1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "gc/shared/barrierSet.hpp"
  28 #include "gc/shared/c2/barrierSetC2.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "oops/objArrayKlass.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/cfgnode.hpp"
  35 #include "opto/connode.hpp"
  36 #include "opto/convertnode.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/machnode.hpp"
  39 #include "opto/movenode.hpp"
  40 #include "opto/narrowptrnode.hpp"
  41 #include "opto/mulnode.hpp"
  42 #include "opto/phaseX.hpp"
  43 #include "opto/regmask.hpp"
  44 #include "opto/runtime.hpp"
  45 #include "opto/subnode.hpp"
  46 #include "opto/valuetypenode.hpp"
  47 #include "utilities/vmError.hpp"
  48 
  49 // Portions of code courtesy of Clifford Click
  50 
  51 // Optimization - Graph Style
  52 
  53 //=============================================================================
  54 //------------------------------Value------------------------------------------
  55 // Compute the type of the RegionNode.
  56 const Type* RegionNode::Value(PhaseGVN* phase) const {
  57   for( uint i=1; i<req(); ++i ) {       // For all paths in
  58     Node *n = in(i);            // Get Control source
  59     if( !n ) continue;          // Missing inputs are TOP
  60     if( phase->type(n) == Type::CONTROL )
  61       return Type::CONTROL;
  62   }
  63   return Type::TOP;             // All paths dead?  Then so are we
  64 }
  65 
  66 //------------------------------Identity---------------------------------------
  67 // Check for Region being Identity.
  68 Node* RegionNode::Identity(PhaseGVN* phase) {
  69   // Cannot have Region be an identity, even if it has only 1 input.
  70   // Phi users cannot have their Region input folded away for them,
  71   // since they need to select the proper data input
  72   return this;
  73 }
  74 
  75 //------------------------------merge_region-----------------------------------
  76 // If a Region flows into a Region, merge into one big happy merge.  This is
  77 // hard to do if there is stuff that has to happen
  78 static Node *merge_region(RegionNode *region, PhaseGVN *phase) {
  79   if( region->Opcode() != Op_Region ) // Do not do to LoopNodes
  80     return NULL;
  81   Node *progress = NULL;        // Progress flag
  82   PhaseIterGVN *igvn = phase->is_IterGVN();
  83 
  84   uint rreq = region->req();
  85   for( uint i = 1; i < rreq; i++ ) {
  86     Node *r = region->in(i);
  87     if( r && r->Opcode() == Op_Region && // Found a region?
  88         r->in(0) == r &&        // Not already collapsed?
  89         r != region &&          // Avoid stupid situations
  90         r->outcnt() == 2 ) {    // Self user and 'region' user only?
  91       assert(!r->as_Region()->has_phi(), "no phi users");
  92       if( !progress ) {         // No progress
  93         if (region->has_phi()) {
  94           return NULL;        // Only flatten if no Phi users
  95           // igvn->hash_delete( phi );
  96         }
  97         igvn->hash_delete( region );
  98         progress = region;      // Making progress
  99       }
 100       igvn->hash_delete( r );
 101 
 102       // Append inputs to 'r' onto 'region'
 103       for( uint j = 1; j < r->req(); j++ ) {
 104         // Move an input from 'r' to 'region'
 105         region->add_req(r->in(j));
 106         r->set_req(j, phase->C->top());
 107         // Update phis of 'region'
 108         //for( uint k = 0; k < max; k++ ) {
 109         //  Node *phi = region->out(k);
 110         //  if( phi->is_Phi() ) {
 111         //    phi->add_req(phi->in(i));
 112         //  }
 113         //}
 114 
 115         rreq++;                 // One more input to Region
 116       } // Found a region to merge into Region
 117       igvn->_worklist.push(r);
 118       // Clobber pointer to the now dead 'r'
 119       region->set_req(i, phase->C->top());
 120     }
 121   }
 122 
 123   return progress;
 124 }
 125 
 126 
 127 
 128 //--------------------------------has_phi--------------------------------------
 129 // Helper function: Return any PhiNode that uses this region or NULL
 130 PhiNode* RegionNode::has_phi() const {
 131   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 132     Node* phi = fast_out(i);
 133     if (phi->is_Phi()) {   // Check for Phi users
 134       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 135       return phi->as_Phi();  // this one is good enough
 136     }
 137   }
 138 
 139   return NULL;
 140 }
 141 
 142 
 143 //-----------------------------has_unique_phi----------------------------------
 144 // Helper function: Return the only PhiNode that uses this region or NULL
 145 PhiNode* RegionNode::has_unique_phi() const {
 146   // Check that only one use is a Phi
 147   PhiNode* only_phi = NULL;
 148   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 149     Node* phi = fast_out(i);
 150     if (phi->is_Phi()) {   // Check for Phi users
 151       assert(phi->in(0) == (Node*)this, "phi uses region only via in(0)");
 152       if (only_phi == NULL) {
 153         only_phi = phi->as_Phi();
 154       } else {
 155         return NULL;  // multiple phis
 156       }
 157     }
 158   }
 159 
 160   return only_phi;
 161 }
 162 
 163 
 164 //------------------------------check_phi_clipping-----------------------------
 165 // Helper function for RegionNode's identification of FP clipping
 166 // Check inputs to the Phi
 167 static bool check_phi_clipping( PhiNode *phi, ConNode * &min, uint &min_idx, ConNode * &max, uint &max_idx, Node * &val, uint &val_idx ) {
 168   min     = NULL;
 169   max     = NULL;
 170   val     = NULL;
 171   min_idx = 0;
 172   max_idx = 0;
 173   val_idx = 0;
 174   uint  phi_max = phi->req();
 175   if( phi_max == 4 ) {
 176     for( uint j = 1; j < phi_max; ++j ) {
 177       Node *n = phi->in(j);
 178       int opcode = n->Opcode();
 179       switch( opcode ) {
 180       case Op_ConI:
 181         {
 182           if( min == NULL ) {
 183             min     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 184             min_idx = j;
 185           } else {
 186             max     = n->Opcode() == Op_ConI ? (ConNode*)n : NULL;
 187             max_idx = j;
 188             if( min->get_int() > max->get_int() ) {
 189               // Swap min and max
 190               ConNode *temp;
 191               uint     temp_idx;
 192               temp     = min;     min     = max;     max     = temp;
 193               temp_idx = min_idx; min_idx = max_idx; max_idx = temp_idx;
 194             }
 195           }
 196         }
 197         break;
 198       default:
 199         {
 200           val = n;
 201           val_idx = j;
 202         }
 203         break;
 204       }
 205     }
 206   }
 207   return ( min && max && val && (min->get_int() <= 0) && (max->get_int() >=0) );
 208 }
 209 
 210 
 211 //------------------------------check_if_clipping------------------------------
 212 // Helper function for RegionNode's identification of FP clipping
 213 // Check that inputs to Region come from two IfNodes,
 214 //
 215 //            If
 216 //      False    True
 217 //       If        |
 218 //  False  True    |
 219 //    |      |     |
 220 //  RegionNode_inputs
 221 //
 222 static bool check_if_clipping( const RegionNode *region, IfNode * &bot_if, IfNode * &top_if ) {
 223   top_if = NULL;
 224   bot_if = NULL;
 225 
 226   // Check control structure above RegionNode for (if  ( if  ) )
 227   Node *in1 = region->in(1);
 228   Node *in2 = region->in(2);
 229   Node *in3 = region->in(3);
 230   // Check that all inputs are projections
 231   if( in1->is_Proj() && in2->is_Proj() && in3->is_Proj() ) {
 232     Node *in10 = in1->in(0);
 233     Node *in20 = in2->in(0);
 234     Node *in30 = in3->in(0);
 235     // Check that #1 and #2 are ifTrue and ifFalse from same If
 236     if( in10 != NULL && in10->is_If() &&
 237         in20 != NULL && in20->is_If() &&
 238         in30 != NULL && in30->is_If() && in10 == in20 &&
 239         (in1->Opcode() != in2->Opcode()) ) {
 240       Node  *in100 = in10->in(0);
 241       Node *in1000 = (in100 != NULL && in100->is_Proj()) ? in100->in(0) : NULL;
 242       // Check that control for in10 comes from other branch of IF from in3
 243       if( in1000 != NULL && in1000->is_If() &&
 244           in30 == in1000 && (in3->Opcode() != in100->Opcode()) ) {
 245         // Control pattern checks
 246         top_if = (IfNode*)in1000;
 247         bot_if = (IfNode*)in10;
 248       }
 249     }
 250   }
 251 
 252   return (top_if != NULL);
 253 }
 254 
 255 
 256 //------------------------------check_convf2i_clipping-------------------------
 257 // Helper function for RegionNode's identification of FP clipping
 258 // Verify that the value input to the phi comes from "ConvF2I; LShift; RShift"
 259 static bool check_convf2i_clipping( PhiNode *phi, uint idx, ConvF2INode * &convf2i, Node *min, Node *max) {
 260   convf2i = NULL;
 261 
 262   // Check for the RShiftNode
 263   Node *rshift = phi->in(idx);
 264   assert( rshift, "Previous checks ensure phi input is present");
 265   if( rshift->Opcode() != Op_RShiftI )  { return false; }
 266 
 267   // Check for the LShiftNode
 268   Node *lshift = rshift->in(1);
 269   assert( lshift, "Previous checks ensure phi input is present");
 270   if( lshift->Opcode() != Op_LShiftI )  { return false; }
 271 
 272   // Check for the ConvF2INode
 273   Node *conv = lshift->in(1);
 274   if( conv->Opcode() != Op_ConvF2I ) { return false; }
 275 
 276   // Check that shift amounts are only to get sign bits set after F2I
 277   jint max_cutoff     = max->get_int();
 278   jint min_cutoff     = min->get_int();
 279   jint left_shift     = lshift->in(2)->get_int();
 280   jint right_shift    = rshift->in(2)->get_int();
 281   jint max_post_shift = nth_bit(BitsPerJavaInteger - left_shift - 1);
 282   if( left_shift != right_shift ||
 283       0 > left_shift || left_shift >= BitsPerJavaInteger ||
 284       max_post_shift < max_cutoff ||
 285       max_post_shift < -min_cutoff ) {
 286     // Shifts are necessary but current transformation eliminates them
 287     return false;
 288   }
 289 
 290   // OK to return the result of ConvF2I without shifting
 291   convf2i = (ConvF2INode*)conv;
 292   return true;
 293 }
 294 
 295 
 296 //------------------------------check_compare_clipping-------------------------
 297 // Helper function for RegionNode's identification of FP clipping
 298 static bool check_compare_clipping( bool less_than, IfNode *iff, ConNode *limit, Node * & input ) {
 299   Node *i1 = iff->in(1);
 300   if ( !i1->is_Bool() ) { return false; }
 301   BoolNode *bool1 = i1->as_Bool();
 302   if(       less_than && bool1->_test._test != BoolTest::le ) { return false; }
 303   else if( !less_than && bool1->_test._test != BoolTest::lt ) { return false; }
 304   const Node *cmpF = bool1->in(1);
 305   if( cmpF->Opcode() != Op_CmpF )      { return false; }
 306   // Test that the float value being compared against
 307   // is equivalent to the int value used as a limit
 308   Node *nodef = cmpF->in(2);
 309   if( nodef->Opcode() != Op_ConF ) { return false; }
 310   jfloat conf = nodef->getf();
 311   jint   coni = limit->get_int();
 312   if( ((int)conf) != coni )        { return false; }
 313   input = cmpF->in(1);
 314   return true;
 315 }
 316 
 317 //------------------------------is_unreachable_region--------------------------
 318 // Find if the Region node is reachable from the root.
 319 bool RegionNode::is_unreachable_region(PhaseGVN *phase) const {
 320   assert(req() == 2, "");
 321 
 322   // First, cut the simple case of fallthrough region when NONE of
 323   // region's phis references itself directly or through a data node.
 324   uint max = outcnt();
 325   uint i;
 326   for (i = 0; i < max; i++) {
 327     Node* phi = raw_out(i);
 328     if (phi != NULL && phi->is_Phi()) {
 329       assert(phase->eqv(phi->in(0), this) && phi->req() == 2, "");
 330       if (phi->outcnt() == 0)
 331         continue; // Safe case - no loops
 332       if (phi->outcnt() == 1) {
 333         Node* u = phi->raw_out(0);
 334         // Skip if only one use is an other Phi or Call or Uncommon trap.
 335         // It is safe to consider this case as fallthrough.
 336         if (u != NULL && (u->is_Phi() || u->is_CFG()))
 337           continue;
 338       }
 339       // Check when phi references itself directly or through an other node.
 340       if (phi->as_Phi()->simple_data_loop_check(phi->in(1)) >= PhiNode::Unsafe)
 341         break; // Found possible unsafe data loop.
 342     }
 343   }
 344   if (i >= max)
 345     return false; // An unsafe case was NOT found - don't need graph walk.
 346 
 347   // Unsafe case - check if the Region node is reachable from root.
 348   ResourceMark rm;
 349 
 350   Arena *a = Thread::current()->resource_area();
 351   Node_List nstack(a);
 352   VectorSet visited(a);
 353 
 354   // Mark all control nodes reachable from root outputs
 355   Node *n = (Node*)phase->C->root();
 356   nstack.push(n);
 357   visited.set(n->_idx);
 358   while (nstack.size() != 0) {
 359     n = nstack.pop();
 360     uint max = n->outcnt();
 361     for (uint i = 0; i < max; i++) {
 362       Node* m = n->raw_out(i);
 363       if (m != NULL && m->is_CFG()) {
 364         if (phase->eqv(m, this)) {
 365           return false; // We reached the Region node - it is not dead.
 366         }
 367         if (!visited.test_set(m->_idx))
 368           nstack.push(m);
 369       }
 370     }
 371   }
 372 
 373   return true; // The Region node is unreachable - it is dead.
 374 }
 375 
 376 Node* PhiNode::try_clean_mem_phi(PhaseGVN *phase) {
 377   // Incremental inlining + PhaseStringOpts sometimes produce:
 378   //
 379   // cmpP with 1 top input
 380   //           |
 381   //          If
 382   //         /  \
 383   //   IfFalse  IfTrue  /- Some Node
 384   //         \  /      /    /
 385   //        Region    / /-MergeMem
 386   //             \---Phi
 387   //
 388   //
 389   // It's expected by PhaseStringOpts that the Region goes away and is
 390   // replaced by If's control input but because there's still a Phi,
 391   // the Region stays in the graph. The top input from the cmpP is
 392   // propagated forward and a subgraph that is useful goes away. The
 393   // code below replaces the Phi with the MergeMem so that the Region
 394   // is simplified.
 395 
 396   if (type() == Type::MEMORY && is_diamond_phi(true)) {
 397     MergeMemNode* m = NULL;
 398     assert(req() == 3, "same as region");
 399     Node* r = in(0);
 400     for (uint i = 1; i < 3; ++i) {
 401       Node *mem = in(i);
 402       if (mem && mem->is_MergeMem() && r->in(i)->outcnt() == 1) {
 403         // Nothing is control-dependent on path #i except the region itself.
 404         m = mem->as_MergeMem();
 405         uint j = 3 - i;
 406         Node* other = in(j);
 407         if (other && other == m->base_memory()) {
 408           // m is a successor memory to other, and is not pinned inside the diamond, so push it out.
 409           // This will allow the diamond to collapse completely.
 410           return m;
 411         }
 412       }
 413     }
 414   }
 415   return NULL;
 416 }
 417 
 418 //------------------------------Ideal------------------------------------------
 419 // Return a node which is more "ideal" than the current node.  Must preserve
 420 // the CFG, but we can still strip out dead paths.
 421 Node *RegionNode::Ideal(PhaseGVN *phase, bool can_reshape) {
 422   if( !can_reshape && !in(0) ) return NULL;     // Already degraded to a Copy
 423   assert(!in(0) || !in(0)->is_Root(), "not a specially hidden merge");
 424 
 425   // Check for RegionNode with no Phi users and both inputs come from either
 426   // arm of the same IF.  If found, then the control-flow split is useless.
 427   bool has_phis = false;
 428   if (can_reshape) {            // Need DU info to check for Phi users
 429     has_phis = (has_phi() != NULL);       // Cache result
 430     if (has_phis) {
 431       PhiNode* phi = has_unique_phi();
 432       if (phi != NULL) {
 433         Node* m = phi->try_clean_mem_phi(phase);
 434         if (m != NULL) {
 435           phase->is_IterGVN()->replace_node(phi, m);
 436           has_phis = false;
 437         }
 438       }
 439     }
 440 
 441     if (!has_phis) {            // No Phi users?  Nothing merging?
 442       for (uint i = 1; i < req()-1; i++) {
 443         Node *if1 = in(i);
 444         if( !if1 ) continue;
 445         Node *iff = if1->in(0);
 446         if( !iff || !iff->is_If() ) continue;
 447         for( uint j=i+1; j<req(); j++ ) {
 448           if( in(j) && in(j)->in(0) == iff &&
 449               if1->Opcode() != in(j)->Opcode() ) {
 450             // Add the IF Projections to the worklist. They (and the IF itself)
 451             // will be eliminated if dead.
 452             phase->is_IterGVN()->add_users_to_worklist(iff);
 453             set_req(i, iff->in(0));// Skip around the useless IF diamond
 454             set_req(j, NULL);
 455             return this;      // Record progress
 456           }
 457         }
 458       }
 459     }
 460   }
 461 
 462   // Remove TOP or NULL input paths. If only 1 input path remains, this Region
 463   // degrades to a copy.
 464   bool add_to_worklist = false;
 465   bool modified = false;
 466   int cnt = 0;                  // Count of values merging
 467   DEBUG_ONLY( int cnt_orig = req(); ) // Save original inputs count
 468   int del_it = 0;               // The last input path we delete
 469   // For all inputs...
 470   for( uint i=1; i<req(); ++i ){// For all paths in
 471     Node *n = in(i);            // Get the input
 472     if( n != NULL ) {
 473       // Remove useless control copy inputs
 474       if( n->is_Region() && n->as_Region()->is_copy() ) {
 475         set_req(i, n->nonnull_req());
 476         modified = true;
 477         i--;
 478         continue;
 479       }
 480       if( n->is_Proj() ) {      // Remove useless rethrows
 481         Node *call = n->in(0);
 482         if (call->is_Call() && call->as_Call()->entry_point() == OptoRuntime::rethrow_stub()) {
 483           set_req(i, call->in(0));
 484           modified = true;
 485           i--;
 486           continue;
 487         }
 488       }
 489       if( phase->type(n) == Type::TOP ) {
 490         set_req(i, NULL);       // Ignore TOP inputs
 491         modified = true;
 492         i--;
 493         continue;
 494       }
 495       cnt++;                    // One more value merging
 496 
 497     } else if (can_reshape) {   // Else found dead path with DU info
 498       PhaseIterGVN *igvn = phase->is_IterGVN();
 499       del_req(i);               // Yank path from self
 500       del_it = i;
 501       uint max = outcnt();
 502       DUIterator j;
 503       bool progress = true;
 504       while(progress) {         // Need to establish property over all users
 505         progress = false;
 506         for (j = outs(); has_out(j); j++) {
 507           Node *n = out(j);
 508           if( n->req() != req() && n->is_Phi() ) {
 509             assert( n->in(0) == this, "" );
 510             igvn->hash_delete(n); // Yank from hash before hacking edges
 511             n->set_req_X(i,NULL,igvn);// Correct DU info
 512             n->del_req(i);        // Yank path from Phis
 513             if( max != outcnt() ) {
 514               progress = true;
 515               j = refresh_out_pos(j);
 516               max = outcnt();
 517             }
 518           }
 519         }
 520       }
 521       add_to_worklist = true;
 522       i--;
 523     }
 524   }
 525 
 526   if (can_reshape && cnt == 1) {
 527     // Is it dead loop?
 528     // If it is LoopNopde it had 2 (+1 itself) inputs and
 529     // one of them was cut. The loop is dead if it was EntryContol.
 530     // Loop node may have only one input because entry path
 531     // is removed in PhaseIdealLoop::Dominators().
 532     assert(!this->is_Loop() || cnt_orig <= 3, "Loop node should have 3 or less inputs");
 533     if ((this->is_Loop() && (del_it == LoopNode::EntryControl ||
 534                              (del_it == 0 && is_unreachable_region(phase)))) ||
 535         (!this->is_Loop() && has_phis && is_unreachable_region(phase))) {
 536       // Yes,  the region will be removed during the next step below.
 537       // Cut the backedge input and remove phis since no data paths left.
 538       // We don't cut outputs to other nodes here since we need to put them
 539       // on the worklist.
 540       PhaseIterGVN *igvn = phase->is_IterGVN();
 541       if (in(1)->outcnt() == 1) {
 542         igvn->_worklist.push(in(1));
 543       }
 544       del_req(1);
 545       cnt = 0;
 546       assert( req() == 1, "no more inputs expected" );
 547       uint max = outcnt();
 548       bool progress = true;
 549       Node *top = phase->C->top();
 550       DUIterator j;
 551       while(progress) {
 552         progress = false;
 553         for (j = outs(); has_out(j); j++) {
 554           Node *n = out(j);
 555           if( n->is_Phi() ) {
 556             assert( igvn->eqv(n->in(0), this), "" );
 557             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 558             // Break dead loop data path.
 559             // Eagerly replace phis with top to avoid phis copies generation.
 560             igvn->replace_node(n, top);
 561             if( max != outcnt() ) {
 562               progress = true;
 563               j = refresh_out_pos(j);
 564               max = outcnt();
 565             }
 566           }
 567         }
 568       }
 569       add_to_worklist = true;
 570     }
 571   }
 572   if (add_to_worklist) {
 573     phase->is_IterGVN()->add_users_to_worklist(this); // Revisit collapsed Phis
 574   }
 575 
 576   if( cnt <= 1 ) {              // Only 1 path in?
 577     set_req(0, NULL);           // Null control input for region copy
 578     if( cnt == 0 && !can_reshape) { // Parse phase - leave the node as it is.
 579       // No inputs or all inputs are NULL.
 580       return NULL;
 581     } else if (can_reshape) {   // Optimization phase - remove the node
 582       PhaseIterGVN *igvn = phase->is_IterGVN();
 583       // Strip mined (inner) loop is going away, remove outer loop.
 584       if (is_CountedLoop() &&
 585           as_Loop()->is_strip_mined()) {
 586         Node* outer_sfpt = as_CountedLoop()->outer_safepoint();
 587         Node* outer_out = as_CountedLoop()->outer_loop_exit();
 588         if (outer_sfpt != NULL && outer_out != NULL) {
 589           Node* in = outer_sfpt->in(0);
 590           igvn->replace_node(outer_out, in);
 591           LoopNode* outer = as_CountedLoop()->outer_loop();
 592           igvn->replace_input_of(outer, LoopNode::LoopBackControl, igvn->C->top());
 593         }
 594       }
 595       Node *parent_ctrl;
 596       if( cnt == 0 ) {
 597         assert( req() == 1, "no inputs expected" );
 598         // During IGVN phase such region will be subsumed by TOP node
 599         // so region's phis will have TOP as control node.
 600         // Kill phis here to avoid it. PhiNode::is_copy() will be always false.
 601         // Also set other user's input to top.
 602         parent_ctrl = phase->C->top();
 603       } else {
 604         // The fallthrough case since we already checked dead loops above.
 605         parent_ctrl = in(1);
 606         assert(parent_ctrl != NULL, "Region is a copy of some non-null control");
 607         assert(!igvn->eqv(parent_ctrl, this), "Close dead loop");
 608       }
 609       if (!add_to_worklist)
 610         igvn->add_users_to_worklist(this); // Check for further allowed opts
 611       for (DUIterator_Last imin, i = last_outs(imin); i >= imin; --i) {
 612         Node* n = last_out(i);
 613         igvn->hash_delete(n); // Remove from worklist before modifying edges
 614         if( n->is_Phi() ) {   // Collapse all Phis
 615           // Eagerly replace phis to avoid copies generation.
 616           Node* in;
 617           if( cnt == 0 ) {
 618             assert( n->req() == 1, "No data inputs expected" );
 619             in = parent_ctrl; // replaced by top
 620           } else {
 621             assert( n->req() == 2 &&  n->in(1) != NULL, "Only one data input expected" );
 622             in = n->in(1);               // replaced by unique input
 623             if( n->as_Phi()->is_unsafe_data_reference(in) )
 624               in = phase->C->top();      // replaced by top
 625           }
 626           igvn->replace_node(n, in);
 627         }
 628         else if( n->is_Region() ) { // Update all incoming edges
 629           assert( !igvn->eqv(n, this), "Must be removed from DefUse edges");
 630           uint uses_found = 0;
 631           for( uint k=1; k < n->req(); k++ ) {
 632             if( n->in(k) == this ) {
 633               n->set_req(k, parent_ctrl);
 634               uses_found++;
 635             }
 636           }
 637           if( uses_found > 1 ) { // (--i) done at the end of the loop.
 638             i -= (uses_found - 1);
 639           }
 640         }
 641         else {
 642           assert( igvn->eqv(n->in(0), this), "Expect RegionNode to be control parent");
 643           n->set_req(0, parent_ctrl);
 644         }
 645 #ifdef ASSERT
 646         for( uint k=0; k < n->req(); k++ ) {
 647           assert( !igvn->eqv(n->in(k), this), "All uses of RegionNode should be gone");
 648         }
 649 #endif
 650       }
 651       // Remove the RegionNode itself from DefUse info
 652       igvn->remove_dead_node(this);
 653       return NULL;
 654     }
 655     return this;                // Record progress
 656   }
 657 
 658 
 659   // If a Region flows into a Region, merge into one big happy merge.
 660   if (can_reshape) {
 661     Node *m = merge_region(this, phase);
 662     if (m != NULL)  return m;
 663   }
 664 
 665   // Check if this region is the root of a clipping idiom on floats
 666   if( ConvertFloat2IntClipping && can_reshape && req() == 4 ) {
 667     // Check that only one use is a Phi and that it simplifies to two constants +
 668     PhiNode* phi = has_unique_phi();
 669     if (phi != NULL) {          // One Phi user
 670       // Check inputs to the Phi
 671       ConNode *min;
 672       ConNode *max;
 673       Node    *val;
 674       uint     min_idx;
 675       uint     max_idx;
 676       uint     val_idx;
 677       if( check_phi_clipping( phi, min, min_idx, max, max_idx, val, val_idx )  ) {
 678         IfNode *top_if;
 679         IfNode *bot_if;
 680         if( check_if_clipping( this, bot_if, top_if ) ) {
 681           // Control pattern checks, now verify compares
 682           Node   *top_in = NULL;   // value being compared against
 683           Node   *bot_in = NULL;
 684           if( check_compare_clipping( true,  bot_if, min, bot_in ) &&
 685               check_compare_clipping( false, top_if, max, top_in ) ) {
 686             if( bot_in == top_in ) {
 687               PhaseIterGVN *gvn = phase->is_IterGVN();
 688               assert( gvn != NULL, "Only had DefUse info in IterGVN");
 689               // Only remaining check is that bot_in == top_in == (Phi's val + mods)
 690 
 691               // Check for the ConvF2INode
 692               ConvF2INode *convf2i;
 693               if( check_convf2i_clipping( phi, val_idx, convf2i, min, max ) &&
 694                 convf2i->in(1) == bot_in ) {
 695                 // Matched pattern, including LShiftI; RShiftI, replace with integer compares
 696                 // max test
 697                 Node *cmp   = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, min ));
 698                 Node *boo   = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::lt ));
 699                 IfNode *iff = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( top_if->in(0), boo, PROB_UNLIKELY_MAG(5), top_if->_fcnt ));
 700                 Node *if_min= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 701                 Node *ifF   = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 702                 // min test
 703                 cmp         = gvn->register_new_node_with_optimizer(new CmpINode( convf2i, max ));
 704                 boo         = gvn->register_new_node_with_optimizer(new BoolNode( cmp, BoolTest::gt ));
 705                 iff         = (IfNode*)gvn->register_new_node_with_optimizer(new IfNode( ifF, boo, PROB_UNLIKELY_MAG(5), bot_if->_fcnt ));
 706                 Node *if_max= gvn->register_new_node_with_optimizer(new IfTrueNode (iff));
 707                 ifF         = gvn->register_new_node_with_optimizer(new IfFalseNode(iff));
 708                 // update input edges to region node
 709                 set_req_X( min_idx, if_min, gvn );
 710                 set_req_X( max_idx, if_max, gvn );
 711                 set_req_X( val_idx, ifF,    gvn );
 712                 // remove unnecessary 'LShiftI; RShiftI' idiom
 713                 gvn->hash_delete(phi);
 714                 phi->set_req_X( val_idx, convf2i, gvn );
 715                 gvn->hash_find_insert(phi);
 716                 // Return transformed region node
 717                 return this;
 718               }
 719             }
 720           }
 721         }
 722       }
 723     }
 724   }
 725 
 726   if (can_reshape) {
 727     modified |= optimize_trichotomy(phase->is_IterGVN());
 728   }
 729 
 730   return modified ? this : NULL;
 731 }
 732 
 733 //------------------------------optimize_trichotomy--------------------------
 734 // Optimize nested comparisons of the following kind:
 735 //
 736 // int compare(int a, int b) {
 737 //   return (a < b) ? -1 : (a == b) ? 0 : 1;
 738 // }
 739 //
 740 // Shape 1:
 741 // if (compare(a, b) == 1) { ... } -> if (a > b) { ... }
 742 //
 743 // Shape 2:
 744 // if (compare(a, b) == 0) { ... } -> if (a == b) { ... }
 745 //
 746 // Above code leads to the following IR shapes where both Ifs compare the
 747 // same value and two out of three region inputs idx1 and idx2 map to
 748 // the same value and control flow.
 749 //
 750 // (1)   If                 (2)   If
 751 //      /  \                     /  \
 752 //   Proj  Proj               Proj  Proj
 753 //     |      \                |      \
 754 //     |       If              |      If                      If
 755 //     |      /  \             |     /  \                    /  \
 756 //     |   Proj  Proj          |  Proj  Proj      ==>     Proj  Proj
 757 //     |   /      /            \    |    /                  |    /
 758 //    Region     /              \   |   /                   |   /
 759 //         \    /                \  |  /                    |  /
 760 //         Region                Region                    Region
 761 //
 762 // The method returns true if 'this' is modified and false otherwise.
 763 bool RegionNode::optimize_trichotomy(PhaseIterGVN* igvn) {
 764   int idx1 = 1, idx2 = 2;
 765   Node* region = NULL;
 766   if (req() == 3 && in(1) != NULL && in(2) != NULL) {
 767     // Shape 1: Check if one of the inputs is a region that merges two control
 768     // inputs and has no other users (especially no Phi users).
 769     region = in(1)->isa_Region() ? in(1) : in(2)->isa_Region();
 770     if (region == NULL || region->outcnt() != 2 || region->req() != 3) {
 771       return false; // No suitable region input found
 772     }
 773   } else if (req() == 4) {
 774     // Shape 2: Check if two control inputs map to the same value of the unique phi
 775     // user and treat these as if they would come from another region (shape (1)).
 776     PhiNode* phi = has_unique_phi();
 777     if (phi == NULL) {
 778       return false; // No unique phi user
 779     }
 780     if (phi->in(idx1) != phi->in(idx2)) {
 781       idx2 = 3;
 782       if (phi->in(idx1) != phi->in(idx2)) {
 783         idx1 = 2;
 784         if (phi->in(idx1) != phi->in(idx2)) {
 785           return false; // No equal phi inputs found
 786         }
 787       }
 788     }
 789     assert(phi->in(idx1) == phi->in(idx2), "must be"); // Region is merging same value
 790     region = this;
 791   }
 792   if (region == NULL || region->in(idx1) == NULL || region->in(idx2) == NULL) {
 793     return false; // Region does not merge two control inputs
 794   }
 795   // At this point we know that region->in(idx1) and region->(idx2) map to the same
 796   // value and control flow. Now search for ifs that feed into these region inputs.
 797   ProjNode* proj1 = region->in(idx1)->isa_Proj();
 798   ProjNode* proj2 = region->in(idx2)->isa_Proj();
 799   if (proj1 == NULL || proj1->outcnt() != 1 ||
 800       proj2 == NULL || proj2->outcnt() != 1) {
 801     return false; // No projection inputs with region as unique user found
 802   }
 803   assert(proj1 != proj2, "should be different projections");
 804   IfNode* iff1 = proj1->in(0)->isa_If();
 805   IfNode* iff2 = proj2->in(0)->isa_If();
 806   if (iff1 == NULL || iff1->outcnt() != 2 ||
 807       iff2 == NULL || iff2->outcnt() != 2) {
 808     return false; // No ifs found
 809   }
 810   if (iff1 == iff2) {
 811     igvn->add_users_to_worklist(iff1); // Make sure dead if is eliminated
 812     igvn->replace_input_of(region, idx1, iff1->in(0));
 813     igvn->replace_input_of(region, idx2, igvn->C->top());
 814     return (region == this); // Remove useless if (both projections map to the same control/value)
 815   }
 816   BoolNode* bol1 = iff1->in(1)->isa_Bool();
 817   BoolNode* bol2 = iff2->in(1)->isa_Bool();
 818   if (bol1 == NULL || bol2 == NULL) {
 819     return false; // No bool inputs found
 820   }
 821   Node* cmp1 = bol1->in(1);
 822   Node* cmp2 = bol2->in(1);
 823   bool commute = false;
 824   if (!cmp1->is_Cmp() || !cmp2->is_Cmp()) {
 825     return false; // No comparison
 826   } else if (cmp1->Opcode() == Op_CmpF || cmp1->Opcode() == Op_CmpD ||
 827              cmp2->Opcode() == Op_CmpF || cmp2->Opcode() == Op_CmpD ||
 828              cmp1->Opcode() == Op_CmpP || cmp1->Opcode() == Op_CmpN ||
 829              cmp2->Opcode() == Op_CmpP || cmp2->Opcode() == Op_CmpN) {
 830     // Floats and pointers don't exactly obey trichotomy. To be on the safe side, don't transform their tests.
 831     return false;
 832   } else if (cmp1 != cmp2) {
 833     if (cmp1->in(1) == cmp2->in(2) &&
 834         cmp1->in(2) == cmp2->in(1)) {
 835       commute = true; // Same but swapped inputs, commute the test
 836     } else {
 837       return false; // Ifs are not comparing the same values
 838     }
 839   }
 840   proj1 = proj1->other_if_proj();
 841   proj2 = proj2->other_if_proj();
 842   if (!((proj1->unique_ctrl_out() == iff2 &&
 843          proj2->unique_ctrl_out() == this) ||
 844         (proj2->unique_ctrl_out() == iff1 &&
 845          proj1->unique_ctrl_out() == this))) {
 846     return false; // Ifs are not connected through other projs
 847   }
 848   // Found 'iff -> proj -> iff -> proj -> this' shape where all other projs are merged
 849   // through 'region' and map to the same value. Merge the boolean tests and replace
 850   // the ifs by a single comparison.
 851   BoolTest test1 = (proj1->_con == 1) ? bol1->_test : bol1->_test.negate();
 852   BoolTest test2 = (proj2->_con == 1) ? bol2->_test : bol2->_test.negate();
 853   test1 = commute ? test1.commute() : test1;
 854   // After possibly commuting test1, if we can merge test1 & test2, then proj2/iff2/bol2 are the nodes to refine.
 855   BoolTest::mask res = test1.merge(test2);
 856   if (res == BoolTest::illegal) {
 857     return false; // Unable to merge tests
 858   }
 859   // Adjust iff1 to always pass (only iff2 will remain)
 860   igvn->replace_input_of(iff1, 1, igvn->intcon(proj1->_con));
 861   if (res == BoolTest::never) {
 862     // Merged test is always false, adjust iff2 to always fail
 863     igvn->replace_input_of(iff2, 1, igvn->intcon(1 - proj2->_con));
 864   } else {
 865     // Replace bool input of iff2 with merged test
 866     BoolNode* new_bol = new BoolNode(bol2->in(1), res);
 867     igvn->replace_input_of(iff2, 1, igvn->transform((proj2->_con == 1) ? new_bol : new_bol->negate(igvn)));
 868   }
 869   return false;
 870 }
 871 
 872 const RegMask &RegionNode::out_RegMask() const {
 873   return RegMask::Empty;
 874 }
 875 
 876 // Find the one non-null required input.  RegionNode only
 877 Node *Node::nonnull_req() const {
 878   assert( is_Region(), "" );
 879   for( uint i = 1; i < _cnt; i++ )
 880     if( in(i) )
 881       return in(i);
 882   ShouldNotReachHere();
 883   return NULL;
 884 }
 885 
 886 
 887 //=============================================================================
 888 // note that these functions assume that the _adr_type field is flattened
 889 uint PhiNode::hash() const {
 890   const Type* at = _adr_type;
 891   return TypeNode::hash() + (at ? at->hash() : 0);
 892 }
 893 uint PhiNode::cmp( const Node &n ) const {
 894   return TypeNode::cmp(n) && _adr_type == ((PhiNode&)n)._adr_type;
 895 }
 896 static inline
 897 const TypePtr* flatten_phi_adr_type(const TypePtr* at) {
 898   if (at == NULL || at == TypePtr::BOTTOM)  return at;
 899   return Compile::current()->alias_type(at)->adr_type();
 900 }
 901 
 902 //----------------------------make---------------------------------------------
 903 // create a new phi with edges matching r and set (initially) to x
 904 PhiNode* PhiNode::make(Node* r, Node* x, const Type *t, const TypePtr* at) {
 905   uint preds = r->req();   // Number of predecessor paths
 906   assert(t != Type::MEMORY || at == flatten_phi_adr_type(at), "flatten at");
 907   PhiNode* p = new PhiNode(r, t, at);
 908   for (uint j = 1; j < preds; j++) {
 909     // Fill in all inputs, except those which the region does not yet have
 910     if (r->in(j) != NULL)
 911       p->init_req(j, x);
 912   }
 913   return p;
 914 }
 915 PhiNode* PhiNode::make(Node* r, Node* x) {
 916   const Type*    t  = x->bottom_type();
 917   const TypePtr* at = NULL;
 918   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 919   return make(r, x, t, at);
 920 }
 921 PhiNode* PhiNode::make_blank(Node* r, Node* x) {
 922   const Type*    t  = x->bottom_type();
 923   const TypePtr* at = NULL;
 924   if (t == Type::MEMORY)  at = flatten_phi_adr_type(x->adr_type());
 925   return new PhiNode(r, t, at);
 926 }
 927 
 928 
 929 //------------------------slice_memory-----------------------------------------
 930 // create a new phi with narrowed memory type
 931 PhiNode* PhiNode::slice_memory(const TypePtr* adr_type) const {
 932   PhiNode* mem = (PhiNode*) clone();
 933   *(const TypePtr**)&mem->_adr_type = adr_type;
 934   // convert self-loops, or else we get a bad graph
 935   for (uint i = 1; i < req(); i++) {
 936     if ((const Node*)in(i) == this)  mem->set_req(i, mem);
 937   }
 938   mem->verify_adr_type();
 939   return mem;
 940 }
 941 
 942 //------------------------split_out_instance-----------------------------------
 943 // Split out an instance type from a bottom phi.
 944 PhiNode* PhiNode::split_out_instance(const TypePtr* at, PhaseIterGVN *igvn) const {
 945   const TypeOopPtr *t_oop = at->isa_oopptr();
 946   assert(t_oop != NULL && t_oop->is_known_instance(), "expecting instance oopptr");
 947   const TypePtr *t = adr_type();
 948   assert(type() == Type::MEMORY &&
 949          (t == TypePtr::BOTTOM || t == TypeRawPtr::BOTTOM ||
 950           t->isa_oopptr() && !t->is_oopptr()->is_known_instance() &&
 951           t->is_oopptr()->cast_to_exactness(true)
 952            ->is_oopptr()->cast_to_ptr_type(t_oop->ptr())
 953            ->is_oopptr()->cast_to_instance_id(t_oop->instance_id()) == t_oop),
 954          "bottom or raw memory required");
 955 
 956   // Check if an appropriate node already exists.
 957   Node *region = in(0);
 958   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 959     Node* use = region->fast_out(k);
 960     if( use->is_Phi()) {
 961       PhiNode *phi2 = use->as_Phi();
 962       if (phi2->type() == Type::MEMORY && phi2->adr_type() == at) {
 963         return phi2;
 964       }
 965     }
 966   }
 967   Compile *C = igvn->C;
 968   Arena *a = Thread::current()->resource_area();
 969   Node_Array node_map = new Node_Array(a);
 970   Node_Stack stack(a, C->live_nodes() >> 4);
 971   PhiNode *nphi = slice_memory(at);
 972   igvn->register_new_node_with_optimizer( nphi );
 973   node_map.map(_idx, nphi);
 974   stack.push((Node *)this, 1);
 975   while(!stack.is_empty()) {
 976     PhiNode *ophi = stack.node()->as_Phi();
 977     uint i = stack.index();
 978     assert(i >= 1, "not control edge");
 979     stack.pop();
 980     nphi = node_map[ophi->_idx]->as_Phi();
 981     for (; i < ophi->req(); i++) {
 982       Node *in = ophi->in(i);
 983       if (in == NULL || igvn->type(in) == Type::TOP)
 984         continue;
 985       Node *opt = MemNode::optimize_simple_memory_chain(in, t_oop, NULL, igvn);
 986       PhiNode *optphi = opt->is_Phi() ? opt->as_Phi() : NULL;
 987       if (optphi != NULL && optphi->adr_type() == TypePtr::BOTTOM) {
 988         opt = node_map[optphi->_idx];
 989         if (opt == NULL) {
 990           stack.push(ophi, i);
 991           nphi = optphi->slice_memory(at);
 992           igvn->register_new_node_with_optimizer( nphi );
 993           node_map.map(optphi->_idx, nphi);
 994           ophi = optphi;
 995           i = 0; // will get incremented at top of loop
 996           continue;
 997         }
 998       }
 999       nphi->set_req(i, opt);
1000     }
1001   }
1002   return nphi;
1003 }
1004 
1005 //------------------------verify_adr_type--------------------------------------
1006 #ifdef ASSERT
1007 void PhiNode::verify_adr_type(VectorSet& visited, const TypePtr* at) const {
1008   if (visited.test_set(_idx))  return;  //already visited
1009 
1010   // recheck constructor invariants:
1011   verify_adr_type(false);
1012 
1013   // recheck local phi/phi consistency:
1014   assert(_adr_type == at || _adr_type == TypePtr::BOTTOM,
1015          "adr_type must be consistent across phi nest");
1016 
1017   // walk around
1018   for (uint i = 1; i < req(); i++) {
1019     Node* n = in(i);
1020     if (n == NULL)  continue;
1021     const Node* np = in(i);
1022     if (np->is_Phi()) {
1023       np->as_Phi()->verify_adr_type(visited, at);
1024     } else if (n->bottom_type() == Type::TOP
1025                || (n->is_Mem() && n->in(MemNode::Address)->bottom_type() == Type::TOP)) {
1026       // ignore top inputs
1027     } else {
1028       const TypePtr* nat = flatten_phi_adr_type(n->adr_type());
1029       // recheck phi/non-phi consistency at leaves:
1030       assert((nat != NULL) == (at != NULL), "");
1031       assert(nat == at || nat == TypePtr::BOTTOM,
1032              "adr_type must be consistent at leaves of phi nest");
1033     }
1034   }
1035 }
1036 
1037 // Verify a whole nest of phis rooted at this one.
1038 void PhiNode::verify_adr_type(bool recursive) const {
1039   if (VMError::is_error_reported())  return;  // muzzle asserts when debugging an error
1040   if (Node::in_dump())               return;  // muzzle asserts when printing
1041 
1042   assert((_type == Type::MEMORY) == (_adr_type != NULL), "adr_type for memory phis only");
1043 
1044   if (!VerifyAliases)       return;  // verify thoroughly only if requested
1045 
1046   assert(_adr_type == flatten_phi_adr_type(_adr_type),
1047          "Phi::adr_type must be pre-normalized");
1048 
1049   if (recursive) {
1050     VectorSet visited(Thread::current()->resource_area());
1051     verify_adr_type(visited, _adr_type);
1052   }
1053 }
1054 #endif
1055 
1056 
1057 //------------------------------Value------------------------------------------
1058 // Compute the type of the PhiNode
1059 const Type* PhiNode::Value(PhaseGVN* phase) const {
1060   Node *r = in(0);              // RegionNode
1061   if( !r )                      // Copy or dead
1062     return in(1) ? phase->type(in(1)) : Type::TOP;
1063 
1064   // Note: During parsing, phis are often transformed before their regions.
1065   // This means we have to use type_or_null to defend against untyped regions.
1066   if( phase->type_or_null(r) == Type::TOP )  // Dead code?
1067     return Type::TOP;
1068 
1069   // Check for trip-counted loop.  If so, be smarter.
1070   CountedLoopNode* l = r->is_CountedLoop() ? r->as_CountedLoop() : NULL;
1071   if (l && ((const Node*)l->phi() == this)) { // Trip counted loop!
1072     // protect against init_trip() or limit() returning NULL
1073     if (l->can_be_counted_loop(phase)) {
1074       const Node *init   = l->init_trip();
1075       const Node *limit  = l->limit();
1076       const Node* stride = l->stride();
1077       if (init != NULL && limit != NULL && stride != NULL) {
1078         const TypeInt* lo = phase->type(init)->isa_int();
1079         const TypeInt* hi = phase->type(limit)->isa_int();
1080         const TypeInt* stride_t = phase->type(stride)->isa_int();
1081         if (lo != NULL && hi != NULL && stride_t != NULL) { // Dying loops might have TOP here
1082           assert(stride_t->_hi >= stride_t->_lo, "bad stride type");
1083           BoolTest::mask bt = l->loopexit()->test_trip();
1084           // If the loop exit condition is "not equal", the condition
1085           // would not trigger if init > limit (if stride > 0) or if
1086           // init < limit if (stride > 0) so we can't deduce bounds
1087           // for the iv from the exit condition.
1088           if (bt != BoolTest::ne) {
1089             if (stride_t->_hi < 0) {          // Down-counter loop
1090               swap(lo, hi);
1091               return TypeInt::make(MIN2(lo->_lo, hi->_lo) , hi->_hi, 3);
1092             } else if (stride_t->_lo >= 0) {
1093               return TypeInt::make(lo->_lo, MAX2(lo->_hi, hi->_hi), 3);
1094             }
1095           }
1096         }
1097       }
1098     } else if (l->in(LoopNode::LoopBackControl) != NULL &&
1099                in(LoopNode::EntryControl) != NULL &&
1100                phase->type(l->in(LoopNode::LoopBackControl)) == Type::TOP) {
1101       // During CCP, if we saturate the type of a counted loop's Phi
1102       // before the special code for counted loop above has a chance
1103       // to run (that is as long as the type of the backedge's control
1104       // is top), we might end up with non monotonic types
1105       return phase->type(in(LoopNode::EntryControl))->filter_speculative(_type);
1106     }
1107   }
1108 
1109   // Until we have harmony between classes and interfaces in the type
1110   // lattice, we must tread carefully around phis which implicitly
1111   // convert the one to the other.
1112   const TypePtr* ttp = _type->make_ptr();
1113   const TypeInstPtr* ttip = (ttp != NULL) ? ttp->isa_instptr() : NULL;
1114   const TypeKlassPtr* ttkp = (ttp != NULL) ? ttp->isa_klassptr() : NULL;
1115   bool is_intf = false;
1116   if (ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1117     is_intf = true;
1118   } else if (ttkp != NULL && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1119     is_intf = true;
1120   }
1121 
1122   // Default case: merge all inputs
1123   const Type *t = Type::TOP;        // Merged type starting value
1124   for (uint i = 1; i < req(); ++i) {// For all paths in
1125     // Reachable control path?
1126     if (r->in(i) && phase->type(r->in(i)) == Type::CONTROL) {
1127       const Type* ti = phase->type(in(i));
1128       // We assume that each input of an interface-valued Phi is a true
1129       // subtype of that interface.  This might not be true of the meet
1130       // of all the input types.  The lattice is not distributive in
1131       // such cases.  Ward off asserts in type.cpp by refusing to do
1132       // meets between interfaces and proper classes.
1133       const TypePtr* tip = ti->make_ptr();
1134       const TypeInstPtr* tiip = (tip != NULL) ? tip->isa_instptr() : NULL;
1135       if (tiip) {
1136         bool ti_is_intf = false;
1137         ciKlass* k = tiip->klass();
1138         if (k->is_loaded() && k->is_interface())
1139           ti_is_intf = true;
1140         if (is_intf != ti_is_intf)
1141           { t = _type; break; }
1142       }
1143       t = t->meet_speculative(ti);
1144     }
1145   }
1146 
1147   // The worst-case type (from ciTypeFlow) should be consistent with "t".
1148   // That is, we expect that "t->higher_equal(_type)" holds true.
1149   // There are various exceptions:
1150   // - Inputs which are phis might in fact be widened unnecessarily.
1151   //   For example, an input might be a widened int while the phi is a short.
1152   // - Inputs might be BotPtrs but this phi is dependent on a null check,
1153   //   and postCCP has removed the cast which encodes the result of the check.
1154   // - The type of this phi is an interface, and the inputs are classes.
1155   // - Value calls on inputs might produce fuzzy results.
1156   //   (Occurrences of this case suggest improvements to Value methods.)
1157   //
1158   // It is not possible to see Type::BOTTOM values as phi inputs,
1159   // because the ciTypeFlow pre-pass produces verifier-quality types.
1160   const Type* ft = t->filter_speculative(_type);  // Worst case type
1161 
1162 #ifdef ASSERT
1163   // The following logic has been moved into TypeOopPtr::filter.
1164   const Type* jt = t->join_speculative(_type);
1165   if (jt->empty()) {           // Emptied out???
1166 
1167     // Check for evil case of 't' being a class and '_type' expecting an
1168     // interface.  This can happen because the bytecodes do not contain
1169     // enough type info to distinguish a Java-level interface variable
1170     // from a Java-level object variable.  If we meet 2 classes which
1171     // both implement interface I, but their meet is at 'j/l/O' which
1172     // doesn't implement I, we have no way to tell if the result should
1173     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
1174     // into a Phi which "knows" it's an Interface type we'll have to
1175     // uplift the type.
1176     if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1177       assert(ft == _type, ""); // Uplift to interface
1178     } else if (!t->empty() && ttkp != NULL && ttkp->is_loaded() && ttkp->klass()->is_interface()) {
1179       assert(ft == _type, ""); // Uplift to interface
1180     } else {
1181       // We also have to handle 'evil cases' of interface- vs. class-arrays
1182       Type::get_arrays_base_elements(jt, _type, NULL, &ttip);
1183       if (!t->empty() && ttip != NULL && ttip->is_loaded() && ttip->klass()->is_interface()) {
1184           assert(ft == _type, "");   // Uplift to array of interface
1185       } else {
1186         // Otherwise it's something stupid like non-overlapping int ranges
1187         // found on dying counted loops.
1188         assert(ft == Type::TOP, ""); // Canonical empty value
1189       }
1190     }
1191   }
1192 
1193   else {
1194 
1195     // If we have an interface-typed Phi and we narrow to a class type, the join
1196     // should report back the class.  However, if we have a J/L/Object
1197     // class-typed Phi and an interface flows in, it's possible that the meet &
1198     // join report an interface back out.  This isn't possible but happens
1199     // because the type system doesn't interact well with interfaces.
1200     const TypePtr *jtp = jt->make_ptr();
1201     const TypeInstPtr *jtip = (jtp != NULL) ? jtp->isa_instptr() : NULL;
1202     const TypeKlassPtr *jtkp = (jtp != NULL) ? jtp->isa_klassptr() : NULL;
1203     if( jtip && ttip ) {
1204       if( jtip->is_loaded() &&  jtip->klass()->is_interface() &&
1205           ttip->is_loaded() && !ttip->klass()->is_interface() ) {
1206         assert(ft == ttip->cast_to_ptr_type(jtip->ptr()) ||
1207                ft->isa_narrowoop() && ft->make_ptr() == ttip->cast_to_ptr_type(jtip->ptr()), "");
1208         jt = ft;
1209       }
1210     }
1211     if( jtkp && ttkp ) {
1212       if( jtkp->is_loaded() &&  jtkp->klass()->is_interface() &&
1213           !jtkp->klass_is_exact() && // Keep exact interface klass (6894807)
1214           ttkp->is_loaded() && !ttkp->klass()->is_interface() ) {
1215         assert(ft == ttkp->cast_to_ptr_type(jtkp->ptr()) ||
1216                ft->isa_narrowklass() && ft->make_ptr() == ttkp->cast_to_ptr_type(jtkp->ptr()), "");
1217         jt = ft;
1218       }
1219     }
1220     if (jt != ft && jt->base() == ft->base()) {
1221       if (jt->isa_int() &&
1222           jt->is_int()->_lo == ft->is_int()->_lo &&
1223           jt->is_int()->_hi == ft->is_int()->_hi)
1224         jt = ft;
1225       if (jt->isa_long() &&
1226           jt->is_long()->_lo == ft->is_long()->_lo &&
1227           jt->is_long()->_hi == ft->is_long()->_hi)
1228         jt = ft;
1229     }
1230     if (jt != ft) {
1231       tty->print("merge type:  "); t->dump(); tty->cr();
1232       tty->print("kill type:   "); _type->dump(); tty->cr();
1233       tty->print("join type:   "); jt->dump(); tty->cr();
1234       tty->print("filter type: "); ft->dump(); tty->cr();
1235     }
1236     assert(jt == ft, "");
1237   }
1238 #endif //ASSERT
1239 
1240   // Deal with conversion problems found in data loops.
1241   ft = phase->saturate(ft, phase->type_or_null(this), _type);
1242 
1243   return ft;
1244 }
1245 
1246 
1247 //------------------------------is_diamond_phi---------------------------------
1248 // Does this Phi represent a simple well-shaped diamond merge?  Return the
1249 // index of the true path or 0 otherwise.
1250 // If check_control_only is true, do not inspect the If node at the
1251 // top, and return -1 (not an edge number) on success.
1252 int PhiNode::is_diamond_phi(bool check_control_only) const {
1253   // Check for a 2-path merge
1254   Node *region = in(0);
1255   if( !region ) return 0;
1256   if( region->req() != 3 ) return 0;
1257   if(         req() != 3 ) return 0;
1258   // Check that both paths come from the same If
1259   Node *ifp1 = region->in(1);
1260   Node *ifp2 = region->in(2);
1261   if( !ifp1 || !ifp2 ) return 0;
1262   Node *iff = ifp1->in(0);
1263   if( !iff || !iff->is_If() ) return 0;
1264   if( iff != ifp2->in(0) ) return 0;
1265   if (check_control_only)  return -1;
1266   // Check for a proper bool/cmp
1267   const Node *b = iff->in(1);
1268   if( !b->is_Bool() ) return 0;
1269   const Node *cmp = b->in(1);
1270   if( !cmp->is_Cmp() ) return 0;
1271 
1272   // Check for branching opposite expected
1273   if( ifp2->Opcode() == Op_IfTrue ) {
1274     assert( ifp1->Opcode() == Op_IfFalse, "" );
1275     return 2;
1276   } else {
1277     assert( ifp1->Opcode() == Op_IfTrue, "" );
1278     return 1;
1279   }
1280 }
1281 
1282 //----------------------------check_cmove_id-----------------------------------
1283 // Check for CMove'ing a constant after comparing against the constant.
1284 // Happens all the time now, since if we compare equality vs a constant in
1285 // the parser, we "know" the variable is constant on one path and we force
1286 // it.  Thus code like "if( x==0 ) {/*EMPTY*/}" ends up inserting a
1287 // conditional move: "x = (x==0)?0:x;".  Yucko.  This fix is slightly more
1288 // general in that we don't need constants.  Since CMove's are only inserted
1289 // in very special circumstances, we do it here on generic Phi's.
1290 Node* PhiNode::is_cmove_id(PhaseTransform* phase, int true_path) {
1291   assert(true_path !=0, "only diamond shape graph expected");
1292 
1293   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1294   // phi->region->if_proj->ifnode->bool->cmp
1295   Node*     region = in(0);
1296   Node*     iff    = region->in(1)->in(0);
1297   BoolNode* b      = iff->in(1)->as_Bool();
1298   Node*     cmp    = b->in(1);
1299   Node*     tval   = in(true_path);
1300   Node*     fval   = in(3-true_path);
1301   Node*     id     = CMoveNode::is_cmove_id(phase, cmp, tval, fval, b);
1302   if (id == NULL)
1303     return NULL;
1304 
1305   // Either value might be a cast that depends on a branch of 'iff'.
1306   // Since the 'id' value will float free of the diamond, either
1307   // decast or return failure.
1308   Node* ctl = id->in(0);
1309   if (ctl != NULL && ctl->in(0) == iff) {
1310     if (id->is_ConstraintCast()) {
1311       return id->in(1);
1312     } else {
1313       // Don't know how to disentangle this value.
1314       return NULL;
1315     }
1316   }
1317 
1318   return id;
1319 }
1320 
1321 //------------------------------Identity---------------------------------------
1322 // Check for Region being Identity.
1323 Node* PhiNode::Identity(PhaseGVN* phase) {
1324   // Check for no merging going on
1325   // (There used to be special-case code here when this->region->is_Loop.
1326   // It would check for a tributary phi on the backedge that the main phi
1327   // trivially, perhaps with a single cast.  The unique_input method
1328   // does all this and more, by reducing such tributaries to 'this'.)
1329   Node* uin = unique_input(phase, false);
1330   if (uin != NULL) {
1331     return uin;
1332   }
1333 
1334   int true_path = is_diamond_phi();
1335   if (true_path != 0) {
1336     Node* id = is_cmove_id(phase, true_path);
1337     if (id != NULL)  return id;
1338   }
1339 
1340   if (phase->is_IterGVN()) {
1341     Node* m = try_clean_mem_phi(phase);
1342     if (m != NULL) {
1343       return m;
1344     }
1345   }
1346 
1347 
1348   return this;                     // No identity
1349 }
1350 
1351 //-----------------------------unique_input------------------------------------
1352 // Find the unique value, discounting top, self-loops, and casts.
1353 // Return top if there are no inputs, and self if there are multiple.
1354 Node* PhiNode::unique_input(PhaseTransform* phase, bool uncast) {
1355   //  1) One unique direct input,
1356   // or if uncast is true:
1357   //  2) some of the inputs have an intervening ConstraintCast
1358   //  3) an input is a self loop
1359   //
1360   //  1) input   or   2) input     or   3) input __
1361   //     /   \           /   \               \  /  \
1362   //     \   /          |    cast             phi  cast
1363   //      phi            \   /               /  \  /
1364   //                      phi               /    --
1365 
1366   Node* r = in(0);                      // RegionNode
1367   if (r == NULL)  return in(1);         // Already degraded to a Copy
1368   Node* input = NULL; // The unique direct input (maybe uncasted = ConstraintCasts removed)
1369 
1370   for (uint i = 1, cnt = req(); i < cnt; ++i) {
1371     Node* rc = r->in(i);
1372     if (rc == NULL || phase->type(rc) == Type::TOP)
1373       continue;                 // ignore unreachable control path
1374     Node* n = in(i);
1375     if (n == NULL)
1376       continue;
1377     Node* un = n;
1378     if (uncast) {
1379 #ifdef ASSERT
1380       Node* m = un->uncast();
1381 #endif
1382       while (un != NULL && un->req() == 2 && un->is_ConstraintCast()) {
1383         Node* next = un->in(1);
1384         if (phase->type(next)->isa_rawptr() && phase->type(un)->isa_oopptr()) {
1385           // risk exposing raw ptr at safepoint
1386           break;
1387         }
1388         un = next;
1389       }
1390       assert(m == un || un->in(1) == m, "Only expected at CheckCastPP from allocation");
1391     }
1392     if (un == NULL || un == this || phase->type(un) == Type::TOP) {
1393       continue; // ignore if top, or in(i) and "this" are in a data cycle
1394     }
1395     // Check for a unique input (maybe uncasted)
1396     if (input == NULL) {
1397       input = un;
1398     } else if (input != un) {
1399       input = NodeSentinel; // no unique input
1400     }
1401   }
1402   if (input == NULL) {
1403     return phase->C->top();        // no inputs
1404   }
1405 
1406   if (input != NodeSentinel) {
1407     return input;           // one unique direct input
1408   }
1409 
1410   // Nothing.
1411   return NULL;
1412 }
1413 
1414 //------------------------------is_x2logic-------------------------------------
1415 // Check for simple convert-to-boolean pattern
1416 // If:(C Bool) Region:(IfF IfT) Phi:(Region 0 1)
1417 // Convert Phi to an ConvIB.
1418 static Node *is_x2logic( PhaseGVN *phase, PhiNode *phi, int true_path ) {
1419   assert(true_path !=0, "only diamond shape graph expected");
1420   // Convert the true/false index into an expected 0/1 return.
1421   // Map 2->0 and 1->1.
1422   int flipped = 2-true_path;
1423 
1424   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1425   // phi->region->if_proj->ifnode->bool->cmp
1426   Node *region = phi->in(0);
1427   Node *iff = region->in(1)->in(0);
1428   BoolNode *b = (BoolNode*)iff->in(1);
1429   const CmpNode *cmp = (CmpNode*)b->in(1);
1430 
1431   Node *zero = phi->in(1);
1432   Node *one  = phi->in(2);
1433   const Type *tzero = phase->type( zero );
1434   const Type *tone  = phase->type( one  );
1435 
1436   // Check for compare vs 0
1437   const Type *tcmp = phase->type(cmp->in(2));
1438   if( tcmp != TypeInt::ZERO && tcmp != TypePtr::NULL_PTR ) {
1439     // Allow cmp-vs-1 if the other input is bounded by 0-1
1440     if( !(tcmp == TypeInt::ONE && phase->type(cmp->in(1)) == TypeInt::BOOL) )
1441       return NULL;
1442     flipped = 1-flipped;        // Test is vs 1 instead of 0!
1443   }
1444 
1445   // Check for setting zero/one opposite expected
1446   if( tzero == TypeInt::ZERO ) {
1447     if( tone == TypeInt::ONE ) {
1448     } else return NULL;
1449   } else if( tzero == TypeInt::ONE ) {
1450     if( tone == TypeInt::ZERO ) {
1451       flipped = 1-flipped;
1452     } else return NULL;
1453   } else return NULL;
1454 
1455   // Check for boolean test backwards
1456   if( b->_test._test == BoolTest::ne ) {
1457   } else if( b->_test._test == BoolTest::eq ) {
1458     flipped = 1-flipped;
1459   } else return NULL;
1460 
1461   // Build int->bool conversion
1462   Node *in1 = cmp->in(1);
1463   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1464   in1 = bs->step_over_gc_barrier(in1);
1465   Node *n = new Conv2BNode(in1);
1466   if( flipped )
1467     n = new XorINode( phase->transform(n), phase->intcon(1) );
1468 
1469   return n;
1470 }
1471 
1472 //------------------------------is_cond_add------------------------------------
1473 // Check for simple conditional add pattern:  "(P < Q) ? X+Y : X;"
1474 // To be profitable the control flow has to disappear; there can be no other
1475 // values merging here.  We replace the test-and-branch with:
1476 // "(sgn(P-Q))&Y) + X".  Basically, convert "(P < Q)" into 0 or -1 by
1477 // moving the carry bit from (P-Q) into a register with 'sbb EAX,EAX'.
1478 // Then convert Y to 0-or-Y and finally add.
1479 // This is a key transform for SpecJava _201_compress.
1480 static Node* is_cond_add(PhaseGVN *phase, PhiNode *phi, int true_path) {
1481   assert(true_path !=0, "only diamond shape graph expected");
1482 
1483   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1484   // phi->region->if_proj->ifnode->bool->cmp
1485   RegionNode *region = (RegionNode*)phi->in(0);
1486   Node *iff = region->in(1)->in(0);
1487   BoolNode* b = iff->in(1)->as_Bool();
1488   const CmpNode *cmp = (CmpNode*)b->in(1);
1489 
1490   // Make sure only merging this one phi here
1491   if (region->has_unique_phi() != phi)  return NULL;
1492 
1493   // Make sure each arm of the diamond has exactly one output, which we assume
1494   // is the region.  Otherwise, the control flow won't disappear.
1495   if (region->in(1)->outcnt() != 1) return NULL;
1496   if (region->in(2)->outcnt() != 1) return NULL;
1497 
1498   // Check for "(P < Q)" of type signed int
1499   if (b->_test._test != BoolTest::lt)  return NULL;
1500   if (cmp->Opcode() != Op_CmpI)        return NULL;
1501 
1502   Node *p = cmp->in(1);
1503   Node *q = cmp->in(2);
1504   Node *n1 = phi->in(  true_path);
1505   Node *n2 = phi->in(3-true_path);
1506 
1507   int op = n1->Opcode();
1508   if( op != Op_AddI           // Need zero as additive identity
1509       /*&&op != Op_SubI &&
1510       op != Op_AddP &&
1511       op != Op_XorI &&
1512       op != Op_OrI*/ )
1513     return NULL;
1514 
1515   Node *x = n2;
1516   Node *y = NULL;
1517   if( x == n1->in(1) ) {
1518     y = n1->in(2);
1519   } else if( x == n1->in(2) ) {
1520     y = n1->in(1);
1521   } else return NULL;
1522 
1523   // Not so profitable if compare and add are constants
1524   if( q->is_Con() && phase->type(q) != TypeInt::ZERO && y->is_Con() )
1525     return NULL;
1526 
1527   Node *cmplt = phase->transform( new CmpLTMaskNode(p,q) );
1528   Node *j_and   = phase->transform( new AndINode(cmplt,y) );
1529   return new AddINode(j_and,x);
1530 }
1531 
1532 //------------------------------is_absolute------------------------------------
1533 // Check for absolute value.
1534 static Node* is_absolute( PhaseGVN *phase, PhiNode *phi_root, int true_path) {
1535   assert(true_path !=0, "only diamond shape graph expected");
1536 
1537   int  cmp_zero_idx = 0;        // Index of compare input where to look for zero
1538   int  phi_x_idx = 0;           // Index of phi input where to find naked x
1539 
1540   // ABS ends with the merge of 2 control flow paths.
1541   // Find the false path from the true path. With only 2 inputs, 3 - x works nicely.
1542   int false_path = 3 - true_path;
1543 
1544   // is_diamond_phi() has guaranteed the correctness of the nodes sequence:
1545   // phi->region->if_proj->ifnode->bool->cmp
1546   BoolNode *bol = phi_root->in(0)->in(1)->in(0)->in(1)->as_Bool();
1547 
1548   // Check bool sense
1549   switch( bol->_test._test ) {
1550   case BoolTest::lt: cmp_zero_idx = 1; phi_x_idx = true_path;  break;
1551   case BoolTest::le: cmp_zero_idx = 2; phi_x_idx = false_path; break;
1552   case BoolTest::gt: cmp_zero_idx = 2; phi_x_idx = true_path;  break;
1553   case BoolTest::ge: cmp_zero_idx = 1; phi_x_idx = false_path; break;
1554   default:           return NULL;                              break;
1555   }
1556 
1557   // Test is next
1558   Node *cmp = bol->in(1);
1559   const Type *tzero = NULL;
1560   switch( cmp->Opcode() ) {
1561   case Op_CmpF:    tzero = TypeF::ZERO; break; // Float ABS
1562   case Op_CmpD:    tzero = TypeD::ZERO; break; // Double ABS
1563   default: return NULL;
1564   }
1565 
1566   // Find zero input of compare; the other input is being abs'd
1567   Node *x = NULL;
1568   bool flip = false;
1569   if( phase->type(cmp->in(cmp_zero_idx)) == tzero ) {
1570     x = cmp->in(3 - cmp_zero_idx);
1571   } else if( phase->type(cmp->in(3 - cmp_zero_idx)) == tzero ) {
1572     // The test is inverted, we should invert the result...
1573     x = cmp->in(cmp_zero_idx);
1574     flip = true;
1575   } else {
1576     return NULL;
1577   }
1578 
1579   // Next get the 2 pieces being selected, one is the original value
1580   // and the other is the negated value.
1581   if( phi_root->in(phi_x_idx) != x ) return NULL;
1582 
1583   // Check other phi input for subtract node
1584   Node *sub = phi_root->in(3 - phi_x_idx);
1585 
1586   // Allow only Sub(0,X) and fail out for all others; Neg is not OK
1587   if( tzero == TypeF::ZERO ) {
1588     if( sub->Opcode() != Op_SubF ||
1589         sub->in(2) != x ||
1590         phase->type(sub->in(1)) != tzero ) return NULL;
1591     x = new AbsFNode(x);
1592     if (flip) {
1593       x = new SubFNode(sub->in(1), phase->transform(x));
1594     }
1595   } else {
1596     if( sub->Opcode() != Op_SubD ||
1597         sub->in(2) != x ||
1598         phase->type(sub->in(1)) != tzero ) return NULL;
1599     x = new AbsDNode(x);
1600     if (flip) {
1601       x = new SubDNode(sub->in(1), phase->transform(x));
1602     }
1603   }
1604 
1605   return x;
1606 }
1607 
1608 //------------------------------split_once-------------------------------------
1609 // Helper for split_flow_path
1610 static void split_once(PhaseIterGVN *igvn, Node *phi, Node *val, Node *n, Node *newn) {
1611   igvn->hash_delete(n);         // Remove from hash before hacking edges
1612 
1613   uint j = 1;
1614   for (uint i = phi->req()-1; i > 0; i--) {
1615     if (phi->in(i) == val) {   // Found a path with val?
1616       // Add to NEW Region/Phi, no DU info
1617       newn->set_req( j++, n->in(i) );
1618       // Remove from OLD Region/Phi
1619       n->del_req(i);
1620     }
1621   }
1622 
1623   // Register the new node but do not transform it.  Cannot transform until the
1624   // entire Region/Phi conglomerate has been hacked as a single huge transform.
1625   igvn->register_new_node_with_optimizer( newn );
1626 
1627   // Now I can point to the new node.
1628   n->add_req(newn);
1629   igvn->_worklist.push(n);
1630 }
1631 
1632 //------------------------------split_flow_path--------------------------------
1633 // Check for merging identical values and split flow paths
1634 static Node* split_flow_path(PhaseGVN *phase, PhiNode *phi) {
1635   BasicType bt = phi->type()->basic_type();
1636   if( bt == T_ILLEGAL || type2size[bt] <= 0 )
1637     return NULL;                // Bail out on funny non-value stuff
1638   if( phi->req() <= 3 )         // Need at least 2 matched inputs and a
1639     return NULL;                // third unequal input to be worth doing
1640 
1641   // Scan for a constant
1642   uint i;
1643   for( i = 1; i < phi->req()-1; i++ ) {
1644     Node *n = phi->in(i);
1645     if( !n ) return NULL;
1646     if( phase->type(n) == Type::TOP ) return NULL;
1647     if( n->Opcode() == Op_ConP || n->Opcode() == Op_ConN || n->Opcode() == Op_ConNKlass )
1648       break;
1649   }
1650   if( i >= phi->req() )         // Only split for constants
1651     return NULL;
1652 
1653   Node *val = phi->in(i);       // Constant to split for
1654   uint hit = 0;                 // Number of times it occurs
1655   Node *r = phi->region();
1656 
1657   for( ; i < phi->req(); i++ ){ // Count occurrences of constant
1658     Node *n = phi->in(i);
1659     if( !n ) return NULL;
1660     if( phase->type(n) == Type::TOP ) return NULL;
1661     if( phi->in(i) == val ) {
1662       hit++;
1663       if (PhaseIdealLoop::find_predicate(r->in(i)) != NULL) {
1664         return NULL;            // don't split loop entry path
1665       }
1666     }
1667   }
1668 
1669   if( hit <= 1 ||               // Make sure we find 2 or more
1670       hit == phi->req()-1 )     // and not ALL the same value
1671     return NULL;
1672 
1673   // Now start splitting out the flow paths that merge the same value.
1674   // Split first the RegionNode.
1675   PhaseIterGVN *igvn = phase->is_IterGVN();
1676   RegionNode *newr = new RegionNode(hit+1);
1677   split_once(igvn, phi, val, r, newr);
1678 
1679   // Now split all other Phis than this one
1680   for (DUIterator_Fast kmax, k = r->fast_outs(kmax); k < kmax; k++) {
1681     Node* phi2 = r->fast_out(k);
1682     if( phi2->is_Phi() && phi2->as_Phi() != phi ) {
1683       PhiNode *newphi = PhiNode::make_blank(newr, phi2);
1684       split_once(igvn, phi, val, phi2, newphi);
1685     }
1686   }
1687 
1688   // Clean up this guy
1689   igvn->hash_delete(phi);
1690   for( i = phi->req()-1; i > 0; i-- ) {
1691     if( phi->in(i) == val ) {
1692       phi->del_req(i);
1693     }
1694   }
1695   phi->add_req(val);
1696 
1697   return phi;
1698 }
1699 
1700 //=============================================================================
1701 //------------------------------simple_data_loop_check-------------------------
1702 //  Try to determining if the phi node in a simple safe/unsafe data loop.
1703 //  Returns:
1704 // enum LoopSafety { Safe = 0, Unsafe, UnsafeLoop };
1705 // Safe       - safe case when the phi and it's inputs reference only safe data
1706 //              nodes;
1707 // Unsafe     - the phi and it's inputs reference unsafe data nodes but there
1708 //              is no reference back to the phi - need a graph walk
1709 //              to determine if it is in a loop;
1710 // UnsafeLoop - unsafe case when the phi references itself directly or through
1711 //              unsafe data node.
1712 //  Note: a safe data node is a node which could/never reference itself during
1713 //  GVN transformations. For now it is Con, Proj, Phi, CastPP, CheckCastPP.
1714 //  I mark Phi nodes as safe node not only because they can reference itself
1715 //  but also to prevent mistaking the fallthrough case inside an outer loop
1716 //  as dead loop when the phi references itselfs through an other phi.
1717 PhiNode::LoopSafety PhiNode::simple_data_loop_check(Node *in) const {
1718   // It is unsafe loop if the phi node references itself directly.
1719   if (in == (Node*)this)
1720     return UnsafeLoop; // Unsafe loop
1721   // Unsafe loop if the phi node references itself through an unsafe data node.
1722   // Exclude cases with null inputs or data nodes which could reference
1723   // itself (safe for dead loops).
1724   if (in != NULL && !in->is_dead_loop_safe()) {
1725     // Check inputs of phi's inputs also.
1726     // It is much less expensive then full graph walk.
1727     uint cnt = in->req();
1728     uint i = (in->is_Proj() && !in->is_CFG())  ? 0 : 1;
1729     for (; i < cnt; ++i) {
1730       Node* m = in->in(i);
1731       if (m == (Node*)this)
1732         return UnsafeLoop; // Unsafe loop
1733       if (m != NULL && !m->is_dead_loop_safe()) {
1734         // Check the most common case (about 30% of all cases):
1735         // phi->Load/Store->AddP->(ConP ConP Con)/(Parm Parm Con).
1736         Node *m1 = (m->is_AddP() && m->req() > 3) ? m->in(1) : NULL;
1737         if (m1 == (Node*)this)
1738           return UnsafeLoop; // Unsafe loop
1739         if (m1 != NULL && m1 == m->in(2) &&
1740             m1->is_dead_loop_safe() && m->in(3)->is_Con()) {
1741           continue; // Safe case
1742         }
1743         // The phi references an unsafe node - need full analysis.
1744         return Unsafe;
1745       }
1746     }
1747   }
1748   return Safe; // Safe case - we can optimize the phi node.
1749 }
1750 
1751 //------------------------------is_unsafe_data_reference-----------------------
1752 // If phi can be reached through the data input - it is data loop.
1753 bool PhiNode::is_unsafe_data_reference(Node *in) const {
1754   assert(req() > 1, "");
1755   // First, check simple cases when phi references itself directly or
1756   // through an other node.
1757   LoopSafety safety = simple_data_loop_check(in);
1758   if (safety == UnsafeLoop)
1759     return true;  // phi references itself - unsafe loop
1760   else if (safety == Safe)
1761     return false; // Safe case - phi could be replaced with the unique input.
1762 
1763   // Unsafe case when we should go through data graph to determine
1764   // if the phi references itself.
1765 
1766   ResourceMark rm;
1767 
1768   Arena *a = Thread::current()->resource_area();
1769   Node_List nstack(a);
1770   VectorSet visited(a);
1771 
1772   nstack.push(in); // Start with unique input.
1773   visited.set(in->_idx);
1774   while (nstack.size() != 0) {
1775     Node* n = nstack.pop();
1776     uint cnt = n->req();
1777     uint i = (n->is_Proj() && !n->is_CFG()) ? 0 : 1;
1778     for (; i < cnt; i++) {
1779       Node* m = n->in(i);
1780       if (m == (Node*)this) {
1781         return true;    // Data loop
1782       }
1783       if (m != NULL && !m->is_dead_loop_safe()) { // Only look for unsafe cases.
1784         if (!visited.test_set(m->_idx))
1785           nstack.push(m);
1786       }
1787     }
1788   }
1789   return false; // The phi is not reachable from its inputs
1790 }
1791 
1792 
1793 //------------------------------Ideal------------------------------------------
1794 // Return a node which is more "ideal" than the current node.  Must preserve
1795 // the CFG, but we can still strip out dead paths.
1796 Node *PhiNode::Ideal(PhaseGVN *phase, bool can_reshape) {
1797   // The next should never happen after 6297035 fix.
1798   if( is_copy() )               // Already degraded to a Copy ?
1799     return NULL;                // No change
1800 
1801   Node *r = in(0);              // RegionNode
1802   assert(r->in(0) == NULL || !r->in(0)->is_Root(), "not a specially hidden merge");
1803 
1804   // Note: During parsing, phis are often transformed before their regions.
1805   // This means we have to use type_or_null to defend against untyped regions.
1806   if( phase->type_or_null(r) == Type::TOP ) // Dead code?
1807     return NULL;                // No change
1808 
1809   // If all inputs are value types of the same type, push the value type node down
1810   // through the phi because value type nodes should be merged through their input values.
1811   if (req() > 2 && in(1) != NULL && in(1)->is_ValueTypeBase() && (can_reshape || in(1)->is_ValueType())) {
1812     int opcode = in(1)->Opcode();
1813     uint i = 2;
1814     // Check if inputs are values of the same type
1815     for (; i < req() && in(i) && in(i)->is_ValueTypeBase() && in(i)->cmp(*in(1)); i++) {
1816       assert(in(i)->Opcode() == opcode, "mixing pointers and values?");
1817     }
1818     if (i == req()) {
1819       ValueTypeBaseNode* vt = in(1)->as_ValueTypeBase()->clone_with_phis(phase, in(0));
1820       for (uint i = 2; i < req(); ++i) {
1821         vt->merge_with(phase, in(i)->as_ValueTypeBase(), i, i == (req()-1));
1822       }
1823       return vt;
1824     }
1825   }
1826 
1827   Node *top = phase->C->top();
1828   bool new_phi = (outcnt() == 0); // transforming new Phi
1829   // No change for igvn if new phi is not hooked
1830   if (new_phi && can_reshape)
1831     return NULL;
1832 
1833   // The are 2 situations when only one valid phi's input is left
1834   // (in addition to Region input).
1835   // One: region is not loop - replace phi with this input.
1836   // Two: region is loop - replace phi with top since this data path is dead
1837   //                       and we need to break the dead data loop.
1838   Node* progress = NULL;        // Record if any progress made
1839   for( uint j = 1; j < req(); ++j ){ // For all paths in
1840     // Check unreachable control paths
1841     Node* rc = r->in(j);
1842     Node* n = in(j);            // Get the input
1843     if (rc == NULL || phase->type(rc) == Type::TOP) {
1844       if (n != top) {           // Not already top?
1845         PhaseIterGVN *igvn = phase->is_IterGVN();
1846         if (can_reshape && igvn != NULL) {
1847           igvn->_worklist.push(r);
1848         }
1849         // Nuke it down
1850         if (can_reshape) {
1851           set_req_X(j, top, igvn);
1852         } else {
1853           set_req(j, top);
1854         }
1855         progress = this;        // Record progress
1856       }
1857     }
1858   }
1859 
1860   if (can_reshape && outcnt() == 0) {
1861     // set_req() above may kill outputs if Phi is referenced
1862     // only by itself on the dead (top) control path.
1863     return top;
1864   }
1865 
1866   bool uncasted = false;
1867   Node* uin = unique_input(phase, false);
1868   if (uin == NULL && can_reshape) {
1869     uncasted = true;
1870     uin = unique_input(phase, true);
1871   }
1872   if (uin == top) {             // Simplest case: no alive inputs.
1873     if (can_reshape)            // IGVN transformation
1874       return top;
1875     else
1876       return NULL;              // Identity will return TOP
1877   } else if (uin != NULL) {
1878     // Only one not-NULL unique input path is left.
1879     // Determine if this input is backedge of a loop.
1880     // (Skip new phis which have no uses and dead regions).
1881     if (outcnt() > 0 && r->in(0) != NULL) {
1882       // First, take the short cut when we know it is a loop and
1883       // the EntryControl data path is dead.
1884       // Loop node may have only one input because entry path
1885       // is removed in PhaseIdealLoop::Dominators().
1886       assert(!r->is_Loop() || r->req() <= 3, "Loop node should have 3 or less inputs");
1887       bool is_loop = (r->is_Loop() && r->req() == 3);
1888       // Then, check if there is a data loop when phi references itself directly
1889       // or through other data nodes.
1890       if ((is_loop && !uin->eqv_uncast(in(LoopNode::EntryControl))) ||
1891           (!is_loop && is_unsafe_data_reference(uin))) {
1892         // Break this data loop to avoid creation of a dead loop.
1893         if (can_reshape) {
1894           return top;
1895         } else {
1896           // We can't return top if we are in Parse phase - cut inputs only
1897           // let Identity to handle the case.
1898           replace_edge(uin, top);
1899           return NULL;
1900         }
1901       }
1902     }
1903 
1904     if (uncasted) {
1905       // Add cast nodes between the phi to be removed and its unique input.
1906       // Wait until after parsing for the type information to propagate from the casts.
1907       assert(can_reshape, "Invalid during parsing");
1908       const Type* phi_type = bottom_type();
1909       assert(phi_type->isa_int() || phi_type->isa_ptr(), "bad phi type");
1910       // Add casts to carry the control dependency of the Phi that is
1911       // going away
1912       Node* cast = NULL;
1913       if (phi_type->isa_int()) {
1914         cast = ConstraintCastNode::make_cast(Op_CastII, r, uin, phi_type, true);
1915       } else {
1916         const Type* uin_type = phase->type(uin);
1917         if (!phi_type->isa_oopptr() && !uin_type->isa_oopptr()) {
1918           cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1919         } else {
1920           // Use a CastPP for a cast to not null and a CheckCastPP for
1921           // a cast to a new klass (and both if both null-ness and
1922           // klass change).
1923 
1924           // If the type of phi is not null but the type of uin may be
1925           // null, uin's type must be casted to not null
1926           if (phi_type->join(TypePtr::NOTNULL) == phi_type->remove_speculative() &&
1927               uin_type->join(TypePtr::NOTNULL) != uin_type->remove_speculative()) {
1928             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, TypePtr::NOTNULL, true);
1929           }
1930 
1931           // If the type of phi and uin, both casted to not null,
1932           // differ the klass of uin must be (check)cast'ed to match
1933           // that of phi
1934           if (phi_type->join_speculative(TypePtr::NOTNULL) != uin_type->join_speculative(TypePtr::NOTNULL)) {
1935             Node* n = uin;
1936             if (cast != NULL) {
1937               cast = phase->transform(cast);
1938               n = cast;
1939             }
1940             cast = ConstraintCastNode::make_cast(Op_CheckCastPP, r, n, phi_type, true);
1941           }
1942           if (cast == NULL) {
1943             cast = ConstraintCastNode::make_cast(Op_CastPP, r, uin, phi_type, true);
1944           }
1945         }
1946       }
1947       assert(cast != NULL, "cast should be set");
1948       cast = phase->transform(cast);
1949       // set all inputs to the new cast(s) so the Phi is removed by Identity
1950       PhaseIterGVN* igvn = phase->is_IterGVN();
1951       for (uint i = 1; i < req(); i++) {
1952         set_req_X(i, cast, igvn);
1953       }
1954       uin = cast;
1955     }
1956 
1957     // One unique input.
1958     debug_only(Node* ident = Identity(phase));
1959     // The unique input must eventually be detected by the Identity call.
1960 #ifdef ASSERT
1961     if (ident != uin && !ident->is_top()) {
1962       // print this output before failing assert
1963       r->dump(3);
1964       this->dump(3);
1965       ident->dump();
1966       uin->dump();
1967     }
1968 #endif
1969     assert(ident == uin || ident->is_top(), "Identity must clean this up");
1970     return NULL;
1971   }
1972 
1973   Node* opt = NULL;
1974   int true_path = is_diamond_phi();
1975   if( true_path != 0 ) {
1976     // Check for CMove'ing identity. If it would be unsafe,
1977     // handle it here. In the safe case, let Identity handle it.
1978     Node* unsafe_id = is_cmove_id(phase, true_path);
1979     if( unsafe_id != NULL && is_unsafe_data_reference(unsafe_id) )
1980       opt = unsafe_id;
1981 
1982     // Check for simple convert-to-boolean pattern
1983     if( opt == NULL )
1984       opt = is_x2logic(phase, this, true_path);
1985 
1986     // Check for absolute value
1987     if( opt == NULL )
1988       opt = is_absolute(phase, this, true_path);
1989 
1990     // Check for conditional add
1991     if( opt == NULL && can_reshape )
1992       opt = is_cond_add(phase, this, true_path);
1993 
1994     // These 4 optimizations could subsume the phi:
1995     // have to check for a dead data loop creation.
1996     if( opt != NULL ) {
1997       if( opt == unsafe_id || is_unsafe_data_reference(opt) ) {
1998         // Found dead loop.
1999         if( can_reshape )
2000           return top;
2001         // We can't return top if we are in Parse phase - cut inputs only
2002         // to stop further optimizations for this phi. Identity will return TOP.
2003         assert(req() == 3, "only diamond merge phi here");
2004         set_req(1, top);
2005         set_req(2, top);
2006         return NULL;
2007       } else {
2008         return opt;
2009       }
2010     }
2011   }
2012 
2013   // Check for merging identical values and split flow paths
2014   if (can_reshape) {
2015     opt = split_flow_path(phase, this);
2016     // This optimization only modifies phi - don't need to check for dead loop.
2017     assert(opt == NULL || phase->eqv(opt, this), "do not elide phi");
2018     if (opt != NULL)  return opt;
2019   }
2020 
2021   if (in(1) != NULL && in(1)->Opcode() == Op_AddP && can_reshape) {
2022     // Try to undo Phi of AddP:
2023     // (Phi (AddP base base y) (AddP base2 base2 y))
2024     // becomes:
2025     // newbase := (Phi base base2)
2026     // (AddP newbase newbase y)
2027     //
2028     // This occurs as a result of unsuccessful split_thru_phi and
2029     // interferes with taking advantage of addressing modes. See the
2030     // clone_shift_expressions code in matcher.cpp
2031     Node* addp = in(1);
2032     const Type* type = addp->in(AddPNode::Base)->bottom_type();
2033     Node* y = addp->in(AddPNode::Offset);
2034     if (y != NULL && addp->in(AddPNode::Base) == addp->in(AddPNode::Address)) {
2035       // make sure that all the inputs are similar to the first one,
2036       // i.e. AddP with base == address and same offset as first AddP
2037       bool doit = true;
2038       for (uint i = 2; i < req(); i++) {
2039         if (in(i) == NULL ||
2040             in(i)->Opcode() != Op_AddP ||
2041             in(i)->in(AddPNode::Base) != in(i)->in(AddPNode::Address) ||
2042             in(i)->in(AddPNode::Offset) != y) {
2043           doit = false;
2044           break;
2045         }
2046         // Accumulate type for resulting Phi
2047         type = type->meet_speculative(in(i)->in(AddPNode::Base)->bottom_type());
2048       }
2049       Node* base = NULL;
2050       if (doit) {
2051         // Check for neighboring AddP nodes in a tree.
2052         // If they have a base, use that it.
2053         for (DUIterator_Fast kmax, k = this->fast_outs(kmax); k < kmax; k++) {
2054           Node* u = this->fast_out(k);
2055           if (u->is_AddP()) {
2056             Node* base2 = u->in(AddPNode::Base);
2057             if (base2 != NULL && !base2->is_top()) {
2058               if (base == NULL)
2059                 base = base2;
2060               else if (base != base2)
2061                 { doit = false; break; }
2062             }
2063           }
2064         }
2065       }
2066       if (doit) {
2067         if (base == NULL) {
2068           base = new PhiNode(in(0), type, NULL);
2069           for (uint i = 1; i < req(); i++) {
2070             base->init_req(i, in(i)->in(AddPNode::Base));
2071           }
2072           phase->is_IterGVN()->register_new_node_with_optimizer(base);
2073         }
2074         return new AddPNode(base, base, y);
2075       }
2076     }
2077   }
2078 
2079   // Split phis through memory merges, so that the memory merges will go away.
2080   // Piggy-back this transformation on the search for a unique input....
2081   // It will be as if the merged memory is the unique value of the phi.
2082   // (Do not attempt this optimization unless parsing is complete.
2083   // It would make the parser's memory-merge logic sick.)
2084   // (MergeMemNode is not dead_loop_safe - need to check for dead loop.)
2085   if (progress == NULL && can_reshape && type() == Type::MEMORY) {
2086     // see if this phi should be sliced
2087     uint merge_width = 0;
2088     bool saw_self = false;
2089     for( uint i=1; i<req(); ++i ) {// For all paths in
2090       Node *ii = in(i);
2091       // TOP inputs should not be counted as safe inputs because if the
2092       // Phi references itself through all other inputs then splitting the
2093       // Phi through memory merges would create dead loop at later stage.
2094       if (ii == top) {
2095         return NULL; // Delay optimization until graph is cleaned.
2096       }
2097       if (ii->is_MergeMem()) {
2098         MergeMemNode* n = ii->as_MergeMem();
2099         merge_width = MAX2(merge_width, n->req());
2100         saw_self = saw_self || phase->eqv(n->base_memory(), this);
2101       }
2102     }
2103 
2104     // This restriction is temporarily necessary to ensure termination:
2105     if (!saw_self && adr_type() == TypePtr::BOTTOM)  merge_width = 0;
2106 
2107     if (merge_width > Compile::AliasIdxRaw) {
2108       // found at least one non-empty MergeMem
2109       const TypePtr* at = adr_type();
2110       if (at != TypePtr::BOTTOM) {
2111         // Patch the existing phi to select an input from the merge:
2112         // Phi:AT1(...MergeMem(m0, m1, m2)...) into
2113         //     Phi:AT1(...m1...)
2114         int alias_idx = phase->C->get_alias_index(at);
2115         for (uint i=1; i<req(); ++i) {
2116           Node *ii = in(i);
2117           if (ii->is_MergeMem()) {
2118             MergeMemNode* n = ii->as_MergeMem();
2119             // compress paths and change unreachable cycles to TOP
2120             // If not, we can update the input infinitely along a MergeMem cycle
2121             // Equivalent code is in MemNode::Ideal_common
2122             Node *m  = phase->transform(n);
2123             if (outcnt() == 0) {  // Above transform() may kill us!
2124               return top;
2125             }
2126             // If transformed to a MergeMem, get the desired slice
2127             // Otherwise the returned node represents memory for every slice
2128             Node *new_mem = (m->is_MergeMem()) ?
2129                              m->as_MergeMem()->memory_at(alias_idx) : m;
2130             // Update input if it is progress over what we have now
2131             if (new_mem != ii) {
2132               set_req(i, new_mem);
2133               progress = this;
2134             }
2135           }
2136         }
2137       } else {
2138         // We know that at least one MergeMem->base_memory() == this
2139         // (saw_self == true). If all other inputs also references this phi
2140         // (directly or through data nodes) - it is dead loop.
2141         bool saw_safe_input = false;
2142         for (uint j = 1; j < req(); ++j) {
2143           Node *n = in(j);
2144           if (n->is_MergeMem() && n->as_MergeMem()->base_memory() == this)
2145             continue;              // skip known cases
2146           if (!is_unsafe_data_reference(n)) {
2147             saw_safe_input = true; // found safe input
2148             break;
2149           }
2150         }
2151         if (!saw_safe_input)
2152           return top; // all inputs reference back to this phi - dead loop
2153 
2154         // Phi(...MergeMem(m0, m1:AT1, m2:AT2)...) into
2155         //     MergeMem(Phi(...m0...), Phi:AT1(...m1...), Phi:AT2(...m2...))
2156         PhaseIterGVN *igvn = phase->is_IterGVN();
2157         Node* hook = new Node(1);
2158         PhiNode* new_base = (PhiNode*) clone();
2159         // Must eagerly register phis, since they participate in loops.
2160         if (igvn) {
2161           igvn->register_new_node_with_optimizer(new_base);
2162           hook->add_req(new_base);
2163         }
2164         MergeMemNode* result = MergeMemNode::make(new_base);
2165         for (uint i = 1; i < req(); ++i) {
2166           Node *ii = in(i);
2167           if (ii->is_MergeMem()) {
2168             MergeMemNode* n = ii->as_MergeMem();
2169             for (MergeMemStream mms(result, n); mms.next_non_empty2(); ) {
2170               // If we have not seen this slice yet, make a phi for it.
2171               bool made_new_phi = false;
2172               if (mms.is_empty()) {
2173                 Node* new_phi = new_base->slice_memory(mms.adr_type(phase->C));
2174                 made_new_phi = true;
2175                 if (igvn) {
2176                   igvn->register_new_node_with_optimizer(new_phi);
2177                   hook->add_req(new_phi);
2178                 }
2179                 mms.set_memory(new_phi);
2180               }
2181               Node* phi = mms.memory();
2182               assert(made_new_phi || phi->in(i) == n, "replace the i-th merge by a slice");
2183               phi->set_req(i, mms.memory2());
2184             }
2185           }
2186         }
2187         // Distribute all self-loops.
2188         { // (Extra braces to hide mms.)
2189           for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2190             Node* phi = mms.memory();
2191             for (uint i = 1; i < req(); ++i) {
2192               if (phi->in(i) == this)  phi->set_req(i, phi);
2193             }
2194           }
2195         }
2196         // now transform the new nodes, and return the mergemem
2197         for (MergeMemStream mms(result); mms.next_non_empty(); ) {
2198           Node* phi = mms.memory();
2199           mms.set_memory(phase->transform(phi));
2200         }
2201         if (igvn) { // Unhook.
2202           igvn->hash_delete(hook);
2203           for (uint i = 1; i < hook->req(); i++) {
2204             hook->set_req(i, NULL);
2205           }
2206         }
2207         // Replace self with the result.
2208         return result;
2209       }
2210     }
2211     //
2212     // Other optimizations on the memory chain
2213     //
2214     const TypePtr* at = adr_type();
2215     for( uint i=1; i<req(); ++i ) {// For all paths in
2216       Node *ii = in(i);
2217       Node *new_in = MemNode::optimize_memory_chain(ii, at, NULL, phase);
2218       if (ii != new_in ) {
2219         set_req(i, new_in);
2220         progress = this;
2221       }
2222     }
2223   }
2224 
2225 #ifdef _LP64
2226   // Push DecodeN/DecodeNKlass down through phi.
2227   // The rest of phi graph will transform by split EncodeP node though phis up.
2228   if ((UseCompressedOops || UseCompressedClassPointers) && can_reshape && progress == NULL) {
2229     bool may_push = true;
2230     bool has_decodeN = false;
2231     bool is_decodeN = false;
2232     for (uint i=1; i<req(); ++i) {// For all paths in
2233       Node *ii = in(i);
2234       if (ii->is_DecodeNarrowPtr() && ii->bottom_type() == bottom_type()) {
2235         // Do optimization if a non dead path exist.
2236         if (ii->in(1)->bottom_type() != Type::TOP) {
2237           has_decodeN = true;
2238           is_decodeN = ii->is_DecodeN();
2239         }
2240       } else if (!ii->is_Phi()) {
2241         may_push = false;
2242       }
2243     }
2244 
2245     if (has_decodeN && may_push) {
2246       PhaseIterGVN *igvn = phase->is_IterGVN();
2247       // Make narrow type for new phi.
2248       const Type* narrow_t;
2249       if (is_decodeN) {
2250         narrow_t = TypeNarrowOop::make(this->bottom_type()->is_ptr());
2251       } else {
2252         narrow_t = TypeNarrowKlass::make(this->bottom_type()->is_ptr());
2253       }
2254       PhiNode* new_phi = new PhiNode(r, narrow_t);
2255       uint orig_cnt = req();
2256       for (uint i=1; i<req(); ++i) {// For all paths in
2257         Node *ii = in(i);
2258         Node* new_ii = NULL;
2259         if (ii->is_DecodeNarrowPtr()) {
2260           assert(ii->bottom_type() == bottom_type(), "sanity");
2261           new_ii = ii->in(1);
2262         } else {
2263           assert(ii->is_Phi(), "sanity");
2264           if (ii->as_Phi() == this) {
2265             new_ii = new_phi;
2266           } else {
2267             if (is_decodeN) {
2268               new_ii = new EncodePNode(ii, narrow_t);
2269             } else {
2270               new_ii = new EncodePKlassNode(ii, narrow_t);
2271             }
2272             igvn->register_new_node_with_optimizer(new_ii);
2273           }
2274         }
2275         new_phi->set_req(i, new_ii);
2276       }
2277       igvn->register_new_node_with_optimizer(new_phi, this);
2278       if (is_decodeN) {
2279         progress = new DecodeNNode(new_phi, bottom_type());
2280       } else {
2281         progress = new DecodeNKlassNode(new_phi, bottom_type());
2282       }
2283     }
2284   }
2285 #endif
2286 
2287   return progress;              // Return any progress
2288 }
2289 
2290 //------------------------------is_tripcount-----------------------------------
2291 bool PhiNode::is_tripcount() const {
2292   return (in(0) != NULL && in(0)->is_CountedLoop() &&
2293           in(0)->as_CountedLoop()->phi() == this);
2294 }
2295 
2296 //------------------------------out_RegMask------------------------------------
2297 const RegMask &PhiNode::in_RegMask(uint i) const {
2298   return i ? out_RegMask() : RegMask::Empty;
2299 }
2300 
2301 const RegMask &PhiNode::out_RegMask() const {
2302   uint ideal_reg = _type->ideal_reg();
2303   assert( ideal_reg != Node::NotAMachineReg, "invalid type at Phi" );
2304   if( ideal_reg == 0 ) return RegMask::Empty;
2305   assert(ideal_reg != Op_RegFlags, "flags register is not spillable");
2306   return *(Compile::current()->matcher()->idealreg2spillmask[ideal_reg]);
2307 }
2308 
2309 #ifndef PRODUCT
2310 void PhiNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2311   // For a PhiNode, the set of related nodes includes all inputs till level 2,
2312   // and all outputs till level 1. In compact mode, inputs till level 1 are
2313   // collected.
2314   this->collect_nodes(in_rel, compact ? 1 : 2, false, false);
2315   this->collect_nodes(out_rel, -1, false, false);
2316 }
2317 
2318 void PhiNode::dump_spec(outputStream *st) const {
2319   TypeNode::dump_spec(st);
2320   if (is_tripcount()) {
2321     st->print(" #tripcount");
2322   }
2323 }
2324 #endif
2325 
2326 
2327 //=============================================================================
2328 const Type* GotoNode::Value(PhaseGVN* phase) const {
2329   // If the input is reachable, then we are executed.
2330   // If the input is not reachable, then we are not executed.
2331   return phase->type(in(0));
2332 }
2333 
2334 Node* GotoNode::Identity(PhaseGVN* phase) {
2335   return in(0);                // Simple copy of incoming control
2336 }
2337 
2338 const RegMask &GotoNode::out_RegMask() const {
2339   return RegMask::Empty;
2340 }
2341 
2342 #ifndef PRODUCT
2343 //-----------------------------related-----------------------------------------
2344 // The related nodes of a GotoNode are all inputs at level 1, as well as the
2345 // outputs at level 1. This is regardless of compact mode.
2346 void GotoNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2347   this->collect_nodes(in_rel, 1, false, false);
2348   this->collect_nodes(out_rel, -1, false, false);
2349 }
2350 #endif
2351 
2352 
2353 //=============================================================================
2354 const RegMask &JumpNode::out_RegMask() const {
2355   return RegMask::Empty;
2356 }
2357 
2358 #ifndef PRODUCT
2359 //-----------------------------related-----------------------------------------
2360 // The related nodes of a JumpNode are all inputs at level 1, as well as the
2361 // outputs at level 2 (to include actual jump targets beyond projection nodes).
2362 // This is regardless of compact mode.
2363 void JumpNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2364   this->collect_nodes(in_rel, 1, false, false);
2365   this->collect_nodes(out_rel, -2, false, false);
2366 }
2367 #endif
2368 
2369 //=============================================================================
2370 const RegMask &JProjNode::out_RegMask() const {
2371   return RegMask::Empty;
2372 }
2373 
2374 //=============================================================================
2375 const RegMask &CProjNode::out_RegMask() const {
2376   return RegMask::Empty;
2377 }
2378 
2379 
2380 
2381 //=============================================================================
2382 
2383 uint PCTableNode::hash() const { return Node::hash() + _size; }
2384 uint PCTableNode::cmp( const Node &n ) const
2385 { return _size == ((PCTableNode&)n)._size; }
2386 
2387 const Type *PCTableNode::bottom_type() const {
2388   const Type** f = TypeTuple::fields(_size);
2389   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2390   return TypeTuple::make(_size, f);
2391 }
2392 
2393 //------------------------------Value------------------------------------------
2394 // Compute the type of the PCTableNode.  If reachable it is a tuple of
2395 // Control, otherwise the table targets are not reachable
2396 const Type* PCTableNode::Value(PhaseGVN* phase) const {
2397   if( phase->type(in(0)) == Type::CONTROL )
2398     return bottom_type();
2399   return Type::TOP;             // All paths dead?  Then so are we
2400 }
2401 
2402 //------------------------------Ideal------------------------------------------
2403 // Return a node which is more "ideal" than the current node.  Strip out
2404 // control copies
2405 Node *PCTableNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2406   return remove_dead_region(phase, can_reshape) ? this : NULL;
2407 }
2408 
2409 //=============================================================================
2410 uint JumpProjNode::hash() const {
2411   return Node::hash() + _dest_bci;
2412 }
2413 
2414 uint JumpProjNode::cmp( const Node &n ) const {
2415   return ProjNode::cmp(n) &&
2416     _dest_bci == ((JumpProjNode&)n)._dest_bci;
2417 }
2418 
2419 #ifndef PRODUCT
2420 void JumpProjNode::dump_spec(outputStream *st) const {
2421   ProjNode::dump_spec(st);
2422   st->print("@bci %d ",_dest_bci);
2423 }
2424 
2425 void JumpProjNode::dump_compact_spec(outputStream *st) const {
2426   ProjNode::dump_compact_spec(st);
2427   st->print("(%d)%d@%d", _switch_val, _proj_no, _dest_bci);
2428 }
2429 
2430 void JumpProjNode::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
2431   // The related nodes of a JumpProjNode are its inputs and outputs at level 1.
2432   this->collect_nodes(in_rel, 1, false, false);
2433   this->collect_nodes(out_rel, -1, false, false);
2434 }
2435 #endif
2436 
2437 //=============================================================================
2438 //------------------------------Value------------------------------------------
2439 // Check for being unreachable, or for coming from a Rethrow.  Rethrow's cannot
2440 // have the default "fall_through_index" path.
2441 const Type* CatchNode::Value(PhaseGVN* phase) const {
2442   // Unreachable?  Then so are all paths from here.
2443   if( phase->type(in(0)) == Type::TOP ) return Type::TOP;
2444   // First assume all paths are reachable
2445   const Type** f = TypeTuple::fields(_size);
2446   for( uint i = 0; i < _size; i++ ) f[i] = Type::CONTROL;
2447   // Identify cases that will always throw an exception
2448   // () rethrow call
2449   // () virtual or interface call with NULL receiver
2450   // () call is a check cast with incompatible arguments
2451   if( in(1)->is_Proj() ) {
2452     Node *i10 = in(1)->in(0);
2453     if( i10->is_Call() ) {
2454       CallNode *call = i10->as_Call();
2455       // Rethrows always throw exceptions, never return
2456       if (call->entry_point() == OptoRuntime::rethrow_stub()) {
2457         f[CatchProjNode::fall_through_index] = Type::TOP;
2458       } else if( call->req() > TypeFunc::Parms ) {
2459         const Type *arg0 = phase->type( call->in(TypeFunc::Parms) );
2460         // Check for null receiver to virtual or interface calls
2461         if( call->is_CallDynamicJava() &&
2462             arg0->higher_equal(TypePtr::NULL_PTR) ) {
2463           f[CatchProjNode::fall_through_index] = Type::TOP;
2464         }
2465       } // End of if not a runtime stub
2466     } // End of if have call above me
2467   } // End of slot 1 is not a projection
2468   return TypeTuple::make(_size, f);
2469 }
2470 
2471 //=============================================================================
2472 uint CatchProjNode::hash() const {
2473   return Node::hash() + _handler_bci;
2474 }
2475 
2476 
2477 uint CatchProjNode::cmp( const Node &n ) const {
2478   return ProjNode::cmp(n) &&
2479     _handler_bci == ((CatchProjNode&)n)._handler_bci;
2480 }
2481 
2482 
2483 //------------------------------Identity---------------------------------------
2484 // If only 1 target is possible, choose it if it is the main control
2485 Node* CatchProjNode::Identity(PhaseGVN* phase) {
2486   // If my value is control and no other value is, then treat as ID
2487   const TypeTuple *t = phase->type(in(0))->is_tuple();
2488   if (t->field_at(_con) != Type::CONTROL)  return this;
2489   // If we remove the last CatchProj and elide the Catch/CatchProj, then we
2490   // also remove any exception table entry.  Thus we must know the call
2491   // feeding the Catch will not really throw an exception.  This is ok for
2492   // the main fall-thru control (happens when we know a call can never throw
2493   // an exception) or for "rethrow", because a further optimization will
2494   // yank the rethrow (happens when we inline a function that can throw an
2495   // exception and the caller has no handler).  Not legal, e.g., for passing
2496   // a NULL receiver to a v-call, or passing bad types to a slow-check-cast.
2497   // These cases MUST throw an exception via the runtime system, so the VM
2498   // will be looking for a table entry.
2499   Node *proj = in(0)->in(1);    // Expect a proj feeding CatchNode
2500   CallNode *call;
2501   if (_con != TypeFunc::Control && // Bail out if not the main control.
2502       !(proj->is_Proj() &&      // AND NOT a rethrow
2503         proj->in(0)->is_Call() &&
2504         (call = proj->in(0)->as_Call()) &&
2505         call->entry_point() == OptoRuntime::rethrow_stub()))
2506     return this;
2507 
2508   // Search for any other path being control
2509   for (uint i = 0; i < t->cnt(); i++) {
2510     if (i != _con && t->field_at(i) == Type::CONTROL)
2511       return this;
2512   }
2513   // Only my path is possible; I am identity on control to the jump
2514   return in(0)->in(0);
2515 }
2516 
2517 
2518 #ifndef PRODUCT
2519 void CatchProjNode::dump_spec(outputStream *st) const {
2520   ProjNode::dump_spec(st);
2521   st->print("@bci %d ",_handler_bci);
2522 }
2523 #endif
2524 
2525 //=============================================================================
2526 //------------------------------Identity---------------------------------------
2527 // Check for CreateEx being Identity.
2528 Node* CreateExNode::Identity(PhaseGVN* phase) {
2529   if( phase->type(in(1)) == Type::TOP ) return in(1);
2530   if( phase->type(in(0)) == Type::TOP ) return in(0);
2531   // We only come from CatchProj, unless the CatchProj goes away.
2532   // If the CatchProj is optimized away, then we just carry the
2533   // exception oop through.
2534 
2535   // CheckCastPPNode::Ideal() for value types reuses the exception
2536   // paths of a call to perform an allocation: we can see a Phi here.
2537   if (in(1)->is_Phi()) {
2538     return this;
2539   }
2540   CallNode *call = in(1)->in(0)->as_Call();
2541 
2542   return ( in(0)->is_CatchProj() && in(0)->in(0)->in(1) == in(1) )
2543     ? this
2544     : call->in(TypeFunc::Parms);
2545 }
2546 
2547 //=============================================================================
2548 //------------------------------Value------------------------------------------
2549 // Check for being unreachable.
2550 const Type* NeverBranchNode::Value(PhaseGVN* phase) const {
2551   if (!in(0) || in(0)->is_top()) return Type::TOP;
2552   return bottom_type();
2553 }
2554 
2555 //------------------------------Ideal------------------------------------------
2556 // Check for no longer being part of a loop
2557 Node *NeverBranchNode::Ideal(PhaseGVN *phase, bool can_reshape) {
2558   if (can_reshape && !in(0)->is_Loop()) {
2559     // Dead code elimination can sometimes delete this projection so
2560     // if it's not there, there's nothing to do.
2561     Node* fallthru = proj_out_or_null(0);
2562     if (fallthru != NULL) {
2563       phase->is_IterGVN()->replace_node(fallthru, in(0));
2564     }
2565     return phase->C->top();
2566   }
2567   return NULL;
2568 }
2569 
2570 #ifndef PRODUCT
2571 void NeverBranchNode::format( PhaseRegAlloc *ra_, outputStream *st) const {
2572   st->print("%s", Name());
2573 }
2574 #endif