1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/valuetypenode.hpp"
  71 #include "opto/vectornode.hpp"
  72 #include "runtime/arguments.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/macros.hpp"
  80 #if INCLUDE_ZGC
  81 #include "gc/z/c2/zBarrierSetC2.hpp"
  82 #endif
  83 
  84 
  85 // -------------------- Compile::mach_constant_base_node -----------------------
  86 // Constant table base node singleton.
  87 MachConstantBaseNode* Compile::mach_constant_base_node() {
  88   if (_mach_constant_base_node == NULL) {
  89     _mach_constant_base_node = new MachConstantBaseNode();
  90     _mach_constant_base_node->add_req(C->root());
  91   }
  92   return _mach_constant_base_node;
  93 }
  94 
  95 
  96 /// Support for intrinsics.
  97 
  98 // Return the index at which m must be inserted (or already exists).
  99 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 100 class IntrinsicDescPair {
 101  private:
 102   ciMethod* _m;
 103   bool _is_virtual;
 104  public:
 105   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 106   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 107     ciMethod* m= elt->method();
 108     ciMethod* key_m = key->_m;
 109     if (key_m < m)      return -1;
 110     else if (key_m > m) return 1;
 111     else {
 112       bool is_virtual = elt->is_virtual();
 113       bool key_virtual = key->_is_virtual;
 114       if (key_virtual < is_virtual)      return -1;
 115       else if (key_virtual > is_virtual) return 1;
 116       else                               return 0;
 117     }
 118   }
 119 };
 120 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 121 #ifdef ASSERT
 122   for (int i = 1; i < _intrinsics->length(); i++) {
 123     CallGenerator* cg1 = _intrinsics->at(i-1);
 124     CallGenerator* cg2 = _intrinsics->at(i);
 125     assert(cg1->method() != cg2->method()
 126            ? cg1->method()     < cg2->method()
 127            : cg1->is_virtual() < cg2->is_virtual(),
 128            "compiler intrinsics list must stay sorted");
 129   }
 130 #endif
 131   IntrinsicDescPair pair(m, is_virtual);
 132   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 133 }
 134 
 135 void Compile::register_intrinsic(CallGenerator* cg) {
 136   if (_intrinsics == NULL) {
 137     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 138   }
 139   int len = _intrinsics->length();
 140   bool found = false;
 141   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 142   assert(!found, "registering twice");
 143   _intrinsics->insert_before(index, cg);
 144   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 145 }
 146 
 147 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 148   assert(m->is_loaded(), "don't try this on unloaded methods");
 149   if (_intrinsics != NULL) {
 150     bool found = false;
 151     int index = intrinsic_insertion_index(m, is_virtual, found);
 152      if (found) {
 153       return _intrinsics->at(index);
 154     }
 155   }
 156   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 157   if (m->intrinsic_id() != vmIntrinsics::_none &&
 158       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 159     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 160     if (cg != NULL) {
 161       // Save it for next time:
 162       register_intrinsic(cg);
 163       return cg;
 164     } else {
 165       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 166     }
 167   }
 168   return NULL;
 169 }
 170 
 171 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 172 // in library_call.cpp.
 173 
 174 
 175 #ifndef PRODUCT
 176 // statistics gathering...
 177 
 178 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 179 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 180 
 181 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 182   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 183   int oflags = _intrinsic_hist_flags[id];
 184   assert(flags != 0, "what happened?");
 185   if (is_virtual) {
 186     flags |= _intrinsic_virtual;
 187   }
 188   bool changed = (flags != oflags);
 189   if ((flags & _intrinsic_worked) != 0) {
 190     juint count = (_intrinsic_hist_count[id] += 1);
 191     if (count == 1) {
 192       changed = true;           // first time
 193     }
 194     // increment the overall count also:
 195     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 196   }
 197   if (changed) {
 198     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 199       // Something changed about the intrinsic's virtuality.
 200       if ((flags & _intrinsic_virtual) != 0) {
 201         // This is the first use of this intrinsic as a virtual call.
 202         if (oflags != 0) {
 203           // We already saw it as a non-virtual, so note both cases.
 204           flags |= _intrinsic_both;
 205         }
 206       } else if ((oflags & _intrinsic_both) == 0) {
 207         // This is the first use of this intrinsic as a non-virtual
 208         flags |= _intrinsic_both;
 209       }
 210     }
 211     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 212   }
 213   // update the overall flags also:
 214   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 215   return changed;
 216 }
 217 
 218 static char* format_flags(int flags, char* buf) {
 219   buf[0] = 0;
 220   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 221   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 222   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 223   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 224   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 225   if (buf[0] == 0)  strcat(buf, ",");
 226   assert(buf[0] == ',', "must be");
 227   return &buf[1];
 228 }
 229 
 230 void Compile::print_intrinsic_statistics() {
 231   char flagsbuf[100];
 232   ttyLocker ttyl;
 233   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 234   tty->print_cr("Compiler intrinsic usage:");
 235   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 236   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 237   #define PRINT_STAT_LINE(name, c, f) \
 238     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 239   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 240     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 241     int   flags = _intrinsic_hist_flags[id];
 242     juint count = _intrinsic_hist_count[id];
 243     if ((flags | count) != 0) {
 244       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 245     }
 246   }
 247   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 248   if (xtty != NULL)  xtty->tail("statistics");
 249 }
 250 
 251 void Compile::print_statistics() {
 252   { ttyLocker ttyl;
 253     if (xtty != NULL)  xtty->head("statistics type='opto'");
 254     Parse::print_statistics();
 255     PhaseCCP::print_statistics();
 256     PhaseRegAlloc::print_statistics();
 257     Scheduling::print_statistics();
 258     PhasePeephole::print_statistics();
 259     PhaseIdealLoop::print_statistics();
 260     if (xtty != NULL)  xtty->tail("statistics");
 261   }
 262   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 263     // put this under its own <statistics> element.
 264     print_intrinsic_statistics();
 265   }
 266 }
 267 #endif //PRODUCT
 268 
 269 // Support for bundling info
 270 Bundle* Compile::node_bundling(const Node *n) {
 271   assert(valid_bundle_info(n), "oob");
 272   return &_node_bundling_base[n->_idx];
 273 }
 274 
 275 bool Compile::valid_bundle_info(const Node *n) {
 276   return (_node_bundling_limit > n->_idx);
 277 }
 278 
 279 
 280 void Compile::gvn_replace_by(Node* n, Node* nn) {
 281   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 282     Node* use = n->last_out(i);
 283     bool is_in_table = initial_gvn()->hash_delete(use);
 284     uint uses_found = 0;
 285     for (uint j = 0; j < use->len(); j++) {
 286       if (use->in(j) == n) {
 287         if (j < use->req())
 288           use->set_req(j, nn);
 289         else
 290           use->set_prec(j, nn);
 291         uses_found++;
 292       }
 293     }
 294     if (is_in_table) {
 295       // reinsert into table
 296       initial_gvn()->hash_find_insert(use);
 297     }
 298     record_for_igvn(use);
 299     i -= uses_found;    // we deleted 1 or more copies of this edge
 300   }
 301 }
 302 
 303 
 304 static inline bool not_a_node(const Node* n) {
 305   if (n == NULL)                   return true;
 306   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 307   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 308   return false;
 309 }
 310 
 311 // Identify all nodes that are reachable from below, useful.
 312 // Use breadth-first pass that records state in a Unique_Node_List,
 313 // recursive traversal is slower.
 314 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 315   int estimated_worklist_size = live_nodes();
 316   useful.map( estimated_worklist_size, NULL );  // preallocate space
 317 
 318   // Initialize worklist
 319   if (root() != NULL)     { useful.push(root()); }
 320   // If 'top' is cached, declare it useful to preserve cached node
 321   if( cached_top_node() ) { useful.push(cached_top_node()); }
 322 
 323   // Push all useful nodes onto the list, breadthfirst
 324   for( uint next = 0; next < useful.size(); ++next ) {
 325     assert( next < unique(), "Unique useful nodes < total nodes");
 326     Node *n  = useful.at(next);
 327     uint max = n->len();
 328     for( uint i = 0; i < max; ++i ) {
 329       Node *m = n->in(i);
 330       if (not_a_node(m))  continue;
 331       useful.push(m);
 332     }
 333   }
 334 }
 335 
 336 // Update dead_node_list with any missing dead nodes using useful
 337 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 338 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 339   uint max_idx = unique();
 340   VectorSet& useful_node_set = useful.member_set();
 341 
 342   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 343     // If node with index node_idx is not in useful set,
 344     // mark it as dead in dead node list.
 345     if (! useful_node_set.test(node_idx) ) {
 346       record_dead_node(node_idx);
 347     }
 348   }
 349 }
 350 
 351 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 352   int shift = 0;
 353   for (int i = 0; i < inlines->length(); i++) {
 354     CallGenerator* cg = inlines->at(i);
 355     CallNode* call = cg->call_node();
 356     if (shift > 0) {
 357       inlines->at_put(i-shift, cg);
 358     }
 359     if (!useful.member(call)) {
 360       shift++;
 361     }
 362   }
 363   inlines->trunc_to(inlines->length()-shift);
 364 }
 365 
 366 // Disconnect all useless nodes by disconnecting those at the boundary.
 367 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 368   uint next = 0;
 369   while (next < useful.size()) {
 370     Node *n = useful.at(next++);
 371     if (n->is_SafePoint()) {
 372       // We're done with a parsing phase. Replaced nodes are not valid
 373       // beyond that point.
 374       n->as_SafePoint()->delete_replaced_nodes();
 375     }
 376     // Use raw traversal of out edges since this code removes out edges
 377     int max = n->outcnt();
 378     for (int j = 0; j < max; ++j) {
 379       Node* child = n->raw_out(j);
 380       if (! useful.member(child)) {
 381         assert(!child->is_top() || child != top(),
 382                "If top is cached in Compile object it is in useful list");
 383         // Only need to remove this out-edge to the useless node
 384         n->raw_del_out(j);
 385         --j;
 386         --max;
 387       }
 388     }
 389     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 390       record_for_igvn(n->unique_out());
 391     }
 392   }
 393   // Remove useless macro and predicate opaq nodes
 394   for (int i = C->macro_count()-1; i >= 0; i--) {
 395     Node* n = C->macro_node(i);
 396     if (!useful.member(n)) {
 397       remove_macro_node(n);
 398     }
 399   }
 400   // Remove useless CastII nodes with range check dependency
 401   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 402     Node* cast = range_check_cast_node(i);
 403     if (!useful.member(cast)) {
 404       remove_range_check_cast(cast);
 405     }
 406   }
 407   // Remove useless expensive nodes
 408   for (int i = C->expensive_count()-1; i >= 0; i--) {
 409     Node* n = C->expensive_node(i);
 410     if (!useful.member(n)) {
 411       remove_expensive_node(n);
 412     }
 413   }
 414   // Remove useless Opaque4 nodes
 415   for (int i = opaque4_count() - 1; i >= 0; i--) {
 416     Node* opaq = opaque4_node(i);
 417     if (!useful.member(opaq)) {
 418       remove_opaque4_node(opaq);
 419     }
 420   }
 421   // Remove useless value type nodes
 422   if (_value_type_nodes != NULL) {
 423     _value_type_nodes->remove_useless_nodes(useful.member_set());
 424   }
 425   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 426   bs->eliminate_useless_gc_barriers(useful, this);
 427   // clean up the late inline lists
 428   remove_useless_late_inlines(&_string_late_inlines, useful);
 429   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 430   remove_useless_late_inlines(&_late_inlines, useful);
 431   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 432 }
 433 
 434 //------------------------------frame_size_in_words-----------------------------
 435 // frame_slots in units of words
 436 int Compile::frame_size_in_words() const {
 437   // shift is 0 in LP32 and 1 in LP64
 438   const int shift = (LogBytesPerWord - LogBytesPerInt);
 439   int words = _frame_slots >> shift;
 440   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 441   return words;
 442 }
 443 
 444 // To bang the stack of this compiled method we use the stack size
 445 // that the interpreter would need in case of a deoptimization. This
 446 // removes the need to bang the stack in the deoptimization blob which
 447 // in turn simplifies stack overflow handling.
 448 int Compile::bang_size_in_bytes() const {
 449   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 450 }
 451 
 452 // ============================================================================
 453 //------------------------------CompileWrapper---------------------------------
 454 class CompileWrapper : public StackObj {
 455   Compile *const _compile;
 456  public:
 457   CompileWrapper(Compile* compile);
 458 
 459   ~CompileWrapper();
 460 };
 461 
 462 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 463   // the Compile* pointer is stored in the current ciEnv:
 464   ciEnv* env = compile->env();
 465   assert(env == ciEnv::current(), "must already be a ciEnv active");
 466   assert(env->compiler_data() == NULL, "compile already active?");
 467   env->set_compiler_data(compile);
 468   assert(compile == Compile::current(), "sanity");
 469 
 470   compile->set_type_dict(NULL);
 471   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 472   compile->clone_map().set_clone_idx(0);
 473   compile->set_type_hwm(NULL);
 474   compile->set_type_last_size(0);
 475   compile->set_last_tf(NULL, NULL);
 476   compile->set_indexSet_arena(NULL);
 477   compile->set_indexSet_free_block_list(NULL);
 478   compile->init_type_arena();
 479   Type::Initialize(compile);
 480   _compile->set_scratch_buffer_blob(NULL);
 481   _compile->begin_method();
 482   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 483 }
 484 CompileWrapper::~CompileWrapper() {
 485   _compile->end_method();
 486   if (_compile->scratch_buffer_blob() != NULL)
 487     BufferBlob::free(_compile->scratch_buffer_blob());
 488   _compile->env()->set_compiler_data(NULL);
 489 }
 490 
 491 
 492 //----------------------------print_compile_messages---------------------------
 493 void Compile::print_compile_messages() {
 494 #ifndef PRODUCT
 495   // Check if recompiling
 496   if (_subsume_loads == false && PrintOpto) {
 497     // Recompiling without allowing machine instructions to subsume loads
 498     tty->print_cr("*********************************************************");
 499     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 500     tty->print_cr("*********************************************************");
 501   }
 502   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 503     // Recompiling without escape analysis
 504     tty->print_cr("*********************************************************");
 505     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 506     tty->print_cr("*********************************************************");
 507   }
 508   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 509     // Recompiling without boxing elimination
 510     tty->print_cr("*********************************************************");
 511     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 512     tty->print_cr("*********************************************************");
 513   }
 514   if (C->directive()->BreakAtCompileOption) {
 515     // Open the debugger when compiling this method.
 516     tty->print("### Breaking when compiling: ");
 517     method()->print_short_name();
 518     tty->cr();
 519     BREAKPOINT;
 520   }
 521 
 522   if( PrintOpto ) {
 523     if (is_osr_compilation()) {
 524       tty->print("[OSR]%3d", _compile_id);
 525     } else {
 526       tty->print("%3d", _compile_id);
 527     }
 528   }
 529 #endif
 530 }
 531 
 532 
 533 //-----------------------init_scratch_buffer_blob------------------------------
 534 // Construct a temporary BufferBlob and cache it for this compile.
 535 void Compile::init_scratch_buffer_blob(int const_size) {
 536   // If there is already a scratch buffer blob allocated and the
 537   // constant section is big enough, use it.  Otherwise free the
 538   // current and allocate a new one.
 539   BufferBlob* blob = scratch_buffer_blob();
 540   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 541     // Use the current blob.
 542   } else {
 543     if (blob != NULL) {
 544       BufferBlob::free(blob);
 545     }
 546 
 547     ResourceMark rm;
 548     _scratch_const_size = const_size;
 549     int size = C2Compiler::initial_code_buffer_size(const_size);
 550 #ifdef ASSERT
 551     if (C->has_scalarized_args()) {
 552       // Oop verification for loading object fields from scalarized value types in the new entry point requires lots of space
 553       size += 5120;
 554     }
 555 #endif
 556     blob = BufferBlob::create("Compile::scratch_buffer", size);
 557     // Record the buffer blob for next time.
 558     set_scratch_buffer_blob(blob);
 559     // Have we run out of code space?
 560     if (scratch_buffer_blob() == NULL) {
 561       // Let CompilerBroker disable further compilations.
 562       record_failure("Not enough space for scratch buffer in CodeCache");
 563       return;
 564     }
 565   }
 566 
 567   // Initialize the relocation buffers
 568   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 569   set_scratch_locs_memory(locs_buf);
 570 }
 571 
 572 
 573 //-----------------------scratch_emit_size-------------------------------------
 574 // Helper function that computes size by emitting code
 575 uint Compile::scratch_emit_size(const Node* n) {
 576   // Start scratch_emit_size section.
 577   set_in_scratch_emit_size(true);
 578 
 579   // Emit into a trash buffer and count bytes emitted.
 580   // This is a pretty expensive way to compute a size,
 581   // but it works well enough if seldom used.
 582   // All common fixed-size instructions are given a size
 583   // method by the AD file.
 584   // Note that the scratch buffer blob and locs memory are
 585   // allocated at the beginning of the compile task, and
 586   // may be shared by several calls to scratch_emit_size.
 587   // The allocation of the scratch buffer blob is particularly
 588   // expensive, since it has to grab the code cache lock.
 589   BufferBlob* blob = this->scratch_buffer_blob();
 590   assert(blob != NULL, "Initialize BufferBlob at start");
 591   assert(blob->size() > MAX_inst_size, "sanity");
 592   relocInfo* locs_buf = scratch_locs_memory();
 593   address blob_begin = blob->content_begin();
 594   address blob_end   = (address)locs_buf;
 595   assert(blob->contains(blob_end), "sanity");
 596   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 597   buf.initialize_consts_size(_scratch_const_size);
 598   buf.initialize_stubs_size(MAX_stubs_size);
 599   assert(locs_buf != NULL, "sanity");
 600   int lsize = MAX_locs_size / 3;
 601   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 602   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 603   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 604   // Mark as scratch buffer.
 605   buf.consts()->set_scratch_emit();
 606   buf.insts()->set_scratch_emit();
 607   buf.stubs()->set_scratch_emit();
 608 
 609   // Do the emission.
 610 
 611   Label fakeL; // Fake label for branch instructions.
 612   Label*   saveL = NULL;
 613   uint save_bnum = 0;
 614   bool is_branch = n->is_MachBranch();
 615   if (is_branch) {
 616     MacroAssembler masm(&buf);
 617     masm.bind(fakeL);
 618     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 619     n->as_MachBranch()->label_set(&fakeL, 0);
 620   } else if (n->is_MachProlog()) {
 621     saveL = ((MachPrologNode*)n)->_verified_entry;
 622     ((MachPrologNode*)n)->_verified_entry = &fakeL;
 623   }
 624   n->emit(buf, this->regalloc());
 625 
 626   // Emitting into the scratch buffer should not fail
 627   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 628 
 629   // Restore label.
 630   if (is_branch) {
 631     n->as_MachBranch()->label_set(saveL, save_bnum);
 632   } else if (n->is_MachProlog()) {
 633     ((MachPrologNode*)n)->_verified_entry = saveL;
 634   }
 635 
 636   // End scratch_emit_size section.
 637   set_in_scratch_emit_size(false);
 638 
 639   return buf.insts_size();
 640 }
 641 
 642 
 643 // ============================================================================
 644 //------------------------------Compile standard-------------------------------
 645 debug_only( int Compile::_debug_idx = 100000; )
 646 
 647 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 648 // the continuation bci for on stack replacement.
 649 
 650 
 651 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 652                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 653                 : Phase(Compiler),
 654                   _compile_id(ci_env->compile_id()),
 655                   _save_argument_registers(false),
 656                   _subsume_loads(subsume_loads),
 657                   _do_escape_analysis(do_escape_analysis),
 658                   _eliminate_boxing(eliminate_boxing),
 659                   _method(target),
 660                   _entry_bci(osr_bci),
 661                   _stub_function(NULL),
 662                   _stub_name(NULL),
 663                   _stub_entry_point(NULL),
 664                   _max_node_limit(MaxNodeLimit),
 665                   _orig_pc_slot(0),
 666                   _orig_pc_slot_offset_in_bytes(0),
 667                   _sp_inc_slot(0),
 668                   _sp_inc_slot_offset_in_bytes(0),
 669                   _inlining_progress(false),
 670                   _inlining_incrementally(false),
 671                   _do_cleanup(false),
 672                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 673 #ifndef PRODUCT
 674                   _trace_opto_output(directive->TraceOptoOutputOption),
 675 #endif
 676                   _has_method_handle_invokes(false),
 677                   _comp_arena(mtCompiler),
 678                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 679                   _env(ci_env),
 680                   _directive(directive),
 681                   _log(ci_env->log()),
 682                   _failure_reason(NULL),
 683                   _congraph(NULL),
 684 #ifndef PRODUCT
 685                   _printer(IdealGraphPrinter::printer()),
 686 #endif
 687                   _dead_node_list(comp_arena()),
 688                   _dead_node_count(0),
 689                   _node_arena(mtCompiler),
 690                   _old_arena(mtCompiler),
 691                   _mach_constant_base_node(NULL),
 692                   _Compile_types(mtCompiler),
 693                   _initial_gvn(NULL),
 694                   _for_igvn(NULL),
 695                   _warm_calls(NULL),
 696                   _late_inlines(comp_arena(), 2, 0, NULL),
 697                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 698                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 699                   _late_inlines_pos(0),
 700                   _number_of_mh_late_inlines(0),
 701                   _print_inlining_stream(NULL),
 702                   _print_inlining_list(NULL),
 703                   _print_inlining_idx(0),
 704                   _print_inlining_output(NULL),
 705                   _replay_inline_data(NULL),
 706                   _java_calls(0),
 707                   _inner_loops(0),
 708                   _interpreter_frame_size(0),
 709                   _node_bundling_limit(0),
 710                   _node_bundling_base(NULL),
 711                   _code_buffer("Compile::Fill_buffer"),
 712                   _scratch_const_size(-1),
 713                   _in_scratch_emit_size(false)
 714 #ifndef PRODUCT
 715                   , _in_dump_cnt(0)
 716 #endif
 717 {
 718   C = this;
 719 #ifndef PRODUCT
 720   if (_printer != NULL) {
 721     _printer->set_compile(this);
 722   }
 723 #endif
 724   CompileWrapper cw(this);
 725 
 726   if (CITimeVerbose) {
 727     tty->print(" ");
 728     target->holder()->name()->print();
 729     tty->print(".");
 730     target->print_short_name();
 731     tty->print("  ");
 732   }
 733   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 734   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 735 
 736 #ifndef PRODUCT
 737   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 738   if (!print_opto_assembly) {
 739     bool print_assembly = directive->PrintAssemblyOption;
 740     if (print_assembly && !Disassembler::can_decode()) {
 741       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 742       print_opto_assembly = true;
 743     }
 744   }
 745   set_print_assembly(print_opto_assembly);
 746   set_parsed_irreducible_loop(false);
 747 
 748   if (directive->ReplayInlineOption) {
 749     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 750   }
 751 #endif
 752   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 753   set_print_intrinsics(directive->PrintIntrinsicsOption);
 754   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 755 
 756   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 757     // Make sure the method being compiled gets its own MDO,
 758     // so we can at least track the decompile_count().
 759     // Need MDO to record RTM code generation state.
 760     method()->ensure_method_data();
 761   }
 762 
 763   Init(::AliasLevel);
 764 
 765 
 766   print_compile_messages();
 767 
 768   _ilt = InlineTree::build_inline_tree_root();
 769 
 770   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 771   assert(num_alias_types() >= AliasIdxRaw, "");
 772 
 773 #define MINIMUM_NODE_HASH  1023
 774   // Node list that Iterative GVN will start with
 775   Unique_Node_List for_igvn(comp_arena());
 776   set_for_igvn(&for_igvn);
 777 
 778   // GVN that will be run immediately on new nodes
 779   uint estimated_size = method()->code_size()*4+64;
 780   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 781   PhaseGVN gvn(node_arena(), estimated_size);
 782   set_initial_gvn(&gvn);
 783 
 784   print_inlining_init();
 785   { // Scope for timing the parser
 786     TracePhase tp("parse", &timers[_t_parser]);
 787 
 788     // Put top into the hash table ASAP.
 789     initial_gvn()->transform_no_reclaim(top());
 790 
 791     // Set up tf(), start(), and find a CallGenerator.
 792     CallGenerator* cg = NULL;
 793     if (is_osr_compilation()) {
 794       const TypeTuple *domain = StartOSRNode::osr_domain();
 795       const TypeTuple *range = TypeTuple::make_range(method()->signature());
 796       init_tf(TypeFunc::make(domain, range));
 797       StartNode* s = new StartOSRNode(root(), domain);
 798       initial_gvn()->set_type_bottom(s);
 799       init_start(s);
 800       cg = CallGenerator::for_osr(method(), entry_bci());
 801     } else {
 802       // Normal case.
 803       init_tf(TypeFunc::make(method()));
 804       StartNode* s = new StartNode(root(), tf()->domain_cc());
 805       initial_gvn()->set_type_bottom(s);
 806       init_start(s);
 807       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 808         // With java.lang.ref.reference.get() we must go through the
 809         // intrinsic - even when get() is the root
 810         // method of the compile - so that, if necessary, the value in
 811         // the referent field of the reference object gets recorded by
 812         // the pre-barrier code.
 813         cg = find_intrinsic(method(), false);
 814       }
 815       if (cg == NULL) {
 816         float past_uses = method()->interpreter_invocation_count();
 817         float expected_uses = past_uses;
 818         cg = CallGenerator::for_inline(method(), expected_uses);
 819       }
 820     }
 821     if (failing())  return;
 822     if (cg == NULL) {
 823       record_method_not_compilable("cannot parse method");
 824       return;
 825     }
 826     JVMState* jvms = build_start_state(start(), tf());
 827     if ((jvms = cg->generate(jvms)) == NULL) {
 828       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 829         record_method_not_compilable("method parse failed");
 830       }
 831       return;
 832     }
 833     GraphKit kit(jvms);
 834 
 835     if (!kit.stopped()) {
 836       // Accept return values, and transfer control we know not where.
 837       // This is done by a special, unique ReturnNode bound to root.
 838       return_values(kit.jvms());
 839     }
 840 
 841     if (kit.has_exceptions()) {
 842       // Any exceptions that escape from this call must be rethrown
 843       // to whatever caller is dynamically above us on the stack.
 844       // This is done by a special, unique RethrowNode bound to root.
 845       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 846     }
 847 
 848     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 849 
 850     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 851       inline_string_calls(true);
 852     }
 853 
 854     if (failing())  return;
 855 
 856     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 857 
 858     // Remove clutter produced by parsing.
 859     if (!failing()) {
 860       ResourceMark rm;
 861       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 862     }
 863   }
 864 
 865   // Note:  Large methods are capped off in do_one_bytecode().
 866   if (failing())  return;
 867 
 868   // After parsing, node notes are no longer automagic.
 869   // They must be propagated by register_new_node_with_optimizer(),
 870   // clone(), or the like.
 871   set_default_node_notes(NULL);
 872 
 873   for (;;) {
 874     int successes = Inline_Warm();
 875     if (failing())  return;
 876     if (successes == 0)  break;
 877   }
 878 
 879   // Drain the list.
 880   Finish_Warm();
 881 #ifndef PRODUCT
 882   if (_printer && _printer->should_print(1)) {
 883     _printer->print_inlining();
 884   }
 885 #endif
 886 
 887   if (failing())  return;
 888   NOT_PRODUCT( verify_graph_edges(); )
 889 
 890   // Now optimize
 891   Optimize();
 892   if (failing())  return;
 893   NOT_PRODUCT( verify_graph_edges(); )
 894 
 895 #ifndef PRODUCT
 896   if (PrintIdeal) {
 897     ttyLocker ttyl;  // keep the following output all in one block
 898     // This output goes directly to the tty, not the compiler log.
 899     // To enable tools to match it up with the compilation activity,
 900     // be sure to tag this tty output with the compile ID.
 901     if (xtty != NULL) {
 902       xtty->head("ideal compile_id='%d'%s", compile_id(),
 903                  is_osr_compilation()    ? " compile_kind='osr'" :
 904                  "");
 905     }
 906     root()->dump(9999);
 907     if (xtty != NULL) {
 908       xtty->tail("ideal");
 909     }
 910   }
 911 #endif
 912 
 913 #ifdef ASSERT
 914   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 915   bs->verify_gc_barriers(this, BarrierSetC2::BeforeCodeGen);
 916 #endif
 917 
 918   // Dump compilation data to replay it.
 919   if (directive->DumpReplayOption) {
 920     env()->dump_replay_data(_compile_id);
 921   }
 922   if (directive->DumpInlineOption && (ilt() != NULL)) {
 923     env()->dump_inline_data(_compile_id);
 924   }
 925 
 926   // Now that we know the size of all the monitors we can add a fixed slot
 927   // for the original deopt pc.
 928 
 929   _orig_pc_slot = fixed_slots();
 930   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 931 
 932   if (needs_stack_repair()) {
 933     // One extra slot for the special stack increment value
 934     _sp_inc_slot = next_slot;
 935     next_slot += 2;
 936   }
 937 
 938   set_fixed_slots(next_slot);
 939 
 940   // Compute when to use implicit null checks. Used by matching trap based
 941   // nodes and NullCheck optimization.
 942   set_allowed_deopt_reasons();
 943 
 944   // Now generate code
 945   Code_Gen();
 946   if (failing())  return;
 947 
 948   // Check if we want to skip execution of all compiled code.
 949   {
 950 #ifndef PRODUCT
 951     if (OptoNoExecute) {
 952       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 953       return;
 954     }
 955 #endif
 956     TracePhase tp("install_code", &timers[_t_registerMethod]);
 957 
 958     if (is_osr_compilation()) {
 959       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 960       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 961     } else {
 962       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 963       if (_code_offsets.value(CodeOffsets::Verified_Value_Entry) == -1) {
 964         _code_offsets.set_value(CodeOffsets::Verified_Value_Entry, _first_block_size);
 965       }
 966       if (_code_offsets.value(CodeOffsets::Verified_Value_Entry_RO) == -1) {
 967         _code_offsets.set_value(CodeOffsets::Verified_Value_Entry_RO, _first_block_size);
 968       }
 969       if (_code_offsets.value(CodeOffsets::Entry) == -1) {
 970         _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
 971       }
 972       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 973     }
 974 
 975     env()->register_method(_method, _entry_bci,
 976                            &_code_offsets,
 977                            _orig_pc_slot_offset_in_bytes,
 978                            code_buffer(),
 979                            frame_size_in_words(), _oop_map_set,
 980                            &_handler_table, &_inc_table,
 981                            compiler,
 982                            has_unsafe_access(),
 983                            SharedRuntime::is_wide_vector(max_vector_size()),
 984                            rtm_state()
 985                            );
 986 
 987     if (log() != NULL) // Print code cache state into compiler log
 988       log()->code_cache_state();
 989   }
 990 }
 991 
 992 //------------------------------Compile----------------------------------------
 993 // Compile a runtime stub
 994 Compile::Compile( ciEnv* ci_env,
 995                   TypeFunc_generator generator,
 996                   address stub_function,
 997                   const char *stub_name,
 998                   int is_fancy_jump,
 999                   bool pass_tls,
1000                   bool save_arg_registers,
1001                   bool return_pc,
1002                   DirectiveSet* directive)
1003   : Phase(Compiler),
1004     _compile_id(0),
1005     _save_argument_registers(save_arg_registers),
1006     _subsume_loads(true),
1007     _do_escape_analysis(false),
1008     _eliminate_boxing(false),
1009     _method(NULL),
1010     _entry_bci(InvocationEntryBci),
1011     _stub_function(stub_function),
1012     _stub_name(stub_name),
1013     _stub_entry_point(NULL),
1014     _max_node_limit(MaxNodeLimit),
1015     _orig_pc_slot(0),
1016     _orig_pc_slot_offset_in_bytes(0),
1017     _sp_inc_slot(0),
1018     _sp_inc_slot_offset_in_bytes(0),
1019     _inlining_progress(false),
1020     _inlining_incrementally(false),
1021     _has_reserved_stack_access(false),
1022 #ifndef PRODUCT
1023     _trace_opto_output(directive->TraceOptoOutputOption),
1024 #endif
1025     _has_method_handle_invokes(false),
1026     _comp_arena(mtCompiler),
1027     _env(ci_env),
1028     _directive(directive),
1029     _log(ci_env->log()),
1030     _failure_reason(NULL),
1031     _congraph(NULL),
1032 #ifndef PRODUCT
1033     _printer(NULL),
1034 #endif
1035     _dead_node_list(comp_arena()),
1036     _dead_node_count(0),
1037     _node_arena(mtCompiler),
1038     _old_arena(mtCompiler),
1039     _mach_constant_base_node(NULL),
1040     _Compile_types(mtCompiler),
1041     _initial_gvn(NULL),
1042     _for_igvn(NULL),
1043     _warm_calls(NULL),
1044     _number_of_mh_late_inlines(0),
1045     _print_inlining_stream(NULL),
1046     _print_inlining_list(NULL),
1047     _print_inlining_idx(0),
1048     _print_inlining_output(NULL),
1049     _replay_inline_data(NULL),
1050     _java_calls(0),
1051     _inner_loops(0),
1052     _interpreter_frame_size(0),
1053     _node_bundling_limit(0),
1054     _node_bundling_base(NULL),
1055     _code_buffer("Compile::Fill_buffer"),
1056 #ifndef PRODUCT
1057     _in_dump_cnt(0),
1058 #endif
1059     _allowed_reasons(0) {
1060   C = this;
1061 
1062   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1063   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1064 
1065 #ifndef PRODUCT
1066   set_print_assembly(PrintFrameConverterAssembly);
1067   set_parsed_irreducible_loop(false);
1068 #endif
1069   set_has_irreducible_loop(false); // no loops
1070 
1071   CompileWrapper cw(this);
1072   Init(/*AliasLevel=*/ 0);
1073   init_tf((*generator)());
1074 
1075   {
1076     // The following is a dummy for the sake of GraphKit::gen_stub
1077     Unique_Node_List for_igvn(comp_arena());
1078     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1079     PhaseGVN gvn(Thread::current()->resource_area(),255);
1080     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1081     gvn.transform_no_reclaim(top());
1082 
1083     GraphKit kit;
1084     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1085   }
1086 
1087   NOT_PRODUCT( verify_graph_edges(); )
1088   Code_Gen();
1089   if (failing())  return;
1090 
1091 
1092   // Entry point will be accessed using compile->stub_entry_point();
1093   if (code_buffer() == NULL) {
1094     Matcher::soft_match_failure();
1095   } else {
1096     if (PrintAssembly && (WizardMode || Verbose))
1097       tty->print_cr("### Stub::%s", stub_name);
1098 
1099     if (!failing()) {
1100       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1101 
1102       // Make the NMethod
1103       // For now we mark the frame as never safe for profile stackwalking
1104       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1105                                                       code_buffer(),
1106                                                       CodeOffsets::frame_never_safe,
1107                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1108                                                       frame_size_in_words(),
1109                                                       _oop_map_set,
1110                                                       save_arg_registers);
1111       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1112 
1113       _stub_entry_point = rs->entry_point();
1114     }
1115   }
1116 }
1117 
1118 //------------------------------Init-------------------------------------------
1119 // Prepare for a single compilation
1120 void Compile::Init(int aliaslevel) {
1121   _unique  = 0;
1122   _regalloc = NULL;
1123 
1124   _tf      = NULL;  // filled in later
1125   _top     = NULL;  // cached later
1126   _matcher = NULL;  // filled in later
1127   _cfg     = NULL;  // filled in later
1128 
1129   set_24_bit_selection_and_mode(Use24BitFP, false);
1130 
1131   _node_note_array = NULL;
1132   _default_node_notes = NULL;
1133   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1134 
1135   _immutable_memory = NULL; // filled in at first inquiry
1136 
1137   // Globally visible Nodes
1138   // First set TOP to NULL to give safe behavior during creation of RootNode
1139   set_cached_top_node(NULL);
1140   set_root(new RootNode());
1141   // Now that you have a Root to point to, create the real TOP
1142   set_cached_top_node( new ConNode(Type::TOP) );
1143   set_recent_alloc(NULL, NULL);
1144 
1145   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1146   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1147   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1148   env()->set_dependencies(new Dependencies(env()));
1149 
1150   _fixed_slots = 0;
1151   set_has_split_ifs(false);
1152   set_has_loops(has_method() && method()->has_loops()); // first approximation
1153   set_has_stringbuilder(false);
1154   set_has_boxed_value(false);
1155   _trap_can_recompile = false;  // no traps emitted yet
1156   _major_progress = true; // start out assuming good things will happen
1157   set_has_unsafe_access(false);
1158   set_max_vector_size(0);
1159   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1160   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1161   set_decompile_count(0);
1162 
1163   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1164   _loop_opts_cnt = LoopOptsCount;
1165   set_do_inlining(Inline);
1166   set_max_inline_size(MaxInlineSize);
1167   set_freq_inline_size(FreqInlineSize);
1168   set_do_scheduling(OptoScheduling);
1169   set_do_count_invocations(false);
1170   set_do_method_data_update(false);
1171 
1172   set_do_vector_loop(false);
1173 
1174   if (AllowVectorizeOnDemand) {
1175     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1176       set_do_vector_loop(true);
1177       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1178     } else if (has_method() && method()->name() != 0 &&
1179                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1180       set_do_vector_loop(true);
1181     }
1182   }
1183   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1184   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1185 
1186   set_age_code(has_method() && method()->profile_aging());
1187   set_rtm_state(NoRTM); // No RTM lock eliding by default
1188   _max_node_limit = _directive->MaxNodeLimitOption;
1189 
1190 #if INCLUDE_RTM_OPT
1191   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1192     int rtm_state = method()->method_data()->rtm_state();
1193     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1194       // Don't generate RTM lock eliding code.
1195       set_rtm_state(NoRTM);
1196     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1197       // Generate RTM lock eliding code without abort ratio calculation code.
1198       set_rtm_state(UseRTM);
1199     } else if (UseRTMDeopt) {
1200       // Generate RTM lock eliding code and include abort ratio calculation
1201       // code if UseRTMDeopt is on.
1202       set_rtm_state(ProfileRTM);
1203     }
1204   }
1205 #endif
1206   if (debug_info()->recording_non_safepoints()) {
1207     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1208                         (comp_arena(), 8, 0, NULL));
1209     set_default_node_notes(Node_Notes::make(this));
1210   }
1211 
1212   // // -- Initialize types before each compile --
1213   // // Update cached type information
1214   // if( _method && _method->constants() )
1215   //   Type::update_loaded_types(_method, _method->constants());
1216 
1217   // Init alias_type map.
1218   if (!_do_escape_analysis && aliaslevel == 3)
1219     aliaslevel = 2;  // No unique types without escape analysis
1220   _AliasLevel = aliaslevel;
1221   const int grow_ats = 16;
1222   _max_alias_types = grow_ats;
1223   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1224   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1225   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1226   {
1227     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1228   }
1229   // Initialize the first few types.
1230   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1231   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1232   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1233   _num_alias_types = AliasIdxRaw+1;
1234   // Zero out the alias type cache.
1235   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1236   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1237   probe_alias_cache(NULL)->_index = AliasIdxTop;
1238 
1239   _intrinsics = NULL;
1240   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1241   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1242   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1243   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1244   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1245   _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1246   register_library_intrinsics();
1247 }
1248 
1249 //---------------------------init_start----------------------------------------
1250 // Install the StartNode on this compile object.
1251 void Compile::init_start(StartNode* s) {
1252   if (failing())
1253     return; // already failing
1254   assert(s == start(), "");
1255 }
1256 
1257 /**
1258  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1259  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1260  * the ideal graph.
1261  */
1262 StartNode* Compile::start() const {
1263   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1264   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1265     Node* start = root()->fast_out(i);
1266     if (start->is_Start()) {
1267       return start->as_Start();
1268     }
1269   }
1270   fatal("Did not find Start node!");
1271   return NULL;
1272 }
1273 
1274 //-------------------------------immutable_memory-------------------------------------
1275 // Access immutable memory
1276 Node* Compile::immutable_memory() {
1277   if (_immutable_memory != NULL) {
1278     return _immutable_memory;
1279   }
1280   StartNode* s = start();
1281   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1282     Node *p = s->fast_out(i);
1283     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1284       _immutable_memory = p;
1285       return _immutable_memory;
1286     }
1287   }
1288   ShouldNotReachHere();
1289   return NULL;
1290 }
1291 
1292 //----------------------set_cached_top_node------------------------------------
1293 // Install the cached top node, and make sure Node::is_top works correctly.
1294 void Compile::set_cached_top_node(Node* tn) {
1295   if (tn != NULL)  verify_top(tn);
1296   Node* old_top = _top;
1297   _top = tn;
1298   // Calling Node::setup_is_top allows the nodes the chance to adjust
1299   // their _out arrays.
1300   if (_top != NULL)     _top->setup_is_top();
1301   if (old_top != NULL)  old_top->setup_is_top();
1302   assert(_top == NULL || top()->is_top(), "");
1303 }
1304 
1305 #ifdef ASSERT
1306 uint Compile::count_live_nodes_by_graph_walk() {
1307   Unique_Node_List useful(comp_arena());
1308   // Get useful node list by walking the graph.
1309   identify_useful_nodes(useful);
1310   return useful.size();
1311 }
1312 
1313 void Compile::print_missing_nodes() {
1314 
1315   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1316   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1317     return;
1318   }
1319 
1320   // This is an expensive function. It is executed only when the user
1321   // specifies VerifyIdealNodeCount option or otherwise knows the
1322   // additional work that needs to be done to identify reachable nodes
1323   // by walking the flow graph and find the missing ones using
1324   // _dead_node_list.
1325 
1326   Unique_Node_List useful(comp_arena());
1327   // Get useful node list by walking the graph.
1328   identify_useful_nodes(useful);
1329 
1330   uint l_nodes = C->live_nodes();
1331   uint l_nodes_by_walk = useful.size();
1332 
1333   if (l_nodes != l_nodes_by_walk) {
1334     if (_log != NULL) {
1335       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1336       _log->stamp();
1337       _log->end_head();
1338     }
1339     VectorSet& useful_member_set = useful.member_set();
1340     int last_idx = l_nodes_by_walk;
1341     for (int i = 0; i < last_idx; i++) {
1342       if (useful_member_set.test(i)) {
1343         if (_dead_node_list.test(i)) {
1344           if (_log != NULL) {
1345             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1346           }
1347           if (PrintIdealNodeCount) {
1348             // Print the log message to tty
1349               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1350               useful.at(i)->dump();
1351           }
1352         }
1353       }
1354       else if (! _dead_node_list.test(i)) {
1355         if (_log != NULL) {
1356           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1357         }
1358         if (PrintIdealNodeCount) {
1359           // Print the log message to tty
1360           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1361         }
1362       }
1363     }
1364     if (_log != NULL) {
1365       _log->tail("mismatched_nodes");
1366     }
1367   }
1368 }
1369 void Compile::record_modified_node(Node* n) {
1370   if (_modified_nodes != NULL && !_inlining_incrementally &&
1371       n->outcnt() != 0 && !n->is_Con()) {
1372     _modified_nodes->push(n);
1373   }
1374 }
1375 
1376 void Compile::remove_modified_node(Node* n) {
1377   if (_modified_nodes != NULL) {
1378     _modified_nodes->remove(n);
1379   }
1380 }
1381 #endif
1382 
1383 #ifndef PRODUCT
1384 void Compile::verify_top(Node* tn) const {
1385   if (tn != NULL) {
1386     assert(tn->is_Con(), "top node must be a constant");
1387     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1388     assert(tn->in(0) != NULL, "must have live top node");
1389   }
1390 }
1391 #endif
1392 
1393 
1394 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1395 
1396 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1397   guarantee(arr != NULL, "");
1398   int num_blocks = arr->length();
1399   if (grow_by < num_blocks)  grow_by = num_blocks;
1400   int num_notes = grow_by * _node_notes_block_size;
1401   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1402   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1403   while (num_notes > 0) {
1404     arr->append(notes);
1405     notes     += _node_notes_block_size;
1406     num_notes -= _node_notes_block_size;
1407   }
1408   assert(num_notes == 0, "exact multiple, please");
1409 }
1410 
1411 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1412   if (source == NULL || dest == NULL)  return false;
1413 
1414   if (dest->is_Con())
1415     return false;               // Do not push debug info onto constants.
1416 
1417 #ifdef ASSERT
1418   // Leave a bread crumb trail pointing to the original node:
1419   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1420     dest->set_debug_orig(source);
1421   }
1422 #endif
1423 
1424   if (node_note_array() == NULL)
1425     return false;               // Not collecting any notes now.
1426 
1427   // This is a copy onto a pre-existing node, which may already have notes.
1428   // If both nodes have notes, do not overwrite any pre-existing notes.
1429   Node_Notes* source_notes = node_notes_at(source->_idx);
1430   if (source_notes == NULL || source_notes->is_clear())  return false;
1431   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1432   if (dest_notes == NULL || dest_notes->is_clear()) {
1433     return set_node_notes_at(dest->_idx, source_notes);
1434   }
1435 
1436   Node_Notes merged_notes = (*source_notes);
1437   // The order of operations here ensures that dest notes will win...
1438   merged_notes.update_from(dest_notes);
1439   return set_node_notes_at(dest->_idx, &merged_notes);
1440 }
1441 
1442 
1443 //--------------------------allow_range_check_smearing-------------------------
1444 // Gating condition for coalescing similar range checks.
1445 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1446 // single covering check that is at least as strong as any of them.
1447 // If the optimization succeeds, the simplified (strengthened) range check
1448 // will always succeed.  If it fails, we will deopt, and then give up
1449 // on the optimization.
1450 bool Compile::allow_range_check_smearing() const {
1451   // If this method has already thrown a range-check,
1452   // assume it was because we already tried range smearing
1453   // and it failed.
1454   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1455   return !already_trapped;
1456 }
1457 
1458 
1459 //------------------------------flatten_alias_type-----------------------------
1460 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1461   int offset = tj->offset();
1462   TypePtr::PTR ptr = tj->ptr();
1463 
1464   // Known instance (scalarizable allocation) alias only with itself.
1465   bool is_known_inst = tj->isa_oopptr() != NULL &&
1466                        tj->is_oopptr()->is_known_instance();
1467 
1468   // Process weird unsafe references.
1469   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1470     bool default_value_load = EnableValhalla && tj->is_instptr()->klass() == ciEnv::current()->Class_klass();
1471     assert(InlineUnsafeOps || default_value_load, "indeterminate pointers come only from unsafe ops");
1472     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1473     tj = TypeOopPtr::BOTTOM;
1474     ptr = tj->ptr();
1475     offset = tj->offset();
1476   }
1477 
1478   // Array pointers need some flattening
1479   const TypeAryPtr *ta = tj->isa_aryptr();
1480   if (ta && ta->is_stable()) {
1481     // Erase stability property for alias analysis.
1482     tj = ta = ta->cast_to_stable(false);
1483   }
1484   if( ta && is_known_inst ) {
1485     if ( offset != Type::OffsetBot &&
1486          offset > arrayOopDesc::length_offset_in_bytes() ) {
1487       offset = Type::OffsetBot; // Flatten constant access into array body only
1488       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1489     }
1490   } else if( ta && _AliasLevel >= 2 ) {
1491     // For arrays indexed by constant indices, we flatten the alias
1492     // space to include all of the array body.  Only the header, klass
1493     // and array length can be accessed un-aliased.
1494     // For flattened value type array, each field has its own slice so
1495     // we must include the field offset.
1496     if( offset != Type::OffsetBot ) {
1497       if( ta->const_oop() ) { // MethodData* or Method*
1498         offset = Type::OffsetBot;   // Flatten constant access into array body
1499         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1500       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1501         // range is OK as-is.
1502         tj = ta = TypeAryPtr::RANGE;
1503       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1504         tj = TypeInstPtr::KLASS; // all klass loads look alike
1505         ta = TypeAryPtr::RANGE; // generic ignored junk
1506         ptr = TypePtr::BotPTR;
1507       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1508         tj = TypeInstPtr::MARK;
1509         ta = TypeAryPtr::RANGE; // generic ignored junk
1510         ptr = TypePtr::BotPTR;
1511       } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1512         ta = tj->isa_aryptr();
1513       } else {                  // Random constant offset into array body
1514         offset = Type::OffsetBot;   // Flatten constant access into array body
1515         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1516       }
1517     }
1518     // Arrays of fixed size alias with arrays of unknown size.
1519     if (ta->size() != TypeInt::POS) {
1520       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1521       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1522     }
1523     // Arrays of known objects become arrays of unknown objects.
1524     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1525       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1526       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1527     }
1528     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1529       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1530       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1531     }
1532     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1533     // cannot be distinguished by bytecode alone.
1534     if (ta->elem() == TypeInt::BOOL) {
1535       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1536       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1537       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1538     }
1539     // During the 2nd round of IterGVN, NotNull castings are removed.
1540     // Make sure the Bottom and NotNull variants alias the same.
1541     // Also, make sure exact and non-exact variants alias the same.
1542     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1543       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1544     }
1545   }
1546 
1547   // Oop pointers need some flattening
1548   const TypeInstPtr *to = tj->isa_instptr();
1549   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1550     ciInstanceKlass *k = to->klass()->as_instance_klass();
1551     if( ptr == TypePtr::Constant ) {
1552       if (to->klass() != ciEnv::current()->Class_klass() ||
1553           offset < k->size_helper() * wordSize) {
1554         // No constant oop pointers (such as Strings); they alias with
1555         // unknown strings.
1556         assert(!is_known_inst, "not scalarizable allocation");
1557         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1558       }
1559     } else if( is_known_inst ) {
1560       tj = to; // Keep NotNull and klass_is_exact for instance type
1561     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1562       // During the 2nd round of IterGVN, NotNull castings are removed.
1563       // Make sure the Bottom and NotNull variants alias the same.
1564       // Also, make sure exact and non-exact variants alias the same.
1565       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1566     }
1567     if (to->speculative() != NULL) {
1568       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1569     }
1570     // Canonicalize the holder of this field
1571     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1572       // First handle header references such as a LoadKlassNode, even if the
1573       // object's klass is unloaded at compile time (4965979).
1574       if (!is_known_inst) { // Do it only for non-instance types
1575         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1576       }
1577     } else if (BarrierSet::barrier_set()->barrier_set_c2()->flatten_gc_alias_type(tj)) {
1578       to = tj->is_instptr();
1579     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1580       // Static fields are in the space above the normal instance
1581       // fields in the java.lang.Class instance.
1582       if (to->klass() != ciEnv::current()->Class_klass()) {
1583         to = NULL;
1584         tj = TypeOopPtr::BOTTOM;
1585         offset = tj->offset();
1586       }
1587     } else {
1588       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1589       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1590         if( is_known_inst ) {
1591           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1592         } else {
1593           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1594         }
1595       }
1596     }
1597   }
1598 
1599   // Klass pointers to object array klasses need some flattening
1600   const TypeKlassPtr *tk = tj->isa_klassptr();
1601   if( tk ) {
1602     // If we are referencing a field within a Klass, we need
1603     // to assume the worst case of an Object.  Both exact and
1604     // inexact types must flatten to the same alias class so
1605     // use NotNull as the PTR.
1606     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1607 
1608       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1609                                    TypeKlassPtr::OBJECT->klass(),
1610                                    Type::Offset(offset));
1611     }
1612 
1613     ciKlass* klass = tk->klass();
1614     if (klass != NULL && klass->is_obj_array_klass()) {
1615       ciKlass* k = TypeAryPtr::OOPS->klass();
1616       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1617         k = TypeInstPtr::BOTTOM->klass();
1618       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1619     }
1620 
1621     // Check for precise loads from the primary supertype array and force them
1622     // to the supertype cache alias index.  Check for generic array loads from
1623     // the primary supertype array and also force them to the supertype cache
1624     // alias index.  Since the same load can reach both, we need to merge
1625     // these 2 disparate memories into the same alias class.  Since the
1626     // primary supertype array is read-only, there's no chance of confusion
1627     // where we bypass an array load and an array store.
1628     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1629     if (offset == Type::OffsetBot ||
1630         (offset >= primary_supers_offset &&
1631          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1632         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1633       offset = in_bytes(Klass::secondary_super_cache_offset());
1634       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1635     }
1636   }
1637 
1638   // Flatten all Raw pointers together.
1639   if (tj->base() == Type::RawPtr)
1640     tj = TypeRawPtr::BOTTOM;
1641 
1642   if (tj->base() == Type::AnyPtr)
1643     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1644 
1645   // Flatten all to bottom for now
1646   switch( _AliasLevel ) {
1647   case 0:
1648     tj = TypePtr::BOTTOM;
1649     break;
1650   case 1:                       // Flatten to: oop, static, field or array
1651     switch (tj->base()) {
1652     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1653     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1654     case Type::AryPtr:   // do not distinguish arrays at all
1655     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1656     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1657     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1658     default: ShouldNotReachHere();
1659     }
1660     break;
1661   case 2:                       // No collapsing at level 2; keep all splits
1662   case 3:                       // No collapsing at level 3; keep all splits
1663     break;
1664   default:
1665     Unimplemented();
1666   }
1667 
1668   offset = tj->offset();
1669   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1670 
1671   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1672           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1673           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1674           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1675           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1676           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1677           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1678           (BarrierSet::barrier_set()->barrier_set_c2()->verify_gc_alias_type(tj, offset)),
1679           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1680   assert( tj->ptr() != TypePtr::TopPTR &&
1681           tj->ptr() != TypePtr::AnyNull &&
1682           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1683 //    assert( tj->ptr() != TypePtr::Constant ||
1684 //            tj->base() == Type::RawPtr ||
1685 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1686 
1687   return tj;
1688 }
1689 
1690 void Compile::AliasType::Init(int i, const TypePtr* at) {
1691   _index = i;
1692   _adr_type = at;
1693   _field = NULL;
1694   _element = NULL;
1695   _is_rewritable = true; // default
1696   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1697   if (atoop != NULL && atoop->is_known_instance()) {
1698     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1699     _general_index = Compile::current()->get_alias_index(gt);
1700   } else {
1701     _general_index = 0;
1702   }
1703 }
1704 
1705 BasicType Compile::AliasType::basic_type() const {
1706   if (element() != NULL) {
1707     const Type* element = adr_type()->is_aryptr()->elem();
1708     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1709   } if (field() != NULL) {
1710     return field()->layout_type();
1711   } else {
1712     return T_ILLEGAL; // unknown
1713   }
1714 }
1715 
1716 //---------------------------------print_on------------------------------------
1717 #ifndef PRODUCT
1718 void Compile::AliasType::print_on(outputStream* st) {
1719   if (index() < 10)
1720         st->print("@ <%d> ", index());
1721   else  st->print("@ <%d>",  index());
1722   st->print(is_rewritable() ? "   " : " RO");
1723   int offset = adr_type()->offset();
1724   if (offset == Type::OffsetBot)
1725         st->print(" +any");
1726   else  st->print(" +%-3d", offset);
1727   st->print(" in ");
1728   adr_type()->dump_on(st);
1729   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1730   if (field() != NULL && tjp) {
1731     if (tjp->klass()  != field()->holder() ||
1732         tjp->offset() != field()->offset_in_bytes()) {
1733       st->print(" != ");
1734       field()->print();
1735       st->print(" ***");
1736     }
1737   }
1738 }
1739 
1740 void print_alias_types() {
1741   Compile* C = Compile::current();
1742   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1743   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1744     C->alias_type(idx)->print_on(tty);
1745     tty->cr();
1746   }
1747 }
1748 #endif
1749 
1750 
1751 //----------------------------probe_alias_cache--------------------------------
1752 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1753   intptr_t key = (intptr_t) adr_type;
1754   key ^= key >> logAliasCacheSize;
1755   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1756 }
1757 
1758 
1759 //-----------------------------grow_alias_types--------------------------------
1760 void Compile::grow_alias_types() {
1761   const int old_ats  = _max_alias_types; // how many before?
1762   const int new_ats  = old_ats;          // how many more?
1763   const int grow_ats = old_ats+new_ats;  // how many now?
1764   _max_alias_types = grow_ats;
1765   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1766   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1767   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1768   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1769 }
1770 
1771 
1772 //--------------------------------find_alias_type------------------------------
1773 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1774   if (_AliasLevel == 0)
1775     return alias_type(AliasIdxBot);
1776 
1777   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1778   if (ace->_adr_type == adr_type) {
1779     return alias_type(ace->_index);
1780   }
1781 
1782   // Handle special cases.
1783   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1784   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1785 
1786   // Do it the slow way.
1787   const TypePtr* flat = flatten_alias_type(adr_type);
1788 
1789 #ifdef ASSERT
1790   {
1791     ResourceMark rm;
1792     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1793            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1794     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1795            Type::str(adr_type));
1796     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1797       const TypeOopPtr* foop = flat->is_oopptr();
1798       // Scalarizable allocations have exact klass always.
1799       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1800       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1801       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1802              Type::str(foop), Type::str(xoop));
1803     }
1804   }
1805 #endif
1806 
1807   int idx = AliasIdxTop;
1808   for (int i = 0; i < num_alias_types(); i++) {
1809     if (alias_type(i)->adr_type() == flat) {
1810       idx = i;
1811       break;
1812     }
1813   }
1814 
1815   if (idx == AliasIdxTop) {
1816     if (no_create)  return NULL;
1817     // Grow the array if necessary.
1818     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1819     // Add a new alias type.
1820     idx = _num_alias_types++;
1821     _alias_types[idx]->Init(idx, flat);
1822     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1823     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1824     if (flat->isa_instptr()) {
1825       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1826           && flat->is_instptr()->klass() == env()->Class_klass())
1827         alias_type(idx)->set_rewritable(false);
1828     }
1829     ciField* field = NULL;
1830     if (flat->isa_aryptr()) {
1831 #ifdef ASSERT
1832       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1833       // (T_BYTE has the weakest alignment and size restrictions...)
1834       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1835 #endif
1836       const Type* elemtype = flat->is_aryptr()->elem();
1837       if (flat->offset() == TypePtr::OffsetBot) {
1838         alias_type(idx)->set_element(elemtype);
1839       }
1840       int field_offset = flat->is_aryptr()->field_offset().get();
1841       if (elemtype->isa_valuetype() && field_offset != Type::OffsetBot) {
1842         ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
1843         field_offset += vk->first_field_offset();
1844         field = vk->get_field_by_offset(field_offset, false);
1845       }
1846     }
1847     if (flat->isa_klassptr()) {
1848       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1849         alias_type(idx)->set_rewritable(false);
1850       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1851         alias_type(idx)->set_rewritable(false);
1852       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1853         alias_type(idx)->set_rewritable(false);
1854       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1855         alias_type(idx)->set_rewritable(false);
1856     }
1857     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1858     // but the base pointer type is not distinctive enough to identify
1859     // references into JavaThread.)
1860 
1861     // Check for final fields.
1862     const TypeInstPtr* tinst = flat->isa_instptr();
1863     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1864       if (tinst->const_oop() != NULL &&
1865           tinst->klass() == ciEnv::current()->Class_klass() &&
1866           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1867         // static field
1868         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1869         field = k->get_field_by_offset(tinst->offset(), true);
1870       } else if (tinst->klass()->is_valuetype()) {
1871         // Value type field
1872         ciValueKlass* vk = tinst->value_klass();
1873         field = vk->get_field_by_offset(tinst->offset(), false);
1874       } else {
1875         ciInstanceKlass* k = tinst->klass()->as_instance_klass();
1876         field = k->get_field_by_offset(tinst->offset(), false);
1877       }
1878     }
1879     assert(field == NULL ||
1880            original_field == NULL ||
1881            (field->holder() == original_field->holder() &&
1882             field->offset() == original_field->offset() &&
1883             field->is_static() == original_field->is_static()), "wrong field?");
1884     // Set field() and is_rewritable() attributes.
1885     if (field != NULL)  alias_type(idx)->set_field(field);
1886   }
1887 
1888   // Fill the cache for next time.
1889   ace->_adr_type = adr_type;
1890   ace->_index    = idx;
1891   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1892 
1893   // Might as well try to fill the cache for the flattened version, too.
1894   AliasCacheEntry* face = probe_alias_cache(flat);
1895   if (face->_adr_type == NULL) {
1896     face->_adr_type = flat;
1897     face->_index    = idx;
1898     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1899   }
1900 
1901   return alias_type(idx);
1902 }
1903 
1904 
1905 Compile::AliasType* Compile::alias_type(ciField* field) {
1906   const TypeOopPtr* t;
1907   if (field->is_static())
1908     t = TypeInstPtr::make(field->holder()->java_mirror());
1909   else
1910     t = TypeOopPtr::make_from_klass_raw(field->holder());
1911   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1912   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1913   return atp;
1914 }
1915 
1916 
1917 //------------------------------have_alias_type--------------------------------
1918 bool Compile::have_alias_type(const TypePtr* adr_type) {
1919   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1920   if (ace->_adr_type == adr_type) {
1921     return true;
1922   }
1923 
1924   // Handle special cases.
1925   if (adr_type == NULL)             return true;
1926   if (adr_type == TypePtr::BOTTOM)  return true;
1927 
1928   return find_alias_type(adr_type, true, NULL) != NULL;
1929 }
1930 
1931 //-----------------------------must_alias--------------------------------------
1932 // True if all values of the given address type are in the given alias category.
1933 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1934   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1935   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1936   if (alias_idx == AliasIdxTop)         return false; // the empty category
1937   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1938 
1939   // the only remaining possible overlap is identity
1940   int adr_idx = get_alias_index(adr_type);
1941   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1942   assert(adr_idx == alias_idx ||
1943          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1944           && adr_type                       != TypeOopPtr::BOTTOM),
1945          "should not be testing for overlap with an unsafe pointer");
1946   return adr_idx == alias_idx;
1947 }
1948 
1949 //------------------------------can_alias--------------------------------------
1950 // True if any values of the given address type are in the given alias category.
1951 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1952   if (alias_idx == AliasIdxTop)         return false; // the empty category
1953   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1954   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1955   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1956 
1957   // the only remaining possible overlap is identity
1958   int adr_idx = get_alias_index(adr_type);
1959   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1960   return adr_idx == alias_idx;
1961 }
1962 
1963 
1964 
1965 //---------------------------pop_warm_call-------------------------------------
1966 WarmCallInfo* Compile::pop_warm_call() {
1967   WarmCallInfo* wci = _warm_calls;
1968   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1969   return wci;
1970 }
1971 
1972 //----------------------------Inline_Warm--------------------------------------
1973 int Compile::Inline_Warm() {
1974   // If there is room, try to inline some more warm call sites.
1975   // %%% Do a graph index compaction pass when we think we're out of space?
1976   if (!InlineWarmCalls)  return 0;
1977 
1978   int calls_made_hot = 0;
1979   int room_to_grow   = NodeCountInliningCutoff - unique();
1980   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1981   int amount_grown   = 0;
1982   WarmCallInfo* call;
1983   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1984     int est_size = (int)call->size();
1985     if (est_size > (room_to_grow - amount_grown)) {
1986       // This one won't fit anyway.  Get rid of it.
1987       call->make_cold();
1988       continue;
1989     }
1990     call->make_hot();
1991     calls_made_hot++;
1992     amount_grown   += est_size;
1993     amount_to_grow -= est_size;
1994   }
1995 
1996   if (calls_made_hot > 0)  set_major_progress();
1997   return calls_made_hot;
1998 }
1999 
2000 
2001 //----------------------------Finish_Warm--------------------------------------
2002 void Compile::Finish_Warm() {
2003   if (!InlineWarmCalls)  return;
2004   if (failing())  return;
2005   if (warm_calls() == NULL)  return;
2006 
2007   // Clean up loose ends, if we are out of space for inlining.
2008   WarmCallInfo* call;
2009   while ((call = pop_warm_call()) != NULL) {
2010     call->make_cold();
2011   }
2012 }
2013 
2014 //---------------------cleanup_loop_predicates-----------------------
2015 // Remove the opaque nodes that protect the predicates so that all unused
2016 // checks and uncommon_traps will be eliminated from the ideal graph
2017 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
2018   if (predicate_count()==0) return;
2019   for (int i = predicate_count(); i > 0; i--) {
2020     Node * n = predicate_opaque1_node(i-1);
2021     assert(n->Opcode() == Op_Opaque1, "must be");
2022     igvn.replace_node(n, n->in(1));
2023   }
2024   assert(predicate_count()==0, "should be clean!");
2025 }
2026 
2027 void Compile::add_range_check_cast(Node* n) {
2028   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2029   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
2030   _range_check_casts->append(n);
2031 }
2032 
2033 // Remove all range check dependent CastIINodes.
2034 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
2035   for (int i = range_check_cast_count(); i > 0; i--) {
2036     Node* cast = range_check_cast_node(i-1);
2037     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2038     igvn.replace_node(cast, cast->in(1));
2039   }
2040   assert(range_check_cast_count() == 0, "should be empty");
2041 }
2042 
2043 void Compile::add_opaque4_node(Node* n) {
2044   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2045   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2046   _opaque4_nodes->append(n);
2047 }
2048 
2049 // Remove all Opaque4 nodes.
2050 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2051   for (int i = opaque4_count(); i > 0; i--) {
2052     Node* opaq = opaque4_node(i-1);
2053     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2054     igvn.replace_node(opaq, opaq->in(2));
2055   }
2056   assert(opaque4_count() == 0, "should be empty");
2057 }
2058 
2059 void Compile::add_value_type(Node* n) {
2060   assert(n->is_ValueTypeBase(), "unexpected node");
2061   if (_value_type_nodes != NULL) {
2062     _value_type_nodes->push(n);
2063   }
2064 }
2065 
2066 void Compile::remove_value_type(Node* n) {
2067   assert(n->is_ValueTypeBase(), "unexpected node");
2068   if (_value_type_nodes != NULL) {
2069     _value_type_nodes->remove(n);
2070   }
2071 }
2072 
2073 void Compile::process_value_types(PhaseIterGVN &igvn) {
2074   // Make value types scalar in safepoints
2075   while (_value_type_nodes->size() != 0) {
2076     ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2077     vt->make_scalar_in_safepoints(&igvn);
2078     if (vt->is_ValueTypePtr()) {
2079       igvn.replace_node(vt, vt->get_oop());
2080     } else {
2081       if (vt->outcnt() == 0) {
2082         igvn.remove_dead_node(vt);
2083       }
2084     }
2085   }
2086   _value_type_nodes = NULL;
2087   igvn.optimize();
2088 }
2089 
2090 // StringOpts and late inlining of string methods
2091 void Compile::inline_string_calls(bool parse_time) {
2092   {
2093     // remove useless nodes to make the usage analysis simpler
2094     ResourceMark rm;
2095     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2096   }
2097 
2098   {
2099     ResourceMark rm;
2100     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2101     PhaseStringOpts pso(initial_gvn(), for_igvn());
2102     print_method(PHASE_AFTER_STRINGOPTS, 3);
2103   }
2104 
2105   // now inline anything that we skipped the first time around
2106   if (!parse_time) {
2107     _late_inlines_pos = _late_inlines.length();
2108   }
2109 
2110   while (_string_late_inlines.length() > 0) {
2111     CallGenerator* cg = _string_late_inlines.pop();
2112     cg->do_late_inline();
2113     if (failing())  return;
2114   }
2115   _string_late_inlines.trunc_to(0);
2116 }
2117 
2118 // Late inlining of boxing methods
2119 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2120   if (_boxing_late_inlines.length() > 0) {
2121     assert(has_boxed_value(), "inconsistent");
2122 
2123     PhaseGVN* gvn = initial_gvn();
2124     set_inlining_incrementally(true);
2125 
2126     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2127     for_igvn()->clear();
2128     gvn->replace_with(&igvn);
2129 
2130     _late_inlines_pos = _late_inlines.length();
2131 
2132     while (_boxing_late_inlines.length() > 0) {
2133       CallGenerator* cg = _boxing_late_inlines.pop();
2134       cg->do_late_inline();
2135       if (failing())  return;
2136     }
2137     _boxing_late_inlines.trunc_to(0);
2138 
2139     inline_incrementally_cleanup(igvn);
2140 
2141     set_inlining_incrementally(false);
2142   }
2143 }
2144 
2145 bool Compile::inline_incrementally_one() {
2146   assert(IncrementalInline, "incremental inlining should be on");
2147 
2148   TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2149   set_inlining_progress(false);
2150   set_do_cleanup(false);
2151   int i = 0;
2152   for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2153     CallGenerator* cg = _late_inlines.at(i);
2154     _late_inlines_pos = i+1;
2155     cg->do_late_inline();
2156     if (failing())  return false;
2157   }
2158   int j = 0;
2159   for (; i < _late_inlines.length(); i++, j++) {
2160     _late_inlines.at_put(j, _late_inlines.at(i));
2161   }
2162   _late_inlines.trunc_to(j);
2163   assert(inlining_progress() || _late_inlines.length() == 0, "");
2164 
2165   bool needs_cleanup = do_cleanup() || over_inlining_cutoff();
2166 
2167   set_inlining_progress(false);
2168   set_do_cleanup(false);
2169   return (_late_inlines.length() > 0) && !needs_cleanup;
2170 }
2171 
2172 void Compile::inline_incrementally_cleanup(PhaseIterGVN& igvn) {
2173   {
2174     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2175     ResourceMark rm;
2176     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2177   }
2178   {
2179     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2180     igvn = PhaseIterGVN(initial_gvn());
2181     igvn.optimize();
2182   }
2183 }
2184 
2185 // Perform incremental inlining until bound on number of live nodes is reached
2186 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2187   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2188 
2189   set_inlining_incrementally(true);
2190   uint low_live_nodes = 0;
2191 
2192   while (_late_inlines.length() > 0) {
2193     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2194       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2195         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2196         // PhaseIdealLoop is expensive so we only try it once we are
2197         // out of live nodes and we only try it again if the previous
2198         // helped got the number of nodes down significantly
2199         PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2200         if (failing())  return;
2201         low_live_nodes = live_nodes();
2202         _major_progress = true;
2203       }
2204 
2205       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2206         break; // finish
2207       }
2208     }
2209 
2210     for_igvn()->clear();
2211     initial_gvn()->replace_with(&igvn);
2212 
2213     while (inline_incrementally_one()) {
2214       assert(!failing(), "inconsistent");
2215     }
2216 
2217     if (failing())  return;
2218 
2219     inline_incrementally_cleanup(igvn);
2220 
2221     if (failing())  return;
2222   }
2223   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2224 
2225   if (_string_late_inlines.length() > 0) {
2226     assert(has_stringbuilder(), "inconsistent");
2227     for_igvn()->clear();
2228     initial_gvn()->replace_with(&igvn);
2229 
2230     inline_string_calls(false);
2231 
2232     if (failing())  return;
2233 
2234     inline_incrementally_cleanup(igvn);
2235   }
2236 
2237   set_inlining_incrementally(false);
2238 }
2239 
2240 
2241 bool Compile::optimize_loops(PhaseIterGVN& igvn, LoopOptsMode mode) {
2242   if(_loop_opts_cnt > 0) {
2243     debug_only( int cnt = 0; );
2244     while(major_progress() && (_loop_opts_cnt > 0)) {
2245       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2246       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2247       PhaseIdealLoop::optimize(igvn, mode);
2248       _loop_opts_cnt--;
2249       if (failing())  return false;
2250       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2251     }
2252   }
2253   return true;
2254 }
2255 
2256 // Remove edges from "root" to each SafePoint at a backward branch.
2257 // They were inserted during parsing (see add_safepoint()) to make
2258 // infinite loops without calls or exceptions visible to root, i.e.,
2259 // useful.
2260 void Compile::remove_root_to_sfpts_edges(PhaseIterGVN& igvn) {
2261   Node *r = root();
2262   if (r != NULL) {
2263     for (uint i = r->req(); i < r->len(); ++i) {
2264       Node *n = r->in(i);
2265       if (n != NULL && n->is_SafePoint()) {
2266         r->rm_prec(i);
2267         if (n->outcnt() == 0) {
2268           igvn.remove_dead_node(n);
2269         }
2270         --i;
2271       }
2272     }
2273   }
2274 }
2275 
2276 //------------------------------Optimize---------------------------------------
2277 // Given a graph, optimize it.
2278 void Compile::Optimize() {
2279   TracePhase tp("optimizer", &timers[_t_optimizer]);
2280 
2281 #ifndef PRODUCT
2282   if (_directive->BreakAtCompileOption) {
2283     BREAKPOINT;
2284   }
2285 
2286 #endif
2287 
2288 #ifdef ASSERT
2289   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2290   bs->verify_gc_barriers(this, BarrierSetC2::BeforeOptimize);
2291 #endif
2292 
2293   ResourceMark rm;
2294 
2295   print_inlining_reinit();
2296 
2297   NOT_PRODUCT( verify_graph_edges(); )
2298 
2299   print_method(PHASE_AFTER_PARSING);
2300 
2301  {
2302   // Iterative Global Value Numbering, including ideal transforms
2303   // Initialize IterGVN with types and values from parse-time GVN
2304   PhaseIterGVN igvn(initial_gvn());
2305 #ifdef ASSERT
2306   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2307 #endif
2308   {
2309     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2310     igvn.optimize();
2311   }
2312 
2313   if (failing())  return;
2314 
2315   print_method(PHASE_ITER_GVN1, 2);
2316 
2317   inline_incrementally(igvn);
2318 
2319   print_method(PHASE_INCREMENTAL_INLINE, 2);
2320 
2321   if (failing())  return;
2322 
2323   if (eliminate_boxing()) {
2324     // Inline valueOf() methods now.
2325     inline_boxing_calls(igvn);
2326 
2327     if (AlwaysIncrementalInline) {
2328       inline_incrementally(igvn);
2329     }
2330 
2331     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2332 
2333     if (failing())  return;
2334   }
2335 
2336   // Now that all inlining is over, cut edge from root to loop
2337   // safepoints
2338   remove_root_to_sfpts_edges(igvn);
2339 
2340   // Remove the speculative part of types and clean up the graph from
2341   // the extra CastPP nodes whose only purpose is to carry them. Do
2342   // that early so that optimizations are not disrupted by the extra
2343   // CastPP nodes.
2344   remove_speculative_types(igvn);
2345 
2346   // No more new expensive nodes will be added to the list from here
2347   // so keep only the actual candidates for optimizations.
2348   cleanup_expensive_nodes(igvn);
2349 
2350   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2351     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2352     initial_gvn()->replace_with(&igvn);
2353     for_igvn()->clear();
2354     Unique_Node_List new_worklist(C->comp_arena());
2355     {
2356       ResourceMark rm;
2357       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2358     }
2359     set_for_igvn(&new_worklist);
2360     igvn = PhaseIterGVN(initial_gvn());
2361     igvn.optimize();
2362   }
2363 
2364   if (_value_type_nodes->size() > 0) {
2365     // Do this once all inlining is over to avoid getting inconsistent debug info
2366     process_value_types(igvn);
2367   }
2368 
2369   // Perform escape analysis
2370   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2371     if (has_loops()) {
2372       // Cleanup graph (remove dead nodes).
2373       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2374       PhaseIdealLoop::optimize(igvn, LoopOptsNone);
2375       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2376       if (failing())  return;
2377     }
2378     ConnectionGraph::do_analysis(this, &igvn);
2379 
2380     if (failing())  return;
2381 
2382     // Optimize out fields loads from scalar replaceable allocations.
2383     igvn.optimize();
2384     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2385 
2386     if (failing())  return;
2387 
2388     if (congraph() != NULL && macro_count() > 0) {
2389       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2390       PhaseMacroExpand mexp(igvn);
2391       mexp.eliminate_macro_nodes();
2392       igvn.set_delay_transform(false);
2393 
2394       igvn.optimize();
2395       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2396 
2397       if (failing())  return;
2398     }
2399   }
2400 
2401   // Loop transforms on the ideal graph.  Range Check Elimination,
2402   // peeling, unrolling, etc.
2403 
2404   // Set loop opts counter
2405   if((_loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2406     {
2407       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2408       PhaseIdealLoop::optimize(igvn, LoopOptsDefault);
2409       _loop_opts_cnt--;
2410       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2411       if (failing())  return;
2412     }
2413     // Loop opts pass if partial peeling occurred in previous pass
2414     if(PartialPeelLoop && major_progress() && (_loop_opts_cnt > 0)) {
2415       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2416       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2417       _loop_opts_cnt--;
2418       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2419       if (failing())  return;
2420     }
2421     // Loop opts pass for loop-unrolling before CCP
2422     if(major_progress() && (_loop_opts_cnt > 0)) {
2423       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2424       PhaseIdealLoop::optimize(igvn, LoopOptsSkipSplitIf);
2425       _loop_opts_cnt--;
2426       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2427     }
2428     if (!failing()) {
2429       // Verify that last round of loop opts produced a valid graph
2430       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2431       PhaseIdealLoop::verify(igvn);
2432     }
2433   }
2434   if (failing())  return;
2435 
2436   // Conditional Constant Propagation;
2437   PhaseCCP ccp( &igvn );
2438   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2439   {
2440     TracePhase tp("ccp", &timers[_t_ccp]);
2441     ccp.do_transform();
2442   }
2443   print_method(PHASE_CPP1, 2);
2444 
2445   assert( true, "Break here to ccp.dump_old2new_map()");
2446 
2447   // Iterative Global Value Numbering, including ideal transforms
2448   {
2449     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2450     igvn = ccp;
2451     igvn.optimize();
2452   }
2453 
2454   print_method(PHASE_ITER_GVN2, 2);
2455 
2456   if (failing())  return;
2457 
2458   // Loop transforms on the ideal graph.  Range Check Elimination,
2459   // peeling, unrolling, etc.
2460   if (!optimize_loops(igvn, LoopOptsDefault)) {
2461     return;
2462   }
2463 
2464 #if INCLUDE_ZGC
2465   if (UseZGC) {
2466     ZBarrierSetC2::find_dominating_barriers(igvn);
2467   }
2468 #endif
2469 
2470   if (failing())  return;
2471 
2472   // Ensure that major progress is now clear
2473   C->clear_major_progress();
2474 
2475   {
2476     // Verify that all previous optimizations produced a valid graph
2477     // at least to this point, even if no loop optimizations were done.
2478     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2479     PhaseIdealLoop::verify(igvn);
2480   }
2481 
2482   if (range_check_cast_count() > 0) {
2483     // No more loop optimizations. Remove all range check dependent CastIINodes.
2484     C->remove_range_check_casts(igvn);
2485     igvn.optimize();
2486   }
2487 
2488 #ifdef ASSERT
2489   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2490   bs->verify_gc_barriers(this, BarrierSetC2::BeforeExpand);
2491 #endif
2492 
2493   {
2494     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2495     PhaseMacroExpand  mex(igvn);
2496     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2497     if (mex.expand_macro_nodes()) {
2498       assert(failing(), "must bail out w/ explicit message");
2499       return;
2500     }
2501   }
2502 
2503   {
2504     TracePhase tp("barrierExpand", &timers[_t_barrierExpand]);
2505     print_method(PHASE_BEFORE_BARRIER_EXPAND, 2);
2506     BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2507     if (bs->expand_barriers(this, igvn)) {
2508       assert(failing(), "must bail out w/ explicit message");
2509       return;
2510     }
2511   }
2512 
2513   if (opaque4_count() > 0) {
2514     C->remove_opaque4_nodes(igvn);
2515     igvn.optimize();
2516   }
2517 
2518   DEBUG_ONLY( _modified_nodes = NULL; )
2519  } // (End scope of igvn; run destructor if necessary for asserts.)
2520 
2521  process_print_inlining();
2522  // A method with only infinite loops has no edges entering loops from root
2523  {
2524    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2525    if (final_graph_reshaping()) {
2526      assert(failing(), "must bail out w/ explicit message");
2527      return;
2528    }
2529  }
2530 
2531  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2532 }
2533 
2534 //------------------------------Code_Gen---------------------------------------
2535 // Given a graph, generate code for it
2536 void Compile::Code_Gen() {
2537   if (failing()) {
2538     return;
2539   }
2540 
2541   // Perform instruction selection.  You might think we could reclaim Matcher
2542   // memory PDQ, but actually the Matcher is used in generating spill code.
2543   // Internals of the Matcher (including some VectorSets) must remain live
2544   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2545   // set a bit in reclaimed memory.
2546 
2547   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2548   // nodes.  Mapping is only valid at the root of each matched subtree.
2549   NOT_PRODUCT( verify_graph_edges(); )
2550 
2551   Matcher matcher;
2552   _matcher = &matcher;
2553   {
2554     TracePhase tp("matcher", &timers[_t_matcher]);
2555     matcher.match();
2556   }
2557   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2558   // nodes.  Mapping is only valid at the root of each matched subtree.
2559   NOT_PRODUCT( verify_graph_edges(); )
2560 
2561   // If you have too many nodes, or if matching has failed, bail out
2562   check_node_count(0, "out of nodes matching instructions");
2563   if (failing()) {
2564     return;
2565   }
2566 
2567   print_method(PHASE_MATCHING, 2);
2568 
2569   // Build a proper-looking CFG
2570   PhaseCFG cfg(node_arena(), root(), matcher);
2571   _cfg = &cfg;
2572   {
2573     TracePhase tp("scheduler", &timers[_t_scheduler]);
2574     bool success = cfg.do_global_code_motion();
2575     if (!success) {
2576       return;
2577     }
2578 
2579     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2580     NOT_PRODUCT( verify_graph_edges(); )
2581     debug_only( cfg.verify(); )
2582   }
2583 
2584   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2585   _regalloc = &regalloc;
2586   {
2587     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2588     // Perform register allocation.  After Chaitin, use-def chains are
2589     // no longer accurate (at spill code) and so must be ignored.
2590     // Node->LRG->reg mappings are still accurate.
2591     _regalloc->Register_Allocate();
2592 
2593     // Bail out if the allocator builds too many nodes
2594     if (failing()) {
2595       return;
2596     }
2597   }
2598 
2599   // Prior to register allocation we kept empty basic blocks in case the
2600   // the allocator needed a place to spill.  After register allocation we
2601   // are not adding any new instructions.  If any basic block is empty, we
2602   // can now safely remove it.
2603   {
2604     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2605     cfg.remove_empty_blocks();
2606     if (do_freq_based_layout()) {
2607       PhaseBlockLayout layout(cfg);
2608     } else {
2609       cfg.set_loop_alignment();
2610     }
2611     cfg.fixup_flow();
2612   }
2613 
2614   // Apply peephole optimizations
2615   if( OptoPeephole ) {
2616     TracePhase tp("peephole", &timers[_t_peephole]);
2617     PhasePeephole peep( _regalloc, cfg);
2618     peep.do_transform();
2619   }
2620 
2621   // Do late expand if CPU requires this.
2622   if (Matcher::require_postalloc_expand) {
2623     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2624     cfg.postalloc_expand(_regalloc);
2625   }
2626 
2627   // Convert Nodes to instruction bits in a buffer
2628   {
2629     TraceTime tp("output", &timers[_t_output], CITime);
2630     Output();
2631   }
2632 
2633   print_method(PHASE_FINAL_CODE);
2634 
2635   // He's dead, Jim.
2636   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2637   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2638 }
2639 
2640 
2641 //------------------------------dump_asm---------------------------------------
2642 // Dump formatted assembly
2643 #ifndef PRODUCT
2644 void Compile::dump_asm(int *pcs, uint pc_limit) {
2645   bool cut_short = false;
2646   tty->print_cr("#");
2647   tty->print("#  ");  _tf->dump();  tty->cr();
2648   tty->print_cr("#");
2649 
2650   // For all blocks
2651   int pc = 0x0;                 // Program counter
2652   char starts_bundle = ' ';
2653   _regalloc->dump_frame();
2654 
2655   Node *n = NULL;
2656   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2657     if (VMThread::should_terminate()) {
2658       cut_short = true;
2659       break;
2660     }
2661     Block* block = _cfg->get_block(i);
2662     if (block->is_connector() && !Verbose) {
2663       continue;
2664     }
2665     n = block->head();
2666     if (pcs && n->_idx < pc_limit) {
2667       tty->print("%3.3x   ", pcs[n->_idx]);
2668     } else {
2669       tty->print("      ");
2670     }
2671     block->dump_head(_cfg);
2672     if (block->is_connector()) {
2673       tty->print_cr("        # Empty connector block");
2674     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2675       tty->print_cr("        # Block is sole successor of call");
2676     }
2677 
2678     // For all instructions
2679     Node *delay = NULL;
2680     for (uint j = 0; j < block->number_of_nodes(); j++) {
2681       if (VMThread::should_terminate()) {
2682         cut_short = true;
2683         break;
2684       }
2685       n = block->get_node(j);
2686       if (valid_bundle_info(n)) {
2687         Bundle* bundle = node_bundling(n);
2688         if (bundle->used_in_unconditional_delay()) {
2689           delay = n;
2690           continue;
2691         }
2692         if (bundle->starts_bundle()) {
2693           starts_bundle = '+';
2694         }
2695       }
2696 
2697       if (WizardMode) {
2698         n->dump();
2699       }
2700 
2701       if( !n->is_Region() &&    // Dont print in the Assembly
2702           !n->is_Phi() &&       // a few noisely useless nodes
2703           !n->is_Proj() &&
2704           !n->is_MachTemp() &&
2705           !n->is_SafePointScalarObject() &&
2706           !n->is_Catch() &&     // Would be nice to print exception table targets
2707           !n->is_MergeMem() &&  // Not very interesting
2708           !n->is_top() &&       // Debug info table constants
2709           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2710           ) {
2711         if (pcs && n->_idx < pc_limit)
2712           tty->print("%3.3x", pcs[n->_idx]);
2713         else
2714           tty->print("   ");
2715         tty->print(" %c ", starts_bundle);
2716         starts_bundle = ' ';
2717         tty->print("\t");
2718         n->format(_regalloc, tty);
2719         tty->cr();
2720       }
2721 
2722       // If we have an instruction with a delay slot, and have seen a delay,
2723       // then back up and print it
2724       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2725         assert(delay != NULL, "no unconditional delay instruction");
2726         if (WizardMode) delay->dump();
2727 
2728         if (node_bundling(delay)->starts_bundle())
2729           starts_bundle = '+';
2730         if (pcs && n->_idx < pc_limit)
2731           tty->print("%3.3x", pcs[n->_idx]);
2732         else
2733           tty->print("   ");
2734         tty->print(" %c ", starts_bundle);
2735         starts_bundle = ' ';
2736         tty->print("\t");
2737         delay->format(_regalloc, tty);
2738         tty->cr();
2739         delay = NULL;
2740       }
2741 
2742       // Dump the exception table as well
2743       if( n->is_Catch() && (Verbose || WizardMode) ) {
2744         // Print the exception table for this offset
2745         _handler_table.print_subtable_for(pc);
2746       }
2747     }
2748 
2749     if (pcs && n->_idx < pc_limit)
2750       tty->print_cr("%3.3x", pcs[n->_idx]);
2751     else
2752       tty->cr();
2753 
2754     assert(cut_short || delay == NULL, "no unconditional delay branch");
2755 
2756   } // End of per-block dump
2757   tty->cr();
2758 
2759   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2760 }
2761 #endif
2762 
2763 //------------------------------Final_Reshape_Counts---------------------------
2764 // This class defines counters to help identify when a method
2765 // may/must be executed using hardware with only 24-bit precision.
2766 struct Final_Reshape_Counts : public StackObj {
2767   int  _call_count;             // count non-inlined 'common' calls
2768   int  _float_count;            // count float ops requiring 24-bit precision
2769   int  _double_count;           // count double ops requiring more precision
2770   int  _java_call_count;        // count non-inlined 'java' calls
2771   int  _inner_loop_count;       // count loops which need alignment
2772   VectorSet _visited;           // Visitation flags
2773   Node_List _tests;             // Set of IfNodes & PCTableNodes
2774 
2775   Final_Reshape_Counts() :
2776     _call_count(0), _float_count(0), _double_count(0),
2777     _java_call_count(0), _inner_loop_count(0),
2778     _visited( Thread::current()->resource_area() ) { }
2779 
2780   void inc_call_count  () { _call_count  ++; }
2781   void inc_float_count () { _float_count ++; }
2782   void inc_double_count() { _double_count++; }
2783   void inc_java_call_count() { _java_call_count++; }
2784   void inc_inner_loop_count() { _inner_loop_count++; }
2785 
2786   int  get_call_count  () const { return _call_count  ; }
2787   int  get_float_count () const { return _float_count ; }
2788   int  get_double_count() const { return _double_count; }
2789   int  get_java_call_count() const { return _java_call_count; }
2790   int  get_inner_loop_count() const { return _inner_loop_count; }
2791 };
2792 
2793 #ifdef ASSERT
2794 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2795   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2796   // Make sure the offset goes inside the instance layout.
2797   return k->contains_field_offset(tp->offset());
2798   // Note that OffsetBot and OffsetTop are very negative.
2799 }
2800 #endif
2801 
2802 // Eliminate trivially redundant StoreCMs and accumulate their
2803 // precedence edges.
2804 void Compile::eliminate_redundant_card_marks(Node* n) {
2805   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2806   if (n->in(MemNode::Address)->outcnt() > 1) {
2807     // There are multiple users of the same address so it might be
2808     // possible to eliminate some of the StoreCMs
2809     Node* mem = n->in(MemNode::Memory);
2810     Node* adr = n->in(MemNode::Address);
2811     Node* val = n->in(MemNode::ValueIn);
2812     Node* prev = n;
2813     bool done = false;
2814     // Walk the chain of StoreCMs eliminating ones that match.  As
2815     // long as it's a chain of single users then the optimization is
2816     // safe.  Eliminating partially redundant StoreCMs would require
2817     // cloning copies down the other paths.
2818     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2819       if (adr == mem->in(MemNode::Address) &&
2820           val == mem->in(MemNode::ValueIn)) {
2821         // redundant StoreCM
2822         if (mem->req() > MemNode::OopStore) {
2823           // Hasn't been processed by this code yet.
2824           n->add_prec(mem->in(MemNode::OopStore));
2825         } else {
2826           // Already converted to precedence edge
2827           for (uint i = mem->req(); i < mem->len(); i++) {
2828             // Accumulate any precedence edges
2829             if (mem->in(i) != NULL) {
2830               n->add_prec(mem->in(i));
2831             }
2832           }
2833           // Everything above this point has been processed.
2834           done = true;
2835         }
2836         // Eliminate the previous StoreCM
2837         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2838         assert(mem->outcnt() == 0, "should be dead");
2839         mem->disconnect_inputs(NULL, this);
2840       } else {
2841         prev = mem;
2842       }
2843       mem = prev->in(MemNode::Memory);
2844     }
2845   }
2846 }
2847 
2848 
2849 //------------------------------final_graph_reshaping_impl----------------------
2850 // Implement items 1-5 from final_graph_reshaping below.
2851 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2852 
2853   if ( n->outcnt() == 0 ) return; // dead node
2854   uint nop = n->Opcode();
2855 
2856   // Check for 2-input instruction with "last use" on right input.
2857   // Swap to left input.  Implements item (2).
2858   if( n->req() == 3 &&          // two-input instruction
2859       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2860       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2861       n->in(2)->outcnt() == 1 &&// right use IS a last use
2862       !n->in(2)->is_Con() ) {   // right use is not a constant
2863     // Check for commutative opcode
2864     switch( nop ) {
2865     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2866     case Op_MaxI:  case Op_MinI:
2867     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2868     case Op_AndL:  case Op_XorL:  case Op_OrL:
2869     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2870       // Move "last use" input to left by swapping inputs
2871       n->swap_edges(1, 2);
2872       break;
2873     }
2874     default:
2875       break;
2876     }
2877   }
2878 
2879 #ifdef ASSERT
2880   if( n->is_Mem() ) {
2881     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2882     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2883             // oop will be recorded in oop map if load crosses safepoint
2884             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2885                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2886             "raw memory operations should have control edge");
2887   }
2888   if (n->is_MemBar()) {
2889     MemBarNode* mb = n->as_MemBar();
2890     if (mb->trailing_store() || mb->trailing_load_store()) {
2891       assert(mb->leading_membar()->trailing_membar() == mb, "bad membar pair");
2892       Node* mem = mb->in(MemBarNode::Precedent);
2893       assert((mb->trailing_store() && mem->is_Store() && mem->as_Store()->is_release()) ||
2894              (mb->trailing_load_store() && mem->is_LoadStore()), "missing mem op");
2895     } else if (mb->leading()) {
2896       assert(mb->trailing_membar()->leading_membar() == mb, "bad membar pair");
2897     }
2898   }
2899 #endif
2900   // Count FPU ops and common calls, implements item (3)
2901   bool gc_handled = BarrierSet::barrier_set()->barrier_set_c2()->final_graph_reshaping(this, n, nop);
2902   if (!gc_handled) {
2903     final_graph_reshaping_main_switch(n, frc, nop);
2904   }
2905 
2906   // Collect CFG split points
2907   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
2908     frc._tests.push(n);
2909   }
2910 }
2911 
2912 void Compile::final_graph_reshaping_main_switch(Node* n, Final_Reshape_Counts& frc, uint nop) {
2913   switch( nop ) {
2914   // Count all float operations that may use FPU
2915   case Op_AddF:
2916   case Op_SubF:
2917   case Op_MulF:
2918   case Op_DivF:
2919   case Op_NegF:
2920   case Op_ModF:
2921   case Op_ConvI2F:
2922   case Op_ConF:
2923   case Op_CmpF:
2924   case Op_CmpF3:
2925   // case Op_ConvL2F: // longs are split into 32-bit halves
2926     frc.inc_float_count();
2927     break;
2928 
2929   case Op_ConvF2D:
2930   case Op_ConvD2F:
2931     frc.inc_float_count();
2932     frc.inc_double_count();
2933     break;
2934 
2935   // Count all double operations that may use FPU
2936   case Op_AddD:
2937   case Op_SubD:
2938   case Op_MulD:
2939   case Op_DivD:
2940   case Op_NegD:
2941   case Op_ModD:
2942   case Op_ConvI2D:
2943   case Op_ConvD2I:
2944   // case Op_ConvL2D: // handled by leaf call
2945   // case Op_ConvD2L: // handled by leaf call
2946   case Op_ConD:
2947   case Op_CmpD:
2948   case Op_CmpD3:
2949     frc.inc_double_count();
2950     break;
2951   case Op_Opaque1:              // Remove Opaque Nodes before matching
2952   case Op_Opaque2:              // Remove Opaque Nodes before matching
2953   case Op_Opaque3:
2954     n->subsume_by(n->in(1), this);
2955     break;
2956   case Op_CallStaticJava:
2957   case Op_CallJava:
2958   case Op_CallDynamicJava:
2959     frc.inc_java_call_count(); // Count java call site;
2960   case Op_CallRuntime:
2961   case Op_CallLeaf:
2962   case Op_CallLeafNoFP: {
2963     assert (n->is_Call(), "");
2964     CallNode *call = n->as_Call();
2965     // Count call sites where the FP mode bit would have to be flipped.
2966     // Do not count uncommon runtime calls:
2967     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2968     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2969     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2970       frc.inc_call_count();   // Count the call site
2971     } else {                  // See if uncommon argument is shared
2972       Node *n = call->in(TypeFunc::Parms);
2973       int nop = n->Opcode();
2974       // Clone shared simple arguments to uncommon calls, item (1).
2975       if (n->outcnt() > 1 &&
2976           !n->is_Proj() &&
2977           nop != Op_CreateEx &&
2978           nop != Op_CheckCastPP &&
2979           nop != Op_DecodeN &&
2980           nop != Op_DecodeNKlass &&
2981           !n->is_Mem() &&
2982           !n->is_Phi()) {
2983         Node *x = n->clone();
2984         call->set_req(TypeFunc::Parms, x);
2985       }
2986     }
2987     break;
2988   }
2989 
2990   case Op_StoreD:
2991   case Op_LoadD:
2992   case Op_LoadD_unaligned:
2993     frc.inc_double_count();
2994     goto handle_mem;
2995   case Op_StoreF:
2996   case Op_LoadF:
2997     frc.inc_float_count();
2998     goto handle_mem;
2999 
3000   case Op_StoreCM:
3001     {
3002       // Convert OopStore dependence into precedence edge
3003       Node* prec = n->in(MemNode::OopStore);
3004       n->del_req(MemNode::OopStore);
3005       n->add_prec(prec);
3006       eliminate_redundant_card_marks(n);
3007     }
3008 
3009     // fall through
3010 
3011   case Op_StoreB:
3012   case Op_StoreC:
3013   case Op_StorePConditional:
3014   case Op_StoreI:
3015   case Op_StoreL:
3016   case Op_StoreIConditional:
3017   case Op_StoreLConditional:
3018   case Op_CompareAndSwapB:
3019   case Op_CompareAndSwapS:
3020   case Op_CompareAndSwapI:
3021   case Op_CompareAndSwapL:
3022   case Op_CompareAndSwapP:
3023   case Op_CompareAndSwapN:
3024   case Op_WeakCompareAndSwapB:
3025   case Op_WeakCompareAndSwapS:
3026   case Op_WeakCompareAndSwapI:
3027   case Op_WeakCompareAndSwapL:
3028   case Op_WeakCompareAndSwapP:
3029   case Op_WeakCompareAndSwapN:
3030   case Op_CompareAndExchangeB:
3031   case Op_CompareAndExchangeS:
3032   case Op_CompareAndExchangeI:
3033   case Op_CompareAndExchangeL:
3034   case Op_CompareAndExchangeP:
3035   case Op_CompareAndExchangeN:
3036   case Op_GetAndAddS:
3037   case Op_GetAndAddB:
3038   case Op_GetAndAddI:
3039   case Op_GetAndAddL:
3040   case Op_GetAndSetS:
3041   case Op_GetAndSetB:
3042   case Op_GetAndSetI:
3043   case Op_GetAndSetL:
3044   case Op_GetAndSetP:
3045   case Op_GetAndSetN:
3046   case Op_StoreP:
3047   case Op_StoreN:
3048   case Op_StoreNKlass:
3049   case Op_LoadB:
3050   case Op_LoadUB:
3051   case Op_LoadUS:
3052   case Op_LoadI:
3053   case Op_LoadKlass:
3054   case Op_LoadNKlass:
3055   case Op_LoadL:
3056   case Op_LoadL_unaligned:
3057   case Op_LoadPLocked:
3058   case Op_LoadP:
3059   case Op_LoadN:
3060   case Op_LoadRange:
3061   case Op_LoadS: {
3062   handle_mem:
3063 #ifdef ASSERT
3064     if( VerifyOptoOopOffsets ) {
3065       MemNode* mem  = n->as_Mem();
3066       // Check to see if address types have grounded out somehow.
3067       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
3068       assert( !tp || oop_offset_is_sane(tp), "" );
3069     }
3070 #endif
3071     break;
3072   }
3073 
3074   case Op_AddP: {               // Assert sane base pointers
3075     Node *addp = n->in(AddPNode::Address);
3076     assert( !addp->is_AddP() ||
3077             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3078             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3079             "Base pointers must match (addp %u)", addp->_idx );
3080 #ifdef _LP64
3081     if ((UseCompressedOops || UseCompressedClassPointers) &&
3082         addp->Opcode() == Op_ConP &&
3083         addp == n->in(AddPNode::Base) &&
3084         n->in(AddPNode::Offset)->is_Con()) {
3085       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3086       // on the platform and on the compressed oops mode.
3087       // Use addressing with narrow klass to load with offset on x86.
3088       // Some platforms can use the constant pool to load ConP.
3089       // Do this transformation here since IGVN will convert ConN back to ConP.
3090       const Type* t = addp->bottom_type();
3091       bool is_oop   = t->isa_oopptr() != NULL;
3092       bool is_klass = t->isa_klassptr() != NULL;
3093 
3094       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3095           (is_klass && Matcher::const_klass_prefer_decode())) {
3096         Node* nn = NULL;
3097 
3098         int op = is_oop ? Op_ConN : Op_ConNKlass;
3099 
3100         // Look for existing ConN node of the same exact type.
3101         Node* r  = root();
3102         uint cnt = r->outcnt();
3103         for (uint i = 0; i < cnt; i++) {
3104           Node* m = r->raw_out(i);
3105           if (m!= NULL && m->Opcode() == op &&
3106               m->bottom_type()->make_ptr() == t) {
3107             nn = m;
3108             break;
3109           }
3110         }
3111         if (nn != NULL) {
3112           // Decode a narrow oop to match address
3113           // [R12 + narrow_oop_reg<<3 + offset]
3114           if (is_oop) {
3115             nn = new DecodeNNode(nn, t);
3116           } else {
3117             nn = new DecodeNKlassNode(nn, t);
3118           }
3119           // Check for succeeding AddP which uses the same Base.
3120           // Otherwise we will run into the assertion above when visiting that guy.
3121           for (uint i = 0; i < n->outcnt(); ++i) {
3122             Node *out_i = n->raw_out(i);
3123             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3124               out_i->set_req(AddPNode::Base, nn);
3125 #ifdef ASSERT
3126               for (uint j = 0; j < out_i->outcnt(); ++j) {
3127                 Node *out_j = out_i->raw_out(j);
3128                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3129                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3130               }
3131 #endif
3132             }
3133           }
3134           n->set_req(AddPNode::Base, nn);
3135           n->set_req(AddPNode::Address, nn);
3136           if (addp->outcnt() == 0) {
3137             addp->disconnect_inputs(NULL, this);
3138           }
3139         }
3140       }
3141     }
3142 #endif
3143     // platform dependent reshaping of the address expression
3144     reshape_address(n->as_AddP());
3145     break;
3146   }
3147 
3148   case Op_CastPP: {
3149     // Remove CastPP nodes to gain more freedom during scheduling but
3150     // keep the dependency they encode as control or precedence edges
3151     // (if control is set already) on memory operations. Some CastPP
3152     // nodes don't have a control (don't carry a dependency): skip
3153     // those.
3154     if (n->in(0) != NULL) {
3155       ResourceMark rm;
3156       Unique_Node_List wq;
3157       wq.push(n);
3158       for (uint next = 0; next < wq.size(); ++next) {
3159         Node *m = wq.at(next);
3160         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3161           Node* use = m->fast_out(i);
3162           if (use->is_Mem() || use->is_EncodeNarrowPtr() || use->is_ShenandoahBarrier()) {
3163             use->ensure_control_or_add_prec(n->in(0));
3164           } else {
3165             switch(use->Opcode()) {
3166             case Op_AddP:
3167             case Op_DecodeN:
3168             case Op_DecodeNKlass:
3169             case Op_CheckCastPP:
3170             case Op_CastPP:
3171               wq.push(use);
3172               break;
3173             }
3174           }
3175         }
3176       }
3177     }
3178     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3179     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3180       Node* in1 = n->in(1);
3181       const Type* t = n->bottom_type();
3182       Node* new_in1 = in1->clone();
3183       new_in1->as_DecodeN()->set_type(t);
3184 
3185       if (!Matcher::narrow_oop_use_complex_address()) {
3186         //
3187         // x86, ARM and friends can handle 2 adds in addressing mode
3188         // and Matcher can fold a DecodeN node into address by using
3189         // a narrow oop directly and do implicit NULL check in address:
3190         //
3191         // [R12 + narrow_oop_reg<<3 + offset]
3192         // NullCheck narrow_oop_reg
3193         //
3194         // On other platforms (Sparc) we have to keep new DecodeN node and
3195         // use it to do implicit NULL check in address:
3196         //
3197         // decode_not_null narrow_oop_reg, base_reg
3198         // [base_reg + offset]
3199         // NullCheck base_reg
3200         //
3201         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3202         // to keep the information to which NULL check the new DecodeN node
3203         // corresponds to use it as value in implicit_null_check().
3204         //
3205         new_in1->set_req(0, n->in(0));
3206       }
3207 
3208       n->subsume_by(new_in1, this);
3209       if (in1->outcnt() == 0) {
3210         in1->disconnect_inputs(NULL, this);
3211       }
3212     } else {
3213       n->subsume_by(n->in(1), this);
3214       if (n->outcnt() == 0) {
3215         n->disconnect_inputs(NULL, this);
3216       }
3217     }
3218     break;
3219   }
3220 #ifdef _LP64
3221   case Op_CmpP:
3222     // Do this transformation here to preserve CmpPNode::sub() and
3223     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3224     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3225       Node* in1 = n->in(1);
3226       Node* in2 = n->in(2);
3227       if (!in1->is_DecodeNarrowPtr()) {
3228         in2 = in1;
3229         in1 = n->in(2);
3230       }
3231       assert(in1->is_DecodeNarrowPtr(), "sanity");
3232 
3233       Node* new_in2 = NULL;
3234       if (in2->is_DecodeNarrowPtr()) {
3235         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3236         new_in2 = in2->in(1);
3237       } else if (in2->Opcode() == Op_ConP) {
3238         const Type* t = in2->bottom_type();
3239         if (t == TypePtr::NULL_PTR) {
3240           assert(in1->is_DecodeN(), "compare klass to null?");
3241           // Don't convert CmpP null check into CmpN if compressed
3242           // oops implicit null check is not generated.
3243           // This will allow to generate normal oop implicit null check.
3244           if (Matcher::gen_narrow_oop_implicit_null_checks())
3245             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3246           //
3247           // This transformation together with CastPP transformation above
3248           // will generated code for implicit NULL checks for compressed oops.
3249           //
3250           // The original code after Optimize()
3251           //
3252           //    LoadN memory, narrow_oop_reg
3253           //    decode narrow_oop_reg, base_reg
3254           //    CmpP base_reg, NULL
3255           //    CastPP base_reg // NotNull
3256           //    Load [base_reg + offset], val_reg
3257           //
3258           // after these transformations will be
3259           //
3260           //    LoadN memory, narrow_oop_reg
3261           //    CmpN narrow_oop_reg, NULL
3262           //    decode_not_null narrow_oop_reg, base_reg
3263           //    Load [base_reg + offset], val_reg
3264           //
3265           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3266           // since narrow oops can be used in debug info now (see the code in
3267           // final_graph_reshaping_walk()).
3268           //
3269           // At the end the code will be matched to
3270           // on x86:
3271           //
3272           //    Load_narrow_oop memory, narrow_oop_reg
3273           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3274           //    NullCheck narrow_oop_reg
3275           //
3276           // and on sparc:
3277           //
3278           //    Load_narrow_oop memory, narrow_oop_reg
3279           //    decode_not_null narrow_oop_reg, base_reg
3280           //    Load [base_reg + offset], val_reg
3281           //    NullCheck base_reg
3282           //
3283         } else if (t->isa_oopptr()) {
3284           new_in2 = ConNode::make(t->make_narrowoop());
3285         } else if (t->isa_klassptr()) {
3286           new_in2 = ConNode::make(t->make_narrowklass());
3287         }
3288       }
3289       if (new_in2 != NULL) {
3290         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3291         n->subsume_by(cmpN, this);
3292         if (in1->outcnt() == 0) {
3293           in1->disconnect_inputs(NULL, this);
3294         }
3295         if (in2->outcnt() == 0) {
3296           in2->disconnect_inputs(NULL, this);
3297         }
3298       }
3299     }
3300     break;
3301 
3302   case Op_DecodeN:
3303   case Op_DecodeNKlass:
3304     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3305     // DecodeN could be pinned when it can't be fold into
3306     // an address expression, see the code for Op_CastPP above.
3307     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3308     break;
3309 
3310   case Op_EncodeP:
3311   case Op_EncodePKlass: {
3312     Node* in1 = n->in(1);
3313     if (in1->is_DecodeNarrowPtr()) {
3314       n->subsume_by(in1->in(1), this);
3315     } else if (in1->Opcode() == Op_ConP) {
3316       const Type* t = in1->bottom_type();
3317       if (t == TypePtr::NULL_PTR) {
3318         assert(t->isa_oopptr(), "null klass?");
3319         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3320       } else if (t->isa_oopptr()) {
3321         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3322       } else if (t->isa_klassptr()) {
3323         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3324       }
3325     }
3326     if (in1->outcnt() == 0) {
3327       in1->disconnect_inputs(NULL, this);
3328     }
3329     break;
3330   }
3331 
3332   case Op_Proj: {
3333     if (OptimizeStringConcat) {
3334       ProjNode* p = n->as_Proj();
3335       if (p->_is_io_use) {
3336         // Separate projections were used for the exception path which
3337         // are normally removed by a late inline.  If it wasn't inlined
3338         // then they will hang around and should just be replaced with
3339         // the original one.
3340         Node* proj = NULL;
3341         // Replace with just one
3342         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3343           Node *use = i.get();
3344           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3345             proj = use;
3346             break;
3347           }
3348         }
3349         assert(proj != NULL || p->_con == TypeFunc::I_O, "io may be dropped at an infinite loop");
3350         if (proj != NULL) {
3351           p->subsume_by(proj, this);
3352         }
3353       }
3354     }
3355     break;
3356   }
3357 
3358   case Op_Phi:
3359     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3360       // The EncodeP optimization may create Phi with the same edges
3361       // for all paths. It is not handled well by Register Allocator.
3362       Node* unique_in = n->in(1);
3363       assert(unique_in != NULL, "");
3364       uint cnt = n->req();
3365       for (uint i = 2; i < cnt; i++) {
3366         Node* m = n->in(i);
3367         assert(m != NULL, "");
3368         if (unique_in != m)
3369           unique_in = NULL;
3370       }
3371       if (unique_in != NULL) {
3372         n->subsume_by(unique_in, this);
3373       }
3374     }
3375     break;
3376 
3377 #endif
3378 
3379 #ifdef ASSERT
3380   case Op_CastII:
3381     // Verify that all range check dependent CastII nodes were removed.
3382     if (n->isa_CastII()->has_range_check()) {
3383       n->dump(3);
3384       assert(false, "Range check dependent CastII node was not removed");
3385     }
3386     break;
3387 #endif
3388 
3389   case Op_ModI:
3390     if (UseDivMod) {
3391       // Check if a%b and a/b both exist
3392       Node* d = n->find_similar(Op_DivI);
3393       if (d) {
3394         // Replace them with a fused divmod if supported
3395         if (Matcher::has_match_rule(Op_DivModI)) {
3396           DivModINode* divmod = DivModINode::make(n);
3397           d->subsume_by(divmod->div_proj(), this);
3398           n->subsume_by(divmod->mod_proj(), this);
3399         } else {
3400           // replace a%b with a-((a/b)*b)
3401           Node* mult = new MulINode(d, d->in(2));
3402           Node* sub  = new SubINode(d->in(1), mult);
3403           n->subsume_by(sub, this);
3404         }
3405       }
3406     }
3407     break;
3408 
3409   case Op_ModL:
3410     if (UseDivMod) {
3411       // Check if a%b and a/b both exist
3412       Node* d = n->find_similar(Op_DivL);
3413       if (d) {
3414         // Replace them with a fused divmod if supported
3415         if (Matcher::has_match_rule(Op_DivModL)) {
3416           DivModLNode* divmod = DivModLNode::make(n);
3417           d->subsume_by(divmod->div_proj(), this);
3418           n->subsume_by(divmod->mod_proj(), this);
3419         } else {
3420           // replace a%b with a-((a/b)*b)
3421           Node* mult = new MulLNode(d, d->in(2));
3422           Node* sub  = new SubLNode(d->in(1), mult);
3423           n->subsume_by(sub, this);
3424         }
3425       }
3426     }
3427     break;
3428 
3429   case Op_LoadVector:
3430   case Op_StoreVector:
3431     break;
3432 
3433   case Op_AddReductionVI:
3434   case Op_AddReductionVL:
3435   case Op_AddReductionVF:
3436   case Op_AddReductionVD:
3437   case Op_MulReductionVI:
3438   case Op_MulReductionVL:
3439   case Op_MulReductionVF:
3440   case Op_MulReductionVD:
3441     break;
3442 
3443   case Op_PackB:
3444   case Op_PackS:
3445   case Op_PackI:
3446   case Op_PackF:
3447   case Op_PackL:
3448   case Op_PackD:
3449     if (n->req()-1 > 2) {
3450       // Replace many operand PackNodes with a binary tree for matching
3451       PackNode* p = (PackNode*) n;
3452       Node* btp = p->binary_tree_pack(1, n->req());
3453       n->subsume_by(btp, this);
3454     }
3455     break;
3456   case Op_Loop:
3457   case Op_CountedLoop:
3458   case Op_OuterStripMinedLoop:
3459     if (n->as_Loop()->is_inner_loop()) {
3460       frc.inc_inner_loop_count();
3461     }
3462     n->as_Loop()->verify_strip_mined(0);
3463     break;
3464   case Op_LShiftI:
3465   case Op_RShiftI:
3466   case Op_URShiftI:
3467   case Op_LShiftL:
3468   case Op_RShiftL:
3469   case Op_URShiftL:
3470     if (Matcher::need_masked_shift_count) {
3471       // The cpu's shift instructions don't restrict the count to the
3472       // lower 5/6 bits. We need to do the masking ourselves.
3473       Node* in2 = n->in(2);
3474       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3475       const TypeInt* t = in2->find_int_type();
3476       if (t != NULL && t->is_con()) {
3477         juint shift = t->get_con();
3478         if (shift > mask) { // Unsigned cmp
3479           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3480         }
3481       } else {
3482         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3483           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3484           n->set_req(2, shift);
3485         }
3486       }
3487       if (in2->outcnt() == 0) { // Remove dead node
3488         in2->disconnect_inputs(NULL, this);
3489       }
3490     }
3491     break;
3492   case Op_MemBarStoreStore:
3493   case Op_MemBarRelease:
3494     // Break the link with AllocateNode: it is no longer useful and
3495     // confuses register allocation.
3496     if (n->req() > MemBarNode::Precedent) {
3497       n->set_req(MemBarNode::Precedent, top());
3498     }
3499     break;
3500   case Op_MemBarAcquire: {
3501     if (n->as_MemBar()->trailing_load() && n->req() > MemBarNode::Precedent) {
3502       // At parse time, the trailing MemBarAcquire for a volatile load
3503       // is created with an edge to the load. After optimizations,
3504       // that input may be a chain of Phis. If those phis have no
3505       // other use, then the MemBarAcquire keeps them alive and
3506       // register allocation can be confused.
3507       ResourceMark rm;
3508       Unique_Node_List wq;
3509       wq.push(n->in(MemBarNode::Precedent));
3510       n->set_req(MemBarNode::Precedent, top());
3511       while (wq.size() > 0) {
3512         Node* m = wq.pop();
3513         if (m->outcnt() == 0) {
3514           for (uint j = 0; j < m->req(); j++) {
3515             Node* in = m->in(j);
3516             if (in != NULL) {
3517               wq.push(in);
3518             }
3519           }
3520           m->disconnect_inputs(NULL, this);
3521         }
3522       }
3523     }
3524     break;
3525   }
3526   case Op_RangeCheck: {
3527     RangeCheckNode* rc = n->as_RangeCheck();
3528     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3529     n->subsume_by(iff, this);
3530     frc._tests.push(iff);
3531     break;
3532   }
3533   case Op_ConvI2L: {
3534     if (!Matcher::convi2l_type_required) {
3535       // Code generation on some platforms doesn't need accurate
3536       // ConvI2L types. Widening the type can help remove redundant
3537       // address computations.
3538       n->as_Type()->set_type(TypeLong::INT);
3539       ResourceMark rm;
3540       Node_List wq;
3541       wq.push(n);
3542       for (uint next = 0; next < wq.size(); next++) {
3543         Node *m = wq.at(next);
3544 
3545         for(;;) {
3546           // Loop over all nodes with identical inputs edges as m
3547           Node* k = m->find_similar(m->Opcode());
3548           if (k == NULL) {
3549             break;
3550           }
3551           // Push their uses so we get a chance to remove node made
3552           // redundant
3553           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3554             Node* u = k->fast_out(i);
3555             assert(!wq.contains(u), "shouldn't process one node several times");
3556             if (u->Opcode() == Op_LShiftL ||
3557                 u->Opcode() == Op_AddL ||
3558                 u->Opcode() == Op_SubL ||
3559                 u->Opcode() == Op_AddP) {
3560               wq.push(u);
3561             }
3562           }
3563           // Replace all nodes with identical edges as m with m
3564           k->subsume_by(m, this);
3565         }
3566       }
3567     }
3568     break;
3569   }
3570   case Op_CmpUL: {
3571     if (!Matcher::has_match_rule(Op_CmpUL)) {
3572       // No support for unsigned long comparisons
3573       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3574       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3575       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3576       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3577       Node* andl = new AndLNode(orl, remove_sign_mask);
3578       Node* cmp = new CmpLNode(andl, n->in(2));
3579       n->subsume_by(cmp, this);
3580     }
3581     break;
3582   }
3583 #ifdef ASSERT
3584   case Op_ValueTypePtr:
3585   case Op_ValueType: {
3586     n->dump(-1);
3587     assert(false, "value type node was not removed");
3588     break;
3589   }
3590 #endif
3591   default:
3592     assert(!n->is_Call(), "");
3593     assert(!n->is_Mem(), "");
3594     assert(nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3595     break;
3596   }
3597 }
3598 
3599 //------------------------------final_graph_reshaping_walk---------------------
3600 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3601 // requires that the walk visits a node's inputs before visiting the node.
3602 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3603   ResourceArea *area = Thread::current()->resource_area();
3604   Unique_Node_List sfpt(area);
3605 
3606   frc._visited.set(root->_idx); // first, mark node as visited
3607   uint cnt = root->req();
3608   Node *n = root;
3609   uint  i = 0;
3610   while (true) {
3611     if (i < cnt) {
3612       // Place all non-visited non-null inputs onto stack
3613       Node* m = n->in(i);
3614       ++i;
3615       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3616         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3617           // compute worst case interpreter size in case of a deoptimization
3618           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3619 
3620           sfpt.push(m);
3621         }
3622         cnt = m->req();
3623         nstack.push(n, i); // put on stack parent and next input's index
3624         n = m;
3625         i = 0;
3626       }
3627     } else {
3628       // Now do post-visit work
3629       final_graph_reshaping_impl( n, frc );
3630       if (nstack.is_empty())
3631         break;             // finished
3632       n = nstack.node();   // Get node from stack
3633       cnt = n->req();
3634       i = nstack.index();
3635       nstack.pop();        // Shift to the next node on stack
3636     }
3637   }
3638 
3639   // Skip next transformation if compressed oops are not used.
3640   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3641       (!UseCompressedOops && !UseCompressedClassPointers))
3642     return;
3643 
3644   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3645   // It could be done for an uncommon traps or any safepoints/calls
3646   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3647   while (sfpt.size() > 0) {
3648     n = sfpt.pop();
3649     JVMState *jvms = n->as_SafePoint()->jvms();
3650     assert(jvms != NULL, "sanity");
3651     int start = jvms->debug_start();
3652     int end   = n->req();
3653     bool is_uncommon = (n->is_CallStaticJava() &&
3654                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3655     for (int j = start; j < end; j++) {
3656       Node* in = n->in(j);
3657       if (in->is_DecodeNarrowPtr()) {
3658         bool safe_to_skip = true;
3659         if (!is_uncommon ) {
3660           // Is it safe to skip?
3661           for (uint i = 0; i < in->outcnt(); i++) {
3662             Node* u = in->raw_out(i);
3663             if (!u->is_SafePoint() ||
3664                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3665               safe_to_skip = false;
3666             }
3667           }
3668         }
3669         if (safe_to_skip) {
3670           n->set_req(j, in->in(1));
3671         }
3672         if (in->outcnt() == 0) {
3673           in->disconnect_inputs(NULL, this);
3674         }
3675       }
3676     }
3677   }
3678 }
3679 
3680 //------------------------------final_graph_reshaping--------------------------
3681 // Final Graph Reshaping.
3682 //
3683 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3684 //     and not commoned up and forced early.  Must come after regular
3685 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3686 //     inputs to Loop Phis; these will be split by the allocator anyways.
3687 //     Remove Opaque nodes.
3688 // (2) Move last-uses by commutative operations to the left input to encourage
3689 //     Intel update-in-place two-address operations and better register usage
3690 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3691 //     calls canonicalizing them back.
3692 // (3) Count the number of double-precision FP ops, single-precision FP ops
3693 //     and call sites.  On Intel, we can get correct rounding either by
3694 //     forcing singles to memory (requires extra stores and loads after each
3695 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3696 //     clearing the mode bit around call sites).  The mode bit is only used
3697 //     if the relative frequency of single FP ops to calls is low enough.
3698 //     This is a key transform for SPEC mpeg_audio.
3699 // (4) Detect infinite loops; blobs of code reachable from above but not
3700 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3701 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3702 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3703 //     Detection is by looking for IfNodes where only 1 projection is
3704 //     reachable from below or CatchNodes missing some targets.
3705 // (5) Assert for insane oop offsets in debug mode.
3706 
3707 bool Compile::final_graph_reshaping() {
3708   // an infinite loop may have been eliminated by the optimizer,
3709   // in which case the graph will be empty.
3710   if (root()->req() == 1) {
3711     record_method_not_compilable("trivial infinite loop");
3712     return true;
3713   }
3714 
3715   // Expensive nodes have their control input set to prevent the GVN
3716   // from freely commoning them. There's no GVN beyond this point so
3717   // no need to keep the control input. We want the expensive nodes to
3718   // be freely moved to the least frequent code path by gcm.
3719   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3720   for (int i = 0; i < expensive_count(); i++) {
3721     _expensive_nodes->at(i)->set_req(0, NULL);
3722   }
3723 
3724   Final_Reshape_Counts frc;
3725 
3726   // Visit everybody reachable!
3727   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3728   Node_Stack nstack(live_nodes() >> 1);
3729   final_graph_reshaping_walk(nstack, root(), frc);
3730 
3731   // Check for unreachable (from below) code (i.e., infinite loops).
3732   for( uint i = 0; i < frc._tests.size(); i++ ) {
3733     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3734     // Get number of CFG targets.
3735     // Note that PCTables include exception targets after calls.
3736     uint required_outcnt = n->required_outcnt();
3737     if (n->outcnt() != required_outcnt) {
3738       // Check for a few special cases.  Rethrow Nodes never take the
3739       // 'fall-thru' path, so expected kids is 1 less.
3740       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3741         if (n->in(0)->in(0)->is_Call()) {
3742           CallNode *call = n->in(0)->in(0)->as_Call();
3743           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3744             required_outcnt--;      // Rethrow always has 1 less kid
3745           } else if (call->req() > TypeFunc::Parms &&
3746                      call->is_CallDynamicJava()) {
3747             // Check for null receiver. In such case, the optimizer has
3748             // detected that the virtual call will always result in a null
3749             // pointer exception. The fall-through projection of this CatchNode
3750             // will not be populated.
3751             Node *arg0 = call->in(TypeFunc::Parms);
3752             if (arg0->is_Type() &&
3753                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3754               required_outcnt--;
3755             }
3756           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3757                      call->req() > TypeFunc::Parms+1 &&
3758                      call->is_CallStaticJava()) {
3759             // Check for negative array length. In such case, the optimizer has
3760             // detected that the allocation attempt will always result in an
3761             // exception. There is no fall-through projection of this CatchNode .
3762             Node *arg1 = call->in(TypeFunc::Parms+1);
3763             if (arg1->is_Type() &&
3764                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3765               required_outcnt--;
3766             }
3767           }
3768         }
3769       }
3770       // Recheck with a better notion of 'required_outcnt'
3771       if (n->outcnt() != required_outcnt) {
3772         record_method_not_compilable("malformed control flow");
3773         return true;            // Not all targets reachable!
3774       }
3775     }
3776     // Check that I actually visited all kids.  Unreached kids
3777     // must be infinite loops.
3778     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3779       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3780         record_method_not_compilable("infinite loop");
3781         return true;            // Found unvisited kid; must be unreach
3782       }
3783 
3784     // Here so verification code in final_graph_reshaping_walk()
3785     // always see an OuterStripMinedLoopEnd
3786     if (n->is_OuterStripMinedLoopEnd()) {
3787       IfNode* init_iff = n->as_If();
3788       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3789       n->subsume_by(iff, this);
3790     }
3791   }
3792 
3793   // If original bytecodes contained a mixture of floats and doubles
3794   // check if the optimizer has made it homogenous, item (3).
3795   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3796       frc.get_float_count() > 32 &&
3797       frc.get_double_count() == 0 &&
3798       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3799     set_24_bit_selection_and_mode( false,  true );
3800   }
3801 
3802   set_java_calls(frc.get_java_call_count());
3803   set_inner_loops(frc.get_inner_loop_count());
3804 
3805   // No infinite loops, no reason to bail out.
3806   return false;
3807 }
3808 
3809 //-----------------------------too_many_traps----------------------------------
3810 // Report if there are too many traps at the current method and bci.
3811 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3812 bool Compile::too_many_traps(ciMethod* method,
3813                              int bci,
3814                              Deoptimization::DeoptReason reason) {
3815   ciMethodData* md = method->method_data();
3816   if (md->is_empty()) {
3817     // Assume the trap has not occurred, or that it occurred only
3818     // because of a transient condition during start-up in the interpreter.
3819     return false;
3820   }
3821   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3822   if (md->has_trap_at(bci, m, reason) != 0) {
3823     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3824     // Also, if there are multiple reasons, or if there is no per-BCI record,
3825     // assume the worst.
3826     if (log())
3827       log()->elem("observe trap='%s' count='%d'",
3828                   Deoptimization::trap_reason_name(reason),
3829                   md->trap_count(reason));
3830     return true;
3831   } else {
3832     // Ignore method/bci and see if there have been too many globally.
3833     return too_many_traps(reason, md);
3834   }
3835 }
3836 
3837 // Less-accurate variant which does not require a method and bci.
3838 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3839                              ciMethodData* logmd) {
3840   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3841     // Too many traps globally.
3842     // Note that we use cumulative trap_count, not just md->trap_count.
3843     if (log()) {
3844       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3845       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3846                   Deoptimization::trap_reason_name(reason),
3847                   mcount, trap_count(reason));
3848     }
3849     return true;
3850   } else {
3851     // The coast is clear.
3852     return false;
3853   }
3854 }
3855 
3856 //--------------------------too_many_recompiles--------------------------------
3857 // Report if there are too many recompiles at the current method and bci.
3858 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3859 // Is not eager to return true, since this will cause the compiler to use
3860 // Action_none for a trap point, to avoid too many recompilations.
3861 bool Compile::too_many_recompiles(ciMethod* method,
3862                                   int bci,
3863                                   Deoptimization::DeoptReason reason) {
3864   ciMethodData* md = method->method_data();
3865   if (md->is_empty()) {
3866     // Assume the trap has not occurred, or that it occurred only
3867     // because of a transient condition during start-up in the interpreter.
3868     return false;
3869   }
3870   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3871   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3872   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3873   Deoptimization::DeoptReason per_bc_reason
3874     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3875   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3876   if ((per_bc_reason == Deoptimization::Reason_none
3877        || md->has_trap_at(bci, m, reason) != 0)
3878       // The trap frequency measure we care about is the recompile count:
3879       && md->trap_recompiled_at(bci, m)
3880       && md->overflow_recompile_count() >= bc_cutoff) {
3881     // Do not emit a trap here if it has already caused recompilations.
3882     // Also, if there are multiple reasons, or if there is no per-BCI record,
3883     // assume the worst.
3884     if (log())
3885       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3886                   Deoptimization::trap_reason_name(reason),
3887                   md->trap_count(reason),
3888                   md->overflow_recompile_count());
3889     return true;
3890   } else if (trap_count(reason) != 0
3891              && decompile_count() >= m_cutoff) {
3892     // Too many recompiles globally, and we have seen this sort of trap.
3893     // Use cumulative decompile_count, not just md->decompile_count.
3894     if (log())
3895       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3896                   Deoptimization::trap_reason_name(reason),
3897                   md->trap_count(reason), trap_count(reason),
3898                   md->decompile_count(), decompile_count());
3899     return true;
3900   } else {
3901     // The coast is clear.
3902     return false;
3903   }
3904 }
3905 
3906 // Compute when not to trap. Used by matching trap based nodes and
3907 // NullCheck optimization.
3908 void Compile::set_allowed_deopt_reasons() {
3909   _allowed_reasons = 0;
3910   if (is_method_compilation()) {
3911     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3912       assert(rs < BitsPerInt, "recode bit map");
3913       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3914         _allowed_reasons |= nth_bit(rs);
3915       }
3916     }
3917   }
3918 }
3919 
3920 bool Compile::is_compiling_clinit_for(ciKlass* k) {
3921   ciMethod* root = method(); // the root method of compilation
3922   return root->is_static_initializer() && root->holder() == k; // access in the context of clinit
3923 }
3924 
3925 #ifndef PRODUCT
3926 //------------------------------verify_graph_edges---------------------------
3927 // Walk the Graph and verify that there is a one-to-one correspondence
3928 // between Use-Def edges and Def-Use edges in the graph.
3929 void Compile::verify_graph_edges(bool no_dead_code) {
3930   if (VerifyGraphEdges) {
3931     ResourceArea *area = Thread::current()->resource_area();
3932     Unique_Node_List visited(area);
3933     // Call recursive graph walk to check edges
3934     _root->verify_edges(visited);
3935     if (no_dead_code) {
3936       // Now make sure that no visited node is used by an unvisited node.
3937       bool dead_nodes = false;
3938       Unique_Node_List checked(area);
3939       while (visited.size() > 0) {
3940         Node* n = visited.pop();
3941         checked.push(n);
3942         for (uint i = 0; i < n->outcnt(); i++) {
3943           Node* use = n->raw_out(i);
3944           if (checked.member(use))  continue;  // already checked
3945           if (visited.member(use))  continue;  // already in the graph
3946           if (use->is_Con())        continue;  // a dead ConNode is OK
3947           // At this point, we have found a dead node which is DU-reachable.
3948           if (!dead_nodes) {
3949             tty->print_cr("*** Dead nodes reachable via DU edges:");
3950             dead_nodes = true;
3951           }
3952           use->dump(2);
3953           tty->print_cr("---");
3954           checked.push(use);  // No repeats; pretend it is now checked.
3955         }
3956       }
3957       assert(!dead_nodes, "using nodes must be reachable from root");
3958     }
3959   }
3960 }
3961 #endif
3962 
3963 // The Compile object keeps track of failure reasons separately from the ciEnv.
3964 // This is required because there is not quite a 1-1 relation between the
3965 // ciEnv and its compilation task and the Compile object.  Note that one
3966 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3967 // to backtrack and retry without subsuming loads.  Other than this backtracking
3968 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3969 // by the logic in C2Compiler.
3970 void Compile::record_failure(const char* reason) {
3971   if (log() != NULL) {
3972     log()->elem("failure reason='%s' phase='compile'", reason);
3973   }
3974   if (_failure_reason == NULL) {
3975     // Record the first failure reason.
3976     _failure_reason = reason;
3977   }
3978 
3979   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3980     C->print_method(PHASE_FAILURE);
3981   }
3982   _root = NULL;  // flush the graph, too
3983 }
3984 
3985 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3986   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3987     _phase_name(name), _dolog(CITimeVerbose)
3988 {
3989   if (_dolog) {
3990     C = Compile::current();
3991     _log = C->log();
3992   } else {
3993     C = NULL;
3994     _log = NULL;
3995   }
3996   if (_log != NULL) {
3997     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3998     _log->stamp();
3999     _log->end_head();
4000   }
4001 }
4002 
4003 Compile::TracePhase::~TracePhase() {
4004 
4005   C = Compile::current();
4006   if (_dolog) {
4007     _log = C->log();
4008   } else {
4009     _log = NULL;
4010   }
4011 
4012 #ifdef ASSERT
4013   if (PrintIdealNodeCount) {
4014     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
4015                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
4016   }
4017 
4018   if (VerifyIdealNodeCount) {
4019     Compile::current()->print_missing_nodes();
4020   }
4021 #endif
4022 
4023   if (_log != NULL) {
4024     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
4025   }
4026 }
4027 
4028 //=============================================================================
4029 // Two Constant's are equal when the type and the value are equal.
4030 bool Compile::Constant::operator==(const Constant& other) {
4031   if (type()          != other.type()         )  return false;
4032   if (can_be_reused() != other.can_be_reused())  return false;
4033   // For floating point values we compare the bit pattern.
4034   switch (type()) {
4035   case T_INT:
4036   case T_FLOAT:   return (_v._value.i == other._v._value.i);
4037   case T_LONG:
4038   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
4039   case T_OBJECT:
4040   case T_ADDRESS: return (_v._value.l == other._v._value.l);
4041   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
4042   case T_METADATA: return (_v._metadata == other._v._metadata);
4043   default: ShouldNotReachHere(); return false;
4044   }
4045 }
4046 
4047 static int type_to_size_in_bytes(BasicType t) {
4048   switch (t) {
4049   case T_INT:     return sizeof(jint   );
4050   case T_LONG:    return sizeof(jlong  );
4051   case T_FLOAT:   return sizeof(jfloat );
4052   case T_DOUBLE:  return sizeof(jdouble);
4053   case T_METADATA: return sizeof(Metadata*);
4054     // We use T_VOID as marker for jump-table entries (labels) which
4055     // need an internal word relocation.
4056   case T_VOID:
4057   case T_ADDRESS:
4058   case T_OBJECT:  return sizeof(jobject);
4059   default:
4060     ShouldNotReachHere();
4061     return -1;
4062   }
4063 }
4064 
4065 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4066   // sort descending
4067   if (a->freq() > b->freq())  return -1;
4068   if (a->freq() < b->freq())  return  1;
4069   return 0;
4070 }
4071 
4072 void Compile::ConstantTable::calculate_offsets_and_size() {
4073   // First, sort the array by frequencies.
4074   _constants.sort(qsort_comparator);
4075 
4076 #ifdef ASSERT
4077   // Make sure all jump-table entries were sorted to the end of the
4078   // array (they have a negative frequency).
4079   bool found_void = false;
4080   for (int i = 0; i < _constants.length(); i++) {
4081     Constant con = _constants.at(i);
4082     if (con.type() == T_VOID)
4083       found_void = true;  // jump-tables
4084     else
4085       assert(!found_void, "wrong sorting");
4086   }
4087 #endif
4088 
4089   int offset = 0;
4090   for (int i = 0; i < _constants.length(); i++) {
4091     Constant* con = _constants.adr_at(i);
4092 
4093     // Align offset for type.
4094     int typesize = type_to_size_in_bytes(con->type());
4095     offset = align_up(offset, typesize);
4096     con->set_offset(offset);   // set constant's offset
4097 
4098     if (con->type() == T_VOID) {
4099       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4100       offset = offset + typesize * n->outcnt();  // expand jump-table
4101     } else {
4102       offset = offset + typesize;
4103     }
4104   }
4105 
4106   // Align size up to the next section start (which is insts; see
4107   // CodeBuffer::align_at_start).
4108   assert(_size == -1, "already set?");
4109   _size = align_up(offset, (int)CodeEntryAlignment);
4110 }
4111 
4112 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4113   MacroAssembler _masm(&cb);
4114   for (int i = 0; i < _constants.length(); i++) {
4115     Constant con = _constants.at(i);
4116     address constant_addr = NULL;
4117     switch (con.type()) {
4118     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4119     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4120     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4121     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4122     case T_OBJECT: {
4123       jobject obj = con.get_jobject();
4124       int oop_index = _masm.oop_recorder()->find_index(obj);
4125       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4126       break;
4127     }
4128     case T_ADDRESS: {
4129       address addr = (address) con.get_jobject();
4130       constant_addr = _masm.address_constant(addr);
4131       break;
4132     }
4133     // We use T_VOID as marker for jump-table entries (labels) which
4134     // need an internal word relocation.
4135     case T_VOID: {
4136       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4137       // Fill the jump-table with a dummy word.  The real value is
4138       // filled in later in fill_jump_table.
4139       address dummy = (address) n;
4140       constant_addr = _masm.address_constant(dummy);
4141       // Expand jump-table
4142       for (uint i = 1; i < n->outcnt(); i++) {
4143         address temp_addr = _masm.address_constant(dummy + i);
4144         assert(temp_addr, "consts section too small");
4145       }
4146       break;
4147     }
4148     case T_METADATA: {
4149       Metadata* obj = con.get_metadata();
4150       int metadata_index = _masm.oop_recorder()->find_index(obj);
4151       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4152       break;
4153     }
4154     default: ShouldNotReachHere();
4155     }
4156     assert(constant_addr, "consts section too small");
4157     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4158             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4159   }
4160 }
4161 
4162 int Compile::ConstantTable::find_offset(Constant& con) const {
4163   int idx = _constants.find(con);
4164   guarantee(idx != -1, "constant must be in constant table");
4165   int offset = _constants.at(idx).offset();
4166   guarantee(offset != -1, "constant table not emitted yet?");
4167   return offset;
4168 }
4169 
4170 void Compile::ConstantTable::add(Constant& con) {
4171   if (con.can_be_reused()) {
4172     int idx = _constants.find(con);
4173     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4174       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4175       return;
4176     }
4177   }
4178   (void) _constants.append(con);
4179 }
4180 
4181 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4182   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4183   Constant con(type, value, b->_freq);
4184   add(con);
4185   return con;
4186 }
4187 
4188 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4189   Constant con(metadata);
4190   add(con);
4191   return con;
4192 }
4193 
4194 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4195   jvalue value;
4196   BasicType type = oper->type()->basic_type();
4197   switch (type) {
4198   case T_LONG:    value.j = oper->constantL(); break;
4199   case T_FLOAT:   value.f = oper->constantF(); break;
4200   case T_DOUBLE:  value.d = oper->constantD(); break;
4201   case T_OBJECT:
4202   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4203   case T_METADATA: return add((Metadata*)oper->constant()); break;
4204   default: guarantee(false, "unhandled type: %s", type2name(type));
4205   }
4206   return add(n, type, value);
4207 }
4208 
4209 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4210   jvalue value;
4211   // We can use the node pointer here to identify the right jump-table
4212   // as this method is called from Compile::Fill_buffer right before
4213   // the MachNodes are emitted and the jump-table is filled (means the
4214   // MachNode pointers do not change anymore).
4215   value.l = (jobject) n;
4216   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4217   add(con);
4218   return con;
4219 }
4220 
4221 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4222   // If called from Compile::scratch_emit_size do nothing.
4223   if (Compile::current()->in_scratch_emit_size())  return;
4224 
4225   assert(labels.is_nonempty(), "must be");
4226   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4227 
4228   // Since MachConstantNode::constant_offset() also contains
4229   // table_base_offset() we need to subtract the table_base_offset()
4230   // to get the plain offset into the constant table.
4231   int offset = n->constant_offset() - table_base_offset();
4232 
4233   MacroAssembler _masm(&cb);
4234   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4235 
4236   for (uint i = 0; i < n->outcnt(); i++) {
4237     address* constant_addr = &jump_table_base[i];
4238     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4239     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4240     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4241   }
4242 }
4243 
4244 //----------------------------static_subtype_check-----------------------------
4245 // Shortcut important common cases when superklass is exact:
4246 // (0) superklass is java.lang.Object (can occur in reflective code)
4247 // (1) subklass is already limited to a subtype of superklass => always ok
4248 // (2) subklass does not overlap with superklass => always fail
4249 // (3) superklass has NO subtypes and we can check with a simple compare.
4250 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4251   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4252     return SSC_full_test;       // Let caller generate the general case.
4253   }
4254 
4255   if (superk == env()->Object_klass()) {
4256     return SSC_always_true;     // (0) this test cannot fail
4257   }
4258 
4259   ciType* superelem = superk;
4260   if (superelem->is_array_klass())
4261     superelem = superelem->as_array_klass()->base_element_type();
4262 
4263   if (!subk->is_interface()) {  // cannot trust static interface types yet
4264     if (subk->is_subtype_of(superk)) {
4265       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4266     }
4267     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4268         !superk->is_subtype_of(subk)) {
4269       return SSC_always_false;
4270     }
4271   }
4272 
4273   // If casting to an instance klass, it must have no subtypes
4274   if (superk->is_interface()) {
4275     // Cannot trust interfaces yet.
4276     // %%% S.B. superk->nof_implementors() == 1
4277   } else if (superelem->is_instance_klass()) {
4278     ciInstanceKlass* ik = superelem->as_instance_klass();
4279     if (!ik->has_subklass() && !ik->is_interface()) {
4280       if (!ik->is_final()) {
4281         // Add a dependency if there is a chance of a later subclass.
4282         dependencies()->assert_leaf_type(ik);
4283       }
4284       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4285     }
4286   } else {
4287     // A primitive array type has no subtypes.
4288     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4289   }
4290 
4291   return SSC_full_test;
4292 }
4293 
4294 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4295 #ifdef _LP64
4296   // The scaled index operand to AddP must be a clean 64-bit value.
4297   // Java allows a 32-bit int to be incremented to a negative
4298   // value, which appears in a 64-bit register as a large
4299   // positive number.  Using that large positive number as an
4300   // operand in pointer arithmetic has bad consequences.
4301   // On the other hand, 32-bit overflow is rare, and the possibility
4302   // can often be excluded, if we annotate the ConvI2L node with
4303   // a type assertion that its value is known to be a small positive
4304   // number.  (The prior range check has ensured this.)
4305   // This assertion is used by ConvI2LNode::Ideal.
4306   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4307   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4308   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4309   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4310 #endif
4311   return idx;
4312 }
4313 
4314 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4315 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4316   if (ctrl != NULL) {
4317     // Express control dependency by a CastII node with a narrow type.
4318     value = new CastIINode(value, itype, false, true /* range check dependency */);
4319     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4320     // node from floating above the range check during loop optimizations. Otherwise, the
4321     // ConvI2L node may be eliminated independently of the range check, causing the data path
4322     // to become TOP while the control path is still there (although it's unreachable).
4323     value->set_req(0, ctrl);
4324     // Save CastII node to remove it after loop optimizations.
4325     phase->C->add_range_check_cast(value);
4326     value = phase->transform(value);
4327   }
4328   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4329   return phase->transform(new ConvI2LNode(value, ltype));
4330 }
4331 
4332 // The message about the current inlining is accumulated in
4333 // _print_inlining_stream and transfered into the _print_inlining_list
4334 // once we know whether inlining succeeds or not. For regular
4335 // inlining, messages are appended to the buffer pointed by
4336 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4337 // a new buffer is added after _print_inlining_idx in the list. This
4338 // way we can update the inlining message for late inlining call site
4339 // when the inlining is attempted again.
4340 void Compile::print_inlining_init() {
4341   if (print_inlining() || print_intrinsics()) {
4342     _print_inlining_stream = new stringStream();
4343     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4344   }
4345 }
4346 
4347 void Compile::print_inlining_reinit() {
4348   if (print_inlining() || print_intrinsics()) {
4349     // Re allocate buffer when we change ResourceMark
4350     _print_inlining_stream = new stringStream();
4351   }
4352 }
4353 
4354 void Compile::print_inlining_reset() {
4355   _print_inlining_stream->reset();
4356 }
4357 
4358 void Compile::print_inlining_commit() {
4359   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4360   // Transfer the message from _print_inlining_stream to the current
4361   // _print_inlining_list buffer and clear _print_inlining_stream.
4362   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4363   print_inlining_reset();
4364 }
4365 
4366 void Compile::print_inlining_push() {
4367   // Add new buffer to the _print_inlining_list at current position
4368   _print_inlining_idx++;
4369   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4370 }
4371 
4372 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4373   return _print_inlining_list->at(_print_inlining_idx);
4374 }
4375 
4376 void Compile::print_inlining_update(CallGenerator* cg) {
4377   if (print_inlining() || print_intrinsics()) {
4378     if (!cg->is_late_inline()) {
4379       if (print_inlining_current().cg() != NULL) {
4380         print_inlining_push();
4381       }
4382       print_inlining_commit();
4383     } else {
4384       if (print_inlining_current().cg() != cg &&
4385           (print_inlining_current().cg() != NULL ||
4386            print_inlining_current().ss()->size() != 0)) {
4387         print_inlining_push();
4388       }
4389       print_inlining_commit();
4390       print_inlining_current().set_cg(cg);
4391     }
4392   }
4393 }
4394 
4395 void Compile::print_inlining_move_to(CallGenerator* cg) {
4396   // We resume inlining at a late inlining call site. Locate the
4397   // corresponding inlining buffer so that we can update it.
4398   if (print_inlining()) {
4399     for (int i = 0; i < _print_inlining_list->length(); i++) {
4400       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4401         _print_inlining_idx = i;
4402         return;
4403       }
4404     }
4405     ShouldNotReachHere();
4406   }
4407 }
4408 
4409 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4410   if (print_inlining()) {
4411     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4412     assert(print_inlining_current().cg() == cg, "wrong entry");
4413     // replace message with new message
4414     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4415     print_inlining_commit();
4416     print_inlining_current().set_cg(cg);
4417   }
4418 }
4419 
4420 void Compile::print_inlining_assert_ready() {
4421   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4422 }
4423 
4424 void Compile::process_print_inlining() {
4425   bool do_print_inlining = print_inlining() || print_intrinsics();
4426   if (do_print_inlining || log() != NULL) {
4427     // Print inlining message for candidates that we couldn't inline
4428     // for lack of space
4429     for (int i = 0; i < _late_inlines.length(); i++) {
4430       CallGenerator* cg = _late_inlines.at(i);
4431       if (!cg->is_mh_late_inline()) {
4432         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4433         if (do_print_inlining) {
4434           cg->print_inlining_late(msg);
4435         }
4436         log_late_inline_failure(cg, msg);
4437       }
4438     }
4439   }
4440   if (do_print_inlining) {
4441     ResourceMark rm;
4442     stringStream ss;
4443     for (int i = 0; i < _print_inlining_list->length(); i++) {
4444       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4445     }
4446     size_t end = ss.size();
4447     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4448     strncpy(_print_inlining_output, ss.base(), end+1);
4449     _print_inlining_output[end] = 0;
4450   }
4451 }
4452 
4453 void Compile::dump_print_inlining() {
4454   if (_print_inlining_output != NULL) {
4455     tty->print_raw(_print_inlining_output);
4456   }
4457 }
4458 
4459 void Compile::log_late_inline(CallGenerator* cg) {
4460   if (log() != NULL) {
4461     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4462                 cg->unique_id());
4463     JVMState* p = cg->call_node()->jvms();
4464     while (p != NULL) {
4465       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4466       p = p->caller();
4467     }
4468     log()->tail("late_inline");
4469   }
4470 }
4471 
4472 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4473   log_late_inline(cg);
4474   if (log() != NULL) {
4475     log()->inline_fail(msg);
4476   }
4477 }
4478 
4479 void Compile::log_inline_id(CallGenerator* cg) {
4480   if (log() != NULL) {
4481     // The LogCompilation tool needs a unique way to identify late
4482     // inline call sites. This id must be unique for this call site in
4483     // this compilation. Try to have it unique across compilations as
4484     // well because it can be convenient when grepping through the log
4485     // file.
4486     // Distinguish OSR compilations from others in case CICountOSR is
4487     // on.
4488     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4489     cg->set_unique_id(id);
4490     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4491   }
4492 }
4493 
4494 void Compile::log_inline_failure(const char* msg) {
4495   if (C->log() != NULL) {
4496     C->log()->inline_fail(msg);
4497   }
4498 }
4499 
4500 
4501 // Dump inlining replay data to the stream.
4502 // Don't change thread state and acquire any locks.
4503 void Compile::dump_inline_data(outputStream* out) {
4504   InlineTree* inl_tree = ilt();
4505   if (inl_tree != NULL) {
4506     out->print(" inline %d", inl_tree->count());
4507     inl_tree->dump_replay_data(out);
4508   }
4509 }
4510 
4511 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4512   if (n1->Opcode() < n2->Opcode())      return -1;
4513   else if (n1->Opcode() > n2->Opcode()) return 1;
4514 
4515   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4516   for (uint i = 1; i < n1->req(); i++) {
4517     if (n1->in(i) < n2->in(i))      return -1;
4518     else if (n1->in(i) > n2->in(i)) return 1;
4519   }
4520 
4521   return 0;
4522 }
4523 
4524 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4525   Node* n1 = *n1p;
4526   Node* n2 = *n2p;
4527 
4528   return cmp_expensive_nodes(n1, n2);
4529 }
4530 
4531 void Compile::sort_expensive_nodes() {
4532   if (!expensive_nodes_sorted()) {
4533     _expensive_nodes->sort(cmp_expensive_nodes);
4534   }
4535 }
4536 
4537 bool Compile::expensive_nodes_sorted() const {
4538   for (int i = 1; i < _expensive_nodes->length(); i++) {
4539     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4540       return false;
4541     }
4542   }
4543   return true;
4544 }
4545 
4546 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4547   if (_expensive_nodes->length() == 0) {
4548     return false;
4549   }
4550 
4551   assert(OptimizeExpensiveOps, "optimization off?");
4552 
4553   // Take this opportunity to remove dead nodes from the list
4554   int j = 0;
4555   for (int i = 0; i < _expensive_nodes->length(); i++) {
4556     Node* n = _expensive_nodes->at(i);
4557     if (!n->is_unreachable(igvn)) {
4558       assert(n->is_expensive(), "should be expensive");
4559       _expensive_nodes->at_put(j, n);
4560       j++;
4561     }
4562   }
4563   _expensive_nodes->trunc_to(j);
4564 
4565   // Then sort the list so that similar nodes are next to each other
4566   // and check for at least two nodes of identical kind with same data
4567   // inputs.
4568   sort_expensive_nodes();
4569 
4570   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4571     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4572       return true;
4573     }
4574   }
4575 
4576   return false;
4577 }
4578 
4579 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4580   if (_expensive_nodes->length() == 0) {
4581     return;
4582   }
4583 
4584   assert(OptimizeExpensiveOps, "optimization off?");
4585 
4586   // Sort to bring similar nodes next to each other and clear the
4587   // control input of nodes for which there's only a single copy.
4588   sort_expensive_nodes();
4589 
4590   int j = 0;
4591   int identical = 0;
4592   int i = 0;
4593   bool modified = false;
4594   for (; i < _expensive_nodes->length()-1; i++) {
4595     assert(j <= i, "can't write beyond current index");
4596     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4597       identical++;
4598       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4599       continue;
4600     }
4601     if (identical > 0) {
4602       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4603       identical = 0;
4604     } else {
4605       Node* n = _expensive_nodes->at(i);
4606       igvn.replace_input_of(n, 0, NULL);
4607       igvn.hash_insert(n);
4608       modified = true;
4609     }
4610   }
4611   if (identical > 0) {
4612     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4613   } else if (_expensive_nodes->length() >= 1) {
4614     Node* n = _expensive_nodes->at(i);
4615     igvn.replace_input_of(n, 0, NULL);
4616     igvn.hash_insert(n);
4617     modified = true;
4618   }
4619   _expensive_nodes->trunc_to(j);
4620   if (modified) {
4621     igvn.optimize();
4622   }
4623 }
4624 
4625 void Compile::add_expensive_node(Node * n) {
4626   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4627   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4628   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4629   if (OptimizeExpensiveOps) {
4630     _expensive_nodes->append(n);
4631   } else {
4632     // Clear control input and let IGVN optimize expensive nodes if
4633     // OptimizeExpensiveOps is off.
4634     n->set_req(0, NULL);
4635   }
4636 }
4637 
4638 /**
4639  * Remove the speculative part of types and clean up the graph
4640  */
4641 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4642   if (UseTypeSpeculation) {
4643     Unique_Node_List worklist;
4644     worklist.push(root());
4645     int modified = 0;
4646     // Go over all type nodes that carry a speculative type, drop the
4647     // speculative part of the type and enqueue the node for an igvn
4648     // which may optimize it out.
4649     for (uint next = 0; next < worklist.size(); ++next) {
4650       Node *n  = worklist.at(next);
4651       if (n->is_Type()) {
4652         TypeNode* tn = n->as_Type();
4653         const Type* t = tn->type();
4654         const Type* t_no_spec = t->remove_speculative();
4655         if (t_no_spec != t) {
4656           bool in_hash = igvn.hash_delete(n);
4657           assert(in_hash, "node should be in igvn hash table");
4658           tn->set_type(t_no_spec);
4659           igvn.hash_insert(n);
4660           igvn._worklist.push(n); // give it a chance to go away
4661           modified++;
4662         }
4663       }
4664       uint max = n->len();
4665       for( uint i = 0; i < max; ++i ) {
4666         Node *m = n->in(i);
4667         if (not_a_node(m))  continue;
4668         worklist.push(m);
4669       }
4670     }
4671     // Drop the speculative part of all types in the igvn's type table
4672     igvn.remove_speculative_types();
4673     if (modified > 0) {
4674       igvn.optimize();
4675     }
4676 #ifdef ASSERT
4677     // Verify that after the IGVN is over no speculative type has resurfaced
4678     worklist.clear();
4679     worklist.push(root());
4680     for (uint next = 0; next < worklist.size(); ++next) {
4681       Node *n  = worklist.at(next);
4682       const Type* t = igvn.type_or_null(n);
4683       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4684       if (n->is_Type()) {
4685         t = n->as_Type()->type();
4686         assert(t == t->remove_speculative(), "no more speculative types");
4687       }
4688       uint max = n->len();
4689       for( uint i = 0; i < max; ++i ) {
4690         Node *m = n->in(i);
4691         if (not_a_node(m))  continue;
4692         worklist.push(m);
4693       }
4694     }
4695     igvn.check_no_speculative_types();
4696 #endif
4697   }
4698 }
4699 
4700 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) {
4701   const TypeInstPtr* ta = phase->type(a)->isa_instptr();
4702   const TypeInstPtr* tb = phase->type(b)->isa_instptr();
4703   if (!EnableValhalla || ta == NULL || tb == NULL ||
4704       ta->is_zero_type() || tb->is_zero_type() ||
4705       !ta->can_be_value_type() || !tb->can_be_value_type()) {
4706     // Use old acmp if one operand is null or not a value type
4707     return new CmpPNode(a, b);
4708   } else if (ta->is_valuetypeptr() || tb->is_valuetypeptr()) {
4709     // We know that one operand is a value type. Therefore,
4710     // new acmp will only return true if both operands are NULL.
4711     // Check if both operands are null by or'ing the oops.
4712     a = phase->transform(new CastP2XNode(NULL, a));
4713     b = phase->transform(new CastP2XNode(NULL, b));
4714     a = phase->transform(new OrXNode(a, b));
4715     return new CmpXNode(a, phase->MakeConX(0));
4716   }
4717   // Use new acmp
4718   return NULL;
4719 }
4720 
4721 // Auxiliary method to support randomized stressing/fuzzing.
4722 //
4723 // This method can be called the arbitrary number of times, with current count
4724 // as the argument. The logic allows selecting a single candidate from the
4725 // running list of candidates as follows:
4726 //    int count = 0;
4727 //    Cand* selected = null;
4728 //    while(cand = cand->next()) {
4729 //      if (randomized_select(++count)) {
4730 //        selected = cand;
4731 //      }
4732 //    }
4733 //
4734 // Including count equalizes the chances any candidate is "selected".
4735 // This is useful when we don't have the complete list of candidates to choose
4736 // from uniformly. In this case, we need to adjust the randomicity of the
4737 // selection, or else we will end up biasing the selection towards the latter
4738 // candidates.
4739 //
4740 // Quick back-envelope calculation shows that for the list of n candidates
4741 // the equal probability for the candidate to persist as "best" can be
4742 // achieved by replacing it with "next" k-th candidate with the probability
4743 // of 1/k. It can be easily shown that by the end of the run, the
4744 // probability for any candidate is converged to 1/n, thus giving the
4745 // uniform distribution among all the candidates.
4746 //
4747 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4748 #define RANDOMIZED_DOMAIN_POW 29
4749 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4750 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4751 bool Compile::randomized_select(int count) {
4752   assert(count > 0, "only positive");
4753   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4754 }
4755 
4756 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4757 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4758 
4759 void NodeCloneInfo::dump() const {
4760   tty->print(" {%d:%d} ", idx(), gen());
4761 }
4762 
4763 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4764   uint64_t val = value(old->_idx);
4765   NodeCloneInfo cio(val);
4766   assert(val != 0, "old node should be in the map");
4767   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4768   insert(nnn->_idx, cin.get());
4769 #ifndef PRODUCT
4770   if (is_debug()) {
4771     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4772   }
4773 #endif
4774 }
4775 
4776 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4777   NodeCloneInfo cio(value(old->_idx));
4778   if (cio.get() == 0) {
4779     cio.set(old->_idx, 0);
4780     insert(old->_idx, cio.get());
4781 #ifndef PRODUCT
4782     if (is_debug()) {
4783       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4784     }
4785 #endif
4786   }
4787   clone(old, nnn, gen);
4788 }
4789 
4790 int CloneMap::max_gen() const {
4791   int g = 0;
4792   DictI di(_dict);
4793   for(; di.test(); ++di) {
4794     int t = gen(di._key);
4795     if (g < t) {
4796       g = t;
4797 #ifndef PRODUCT
4798       if (is_debug()) {
4799         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4800       }
4801 #endif
4802     }
4803   }
4804   return g;
4805 }
4806 
4807 void CloneMap::dump(node_idx_t key) const {
4808   uint64_t val = value(key);
4809   if (val != 0) {
4810     NodeCloneInfo ni(val);
4811     ni.dump();
4812   }
4813 }