc(Assembler::notEqual, slow_path_unlock);
2659 
2660     // slow path re-enters here
2661     __ bind(unlock_done);
2662     if (ret_type != T_FLOAT && ret_type != T_DOUBLE && ret_type != T_VOID) {
2663       restore_native_result(masm, ret_type, stack_slots);
2664     }
2665 
2666     __ bind(done);
2667 
2668   }
2669   {
2670     SkipIfEqual skip(masm, &DTraceMethodProbes, false);
2671     save_native_result(masm, ret_type, stack_slots);
2672     __ mov_metadata(c_rarg1, method());
2673     __ call_VM_leaf(
2674          CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_method_exit),
2675          r15_thread, c_rarg1);
2676     restore_native_result(masm, ret_type, stack_slots);
2677   }
2678 
2679   __ reset_last_Java_frame(false);
2680 
2681   // Unbox oop result, e.g. JNIHandles::resolve value.
2682   if (ret_type == T_OBJECT || ret_type == T_ARRAY) {
2683     __ resolve_jobject(rax /* value */,
2684                        r15_thread /* thread */,
2685                        rcx /* tmp */);
2686   }
2687 
2688   if (CheckJNICalls) {
2689     // clear_pending_jni_exception_check
2690     __ movptr(Address(r15_thread, JavaThread::pending_jni_exception_check_fn_offset()), NULL_WORD);
2691   }
2692 
2693   if (!is_critical_native) {
2694     // reset handle block
2695     __ movptr(rcx, Address(r15_thread, JavaThread::active_handles_offset()));
2696     __ movl(Address(rcx, JNIHandleBlock::top_offset_in_bytes()), (int32_t)NULL_WORD);
2697   }
2698 
2699   // pop our frame
2700 
2701   __ leave();
2702 
2703   if (!is_critical_native) {
2704     // Any exception pending?
2705     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2706     __ jcc(Assembler::notEqual, exception_pending);
2707   }
2708 
2709   // Return
2710 
2711   __ ret(0);
2712 
2713   // Unexpected paths are out of line and go here
2714 
2715   if (!is_critical_native) {
2716     // forward the exception
2717     __ bind(exception_pending);
2718 
2719     // and forward the exception
2720     __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2721   }
2722 
2723   // Slow path locking & unlocking
2724   if (method->is_synchronized()) {
2725 
2726     // BEGIN Slow path lock
2727     __ bind(slow_path_lock);
2728 
2729     // has last_Java_frame setup. No exceptions so do vanilla call not call_VM
2730     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2731 
2732     // protect the args we've loaded
2733     save_args(masm, total_c_args, c_arg, out_regs);
2734 
2735     __ mov(c_rarg0, obj_reg);
2736     __ mov(c_rarg1, lock_reg);
2737     __ mov(c_rarg2, r15_thread);
2738 
2739     // Not a leaf but we have last_Java_frame setup as we want
2740     __ call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_locking_C), 3);
2741     restore_args(masm, total_c_args, c_arg, out_regs);
2742 
2743 #ifdef ASSERT
2744     { Label L;
2745     __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2746     __ jcc(Assembler::equal, L);
2747     __ stop("no pending exception allowed on exit from monitorenter");
2748     __ bind(L);
2749     }
2750 #endif
2751     __ jmp(lock_done);
2752 
2753     // END Slow path lock
2754 
2755     // BEGIN Slow path unlock
2756     __ bind(slow_path_unlock);
2757 
2758     // If we haven't already saved the native result we must save it now as xmm registers
2759     // are still exposed.
2760     __ vzeroupper();
2761     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2762       save_native_result(masm, ret_type, stack_slots);
2763     }
2764 
2765     __ lea(c_rarg1, Address(rsp, lock_slot_offset * VMRegImpl::stack_slot_size));
2766 
2767     __ mov(c_rarg0, obj_reg);
2768     __ mov(c_rarg2, r15_thread);
2769     __ mov(r12, rsp); // remember sp
2770     __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2771     __ andptr(rsp, -16); // align stack as required by ABI
2772 
2773     // Save pending exception around call to VM (which contains an EXCEPTION_MARK)
2774     // NOTE that obj_reg == rbx currently
2775     __ movptr(rbx, Address(r15_thread, in_bytes(Thread::pending_exception_offset())));
2776     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int32_t)NULL_WORD);
2777 
2778     // args are (oop obj, BasicLock* lock, JavaThread* thread)
2779     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C)));
2780     __ mov(rsp, r12); // restore sp
2781     __ reinit_heapbase();
2782 #ifdef ASSERT
2783     {
2784       Label L;
2785       __ cmpptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), (int)NULL_WORD);
2786       __ jcc(Assembler::equal, L);
2787       __ stop("no pending exception allowed on exit complete_monitor_unlocking_C");
2788       __ bind(L);
2789     }
2790 #endif /* ASSERT */
2791 
2792     __ movptr(Address(r15_thread, in_bytes(Thread::pending_exception_offset())), rbx);
2793 
2794     if (ret_type == T_FLOAT || ret_type == T_DOUBLE ) {
2795       restore_native_result(masm, ret_type, stack_slots);
2796     }
2797     __ jmp(unlock_done);
2798 
2799     // END Slow path unlock
2800 
2801   } // synchronized
2802 
2803   // SLOW PATH Reguard the stack if needed
2804 
2805   __ bind(reguard);
2806   __ vzeroupper();
2807   save_native_result(masm, ret_type, stack_slots);
2808   __ mov(r12, rsp); // remember sp
2809   __ subptr(rsp, frame::arg_reg_save_area_bytes); // windows
2810   __ andptr(rsp, -16); // align stack as required by ABI
2811   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, SharedRuntime::reguard_yellow_pages)));
2812   __ mov(rsp, r12); // restore sp
2813   __ reinit_heapbase();
2814   restore_native_result(masm, ret_type, stack_slots);
2815   // and continue
2816   __ jmp(reguard_done);
2817 
2818 
2819 
2820   __ flush();
2821 
2822   nmethod *nm = nmethod::new_native_nmethod(method,
2823                                             compile_id,
2824                                             masm->code(),
2825                                             vep_offset,
2826                                             frame_complete,
2827                                             stack_slots / VMRegImpl::slots_per_word,
2828                                             (is_static ? in_ByteSize(klass_offset) : in_ByteSize(receiver_offset)),
2829                                             in_ByteSize(lock_slot_offset*VMRegImpl::stack_slot_size),
2830                                             oop_maps);
2831 
2832   if (is_critical_native) {
2833     nm->set_lazy_critical_native(true);
2834   }
2835 
2836   return nm;
2837 
2838 }
2839 
2840 // this function returns the adjust size (in number of words) to a c2i adapter
2841 // activation for use during deoptimization
2842 int Deoptimization::last_frame_adjust(int callee_parameters, int callee_locals ) {
2843   return (callee_locals - callee_parameters) * Interpreter::stackElementWords;
2844 }
2845 
2846 
2847 uint SharedRuntime::out_preserve_stack_slots() {
2848   return 0;
2849 }
2850 
2851 //------------------------------generate_deopt_blob----------------------------
2852 void SharedRuntime::generate_deopt_blob() {
2853   // Allocate space for the code
2854   ResourceMark rm;
2855   // Setup code generation tools
2856   int pad = 0;
2857 #if INCLUDE_JVMCI
2858   if (EnableJVMCI || UseAOT) {
2859     pad += 512; // Increase the buffer size when compiling for JVMCI
2860   }
2861 #endif
2862   CodeBuffer buffer("deopt_blob", 2048+pad, 1024);
2863   MacroAssembler* masm = new MacroAssembler(&buffer);
2864   int frame_size_in_words;
2865   OopMap* map = NULL;
2866   OopMapSet *oop_maps = new OopMapSet();
2867 
2868   // -------------
2869   // This code enters when returning to a de-optimized nmethod.  A return
2870   // address has been pushed on the the stack, and return values are in
2871   // registers.
2872   // If we are doing a normal deopt then we were called from the patched
2873   // nmethod from the point we returned to the nmethod. So the return
2874   // address on the stack is wrong by NativeCall::instruction_size
2875   // We will adjust the value so it looks like we have the original return
2876   // address on the stack (like when we eagerly deoptimized).
2877   // In the case of an exception pending when deoptimizing, we enter
2878   // with a return address on the stack that points after the call we patched
2879   // into the exception handler. We have the following register state from,
2880   // e.g., the forward exception stub (see stubGenerator_x86_64.cpp).
2881   //    rax: exception oop
2882   //    rbx: exception handler
2883   //    rdx: throwing pc
2884   // So in this case we simply jam rdx into the useless return address and
2885   // the stack looks just like we want.
2886   //
2887   // At this point we need to de-opt.  We save the argument return
2888   // registers.  We call the first C routine, fetch_unroll_info().  This
2889   // routine captures the return values and returns a structure which
2890   // describes the current frame size and the sizes of all replacement frames.
2891   // The current frame is compiled code and may contain many inlined
2892   // functions, each with their own JVM state.  We pop the current frame, then
2893   // push all the new frames.  Then we call the C routine unpack_frames() to
2894   // populate these frames.  Finally unpack_frames() returns us the new target
2895   // address.  Notice that callee-save registers are BLOWN here; they have
2896   // already been captured in the vframeArray at the time the return PC was
2897   // patched.
2898   address start = __ pc();
2899   Label cont;
2900 
2901   // Prolog for non exception case!
2902 
2903   // Save everything in sight.
2904   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2905 
2906   // Normal deoptimization.  Save exec mode for unpack_frames.
2907   __ movl(r14, Deoptimization::Unpack_deopt); // callee-saved
2908   __ jmp(cont);
2909 
2910   int reexecute_offset = __ pc() - start;
2911 #if INCLUDE_JVMCI && !defined(COMPILER1)
2912   if (EnableJVMCI && UseJVMCICompiler) {
2913     // JVMCI does not use this kind of deoptimization
2914     __ should_not_reach_here();
2915   }
2916 #endif
2917 
2918   // Reexecute case
2919   // return address is the pc describes what bci to do re-execute at
2920 
2921   // No need to update map as each call to save_live_registers will produce identical oopmap
2922   (void) RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2923 
2924   __ movl(r14, Deoptimization::Unpack_reexecute); // callee-saved
2925   __ jmp(cont);
2926 
2927 #if INCLUDE_JVMCI
2928   Label after_fetch_unroll_info_call;
2929   int implicit_exception_uncommon_trap_offset = 0;
2930   int uncommon_trap_offset = 0;
2931 
2932   if (EnableJVMCI || UseAOT) {
2933     implicit_exception_uncommon_trap_offset = __ pc() - start;
2934 
2935     __ pushptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())));
2936     __ movptr(Address(r15_thread, in_bytes(JavaThread::jvmci_implicit_exception_pc_offset())), (int32_t)NULL_WORD);
2937 
2938     uncommon_trap_offset = __ pc() - start;
2939 
2940     // Save everything in sight.
2941     RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2942     // fetch_unroll_info needs to call last_java_frame()
2943     __ set_last_Java_frame(noreg, noreg, NULL);
2944 
2945     __ movl(c_rarg1, Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())));
2946     __ movl(Address(r15_thread, in_bytes(JavaThread::pending_deoptimization_offset())), -1);
2947 
2948     __ movl(r14, (int32_t)Deoptimization::Unpack_reexecute);
2949     __ mov(c_rarg0, r15_thread);
2950     __ movl(c_rarg2, r14); // exec mode
2951     __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
2952     oop_maps->add_gc_map( __ pc()-start, map->deep_copy());
2953 
2954     __ reset_last_Java_frame(false);
2955 
2956     __ jmp(after_fetch_unroll_info_call);
2957   } // EnableJVMCI
2958 #endif // INCLUDE_JVMCI
2959 
2960   int exception_offset = __ pc() - start;
2961 
2962   // Prolog for exception case
2963 
2964   // all registers are dead at this entry point, except for rax, and
2965   // rdx which contain the exception oop and exception pc
2966   // respectively.  Set them in TLS and fall thru to the
2967   // unpack_with_exception_in_tls entry point.
2968 
2969   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
2970   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), rax);
2971 
2972   int exception_in_tls_offset = __ pc() - start;
2973 
2974   // new implementation because exception oop is now passed in JavaThread
2975 
2976   // Prolog for exception case
2977   // All registers must be preserved because they might be used by LinearScan
2978   // Exceptiop oop and throwing PC are passed in JavaThread
2979   // tos: stack at point of call to method that threw the exception (i.e. only
2980   // args are on the stack, no return address)
2981 
2982   // make room on stack for the return address
2983   // It will be patched later with the throwing pc. The correct value is not
2984   // available now because loading it from memory would destroy registers.
2985   __ push(0);
2986 
2987   // Save everything in sight.
2988   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
2989 
2990   // Now it is safe to overwrite any register
2991 
2992   // Deopt during an exception.  Save exec mode for unpack_frames.
2993   __ movl(r14, Deoptimization::Unpack_exception); // callee-saved
2994 
2995   // load throwing pc from JavaThread and patch it as the return address
2996   // of the current frame. Then clear the field in JavaThread
2997 
2998   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
2999   __ movptr(Address(rbp, wordSize), rdx);
3000   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3001 
3002 #ifdef ASSERT
3003   // verify that there is really an exception oop in JavaThread
3004   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3005   __ verify_oop(rax);
3006 
3007   // verify that there is no pending exception
3008   Label no_pending_exception;
3009   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3010   __ testptr(rax, rax);
3011   __ jcc(Assembler::zero, no_pending_exception);
3012   __ stop("must not have pending exception here");
3013   __ bind(no_pending_exception);
3014 #endif
3015 
3016   __ bind(cont);
3017 
3018   // Call C code.  Need thread and this frame, but NOT official VM entry
3019   // crud.  We cannot block on this call, no GC can happen.
3020   //
3021   // UnrollBlock* fetch_unroll_info(JavaThread* thread)
3022 
3023   // fetch_unroll_info needs to call last_java_frame().
3024 
3025   __ set_last_Java_frame(noreg, noreg, NULL);
3026 #ifdef ASSERT
3027   { Label L;
3028     __ cmpptr(Address(r15_thread,
3029                     JavaThread::last_Java_fp_offset()),
3030             (int32_t)0);
3031     __ jcc(Assembler::equal, L);
3032     __ stop("SharedRuntime::generate_deopt_blob: last_Java_fp not cleared");
3033     __ bind(L);
3034   }
3035 #endif // ASSERT
3036   __ mov(c_rarg0, r15_thread);
3037   __ movl(c_rarg1, r14); // exec_mode
3038   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::fetch_unroll_info)));
3039 
3040   // Need to have an oopmap that tells fetch_unroll_info where to
3041   // find any register it might need.
3042   oop_maps->add_gc_map(__ pc() - start, map);
3043 
3044   __ reset_last_Java_frame(false);
3045 
3046 #if INCLUDE_JVMCI
3047   if (EnableJVMCI || UseAOT) {
3048     __ bind(after_fetch_unroll_info_call);
3049   }
3050 #endif
3051 
3052   // Load UnrollBlock* into rdi
3053   __ mov(rdi, rax);
3054 
3055   __ movl(r14, Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()));
3056    Label noException;
3057   __ cmpl(r14, Deoptimization::Unpack_exception);   // Was exception pending?
3058   __ jcc(Assembler::notEqual, noException);
3059   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
3060   // QQQ this is useless it was NULL above
3061   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
3062   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int32_t)NULL_WORD);
3063   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int32_t)NULL_WORD);
3064 
3065   __ verify_oop(rax);
3066 
3067   // Overwrite the result registers with the exception results.
3068   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3069   // I think this is useless
3070   __ movptr(Address(rsp, RegisterSaver::rdx_offset_in_bytes()), rdx);
3071 
3072   __ bind(noException);
3073 
3074   // Only register save data is on the stack.
3075   // Now restore the result registers.  Everything else is either dead
3076   // or captured in the vframeArray.
3077   RegisterSaver::restore_result_registers(masm);
3078 
3079   // All of the register save area has been popped of the stack. Only the
3080   // return address remains.
3081 
3082   // Pop all the frames we must move/replace.
3083   //
3084   // Frame picture (youngest to oldest)
3085   // 1: self-frame (no frame link)
3086   // 2: deopting frame  (no frame link)
3087   // 3: caller of deopting frame (could be compiled/interpreted).
3088   //
3089   // Note: by leaving the return address of self-frame on the stack
3090   // and using the size of frame 2 to adjust the stack
3091   // when we are done the return to frame 3 will still be on the stack.
3092 
3093   // Pop deoptimized frame
3094   __ movl(rcx, Address(rdi, Deoptimization::UnrollBlock::size_of_deoptimized_frame_offset_in_bytes()));
3095   __ addptr(rsp, rcx);
3096 
3097   // rsp should be pointing at the return address to the caller (3)
3098 
3099   // Pick up the initial fp we should save
3100   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3101   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3102 
3103 #ifdef ASSERT
3104   // Compilers generate code that bang the stack by as much as the
3105   // interpreter would need. So this stack banging should never
3106   // trigger a fault. Verify that it does not on non product builds.
3107   if (UseStackBanging) {
3108     __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3109     __ bang_stack_size(rbx, rcx);
3110   }
3111 #endif
3112 
3113   // Load address of array of frame pcs into rcx
3114   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3115 
3116   // Trash the old pc
3117   __ addptr(rsp, wordSize);
3118 
3119   // Load address of array of frame sizes into rsi
3120   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock::frame_sizes_offset_in_bytes()));
3121 
3122   // Load counter into rdx
3123   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock::number_of_frames_offset_in_bytes()));
3124 
3125   // Now adjust the caller's stack to make up for the extra locals
3126   // but record the original sp so that we can save it in the skeletal interpreter
3127   // frame and the stack walking of interpreter_sender will get the unextended sp
3128   // value and not the "real" sp value.
3129 
3130   const Register sender_sp = r8;
3131 
3132   __ mov(sender_sp, rsp);
3133   __ movl(rbx, Address(rdi,
3134                        Deoptimization::UnrollBlock::
3135                        caller_adjustment_offset_in_bytes()));
3136   __ subptr(rsp, rbx);
3137 
3138   // Push interpreter frames in a loop
3139   Label loop;
3140   __ bind(loop);
3141   __ movptr(rbx, Address(rsi, 0));      // Load frame size
3142   __ subptr(rbx, 2*wordSize);           // We'll push pc and ebp by hand
3143   __ pushptr(Address(rcx, 0));          // Save return address
3144   __ enter();                           // Save old & set new ebp
3145   __ subptr(rsp, rbx);                  // Prolog
3146   // This value is corrected by layout_activation_impl
3147   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3148   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize), sender_sp); // Make it walkable
3149   __ mov(sender_sp, rsp);               // Pass sender_sp to next frame
3150   __ addptr(rsi, wordSize);             // Bump array pointer (sizes)
3151   __ addptr(rcx, wordSize);             // Bump array pointer (pcs)
3152   __ decrementl(rdx);                   // Decrement counter
3153   __ jcc(Assembler::notZero, loop);
3154   __ pushptr(Address(rcx, 0));          // Save final return address
3155 
3156   // Re-push self-frame
3157   __ enter();                           // Save old & set new ebp
3158 
3159   // Allocate a full sized register save area.
3160   // Return address and rbp are in place, so we allocate two less words.
3161   __ subptr(rsp, (frame_size_in_words - 2) * wordSize);
3162 
3163   // Restore frame locals after moving the frame
3164   __ movdbl(Address(rsp, RegisterSaver::xmm0_offset_in_bytes()), xmm0);
3165   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3166 
3167   // Call C code.  Need thread but NOT official VM entry
3168   // crud.  We cannot block on this call, no GC can happen.  Call should
3169   // restore return values to their stack-slots with the new SP.
3170   //
3171   // void Deoptimization::unpack_frames(JavaThread* thread, int exec_mode)
3172 
3173   // Use rbp because the frames look interpreted now
3174   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3175   // Don't need the precise return PC here, just precise enough to point into this code blob.
3176   address the_pc = __ pc();
3177   __ set_last_Java_frame(noreg, rbp, the_pc);
3178 
3179   __ andptr(rsp, -(StackAlignmentInBytes));  // Fix stack alignment as required by ABI
3180   __ mov(c_rarg0, r15_thread);
3181   __ movl(c_rarg1, r14); // second arg: exec_mode
3182   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3183   // Revert SP alignment after call since we're going to do some SP relative addressing below
3184   __ movptr(rsp, Address(r15_thread, JavaThread::last_Java_sp_offset()));
3185 
3186   // Set an oopmap for the call site
3187   // Use the same PC we used for the last java frame
3188   oop_maps->add_gc_map(the_pc - start,
3189                        new OopMap( frame_size_in_words, 0 ));
3190 
3191   // Clear fp AND pc
3192   __ reset_last_Java_frame(true);
3193 
3194   // Collect return values
3195   __ movdbl(xmm0, Address(rsp, RegisterSaver::xmm0_offset_in_bytes()));
3196   __ movptr(rax, Address(rsp, RegisterSaver::rax_offset_in_bytes()));
3197   // I think this is useless (throwing pc?)
3198   __ movptr(rdx, Address(rsp, RegisterSaver::rdx_offset_in_bytes()));
3199 
3200   // Pop self-frame.
3201   __ leave();                           // Epilog
3202 
3203   // Jump to interpreter
3204   __ ret(0);
3205 
3206   // Make sure all code is generated
3207   masm->flush();
3208 
3209   _deopt_blob = DeoptimizationBlob::create(&buffer, oop_maps, 0, exception_offset, reexecute_offset, frame_size_in_words);
3210   _deopt_blob->set_unpack_with_exception_in_tls_offset(exception_in_tls_offset);
3211 #if INCLUDE_JVMCI
3212   if (EnableJVMCI || UseAOT) {
3213     _deopt_blob->set_uncommon_trap_offset(uncommon_trap_offset);
3214     _deopt_blob->set_implicit_exception_uncommon_trap_offset(implicit_exception_uncommon_trap_offset);
3215   }
3216 #endif
3217 }
3218 
3219 #ifdef COMPILER2
3220 //------------------------------generate_uncommon_trap_blob--------------------
3221 void SharedRuntime::generate_uncommon_trap_blob() {
3222   // Allocate space for the code
3223   ResourceMark rm;
3224   // Setup code generation tools
3225   CodeBuffer buffer("uncommon_trap_blob", 2048, 1024);
3226   MacroAssembler* masm = new MacroAssembler(&buffer);
3227 
3228   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3229 
3230   address start = __ pc();
3231 
3232   if (UseRTMLocking) {
3233     // Abort RTM transaction before possible nmethod deoptimization.
3234     __ xabort(0);
3235   }
3236 
3237   // Push self-frame.  We get here with a return address on the
3238   // stack, so rsp is 8-byte aligned until we allocate our frame.
3239   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog!
3240 
3241   // No callee saved registers. rbp is assumed implicitly saved
3242   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3243 
3244   // compiler left unloaded_class_index in j_rarg0 move to where the
3245   // runtime expects it.
3246   __ movl(c_rarg1, j_rarg0);
3247 
3248   __ set_last_Java_frame(noreg, noreg, NULL);
3249 
3250   // Call C code.  Need thread but NOT official VM entry
3251   // crud.  We cannot block on this call, no GC can happen.  Call should
3252   // capture callee-saved registers as well as return values.
3253   // Thread is in rdi already.
3254   //
3255   // UnrollBlock* uncommon_trap(JavaThread* thread, jint unloaded_class_index);
3256 
3257   __ mov(c_rarg0, r15_thread);
3258   __ movl(c_rarg2, Deoptimization::Unpack_uncommon_trap);
3259   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::uncommon_trap)));
3260 
3261   // Set an oopmap for the call site
3262   OopMapSet* oop_maps = new OopMapSet();
3263   OopMap* map = new OopMap(SimpleRuntimeFrame::framesize, 0);
3264 
3265   // location of rbp is known implicitly by the frame sender code
3266 
3267   oop_maps->add_gc_map(__ pc() - start, map);
3268 
3269   __ reset_last_Java_frame(false);
3270 
3271   // Load UnrollBlock* into rdi
3272   __ mov(rdi, rax);
3273 
3274 #ifdef ASSERT
3275   { Label L;
3276     __ cmpptr(Address(rdi, Deoptimization::UnrollBlock::unpack_kind_offset_in_bytes()),
3277             (int32_t)Deoptimization::Unpack_uncommon_trap);
3278     __ jcc(Assembler::equal, L);
3279     __ stop("SharedRuntime::generate_deopt_blob: expected Unpack_uncommon_trap");
3280     __ bind(L);
3281   }
3282 #endif
3283 
3284   // Pop all the frames we must move/replace.
3285   //
3286   // Frame picture (youngest to oldest)
3287   // 1: self-frame (no frame link)
3288   // 2: deopting frame  (no frame link)
3289   // 3: caller of deopting frame (could be compiled/interpreted).
3290 
3291   // Pop self-frame.  We have no frame, and must rely only on rax and rsp.
3292   __ addptr(rsp, (SimpleRuntimeFrame::framesize - 2) << LogBytesPerInt); // Epilog!
3293 
3294   // Pop deoptimized frame (int)
3295   __ movl(rcx, Address(rdi,
3296                        Deoptimization::UnrollBlock::
3297                        size_of_deoptimized_frame_offset_in_bytes()));
3298   __ addptr(rsp, rcx);
3299 
3300   // rsp should be pointing at the return address to the caller (3)
3301 
3302   // Pick up the initial fp we should save
3303   // restore rbp before stack bang because if stack overflow is thrown it needs to be pushed (and preserved)
3304   __ movptr(rbp, Address(rdi, Deoptimization::UnrollBlock::initial_info_offset_in_bytes()));
3305 
3306 #ifdef ASSERT
3307   // Compilers generate code that bang the stack by as much as the
3308   // interpreter would need. So this stack banging should never
3309   // trigger a fault. Verify that it does not on non product builds.
3310   if (UseStackBanging) {
3311     __ movl(rbx, Address(rdi ,Deoptimization::UnrollBlock::total_frame_sizes_offset_in_bytes()));
3312     __ bang_stack_size(rbx, rcx);
3313   }
3314 #endif
3315 
3316   // Load address of array of frame pcs into rcx (address*)
3317   __ movptr(rcx, Address(rdi, Deoptimization::UnrollBlock::frame_pcs_offset_in_bytes()));
3318 
3319   // Trash the return pc
3320   __ addptr(rsp, wordSize);
3321 
3322   // Load address of array of frame sizes into rsi (intptr_t*)
3323   __ movptr(rsi, Address(rdi, Deoptimization::UnrollBlock:: frame_sizes_offset_in_bytes()));
3324 
3325   // Counter
3326   __ movl(rdx, Address(rdi, Deoptimization::UnrollBlock:: number_of_frames_offset_in_bytes())); // (int)
3327 
3328   // Now adjust the caller's stack to make up for the extra locals but
3329   // record the original sp so that we can save it in the skeletal
3330   // interpreter frame and the stack walking of interpreter_sender
3331   // will get the unextended sp value and not the "real" sp value.
3332 
3333   const Register sender_sp = r8;
3334 
3335   __ mov(sender_sp, rsp);
3336   __ movl(rbx, Address(rdi, Deoptimization::UnrollBlock:: caller_adjustment_offset_in_bytes())); // (int)
3337   __ subptr(rsp, rbx);
3338 
3339   // Push interpreter frames in a loop
3340   Label loop;
3341   __ bind(loop);
3342   __ movptr(rbx, Address(rsi, 0)); // Load frame size
3343   __ subptr(rbx, 2 * wordSize);    // We'll push pc and rbp by hand
3344   __ pushptr(Address(rcx, 0));     // Save return address
3345   __ enter();                      // Save old & set new rbp
3346   __ subptr(rsp, rbx);             // Prolog
3347   __ movptr(Address(rbp, frame::interpreter_frame_sender_sp_offset * wordSize),
3348             sender_sp);            // Make it walkable
3349   // This value is corrected by layout_activation_impl
3350   __ movptr(Address(rbp, frame::interpreter_frame_last_sp_offset * wordSize), (int32_t)NULL_WORD );
3351   __ mov(sender_sp, rsp);          // Pass sender_sp to next frame
3352   __ addptr(rsi, wordSize);        // Bump array pointer (sizes)
3353   __ addptr(rcx, wordSize);        // Bump array pointer (pcs)
3354   __ decrementl(rdx);              // Decrement counter
3355   __ jcc(Assembler::notZero, loop);
3356   __ pushptr(Address(rcx, 0));     // Save final return address
3357 
3358   // Re-push self-frame
3359   __ enter();                 // Save old & set new rbp
3360   __ subptr(rsp, (SimpleRuntimeFrame::framesize - 4) << LogBytesPerInt);
3361                               // Prolog
3362 
3363   // Use rbp because the frames look interpreted now
3364   // Save "the_pc" since it cannot easily be retrieved using the last_java_SP after we aligned SP.
3365   // Don't need the precise return PC here, just precise enough to point into this code blob.
3366   address the_pc = __ pc();
3367   __ set_last_Java_frame(noreg, rbp, the_pc);
3368 
3369   // Call C code.  Need thread but NOT official VM entry
3370   // crud.  We cannot block on this call, no GC can happen.  Call should
3371   // restore return values to their stack-slots with the new SP.
3372   // Thread is in rdi already.
3373   //
3374   // BasicType unpack_frames(JavaThread* thread, int exec_mode);
3375 
3376   __ andptr(rsp, -(StackAlignmentInBytes)); // Align SP as required by ABI
3377   __ mov(c_rarg0, r15_thread);
3378   __ movl(c_rarg1, Deoptimization::Unpack_uncommon_trap);
3379   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, Deoptimization::unpack_frames)));
3380 
3381   // Set an oopmap for the call site
3382   // Use the same PC we used for the last java frame
3383   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3384 
3385   // Clear fp AND pc
3386   __ reset_last_Java_frame(true);
3387 
3388   // Pop self-frame.
3389   __ leave();                 // Epilog
3390 
3391   // Jump to interpreter
3392   __ ret(0);
3393 
3394   // Make sure all code is generated
3395   masm->flush();
3396 
3397   _uncommon_trap_blob =  UncommonTrapBlob::create(&buffer, oop_maps,
3398                                                  SimpleRuntimeFrame::framesize >> 1);
3399 }
3400 #endif // COMPILER2
3401 
3402 
3403 //------------------------------generate_handler_blob------
3404 //
3405 // Generate a special Compile2Runtime blob that saves all registers,
3406 // and setup oopmap.
3407 //
3408 SafepointBlob* SharedRuntime::generate_handler_blob(address call_ptr, int poll_type) {
3409   assert(StubRoutines::forward_exception_entry() != NULL,
3410          "must be generated before");
3411 
3412   ResourceMark rm;
3413   OopMapSet *oop_maps = new OopMapSet();
3414   OopMap* map;
3415 
3416   // Allocate space for the code.  Setup code generation tools.
3417   CodeBuffer buffer("handler_blob", 2048, 1024);
3418   MacroAssembler* masm = new MacroAssembler(&buffer);
3419 
3420   address start   = __ pc();
3421   address call_pc = NULL;
3422   int frame_size_in_words;
3423   bool cause_return = (poll_type == POLL_AT_RETURN);
3424   bool save_vectors = (poll_type == POLL_AT_VECTOR_LOOP);
3425 
3426   if (UseRTMLocking) {
3427     // Abort RTM transaction before calling runtime
3428     // because critical section will be large and will be
3429     // aborted anyway. Also nmethod could be deoptimized.
3430     __ xabort(0);
3431   }
3432 
3433   // Make room for return address (or push it again)
3434   if (!cause_return) {
3435     __ push(rbx);
3436   }
3437 
3438   // Save registers, fpu state, and flags
3439   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words, save_vectors);
3440 
3441   // The following is basically a call_VM.  However, we need the precise
3442   // address of the call in order to generate an oopmap. Hence, we do all the
3443   // work outselves.
3444 
3445   __ set_last_Java_frame(noreg, noreg, NULL);
3446 
3447   // The return address must always be correct so that frame constructor never
3448   // sees an invalid pc.
3449 
3450   if (!cause_return) {
3451     // Get the return pc saved by the signal handler and stash it in its appropriate place on the stack.
3452     // Additionally, rbx is a callee saved register and we can look at it later to determine
3453     // if someone changed the return address for us!
3454     __ movptr(rbx, Address(r15_thread, JavaThread::saved_exception_pc_offset()));
3455     __ movptr(Address(rbp, wordSize), rbx);
3456   }
3457 
3458   // Do the call
3459   __ mov(c_rarg0, r15_thread);
3460   __ call(RuntimeAddress(call_ptr));
3461 
3462   // Set an oopmap for the call site.  This oopmap will map all
3463   // oop-registers and debug-info registers as callee-saved.  This
3464   // will allow deoptimization at this safepoint to find all possible
3465   // debug-info recordings, as well as let GC find all oops.
3466 
3467   oop_maps->add_gc_map( __ pc() - start, map);
3468 
3469   Label noException;
3470 
3471   __ reset_last_Java_frame(false);
3472 
3473   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3474   __ jcc(Assembler::equal, noException);
3475 
3476   // Exception pending
3477 
3478   RegisterSaver::restore_live_registers(masm, save_vectors);
3479 
3480   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3481 
3482   // No exception case
3483   __ bind(noException);
3484 
3485   Label no_adjust;
3486 #ifdef ASSERT
3487   Label bail;
3488 #endif
3489   if (SafepointMechanism::uses_thread_local_poll() && !cause_return) {
3490     Label no_prefix, not_special;
3491 
3492     // If our stashed return pc was modified by the runtime we avoid touching it
3493     __ cmpptr(rbx, Address(rbp, wordSize));
3494     __ jccb(Assembler::notEqual, no_adjust);
3495 
3496     // Skip over the poll instruction.
3497     // See NativeInstruction::is_safepoint_poll()
3498     // Possible encodings:
3499     //      85 00       test   %eax,(%rax)
3500     //      85 01       test   %eax,(%rcx)
3501     //      85 02       test   %eax,(%rdx)
3502     //      85 03       test   %eax,(%rbx)
3503     //      85 06       test   %eax,(%rsi)
3504     //      85 07       test   %eax,(%rdi)
3505     //
3506     //   41 85 00       test   %eax,(%r8)
3507     //   41 85 01       test   %eax,(%r9)
3508     //   41 85 02       test   %eax,(%r10)
3509     //   41 85 03       test   %eax,(%r11)
3510     //   41 85 06       test   %eax,(%r14)
3511     //   41 85 07       test   %eax,(%r15)
3512     //
3513     //      85 04 24    test   %eax,(%rsp)
3514     //   41 85 04 24    test   %eax,(%r12)
3515     //      85 45 00    test   %eax,0x0(%rbp)
3516     //   41 85 45 00    test   %eax,0x0(%r13)
3517 
3518     __ cmpb(Address(rbx, 0), NativeTstRegMem::instruction_rex_b_prefix);
3519     __ jcc(Assembler::notEqual, no_prefix);
3520     __ addptr(rbx, 1);
3521     __ bind(no_prefix);
3522 #ifdef ASSERT
3523     __ movptr(rax, rbx); // remember where 0x85 should be, for verification below
3524 #endif
3525     // r12/r13/rsp/rbp base encoding takes 3 bytes with the following register values:
3526     // r12/rsp 0x04
3527     // r13/rbp 0x05
3528     __ movzbq(rcx, Address(rbx, 1));
3529     __ andptr(rcx, 0x07); // looking for 0x04 .. 0x05
3530     __ subptr(rcx, 4);    // looking for 0x00 .. 0x01
3531     __ cmpptr(rcx, 1);
3532     __ jcc(Assembler::above, not_special);
3533     __ addptr(rbx, 1);
3534     __ bind(not_special);
3535 #ifdef ASSERT
3536     // Verify the correct encoding of the poll we're about to skip.
3537     __ cmpb(Address(rax, 0), NativeTstRegMem::instruction_code_memXregl);
3538     __ jcc(Assembler::notEqual, bail);
3539     // Mask out the modrm bits
3540     __ testb(Address(rax, 1), NativeTstRegMem::modrm_mask);
3541     // rax encodes to 0, so if the bits are nonzero it's incorrect
3542     __ jcc(Assembler::notZero, bail);
3543 #endif
3544     // Adjust return pc forward to step over the safepoint poll instruction
3545     __ addptr(rbx, 2);
3546     __ movptr(Address(rbp, wordSize), rbx);
3547   }
3548 
3549   __ bind(no_adjust);
3550   // Normal exit, restore registers and exit.
3551   RegisterSaver::restore_live_registers(masm, save_vectors);
3552   __ ret(0);
3553 
3554 #ifdef ASSERT
3555   __ bind(bail);
3556   __ stop("Attempting to adjust pc to skip safepoint poll but the return point is not what we expected");
3557 #endif
3558 
3559   // Make sure all code is generated
3560   masm->flush();
3561 
3562   // Fill-out other meta info
3563   return SafepointBlob::create(&buffer, oop_maps, frame_size_in_words);
3564 }
3565 
3566 //
3567 // generate_resolve_blob - call resolution (static/virtual/opt-virtual/ic-miss
3568 //
3569 // Generate a stub that calls into vm to find out the proper destination
3570 // of a java call. All the argument registers are live at this point
3571 // but since this is generic code we don't know what they are and the caller
3572 // must do any gc of the args.
3573 //
3574 RuntimeStub* SharedRuntime::generate_resolve_blob(address destination, const char* name) {
3575   assert (StubRoutines::forward_exception_entry() != NULL, "must be generated before");
3576 
3577   // allocate space for the code
3578   ResourceMark rm;
3579 
3580   CodeBuffer buffer(name, 1000, 512);
3581   MacroAssembler* masm                = new MacroAssembler(&buffer);
3582 
3583   int frame_size_in_words;
3584 
3585   OopMapSet *oop_maps = new OopMapSet();
3586   OopMap* map = NULL;
3587 
3588   int start = __ offset();
3589 
3590   map = RegisterSaver::save_live_registers(masm, 0, &frame_size_in_words);
3591 
3592   int frame_complete = __ offset();
3593 
3594   __ set_last_Java_frame(noreg, noreg, NULL);
3595 
3596   __ mov(c_rarg0, r15_thread);
3597 
3598   __ call(RuntimeAddress(destination));
3599 
3600 
3601   // Set an oopmap for the call site.
3602   // We need this not only for callee-saved registers, but also for volatile
3603   // registers that the compiler might be keeping live across a safepoint.
3604 
3605   oop_maps->add_gc_map( __ offset() - start, map);
3606 
3607   // rax contains the address we are going to jump to assuming no exception got installed
3608 
3609   // clear last_Java_sp
3610   __ reset_last_Java_frame(false);
3611   // check for pending exceptions
3612   Label pending;
3613   __ cmpptr(Address(r15_thread, Thread::pending_exception_offset()), (int32_t)NULL_WORD);
3614   __ jcc(Assembler::notEqual, pending);
3615 
3616   // get the returned Method*
3617   __ get_vm_result_2(rbx, r15_thread);
3618   __ movptr(Address(rsp, RegisterSaver::rbx_offset_in_bytes()), rbx);
3619 
3620   __ movptr(Address(rsp, RegisterSaver::rax_offset_in_bytes()), rax);
3621 
3622   RegisterSaver::restore_live_registers(masm);
3623 
3624   // We are back the the original state on entry and ready to go.
3625 
3626   __ jmp(rax);
3627 
3628   // Pending exception after the safepoint
3629 
3630   __ bind(pending);
3631 
3632   RegisterSaver::restore_live_registers(masm);
3633 
3634   // exception pending => remove activation and forward to exception handler
3635 
3636   __ movptr(Address(r15_thread, JavaThread::vm_result_offset()), (int)NULL_WORD);
3637 
3638   __ movptr(rax, Address(r15_thread, Thread::pending_exception_offset()));
3639   __ jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
3640 
3641   // -------------
3642   // make sure all code is generated
3643   masm->flush();
3644 
3645   // return the  blob
3646   // frame_size_words or bytes??
3647   return RuntimeStub::new_runtime_stub(name, &buffer, frame_complete, frame_size_in_words, oop_maps, true);
3648 }
3649 
3650 
3651 //------------------------------Montgomery multiplication------------------------
3652 //
3653 
3654 #ifndef _WINDOWS
3655 
3656 #define ASM_SUBTRACT
3657 
3658 #ifdef ASM_SUBTRACT
3659 // Subtract 0:b from carry:a.  Return carry.
3660 static unsigned long
3661 sub(unsigned long a[], unsigned long b[], unsigned long carry, long len) {
3662   long i = 0, cnt = len;
3663   unsigned long tmp;
3664   asm volatile("clc; "
3665                "0: ; "
3666                "mov (%[b], %[i], 8), %[tmp]; "
3667                "sbb %[tmp], (%[a], %[i], 8); "
3668                "inc %[i]; dec %[cnt]; "
3669                "jne 0b; "
3670                "mov %[carry], %[tmp]; sbb $0, %[tmp]; "
3671                : [i]"+r"(i), [cnt]"+r"(cnt), [tmp]"=&r"(tmp)
3672                : [a]"r"(a), [b]"r"(b), [carry]"r"(carry)
3673                : "memory");
3674   return tmp;
3675 }
3676 #else // ASM_SUBTRACT
3677 typedef int __attribute__((mode(TI))) int128;
3678 
3679 // Subtract 0:b from carry:a.  Return carry.
3680 static unsigned long
3681 sub(unsigned long a[], unsigned long b[], unsigned long carry, int len) {
3682   int128 tmp = 0;
3683   int i;
3684   for (i = 0; i < len; i++) {
3685     tmp += a[i];
3686     tmp -= b[i];
3687     a[i] = tmp;
3688     tmp >>= 64;
3689     assert(-1 <= tmp && tmp <= 0, "invariant");
3690   }
3691   return tmp + carry;
3692 }
3693 #endif // ! ASM_SUBTRACT
3694 
3695 // Multiply (unsigned) Long A by Long B, accumulating the double-
3696 // length result into the accumulator formed of T0, T1, and T2.
3697 #define MACC(A, B, T0, T1, T2)                                  \
3698 do {                                                            \
3699   unsigned long hi, lo;                                         \
3700   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4"   \
3701            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3702            : "r"(A), "a"(B) : "cc");                            \
3703  } while(0)
3704 
3705 // As above, but add twice the double-length result into the
3706 // accumulator.
3707 #define MACC2(A, B, T0, T1, T2)                                 \
3708 do {                                                            \
3709   unsigned long hi, lo;                                         \
3710   __asm__ ("mul %5; add %%rax, %2; adc %%rdx, %3; adc $0, %4; " \
3711            "add %%rax, %2; adc %%rdx, %3; adc $0, %4"           \
3712            : "=&d"(hi), "=a"(lo), "+r"(T0), "+r"(T1), "+g"(T2)  \
3713            : "r"(A), "a"(B) : "cc");                            \
3714  } while(0)
3715 
3716 // Fast Montgomery multiplication.  The derivation of the algorithm is
3717 // in  A Cryptographic Library for the Motorola DSP56000,
3718 // Dusse and Kaliski, Proc. EUROCRYPT 90, pp. 230-237.
3719 
3720 static void __attribute__((noinline))
3721 montgomery_multiply(unsigned long a[], unsigned long b[], unsigned long n[],
3722                     unsigned long m[], unsigned long inv, int len) {
3723   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3724   int i;
3725 
3726   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3727 
3728   for (i = 0; i < len; i++) {
3729     int j;
3730     for (j = 0; j < i; j++) {
3731       MACC(a[j], b[i-j], t0, t1, t2);
3732       MACC(m[j], n[i-j], t0, t1, t2);
3733     }
3734     MACC(a[i], b[0], t0, t1, t2);
3735     m[i] = t0 * inv;
3736     MACC(m[i], n[0], t0, t1, t2);
3737 
3738     assert(t0 == 0, "broken Montgomery multiply");
3739 
3740     t0 = t1; t1 = t2; t2 = 0;
3741   }
3742 
3743   for (i = len; i < 2*len; i++) {
3744     int j;
3745     for (j = i-len+1; j < len; j++) {
3746       MACC(a[j], b[i-j], t0, t1, t2);
3747       MACC(m[j], n[i-j], t0, t1, t2);
3748     }
3749     m[i-len] = t0;
3750     t0 = t1; t1 = t2; t2 = 0;
3751   }
3752 
3753   while (t0)
3754     t0 = sub(m, n, t0, len);
3755 }
3756 
3757 // Fast Montgomery squaring.  This uses asymptotically 25% fewer
3758 // multiplies so it should be up to 25% faster than Montgomery
3759 // multiplication.  However, its loop control is more complex and it
3760 // may actually run slower on some machines.
3761 
3762 static void __attribute__((noinline))
3763 montgomery_square(unsigned long a[], unsigned long n[],
3764                   unsigned long m[], unsigned long inv, int len) {
3765   unsigned long t0 = 0, t1 = 0, t2 = 0; // Triple-precision accumulator
3766   int i;
3767 
3768   assert(inv * n[0] == -1UL, "broken inverse in Montgomery multiply");
3769 
3770   for (i = 0; i < len; i++) {
3771     int j;
3772     int end = (i+1)/2;
3773     for (j = 0; j < end; j++) {
3774       MACC2(a[j], a[i-j], t0, t1, t2);
3775       MACC(m[j], n[i-j], t0, t1, t2);
3776     }
3777     if ((i & 1) == 0) {
3778       MACC(a[j], a[j], t0, t1, t2);
3779     }
3780     for (; j < i; j++) {
3781       MACC(m[j], n[i-j], t0, t1, t2);
3782     }
3783     m[i] = t0 * inv;
3784     MACC(m[i], n[0], t0, t1, t2);
3785 
3786     assert(t0 == 0, "broken Montgomery square");
3787 
3788     t0 = t1; t1 = t2; t2 = 0;
3789   }
3790 
3791   for (i = len; i < 2*len; i++) {
3792     int start = i-len+1;
3793     int end = start + (len - start)/2;
3794     int j;
3795     for (j = start; j < end; j++) {
3796       MACC2(a[j], a[i-j], t0, t1, t2);
3797       MACC(m[j], n[i-j], t0, t1, t2);
3798     }
3799     if ((i & 1) == 0) {
3800       MACC(a[j], a[j], t0, t1, t2);
3801     }
3802     for (; j < len; j++) {
3803       MACC(m[j], n[i-j], t0, t1, t2);
3804     }
3805     m[i-len] = t0;
3806     t0 = t1; t1 = t2; t2 = 0;
3807   }
3808 
3809   while (t0)
3810     t0 = sub(m, n, t0, len);
3811 }
3812 
3813 // Swap words in a longword.
3814 static unsigned long swap(unsigned long x) {
3815   return (x << 32) | (x >> 32);
3816 }
3817 
3818 // Copy len longwords from s to d, word-swapping as we go.  The
3819 // destination array is reversed.
3820 static void reverse_words(unsigned long *s, unsigned long *d, int len) {
3821   d += len;
3822   while(len-- > 0) {
3823     d--;
3824     *d = swap(*s);
3825     s++;
3826   }
3827 }
3828 
3829 // The threshold at which squaring is advantageous was determined
3830 // experimentally on an i7-3930K (Ivy Bridge) CPU @ 3.5GHz.
3831 #define MONTGOMERY_SQUARING_THRESHOLD 64
3832 
3833 void SharedRuntime::montgomery_multiply(jint *a_ints, jint *b_ints, jint *n_ints,
3834                                         jint len, jlong inv,
3835                                         jint *m_ints) {
3836   assert(len % 2 == 0, "array length in montgomery_multiply must be even");
3837   int longwords = len/2;
3838 
3839   // Make very sure we don't use so much space that the stack might
3840   // overflow.  512 jints corresponds to an 16384-bit integer and
3841   // will use here a total of 8k bytes of stack space.
3842   int total_allocation = longwords * sizeof (unsigned long) * 4;
3843   guarantee(total_allocation <= 8192, "must be");
3844   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3845 
3846   // Local scratch arrays
3847   unsigned long
3848     *a = scratch + 0 * longwords,
3849     *b = scratch + 1 * longwords,
3850     *n = scratch + 2 * longwords,
3851     *m = scratch + 3 * longwords;
3852 
3853   reverse_words((unsigned long *)a_ints, a, longwords);
3854   reverse_words((unsigned long *)b_ints, b, longwords);
3855   reverse_words((unsigned long *)n_ints, n, longwords);
3856 
3857   ::montgomery_multiply(a, b, n, m, (unsigned long)inv, longwords);
3858 
3859   reverse_words(m, (unsigned long *)m_ints, longwords);
3860 }
3861 
3862 void SharedRuntime::montgomery_square(jint *a_ints, jint *n_ints,
3863                                       jint len, jlong inv,
3864                                       jint *m_ints) {
3865   assert(len % 2 == 0, "array length in montgomery_square must be even");
3866   int longwords = len/2;
3867 
3868   // Make very sure we don't use so much space that the stack might
3869   // overflow.  512 jints corresponds to an 16384-bit integer and
3870   // will use here a total of 6k bytes of stack space.
3871   int total_allocation = longwords * sizeof (unsigned long) * 3;
3872   guarantee(total_allocation <= 8192, "must be");
3873   unsigned long *scratch = (unsigned long *)alloca(total_allocation);
3874 
3875   // Local scratch arrays
3876   unsigned long
3877     *a = scratch + 0 * longwords,
3878     *n = scratch + 1 * longwords,
3879     *m = scratch + 2 * longwords;
3880 
3881   reverse_words((unsigned long *)a_ints, a, longwords);
3882   reverse_words((unsigned long *)n_ints, n, longwords);
3883 
3884   if (len >= MONTGOMERY_SQUARING_THRESHOLD) {
3885     ::montgomery_square(a, n, m, (unsigned long)inv, longwords);
3886   } else {
3887     ::montgomery_multiply(a, a, n, m, (unsigned long)inv, longwords);
3888   }
3889 
3890   reverse_words(m, (unsigned long *)m_ints, longwords);
3891 }
3892 
3893 #endif // WINDOWS
3894 
3895 #ifdef COMPILER2
3896 // This is here instead of runtime_x86_64.cpp because it uses SimpleRuntimeFrame
3897 //
3898 //------------------------------generate_exception_blob---------------------------
3899 // creates exception blob at the end
3900 // Using exception blob, this code is jumped from a compiled method.
3901 // (see emit_exception_handler in x86_64.ad file)
3902 //
3903 // Given an exception pc at a call we call into the runtime for the
3904 // handler in this method. This handler might merely restore state
3905 // (i.e. callee save registers) unwind the frame and jump to the
3906 // exception handler for the nmethod if there is no Java level handler
3907 // for the nmethod.
3908 //
3909 // This code is entered with a jmp.
3910 //
3911 // Arguments:
3912 //   rax: exception oop
3913 //   rdx: exception pc
3914 //
3915 // Results:
3916 //   rax: exception oop
3917 //   rdx: exception pc in caller or ???
3918 //   destination: exception handler of caller
3919 //
3920 // Note: the exception pc MUST be at a call (precise debug information)
3921 //       Registers rax, rdx, rcx, rsi, rdi, r8-r11 are not callee saved.
3922 //
3923 
3924 void OptoRuntime::generate_exception_blob() {
3925   assert(!OptoRuntime::is_callee_saved_register(RDX_num), "");
3926   assert(!OptoRuntime::is_callee_saved_register(RAX_num), "");
3927   assert(!OptoRuntime::is_callee_saved_register(RCX_num), "");
3928 
3929   assert(SimpleRuntimeFrame::framesize % 4 == 0, "sp not 16-byte aligned");
3930 
3931   // Allocate space for the code
3932   ResourceMark rm;
3933   // Setup code generation tools
3934   CodeBuffer buffer("exception_blob", 2048, 1024);
3935   MacroAssembler* masm = new MacroAssembler(&buffer);
3936 
3937 
3938   address start = __ pc();
3939 
3940   // Exception pc is 'return address' for stack walker
3941   __ push(rdx);
3942   __ subptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Prolog
3943 
3944   // Save callee-saved registers.  See x86_64.ad.
3945 
3946   // rbp is an implicitly saved callee saved register (i.e., the calling
3947   // convention will save/restore it in the prolog/epilog). Other than that
3948   // there are no callee save registers now that adapter frames are gone.
3949 
3950   __ movptr(Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt), rbp);
3951 
3952   // Store exception in Thread object. We cannot pass any arguments to the
3953   // handle_exception call, since we do not want to make any assumption
3954   // about the size of the frame where the exception happened in.
3955   // c_rarg0 is either rdi (Linux) or rcx (Windows).
3956   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()),rax);
3957   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), rdx);
3958 
3959   // This call does all the hard work.  It checks if an exception handler
3960   // exists in the method.
3961   // If so, it returns the handler address.
3962   // If not, it prepares for stack-unwinding, restoring the callee-save
3963   // registers of the frame being removed.
3964   //
3965   // address OptoRuntime::handle_exception_C(JavaThread* thread)
3966 
3967   // At a method handle call, the stack may not be properly aligned
3968   // when returning with an exception.
3969   address the_pc = __ pc();
3970   __ set_last_Java_frame(noreg, noreg, the_pc);
3971   __ mov(c_rarg0, r15_thread);
3972   __ andptr(rsp, -(StackAlignmentInBytes));    // Align stack
3973   __ call(RuntimeAddress(CAST_FROM_FN_PTR(address, OptoRuntime::handle_exception_C)));
3974 
3975   // Set an oopmap for the call site.  This oopmap will only be used if we
3976   // are unwinding the stack.  Hence, all locations will be dead.
3977   // Callee-saved registers will be the same as the frame above (i.e.,
3978   // handle_exception_stub), since they were restored when we got the
3979   // exception.
3980 
3981   OopMapSet* oop_maps = new OopMapSet();
3982 
3983   oop_maps->add_gc_map(the_pc - start, new OopMap(SimpleRuntimeFrame::framesize, 0));
3984 
3985   __ reset_last_Java_frame(false);
3986 
3987   // Restore callee-saved registers
3988 
3989   // rbp is an implicitly saved callee-saved register (i.e., the calling
3990   // convention will save restore it in prolog/epilog) Other than that
3991   // there are no callee save registers now that adapter frames are gone.
3992 
3993   __ movptr(rbp, Address(rsp, SimpleRuntimeFrame::rbp_off << LogBytesPerInt));
3994 
3995   __ addptr(rsp, SimpleRuntimeFrame::return_off << LogBytesPerInt); // Epilog
3996   __ pop(rdx);                  // No need for exception pc anymore
3997 
3998   // rax: exception handler
3999 
4000   // We have a handler in rax (could be deopt blob).
4001   __ mov(r8, rax);
4002 
4003   // Get the exception oop
4004   __ movptr(rax, Address(r15_thread, JavaThread::exception_oop_offset()));
4005   // Get the exception pc in case we are deoptimized
4006   __ movptr(rdx, Address(r15_thread, JavaThread::exception_pc_offset()));
4007 #ifdef ASSERT
4008   __ movptr(Address(r15_thread, JavaThread::exception_handler_pc_offset()), (int)NULL_WORD);
4009   __ movptr(Address(r15_thread, JavaThread::exception_pc_offset()), (int)NULL_WORD);
4010 #endif
4011   // Clear the exception oop so GC no longer processes it as a root.
4012   __ movptr(Address(r15_thread, JavaThread::exception_oop_offset()), (int)NULL_WORD);
4013 
4014   // rax: exception oop
4015   // r8:  exception handler
4016   // rdx: exception pc
4017   // Jump to handler
4018 
4019   __ jmp(r8);
4020 
4021   // Make sure all code is generated
4022   masm->flush();
4023 
4024   // Set exception blob
4025   _exception_blob =  ExceptionBlob::create(&buffer, oop_maps, SimpleRuntimeFrame::framesize >> 1);
4026 }
4027 #endif // COMPILER2