1 /*
   2  * Copyright (c) 1999, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/symbolTable.hpp"
  28 #include "classfile/systemDictionary.hpp"
  29 #include "classfile/vmSymbols.hpp"
  30 #include "code/codeCache.hpp"
  31 #include "code/codeHeapState.hpp"
  32 #include "code/dependencyContext.hpp"
  33 #include "compiler/compileBroker.hpp"
  34 #include "compiler/compileLog.hpp"
  35 #include "compiler/compilerOracle.hpp"
  36 #include "compiler/directivesParser.hpp"
  37 #include "interpreter/linkResolver.hpp"
  38 #include "jfr/jfrEvents.hpp"
  39 #include "logging/log.hpp"
  40 #include "logging/logStream.hpp"
  41 #include "memory/allocation.inline.hpp"
  42 #include "memory/resourceArea.hpp"
  43 #include "oops/methodData.hpp"
  44 #include "oops/method.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "prims/nativeLookup.hpp"
  47 #include "prims/whitebox.hpp"
  48 #include "runtime/arguments.hpp"
  49 #include "runtime/atomic.hpp"
  50 #include "runtime/compilationPolicy.hpp"
  51 #include "runtime/handles.inline.hpp"
  52 #include "runtime/init.hpp"
  53 #include "runtime/interfaceSupport.inline.hpp"
  54 #include "runtime/javaCalls.hpp"
  55 #include "runtime/jniHandles.inline.hpp"
  56 #include "runtime/os.hpp"
  57 #include "runtime/safepointVerifiers.hpp"
  58 #include "runtime/sharedRuntime.hpp"
  59 #include "runtime/sweeper.hpp"
  60 #include "runtime/timerTrace.hpp"
  61 #include "runtime/vframe.inline.hpp"
  62 #include "utilities/debug.hpp"
  63 #include "utilities/dtrace.hpp"
  64 #include "utilities/events.hpp"
  65 #include "utilities/formatBuffer.hpp"
  66 #include "utilities/macros.hpp"
  67 #ifdef COMPILER1
  68 #include "c1/c1_Compiler.hpp"
  69 #endif
  70 #if INCLUDE_JVMCI
  71 #include "jvmci/jvmciCompiler.hpp"
  72 #include "jvmci/jvmciRuntime.hpp"
  73 #include "jvmci/jvmciJavaClasses.hpp"
  74 #include "runtime/vframe.hpp"
  75 #endif
  76 #ifdef COMPILER2
  77 #include "opto/c2compiler.hpp"
  78 #endif
  79 
  80 #ifdef DTRACE_ENABLED
  81 
  82 // Only bother with this argument setup if dtrace is available
  83 
  84 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)             \
  85   {                                                                      \
  86     Symbol* klass_name = (method)->klass_name();                         \
  87     Symbol* name = (method)->name();                                     \
  88     Symbol* signature = (method)->signature();                           \
  89     HOTSPOT_METHOD_COMPILE_BEGIN(                                        \
  90       (char *) comp_name, strlen(comp_name),                             \
  91       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
  92       (char *) name->bytes(), name->utf8_length(),                       \
  93       (char *) signature->bytes(), signature->utf8_length());            \
  94   }
  95 
  96 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)      \
  97   {                                                                      \
  98     Symbol* klass_name = (method)->klass_name();                         \
  99     Symbol* name = (method)->name();                                     \
 100     Symbol* signature = (method)->signature();                           \
 101     HOTSPOT_METHOD_COMPILE_END(                                          \
 102       (char *) comp_name, strlen(comp_name),                             \
 103       (char *) klass_name->bytes(), klass_name->utf8_length(),           \
 104       (char *) name->bytes(), name->utf8_length(),                       \
 105       (char *) signature->bytes(), signature->utf8_length(), (success)); \
 106   }
 107 
 108 #else //  ndef DTRACE_ENABLED
 109 
 110 #define DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, comp_name)
 111 #define DTRACE_METHOD_COMPILE_END_PROBE(method, comp_name, success)
 112 
 113 #endif // ndef DTRACE_ENABLED
 114 
 115 bool CompileBroker::_initialized = false;
 116 volatile bool CompileBroker::_should_block = false;
 117 volatile int  CompileBroker::_print_compilation_warning = 0;
 118 volatile jint CompileBroker::_should_compile_new_jobs = run_compilation;
 119 
 120 // The installed compiler(s)
 121 AbstractCompiler* CompileBroker::_compilers[2];
 122 
 123 // The maximum numbers of compiler threads to be determined during startup.
 124 int CompileBroker::_c1_count = 0;
 125 int CompileBroker::_c2_count = 0;
 126 
 127 // An array of compiler names as Java String objects
 128 jobject* CompileBroker::_compiler1_objects = NULL;
 129 jobject* CompileBroker::_compiler2_objects = NULL;
 130 
 131 CompileLog** CompileBroker::_compiler1_logs = NULL;
 132 CompileLog** CompileBroker::_compiler2_logs = NULL;
 133 
 134 // These counters are used to assign an unique ID to each compilation.
 135 volatile jint CompileBroker::_compilation_id     = 0;
 136 volatile jint CompileBroker::_osr_compilation_id = 0;
 137 
 138 // Debugging information
 139 int  CompileBroker::_last_compile_type     = no_compile;
 140 int  CompileBroker::_last_compile_level    = CompLevel_none;
 141 char CompileBroker::_last_method_compiled[CompileBroker::name_buffer_length];
 142 
 143 // Performance counters
 144 PerfCounter* CompileBroker::_perf_total_compilation = NULL;
 145 PerfCounter* CompileBroker::_perf_osr_compilation = NULL;
 146 PerfCounter* CompileBroker::_perf_standard_compilation = NULL;
 147 
 148 PerfCounter* CompileBroker::_perf_total_bailout_count = NULL;
 149 PerfCounter* CompileBroker::_perf_total_invalidated_count = NULL;
 150 PerfCounter* CompileBroker::_perf_total_compile_count = NULL;
 151 PerfCounter* CompileBroker::_perf_total_osr_compile_count = NULL;
 152 PerfCounter* CompileBroker::_perf_total_standard_compile_count = NULL;
 153 
 154 PerfCounter* CompileBroker::_perf_sum_osr_bytes_compiled = NULL;
 155 PerfCounter* CompileBroker::_perf_sum_standard_bytes_compiled = NULL;
 156 PerfCounter* CompileBroker::_perf_sum_nmethod_size = NULL;
 157 PerfCounter* CompileBroker::_perf_sum_nmethod_code_size = NULL;
 158 
 159 PerfStringVariable* CompileBroker::_perf_last_method = NULL;
 160 PerfStringVariable* CompileBroker::_perf_last_failed_method = NULL;
 161 PerfStringVariable* CompileBroker::_perf_last_invalidated_method = NULL;
 162 PerfVariable*       CompileBroker::_perf_last_compile_type = NULL;
 163 PerfVariable*       CompileBroker::_perf_last_compile_size = NULL;
 164 PerfVariable*       CompileBroker::_perf_last_failed_type = NULL;
 165 PerfVariable*       CompileBroker::_perf_last_invalidated_type = NULL;
 166 
 167 // Timers and counters for generating statistics
 168 elapsedTimer CompileBroker::_t_total_compilation;
 169 elapsedTimer CompileBroker::_t_osr_compilation;
 170 elapsedTimer CompileBroker::_t_standard_compilation;
 171 elapsedTimer CompileBroker::_t_invalidated_compilation;
 172 elapsedTimer CompileBroker::_t_bailedout_compilation;
 173 
 174 int CompileBroker::_total_bailout_count            = 0;
 175 int CompileBroker::_total_invalidated_count        = 0;
 176 int CompileBroker::_total_compile_count            = 0;
 177 int CompileBroker::_total_osr_compile_count        = 0;
 178 int CompileBroker::_total_standard_compile_count   = 0;
 179 int CompileBroker::_total_compiler_stopped_count   = 0;
 180 int CompileBroker::_total_compiler_restarted_count = 0;
 181 
 182 int CompileBroker::_sum_osr_bytes_compiled         = 0;
 183 int CompileBroker::_sum_standard_bytes_compiled    = 0;
 184 int CompileBroker::_sum_nmethod_size               = 0;
 185 int CompileBroker::_sum_nmethod_code_size          = 0;
 186 
 187 long CompileBroker::_peak_compilation_time         = 0;
 188 
 189 CompileQueue* CompileBroker::_c2_compile_queue     = NULL;
 190 CompileQueue* CompileBroker::_c1_compile_queue     = NULL;
 191 
 192 
 193 
 194 class CompilationLog : public StringEventLog {
 195  public:
 196   CompilationLog() : StringEventLog("Compilation events") {
 197   }
 198 
 199   void log_compile(JavaThread* thread, CompileTask* task) {
 200     StringLogMessage lm;
 201     stringStream sstr = lm.stream();
 202     // msg.time_stamp().update_to(tty->time_stamp().ticks());
 203     task->print(&sstr, NULL, true, false);
 204     log(thread, "%s", (const char*)lm);
 205   }
 206 
 207   void log_nmethod(JavaThread* thread, nmethod* nm) {
 208     log(thread, "nmethod %d%s " INTPTR_FORMAT " code [" INTPTR_FORMAT ", " INTPTR_FORMAT "]",
 209         nm->compile_id(), nm->is_osr_method() ? "%" : "",
 210         p2i(nm), p2i(nm->code_begin()), p2i(nm->code_end()));
 211   }
 212 
 213   void log_failure(JavaThread* thread, CompileTask* task, const char* reason, const char* retry_message) {
 214     StringLogMessage lm;
 215     lm.print("%4d   COMPILE SKIPPED: %s", task->compile_id(), reason);
 216     if (retry_message != NULL) {
 217       lm.append(" (%s)", retry_message);
 218     }
 219     lm.print("\n");
 220     log(thread, "%s", (const char*)lm);
 221   }
 222 
 223   void log_metaspace_failure(const char* reason) {
 224     ResourceMark rm;
 225     StringLogMessage lm;
 226     lm.print("%4d   COMPILE PROFILING SKIPPED: %s", -1, reason);
 227     lm.print("\n");
 228     log(JavaThread::current(), "%s", (const char*)lm);
 229   }
 230 };
 231 
 232 static CompilationLog* _compilation_log = NULL;
 233 
 234 bool compileBroker_init() {
 235   if (LogEvents) {
 236     _compilation_log = new CompilationLog();
 237   }
 238 
 239   // init directives stack, adding default directive
 240   DirectivesStack::init();
 241 
 242   if (DirectivesParser::has_file()) {
 243     return DirectivesParser::parse_from_flag();
 244   } else if (CompilerDirectivesPrint) {
 245     // Print default directive even when no other was added
 246     DirectivesStack::print(tty);
 247   }
 248 
 249   return true;
 250 }
 251 
 252 CompileTaskWrapper::CompileTaskWrapper(CompileTask* task) {
 253   CompilerThread* thread = CompilerThread::current();
 254   thread->set_task(task);
 255 #if INCLUDE_JVMCI
 256   if (task->is_blocking() && CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 257     task->set_jvmci_compiler_thread(thread);
 258   }
 259 #endif
 260   CompileLog*     log  = thread->log();
 261   if (log != NULL)  task->log_task_start(log);
 262 }
 263 
 264 CompileTaskWrapper::~CompileTaskWrapper() {
 265   CompilerThread* thread = CompilerThread::current();
 266   CompileTask* task = thread->task();
 267   CompileLog*  log  = thread->log();
 268   if (log != NULL)  task->log_task_done(log);
 269   thread->set_task(NULL);
 270   task->set_code_handle(NULL);
 271   thread->set_env(NULL);
 272   if (task->is_blocking()) {
 273     bool free_task = false;
 274     {
 275       MutexLocker notifier(task->lock(), thread);
 276       task->mark_complete();
 277 #if INCLUDE_JVMCI
 278       if (CompileBroker::compiler(task->comp_level())->is_jvmci()) {
 279         if (!task->has_waiter()) {
 280           // The waiting thread timed out and thus did not free the task.
 281           free_task = true;
 282         }
 283         task->set_jvmci_compiler_thread(NULL);
 284       }
 285 #endif
 286       if (!free_task) {
 287         // Notify the waiting thread that the compilation has completed
 288         // so that it can free the task.
 289         task->lock()->notify_all();
 290       }
 291     }
 292     if (free_task) {
 293       // The task can only be freed once the task lock is released.
 294       CompileTask::free(task);
 295     }
 296   } else {
 297     task->mark_complete();
 298 
 299     // By convention, the compiling thread is responsible for
 300     // recycling a non-blocking CompileTask.
 301     CompileTask::free(task);
 302   }
 303 }
 304 
 305 /**
 306  * Check if a CompilerThread can be removed and update count if requested.
 307  */
 308 static bool can_remove(CompilerThread *ct, bool do_it) {
 309   assert(UseDynamicNumberOfCompilerThreads, "or shouldn't be here");
 310   if (!ReduceNumberOfCompilerThreads) return false;
 311 
 312   AbstractCompiler *compiler = ct->compiler();
 313   int compiler_count = compiler->num_compiler_threads();
 314   bool c1 = compiler->is_c1();
 315 
 316   // Keep at least 1 compiler thread of each type.
 317   if (compiler_count < 2) return false;
 318 
 319   // Keep thread alive for at least some time.
 320   if (ct->idle_time_millis() < (c1 ? 500 : 100)) return false;
 321 
 322   // We only allow the last compiler thread of each type to get removed.
 323   jobject last_compiler = c1 ? CompileBroker::compiler1_object(compiler_count - 1)
 324                              : CompileBroker::compiler2_object(compiler_count - 1);
 325   if (oopDesc::equals(ct->threadObj(), JNIHandles::resolve_non_null(last_compiler))) {
 326     if (do_it) {
 327       assert_locked_or_safepoint(CompileThread_lock); // Update must be consistent.
 328       compiler->set_num_compiler_threads(compiler_count - 1);
 329     }
 330     return true;
 331   }
 332   return false;
 333 }
 334 
 335 /**
 336  * Add a CompileTask to a CompileQueue.
 337  */
 338 void CompileQueue::add(CompileTask* task) {
 339   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 340 
 341   task->set_next(NULL);
 342   task->set_prev(NULL);
 343 
 344   if (_last == NULL) {
 345     // The compile queue is empty.
 346     assert(_first == NULL, "queue is empty");
 347     _first = task;
 348     _last = task;
 349   } else {
 350     // Append the task to the queue.
 351     assert(_last->next() == NULL, "not last");
 352     _last->set_next(task);
 353     task->set_prev(_last);
 354     _last = task;
 355   }
 356   ++_size;
 357 
 358   // Mark the method as being in the compile queue.
 359   task->method()->set_queued_for_compilation();
 360 
 361   if (CIPrintCompileQueue) {
 362     print_tty();
 363   }
 364 
 365   if (LogCompilation && xtty != NULL) {
 366     task->log_task_queued();
 367   }
 368 
 369   // Notify CompilerThreads that a task is available.
 370   MethodCompileQueue_lock->notify_all();
 371 }
 372 
 373 /**
 374  * Empties compilation queue by putting all compilation tasks onto
 375  * a freelist. Furthermore, the method wakes up all threads that are
 376  * waiting on a compilation task to finish. This can happen if background
 377  * compilation is disabled.
 378  */
 379 void CompileQueue::free_all() {
 380   MutexLocker mu(MethodCompileQueue_lock);
 381   CompileTask* next = _first;
 382 
 383   // Iterate over all tasks in the compile queue
 384   while (next != NULL) {
 385     CompileTask* current = next;
 386     next = current->next();
 387     {
 388       // Wake up thread that blocks on the compile task.
 389       MutexLocker ct_lock(current->lock());
 390       current->lock()->notify();
 391     }
 392     // Put the task back on the freelist.
 393     CompileTask::free(current);
 394   }
 395   _first = NULL;
 396 
 397   // Wake up all threads that block on the queue.
 398   MethodCompileQueue_lock->notify_all();
 399 }
 400 
 401 /**
 402  * Get the next CompileTask from a CompileQueue
 403  */
 404 CompileTask* CompileQueue::get() {
 405   // save methods from RedefineClasses across safepoint
 406   // across MethodCompileQueue_lock below.
 407   methodHandle save_method;
 408   methodHandle save_hot_method;
 409 
 410   MutexLocker locker(MethodCompileQueue_lock);
 411   // If _first is NULL we have no more compile jobs. There are two reasons for
 412   // having no compile jobs: First, we compiled everything we wanted. Second,
 413   // we ran out of code cache so compilation has been disabled. In the latter
 414   // case we perform code cache sweeps to free memory such that we can re-enable
 415   // compilation.
 416   while (_first == NULL) {
 417     // Exit loop if compilation is disabled forever
 418     if (CompileBroker::is_compilation_disabled_forever()) {
 419       return NULL;
 420     }
 421 
 422     // If there are no compilation tasks and we can compile new jobs
 423     // (i.e., there is enough free space in the code cache) there is
 424     // no need to invoke the sweeper. As a result, the hotness of methods
 425     // remains unchanged. This behavior is desired, since we want to keep
 426     // the stable state, i.e., we do not want to evict methods from the
 427     // code cache if it is unnecessary.
 428     // We need a timed wait here, since compiler threads can exit if compilation
 429     // is disabled forever. We use 5 seconds wait time; the exiting of compiler threads
 430     // is not critical and we do not want idle compiler threads to wake up too often.
 431     MethodCompileQueue_lock->wait(!Mutex::_no_safepoint_check_flag, 5*1000);
 432 
 433     if (UseDynamicNumberOfCompilerThreads && _first == NULL) {
 434       // Still nothing to compile. Give caller a chance to stop this thread.
 435       if (can_remove(CompilerThread::current(), false)) return NULL;
 436     }
 437   }
 438 
 439   if (CompileBroker::is_compilation_disabled_forever()) {
 440     return NULL;
 441   }
 442 
 443   CompileTask* task;
 444   {
 445     NoSafepointVerifier nsv;
 446     task = CompilationPolicy::policy()->select_task(this);
 447   }
 448 
 449   if (task != NULL) {
 450     // Save method pointers across unlock safepoint.  The task is removed from
 451     // the compilation queue, which is walked during RedefineClasses.
 452     save_method = methodHandle(task->method());
 453     save_hot_method = methodHandle(task->hot_method());
 454 
 455     remove(task);
 456     purge_stale_tasks(); // may temporarily release MCQ lock
 457   }
 458 
 459   return task;
 460 }
 461 
 462 // Clean & deallocate stale compile tasks.
 463 // Temporarily releases MethodCompileQueue lock.
 464 void CompileQueue::purge_stale_tasks() {
 465   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 466   if (_first_stale != NULL) {
 467     // Stale tasks are purged when MCQ lock is released,
 468     // but _first_stale updates are protected by MCQ lock.
 469     // Once task processing starts and MCQ lock is released,
 470     // other compiler threads can reuse _first_stale.
 471     CompileTask* head = _first_stale;
 472     _first_stale = NULL;
 473     {
 474       MutexUnlocker ul(MethodCompileQueue_lock);
 475       for (CompileTask* task = head; task != NULL; ) {
 476         CompileTask* next_task = task->next();
 477         CompileTaskWrapper ctw(task); // Frees the task
 478         task->set_failure_reason("stale task");
 479         task = next_task;
 480       }
 481     }
 482   }
 483 }
 484 
 485 void CompileQueue::remove(CompileTask* task) {
 486    assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 487   if (task->prev() != NULL) {
 488     task->prev()->set_next(task->next());
 489   } else {
 490     // max is the first element
 491     assert(task == _first, "Sanity");
 492     _first = task->next();
 493   }
 494 
 495   if (task->next() != NULL) {
 496     task->next()->set_prev(task->prev());
 497   } else {
 498     // max is the last element
 499     assert(task == _last, "Sanity");
 500     _last = task->prev();
 501   }
 502   --_size;
 503 }
 504 
 505 void CompileQueue::remove_and_mark_stale(CompileTask* task) {
 506   assert(MethodCompileQueue_lock->owned_by_self(), "must own lock");
 507   remove(task);
 508 
 509   // Enqueue the task for reclamation (should be done outside MCQ lock)
 510   task->set_next(_first_stale);
 511   task->set_prev(NULL);
 512   _first_stale = task;
 513 }
 514 
 515 // methods in the compile queue need to be marked as used on the stack
 516 // so that they don't get reclaimed by Redefine Classes
 517 void CompileQueue::mark_on_stack() {
 518   CompileTask* task = _first;
 519   while (task != NULL) {
 520     task->mark_on_stack();
 521     task = task->next();
 522   }
 523 }
 524 
 525 
 526 CompileQueue* CompileBroker::compile_queue(int comp_level) {
 527   if (is_c2_compile(comp_level)) return _c2_compile_queue;
 528   if (is_c1_compile(comp_level)) return _c1_compile_queue;
 529   return NULL;
 530 }
 531 
 532 void CompileBroker::print_compile_queues(outputStream* st) {
 533   st->print_cr("Current compiles: ");
 534 
 535   char buf[2000];
 536   int buflen = sizeof(buf);
 537   Threads::print_threads_compiling(st, buf, buflen);
 538 
 539   st->cr();
 540   if (_c1_compile_queue != NULL) {
 541     _c1_compile_queue->print(st);
 542   }
 543   if (_c2_compile_queue != NULL) {
 544     _c2_compile_queue->print(st);
 545   }
 546 }
 547 
 548 void CompileQueue::print(outputStream* st) {
 549   assert_locked_or_safepoint(MethodCompileQueue_lock);
 550   st->print_cr("%s:", name());
 551   CompileTask* task = _first;
 552   if (task == NULL) {
 553     st->print_cr("Empty");
 554   } else {
 555     while (task != NULL) {
 556       task->print(st, NULL, true, true);
 557       task = task->next();
 558     }
 559   }
 560   st->cr();
 561 }
 562 
 563 void CompileQueue::print_tty() {
 564   ttyLocker ttyl;
 565   print(tty);
 566 }
 567 
 568 CompilerCounters::CompilerCounters() {
 569   _current_method[0] = '\0';
 570   _compile_type = CompileBroker::no_compile;
 571 }
 572 
 573 // ------------------------------------------------------------------
 574 // CompileBroker::compilation_init
 575 //
 576 // Initialize the Compilation object
 577 void CompileBroker::compilation_init_phase1(TRAPS) {
 578   _last_method_compiled[0] = '\0';
 579 
 580   // No need to initialize compilation system if we do not use it.
 581   if (!UseCompiler) {
 582     return;
 583   }
 584   // Set the interface to the current compiler(s).
 585   _c1_count = CompilationPolicy::policy()->compiler_count(CompLevel_simple);
 586   _c2_count = CompilationPolicy::policy()->compiler_count(CompLevel_full_optimization);
 587 
 588 #if INCLUDE_JVMCI
 589   if (EnableJVMCI) {
 590     // This is creating a JVMCICompiler singleton.
 591     JVMCICompiler* jvmci = new JVMCICompiler();
 592 
 593     if (UseJVMCICompiler) {
 594       _compilers[1] = jvmci;
 595       if (FLAG_IS_DEFAULT(JVMCIThreads)) {
 596         if (BootstrapJVMCI) {
 597           // JVMCI will bootstrap so give it more threads
 598           _c2_count = MIN2(32, os::active_processor_count());
 599         }
 600       } else {
 601         _c2_count = JVMCIThreads;
 602       }
 603       if (FLAG_IS_DEFAULT(JVMCIHostThreads)) {
 604       } else {
 605         _c1_count = JVMCIHostThreads;
 606       }
 607     }
 608   }
 609 #endif // INCLUDE_JVMCI
 610 
 611 #ifdef COMPILER1
 612   if (_c1_count > 0) {
 613     _compilers[0] = new Compiler();
 614   }
 615 #endif // COMPILER1
 616 
 617 #ifdef COMPILER2
 618   if (true JVMCI_ONLY( && !UseJVMCICompiler)) {
 619     if (_c2_count > 0) {
 620       _compilers[1] = new C2Compiler();
 621     }
 622   }
 623 #endif // COMPILER2
 624 
 625   // Start the compiler thread(s) and the sweeper thread
 626   init_compiler_sweeper_threads();
 627   // totalTime performance counter is always created as it is required
 628   // by the implementation of java.lang.management.CompilationMBean.
 629   {
 630     EXCEPTION_MARK;
 631     _perf_total_compilation =
 632                  PerfDataManager::create_counter(JAVA_CI, "totalTime",
 633                                                  PerfData::U_Ticks, CHECK);
 634   }
 635 
 636   if (UsePerfData) {
 637 
 638     EXCEPTION_MARK;
 639 
 640     // create the jvmstat performance counters
 641     _perf_osr_compilation =
 642                  PerfDataManager::create_counter(SUN_CI, "osrTime",
 643                                                  PerfData::U_Ticks, CHECK);
 644 
 645     _perf_standard_compilation =
 646                  PerfDataManager::create_counter(SUN_CI, "standardTime",
 647                                                  PerfData::U_Ticks, CHECK);
 648 
 649     _perf_total_bailout_count =
 650                  PerfDataManager::create_counter(SUN_CI, "totalBailouts",
 651                                                  PerfData::U_Events, CHECK);
 652 
 653     _perf_total_invalidated_count =
 654                  PerfDataManager::create_counter(SUN_CI, "totalInvalidates",
 655                                                  PerfData::U_Events, CHECK);
 656 
 657     _perf_total_compile_count =
 658                  PerfDataManager::create_counter(SUN_CI, "totalCompiles",
 659                                                  PerfData::U_Events, CHECK);
 660     _perf_total_osr_compile_count =
 661                  PerfDataManager::create_counter(SUN_CI, "osrCompiles",
 662                                                  PerfData::U_Events, CHECK);
 663 
 664     _perf_total_standard_compile_count =
 665                  PerfDataManager::create_counter(SUN_CI, "standardCompiles",
 666                                                  PerfData::U_Events, CHECK);
 667 
 668     _perf_sum_osr_bytes_compiled =
 669                  PerfDataManager::create_counter(SUN_CI, "osrBytes",
 670                                                  PerfData::U_Bytes, CHECK);
 671 
 672     _perf_sum_standard_bytes_compiled =
 673                  PerfDataManager::create_counter(SUN_CI, "standardBytes",
 674                                                  PerfData::U_Bytes, CHECK);
 675 
 676     _perf_sum_nmethod_size =
 677                  PerfDataManager::create_counter(SUN_CI, "nmethodSize",
 678                                                  PerfData::U_Bytes, CHECK);
 679 
 680     _perf_sum_nmethod_code_size =
 681                  PerfDataManager::create_counter(SUN_CI, "nmethodCodeSize",
 682                                                  PerfData::U_Bytes, CHECK);
 683 
 684     _perf_last_method =
 685                  PerfDataManager::create_string_variable(SUN_CI, "lastMethod",
 686                                        CompilerCounters::cmname_buffer_length,
 687                                        "", CHECK);
 688 
 689     _perf_last_failed_method =
 690             PerfDataManager::create_string_variable(SUN_CI, "lastFailedMethod",
 691                                        CompilerCounters::cmname_buffer_length,
 692                                        "", CHECK);
 693 
 694     _perf_last_invalidated_method =
 695         PerfDataManager::create_string_variable(SUN_CI, "lastInvalidatedMethod",
 696                                      CompilerCounters::cmname_buffer_length,
 697                                      "", CHECK);
 698 
 699     _perf_last_compile_type =
 700              PerfDataManager::create_variable(SUN_CI, "lastType",
 701                                               PerfData::U_None,
 702                                               (jlong)CompileBroker::no_compile,
 703                                               CHECK);
 704 
 705     _perf_last_compile_size =
 706              PerfDataManager::create_variable(SUN_CI, "lastSize",
 707                                               PerfData::U_Bytes,
 708                                               (jlong)CompileBroker::no_compile,
 709                                               CHECK);
 710 
 711 
 712     _perf_last_failed_type =
 713              PerfDataManager::create_variable(SUN_CI, "lastFailedType",
 714                                               PerfData::U_None,
 715                                               (jlong)CompileBroker::no_compile,
 716                                               CHECK);
 717 
 718     _perf_last_invalidated_type =
 719          PerfDataManager::create_variable(SUN_CI, "lastInvalidatedType",
 720                                           PerfData::U_None,
 721                                           (jlong)CompileBroker::no_compile,
 722                                           CHECK);
 723   }
 724 }
 725 
 726 // Completes compiler initialization. Compilation requests submitted
 727 // prior to this will be silently ignored.
 728 void CompileBroker::compilation_init_phase2() {
 729   _initialized = true;
 730 }
 731 
 732 Handle CompileBroker::create_thread_oop(const char* name, TRAPS) {
 733   Handle string = java_lang_String::create_from_str(name, CHECK_NH);
 734   Handle thread_group(THREAD, Universe::system_thread_group());
 735   return JavaCalls::construct_new_instance(
 736                        SystemDictionary::Thread_klass(),
 737                        vmSymbols::threadgroup_string_void_signature(),
 738                        thread_group,
 739                        string,
 740                        CHECK_NH);
 741 }
 742 
 743 
 744 JavaThread* CompileBroker::make_thread(jobject thread_handle, CompileQueue* queue, AbstractCompiler* comp, TRAPS) {
 745   JavaThread* thread = NULL;
 746   {
 747     MutexLocker mu(Threads_lock, THREAD);
 748     if (comp != NULL) {
 749       if (!InjectCompilerCreationFailure || comp->num_compiler_threads() == 0) {
 750         CompilerCounters* counters = new CompilerCounters();
 751         thread = new CompilerThread(queue, counters);
 752       }
 753     } else {
 754       thread = new CodeCacheSweeperThread();
 755     }
 756     // At this point the new CompilerThread data-races with this startup
 757     // thread (which I believe is the primoridal thread and NOT the VM
 758     // thread).  This means Java bytecodes being executed at startup can
 759     // queue compile jobs which will run at whatever default priority the
 760     // newly created CompilerThread runs at.
 761 
 762 
 763     // At this point it may be possible that no osthread was created for the
 764     // JavaThread due to lack of memory. We would have to throw an exception
 765     // in that case. However, since this must work and we do not allow
 766     // exceptions anyway, check and abort if this fails. But first release the
 767     // lock.
 768 
 769     if (thread != NULL && thread->osthread() != NULL) {
 770 
 771       java_lang_Thread::set_thread(JNIHandles::resolve_non_null(thread_handle), thread);
 772 
 773       // Note that this only sets the JavaThread _priority field, which by
 774       // definition is limited to Java priorities and not OS priorities.
 775       // The os-priority is set in the CompilerThread startup code itself
 776 
 777       java_lang_Thread::set_priority(JNIHandles::resolve_non_null(thread_handle), NearMaxPriority);
 778 
 779       // Note that we cannot call os::set_priority because it expects Java
 780       // priorities and we are *explicitly* using OS priorities so that it's
 781       // possible to set the compiler thread priority higher than any Java
 782       // thread.
 783 
 784       int native_prio = CompilerThreadPriority;
 785       if (native_prio == -1) {
 786         if (UseCriticalCompilerThreadPriority) {
 787           native_prio = os::java_to_os_priority[CriticalPriority];
 788         } else {
 789           native_prio = os::java_to_os_priority[NearMaxPriority];
 790         }
 791       }
 792       os::set_native_priority(thread, native_prio);
 793 
 794       java_lang_Thread::set_daemon(JNIHandles::resolve_non_null(thread_handle));
 795 
 796       thread->set_threadObj(JNIHandles::resolve_non_null(thread_handle));
 797       if (comp != NULL) {
 798         thread->as_CompilerThread()->set_compiler(comp);
 799       }
 800       Threads::add(thread);
 801       Thread::start(thread);
 802     }
 803   }
 804 
 805   // First release lock before aborting VM.
 806   if (thread == NULL || thread->osthread() == NULL) {
 807     if (UseDynamicNumberOfCompilerThreads && comp != NULL && comp->num_compiler_threads() > 0) {
 808       if (thread != NULL) {
 809         thread->smr_delete();
 810       }
 811       return NULL;
 812     }
 813     vm_exit_during_initialization("java.lang.OutOfMemoryError",
 814                                   os::native_thread_creation_failed_msg());
 815   }
 816 
 817   // Let go of Threads_lock before yielding
 818   os::naked_yield(); // make sure that the compiler thread is started early (especially helpful on SOLARIS)
 819 
 820   return thread;
 821 }
 822 
 823 
 824 void CompileBroker::init_compiler_sweeper_threads() {
 825   EXCEPTION_MARK;
 826 #if !defined(ZERO)
 827   assert(_c2_count > 0 || _c1_count > 0, "No compilers?");
 828 #endif // !ZERO
 829   // Initialize the compilation queue
 830   if (_c2_count > 0) {
 831     const char* name = JVMCI_ONLY(UseJVMCICompiler ? "JVMCI compile queue" :) "C2 compile queue";
 832     _c2_compile_queue  = new CompileQueue(name);
 833     _compiler2_objects = NEW_C_HEAP_ARRAY(jobject, _c2_count, mtCompiler);
 834     _compiler2_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c2_count, mtCompiler);
 835   }
 836   if (_c1_count > 0) {
 837     _c1_compile_queue  = new CompileQueue("C1 compile queue");
 838     _compiler1_objects = NEW_C_HEAP_ARRAY(jobject, _c1_count, mtCompiler);
 839     _compiler1_logs = NEW_C_HEAP_ARRAY(CompileLog*, _c1_count, mtCompiler);
 840   }
 841 
 842   char name_buffer[256];
 843 
 844   for (int i = 0; i < _c2_count; i++) {
 845     // Create a name for our thread.
 846     sprintf(name_buffer, "%s CompilerThread%d", _compilers[1]->name(), i);
 847     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 848     jobject thread_handle = JNIHandles::make_global(thread_oop);
 849     _compiler2_objects[i] = thread_handle;
 850     _compiler2_logs[i] = NULL;
 851 
 852     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 853       JavaThread *ct = make_thread(thread_handle, _c2_compile_queue, _compilers[1], CHECK);
 854       assert(ct != NULL, "should have been handled for initial thread");
 855       _compilers[1]->set_num_compiler_threads(i + 1);
 856       if (TraceCompilerThreads) {
 857         ResourceMark rm;
 858         MutexLocker mu(Threads_lock);
 859         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 860       }
 861     }
 862   }
 863 
 864   for (int i = 0; i < _c1_count; i++) {
 865     // Create a name for our thread.
 866     sprintf(name_buffer, "C1 CompilerThread%d", i);
 867     Handle thread_oop = create_thread_oop(name_buffer, CHECK);
 868     jobject thread_handle = JNIHandles::make_global(thread_oop);
 869     _compiler1_objects[i] = thread_handle;
 870     _compiler1_logs[i] = NULL;
 871 
 872     if (!UseDynamicNumberOfCompilerThreads || i == 0) {
 873       JavaThread *ct = make_thread(thread_handle, _c1_compile_queue, _compilers[0], CHECK);
 874       assert(ct != NULL, "should have been handled for initial thread");
 875       _compilers[0]->set_num_compiler_threads(i + 1);
 876       if (TraceCompilerThreads) {
 877         ResourceMark rm;
 878         MutexLocker mu(Threads_lock);
 879         tty->print_cr("Added initial compiler thread %s", ct->get_thread_name());
 880       }
 881     }
 882   }
 883 
 884   if (UsePerfData) {
 885     PerfDataManager::create_constant(SUN_CI, "threads", PerfData::U_Bytes, _c1_count + _c2_count, CHECK);
 886   }
 887 
 888   if (MethodFlushing) {
 889     // Initialize the sweeper thread
 890     Handle thread_oop = create_thread_oop("Sweeper thread", CHECK);
 891     jobject thread_handle = JNIHandles::make_local(THREAD, thread_oop());
 892     make_thread(thread_handle, NULL, NULL, CHECK);
 893   }
 894 }
 895 
 896 void CompileBroker::possibly_add_compiler_threads() {
 897   EXCEPTION_MARK;
 898 
 899   julong available_memory = os::available_memory();
 900   // If SegmentedCodeCache is off, both values refer to the single heap (with type CodeBlobType::All).
 901   size_t available_cc_np  = CodeCache::unallocated_capacity(CodeBlobType::MethodNonProfiled),
 902          available_cc_p   = CodeCache::unallocated_capacity(CodeBlobType::MethodProfiled);
 903 
 904   // Only do attempt to start additional threads if the lock is free.
 905   if (!CompileThread_lock->try_lock()) return;
 906 
 907   if (_c2_compile_queue != NULL) {
 908     int old_c2_count = _compilers[1]->num_compiler_threads();
 909     int new_c2_count = MIN4(_c2_count,
 910         _c2_compile_queue->size() / 2,
 911         (int)(available_memory / (200*M)),
 912         (int)(available_cc_np / (128*K)));
 913 
 914     for (int i = old_c2_count; i < new_c2_count; i++) {
 915       JavaThread *ct = make_thread(compiler2_object(i), _c2_compile_queue, _compilers[1], CHECK);
 916       if (ct == NULL) break;
 917       _compilers[1]->set_num_compiler_threads(i + 1);
 918       if (TraceCompilerThreads) {
 919         ResourceMark rm;
 920         MutexLocker mu(Threads_lock);
 921         tty->print_cr("Added compiler thread %s (available memory: %dMB, available non-profiled code cache: %dMB)",
 922                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_np/M));
 923       }
 924     }
 925   }
 926 
 927   if (_c1_compile_queue != NULL) {
 928     int old_c1_count = _compilers[0]->num_compiler_threads();
 929     int new_c1_count = MIN4(_c1_count,
 930         _c1_compile_queue->size() / 4,
 931         (int)(available_memory / (100*M)),
 932         (int)(available_cc_p / (128*K)));
 933 
 934     for (int i = old_c1_count; i < new_c1_count; i++) {
 935       JavaThread *ct = make_thread(compiler1_object(i), _c1_compile_queue, _compilers[0], CHECK);
 936       if (ct == NULL) break;
 937       _compilers[0]->set_num_compiler_threads(i + 1);
 938       if (TraceCompilerThreads) {
 939         ResourceMark rm;
 940         MutexLocker mu(Threads_lock);
 941         tty->print_cr("Added compiler thread %s (available memory: %dMB, available profiled code cache: %dMB)",
 942                       ct->get_thread_name(), (int)(available_memory/M), (int)(available_cc_p/M));
 943       }
 944     }
 945   }
 946 
 947   CompileThread_lock->unlock();
 948 }
 949 
 950 
 951 /**
 952  * Set the methods on the stack as on_stack so that redefine classes doesn't
 953  * reclaim them. This method is executed at a safepoint.
 954  */
 955 void CompileBroker::mark_on_stack() {
 956   assert(SafepointSynchronize::is_at_safepoint(), "sanity check");
 957   // Since we are at a safepoint, we do not need a lock to access
 958   // the compile queues.
 959   if (_c2_compile_queue != NULL) {
 960     _c2_compile_queue->mark_on_stack();
 961   }
 962   if (_c1_compile_queue != NULL) {
 963     _c1_compile_queue->mark_on_stack();
 964   }
 965 }
 966 
 967 // ------------------------------------------------------------------
 968 // CompileBroker::compile_method
 969 //
 970 // Request compilation of a method.
 971 void CompileBroker::compile_method_base(const methodHandle& method,
 972                                         int osr_bci,
 973                                         int comp_level,
 974                                         const methodHandle& hot_method,
 975                                         int hot_count,
 976                                         CompileTask::CompileReason compile_reason,
 977                                         bool blocking,
 978                                         Thread* thread) {
 979   guarantee(!method->is_abstract(), "cannot compile abstract methods");
 980   assert(method->method_holder()->is_instance_klass(),
 981          "sanity check");
 982   assert(!method->method_holder()->is_not_initialized(),
 983          "method holder must be initialized");
 984   assert(!method->is_method_handle_intrinsic(), "do not enqueue these guys");
 985 
 986   if (CIPrintRequests) {
 987     tty->print("request: ");
 988     method->print_short_name(tty);
 989     if (osr_bci != InvocationEntryBci) {
 990       tty->print(" osr_bci: %d", osr_bci);
 991     }
 992     tty->print(" level: %d comment: %s count: %d", comp_level, CompileTask::reason_name(compile_reason), hot_count);
 993     if (!hot_method.is_null()) {
 994       tty->print(" hot: ");
 995       if (hot_method() != method()) {
 996           hot_method->print_short_name(tty);
 997       } else {
 998         tty->print("yes");
 999       }
1000     }
1001     tty->cr();
1002   }
1003 
1004   // A request has been made for compilation.  Before we do any
1005   // real work, check to see if the method has been compiled
1006   // in the meantime with a definitive result.
1007   if (compilation_is_complete(method, osr_bci, comp_level)) {
1008     return;
1009   }
1010 
1011 #ifndef PRODUCT
1012   if (osr_bci != -1 && !FLAG_IS_DEFAULT(OSROnlyBCI)) {
1013     if ((OSROnlyBCI > 0) ? (OSROnlyBCI != osr_bci) : (-OSROnlyBCI == osr_bci)) {
1014       // Positive OSROnlyBCI means only compile that bci.  Negative means don't compile that BCI.
1015       return;
1016     }
1017   }
1018 #endif
1019 
1020   // If this method is already in the compile queue, then
1021   // we do not block the current thread.
1022   if (compilation_is_in_queue(method)) {
1023     // We may want to decay our counter a bit here to prevent
1024     // multiple denied requests for compilation.  This is an
1025     // open compilation policy issue. Note: The other possibility,
1026     // in the case that this is a blocking compile request, is to have
1027     // all subsequent blocking requesters wait for completion of
1028     // ongoing compiles. Note that in this case we'll need a protocol
1029     // for freeing the associated compile tasks. [Or we could have
1030     // a single static monitor on which all these waiters sleep.]
1031     return;
1032   }
1033 
1034   if (TieredCompilation) {
1035     // Tiered policy requires MethodCounters to exist before adding a method to
1036     // the queue. Create if we don't have them yet.
1037     method->get_method_counters(thread);
1038   }
1039 
1040   // Outputs from the following MutexLocker block:
1041   CompileTask* task     = NULL;
1042   CompileQueue* queue  = compile_queue(comp_level);
1043 
1044   // Acquire our lock.
1045   {
1046     MutexLocker locker(MethodCompileQueue_lock, thread);
1047 
1048     // Make sure the method has not slipped into the queues since
1049     // last we checked; note that those checks were "fast bail-outs".
1050     // Here we need to be more careful, see 14012000 below.
1051     if (compilation_is_in_queue(method)) {
1052       return;
1053     }
1054 
1055     // We need to check again to see if the compilation has
1056     // completed.  A previous compilation may have registered
1057     // some result.
1058     if (compilation_is_complete(method, osr_bci, comp_level)) {
1059       return;
1060     }
1061 
1062     // We now know that this compilation is not pending, complete,
1063     // or prohibited.  Assign a compile_id to this compilation
1064     // and check to see if it is in our [Start..Stop) range.
1065     int compile_id = assign_compile_id(method, osr_bci);
1066     if (compile_id == 0) {
1067       // The compilation falls outside the allowed range.
1068       return;
1069     }
1070 
1071 #if INCLUDE_JVMCI
1072     if (UseJVMCICompiler) {
1073       if (blocking) {
1074         // Don't allow blocking compiles for requests triggered by JVMCI.
1075         if (thread->is_Compiler_thread()) {
1076           blocking = false;
1077         }
1078 
1079         // Don't allow blocking compiles if inside a class initializer or while performing class loading
1080         vframeStream vfst((JavaThread*) thread);
1081         for (; !vfst.at_end(); vfst.next()) {
1082           if (vfst.method()->is_static_initializer() ||
1083               (vfst.method()->method_holder()->is_subclass_of(SystemDictionary::ClassLoader_klass()) &&
1084                   vfst.method()->name() == vmSymbols::loadClass_name())) {
1085             blocking = false;
1086             break;
1087           }
1088         }
1089 
1090         // Don't allow blocking compilation requests to JVMCI
1091         // if JVMCI itself is not yet initialized
1092         if (!JVMCIRuntime::is_HotSpotJVMCIRuntime_initialized() && compiler(comp_level)->is_jvmci()) {
1093           blocking = false;
1094         }
1095 
1096         // Don't allow blocking compilation requests if we are in JVMCIRuntime::shutdown
1097         // to avoid deadlock between compiler thread(s) and threads run at shutdown
1098         // such as the DestroyJavaVM thread.
1099         if (JVMCIRuntime::shutdown_called()) {
1100           blocking = false;
1101         }
1102       }
1103     }
1104 #endif // INCLUDE_JVMCI
1105 
1106     // We will enter the compilation in the queue.
1107     // 14012000: Note that this sets the queued_for_compile bits in
1108     // the target method. We can now reason that a method cannot be
1109     // queued for compilation more than once, as follows:
1110     // Before a thread queues a task for compilation, it first acquires
1111     // the compile queue lock, then checks if the method's queued bits
1112     // are set or it has already been compiled. Thus there can not be two
1113     // instances of a compilation task for the same method on the
1114     // compilation queue. Consider now the case where the compilation
1115     // thread has already removed a task for that method from the queue
1116     // and is in the midst of compiling it. In this case, the
1117     // queued_for_compile bits must be set in the method (and these
1118     // will be visible to the current thread, since the bits were set
1119     // under protection of the compile queue lock, which we hold now.
1120     // When the compilation completes, the compiler thread first sets
1121     // the compilation result and then clears the queued_for_compile
1122     // bits. Neither of these actions are protected by a barrier (or done
1123     // under the protection of a lock), so the only guarantee we have
1124     // (on machines with TSO (Total Store Order)) is that these values
1125     // will update in that order. As a result, the only combinations of
1126     // these bits that the current thread will see are, in temporal order:
1127     // <RESULT, QUEUE> :
1128     //     <0, 1> : in compile queue, but not yet compiled
1129     //     <1, 1> : compiled but queue bit not cleared
1130     //     <1, 0> : compiled and queue bit cleared
1131     // Because we first check the queue bits then check the result bits,
1132     // we are assured that we cannot introduce a duplicate task.
1133     // Note that if we did the tests in the reverse order (i.e. check
1134     // result then check queued bit), we could get the result bit before
1135     // the compilation completed, and the queue bit after the compilation
1136     // completed, and end up introducing a "duplicate" (redundant) task.
1137     // In that case, the compiler thread should first check if a method
1138     // has already been compiled before trying to compile it.
1139     // NOTE: in the event that there are multiple compiler threads and
1140     // there is de-optimization/recompilation, things will get hairy,
1141     // and in that case it's best to protect both the testing (here) of
1142     // these bits, and their updating (here and elsewhere) under a
1143     // common lock.
1144     task = create_compile_task(queue,
1145                                compile_id, method,
1146                                osr_bci, comp_level,
1147                                hot_method, hot_count, compile_reason,
1148                                blocking);
1149   }
1150 
1151   if (blocking) {
1152     wait_for_completion(task);
1153   }
1154 }
1155 
1156 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1157                                        int comp_level,
1158                                        const methodHandle& hot_method, int hot_count,
1159                                        CompileTask::CompileReason compile_reason,
1160                                        Thread* THREAD) {
1161   // Do nothing if compilebroker is not initalized or compiles are submitted on level none
1162   if (!_initialized || comp_level == CompLevel_none) {
1163     return NULL;
1164   }
1165 
1166   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
1167   assert(comp != NULL, "Ensure we have a compiler");
1168 
1169   DirectiveSet* directive = DirectivesStack::getMatchingDirective(method, comp);
1170   nmethod* nm = CompileBroker::compile_method(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, directive, THREAD);
1171   DirectivesStack::release(directive);
1172   return nm;
1173 }
1174 
1175 nmethod* CompileBroker::compile_method(const methodHandle& method, int osr_bci,
1176                                          int comp_level,
1177                                          const methodHandle& hot_method, int hot_count,
1178                                          CompileTask::CompileReason compile_reason,
1179                                          DirectiveSet* directive,
1180                                          Thread* THREAD) {
1181 
1182   // make sure arguments make sense
1183   assert(method->method_holder()->is_instance_klass(), "not an instance method");
1184   assert(osr_bci == InvocationEntryBci || (0 <= osr_bci && osr_bci < method->code_size()), "bci out of range");
1185   assert(!method->is_abstract() && (osr_bci == InvocationEntryBci || !method->is_native()), "cannot compile abstract/native methods");
1186   assert(!method->method_holder()->is_not_initialized(), "method holder must be initialized");
1187   assert(!TieredCompilation || comp_level <= TieredStopAtLevel, "Invalid compilation level");
1188   // allow any levels for WhiteBox
1189   assert(WhiteBoxAPI || TieredCompilation || comp_level == CompLevel_highest_tier, "only CompLevel_highest_tier must be used in non-tiered");
1190   // return quickly if possible
1191 
1192   // lock, make sure that the compilation
1193   // isn't prohibited in a straightforward way.
1194   AbstractCompiler* comp = CompileBroker::compiler(comp_level);
1195   if (comp == NULL || !comp->can_compile_method(method) ||
1196       compilation_is_prohibited(method, osr_bci, comp_level, directive->ExcludeOption)) {
1197     return NULL;
1198   }
1199 
1200 #if INCLUDE_JVMCI
1201   if (comp->is_jvmci() && !JVMCIRuntime::can_initialize_JVMCI()) {
1202     return NULL;
1203   }
1204 #endif
1205 
1206   if (osr_bci == InvocationEntryBci) {
1207     // standard compilation
1208     CompiledMethod* method_code = method->code();
1209     if (method_code != NULL && method_code->is_nmethod()) {
1210       if (compilation_is_complete(method, osr_bci, comp_level)) {
1211         return (nmethod*) method_code;
1212       }
1213     }
1214     if (method->is_not_compilable(comp_level)) {
1215       return NULL;
1216     }
1217   } else {
1218     // osr compilation
1219 #ifndef TIERED
1220     // seems like an assert of dubious value
1221     assert(comp_level == CompLevel_highest_tier,
1222            "all OSR compiles are assumed to be at a single compilation level");
1223 #endif // TIERED
1224     // We accept a higher level osr method
1225     nmethod* nm = method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1226     if (nm != NULL) return nm;
1227     if (method->is_not_osr_compilable(comp_level)) return NULL;
1228   }
1229 
1230   assert(!HAS_PENDING_EXCEPTION, "No exception should be present");
1231   // some prerequisites that are compiler specific
1232   if (comp->is_c2()) {
1233     method->constants()->resolve_string_constants(CHECK_AND_CLEAR_NULL);
1234     // Resolve all classes seen in the signature of the method
1235     // we are compiling.
1236     Method::load_signature_classes(method, CHECK_AND_CLEAR_NULL);
1237   }
1238 
1239   // If the method is native, do the lookup in the thread requesting
1240   // the compilation. Native lookups can load code, which is not
1241   // permitted during compilation.
1242   //
1243   // Note: A native method implies non-osr compilation which is
1244   //       checked with an assertion at the entry of this method.
1245   if (method->is_native() && !method->is_method_handle_intrinsic()) {
1246     bool in_base_library;
1247     address adr = NativeLookup::lookup(method, in_base_library, THREAD);
1248     if (HAS_PENDING_EXCEPTION) {
1249       // In case of an exception looking up the method, we just forget
1250       // about it. The interpreter will kick-in and throw the exception.
1251       method->set_not_compilable(); // implies is_not_osr_compilable()
1252       CLEAR_PENDING_EXCEPTION;
1253       return NULL;
1254     }
1255     assert(method->has_native_function(), "must have native code by now");
1256   }
1257 
1258   // RedefineClasses() has replaced this method; just return
1259   if (method->is_old()) {
1260     return NULL;
1261   }
1262 
1263   // JVMTI -- post_compile_event requires jmethod_id() that may require
1264   // a lock the compiling thread can not acquire. Prefetch it here.
1265   if (JvmtiExport::should_post_compiled_method_load()) {
1266     method->jmethod_id();
1267   }
1268 
1269   // do the compilation
1270   if (method->is_native()) {
1271     if (!PreferInterpreterNativeStubs || method->is_method_handle_intrinsic()) {
1272       // The following native methods:
1273       //
1274       // java.lang.Float.intBitsToFloat
1275       // java.lang.Float.floatToRawIntBits
1276       // java.lang.Double.longBitsToDouble
1277       // java.lang.Double.doubleToRawLongBits
1278       //
1279       // are called through the interpreter even if interpreter native stubs
1280       // are not preferred (i.e., calling through adapter handlers is preferred).
1281       // The reason is that on x86_32 signaling NaNs (sNaNs) are not preserved
1282       // if the version of the methods from the native libraries is called.
1283       // As the interpreter and the C2-intrinsified version of the methods preserves
1284       // sNaNs, that would result in an inconsistent way of handling of sNaNs.
1285       if ((UseSSE >= 1 &&
1286           (method->intrinsic_id() == vmIntrinsics::_intBitsToFloat ||
1287            method->intrinsic_id() == vmIntrinsics::_floatToRawIntBits)) ||
1288           (UseSSE >= 2 &&
1289            (method->intrinsic_id() == vmIntrinsics::_longBitsToDouble ||
1290             method->intrinsic_id() == vmIntrinsics::_doubleToRawLongBits))) {
1291         return NULL;
1292       }
1293 
1294       // To properly handle the appendix argument for out-of-line calls we are using a small trampoline that
1295       // pops off the appendix argument and jumps to the target (see gen_special_dispatch in SharedRuntime).
1296       //
1297       // Since normal compiled-to-compiled calls are not able to handle such a thing we MUST generate an adapter
1298       // in this case.  If we can't generate one and use it we can not execute the out-of-line method handle calls.
1299       AdapterHandlerLibrary::create_native_wrapper(method);
1300     } else {
1301       return NULL;
1302     }
1303   } else {
1304     // If the compiler is shut off due to code cache getting full
1305     // fail out now so blocking compiles dont hang the java thread
1306     if (!should_compile_new_jobs()) {
1307       CompilationPolicy::policy()->delay_compilation(method());
1308       return NULL;
1309     }
1310     bool is_blocking = !directive->BackgroundCompilationOption || ReplayCompiles;
1311     compile_method_base(method, osr_bci, comp_level, hot_method, hot_count, compile_reason, is_blocking, THREAD);
1312   }
1313 
1314   // return requested nmethod
1315   // We accept a higher level osr method
1316   if (osr_bci == InvocationEntryBci) {
1317     CompiledMethod* code = method->code();
1318     if (code == NULL) {
1319       return (nmethod*) code;
1320     } else {
1321       return code->as_nmethod_or_null();
1322     }
1323   }
1324   return method->lookup_osr_nmethod_for(osr_bci, comp_level, false);
1325 }
1326 
1327 
1328 // ------------------------------------------------------------------
1329 // CompileBroker::compilation_is_complete
1330 //
1331 // See if compilation of this method is already complete.
1332 bool CompileBroker::compilation_is_complete(const methodHandle& method,
1333                                             int                 osr_bci,
1334                                             int                 comp_level) {
1335   bool is_osr = (osr_bci != standard_entry_bci);
1336   if (is_osr) {
1337     if (method->is_not_osr_compilable(comp_level)) {
1338       return true;
1339     } else {
1340       nmethod* result = method->lookup_osr_nmethod_for(osr_bci, comp_level, true);
1341       return (result != NULL);
1342     }
1343   } else {
1344     if (method->is_not_compilable(comp_level)) {
1345       return true;
1346     } else {
1347       CompiledMethod* result = method->code();
1348       if (result == NULL) return false;
1349       return comp_level == result->comp_level();
1350     }
1351   }
1352 }
1353 
1354 
1355 /**
1356  * See if this compilation is already requested.
1357  *
1358  * Implementation note: there is only a single "is in queue" bit
1359  * for each method.  This means that the check below is overly
1360  * conservative in the sense that an osr compilation in the queue
1361  * will block a normal compilation from entering the queue (and vice
1362  * versa).  This can be remedied by a full queue search to disambiguate
1363  * cases.  If it is deemed profitable, this may be done.
1364  */
1365 bool CompileBroker::compilation_is_in_queue(const methodHandle& method) {
1366   return method->queued_for_compilation();
1367 }
1368 
1369 // ------------------------------------------------------------------
1370 // CompileBroker::compilation_is_prohibited
1371 //
1372 // See if this compilation is not allowed.
1373 bool CompileBroker::compilation_is_prohibited(const methodHandle& method, int osr_bci, int comp_level, bool excluded) {
1374   bool is_native = method->is_native();
1375   // Some compilers may not support the compilation of natives.
1376   AbstractCompiler *comp = compiler(comp_level);
1377   if (is_native &&
1378       (!CICompileNatives || comp == NULL || !comp->supports_native())) {
1379     method->set_not_compilable_quietly(comp_level);
1380     return true;
1381   }
1382 
1383   bool is_osr = (osr_bci != standard_entry_bci);
1384   // Some compilers may not support on stack replacement.
1385   if (is_osr &&
1386       (!CICompileOSR || comp == NULL || !comp->supports_osr())) {
1387     method->set_not_osr_compilable(comp_level);
1388     return true;
1389   }
1390 
1391   // The method may be explicitly excluded by the user.
1392   double scale;
1393   if (excluded || (CompilerOracle::has_option_value(method, "CompileThresholdScaling", scale) && scale == 0)) {
1394     bool quietly = CompilerOracle::should_exclude_quietly();
1395     if (PrintCompilation && !quietly) {
1396       // This does not happen quietly...
1397       ResourceMark rm;
1398       tty->print("### Excluding %s:%s",
1399                  method->is_native() ? "generation of native wrapper" : "compile",
1400                  (method->is_static() ? " static" : ""));
1401       method->print_short_name(tty);
1402       tty->cr();
1403     }
1404     method->set_not_compilable(comp_level, !quietly, "excluded by CompileCommand");
1405   }
1406 
1407   return false;
1408 }
1409 
1410 /**
1411  * Generate serialized IDs for compilation requests. If certain debugging flags are used
1412  * and the ID is not within the specified range, the method is not compiled and 0 is returned.
1413  * The function also allows to generate separate compilation IDs for OSR compilations.
1414  */
1415 int CompileBroker::assign_compile_id(const methodHandle& method, int osr_bci) {
1416 #ifdef ASSERT
1417   bool is_osr = (osr_bci != standard_entry_bci);
1418   int id;
1419   if (method->is_native()) {
1420     assert(!is_osr, "can't be osr");
1421     // Adapters, native wrappers and method handle intrinsics
1422     // should be generated always.
1423     return Atomic::add(1, &_compilation_id);
1424   } else if (CICountOSR && is_osr) {
1425     id = Atomic::add(1, &_osr_compilation_id);
1426     if (CIStartOSR <= id && id < CIStopOSR) {
1427       return id;
1428     }
1429   } else {
1430     id = Atomic::add(1, &_compilation_id);
1431     if (CIStart <= id && id < CIStop) {
1432       return id;
1433     }
1434   }
1435 
1436   // Method was not in the appropriate compilation range.
1437   method->set_not_compilable_quietly();
1438   return 0;
1439 #else
1440   // CICountOSR is a develop flag and set to 'false' by default. In a product built,
1441   // only _compilation_id is incremented.
1442   return Atomic::add(1, &_compilation_id);
1443 #endif
1444 }
1445 
1446 // ------------------------------------------------------------------
1447 // CompileBroker::assign_compile_id_unlocked
1448 //
1449 // Public wrapper for assign_compile_id that acquires the needed locks
1450 uint CompileBroker::assign_compile_id_unlocked(Thread* thread, const methodHandle& method, int osr_bci) {
1451   MutexLocker locker(MethodCompileQueue_lock, thread);
1452   return assign_compile_id(method, osr_bci);
1453 }
1454 
1455 // ------------------------------------------------------------------
1456 // CompileBroker::preload_classes
1457 void CompileBroker::preload_classes(const methodHandle& method, TRAPS) {
1458   // Move this code over from c1_Compiler.cpp
1459   ShouldNotReachHere();
1460 }
1461 
1462 
1463 // ------------------------------------------------------------------
1464 // CompileBroker::create_compile_task
1465 //
1466 // Create a CompileTask object representing the current request for
1467 // compilation.  Add this task to the queue.
1468 CompileTask* CompileBroker::create_compile_task(CompileQueue*       queue,
1469                                                 int                 compile_id,
1470                                                 const methodHandle& method,
1471                                                 int                 osr_bci,
1472                                                 int                 comp_level,
1473                                                 const methodHandle& hot_method,
1474                                                 int                 hot_count,
1475                                                 CompileTask::CompileReason compile_reason,
1476                                                 bool                blocking) {
1477   CompileTask* new_task = CompileTask::allocate();
1478   new_task->initialize(compile_id, method, osr_bci, comp_level,
1479                        hot_method, hot_count, compile_reason,
1480                        blocking);
1481   queue->add(new_task);
1482   return new_task;
1483 }
1484 
1485 #if INCLUDE_JVMCI
1486 // The number of milliseconds to wait before checking if
1487 // JVMCI compilation has made progress.
1488 static const long JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE = 1000;
1489 
1490 // The number of JVMCI compilation progress checks that must fail
1491 // before unblocking a thread waiting for a blocking compilation.
1492 static const int JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS = 10;
1493 
1494 /**
1495  * Waits for a JVMCI compiler to complete a given task. This thread
1496  * waits until either the task completes or it sees no JVMCI compilation
1497  * progress for N consecutive milliseconds where N is
1498  * JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE *
1499  * JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS.
1500  *
1501  * @return true if this thread needs to free/recycle the task
1502  */
1503 bool CompileBroker::wait_for_jvmci_completion(JVMCICompiler* jvmci, CompileTask* task, JavaThread* thread) {
1504   MutexLocker waiter(task->lock(), thread);
1505   int progress_wait_attempts = 0;
1506   int methods_compiled = jvmci->methods_compiled();
1507   while (!task->is_complete() && !is_compilation_disabled_forever() &&
1508          task->lock()->wait(!Mutex::_no_safepoint_check_flag, JVMCI_COMPILATION_PROGRESS_WAIT_TIMESLICE)) {
1509     CompilerThread* jvmci_compiler_thread = task->jvmci_compiler_thread();
1510 
1511     bool progress;
1512     if (jvmci_compiler_thread != NULL) {
1513       // If the JVMCI compiler thread is not blocked or suspended, we deem it to be making progress.
1514       progress = jvmci_compiler_thread->thread_state() != _thread_blocked &&
1515         !jvmci_compiler_thread->is_external_suspend();
1516     } else {
1517       // Still waiting on JVMCI compiler queue. This thread may be holding a lock
1518       // that all JVMCI compiler threads are blocked on. We use the counter for
1519       // successful JVMCI compilations to determine whether JVMCI compilation
1520       // is still making progress through the JVMCI compiler queue.
1521       progress = jvmci->methods_compiled() != methods_compiled;
1522     }
1523 
1524     if (!progress) {
1525       if (++progress_wait_attempts == JVMCI_COMPILATION_PROGRESS_WAIT_ATTEMPTS) {
1526         if (PrintCompilation) {
1527           task->print(tty, "wait for blocking compilation timed out");
1528         }
1529         break;
1530       }
1531     } else {
1532       progress_wait_attempts = 0;
1533       if (jvmci_compiler_thread == NULL) {
1534         methods_compiled = jvmci->methods_compiled();
1535       }
1536     }
1537   }
1538   task->clear_waiter();
1539   return task->is_complete();
1540 }
1541 #endif
1542 
1543 /**
1544  *  Wait for the compilation task to complete.
1545  */
1546 void CompileBroker::wait_for_completion(CompileTask* task) {
1547   if (CIPrintCompileQueue) {
1548     ttyLocker ttyl;
1549     tty->print_cr("BLOCKING FOR COMPILE");
1550   }
1551 
1552   assert(task->is_blocking(), "can only wait on blocking task");
1553 
1554   JavaThread* thread = JavaThread::current();
1555   thread->set_blocked_on_compilation(true);
1556 
1557   methodHandle method(thread, task->method());
1558   bool free_task;
1559 #if INCLUDE_JVMCI
1560   AbstractCompiler* comp = compiler(task->comp_level());
1561   if (comp->is_jvmci()) {
1562     free_task = wait_for_jvmci_completion((JVMCICompiler*) comp, task, thread);
1563   } else
1564 #endif
1565   {
1566     MutexLocker waiter(task->lock(), thread);
1567     free_task = true;
1568     while (!task->is_complete() && !is_compilation_disabled_forever()) {
1569       task->lock()->wait();
1570     }
1571   }
1572 
1573   thread->set_blocked_on_compilation(false);
1574   if (free_task) {
1575     if (is_compilation_disabled_forever()) {
1576       CompileTask::free(task);
1577       return;
1578     }
1579 
1580     // It is harmless to check this status without the lock, because
1581     // completion is a stable property (until the task object is recycled).
1582     assert(task->is_complete(), "Compilation should have completed");
1583     assert(task->code_handle() == NULL, "must be reset");
1584 
1585     // By convention, the waiter is responsible for recycling a
1586     // blocking CompileTask. Since there is only one waiter ever
1587     // waiting on a CompileTask, we know that no one else will
1588     // be using this CompileTask; we can free it.
1589     CompileTask::free(task);
1590   }
1591 }
1592 
1593 /**
1594  * Initialize compiler thread(s) + compiler object(s). The postcondition
1595  * of this function is that the compiler runtimes are initialized and that
1596  * compiler threads can start compiling.
1597  */
1598 bool CompileBroker::init_compiler_runtime() {
1599   CompilerThread* thread = CompilerThread::current();
1600   AbstractCompiler* comp = thread->compiler();
1601   // Final sanity check - the compiler object must exist
1602   guarantee(comp != NULL, "Compiler object must exist");
1603 
1604   int system_dictionary_modification_counter;
1605   {
1606     MutexLocker locker(Compile_lock, thread);
1607     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
1608   }
1609 
1610   {
1611     // Must switch to native to allocate ci_env
1612     ThreadToNativeFromVM ttn(thread);
1613     ciEnv ci_env(NULL, system_dictionary_modification_counter);
1614     // Cache Jvmti state
1615     ci_env.cache_jvmti_state();
1616     // Cache DTrace flags
1617     ci_env.cache_dtrace_flags();
1618 
1619     // Switch back to VM state to do compiler initialization
1620     ThreadInVMfromNative tv(thread);
1621     ResetNoHandleMark rnhm;
1622 
1623     // Perform per-thread and global initializations
1624     comp->initialize();
1625   }
1626 
1627   if (comp->is_failed()) {
1628     disable_compilation_forever();
1629     // If compiler initialization failed, no compiler thread that is specific to a
1630     // particular compiler runtime will ever start to compile methods.
1631     shutdown_compiler_runtime(comp, thread);
1632     return false;
1633   }
1634 
1635   // C1 specific check
1636   if (comp->is_c1() && (thread->get_buffer_blob() == NULL)) {
1637     warning("Initialization of %s thread failed (no space to run compilers)", thread->name());
1638     return false;
1639   }
1640 
1641   return true;
1642 }
1643 
1644 /**
1645  * If C1 and/or C2 initialization failed, we shut down all compilation.
1646  * We do this to keep things simple. This can be changed if it ever turns
1647  * out to be a problem.
1648  */
1649 void CompileBroker::shutdown_compiler_runtime(AbstractCompiler* comp, CompilerThread* thread) {
1650   // Free buffer blob, if allocated
1651   if (thread->get_buffer_blob() != NULL) {
1652     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1653     CodeCache::free(thread->get_buffer_blob());
1654   }
1655 
1656   if (comp->should_perform_shutdown()) {
1657     // There are two reasons for shutting down the compiler
1658     // 1) compiler runtime initialization failed
1659     // 2) The code cache is full and the following flag is set: -XX:-UseCodeCacheFlushing
1660     warning("%s initialization failed. Shutting down all compilers", comp->name());
1661 
1662     // Only one thread per compiler runtime object enters here
1663     // Set state to shut down
1664     comp->set_shut_down();
1665 
1666     // Delete all queued compilation tasks to make compiler threads exit faster.
1667     if (_c1_compile_queue != NULL) {
1668       _c1_compile_queue->free_all();
1669     }
1670 
1671     if (_c2_compile_queue != NULL) {
1672       _c2_compile_queue->free_all();
1673     }
1674 
1675     // Set flags so that we continue execution with using interpreter only.
1676     UseCompiler    = false;
1677     UseInterpreter = true;
1678 
1679     // We could delete compiler runtimes also. However, there are references to
1680     // the compiler runtime(s) (e.g.,  nmethod::is_compiled_by_c1()) which then
1681     // fail. This can be done later if necessary.
1682   }
1683 }
1684 
1685 /**
1686  * Helper function to create new or reuse old CompileLog.
1687  */
1688 CompileLog* CompileBroker::get_log(CompilerThread* ct) {
1689   if (!LogCompilation) return NULL;
1690 
1691   AbstractCompiler *compiler = ct->compiler();
1692   bool c1 = compiler->is_c1();
1693   jobject* compiler_objects = c1 ? _compiler1_objects : _compiler2_objects;
1694   assert(compiler_objects != NULL, "must be initialized at this point");
1695   CompileLog** logs = c1 ? _compiler1_logs : _compiler2_logs;
1696   assert(logs != NULL, "must be initialized at this point");
1697   int count = c1 ? _c1_count : _c2_count;
1698 
1699   // Find Compiler number by its threadObj.
1700   oop compiler_obj = ct->threadObj();
1701   int compiler_number = 0;
1702   bool found = false;
1703   for (; compiler_number < count; compiler_number++) {
1704     if (oopDesc::equals(JNIHandles::resolve_non_null(compiler_objects[compiler_number]), compiler_obj)) {
1705       found = true;
1706       break;
1707     }
1708   }
1709   assert(found, "Compiler must exist at this point");
1710 
1711   // Determine pointer for this thread's log.
1712   CompileLog** log_ptr = &logs[compiler_number];
1713 
1714   // Return old one if it exists.
1715   CompileLog* log = *log_ptr;
1716   if (log != NULL) {
1717     ct->init_log(log);
1718     return log;
1719   }
1720 
1721   // Create a new one and remember it.
1722   init_compiler_thread_log();
1723   log = ct->log();
1724   *log_ptr = log;
1725   return log;
1726 }
1727 
1728 // ------------------------------------------------------------------
1729 // CompileBroker::compiler_thread_loop
1730 //
1731 // The main loop run by a CompilerThread.
1732 void CompileBroker::compiler_thread_loop() {
1733   CompilerThread* thread = CompilerThread::current();
1734   CompileQueue* queue = thread->queue();
1735   // For the thread that initializes the ciObjectFactory
1736   // this resource mark holds all the shared objects
1737   ResourceMark rm;
1738 
1739   // First thread to get here will initialize the compiler interface
1740 
1741   {
1742     ASSERT_IN_VM;
1743     MutexLocker only_one (CompileThread_lock, thread);
1744     if (!ciObjectFactory::is_initialized()) {
1745       ciObjectFactory::initialize();
1746     }
1747   }
1748 
1749   // Open a log.
1750   CompileLog* log = get_log(thread);
1751   if (log != NULL) {
1752     log->begin_elem("start_compile_thread name='%s' thread='" UINTX_FORMAT "' process='%d'",
1753                     thread->name(),
1754                     os::current_thread_id(),
1755                     os::current_process_id());
1756     log->stamp();
1757     log->end_elem();
1758   }
1759 
1760   // If compiler thread/runtime initialization fails, exit the compiler thread
1761   if (!init_compiler_runtime()) {
1762     return;
1763   }
1764 
1765   thread->start_idle_timer();
1766 
1767   // Poll for new compilation tasks as long as the JVM runs. Compilation
1768   // should only be disabled if something went wrong while initializing the
1769   // compiler runtimes. This, in turn, should not happen. The only known case
1770   // when compiler runtime initialization fails is if there is not enough free
1771   // space in the code cache to generate the necessary stubs, etc.
1772   while (!is_compilation_disabled_forever()) {
1773     // We need this HandleMark to avoid leaking VM handles.
1774     HandleMark hm(thread);
1775 
1776     CompileTask* task = queue->get();
1777     if (task == NULL) {
1778       if (UseDynamicNumberOfCompilerThreads) {
1779         // Access compiler_count under lock to enforce consistency.
1780         MutexLocker only_one(CompileThread_lock);
1781         if (can_remove(thread, true)) {
1782           if (TraceCompilerThreads) {
1783             tty->print_cr("Removing compiler thread %s after " JLONG_FORMAT " ms idle time",
1784                           thread->name(), thread->idle_time_millis());
1785           }
1786           // Free buffer blob, if allocated
1787           if (thread->get_buffer_blob() != NULL) {
1788             MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1789             CodeCache::free(thread->get_buffer_blob());
1790           }
1791           return; // Stop this thread.
1792         }
1793       }
1794     } else {
1795       // Assign the task to the current thread.  Mark this compilation
1796       // thread as active for the profiler.
1797       // CompileTaskWrapper also keeps the Method* from being deallocated if redefinition
1798       // occurs after fetching the compile task off the queue.
1799       CompileTaskWrapper ctw(task);
1800       nmethodLocker result_handle;  // (handle for the nmethod produced by this task)
1801       task->set_code_handle(&result_handle);
1802       methodHandle method(thread, task->method());
1803 
1804       // Never compile a method if breakpoints are present in it
1805       if (method()->number_of_breakpoints() == 0) {
1806         // Compile the method.
1807         if ((UseCompiler || AlwaysCompileLoopMethods) && CompileBroker::should_compile_new_jobs()) {
1808           invoke_compiler_on_method(task);
1809           thread->start_idle_timer();
1810         } else {
1811           // After compilation is disabled, remove remaining methods from queue
1812           method->clear_queued_for_compilation();
1813           task->set_failure_reason("compilation is disabled");
1814         }
1815       }
1816 
1817       if (UseDynamicNumberOfCompilerThreads) {
1818         possibly_add_compiler_threads();
1819       }
1820     }
1821   }
1822 
1823   // Shut down compiler runtime
1824   shutdown_compiler_runtime(thread->compiler(), thread);
1825 }
1826 
1827 // ------------------------------------------------------------------
1828 // CompileBroker::init_compiler_thread_log
1829 //
1830 // Set up state required by +LogCompilation.
1831 void CompileBroker::init_compiler_thread_log() {
1832     CompilerThread* thread = CompilerThread::current();
1833     char  file_name[4*K];
1834     FILE* fp = NULL;
1835     intx thread_id = os::current_thread_id();
1836     for (int try_temp_dir = 1; try_temp_dir >= 0; try_temp_dir--) {
1837       const char* dir = (try_temp_dir ? os::get_temp_directory() : NULL);
1838       if (dir == NULL) {
1839         jio_snprintf(file_name, sizeof(file_name), "hs_c" UINTX_FORMAT "_pid%u.log",
1840                      thread_id, os::current_process_id());
1841       } else {
1842         jio_snprintf(file_name, sizeof(file_name),
1843                      "%s%shs_c" UINTX_FORMAT "_pid%u.log", dir,
1844                      os::file_separator(), thread_id, os::current_process_id());
1845       }
1846 
1847       fp = fopen(file_name, "wt");
1848       if (fp != NULL) {
1849         if (LogCompilation && Verbose) {
1850           tty->print_cr("Opening compilation log %s", file_name);
1851         }
1852         CompileLog* log = new(ResourceObj::C_HEAP, mtCompiler) CompileLog(file_name, fp, thread_id);
1853         if (log == NULL) {
1854           fclose(fp);
1855           return;
1856         }
1857         thread->init_log(log);
1858 
1859         if (xtty != NULL) {
1860           ttyLocker ttyl;
1861           // Record any per thread log files
1862           xtty->elem("thread_logfile thread='" INTX_FORMAT "' filename='%s'", thread_id, file_name);
1863         }
1864         return;
1865       }
1866     }
1867     warning("Cannot open log file: %s", file_name);
1868 }
1869 
1870 void CompileBroker::log_metaspace_failure() {
1871   const char* message = "some methods may not be compiled because metaspace "
1872                         "is out of memory";
1873   if (_compilation_log != NULL) {
1874     _compilation_log->log_metaspace_failure(message);
1875   }
1876   if (PrintCompilation) {
1877     tty->print_cr("COMPILE PROFILING SKIPPED: %s", message);
1878   }
1879 }
1880 
1881 
1882 // ------------------------------------------------------------------
1883 // CompileBroker::set_should_block
1884 //
1885 // Set _should_block.
1886 // Call this from the VM, with Threads_lock held and a safepoint requested.
1887 void CompileBroker::set_should_block() {
1888   assert(Threads_lock->owner() == Thread::current(), "must have threads lock");
1889   assert(SafepointSynchronize::is_at_safepoint(), "must be at a safepoint already");
1890 #ifndef PRODUCT
1891   if (PrintCompilation && (Verbose || WizardMode))
1892     tty->print_cr("notifying compiler thread pool to block");
1893 #endif
1894   _should_block = true;
1895 }
1896 
1897 // ------------------------------------------------------------------
1898 // CompileBroker::maybe_block
1899 //
1900 // Call this from the compiler at convenient points, to poll for _should_block.
1901 void CompileBroker::maybe_block() {
1902   if (_should_block) {
1903 #ifndef PRODUCT
1904     if (PrintCompilation && (Verbose || WizardMode))
1905       tty->print_cr("compiler thread " INTPTR_FORMAT " poll detects block request", p2i(Thread::current()));
1906 #endif
1907     ThreadInVMfromNative tivfn(JavaThread::current());
1908   }
1909 }
1910 
1911 // wrapper for CodeCache::print_summary()
1912 static void codecache_print(bool detailed)
1913 {
1914   ResourceMark rm;
1915   stringStream s;
1916   // Dump code cache  into a buffer before locking the tty,
1917   {
1918     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1919     CodeCache::print_summary(&s, detailed);
1920   }
1921   ttyLocker ttyl;
1922   tty->print("%s", s.as_string());
1923 }
1924 
1925 // wrapper for CodeCache::print_summary() using outputStream
1926 static void codecache_print(outputStream* out, bool detailed) {
1927   ResourceMark rm;
1928   stringStream s;
1929 
1930   // Dump code cache into a buffer
1931   {
1932     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
1933     CodeCache::print_summary(&s, detailed);
1934   }
1935 
1936   char* remaining_log = s.as_string();
1937   while (*remaining_log != '\0') {
1938     char* eol = strchr(remaining_log, '\n');
1939     if (eol == NULL) {
1940       out->print_cr("%s", remaining_log);
1941       remaining_log = remaining_log + strlen(remaining_log);
1942     } else {
1943       *eol = '\0';
1944       out->print_cr("%s", remaining_log);
1945       remaining_log = eol + 1;
1946     }
1947   }
1948 }
1949 
1950 void CompileBroker::post_compile(CompilerThread* thread, CompileTask* task, bool success, ciEnv* ci_env,
1951                                  int compilable, const char* failure_reason) {
1952   if (success) {
1953     task->mark_success();
1954     if (ci_env != NULL) {
1955       task->set_num_inlined_bytecodes(ci_env->num_inlined_bytecodes());
1956     }
1957     if (_compilation_log != NULL) {
1958       nmethod* code = task->code();
1959       if (code != NULL) {
1960         _compilation_log->log_nmethod(thread, code);
1961       }
1962     }
1963   } else if (AbortVMOnCompilationFailure) {
1964     if (compilable == ciEnv::MethodCompilable_not_at_tier) {
1965       fatal("Not compilable at tier %d: %s", task->comp_level(), failure_reason);
1966     }
1967     if (compilable == ciEnv::MethodCompilable_never) {
1968       fatal("Never compilable: %s", failure_reason);
1969     }
1970   }
1971   // simulate crash during compilation
1972   assert(task->compile_id() != CICrashAt, "just as planned");
1973 }
1974 
1975 static void post_compilation_event(EventCompilation* event, CompileTask* task) {
1976   assert(event != NULL, "invariant");
1977   assert(event->should_commit(), "invariant");
1978   event->set_method(task->method());
1979   event->set_compileId(task->compile_id());
1980   event->set_compileLevel(task->comp_level());
1981   event->set_succeded(task->is_success());
1982   event->set_isOsr(task->osr_bci() != CompileBroker::standard_entry_bci);
1983   event->set_codeSize((task->code() == NULL) ? 0 : task->code()->total_size());
1984   event->set_inlinedBytes(task->num_inlined_bytecodes());
1985   event->commit();
1986 }
1987 
1988 int DirectivesStack::_depth = 0;
1989 CompilerDirectives* DirectivesStack::_top = NULL;
1990 CompilerDirectives* DirectivesStack::_bottom = NULL;
1991 
1992 // ------------------------------------------------------------------
1993 // CompileBroker::invoke_compiler_on_method
1994 //
1995 // Compile a method.
1996 //
1997 void CompileBroker::invoke_compiler_on_method(CompileTask* task) {
1998   task->print_ul();
1999   if (PrintCompilation) {
2000     ResourceMark rm;
2001     task->print_tty();
2002   }
2003   elapsedTimer time;
2004 
2005   CompilerThread* thread = CompilerThread::current();
2006   ResourceMark rm(thread);
2007 
2008   if (LogEvents) {
2009     _compilation_log->log_compile(thread, task);
2010   }
2011 
2012   // Common flags.
2013   uint compile_id = task->compile_id();
2014   int osr_bci = task->osr_bci();
2015   bool is_osr = (osr_bci != standard_entry_bci);
2016   bool should_log = (thread->log() != NULL);
2017   bool should_break = false;
2018   const int task_level = task->comp_level();
2019   AbstractCompiler* comp = task->compiler();
2020 
2021   DirectiveSet* directive;
2022   {
2023     // create the handle inside it's own block so it can't
2024     // accidentally be referenced once the thread transitions to
2025     // native.  The NoHandleMark before the transition should catch
2026     // any cases where this occurs in the future.
2027     methodHandle method(thread, task->method());
2028     assert(!method->is_native(), "no longer compile natives");
2029 
2030     // Look up matching directives
2031     directive = DirectivesStack::getMatchingDirective(method, comp);
2032 
2033     // Save information about this method in case of failure.
2034     set_last_compile(thread, method, is_osr, task_level);
2035 
2036     DTRACE_METHOD_COMPILE_BEGIN_PROBE(method, compiler_name(task_level));
2037   }
2038 
2039   should_break = directive->BreakAtExecuteOption || task->check_break_at_flags();
2040   if (should_log && !directive->LogOption) {
2041     should_log = false;
2042   }
2043 
2044   // Allocate a new set of JNI handles.
2045   push_jni_handle_block();
2046   Method* target_handle = task->method();
2047   int compilable = ciEnv::MethodCompilable;
2048   const char* failure_reason = NULL;
2049   bool failure_reason_on_C_heap = false;
2050   const char* retry_message = NULL;
2051 
2052   int system_dictionary_modification_counter;
2053   {
2054     MutexLocker locker(Compile_lock, thread);
2055     system_dictionary_modification_counter = SystemDictionary::number_of_modifications();
2056   }
2057 
2058 #if INCLUDE_JVMCI
2059   if (UseJVMCICompiler && comp != NULL && comp->is_jvmci()) {
2060     JVMCICompiler* jvmci = (JVMCICompiler*) comp;
2061 
2062     TraceTime t1("compilation", &time);
2063     EventCompilation event;
2064 
2065     // Skip redefined methods
2066     if (target_handle->is_old()) {
2067         failure_reason = "redefined method";
2068         retry_message = "not retryable";
2069         compilable = ciEnv::MethodCompilable_never;
2070     } else {
2071         JVMCIEnv env(task, system_dictionary_modification_counter);
2072         methodHandle method(thread, target_handle);
2073         jvmci->compile_method(method, osr_bci, &env);
2074 
2075         failure_reason = env.failure_reason();
2076         failure_reason_on_C_heap = env.failure_reason_on_C_heap();
2077         if (!env.retryable()) {
2078           retry_message = "not retryable";
2079           compilable = ciEnv::MethodCompilable_not_at_tier;
2080         }
2081     }
2082     post_compile(thread, task, task->code() != NULL, NULL, compilable, failure_reason);
2083     if (event.should_commit()) {
2084       post_compilation_event(&event, task);
2085     }
2086 
2087   } else
2088 #endif // INCLUDE_JVMCI
2089   {
2090     NoHandleMark  nhm;
2091     ThreadToNativeFromVM ttn(thread);
2092 
2093     ciEnv ci_env(task, system_dictionary_modification_counter);
2094     if (should_break) {
2095       ci_env.set_break_at_compile(true);
2096     }
2097     if (should_log) {
2098       ci_env.set_log(thread->log());
2099     }
2100     assert(thread->env() == &ci_env, "set by ci_env");
2101     // The thread-env() field is cleared in ~CompileTaskWrapper.
2102 
2103     // Cache Jvmti state
2104     ci_env.cache_jvmti_state();
2105 
2106     // Cache DTrace flags
2107     ci_env.cache_dtrace_flags();
2108 
2109     ciMethod* target = ci_env.get_method_from_handle(target_handle);
2110 
2111     TraceTime t1("compilation", &time);
2112     EventCompilation event;
2113 
2114     if (comp == NULL) {
2115       ci_env.record_method_not_compilable("no compiler", !TieredCompilation);
2116     } else {
2117       if (WhiteBoxAPI && WhiteBox::compilation_locked) {
2118         MonitorLockerEx locker(Compilation_lock, Mutex::_no_safepoint_check_flag);
2119         while (WhiteBox::compilation_locked) {
2120           locker.wait(Mutex::_no_safepoint_check_flag);
2121         }
2122       }
2123       comp->compile_method(&ci_env, target, osr_bci, directive);
2124     }
2125 
2126     if (!ci_env.failing() && task->code() == NULL) {
2127       //assert(false, "compiler should always document failure");
2128       // The compiler elected, without comment, not to register a result.
2129       // Do not attempt further compilations of this method.
2130       ci_env.record_method_not_compilable("compile failed", !TieredCompilation);
2131     }
2132 
2133     // Copy this bit to the enclosing block:
2134     compilable = ci_env.compilable();
2135 
2136     if (ci_env.failing()) {
2137       failure_reason = ci_env.failure_reason();
2138       retry_message = ci_env.retry_message();
2139       ci_env.report_failure(failure_reason);
2140     }
2141 
2142     post_compile(thread, task, !ci_env.failing(), &ci_env, compilable, failure_reason);
2143     if (event.should_commit()) {
2144       post_compilation_event(&event, task);
2145     }
2146   }
2147   // Remove the JNI handle block after the ciEnv destructor has run in
2148   // the previous block.
2149   pop_jni_handle_block();
2150 
2151   if (failure_reason != NULL) {
2152     task->set_failure_reason(failure_reason, failure_reason_on_C_heap);
2153     if (_compilation_log != NULL) {
2154       _compilation_log->log_failure(thread, task, failure_reason, retry_message);
2155     }
2156     if (PrintCompilation) {
2157       FormatBufferResource msg = retry_message != NULL ?
2158         FormatBufferResource("COMPILE SKIPPED: %s (%s)", failure_reason, retry_message) :
2159         FormatBufferResource("COMPILE SKIPPED: %s",      failure_reason);
2160       task->print(tty, msg);
2161     }
2162   }
2163 
2164   methodHandle method(thread, task->method());
2165 
2166   DTRACE_METHOD_COMPILE_END_PROBE(method, compiler_name(task_level), task->is_success());
2167 
2168   collect_statistics(thread, time, task);
2169 
2170   nmethod* nm = task->code();
2171   if (nm != NULL) {
2172     nm->maybe_print_nmethod(directive);
2173   }
2174   DirectivesStack::release(directive);
2175 
2176   if (PrintCompilation && PrintCompilation2) {
2177     tty->print("%7d ", (int) tty->time_stamp().milliseconds());  // print timestamp
2178     tty->print("%4d ", compile_id);    // print compilation number
2179     tty->print("%s ", (is_osr ? "%" : " "));
2180     if (task->code() != NULL) {
2181       tty->print("size: %d(%d) ", task->code()->total_size(), task->code()->insts_size());
2182     }
2183     tty->print_cr("time: %d inlined: %d bytes", (int)time.milliseconds(), task->num_inlined_bytecodes());
2184   }
2185 
2186   Log(compilation, codecache) log;
2187   if (log.is_debug()) {
2188     LogStream ls(log.debug());
2189     codecache_print(&ls, /* detailed= */ false);
2190   }
2191   if (PrintCodeCacheOnCompilation) {
2192     codecache_print(/* detailed= */ false);
2193   }
2194   // Disable compilation, if required.
2195   switch (compilable) {
2196   case ciEnv::MethodCompilable_never:
2197     if (is_osr)
2198       method->set_not_osr_compilable_quietly();
2199     else
2200       method->set_not_compilable_quietly();
2201     break;
2202   case ciEnv::MethodCompilable_not_at_tier:
2203     if (is_osr)
2204       method->set_not_osr_compilable_quietly(task_level);
2205     else
2206       method->set_not_compilable_quietly(task_level);
2207     break;
2208   }
2209 
2210   // Note that the queued_for_compilation bits are cleared without
2211   // protection of a mutex. [They were set by the requester thread,
2212   // when adding the task to the compile queue -- at which time the
2213   // compile queue lock was held. Subsequently, we acquired the compile
2214   // queue lock to get this task off the compile queue; thus (to belabour
2215   // the point somewhat) our clearing of the bits must be occurring
2216   // only after the setting of the bits. See also 14012000 above.
2217   method->clear_queued_for_compilation();
2218 }
2219 
2220 /**
2221  * The CodeCache is full. Print warning and disable compilation.
2222  * Schedule code cache cleaning so compilation can continue later.
2223  * This function needs to be called only from CodeCache::allocate(),
2224  * since we currently handle a full code cache uniformly.
2225  */
2226 void CompileBroker::handle_full_code_cache(int code_blob_type) {
2227   UseInterpreter = true;
2228   if (UseCompiler || AlwaysCompileLoopMethods ) {
2229     if (xtty != NULL) {
2230       ResourceMark rm;
2231       stringStream s;
2232       // Dump code cache state into a buffer before locking the tty,
2233       // because log_state() will use locks causing lock conflicts.
2234       CodeCache::log_state(&s);
2235       // Lock to prevent tearing
2236       ttyLocker ttyl;
2237       xtty->begin_elem("code_cache_full");
2238       xtty->print("%s", s.as_string());
2239       xtty->stamp();
2240       xtty->end_elem();
2241     }
2242 
2243 #ifndef PRODUCT
2244     if (ExitOnFullCodeCache) {
2245       codecache_print(/* detailed= */ true);
2246       before_exit(JavaThread::current());
2247       exit_globals(); // will delete tty
2248       vm_direct_exit(1);
2249     }
2250 #endif
2251     if (UseCodeCacheFlushing) {
2252       // Since code cache is full, immediately stop new compiles
2253       if (CompileBroker::set_should_compile_new_jobs(CompileBroker::stop_compilation)) {
2254         NMethodSweeper::log_sweep("disable_compiler");
2255       }
2256     } else {
2257       disable_compilation_forever();
2258     }
2259 
2260     CodeCache::report_codemem_full(code_blob_type, should_print_compiler_warning());
2261   }
2262 }
2263 
2264 // ------------------------------------------------------------------
2265 // CompileBroker::set_last_compile
2266 //
2267 // Record this compilation for debugging purposes.
2268 void CompileBroker::set_last_compile(CompilerThread* thread, const methodHandle& method, bool is_osr, int comp_level) {
2269   ResourceMark rm;
2270   char* method_name = method->name()->as_C_string();
2271   strncpy(_last_method_compiled, method_name, CompileBroker::name_buffer_length);
2272   _last_method_compiled[CompileBroker::name_buffer_length - 1] = '\0'; // ensure null terminated
2273   char current_method[CompilerCounters::cmname_buffer_length];
2274   size_t maxLen = CompilerCounters::cmname_buffer_length;
2275 
2276   if (UsePerfData) {
2277     const char* class_name = method->method_holder()->name()->as_C_string();
2278 
2279     size_t s1len = strlen(class_name);
2280     size_t s2len = strlen(method_name);
2281 
2282     // check if we need to truncate the string
2283     if (s1len + s2len + 2 > maxLen) {
2284 
2285       // the strategy is to lop off the leading characters of the
2286       // class name and the trailing characters of the method name.
2287 
2288       if (s2len + 2 > maxLen) {
2289         // lop of the entire class name string, let snprintf handle
2290         // truncation of the method name.
2291         class_name += s1len; // null string
2292       }
2293       else {
2294         // lop off the extra characters from the front of the class name
2295         class_name += ((s1len + s2len + 2) - maxLen);
2296       }
2297     }
2298 
2299     jio_snprintf(current_method, maxLen, "%s %s", class_name, method_name);
2300   }
2301 
2302   if (CICountOSR && is_osr) {
2303     _last_compile_type = osr_compile;
2304   } else {
2305     _last_compile_type = normal_compile;
2306   }
2307   _last_compile_level = comp_level;
2308 
2309   if (UsePerfData) {
2310     CompilerCounters* counters = thread->counters();
2311     counters->set_current_method(current_method);
2312     counters->set_compile_type((jlong)_last_compile_type);
2313   }
2314 }
2315 
2316 
2317 // ------------------------------------------------------------------
2318 // CompileBroker::push_jni_handle_block
2319 //
2320 // Push on a new block of JNI handles.
2321 void CompileBroker::push_jni_handle_block() {
2322   JavaThread* thread = JavaThread::current();
2323 
2324   // Allocate a new block for JNI handles.
2325   // Inlined code from jni_PushLocalFrame()
2326   JNIHandleBlock* java_handles = thread->active_handles();
2327   JNIHandleBlock* compile_handles = JNIHandleBlock::allocate_block(thread);
2328   assert(compile_handles != NULL && java_handles != NULL, "should not be NULL");
2329   compile_handles->set_pop_frame_link(java_handles);  // make sure java handles get gc'd.
2330   thread->set_active_handles(compile_handles);
2331 }
2332 
2333 
2334 // ------------------------------------------------------------------
2335 // CompileBroker::pop_jni_handle_block
2336 //
2337 // Pop off the current block of JNI handles.
2338 void CompileBroker::pop_jni_handle_block() {
2339   JavaThread* thread = JavaThread::current();
2340 
2341   // Release our JNI handle block
2342   JNIHandleBlock* compile_handles = thread->active_handles();
2343   JNIHandleBlock* java_handles = compile_handles->pop_frame_link();
2344   thread->set_active_handles(java_handles);
2345   compile_handles->set_pop_frame_link(NULL);
2346   JNIHandleBlock::release_block(compile_handles, thread); // may block
2347 }
2348 
2349 // ------------------------------------------------------------------
2350 // CompileBroker::collect_statistics
2351 //
2352 // Collect statistics about the compilation.
2353 
2354 void CompileBroker::collect_statistics(CompilerThread* thread, elapsedTimer time, CompileTask* task) {
2355   bool success = task->is_success();
2356   methodHandle method (thread, task->method());
2357   uint compile_id = task->compile_id();
2358   bool is_osr = (task->osr_bci() != standard_entry_bci);
2359   nmethod* code = task->code();
2360   CompilerCounters* counters = thread->counters();
2361 
2362   assert(code == NULL || code->is_locked_by_vm(), "will survive the MutexLocker");
2363   MutexLocker locker(CompileStatistics_lock);
2364 
2365   // _perf variables are production performance counters which are
2366   // updated regardless of the setting of the CITime and CITimeEach flags
2367   //
2368 
2369   // account all time, including bailouts and failures in this counter;
2370   // C1 and C2 counters are counting both successful and unsuccessful compiles
2371   _t_total_compilation.add(time);
2372 
2373   if (!success) {
2374     _total_bailout_count++;
2375     if (UsePerfData) {
2376       _perf_last_failed_method->set_value(counters->current_method());
2377       _perf_last_failed_type->set_value(counters->compile_type());
2378       _perf_total_bailout_count->inc();
2379     }
2380     _t_bailedout_compilation.add(time);
2381   } else if (code == NULL) {
2382     if (UsePerfData) {
2383       _perf_last_invalidated_method->set_value(counters->current_method());
2384       _perf_last_invalidated_type->set_value(counters->compile_type());
2385       _perf_total_invalidated_count->inc();
2386     }
2387     _total_invalidated_count++;
2388     _t_invalidated_compilation.add(time);
2389   } else {
2390     // Compilation succeeded
2391 
2392     // update compilation ticks - used by the implementation of
2393     // java.lang.management.CompilationMBean
2394     _perf_total_compilation->inc(time.ticks());
2395     _peak_compilation_time = time.milliseconds() > _peak_compilation_time ? time.milliseconds() : _peak_compilation_time;
2396 
2397     if (CITime) {
2398       int bytes_compiled = method->code_size() + task->num_inlined_bytecodes();
2399       if (is_osr) {
2400         _t_osr_compilation.add(time);
2401         _sum_osr_bytes_compiled += bytes_compiled;
2402       } else {
2403         _t_standard_compilation.add(time);
2404         _sum_standard_bytes_compiled += method->code_size() + task->num_inlined_bytecodes();
2405       }
2406 
2407 #if INCLUDE_JVMCI
2408       AbstractCompiler* comp = compiler(task->comp_level());
2409       if (comp) {
2410         CompilerStatistics* stats = comp->stats();
2411         if (stats) {
2412           if (is_osr) {
2413             stats->_osr.update(time, bytes_compiled);
2414           } else {
2415             stats->_standard.update(time, bytes_compiled);
2416           }
2417           stats->_nmethods_size += code->total_size();
2418           stats->_nmethods_code_size += code->insts_size();
2419         } else { // if (!stats)
2420           assert(false, "Compiler statistics object must exist");
2421         }
2422       } else { // if (!comp)
2423         assert(false, "Compiler object must exist");
2424       }
2425 #endif // INCLUDE_JVMCI
2426     }
2427 
2428     if (UsePerfData) {
2429       // save the name of the last method compiled
2430       _perf_last_method->set_value(counters->current_method());
2431       _perf_last_compile_type->set_value(counters->compile_type());
2432       _perf_last_compile_size->set_value(method->code_size() +
2433                                          task->num_inlined_bytecodes());
2434       if (is_osr) {
2435         _perf_osr_compilation->inc(time.ticks());
2436         _perf_sum_osr_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2437       } else {
2438         _perf_standard_compilation->inc(time.ticks());
2439         _perf_sum_standard_bytes_compiled->inc(method->code_size() + task->num_inlined_bytecodes());
2440       }
2441     }
2442 
2443     if (CITimeEach) {
2444       float bytes_per_sec = 1.0 * (method->code_size() + task->num_inlined_bytecodes()) / time.seconds();
2445       tty->print_cr("%3d   seconds: %f bytes/sec : %f (bytes %d + %d inlined)",
2446                     compile_id, time.seconds(), bytes_per_sec, method->code_size(), task->num_inlined_bytecodes());
2447     }
2448 
2449     // Collect counts of successful compilations
2450     _sum_nmethod_size      += code->total_size();
2451     _sum_nmethod_code_size += code->insts_size();
2452     _total_compile_count++;
2453 
2454     if (UsePerfData) {
2455       _perf_sum_nmethod_size->inc(     code->total_size());
2456       _perf_sum_nmethod_code_size->inc(code->insts_size());
2457       _perf_total_compile_count->inc();
2458     }
2459 
2460     if (is_osr) {
2461       if (UsePerfData) _perf_total_osr_compile_count->inc();
2462       _total_osr_compile_count++;
2463     } else {
2464       if (UsePerfData) _perf_total_standard_compile_count->inc();
2465       _total_standard_compile_count++;
2466     }
2467   }
2468   // set the current method for the thread to null
2469   if (UsePerfData) counters->set_current_method("");
2470 }
2471 
2472 const char* CompileBroker::compiler_name(int comp_level) {
2473   AbstractCompiler *comp = CompileBroker::compiler(comp_level);
2474   if (comp == NULL) {
2475     return "no compiler";
2476   } else {
2477     return (comp->name());
2478   }
2479 }
2480 
2481 #if INCLUDE_JVMCI
2482 void CompileBroker::print_times(AbstractCompiler* comp) {
2483   CompilerStatistics* stats = comp->stats();
2484   if (stats) {
2485     tty->print_cr("  %s {speed: %d bytes/s; standard: %6.3f s, %d bytes, %d methods; osr: %6.3f s, %d bytes, %d methods; nmethods_size: %d bytes; nmethods_code_size: %d bytes}",
2486                 comp->name(), stats->bytes_per_second(),
2487                 stats->_standard._time.seconds(), stats->_standard._bytes, stats->_standard._count,
2488                 stats->_osr._time.seconds(), stats->_osr._bytes, stats->_osr._count,
2489                 stats->_nmethods_size, stats->_nmethods_code_size);
2490   } else { // if (!stats)
2491     assert(false, "Compiler statistics object must exist");
2492   }
2493   comp->print_timers();
2494 }
2495 #endif // INCLUDE_JVMCI
2496 
2497 void CompileBroker::print_times(bool per_compiler, bool aggregate) {
2498 #if INCLUDE_JVMCI
2499   elapsedTimer standard_compilation;
2500   elapsedTimer total_compilation;
2501   elapsedTimer osr_compilation;
2502 
2503   int standard_bytes_compiled = 0;
2504   int osr_bytes_compiled = 0;
2505 
2506   int standard_compile_count = 0;
2507   int osr_compile_count = 0;
2508   int total_compile_count = 0;
2509 
2510   int nmethods_size = 0;
2511   int nmethods_code_size = 0;
2512   bool printedHeader = false;
2513 
2514   for (unsigned int i = 0; i < sizeof(_compilers) / sizeof(AbstractCompiler*); i++) {
2515     AbstractCompiler* comp = _compilers[i];
2516     if (comp != NULL) {
2517       if (per_compiler && aggregate && !printedHeader) {
2518         printedHeader = true;
2519         tty->cr();
2520         tty->print_cr("Individual compiler times (for compiled methods only)");
2521         tty->print_cr("------------------------------------------------");
2522         tty->cr();
2523       }
2524       CompilerStatistics* stats = comp->stats();
2525 
2526       if (stats) {
2527         standard_compilation.add(stats->_standard._time);
2528         osr_compilation.add(stats->_osr._time);
2529 
2530         standard_bytes_compiled += stats->_standard._bytes;
2531         osr_bytes_compiled += stats->_osr._bytes;
2532 
2533         standard_compile_count += stats->_standard._count;
2534         osr_compile_count += stats->_osr._count;
2535 
2536         nmethods_size += stats->_nmethods_size;
2537         nmethods_code_size += stats->_nmethods_code_size;
2538       } else { // if (!stats)
2539         assert(false, "Compiler statistics object must exist");
2540       }
2541 
2542       if (per_compiler) {
2543         print_times(comp);
2544       }
2545     }
2546   }
2547   total_compile_count = osr_compile_count + standard_compile_count;
2548   total_compilation.add(osr_compilation);
2549   total_compilation.add(standard_compilation);
2550 
2551   // In hosted mode, print the JVMCI compiler specific counters manually.
2552   if (!UseJVMCICompiler) {
2553     JVMCICompiler::print_compilation_timers();
2554   }
2555 #else // INCLUDE_JVMCI
2556   elapsedTimer standard_compilation = CompileBroker::_t_standard_compilation;
2557   elapsedTimer osr_compilation = CompileBroker::_t_osr_compilation;
2558   elapsedTimer total_compilation = CompileBroker::_t_total_compilation;
2559 
2560   int standard_bytes_compiled = CompileBroker::_sum_standard_bytes_compiled;
2561   int osr_bytes_compiled = CompileBroker::_sum_osr_bytes_compiled;
2562 
2563   int standard_compile_count = CompileBroker::_total_standard_compile_count;
2564   int osr_compile_count = CompileBroker::_total_osr_compile_count;
2565   int total_compile_count = CompileBroker::_total_compile_count;
2566 
2567   int nmethods_size = CompileBroker::_sum_nmethod_code_size;
2568   int nmethods_code_size = CompileBroker::_sum_nmethod_size;
2569 #endif // INCLUDE_JVMCI
2570 
2571   if (!aggregate) {
2572     return;
2573   }
2574   tty->cr();
2575   tty->print_cr("Accumulated compiler times");
2576   tty->print_cr("----------------------------------------------------------");
2577                //0000000000111111111122222222223333333333444444444455555555556666666666
2578                //0123456789012345678901234567890123456789012345678901234567890123456789
2579   tty->print_cr("  Total compilation time   : %7.3f s", total_compilation.seconds());
2580   tty->print_cr("    Standard compilation   : %7.3f s, Average : %2.3f s",
2581                 standard_compilation.seconds(),
2582                 standard_compilation.seconds() / standard_compile_count);
2583   tty->print_cr("    Bailed out compilation : %7.3f s, Average : %2.3f s",
2584                 CompileBroker::_t_bailedout_compilation.seconds(),
2585                 CompileBroker::_t_bailedout_compilation.seconds() / CompileBroker::_total_bailout_count);
2586   tty->print_cr("    On stack replacement   : %7.3f s, Average : %2.3f s",
2587                 osr_compilation.seconds(),
2588                 osr_compilation.seconds() / osr_compile_count);
2589   tty->print_cr("    Invalidated            : %7.3f s, Average : %2.3f s",
2590                 CompileBroker::_t_invalidated_compilation.seconds(),
2591                 CompileBroker::_t_invalidated_compilation.seconds() / CompileBroker::_total_invalidated_count);
2592 
2593   AbstractCompiler *comp = compiler(CompLevel_simple);
2594   if (comp != NULL) {
2595     tty->cr();
2596     comp->print_timers();
2597   }
2598   comp = compiler(CompLevel_full_optimization);
2599   if (comp != NULL) {
2600     tty->cr();
2601     comp->print_timers();
2602   }
2603   tty->cr();
2604   tty->print_cr("  Total compiled methods    : %8d methods", total_compile_count);
2605   tty->print_cr("    Standard compilation    : %8d methods", standard_compile_count);
2606   tty->print_cr("    On stack replacement    : %8d methods", osr_compile_count);
2607   int tcb = osr_bytes_compiled + standard_bytes_compiled;
2608   tty->print_cr("  Total compiled bytecodes  : %8d bytes", tcb);
2609   tty->print_cr("    Standard compilation    : %8d bytes", standard_bytes_compiled);
2610   tty->print_cr("    On stack replacement    : %8d bytes", osr_bytes_compiled);
2611   double tcs = total_compilation.seconds();
2612   int bps = tcs == 0.0 ? 0 : (int)(tcb / tcs);
2613   tty->print_cr("  Average compilation speed : %8d bytes/s", bps);
2614   tty->cr();
2615   tty->print_cr("  nmethod code size         : %8d bytes", nmethods_code_size);
2616   tty->print_cr("  nmethod total size        : %8d bytes", nmethods_size);
2617 }
2618 
2619 // Debugging output for failure
2620 void CompileBroker::print_last_compile() {
2621   if (_last_compile_level != CompLevel_none &&
2622       compiler(_last_compile_level) != NULL &&
2623       _last_compile_type != no_compile) {
2624     if (_last_compile_type == osr_compile) {
2625       tty->print_cr("Last parse:  [osr]%d+++(%d) %s",
2626                     _osr_compilation_id, _last_compile_level, _last_method_compiled);
2627     } else {
2628       tty->print_cr("Last parse:  %d+++(%d) %s",
2629                     _compilation_id, _last_compile_level, _last_method_compiled);
2630     }
2631   }
2632 }
2633 
2634 // Print general/accumulated JIT information.
2635 void CompileBroker::print_info(outputStream *out) {
2636   if (out == NULL) out = tty;
2637   out->cr();
2638   out->print_cr("======================");
2639   out->print_cr("   General JIT info   ");
2640   out->print_cr("======================");
2641   out->cr();
2642   out->print_cr("            JIT is : %7s",     should_compile_new_jobs() ? "on" : "off");
2643   out->print_cr("  Compiler threads : %7d",     (int)CICompilerCount);
2644   out->cr();
2645   out->print_cr("CodeCache overview");
2646   out->print_cr("--------------------------------------------------------");
2647   out->cr();
2648   out->print_cr("         Reserved size : " SIZE_FORMAT_W(7) " KB", CodeCache::max_capacity() / K);
2649   out->print_cr("        Committed size : " SIZE_FORMAT_W(7) " KB", CodeCache::capacity() / K);
2650   out->print_cr("  Unallocated capacity : " SIZE_FORMAT_W(7) " KB", CodeCache::unallocated_capacity() / K);
2651   out->cr();
2652 
2653   out->cr();
2654   out->print_cr("CodeCache cleaning overview");
2655   out->print_cr("--------------------------------------------------------");
2656   out->cr();
2657   NMethodSweeper::print(out);
2658   out->print_cr("--------------------------------------------------------");
2659   out->cr();
2660 }
2661 
2662 // Note: tty_lock must not be held upon entry to this function.
2663 //       Print functions called from herein do "micro-locking" on tty_lock.
2664 //       That's a tradeoff which keeps together important blocks of output.
2665 //       At the same time, continuous tty_lock hold time is kept in check,
2666 //       preventing concurrently printing threads from stalling a long time.
2667 void CompileBroker::print_heapinfo(outputStream* out, const char* function, const char* granularity) {
2668   TimeStamp ts_total;
2669   TimeStamp ts_global;
2670   TimeStamp ts;
2671 
2672   bool allFun = !strcmp(function, "all");
2673   bool aggregate = !strcmp(function, "aggregate") || !strcmp(function, "analyze") || allFun;
2674   bool usedSpace = !strcmp(function, "UsedSpace") || allFun;
2675   bool freeSpace = !strcmp(function, "FreeSpace") || allFun;
2676   bool methodCount = !strcmp(function, "MethodCount") || allFun;
2677   bool methodSpace = !strcmp(function, "MethodSpace") || allFun;
2678   bool methodAge = !strcmp(function, "MethodAge") || allFun;
2679   bool methodNames = !strcmp(function, "MethodNames") || allFun;
2680   bool discard = !strcmp(function, "discard") || allFun;
2681 
2682   if (out == NULL) {
2683     out = tty;
2684   }
2685 
2686   if (!(aggregate || usedSpace || freeSpace || methodCount || methodSpace || methodAge || methodNames || discard)) {
2687     out->print_cr("\n__ CodeHeapStateAnalytics: Function %s is not supported", function);
2688     out->cr();
2689     return;
2690   }
2691 
2692   ts_total.update(); // record starting point
2693 
2694   if (aggregate) {
2695     print_info(out);
2696   }
2697 
2698   // We hold the CodeHeapStateAnalytics_lock all the time, from here until we leave this function.
2699   // That prevents another thread from destroying our view on the CodeHeap.
2700   // When we request individual parts of the analysis via the jcmd interface, it is possible
2701   // that in between another thread (another jcmd user or the vm running into CodeCache OOM)
2702   // updated the aggregated data. That's a tolerable tradeoff because we can't hold a lock
2703   // across user interaction.
2704   // Acquire this lock before acquiring the CodeCache_lock.
2705   // CodeHeapStateAnalytics_lock could be held by a concurrent thread for a long time,
2706   // leading to an unnecessarily long hold time of the CodeCache_lock.
2707   ts.update(); // record starting point
2708   MutexLockerEx mu1(CodeHeapStateAnalytics_lock, Mutex::_no_safepoint_check_flag);
2709   out->print_cr("\n__ CodeHeapStateAnalytics lock wait took %10.3f seconds _________\n", ts.seconds());
2710 
2711   // If we serve an "allFun" call, it is beneficial to hold the CodeCache_lock
2712   // for the entire duration of aggregation and printing. That makes sure
2713   // we see a consistent picture and do not run into issues caused by
2714   // the CodeHeap being altered concurrently.
2715   Monitor* global_lock   = allFun ? CodeCache_lock : NULL;
2716   Monitor* function_lock = allFun ? NULL : CodeCache_lock;
2717   ts_global.update(); // record starting point
2718   MutexLockerEx mu2(global_lock, Mutex::_no_safepoint_check_flag);
2719   if (global_lock != NULL) {
2720     out->print_cr("\n__ CodeCache (global) lock wait took %10.3f seconds _________\n", ts_global.seconds());
2721     ts_global.update(); // record starting point
2722   }
2723 
2724   if (aggregate) {
2725     ts.update(); // record starting point
2726     MutexLockerEx mu3(function_lock, Mutex::_no_safepoint_check_flag);
2727     if (function_lock != NULL) {
2728       out->print_cr("\n__ CodeCache (function) lock wait took %10.3f seconds _________\n", ts.seconds());
2729     }
2730 
2731     ts.update(); // record starting point
2732     CodeCache::aggregate(out, granularity);
2733     if (function_lock != NULL) {
2734       out->print_cr("\n__ CodeCache (function) lock hold took %10.3f seconds _________\n", ts.seconds());
2735     }
2736   }
2737 
2738   if (usedSpace) CodeCache::print_usedSpace(out);
2739   if (freeSpace) CodeCache::print_freeSpace(out);
2740   if (methodCount) CodeCache::print_count(out);
2741   if (methodSpace) CodeCache::print_space(out);
2742   if (methodAge) CodeCache::print_age(out);
2743   if (methodNames) {
2744     // print_names() has shown to be sensitive to concurrent CodeHeap modifications.
2745     // Therefore, request  the CodeCache_lock before calling...
2746     MutexLockerEx mu3(function_lock, Mutex::_no_safepoint_check_flag);
2747     CodeCache::print_names(out);
2748   }
2749   if (discard) CodeCache::discard(out);
2750 
2751   if (global_lock != NULL) {
2752     out->print_cr("\n__ CodeCache (global) lock hold took %10.3f seconds _________\n", ts_global.seconds());
2753   }
2754   out->print_cr("\n__ CodeHeapStateAnalytics total duration %10.3f seconds _________\n", ts_total.seconds());
2755 }