< prev index next >

src/hotspot/share/opto/graphKit.cpp

Print this page




   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciUtilities.hpp"
  27 #include "compiler/compileLog.hpp"

  28 #include "gc/shared/barrierSet.hpp"
  29 #include "gc/shared/c2/barrierSetC2.hpp"
  30 #include "interpreter/interpreter.hpp"
  31 #include "memory/resourceArea.hpp"
  32 #include "opto/addnode.hpp"
  33 #include "opto/castnode.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/idealKit.hpp"
  37 #include "opto/intrinsicnode.hpp"
  38 #include "opto/locknode.hpp"
  39 #include "opto/machnode.hpp"

  40 #include "opto/opaquenode.hpp"
  41 #include "opto/parse.hpp"
  42 #include "opto/rootnode.hpp"
  43 #include "opto/runtime.hpp"

  44 #include "runtime/deoptimization.hpp"
  45 #include "runtime/sharedRuntime.hpp"
  46 
  47 //----------------------------GraphKit-----------------------------------------
  48 // Main utility constructor.
  49 GraphKit::GraphKit(JVMState* jvms)
  50   : Phase(Phase::Parser),
  51     _env(C->env()),
  52     _gvn(*C->initial_gvn()),
  53     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  54 {

  55   _exceptions = jvms->map()->next_exception();
  56   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  57   set_jvms(jvms);







  58 }
  59 
  60 // Private constructor for parser.
  61 GraphKit::GraphKit()
  62   : Phase(Phase::Parser),
  63     _env(C->env()),
  64     _gvn(*C->initial_gvn()),
  65     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  66 {
  67   _exceptions = NULL;
  68   set_map(NULL);
  69   debug_only(_sp = -99);
  70   debug_only(set_bci(-99));
  71 }
  72 
  73 
  74 
  75 //---------------------------clean_stack---------------------------------------
  76 // Clear away rubbish from the stack area of the JVM state.
  77 // This destroys any arguments that may be waiting on the stack.


 806           tty->print_cr("Zombie local %d: ", local);
 807           jvms->dump();
 808         }
 809         return false;
 810       }
 811     }
 812   }
 813   return true;
 814 }
 815 
 816 #endif //ASSERT
 817 
 818 // Helper function for enforcing certain bytecodes to reexecute if
 819 // deoptimization happens
 820 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 821   ciMethod* cur_method = jvms->method();
 822   int       cur_bci   = jvms->bci();
 823   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 824     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 825     return Interpreter::bytecode_should_reexecute(code) ||
 826            (is_anewarray && code == Bytecodes::_multianewarray);
 827     // Reexecute _multianewarray bytecode which was replaced with
 828     // sequence of [a]newarray. See Parse::do_multianewarray().
 829     //
 830     // Note: interpreter should not have it set since this optimization
 831     // is limited by dimensions and guarded by flag so in some cases
 832     // multianewarray() runtime calls will be generated and
 833     // the bytecode should not be reexecutes (stack will not be reset).
 834   } else
 835     return false;

 836 }
 837 
 838 // Helper function for adding JVMState and debug information to node
 839 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 840   // Add the safepoint edges to the call (or other safepoint).
 841 
 842   // Make sure dead locals are set to top.  This
 843   // should help register allocation time and cut down on the size
 844   // of the deoptimization information.
 845   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 846 
 847   // Walk the inline list to fill in the correct set of JVMState's
 848   // Also fill in the associated edges for each JVMState.
 849 
 850   // If the bytecode needs to be reexecuted we need to put
 851   // the arguments back on the stack.
 852   const bool should_reexecute = jvms()->should_reexecute();
 853   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 854 
 855   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to


1059       ciSignature* declared_signature = NULL;
1060       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1061       assert(declared_signature != NULL, "cannot be null");
1062       inputs   = declared_signature->arg_size_for_bc(code);
1063       int size = declared_signature->return_type()->size();
1064       depth = size - inputs;
1065     }
1066     break;
1067 
1068   case Bytecodes::_multianewarray:
1069     {
1070       ciBytecodeStream iter(method());
1071       iter.reset_to_bci(bci());
1072       iter.next();
1073       inputs = iter.get_dimensions();
1074       assert(rsize == 1, "");
1075       depth = rsize - inputs;
1076     }
1077     break;
1078 









1079   case Bytecodes::_ireturn:
1080   case Bytecodes::_lreturn:
1081   case Bytecodes::_freturn:
1082   case Bytecodes::_dreturn:
1083   case Bytecodes::_areturn:
1084     assert(rsize == -depth, "");
1085     inputs = rsize;
1086     break;
1087 
1088   case Bytecodes::_jsr:
1089   case Bytecodes::_jsr_w:
1090     inputs = 0;
1091     depth  = 1;                  // S.B. depth=1, not zero
1092     break;
1093 
1094   default:
1095     // bytecode produces a typed result
1096     inputs = rsize - depth;
1097     assert(inputs >= 0, "");
1098     break;


1184 // the incoming address with NULL casted away.  You are allowed to use the
1185 // not-null value only if you are control dependent on the test.
1186 #ifndef PRODUCT
1187 extern int explicit_null_checks_inserted,
1188            explicit_null_checks_elided;
1189 #endif
1190 Node* GraphKit::null_check_common(Node* value, BasicType type,
1191                                   // optional arguments for variations:
1192                                   bool assert_null,
1193                                   Node* *null_control,
1194                                   bool speculative) {
1195   assert(!assert_null || null_control == NULL, "not both at once");
1196   if (stopped())  return top();
1197   NOT_PRODUCT(explicit_null_checks_inserted++);
1198 
1199   // Construct NULL check
1200   Node *chk = NULL;
1201   switch(type) {
1202     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1203     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;

1204     case T_ARRAY  : // fall through
1205       type = T_OBJECT;  // simplify further tests
1206     case T_OBJECT : {
1207       const Type *t = _gvn.type( value );
1208 
1209       const TypeOopPtr* tp = t->isa_oopptr();
1210       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1211           // Only for do_null_check, not any of its siblings:
1212           && !assert_null && null_control == NULL) {
1213         // Usually, any field access or invocation on an unloaded oop type
1214         // will simply fail to link, since the statically linked class is
1215         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1216         // the static class is loaded but the sharper oop type is not.
1217         // Rather than checking for this obscure case in lots of places,
1218         // we simply observe that a null check on an unloaded class
1219         // will always be followed by a nonsense operation, so we
1220         // can just issue the uncommon trap here.
1221         // Our access to the unloaded class will only be correct
1222         // after it has been loaded and initialized, which requires
1223         // a trip through the interpreter.


1355   }
1356 
1357   if (assert_null) {
1358     // Cast obj to null on this path.
1359     replace_in_map(value, zerocon(type));
1360     return zerocon(type);
1361   }
1362 
1363   // Cast obj to not-null on this path, if there is no null_control.
1364   // (If there is a null_control, a non-null value may come back to haunt us.)
1365   if (type == T_OBJECT) {
1366     Node* cast = cast_not_null(value, false);
1367     if (null_control == NULL || (*null_control) == top())
1368       replace_in_map(value, cast);
1369     value = cast;
1370   }
1371 
1372   return value;
1373 }
1374 















1375 
1376 //------------------------------cast_not_null----------------------------------
1377 // Cast obj to not-null on this path
1378 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {



1379   const Type *t = _gvn.type(obj);
1380   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1381   // Object is already not-null?
1382   if( t == t_not_null ) return obj;
1383 
1384   Node *cast = new CastPPNode(obj,t_not_null);
1385   cast->init_req(0, control());
1386   cast = _gvn.transform( cast );
1387 
1388   // Scan for instances of 'obj' in the current JVM mapping.
1389   // These instances are known to be not-null after the test.
1390   if (do_replace_in_map)
1391     replace_in_map(obj, cast);
1392 
1393   return cast;                  // Return casted value
1394 }
1395 
1396 // Sometimes in intrinsics, we implicitly know an object is not null
1397 // (there's no actual null check) so we can cast it to not null. In
1398 // the course of optimizations, the input to the cast can become null.


1487                           int adr_idx,
1488                           MemNode::MemOrd mo,
1489                           LoadNode::ControlDependency control_dependency,
1490                           bool require_atomic_access,
1491                           bool unaligned,
1492                           bool mismatched,
1493                           bool unsafe) {
1494   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1495   const TypePtr* adr_type = NULL; // debug-mode-only argument
1496   debug_only(adr_type = C->get_adr_type(adr_idx));
1497   Node* mem = memory(adr_idx);
1498   Node* ld;
1499   if (require_atomic_access && bt == T_LONG) {
1500     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe);
1501   } else if (require_atomic_access && bt == T_DOUBLE) {
1502     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe);
1503   } else {
1504     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched, unsafe);
1505   }
1506   ld = _gvn.transform(ld);
1507   if (((bt == T_OBJECT) && C->do_escape_analysis()) || C->eliminate_boxing()) {

1508     // Improve graph before escape analysis and boxing elimination.
1509     record_for_igvn(ld);
1510   }
1511   return ld;
1512 }
1513 
1514 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1515                                 int adr_idx,
1516                                 MemNode::MemOrd mo,
1517                                 bool require_atomic_access,
1518                                 bool unaligned,
1519                                 bool mismatched,
1520                                 bool unsafe) {
1521   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1522   const TypePtr* adr_type = NULL;
1523   debug_only(adr_type = C->get_adr_type(adr_idx));
1524   Node *mem = memory(adr_idx);
1525   Node* st;
1526   if (require_atomic_access && bt == T_LONG) {
1527     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);


1538   }
1539   if (unsafe) {
1540     st->as_Store()->set_unsafe_access();
1541   }
1542   st = _gvn.transform(st);
1543   set_memory(st, adr_idx);
1544   // Back-to-back stores can only remove intermediate store with DU info
1545   // so push on worklist for optimizer.
1546   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1547     record_for_igvn(st);
1548 
1549   return st;
1550 }
1551 
1552 Node* GraphKit::access_store_at(Node* obj,
1553                                 Node* adr,
1554                                 const TypePtr* adr_type,
1555                                 Node* val,
1556                                 const Type* val_type,
1557                                 BasicType bt,
1558                                 DecoratorSet decorators) {

1559   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1560   // could be delayed during Parse (for example, in adjust_map_after_if()).
1561   // Execute transformation here to avoid barrier generation in such case.
1562   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1563     val = _gvn.makecon(TypePtr::NULL_PTR);
1564   }
1565 
1566   if (stopped()) {
1567     return top(); // Dead path ?
1568   }
1569 
1570   assert(val != NULL, "not dead path");




1571 
1572   C2AccessValuePtr addr(adr, adr_type);
1573   C2AccessValue value(val, val_type);
1574   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1575   if (access.is_raw()) {
1576     return _barrier_set->BarrierSetC2::store_at(access, value);
1577   } else {
1578     return _barrier_set->store_at(access, value);
1579   }
1580 }
1581 
1582 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1583                                Node* adr,   // actual adress to store val at
1584                                const TypePtr* adr_type,
1585                                const Type* val_type,
1586                                BasicType bt,
1587                                DecoratorSet decorators) {
1588   if (stopped()) {
1589     return top(); // Dead path ?
1590   }


1671   }
1672 }
1673 
1674 Node* GraphKit::access_atomic_add_at(Node* obj,
1675                                      Node* adr,
1676                                      const TypePtr* adr_type,
1677                                      int alias_idx,
1678                                      Node* new_val,
1679                                      const Type* value_type,
1680                                      BasicType bt,
1681                                      DecoratorSet decorators) {
1682   C2AccessValuePtr addr(adr, adr_type);
1683   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1684   if (access.is_raw()) {
1685     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1686   } else {
1687     return _barrier_set->atomic_add_at(access, new_val, value_type);
1688   }
1689 }
1690 
1691 void GraphKit::access_clone(Node* src, Node* dst, Node* size, bool is_array) {
1692   return _barrier_set->clone(this, src, dst, size, is_array);
1693 }
1694 
1695 Node* GraphKit::access_resolve(Node* n, DecoratorSet decorators) {
1696   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1697   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1698     decorators |= ACCESS_READ | ACCESS_WRITE;
1699   }
1700   return _barrier_set->resolve(this, n, decorators);
1701 }
1702 
1703 //-------------------------array_element_address-------------------------
1704 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1705                                       const TypeInt* sizetype, Node* ctrl) {
1706   uint shift  = exact_log2(type2aelembytes(elembt));





1707   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1708 
1709   // short-circuit a common case (saves lots of confusing waste motion)
1710   jint idx_con = find_int_con(idx, -1);
1711   if (idx_con >= 0) {
1712     intptr_t offset = header + ((intptr_t)idx_con << shift);
1713     return basic_plus_adr(ary, offset);
1714   }
1715 
1716   // must be correct type for alignment purposes
1717   Node* base  = basic_plus_adr(ary, header);
1718   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1719   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1720   return basic_plus_adr(ary, base, scale);
1721 }
1722 
1723 //-------------------------load_array_element-------------------------
1724 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1725   const Type* elemtype = arytype->elem();
1726   BasicType elembt = elemtype->array_element_basic_type();

1727   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1728   if (elembt == T_NARROWOOP) {
1729     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1730   }
1731   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1732   return ld;
1733 }
1734 
1735 //-------------------------set_arguments_for_java_call-------------------------
1736 // Arguments (pre-popped from the stack) are taken from the JVMS.
1737 void GraphKit::set_arguments_for_java_call(CallJavaNode* call) {
1738   // Add the call arguments:
1739   uint nargs = call->method()->arg_size();
1740   for (uint i = 0; i < nargs; i++) {
1741     Node* arg = argument(i);
1742     call->init_req(i + TypeFunc::Parms, arg);

































1743   }
1744 }
1745 
1746 //---------------------------set_edges_for_java_call---------------------------
1747 // Connect a newly created call into the current JVMS.
1748 // A return value node (if any) is returned from set_edges_for_java_call.
1749 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1750 
1751   // Add the predefined inputs:
1752   call->init_req( TypeFunc::Control, control() );
1753   call->init_req( TypeFunc::I_O    , i_o() );
1754   call->init_req( TypeFunc::Memory , reset_memory() );
1755   call->init_req( TypeFunc::FramePtr, frameptr() );
1756   call->init_req( TypeFunc::ReturnAdr, top() );
1757 
1758   add_safepoint_edges(call, must_throw);
1759 
1760   Node* xcall = _gvn.transform(call);
1761 
1762   if (xcall == top()) {
1763     set_control(top());
1764     return;
1765   }
1766   assert(xcall == call, "call identity is stable");
1767 
1768   // Re-use the current map to produce the result.
1769 
1770   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1771   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1772   set_all_memory_call(xcall, separate_io_proj);
1773 
1774   //return xcall;   // no need, caller already has it
1775 }
1776 
1777 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1778   if (stopped())  return top();  // maybe the call folded up?
1779 
1780   // Capture the return value, if any.
1781   Node* ret;
1782   if (call->method() == NULL ||
1783       call->method()->return_type()->basic_type() == T_VOID)
1784         ret = top();
1785   else  ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1786 
1787   // Note:  Since any out-of-line call can produce an exception,
1788   // we always insert an I_O projection from the call into the result.
1789 
1790   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1791 
1792   if (separate_io_proj) {
1793     // The caller requested separate projections be used by the fall
1794     // through and exceptional paths, so replace the projections for
1795     // the fall through path.
1796     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1797     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1798   }



















1799   return ret;
1800 }
1801 
1802 //--------------------set_predefined_input_for_runtime_call--------------------
1803 // Reading and setting the memory state is way conservative here.
1804 // The real problem is that I am not doing real Type analysis on memory,
1805 // so I cannot distinguish card mark stores from other stores.  Across a GC
1806 // point the Store Barrier and the card mark memory has to agree.  I cannot
1807 // have a card mark store and its barrier split across the GC point from
1808 // either above or below.  Here I get that to happen by reading ALL of memory.
1809 // A better answer would be to separate out card marks from other memory.
1810 // For now, return the input memory state, so that it can be reused
1811 // after the call, if this call has restricted memory effects.
1812 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1813   // Set fixed predefined input arguments
1814   Node* memory = reset_memory();
1815   Node* m = narrow_mem == NULL ? memory : narrow_mem;
1816   call->init_req( TypeFunc::Control,   control()  );
1817   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1818   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs


1857     // This is not a "slow path" call; all memory comes from the call.
1858     set_all_memory_call(call);
1859   }
1860 }
1861 
1862 
1863 // Replace the call with the current state of the kit.
1864 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1865   JVMState* ejvms = NULL;
1866   if (has_exceptions()) {
1867     ejvms = transfer_exceptions_into_jvms();
1868   }
1869 
1870   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1871   ReplacedNodes replaced_nodes_exception;
1872   Node* ex_ctl = top();
1873 
1874   SafePointNode* final_state = stop();
1875 
1876   // Find all the needed outputs of this call
1877   CallProjections callprojs;
1878   call->extract_projections(&callprojs, true);
1879 
1880   Node* init_mem = call->in(TypeFunc::Memory);
1881   Node* final_mem = final_state->in(TypeFunc::Memory);
1882   Node* final_ctl = final_state->in(TypeFunc::Control);
1883   Node* final_io = final_state->in(TypeFunc::I_O);
1884 
1885   // Replace all the old call edges with the edges from the inlining result
1886   if (callprojs.fallthrough_catchproj != NULL) {
1887     C->gvn_replace_by(callprojs.fallthrough_catchproj, final_ctl);
1888   }
1889   if (callprojs.fallthrough_memproj != NULL) {
1890     if (final_mem->is_MergeMem()) {
1891       // Parser's exits MergeMem was not transformed but may be optimized
1892       final_mem = _gvn.transform(final_mem);
1893     }
1894     C->gvn_replace_by(callprojs.fallthrough_memproj,   final_mem);
1895   }
1896   if (callprojs.fallthrough_ioproj != NULL) {
1897     C->gvn_replace_by(callprojs.fallthrough_ioproj,    final_io);
1898   }
1899 
1900   // Replace the result with the new result if it exists and is used
1901   if (callprojs.resproj != NULL && result != NULL) {
1902     C->gvn_replace_by(callprojs.resproj, result);

1903   }
1904 
1905   if (ejvms == NULL) {
1906     // No exception edges to simply kill off those paths
1907     if (callprojs.catchall_catchproj != NULL) {
1908       C->gvn_replace_by(callprojs.catchall_catchproj, C->top());
1909     }
1910     if (callprojs.catchall_memproj != NULL) {
1911       C->gvn_replace_by(callprojs.catchall_memproj,   C->top());
1912     }
1913     if (callprojs.catchall_ioproj != NULL) {
1914       C->gvn_replace_by(callprojs.catchall_ioproj,    C->top());
1915     }
1916     // Replace the old exception object with top
1917     if (callprojs.exobj != NULL) {
1918       C->gvn_replace_by(callprojs.exobj, C->top());
1919     }
1920   } else {
1921     GraphKit ekit(ejvms);
1922 
1923     // Load my combined exception state into the kit, with all phis transformed:
1924     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
1925     replaced_nodes_exception = ex_map->replaced_nodes();
1926 
1927     Node* ex_oop = ekit.use_exception_state(ex_map);
1928 
1929     if (callprojs.catchall_catchproj != NULL) {
1930       C->gvn_replace_by(callprojs.catchall_catchproj, ekit.control());
1931       ex_ctl = ekit.control();
1932     }
1933     if (callprojs.catchall_memproj != NULL) {
1934       C->gvn_replace_by(callprojs.catchall_memproj,   ekit.reset_memory());
1935     }
1936     if (callprojs.catchall_ioproj != NULL) {
1937       C->gvn_replace_by(callprojs.catchall_ioproj,    ekit.i_o());
1938     }
1939 
1940     // Replace the old exception object with the newly created one
1941     if (callprojs.exobj != NULL) {
1942       C->gvn_replace_by(callprojs.exobj, ex_oop);
1943     }
1944   }
1945 
1946   // Disconnect the call from the graph
1947   call->disconnect_inputs(NULL, C);
1948   C->gvn_replace_by(call, C->top());
1949 
1950   // Clean up any MergeMems that feed other MergeMems since the
1951   // optimizer doesn't like that.
1952   if (final_mem->is_MergeMem()) {
1953     Node_List wl;
1954     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
1955       Node* m = i.get();
1956       if (m->is_MergeMem() && !wl.contains(m)) {
1957         wl.push(m);
1958       }
1959     }
1960     while (wl.size()  > 0) {
1961       _gvn.transform(wl.pop());
1962     }
1963   }
1964 
1965   if (callprojs.fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
1966     replaced_nodes.apply(C, final_ctl);
1967   }
1968   if (!ex_ctl->is_top() && do_replaced_nodes) {
1969     replaced_nodes_exception.apply(C, ex_ctl);
1970   }
1971 }
1972 
1973 
1974 //------------------------------increment_counter------------------------------
1975 // for statistics: increment a VM counter by 1
1976 
1977 void GraphKit::increment_counter(address counter_addr) {
1978   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
1979   increment_counter(adr1);
1980 }
1981 
1982 void GraphKit::increment_counter(Node* counter_addr) {
1983   int adr_type = Compile::AliasIdxRaw;
1984   Node* ctrl = control();
1985   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);


2122 // it does not require card marks.
2123 Node* GraphKit::just_allocated_object(Node* current_control) {
2124   Node* ctrl = current_control;
2125   // Object::<init> is invoked after allocation, most of invoke nodes
2126   // will be reduced, but a region node is kept in parse time, we check
2127   // the pattern and skip the region node if it degraded to a copy.
2128   if (ctrl != NULL && ctrl->is_Region() && ctrl->req() == 2 &&
2129       ctrl->as_Region()->is_copy()) {
2130     ctrl = ctrl->as_Region()->is_copy();
2131   }
2132   if (C->recent_alloc_ctl() == ctrl) {
2133    return C->recent_alloc_obj();
2134   }
2135   return NULL;
2136 }
2137 
2138 
2139 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2140   // (Note:  TypeFunc::make has a cache that makes this fast.)
2141   const TypeFunc* tf    = TypeFunc::make(dest_method);
2142   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2143   for (int j = 0; j < nargs; j++) {
2144     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2145     if( targ->basic_type() == T_DOUBLE ) {
2146       // If any parameters are doubles, they must be rounded before
2147       // the call, dstore_rounding does gvn.transform
2148       Node *arg = argument(j);
2149       arg = dstore_rounding(arg);
2150       set_argument(j, arg);
2151     }
2152   }
2153 }
2154 
2155 /**
2156  * Record profiling data exact_kls for Node n with the type system so
2157  * that it can propagate it (speculation)
2158  *
2159  * @param n          node that the type applies to
2160  * @param exact_kls  type from profiling
2161  * @param maybe_null did profiling see null?
2162  *
2163  * @return           node with improved type
2164  */


2181     speculative = speculative->with_inline_depth(jvms()->depth());
2182   } else if (current_type->would_improve_ptr(ptr_kind)) {
2183     // Profiling report that null was never seen so we can change the
2184     // speculative type to non null ptr.
2185     if (ptr_kind == ProfileAlwaysNull) {
2186       speculative = TypePtr::NULL_PTR;
2187     } else {
2188       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2189       const TypePtr* ptr = TypePtr::NOTNULL;
2190       if (speculative != NULL) {
2191         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2192       } else {
2193         speculative = ptr;
2194       }
2195     }
2196   }
2197 
2198   if (speculative != current_type->speculative()) {
2199     // Build a type with a speculative type (what we think we know
2200     // about the type but will need a guard when we use it)
2201     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::OffsetBot, TypeOopPtr::InstanceBot, speculative);
2202     // We're changing the type, we need a new CheckCast node to carry
2203     // the new type. The new type depends on the control: what
2204     // profiling tells us is only valid from here as far as we can
2205     // tell.
2206     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2207     cast = _gvn.transform(cast);
2208     replace_in_map(n, cast);
2209     n = cast;
2210   }
2211 
2212   return n;
2213 }
2214 
2215 /**
2216  * Record profiling data from receiver profiling at an invoke with the
2217  * type system so that it can propagate it (speculation)
2218  *
2219  * @param n  receiver node
2220  *
2221  * @return   node with improved type


2246         }
2247         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2248       }
2249     }
2250   }
2251   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2252 }
2253 
2254 /**
2255  * Record profiling data from argument profiling at an invoke with the
2256  * type system so that it can propagate it (speculation)
2257  *
2258  * @param dest_method  target method for the call
2259  * @param bc           what invoke bytecode is this?
2260  */
2261 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2262   if (!UseTypeSpeculation) {
2263     return;
2264   }
2265   const TypeFunc* tf    = TypeFunc::make(dest_method);
2266   int             nargs = tf->domain()->cnt() - TypeFunc::Parms;
2267   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2268   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2269     const Type *targ = tf->domain()->field_at(j + TypeFunc::Parms);
2270     if (targ->basic_type() == T_OBJECT || targ->basic_type() == T_ARRAY) {
2271       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2272       ciKlass* better_type = NULL;
2273       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2274         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2275       }
2276       i++;
2277     }
2278   }
2279 }
2280 
2281 /**
2282  * Record profiling data from parameter profiling at an invoke with
2283  * the type system so that it can propagate it (speculation)
2284  */
2285 void GraphKit::record_profiled_parameters_for_speculation() {
2286   if (!UseTypeSpeculation) {
2287     return;
2288   }
2289   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2290     if (_gvn.type(local(i))->isa_oopptr()) {


2763   // The decision to inline or out-of-line this final check is platform
2764   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2765   Node* psc = gvn->transform(
2766     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2767 
2768   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2769   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2770   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2771 
2772   // Return false path; set default control to true path.
2773   *ctrl = gvn->transform(r_ok_subtype);
2774   return gvn->transform(r_not_subtype);
2775 }
2776 
2777 // Profile-driven exact type check:
2778 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2779                                     float prob,
2780                                     Node* *casted_receiver) {
2781   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2782   Node* recv_klass = load_object_klass(receiver);
2783   Node* want_klass = makecon(tklass);
2784   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass) );
2785   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2786   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2787   set_control( _gvn.transform( new IfTrueNode (iff) ));
2788   Node* fail = _gvn.transform( new IfFalseNode(iff) );
2789 
2790   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2791   assert(recv_xtype->klass_is_exact(), "");
2792 
2793   // Subsume downstream occurrences of receiver with a cast to
2794   // recv_xtype, since now we know what the type will be.
2795   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2796   (*casted_receiver) = _gvn.transform(cast);






2797   // (User must make the replace_in_map call.)
2798 
2799   return fail;
2800 }
2801 











2802 //------------------------------subtype_check_receiver-------------------------
2803 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2804                                        Node** casted_receiver) {
2805   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2806   Node* recv_klass = load_object_klass(receiver);
2807   Node* want_klass = makecon(tklass);
2808 
2809   Node* slow_ctl = gen_subtype_check(recv_klass, want_klass);
2810 
2811   // Cast receiver after successful check
2812   const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2813   Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2814   (*casted_receiver) = _gvn.transform(cast);
2815 
2816   return slow_ctl;
2817 }
2818 
2819 //------------------------------seems_never_null-------------------------------
2820 // Use null_seen information if it is available from the profile.
2821 // If we see an unexpected null at a type check we record it and force a


2952 // and the reflective instance-of call.
2953 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
2954   kill_dead_locals();           // Benefit all the uncommon traps
2955   assert( !stopped(), "dead parse path should be checked in callers" );
2956   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
2957          "must check for not-null not-dead klass in callers");
2958 
2959   // Make the merge point
2960   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
2961   RegionNode* region = new RegionNode(PATH_LIMIT);
2962   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
2963   C->set_has_split_ifs(true); // Has chance for split-if optimization
2964 
2965   ciProfileData* data = NULL;
2966   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
2967     data = method()->method_data()->bci_to_data(bci());
2968   }
2969   bool speculative_not_null = false;
2970   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
2971                          && seems_never_null(obj, data, speculative_not_null));

2972 
2973   // Null check; get casted pointer; set region slot 3
2974   Node* null_ctl = top();
2975   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
2976 
2977   // If not_null_obj is dead, only null-path is taken
2978   if (stopped()) {              // Doing instance-of on a NULL?
2979     set_control(null_ctl);
2980     return intcon(0);
2981   }
2982   region->init_req(_null_path, null_ctl);
2983   phi   ->init_req(_null_path, intcon(0)); // Set null path value
2984   if (null_ctl == top()) {
2985     // Do this eagerly, so that pattern matches like is_diamond_phi
2986     // will work even during parsing.
2987     assert(_null_path == PATH_LIMIT-1, "delete last");
2988     region->del_req(_null_path);
2989     phi   ->del_req(_null_path);
2990   }
2991 
2992   // Do we know the type check always succeed?

2993   bool known_statically = false;
2994   if (_gvn.type(superklass)->singleton()) {
2995     ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
2996     ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
2997     if (subk != NULL && subk->is_loaded()) {
2998       int static_res = C->static_subtype_check(superk, subk);
2999       known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3000     }
3001   }
3002 
3003   if (!known_statically) {
3004     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3005     // We may not have profiling here or it may not help us. If we
3006     // have a speculative type use it to perform an exact cast.
3007     ciKlass* spec_obj_type = obj_type->speculative_type();
3008     if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
3009       Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
3010       if (stopped()) {            // Profile disagrees with this path.
3011         set_control(null_ctl);    // Null is the only remaining possibility.
3012         return intcon(0);
3013       }
3014       if (cast_obj != NULL) {


3015         not_null_obj = cast_obj;


3016       }
3017     }
3018   }
3019 
3020   // Load the object's klass
3021   Node* obj_klass = load_object_klass(not_null_obj);





3022 
3023   // Generate the subtype check
3024   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
3025 
3026   // Plug in the success path to the general merge in slot 1.
3027   region->init_req(_obj_path, control());
3028   phi   ->init_req(_obj_path, intcon(1));
3029 
3030   // Plug in the failing path to the general merge in slot 2.
3031   region->init_req(_fail_path, not_subtype_ctrl);
3032   phi   ->init_req(_fail_path, intcon(0));
3033 
3034   // Return final merged results
3035   set_control( _gvn.transform(region) );
3036   record_for_igvn(region);
3037 
3038   // If we know the type check always succeeds then we don't use the
3039   // profiling data at this bytecode. Don't lose it, feed it to the
3040   // type system as a speculative type.
3041   if (safe_for_replace) {
3042     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3043     replace_in_map(obj, casted_obj);
3044   }
3045 
3046   return _gvn.transform(phi);
3047 }
3048 
3049 //-------------------------------gen_checkcast---------------------------------
3050 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3051 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3052 // uncommon-trap paths work.  Adjust stack after this call.
3053 // If failure_control is supplied and not null, it is filled in with
3054 // the control edge for the cast failure.  Otherwise, an appropriate
3055 // uncommon trap or exception is thrown.
3056 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass,
3057                               Node* *failure_control) {
3058   kill_dead_locals();           // Benefit all the uncommon traps
3059   const TypeKlassPtr *tk = _gvn.type(superklass)->is_klassptr();
3060   const Type *toop = TypeOopPtr::make_from_klass(tk->klass());


3061 
3062   // Fast cutout:  Check the case that the cast is vacuously true.
3063   // This detects the common cases where the test will short-circuit
3064   // away completely.  We do this before we perform the null check,
3065   // because if the test is going to turn into zero code, we don't
3066   // want a residual null check left around.  (Causes a slowdown,
3067   // for example, in some objArray manipulations, such as a[i]=a[j].)
3068   if (tk->singleton()) {




3069     const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3070     if (objtp != NULL && objtp->klass() != NULL) {
3071       switch (C->static_subtype_check(tk->klass(), objtp->klass())) {




3072       case Compile::SSC_always_true:
3073         // If we know the type check always succeed then we don't use
3074         // the profiling data at this bytecode. Don't lose it, feed it
3075         // to the type system as a speculative type.
3076         return record_profiled_receiver_for_speculation(obj);









3077       case Compile::SSC_always_false:








3078         // It needs a null check because a null will *pass* the cast check.
3079         // A non-null value will always produce an exception.
3080         return null_assert(obj);
3081       }
3082     }
3083   }

3084 
3085   ciProfileData* data = NULL;
3086   bool safe_for_replace = false;
3087   if (failure_control == NULL) {        // use MDO in regular case only
3088     assert(java_bc() == Bytecodes::_aastore ||
3089            java_bc() == Bytecodes::_checkcast,
3090            "interpreter profiles type checks only for these BCs");
3091     data = method()->method_data()->bci_to_data(bci());
3092     safe_for_replace = true;
3093   }
3094 
3095   // Make the merge point
3096   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3097   RegionNode* region = new RegionNode(PATH_LIMIT);
3098   Node*       phi    = new PhiNode(region, toop);
3099   C->set_has_split_ifs(true); // Has chance for split-if optimization
3100 
3101   // Use null-cast information if it is available
3102   bool speculative_not_null = false;
3103   bool never_see_null = ((failure_control == NULL)  // regular case only
3104                          && seems_never_null(obj, data, speculative_not_null));
3105 
3106   // Null check; get casted pointer; set region slot 3
3107   Node* null_ctl = top();
3108   Node* not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);







3109 
3110   // If not_null_obj is dead, only null-path is taken
3111   if (stopped()) {              // Doing instance-of on a NULL?
3112     set_control(null_ctl);
3113     return null();
3114   }
3115   region->init_req(_null_path, null_ctl);
3116   phi   ->init_req(_null_path, null());  // Set null path value
3117   if (null_ctl == top()) {
3118     // Do this eagerly, so that pattern matches like is_diamond_phi
3119     // will work even during parsing.
3120     assert(_null_path == PATH_LIMIT-1, "delete last");
3121     region->del_req(_null_path);
3122     phi   ->del_req(_null_path);
3123   }
3124 
3125   Node* cast_obj = NULL;
3126   if (tk->klass_is_exact()) {
3127     // The following optimization tries to statically cast the speculative type of the object
3128     // (for example obtained during profiling) to the type of the superklass and then do a
3129     // dynamic check that the type of the object is what we expect. To work correctly
3130     // for checkcast and aastore the type of superklass should be exact.
3131     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3132     // We may not have profiling here or it may not help us. If we have
3133     // a speculative type use it to perform an exact cast.
3134     ciKlass* spec_obj_type = obj_type->speculative_type();
3135     if (spec_obj_type != NULL || data != NULL) {
3136       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);







3137       if (cast_obj != NULL) {
3138         if (failure_control != NULL) // failure is now impossible
3139           (*failure_control) = top();
3140         // adjust the type of the phi to the exact klass:
3141         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3142       }
3143     }
3144   }
3145 
3146   if (cast_obj == NULL) {
3147     // Load the object's klass
3148     Node* obj_klass = load_object_klass(not_null_obj);





3149 
3150     // Generate the subtype check
3151     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3152 
3153     // Plug in success path into the merge
3154     cast_obj = _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3155     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3156     if (failure_control == NULL) {
3157       if (not_subtype_ctrl != top()) { // If failure is possible
3158         PreserveJVMState pjvms(this);
3159         set_control(not_subtype_ctrl);
3160         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3161       }
3162     } else {
3163       (*failure_control) = not_subtype_ctrl;
3164     }
3165   }
3166 
3167   region->init_req(_obj_path, control());
3168   phi   ->init_req(_obj_path, cast_obj);
3169 
3170   // A merge of NULL or Casted-NotNull obj
3171   Node* res = _gvn.transform(phi);
3172 
3173   // Note I do NOT always 'replace_in_map(obj,result)' here.
3174   //  if( tk->klass()->can_be_primary_super()  )
3175     // This means that if I successfully store an Object into an array-of-String
3176     // I 'forget' that the Object is really now known to be a String.  I have to
3177     // do this because we don't have true union types for interfaces - if I store
3178     // a Baz into an array-of-Interface and then tell the optimizer it's an
3179     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3180     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3181   //  replace_in_map( obj, res );
3182 
3183   // Return final merged results
3184   set_control( _gvn.transform(region) );
3185   record_for_igvn(region);
3186 
3187   return record_profiled_receiver_for_speculation(res);

















































































3188 }
3189 














3190 //------------------------------next_monitor-----------------------------------
3191 // What number should be given to the next monitor?
3192 int GraphKit::next_monitor() {
3193   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3194   int next = current + C->sync_stack_slots();
3195   // Keep the toplevel high water mark current:
3196   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3197   return current;
3198 }
3199 
3200 //------------------------------insert_mem_bar---------------------------------
3201 // Memory barrier to avoid floating things around
3202 // The membar serves as a pinch point between both control and all memory slices.
3203 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3204   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3205   mb->init_req(TypeFunc::Control, control());
3206   mb->init_req(TypeFunc::Memory,  reset_memory());
3207   Node* membar = _gvn.transform(mb);
3208   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3209   set_all_memory_call(membar);


3235   }
3236   Node* membar = _gvn.transform(mb);
3237   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3238   if (alias_idx == Compile::AliasIdxBot) {
3239     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3240   } else {
3241     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3242   }
3243   return membar;
3244 }
3245 
3246 //------------------------------shared_lock------------------------------------
3247 // Emit locking code.
3248 FastLockNode* GraphKit::shared_lock(Node* obj) {
3249   // bci is either a monitorenter bc or InvocationEntryBci
3250   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3251   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3252 
3253   if( !GenerateSynchronizationCode )
3254     return NULL;                // Not locking things?







3255   if (stopped())                // Dead monitor?
3256     return NULL;
3257 
3258   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3259 
3260   obj = access_resolve(obj, ACCESS_READ | ACCESS_WRITE);
3261 
3262   // Box the stack location
3263   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3264   Node* mem = reset_memory();
3265 
3266   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3267   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3268     // Create the counters for this fast lock.
3269     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3270   }
3271 
3272   // Create the rtm counters for this fast lock if needed.
3273   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3274 


3309   }
3310 #endif
3311 
3312   return flock;
3313 }
3314 
3315 
3316 //------------------------------shared_unlock----------------------------------
3317 // Emit unlocking code.
3318 void GraphKit::shared_unlock(Node* box, Node* obj) {
3319   // bci is either a monitorenter bc or InvocationEntryBci
3320   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3321   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3322 
3323   if( !GenerateSynchronizationCode )
3324     return;
3325   if (stopped()) {               // Dead monitor?
3326     map()->pop_monitor();        // Kill monitor from debug info
3327     return;
3328   }

3329 
3330   // Memory barrier to avoid floating things down past the locked region
3331   insert_mem_bar(Op_MemBarReleaseLock);
3332 
3333   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3334   UnlockNode *unlock = new UnlockNode(C, tf);
3335 #ifdef ASSERT
3336   unlock->set_dbg_jvms(sync_jvms());
3337 #endif
3338   uint raw_idx = Compile::AliasIdxRaw;
3339   unlock->init_req( TypeFunc::Control, control() );
3340   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3341   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3342   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3343   unlock->init_req( TypeFunc::ReturnAdr, top() );
3344 
3345   unlock->init_req(TypeFunc::Parms + 0, obj);
3346   unlock->init_req(TypeFunc::Parms + 1, box);
3347   unlock = _gvn.transform(unlock)->as_Unlock();
3348 
3349   Node* mem = reset_memory();
3350 
3351   // unlock has no side-effects, sets few values
3352   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3353 
3354   // Kill monitor from debug info
3355   map()->pop_monitor( );
3356 }
3357 
3358 //-------------------------------get_layout_helper-----------------------------
3359 // If the given klass is a constant or known to be an array,
3360 // fetch the constant layout helper value into constant_value
3361 // and return (Node*)NULL.  Otherwise, load the non-constant
3362 // layout helper value, and return the node which represents it.
3363 // This two-faced routine is useful because allocation sites
3364 // almost always feature constant types.
3365 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3366   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3367   if (!StressReflectiveCode && inst_klass != NULL) {
3368     ciKlass* klass = inst_klass->klass();

3369     bool    xklass = inst_klass->klass_is_exact();
3370     if (xklass || klass->is_array_klass()) {





3371       jint lhelper = klass->layout_helper();
3372       if (lhelper != Klass::_lh_neutral_value) {
3373         constant_value = lhelper;
3374         return (Node*) NULL;
3375       }
3376     }
3377   }
3378   constant_value = Klass::_lh_neutral_value;  // put in a known value
3379   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3380   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3381 }
3382 
3383 // We just put in an allocate/initialize with a big raw-memory effect.
3384 // Hook selected additional alias categories on the initialization.
3385 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3386                                 MergeMemNode* init_in_merge,
3387                                 Node* init_out_raw) {
3388   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3389   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3390 


3412 
3413   // a normal slow-call doesn't change i_o, but an allocation does
3414   // we create a separate i_o projection for the normal control path
3415   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3416   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3417 
3418   // put in an initialization barrier
3419   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3420                                                  rawoop)->as_Initialize();
3421   assert(alloc->initialization() == init,  "2-way macro link must work");
3422   assert(init ->allocation()     == alloc, "2-way macro link must work");
3423   {
3424     // Extract memory strands which may participate in the new object's
3425     // initialization, and source them from the new InitializeNode.
3426     // This will allow us to observe initializations when they occur,
3427     // and link them properly (as a group) to the InitializeNode.
3428     assert(init->in(InitializeNode::Memory) == malloc, "");
3429     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3430     init->set_req(InitializeNode::Memory, minit_in);
3431     record_for_igvn(minit_in); // fold it up later, if possible

3432     Node* minit_out = memory(rawidx);
3433     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3434     // Add an edge in the MergeMem for the header fields so an access
3435     // to one of those has correct memory state
3436     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3437     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3438     if (oop_type->isa_aryptr()) {














3439       const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3440       int            elemidx  = C->get_alias_index(telemref);
3441       hook_memory_on_init(*this, elemidx, minit_in, minit_out);

3442     } else if (oop_type->isa_instptr()) {

3443       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3444       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3445         ciField* field = ik->nonstatic_field_at(i);
3446         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3447           continue;  // do not bother to track really large numbers of fields
3448         // Find (or create) the alias category for this field:
3449         int fieldidx = C->alias_type(field)->index();
3450         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3451       }
3452     }
3453   }
3454 
3455   // Cast raw oop to the real thing...
3456   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3457   javaoop = _gvn.transform(javaoop);
3458   C->set_recent_alloc(control(), javaoop);
3459   assert(just_allocated_object(control()) == javaoop, "just allocated");
3460 
3461 #ifdef ASSERT
3462   { // Verify that the AllocateNode::Ideal_allocation recognizers work:


3473       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3474     }
3475   }
3476 #endif //ASSERT
3477 
3478   return javaoop;
3479 }
3480 
3481 //---------------------------new_instance--------------------------------------
3482 // This routine takes a klass_node which may be constant (for a static type)
3483 // or may be non-constant (for reflective code).  It will work equally well
3484 // for either, and the graph will fold nicely if the optimizer later reduces
3485 // the type to a constant.
3486 // The optional arguments are for specialized use by intrinsics:
3487 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3488 //  - If 'return_size_val', report the the total object size to the caller.
3489 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3490 Node* GraphKit::new_instance(Node* klass_node,
3491                              Node* extra_slow_test,
3492                              Node* *return_size_val,
3493                              bool deoptimize_on_exception) {

3494   // Compute size in doublewords
3495   // The size is always an integral number of doublewords, represented
3496   // as a positive bytewise size stored in the klass's layout_helper.
3497   // The layout_helper also encodes (in a low bit) the need for a slow path.
3498   jint  layout_con = Klass::_lh_neutral_value;
3499   Node* layout_val = get_layout_helper(klass_node, layout_con);
3500   int   layout_is_con = (layout_val == NULL);
3501 
3502   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3503   // Generate the initial go-slow test.  It's either ALWAYS (return a
3504   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3505   // case) a computed value derived from the layout_helper.
3506   Node* initial_slow_test = NULL;
3507   if (layout_is_con) {
3508     assert(!StressReflectiveCode, "stress mode does not use these paths");
3509     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3510     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3511   } else {   // reflective case
3512     // This reflective path is used by Unsafe.allocateInstance.
3513     // (It may be stress-tested by specifying StressReflectiveCode.)
3514     // Basically, we want to get into the VM is there's an illegal argument.
3515     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3516     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3517     if (extra_slow_test != intcon(0)) {
3518       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3519     }
3520     // (Macro-expander will further convert this to a Bool, if necessary.)


3531 
3532     // Clear the low bits to extract layout_helper_size_in_bytes:
3533     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3534     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3535     size = _gvn.transform( new AndXNode(size, mask) );
3536   }
3537   if (return_size_val != NULL) {
3538     (*return_size_val) = size;
3539   }
3540 
3541   // This is a precise notnull oop of the klass.
3542   // (Actually, it need not be precise if this is a reflective allocation.)
3543   // It's what we cast the result to.
3544   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3545   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3546   const TypeOopPtr* oop_type = tklass->as_instance_type();
3547 
3548   // Now generate allocation code
3549 
3550   // The entire memory state is needed for slow path of the allocation
3551   // since GC and deoptimization can happened.
3552   Node *mem = reset_memory();
3553   set_all_memory(mem); // Create new memory state
3554 
3555   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3556                                          control(), mem, i_o(),
3557                                          size, klass_node,
3558                                          initial_slow_test);
3559 
3560   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3561 }
3562 








3563 //-------------------------------new_array-------------------------------------
3564 // helper for both newarray and anewarray
3565 // The 'length' parameter is (obviously) the length of the array.
3566 // See comments on new_instance for the meaning of the other arguments.
3567 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3568                           Node* length,         // number of array elements
3569                           int   nargs,          // number of arguments to push back for uncommon trap
3570                           Node* *return_size_val,
3571                           bool deoptimize_on_exception) {
3572   jint  layout_con = Klass::_lh_neutral_value;
3573   Node* layout_val = get_layout_helper(klass_node, layout_con);
3574   int   layout_is_con = (layout_val == NULL);
3575 
3576   if (!layout_is_con && !StressReflectiveCode &&
3577       !too_many_traps(Deoptimization::Reason_class_check)) {
3578     // This is a reflective array creation site.
3579     // Optimistically assume that it is a subtype of Object[],
3580     // so that we can fold up all the address arithmetic.
3581     layout_con = Klass::array_layout_helper(T_OBJECT);
3582     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3583     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3584     { BuildCutout unless(this, bol_lh, PROB_MAX);
3585       inc_sp(nargs);
3586       uncommon_trap(Deoptimization::Reason_class_check,
3587                     Deoptimization::Action_maybe_recompile);
3588     }
3589     layout_val = NULL;
3590     layout_is_con = true;
3591   }
3592 
3593   // Generate the initial go-slow test.  Make sure we do not overflow
3594   // if length is huge (near 2Gig) or negative!  We do not need
3595   // exact double-words here, just a close approximation of needed
3596   // double-words.  We can't add any offset or rounding bits, lest we
3597   // take a size -1 of bytes and make it positive.  Use an unsigned
3598   // compare, so negative sizes look hugely positive.
3599   int fast_size_limit = FastAllocateSizeLimit;
3600   if (layout_is_con) {
3601     assert(!StressReflectiveCode, "stress mode does not use these paths");
3602     // Increase the size limit if we have exact knowledge of array type.
3603     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3604     fast_size_limit <<= (LogBytesPerLong - log2_esize);
3605   }
3606 
3607   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3608   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3609 
3610   // --- Size Computation ---
3611   // array_size = round_to_heap(array_header + (length << elem_shift));
3612   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3613   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3614   // The rounding mask is strength-reduced, if possible.
3615   int round_mask = MinObjAlignmentInBytes - 1;
3616   Node* header_size = NULL;
3617   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3618   // (T_BYTE has the weakest alignment and size restrictions...)
3619   if (layout_is_con) {
3620     int       hsize  = Klass::layout_helper_header_size(layout_con);
3621     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3622     BasicType etype  = Klass::layout_helper_element_type(layout_con);

3623     if ((round_mask & ~right_n_bits(eshift)) == 0)
3624       round_mask = 0;  // strength-reduce it if it goes away completely
3625     assert((hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3626     assert(header_size_min <= hsize, "generic minimum is smallest");
3627     header_size_min = hsize;
3628     header_size = intcon(hsize + round_mask);
3629   } else {
3630     Node* hss   = intcon(Klass::_lh_header_size_shift);
3631     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3632     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3633     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3634     Node* mask  = intcon(round_mask);
3635     header_size = _gvn.transform( new AddINode(hsize, mask) );
3636   }
3637 
3638   Node* elem_shift = NULL;
3639   if (layout_is_con) {
3640     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3641     if (eshift != 0)
3642       elem_shift = intcon(eshift);
3643   } else {
3644     // There is no need to mask or shift this value.
3645     // The semantics of LShiftINode include an implicit mask to 0x1F.


3689   // places, one where the length is sharply limited, and the other
3690   // after a successful allocation.
3691   Node* abody = lengthx;
3692   if (elem_shift != NULL)
3693     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3694   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3695   if (round_mask != 0) {
3696     Node* mask = MakeConX(~round_mask);
3697     size       = _gvn.transform( new AndXNode(size, mask) );
3698   }
3699   // else if round_mask == 0, the size computation is self-rounding
3700 
3701   if (return_size_val != NULL) {
3702     // This is the size
3703     (*return_size_val) = size;
3704   }
3705 
3706   // Now generate allocation code
3707 
3708   // The entire memory state is needed for slow path of the allocation
3709   // since GC and deoptimization can happened.
3710   Node *mem = reset_memory();
3711   set_all_memory(mem); // Create new memory state
3712 
3713   if (initial_slow_test->is_Bool()) {
3714     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
3715     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
3716   }
3717 









































































3718   // Create the AllocateArrayNode and its result projections
3719   AllocateArrayNode* alloc
3720     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
3721                             control(), mem, i_o(),
3722                             size, klass_node,
3723                             initial_slow_test,
3724                             length);

3725 
3726   // Cast to correct type.  Note that the klass_node may be constant or not,
3727   // and in the latter case the actual array type will be inexact also.
3728   // (This happens via a non-constant argument to inline_native_newArray.)
3729   // In any case, the value of klass_node provides the desired array type.
3730   const TypeInt* length_type = _gvn.find_int_type(length);
3731   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
3732   if (ary_type->isa_aryptr() && length_type != NULL) {
3733     // Try to get a better type than POS for the size
3734     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
3735   }
3736 
3737   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
3738 
3739   // Cast length on remaining path to be as narrow as possible
3740   if (map()->find_edge(length) >= 0) {
3741     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
3742     if (ccast != length) {
3743       _gvn.set_type_bottom(ccast);
3744       record_for_igvn(ccast);
3745       replace_in_map(length, ccast);
3746     }
3747   }
3748 
3749   return javaoop;
3750 }
3751 


3866   set_all_memory(ideal.merged_memory());
3867   set_i_o(ideal.i_o());
3868   set_control(ideal.ctrl());
3869 }
3870 
3871 void GraphKit::final_sync(IdealKit& ideal) {
3872   // Final sync IdealKit and graphKit.
3873   sync_kit(ideal);
3874 }
3875 
3876 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
3877   Node* len = load_array_length(load_String_value(str, set_ctrl));
3878   Node* coder = load_String_coder(str, set_ctrl);
3879   // Divide length by 2 if coder is UTF16
3880   return _gvn.transform(new RShiftINode(len, coder));
3881 }
3882 
3883 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
3884   int value_offset = java_lang_String::value_offset_in_bytes();
3885   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3886                                                      false, NULL, 0);
3887   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3888   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
3889                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
3890                                                   ciTypeArrayKlass::make(T_BYTE), true, 0);
3891   Node* p = basic_plus_adr(str, str, value_offset);
3892   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
3893                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3894   return load;
3895 }
3896 
3897 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
3898   if (!CompactStrings) {
3899     return intcon(java_lang_String::CODER_UTF16);
3900   }
3901   int coder_offset = java_lang_String::coder_offset_in_bytes();
3902   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3903                                                      false, NULL, 0);
3904   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3905 
3906   Node* p = basic_plus_adr(str, str, coder_offset);
3907   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
3908                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
3909   return load;
3910 }
3911 
3912 void GraphKit::store_String_value(Node* str, Node* value) {
3913   int value_offset = java_lang_String::value_offset_in_bytes();
3914   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3915                                                      false, NULL, 0);
3916   const TypePtr* value_field_type = string_type->add_offset(value_offset);
3917 
3918   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
3919                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
3920 }
3921 
3922 void GraphKit::store_String_coder(Node* str, Node* value) {
3923   int coder_offset = java_lang_String::coder_offset_in_bytes();
3924   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
3925                                                      false, NULL, 0);
3926   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
3927 
3928   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
3929                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
3930 }
3931 
3932 // Capture src and dst memory state with a MergeMemNode
3933 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
3934   if (src_type == dst_type) {
3935     // Types are equal, we don't need a MergeMemNode
3936     return memory(src_type);
3937   }
3938   MergeMemNode* merge = MergeMemNode::make(map()->memory());
3939   record_for_igvn(merge); // fold it up later, if possible
3940   int src_idx = C->get_alias_index(src_type);
3941   int dst_idx = C->get_alias_index(dst_type);
3942   merge->set_memory_at(src_idx, memory(src_idx));
3943   merge->set_memory_at(dst_idx, memory(dst_idx));
3944   return merge;
3945 }


4018   i_char->init_req(2, AddI(i_char, intcon(2)));
4019 
4020   set_control(IfFalse(iff));
4021   set_memory(st, TypeAryPtr::BYTES);
4022 }
4023 
4024 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4025   if (!field->is_constant()) {
4026     return NULL; // Field not marked as constant.
4027   }
4028   ciInstance* holder = NULL;
4029   if (!field->is_static()) {
4030     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4031     if (const_oop != NULL && const_oop->is_instance()) {
4032       holder = const_oop->as_instance();
4033     }
4034   }
4035   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4036                                                         /*is_unsigned_load=*/false);
4037   if (con_type != NULL) {
4038     return makecon(con_type);






4039   }
4040   return NULL;









4041 }


   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciUtilities.hpp"
  27 #include "compiler/compileLog.hpp"
  28 #include "ci/ciValueKlass.hpp"
  29 #include "gc/shared/barrierSet.hpp"
  30 #include "gc/shared/c2/barrierSetC2.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "opto/addnode.hpp"
  34 #include "opto/castnode.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/idealKit.hpp"
  38 #include "opto/intrinsicnode.hpp"
  39 #include "opto/locknode.hpp"
  40 #include "opto/machnode.hpp"
  41 #include "opto/narrowptrnode.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/parse.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/valuetypenode.hpp"
  47 #include "runtime/deoptimization.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 
  50 //----------------------------GraphKit-----------------------------------------
  51 // Main utility constructor.
  52 GraphKit::GraphKit(JVMState* jvms, PhaseGVN* gvn)
  53   : Phase(Phase::Parser),
  54     _env(C->env()),
  55     _gvn((gvn != NULL) ? *gvn : *C->initial_gvn()),
  56     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  57 {
  58   assert(gvn == NULL || !gvn->is_IterGVN() || gvn->is_IterGVN()->delay_transform(), "delay transform should be enabled");
  59   _exceptions = jvms->map()->next_exception();
  60   if (_exceptions != NULL)  jvms->map()->set_next_exception(NULL);
  61   set_jvms(jvms);
  62 #ifdef ASSERT
  63   if (_gvn.is_IterGVN() != NULL) {
  64     assert(_gvn.is_IterGVN()->delay_transform(), "Transformation must be delayed if IterGVN is used");
  65     // Save the initial size of _for_igvn worklist for verification (see ~GraphKit)
  66     _worklist_size = _gvn.C->for_igvn()->size();
  67   }
  68 #endif
  69 }
  70 
  71 // Private constructor for parser.
  72 GraphKit::GraphKit()
  73   : Phase(Phase::Parser),
  74     _env(C->env()),
  75     _gvn(*C->initial_gvn()),
  76     _barrier_set(BarrierSet::barrier_set()->barrier_set_c2())
  77 {
  78   _exceptions = NULL;
  79   set_map(NULL);
  80   debug_only(_sp = -99);
  81   debug_only(set_bci(-99));
  82 }
  83 
  84 
  85 
  86 //---------------------------clean_stack---------------------------------------
  87 // Clear away rubbish from the stack area of the JVM state.
  88 // This destroys any arguments that may be waiting on the stack.


 817           tty->print_cr("Zombie local %d: ", local);
 818           jvms->dump();
 819         }
 820         return false;
 821       }
 822     }
 823   }
 824   return true;
 825 }
 826 
 827 #endif //ASSERT
 828 
 829 // Helper function for enforcing certain bytecodes to reexecute if
 830 // deoptimization happens
 831 static bool should_reexecute_implied_by_bytecode(JVMState *jvms, bool is_anewarray) {
 832   ciMethod* cur_method = jvms->method();
 833   int       cur_bci   = jvms->bci();
 834   if (cur_method != NULL && cur_bci != InvocationEntryBci) {
 835     Bytecodes::Code code = cur_method->java_code_at_bci(cur_bci);
 836     return Interpreter::bytecode_should_reexecute(code) ||
 837            (is_anewarray && (code == Bytecodes::_multianewarray));
 838     // Reexecute _multianewarray bytecode which was replaced with
 839     // sequence of [a]newarray. See Parse::do_multianewarray().
 840     //
 841     // Note: interpreter should not have it set since this optimization
 842     // is limited by dimensions and guarded by flag so in some cases
 843     // multianewarray() runtime calls will be generated and
 844     // the bytecode should not be reexecutes (stack will not be reset).
 845   } else {
 846     return false;
 847   }
 848 }
 849 
 850 // Helper function for adding JVMState and debug information to node
 851 void GraphKit::add_safepoint_edges(SafePointNode* call, bool must_throw) {
 852   // Add the safepoint edges to the call (or other safepoint).
 853 
 854   // Make sure dead locals are set to top.  This
 855   // should help register allocation time and cut down on the size
 856   // of the deoptimization information.
 857   assert(dead_locals_are_killed(), "garbage in debug info before safepoint");
 858 
 859   // Walk the inline list to fill in the correct set of JVMState's
 860   // Also fill in the associated edges for each JVMState.
 861 
 862   // If the bytecode needs to be reexecuted we need to put
 863   // the arguments back on the stack.
 864   const bool should_reexecute = jvms()->should_reexecute();
 865   JVMState* youngest_jvms = should_reexecute ? sync_jvms_for_reexecute() : sync_jvms();
 866 
 867   // NOTE: set_bci (called from sync_jvms) might reset the reexecute bit to


1071       ciSignature* declared_signature = NULL;
1072       ciMethod* ignored_callee = method()->get_method_at_bci(bci(), ignored_will_link, &declared_signature);
1073       assert(declared_signature != NULL, "cannot be null");
1074       inputs   = declared_signature->arg_size_for_bc(code);
1075       int size = declared_signature->return_type()->size();
1076       depth = size - inputs;
1077     }
1078     break;
1079 
1080   case Bytecodes::_multianewarray:
1081     {
1082       ciBytecodeStream iter(method());
1083       iter.reset_to_bci(bci());
1084       iter.next();
1085       inputs = iter.get_dimensions();
1086       assert(rsize == 1, "");
1087       depth = rsize - inputs;
1088     }
1089     break;
1090 
1091   case Bytecodes::_withfield: {
1092     bool ignored_will_link;
1093     ciField* field = method()->get_field_at_bci(bci(), ignored_will_link);
1094     int      size  = field->type()->size();
1095     inputs = size+1;
1096     depth = rsize - inputs;
1097     break;
1098   }
1099 
1100   case Bytecodes::_ireturn:
1101   case Bytecodes::_lreturn:
1102   case Bytecodes::_freturn:
1103   case Bytecodes::_dreturn:
1104   case Bytecodes::_areturn:
1105     assert(rsize == -depth, "");
1106     inputs = rsize;
1107     break;
1108 
1109   case Bytecodes::_jsr:
1110   case Bytecodes::_jsr_w:
1111     inputs = 0;
1112     depth  = 1;                  // S.B. depth=1, not zero
1113     break;
1114 
1115   default:
1116     // bytecode produces a typed result
1117     inputs = rsize - depth;
1118     assert(inputs >= 0, "");
1119     break;


1205 // the incoming address with NULL casted away.  You are allowed to use the
1206 // not-null value only if you are control dependent on the test.
1207 #ifndef PRODUCT
1208 extern int explicit_null_checks_inserted,
1209            explicit_null_checks_elided;
1210 #endif
1211 Node* GraphKit::null_check_common(Node* value, BasicType type,
1212                                   // optional arguments for variations:
1213                                   bool assert_null,
1214                                   Node* *null_control,
1215                                   bool speculative) {
1216   assert(!assert_null || null_control == NULL, "not both at once");
1217   if (stopped())  return top();
1218   NOT_PRODUCT(explicit_null_checks_inserted++);
1219 
1220   // Construct NULL check
1221   Node *chk = NULL;
1222   switch(type) {
1223     case T_LONG   : chk = new CmpLNode(value, _gvn.zerocon(T_LONG)); break;
1224     case T_INT    : chk = new CmpINode(value, _gvn.intcon(0)); break;
1225     case T_VALUETYPE : // fall through
1226     case T_ARRAY  : // fall through
1227       type = T_OBJECT;  // simplify further tests
1228     case T_OBJECT : {
1229       const Type *t = _gvn.type( value );
1230 
1231       const TypeOopPtr* tp = t->isa_oopptr();
1232       if (tp != NULL && tp->klass() != NULL && !tp->klass()->is_loaded()
1233           // Only for do_null_check, not any of its siblings:
1234           && !assert_null && null_control == NULL) {
1235         // Usually, any field access or invocation on an unloaded oop type
1236         // will simply fail to link, since the statically linked class is
1237         // likely also to be unloaded.  However, in -Xcomp mode, sometimes
1238         // the static class is loaded but the sharper oop type is not.
1239         // Rather than checking for this obscure case in lots of places,
1240         // we simply observe that a null check on an unloaded class
1241         // will always be followed by a nonsense operation, so we
1242         // can just issue the uncommon trap here.
1243         // Our access to the unloaded class will only be correct
1244         // after it has been loaded and initialized, which requires
1245         // a trip through the interpreter.


1377   }
1378 
1379   if (assert_null) {
1380     // Cast obj to null on this path.
1381     replace_in_map(value, zerocon(type));
1382     return zerocon(type);
1383   }
1384 
1385   // Cast obj to not-null on this path, if there is no null_control.
1386   // (If there is a null_control, a non-null value may come back to haunt us.)
1387   if (type == T_OBJECT) {
1388     Node* cast = cast_not_null(value, false);
1389     if (null_control == NULL || (*null_control) == top())
1390       replace_in_map(value, cast);
1391     value = cast;
1392   }
1393 
1394   return value;
1395 }
1396 
1397 Node* GraphKit::null2default(Node* value, ciValueKlass* vk) {
1398   Node* null_ctl = top();
1399   value = null_check_oop(value, &null_ctl);
1400   if (!null_ctl->is_top()) {
1401     // Return default value if oop is null
1402     Node* region = new RegionNode(3);
1403     region->init_req(1, control());
1404     region->init_req(2, null_ctl);
1405     value = PhiNode::make(region, value, TypeInstPtr::make(TypePtr::BotPTR, vk));
1406     value->set_req(2, ValueTypeNode::default_oop(gvn(), vk));
1407     set_control(gvn().transform(region));
1408     value = gvn().transform(value);
1409   }
1410   return value;
1411 }
1412 
1413 //------------------------------cast_not_null----------------------------------
1414 // Cast obj to not-null on this path
1415 Node* GraphKit::cast_not_null(Node* obj, bool do_replace_in_map) {
1416   if (obj->is_ValueType()) {
1417     return obj;
1418   }
1419   const Type *t = _gvn.type(obj);
1420   const Type *t_not_null = t->join_speculative(TypePtr::NOTNULL);
1421   // Object is already not-null?
1422   if( t == t_not_null ) return obj;
1423 
1424   Node *cast = new CastPPNode(obj,t_not_null);
1425   cast->init_req(0, control());
1426   cast = _gvn.transform( cast );
1427 
1428   // Scan for instances of 'obj' in the current JVM mapping.
1429   // These instances are known to be not-null after the test.
1430   if (do_replace_in_map)
1431     replace_in_map(obj, cast);
1432 
1433   return cast;                  // Return casted value
1434 }
1435 
1436 // Sometimes in intrinsics, we implicitly know an object is not null
1437 // (there's no actual null check) so we can cast it to not null. In
1438 // the course of optimizations, the input to the cast can become null.


1527                           int adr_idx,
1528                           MemNode::MemOrd mo,
1529                           LoadNode::ControlDependency control_dependency,
1530                           bool require_atomic_access,
1531                           bool unaligned,
1532                           bool mismatched,
1533                           bool unsafe) {
1534   assert(adr_idx != Compile::AliasIdxTop, "use other make_load factory" );
1535   const TypePtr* adr_type = NULL; // debug-mode-only argument
1536   debug_only(adr_type = C->get_adr_type(adr_idx));
1537   Node* mem = memory(adr_idx);
1538   Node* ld;
1539   if (require_atomic_access && bt == T_LONG) {
1540     ld = LoadLNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe);
1541   } else if (require_atomic_access && bt == T_DOUBLE) {
1542     ld = LoadDNode::make_atomic(ctl, mem, adr, adr_type, t, mo, control_dependency, unaligned, mismatched, unsafe);
1543   } else {
1544     ld = LoadNode::make(_gvn, ctl, mem, adr, adr_type, t, bt, mo, control_dependency, unaligned, mismatched, unsafe);
1545   }
1546   ld = _gvn.transform(ld);
1547 
1548   if (((bt == T_OBJECT || bt == T_VALUETYPE) && C->do_escape_analysis()) || C->eliminate_boxing()) {
1549     // Improve graph before escape analysis and boxing elimination.
1550     record_for_igvn(ld);
1551   }
1552   return ld;
1553 }
1554 
1555 Node* GraphKit::store_to_memory(Node* ctl, Node* adr, Node *val, BasicType bt,
1556                                 int adr_idx,
1557                                 MemNode::MemOrd mo,
1558                                 bool require_atomic_access,
1559                                 bool unaligned,
1560                                 bool mismatched,
1561                                 bool unsafe) {
1562   assert(adr_idx != Compile::AliasIdxTop, "use other store_to_memory factory" );
1563   const TypePtr* adr_type = NULL;
1564   debug_only(adr_type = C->get_adr_type(adr_idx));
1565   Node *mem = memory(adr_idx);
1566   Node* st;
1567   if (require_atomic_access && bt == T_LONG) {
1568     st = StoreLNode::make_atomic(ctl, mem, adr, adr_type, val, mo);


1579   }
1580   if (unsafe) {
1581     st->as_Store()->set_unsafe_access();
1582   }
1583   st = _gvn.transform(st);
1584   set_memory(st, adr_idx);
1585   // Back-to-back stores can only remove intermediate store with DU info
1586   // so push on worklist for optimizer.
1587   if (mem->req() > MemNode::Address && adr == mem->in(MemNode::Address))
1588     record_for_igvn(st);
1589 
1590   return st;
1591 }
1592 
1593 Node* GraphKit::access_store_at(Node* obj,
1594                                 Node* adr,
1595                                 const TypePtr* adr_type,
1596                                 Node* val,
1597                                 const Type* val_type,
1598                                 BasicType bt,
1599                                 DecoratorSet decorators,
1600                                 bool deoptimize_on_exception) {
1601   // Transformation of a value which could be NULL pointer (CastPP #NULL)
1602   // could be delayed during Parse (for example, in adjust_map_after_if()).
1603   // Execute transformation here to avoid barrier generation in such case.
1604   if (_gvn.type(val) == TypePtr::NULL_PTR) {
1605     val = _gvn.makecon(TypePtr::NULL_PTR);
1606   }
1607 
1608   if (stopped()) {
1609     return top(); // Dead path ?
1610   }
1611 
1612   assert(val != NULL, "not dead path");
1613   if (val->is_ValueType()) {
1614     // Allocate value type and get oop
1615     val = val->as_ValueType()->allocate(this, deoptimize_on_exception)->get_oop();
1616   }
1617 
1618   C2AccessValuePtr addr(adr, adr_type);
1619   C2AccessValue value(val, val_type);
1620   C2ParseAccess access(this, decorators | C2_WRITE_ACCESS, bt, obj, addr);
1621   if (access.is_raw()) {
1622     return _barrier_set->BarrierSetC2::store_at(access, value);
1623   } else {
1624     return _barrier_set->store_at(access, value);
1625   }
1626 }
1627 
1628 Node* GraphKit::access_load_at(Node* obj,   // containing obj
1629                                Node* adr,   // actual adress to store val at
1630                                const TypePtr* adr_type,
1631                                const Type* val_type,
1632                                BasicType bt,
1633                                DecoratorSet decorators) {
1634   if (stopped()) {
1635     return top(); // Dead path ?
1636   }


1717   }
1718 }
1719 
1720 Node* GraphKit::access_atomic_add_at(Node* obj,
1721                                      Node* adr,
1722                                      const TypePtr* adr_type,
1723                                      int alias_idx,
1724                                      Node* new_val,
1725                                      const Type* value_type,
1726                                      BasicType bt,
1727                                      DecoratorSet decorators) {
1728   C2AccessValuePtr addr(adr, adr_type);
1729   C2AtomicParseAccess access(this, decorators | C2_READ_ACCESS | C2_WRITE_ACCESS, bt, obj, addr, alias_idx);
1730   if (access.is_raw()) {
1731     return _barrier_set->BarrierSetC2::atomic_add_at(access, new_val, value_type);
1732   } else {
1733     return _barrier_set->atomic_add_at(access, new_val, value_type);
1734   }
1735 }
1736 
1737 void GraphKit::access_clone(Node* src_base, Node* dst_base, Node* countx, bool is_array) {
1738   return _barrier_set->clone(this, src_base, dst_base, countx, is_array);
1739 }
1740 
1741 Node* GraphKit::access_resolve(Node* n, DecoratorSet decorators) {
1742   // Use stronger ACCESS_WRITE|ACCESS_READ by default.
1743   if ((decorators & (ACCESS_READ | ACCESS_WRITE)) == 0) {
1744     decorators |= ACCESS_READ | ACCESS_WRITE;
1745   }
1746   return _barrier_set->resolve(this, n, decorators);
1747 }
1748 
1749 //-------------------------array_element_address-------------------------
1750 Node* GraphKit::array_element_address(Node* ary, Node* idx, BasicType elembt,
1751                                       const TypeInt* sizetype, Node* ctrl) {
1752   uint shift  = exact_log2(type2aelembytes(elembt));
1753   ciKlass* arytype_klass = _gvn.type(ary)->is_aryptr()->klass();
1754   if (arytype_klass->is_value_array_klass()) {
1755     ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
1756     shift = vak->log2_element_size();
1757   }
1758   uint header = arrayOopDesc::base_offset_in_bytes(elembt);
1759 
1760   // short-circuit a common case (saves lots of confusing waste motion)
1761   jint idx_con = find_int_con(idx, -1);
1762   if (idx_con >= 0) {
1763     intptr_t offset = header + ((intptr_t)idx_con << shift);
1764     return basic_plus_adr(ary, offset);
1765   }
1766 
1767   // must be correct type for alignment purposes
1768   Node* base  = basic_plus_adr(ary, header);
1769   idx = Compile::conv_I2X_index(&_gvn, idx, sizetype, ctrl);
1770   Node* scale = _gvn.transform( new LShiftXNode(idx, intcon(shift)) );
1771   return basic_plus_adr(ary, base, scale);
1772 }
1773 
1774 //-------------------------load_array_element-------------------------
1775 Node* GraphKit::load_array_element(Node* ctl, Node* ary, Node* idx, const TypeAryPtr* arytype) {
1776   const Type* elemtype = arytype->elem();
1777   BasicType elembt = elemtype->array_element_basic_type();
1778   assert(elembt != T_VALUETYPE, "value types are not supported by this method");
1779   Node* adr = array_element_address(ary, idx, elembt, arytype->size());
1780   if (elembt == T_NARROWOOP) {
1781     elembt = T_OBJECT; // To satisfy switch in LoadNode::make()
1782   }
1783   Node* ld = make_load(ctl, adr, elemtype, elembt, arytype, MemNode::unordered);
1784   return ld;
1785 }
1786 
1787 //-------------------------set_arguments_for_java_call-------------------------
1788 // Arguments (pre-popped from the stack) are taken from the JVMS.
1789 void GraphKit::set_arguments_for_java_call(CallJavaNode* call, bool incremental_inlining) {
1790   // Add the call arguments:
1791   const TypeTuple* domain = call->tf()->domain_sig();
1792   ExtendedSignature sig_cc = ExtendedSignature(call->method()->get_sig_cc(), SigEntryFilter());
1793   uint nargs = domain->cnt();
1794   for (uint i = TypeFunc::Parms, idx = TypeFunc::Parms; i < nargs; i++) {
1795     Node* arg = argument(i-TypeFunc::Parms);
1796     const Type* t = domain->field_at(i);
1797     if (call->method()->has_scalarized_args() && t->is_valuetypeptr() && !t->maybe_null()) {
1798       // We don't pass value type arguments by reference but instead
1799       // pass each field of the value type
1800       ValueTypeNode* vt = arg->isa_ValueType();
1801       if (vt == NULL) {
1802         // TODO why is that?? Shouldn't we always see a valuetype node here?
1803         vt = ValueTypeNode::make_from_oop(this, arg, t->value_klass());
1804       }
1805       vt->pass_fields(this, call, sig_cc, idx);
1806       // If a value type argument is passed as fields, attach the Method* to the call site
1807       // to be able to access the extended signature later via attached_method_before_pc().
1808       // For example, see CompiledMethod::preserve_callee_argument_oops().
1809       call->set_override_symbolic_info(true);
1810       continue;
1811     } else if (arg->is_ValueType()) {
1812       // Pass value type argument via oop to callee
1813       if (!incremental_inlining) {
1814         arg = arg->as_ValueType()->allocate(this)->get_oop();
1815       } else {
1816         arg = ValueTypePtrNode::make_from_value_type(this, arg->as_ValueType(), false);
1817       }
1818     }
1819     call->init_req(idx++, arg);
1820     // Skip reserved arguments
1821     BasicType bt = t->basic_type();
1822     while (SigEntry::next_is_reserved(sig_cc, bt, true)) {
1823       call->init_req(idx++, top());
1824       if (type2size[bt] == 2) {
1825         call->init_req(idx++, top());
1826       }
1827     }
1828   }
1829 }
1830 
1831 //---------------------------set_edges_for_java_call---------------------------
1832 // Connect a newly created call into the current JVMS.
1833 // A return value node (if any) is returned from set_edges_for_java_call.
1834 void GraphKit::set_edges_for_java_call(CallJavaNode* call, bool must_throw, bool separate_io_proj) {
1835 
1836   // Add the predefined inputs:
1837   call->init_req( TypeFunc::Control, control() );
1838   call->init_req( TypeFunc::I_O    , i_o() );
1839   call->init_req( TypeFunc::Memory , reset_memory() );
1840   call->init_req( TypeFunc::FramePtr, frameptr() );
1841   call->init_req( TypeFunc::ReturnAdr, top() );
1842 
1843   add_safepoint_edges(call, must_throw);
1844 
1845   Node* xcall = _gvn.transform(call);
1846 
1847   if (xcall == top()) {
1848     set_control(top());
1849     return;
1850   }
1851   assert(xcall == call, "call identity is stable");
1852 
1853   // Re-use the current map to produce the result.
1854 
1855   set_control(_gvn.transform(new ProjNode(call, TypeFunc::Control)));
1856   set_i_o(    _gvn.transform(new ProjNode(call, TypeFunc::I_O    , separate_io_proj)));
1857   set_all_memory_call(xcall, separate_io_proj);
1858 
1859   //return xcall;   // no need, caller already has it
1860 }
1861 
1862 Node* GraphKit::set_results_for_java_call(CallJavaNode* call, bool separate_io_proj, bool deoptimize) {
1863   if (stopped())  return top();  // maybe the call folded up?
1864 







1865   // Note:  Since any out-of-line call can produce an exception,
1866   // we always insert an I_O projection from the call into the result.
1867 
1868   make_slow_call_ex(call, env()->Throwable_klass(), separate_io_proj, deoptimize);
1869 
1870   if (separate_io_proj) {
1871     // The caller requested separate projections be used by the fall
1872     // through and exceptional paths, so replace the projections for
1873     // the fall through path.
1874     set_i_o(_gvn.transform( new ProjNode(call, TypeFunc::I_O) ));
1875     set_all_memory(_gvn.transform( new ProjNode(call, TypeFunc::Memory) ));
1876   }
1877 
1878   // Capture the return value, if any.
1879   Node* ret;
1880   if (call->method() == NULL || call->method()->return_type()->basic_type() == T_VOID) {
1881     ret = top();
1882   } else if (call->tf()->returns_value_type_as_fields()) {
1883     // Return of multiple values (value type fields): we create a
1884     // ValueType node, each field is a projection from the call.
1885     ciValueKlass* vk = call->method()->return_type()->as_value_klass();
1886     const Array<SigEntry>* sig_array = vk->extended_sig();
1887     GrowableArray<SigEntry> sig = GrowableArray<SigEntry>(sig_array->length());
1888     sig.appendAll(sig_array);
1889     ExtendedSignature sig_cc = ExtendedSignature(&sig, SigEntryFilter());
1890     uint base_input = TypeFunc::Parms + 1;
1891     ret = ValueTypeNode::make_from_multi(this, call, sig_cc, vk, base_input, false);
1892   } else {
1893     ret = _gvn.transform(new ProjNode(call, TypeFunc::Parms));
1894   }
1895 
1896   return ret;
1897 }
1898 
1899 //--------------------set_predefined_input_for_runtime_call--------------------
1900 // Reading and setting the memory state is way conservative here.
1901 // The real problem is that I am not doing real Type analysis on memory,
1902 // so I cannot distinguish card mark stores from other stores.  Across a GC
1903 // point the Store Barrier and the card mark memory has to agree.  I cannot
1904 // have a card mark store and its barrier split across the GC point from
1905 // either above or below.  Here I get that to happen by reading ALL of memory.
1906 // A better answer would be to separate out card marks from other memory.
1907 // For now, return the input memory state, so that it can be reused
1908 // after the call, if this call has restricted memory effects.
1909 Node* GraphKit::set_predefined_input_for_runtime_call(SafePointNode* call, Node* narrow_mem) {
1910   // Set fixed predefined input arguments
1911   Node* memory = reset_memory();
1912   Node* m = narrow_mem == NULL ? memory : narrow_mem;
1913   call->init_req( TypeFunc::Control,   control()  );
1914   call->init_req( TypeFunc::I_O,       top()      ); // does no i/o
1915   call->init_req( TypeFunc::Memory,    m          ); // may gc ptrs


1954     // This is not a "slow path" call; all memory comes from the call.
1955     set_all_memory_call(call);
1956   }
1957 }
1958 
1959 
1960 // Replace the call with the current state of the kit.
1961 void GraphKit::replace_call(CallNode* call, Node* result, bool do_replaced_nodes) {
1962   JVMState* ejvms = NULL;
1963   if (has_exceptions()) {
1964     ejvms = transfer_exceptions_into_jvms();
1965   }
1966 
1967   ReplacedNodes replaced_nodes = map()->replaced_nodes();
1968   ReplacedNodes replaced_nodes_exception;
1969   Node* ex_ctl = top();
1970 
1971   SafePointNode* final_state = stop();
1972 
1973   // Find all the needed outputs of this call
1974   CallProjections* callprojs = call->extract_projections(true);

1975 
1976   Node* init_mem = call->in(TypeFunc::Memory);
1977   Node* final_mem = final_state->in(TypeFunc::Memory);
1978   Node* final_ctl = final_state->in(TypeFunc::Control);
1979   Node* final_io = final_state->in(TypeFunc::I_O);
1980 
1981   // Replace all the old call edges with the edges from the inlining result
1982   if (callprojs->fallthrough_catchproj != NULL) {
1983     C->gvn_replace_by(callprojs->fallthrough_catchproj, final_ctl);
1984   }
1985   if (callprojs->fallthrough_memproj != NULL) {
1986     if (final_mem->is_MergeMem()) {
1987       // Parser's exits MergeMem was not transformed but may be optimized
1988       final_mem = _gvn.transform(final_mem);
1989     }
1990     C->gvn_replace_by(callprojs->fallthrough_memproj,   final_mem);
1991   }
1992   if (callprojs->fallthrough_ioproj != NULL) {
1993     C->gvn_replace_by(callprojs->fallthrough_ioproj,    final_io);
1994   }
1995 
1996   // Replace the result with the new result if it exists and is used
1997   if (callprojs->resproj[0] != NULL && result != NULL) {
1998     assert(callprojs->nb_resproj == 1, "unexpected number of results");
1999     C->gvn_replace_by(callprojs->resproj[0], result);
2000   }
2001 
2002   if (ejvms == NULL) {
2003     // No exception edges to simply kill off those paths
2004     if (callprojs->catchall_catchproj != NULL) {
2005       C->gvn_replace_by(callprojs->catchall_catchproj, C->top());
2006     }
2007     if (callprojs->catchall_memproj != NULL) {
2008       C->gvn_replace_by(callprojs->catchall_memproj,   C->top());
2009     }
2010     if (callprojs->catchall_ioproj != NULL) {
2011       C->gvn_replace_by(callprojs->catchall_ioproj,    C->top());
2012     }
2013     // Replace the old exception object with top
2014     if (callprojs->exobj != NULL) {
2015       C->gvn_replace_by(callprojs->exobj, C->top());
2016     }
2017   } else {
2018     GraphKit ekit(ejvms);
2019 
2020     // Load my combined exception state into the kit, with all phis transformed:
2021     SafePointNode* ex_map = ekit.combine_and_pop_all_exception_states();
2022     replaced_nodes_exception = ex_map->replaced_nodes();
2023 
2024     Node* ex_oop = ekit.use_exception_state(ex_map);
2025 
2026     if (callprojs->catchall_catchproj != NULL) {
2027       C->gvn_replace_by(callprojs->catchall_catchproj, ekit.control());
2028       ex_ctl = ekit.control();
2029     }
2030     if (callprojs->catchall_memproj != NULL) {
2031       C->gvn_replace_by(callprojs->catchall_memproj,   ekit.reset_memory());
2032     }
2033     if (callprojs->catchall_ioproj != NULL) {
2034       C->gvn_replace_by(callprojs->catchall_ioproj,    ekit.i_o());
2035     }
2036 
2037     // Replace the old exception object with the newly created one
2038     if (callprojs->exobj != NULL) {
2039       C->gvn_replace_by(callprojs->exobj, ex_oop);
2040     }
2041   }
2042 
2043   // Disconnect the call from the graph
2044   call->disconnect_inputs(NULL, C);
2045   C->gvn_replace_by(call, C->top());
2046 
2047   // Clean up any MergeMems that feed other MergeMems since the
2048   // optimizer doesn't like that.
2049   if (final_mem->is_MergeMem()) {
2050     Node_List wl;
2051     for (SimpleDUIterator i(final_mem); i.has_next(); i.next()) {
2052       Node* m = i.get();
2053       if (m->is_MergeMem() && !wl.contains(m)) {
2054         wl.push(m);
2055       }
2056     }
2057     while (wl.size()  > 0) {
2058       _gvn.transform(wl.pop());
2059     }
2060   }
2061 
2062   if (callprojs->fallthrough_catchproj != NULL && !final_ctl->is_top() && do_replaced_nodes) {
2063     replaced_nodes.apply(C, final_ctl);
2064   }
2065   if (!ex_ctl->is_top() && do_replaced_nodes) {
2066     replaced_nodes_exception.apply(C, ex_ctl);
2067   }
2068 }
2069 
2070 
2071 //------------------------------increment_counter------------------------------
2072 // for statistics: increment a VM counter by 1
2073 
2074 void GraphKit::increment_counter(address counter_addr) {
2075   Node* adr1 = makecon(TypeRawPtr::make(counter_addr));
2076   increment_counter(adr1);
2077 }
2078 
2079 void GraphKit::increment_counter(Node* counter_addr) {
2080   int adr_type = Compile::AliasIdxRaw;
2081   Node* ctrl = control();
2082   Node* cnt  = make_load(ctrl, counter_addr, TypeInt::INT, T_INT, adr_type, MemNode::unordered);


2219 // it does not require card marks.
2220 Node* GraphKit::just_allocated_object(Node* current_control) {
2221   Node* ctrl = current_control;
2222   // Object::<init> is invoked after allocation, most of invoke nodes
2223   // will be reduced, but a region node is kept in parse time, we check
2224   // the pattern and skip the region node if it degraded to a copy.
2225   if (ctrl != NULL && ctrl->is_Region() && ctrl->req() == 2 &&
2226       ctrl->as_Region()->is_copy()) {
2227     ctrl = ctrl->as_Region()->is_copy();
2228   }
2229   if (C->recent_alloc_ctl() == ctrl) {
2230    return C->recent_alloc_obj();
2231   }
2232   return NULL;
2233 }
2234 
2235 
2236 void GraphKit::round_double_arguments(ciMethod* dest_method) {
2237   // (Note:  TypeFunc::make has a cache that makes this fast.)
2238   const TypeFunc* tf    = TypeFunc::make(dest_method);
2239   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2240   for (int j = 0; j < nargs; j++) {
2241     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2242     if( targ->basic_type() == T_DOUBLE ) {
2243       // If any parameters are doubles, they must be rounded before
2244       // the call, dstore_rounding does gvn.transform
2245       Node *arg = argument(j);
2246       arg = dstore_rounding(arg);
2247       set_argument(j, arg);
2248     }
2249   }
2250 }
2251 
2252 /**
2253  * Record profiling data exact_kls for Node n with the type system so
2254  * that it can propagate it (speculation)
2255  *
2256  * @param n          node that the type applies to
2257  * @param exact_kls  type from profiling
2258  * @param maybe_null did profiling see null?
2259  *
2260  * @return           node with improved type
2261  */


2278     speculative = speculative->with_inline_depth(jvms()->depth());
2279   } else if (current_type->would_improve_ptr(ptr_kind)) {
2280     // Profiling report that null was never seen so we can change the
2281     // speculative type to non null ptr.
2282     if (ptr_kind == ProfileAlwaysNull) {
2283       speculative = TypePtr::NULL_PTR;
2284     } else {
2285       assert(ptr_kind == ProfileNeverNull, "nothing else is an improvement");
2286       const TypePtr* ptr = TypePtr::NOTNULL;
2287       if (speculative != NULL) {
2288         speculative = speculative->cast_to_ptr_type(ptr->ptr())->is_ptr();
2289       } else {
2290         speculative = ptr;
2291       }
2292     }
2293   }
2294 
2295   if (speculative != current_type->speculative()) {
2296     // Build a type with a speculative type (what we think we know
2297     // about the type but will need a guard when we use it)
2298     const TypeOopPtr* spec_type = TypeOopPtr::make(TypePtr::BotPTR, Type::Offset::bottom, TypeOopPtr::InstanceBot, speculative);
2299     // We're changing the type, we need a new CheckCast node to carry
2300     // the new type. The new type depends on the control: what
2301     // profiling tells us is only valid from here as far as we can
2302     // tell.
2303     Node* cast = new CheckCastPPNode(control(), n, current_type->remove_speculative()->join_speculative(spec_type));
2304     cast = _gvn.transform(cast);
2305     replace_in_map(n, cast);
2306     n = cast;
2307   }
2308 
2309   return n;
2310 }
2311 
2312 /**
2313  * Record profiling data from receiver profiling at an invoke with the
2314  * type system so that it can propagate it (speculation)
2315  *
2316  * @param n  receiver node
2317  *
2318  * @return   node with improved type


2343         }
2344         ptr_kind = (i == call->row_limit()) ? ProfileAlwaysNull : ProfileMaybeNull;
2345       }
2346     }
2347   }
2348   return record_profile_for_speculation(n, exact_kls, ptr_kind);
2349 }
2350 
2351 /**
2352  * Record profiling data from argument profiling at an invoke with the
2353  * type system so that it can propagate it (speculation)
2354  *
2355  * @param dest_method  target method for the call
2356  * @param bc           what invoke bytecode is this?
2357  */
2358 void GraphKit::record_profiled_arguments_for_speculation(ciMethod* dest_method, Bytecodes::Code bc) {
2359   if (!UseTypeSpeculation) {
2360     return;
2361   }
2362   const TypeFunc* tf    = TypeFunc::make(dest_method);
2363   int             nargs = tf->domain_sig()->cnt() - TypeFunc::Parms;
2364   int skip = Bytecodes::has_receiver(bc) ? 1 : 0;
2365   for (int j = skip, i = 0; j < nargs && i < TypeProfileArgsLimit; j++) {
2366     const Type *targ = tf->domain_sig()->field_at(j + TypeFunc::Parms);
2367     if (targ->isa_oopptr()) {
2368       ProfilePtrKind ptr_kind = ProfileMaybeNull;
2369       ciKlass* better_type = NULL;
2370       if (method()->argument_profiled_type(bci(), i, better_type, ptr_kind)) {
2371         record_profile_for_speculation(argument(j), better_type, ptr_kind);
2372       }
2373       i++;
2374     }
2375   }
2376 }
2377 
2378 /**
2379  * Record profiling data from parameter profiling at an invoke with
2380  * the type system so that it can propagate it (speculation)
2381  */
2382 void GraphKit::record_profiled_parameters_for_speculation() {
2383   if (!UseTypeSpeculation) {
2384     return;
2385   }
2386   for (int i = 0, j = 0; i < method()->arg_size() ; i++) {
2387     if (_gvn.type(local(i))->isa_oopptr()) {


2860   // The decision to inline or out-of-line this final check is platform
2861   // dependent, and is found in the AD file definition of PartialSubtypeCheck.
2862   Node* psc = gvn->transform(
2863     new PartialSubtypeCheckNode(*ctrl, subklass, superklass));
2864 
2865   IfNode *iff4 = gen_subtype_check_compare(*ctrl, psc, gvn->zerocon(T_OBJECT), BoolTest::ne, PROB_FAIR, gvn, T_ADDRESS);
2866   r_not_subtype->init_req(2, gvn->transform(new IfTrueNode (iff4)));
2867   r_ok_subtype ->init_req(3, gvn->transform(new IfFalseNode(iff4)));
2868 
2869   // Return false path; set default control to true path.
2870   *ctrl = gvn->transform(r_ok_subtype);
2871   return gvn->transform(r_not_subtype);
2872 }
2873 
2874 // Profile-driven exact type check:
2875 Node* GraphKit::type_check_receiver(Node* receiver, ciKlass* klass,
2876                                     float prob,
2877                                     Node* *casted_receiver) {
2878   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2879   Node* recv_klass = load_object_klass(receiver);
2880   Node* fail = type_check(recv_klass, tklass, prob);






2881   const TypeOopPtr* recv_xtype = tklass->as_instance_type();
2882   assert(recv_xtype->klass_is_exact(), "");
2883 
2884   // Subsume downstream occurrences of receiver with a cast to
2885   // recv_xtype, since now we know what the type will be.
2886   Node* cast = new CheckCastPPNode(control(), receiver, recv_xtype);
2887   Node* res = _gvn.transform(cast);
2888   if (recv_xtype->is_valuetypeptr() && recv_xtype->value_klass()->is_scalarizable()) {
2889     assert(!gvn().type(res)->maybe_null(), "receiver should never be null");
2890     res = ValueTypeNode::make_from_oop(this, res, recv_xtype->value_klass());
2891   }
2892 
2893   (*casted_receiver) = res;
2894   // (User must make the replace_in_map call.)
2895 
2896   return fail;
2897 }
2898 
2899 Node* GraphKit::type_check(Node* recv_klass, const TypeKlassPtr* tklass,
2900                            float prob) {
2901   Node* want_klass = makecon(tklass);
2902   Node* cmp = _gvn.transform( new CmpPNode(recv_klass, want_klass));
2903   Node* bol = _gvn.transform( new BoolNode(cmp, BoolTest::eq) );
2904   IfNode* iff = create_and_xform_if(control(), bol, prob, COUNT_UNKNOWN);
2905   set_control(  _gvn.transform( new IfTrueNode (iff)));
2906   Node* fail = _gvn.transform( new IfFalseNode(iff));
2907   return fail;
2908 }
2909 
2910 //------------------------------subtype_check_receiver-------------------------
2911 Node* GraphKit::subtype_check_receiver(Node* receiver, ciKlass* klass,
2912                                        Node** casted_receiver) {
2913   const TypeKlassPtr* tklass = TypeKlassPtr::make(klass);
2914   Node* recv_klass = load_object_klass(receiver);
2915   Node* want_klass = makecon(tklass);
2916 
2917   Node* slow_ctl = gen_subtype_check(recv_klass, want_klass);
2918 
2919   // Cast receiver after successful check
2920   const TypeOopPtr* recv_type = tklass->cast_to_exactness(false)->is_klassptr()->as_instance_type();
2921   Node* cast = new CheckCastPPNode(control(), receiver, recv_type);
2922   (*casted_receiver) = _gvn.transform(cast);
2923 
2924   return slow_ctl;
2925 }
2926 
2927 //------------------------------seems_never_null-------------------------------
2928 // Use null_seen information if it is available from the profile.
2929 // If we see an unexpected null at a type check we record it and force a


3060 // and the reflective instance-of call.
3061 Node* GraphKit::gen_instanceof(Node* obj, Node* superklass, bool safe_for_replace) {
3062   kill_dead_locals();           // Benefit all the uncommon traps
3063   assert( !stopped(), "dead parse path should be checked in callers" );
3064   assert(!TypePtr::NULL_PTR->higher_equal(_gvn.type(superklass)->is_klassptr()),
3065          "must check for not-null not-dead klass in callers");
3066 
3067   // Make the merge point
3068   enum { _obj_path = 1, _fail_path, _null_path, PATH_LIMIT };
3069   RegionNode* region = new RegionNode(PATH_LIMIT);
3070   Node*       phi    = new PhiNode(region, TypeInt::BOOL);
3071   C->set_has_split_ifs(true); // Has chance for split-if optimization
3072 
3073   ciProfileData* data = NULL;
3074   if (java_bc() == Bytecodes::_instanceof) {  // Only for the bytecode
3075     data = method()->method_data()->bci_to_data(bci());
3076   }
3077   bool speculative_not_null = false;
3078   bool never_see_null = (ProfileDynamicTypes  // aggressive use of profile
3079                          && seems_never_null(obj, data, speculative_not_null));
3080   bool is_value = obj->is_ValueType();
3081 
3082   // Null check; get casted pointer; set region slot 3
3083   Node* null_ctl = top();
3084   Node* not_null_obj = is_value ? obj : null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3085 
3086   // If not_null_obj is dead, only null-path is taken
3087   if (stopped()) {              // Doing instance-of on a NULL?
3088     set_control(null_ctl);
3089     return intcon(0);
3090   }
3091   region->init_req(_null_path, null_ctl);
3092   phi   ->init_req(_null_path, intcon(0)); // Set null path value
3093   if (null_ctl == top()) {
3094     // Do this eagerly, so that pattern matches like is_diamond_phi
3095     // will work even during parsing.
3096     assert(_null_path == PATH_LIMIT-1, "delete last");
3097     region->del_req(_null_path);
3098     phi   ->del_req(_null_path);
3099   }
3100 
3101   // Do we know the type check always succeed?
3102   if (!is_value) {
3103     bool known_statically = false;
3104     if (_gvn.type(superklass)->singleton()) {
3105       ciKlass* superk = _gvn.type(superklass)->is_klassptr()->klass();
3106       ciKlass* subk = _gvn.type(obj)->is_oopptr()->klass();
3107       if (subk != NULL && subk->is_loaded()) {
3108         int static_res = C->static_subtype_check(superk, subk);
3109         known_statically = (static_res == Compile::SSC_always_true || static_res == Compile::SSC_always_false);
3110       }
3111     }
3112 
3113     if (!known_statically) {
3114       const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3115       // We may not have profiling here or it may not help us. If we
3116       // have a speculative type use it to perform an exact cast.
3117       ciKlass* spec_obj_type = obj_type->speculative_type();
3118       if (spec_obj_type != NULL || (ProfileDynamicTypes && data != NULL)) {
3119         Node* cast_obj = maybe_cast_profiled_receiver(not_null_obj, NULL, spec_obj_type, safe_for_replace);
3120         if (stopped()) {            // Profile disagrees with this path.
3121           set_control(null_ctl);    // Null is the only remaining possibility.
3122           return intcon(0);
3123         }
3124         if (cast_obj != NULL &&
3125             // A value that's sometimes null is not something we can optimize well
3126             !(cast_obj->is_ValueType() && null_ctl != top())) {
3127           not_null_obj = cast_obj;
3128           is_value = not_null_obj->is_ValueType();
3129         }
3130       }
3131     }
3132   }
3133 
3134   // Load the object's klass
3135   Node* obj_klass = NULL;
3136   if (is_value) {
3137     obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->is_valuetype()->value_klass()));
3138   } else {
3139     obj_klass = load_object_klass(not_null_obj);
3140   }
3141 
3142   // Generate the subtype check
3143   Node* not_subtype_ctrl = gen_subtype_check(obj_klass, superklass);
3144 
3145   // Plug in the success path to the general merge in slot 1.
3146   region->init_req(_obj_path, control());
3147   phi   ->init_req(_obj_path, intcon(1));
3148 
3149   // Plug in the failing path to the general merge in slot 2.
3150   region->init_req(_fail_path, not_subtype_ctrl);
3151   phi   ->init_req(_fail_path, intcon(0));
3152 
3153   // Return final merged results
3154   set_control( _gvn.transform(region) );
3155   record_for_igvn(region);
3156 
3157   // If we know the type check always succeeds then we don't use the
3158   // profiling data at this bytecode. Don't lose it, feed it to the
3159   // type system as a speculative type.
3160   if (safe_for_replace && !is_value) {
3161     Node* casted_obj = record_profiled_receiver_for_speculation(obj);
3162     replace_in_map(obj, casted_obj);
3163   }
3164 
3165   return _gvn.transform(phi);
3166 }
3167 
3168 //-------------------------------gen_checkcast---------------------------------
3169 // Generate a checkcast idiom.  Used by both the checkcast bytecode and the
3170 // array store bytecode.  Stack must be as-if BEFORE doing the bytecode so the
3171 // uncommon-trap paths work.  Adjust stack after this call.
3172 // If failure_control is supplied and not null, it is filled in with
3173 // the control edge for the cast failure.  Otherwise, an appropriate
3174 // uncommon trap or exception is thrown.
3175 Node* GraphKit::gen_checkcast(Node *obj, Node* superklass, Node* *failure_control, bool never_null) {

3176   kill_dead_locals();           // Benefit all the uncommon traps
3177   const TypeKlassPtr* tk = _gvn.type(superklass)->is_klassptr();
3178   const TypeOopPtr* toop = TypeOopPtr::make_from_klass(tk->klass());
3179   assert(!never_null || toop->is_valuetypeptr(), "must be a value type pointer");
3180   bool is_value = obj->is_ValueType();
3181 
3182   // Fast cutout:  Check the case that the cast is vacuously true.
3183   // This detects the common cases where the test will short-circuit
3184   // away completely.  We do this before we perform the null check,
3185   // because if the test is going to turn into zero code, we don't
3186   // want a residual null check left around.  (Causes a slowdown,
3187   // for example, in some objArray manipulations, such as a[i]=a[j].)
3188   if (tk->singleton()) {
3189     ciKlass* klass = NULL;
3190     if (is_value) {
3191       klass = _gvn.type(obj)->is_valuetype()->value_klass();
3192     } else {
3193       const TypeOopPtr* objtp = _gvn.type(obj)->isa_oopptr();
3194       if (objtp != NULL) {
3195         klass = objtp->klass();
3196       }
3197     }
3198     if (klass != NULL) {
3199       switch (C->static_subtype_check(tk->klass(), klass)) {
3200       case Compile::SSC_always_true:
3201         // If we know the type check always succeed then we don't use
3202         // the profiling data at this bytecode. Don't lose it, feed it
3203         // to the type system as a speculative type.
3204         if (!is_value) {
3205           obj = record_profiled_receiver_for_speculation(obj);
3206           if (never_null) {
3207             obj = null_check(obj);
3208           }
3209           if (toop->is_valuetypeptr() && toop->value_klass()->is_scalarizable() && !gvn().type(obj)->maybe_null()) {
3210             obj = ValueTypeNode::make_from_oop(this, obj, toop->value_klass());
3211           }
3212         }
3213         return obj;
3214       case Compile::SSC_always_false:
3215         if (is_value || never_null) {
3216           if (!is_value) {
3217             null_check(obj);
3218           }
3219           // Value type is never null. Always throw an exception.
3220           builtin_throw(Deoptimization::Reason_class_check, makecon(TypeKlassPtr::make(klass)));
3221           return top();
3222         } else {
3223           // It needs a null check because a null will *pass* the cast check.

3224           return null_assert(obj);
3225         }
3226       }
3227     }
3228   }
3229 
3230   ciProfileData* data = NULL;
3231   bool safe_for_replace = false;
3232   if (failure_control == NULL) {        // use MDO in regular case only
3233     assert(java_bc() == Bytecodes::_aastore ||
3234            java_bc() == Bytecodes::_checkcast,
3235            "interpreter profiles type checks only for these BCs");
3236     data = method()->method_data()->bci_to_data(bci());
3237     safe_for_replace = true;
3238   }
3239 
3240   // Make the merge point
3241   enum { _obj_path = 1, _null_path, PATH_LIMIT };
3242   RegionNode* region = new RegionNode(PATH_LIMIT);
3243   Node*       phi    = new PhiNode(region, toop);
3244   C->set_has_split_ifs(true); // Has chance for split-if optimization
3245 
3246   // Use null-cast information if it is available
3247   bool speculative_not_null = false;
3248   bool never_see_null = ((failure_control == NULL)  // regular case only
3249                          && seems_never_null(obj, data, speculative_not_null));
3250 
3251   // Null check; get casted pointer; set region slot 3
3252   Node* null_ctl = top();
3253   Node* not_null_obj = NULL;
3254   if (is_value) {
3255     not_null_obj = obj;
3256   } else if (never_null) {
3257     not_null_obj = null_check(obj);
3258   } else {
3259     not_null_obj = null_check_oop(obj, &null_ctl, never_see_null, safe_for_replace, speculative_not_null);
3260   }
3261 
3262   // If not_null_obj is dead, only null-path is taken
3263   if (stopped()) {              // Doing instance-of on a NULL?
3264     set_control(null_ctl);
3265     return null();
3266   }
3267   region->init_req(_null_path, null_ctl);
3268   phi   ->init_req(_null_path, null());  // Set null path value
3269   if (null_ctl == top()) {
3270     // Do this eagerly, so that pattern matches like is_diamond_phi
3271     // will work even during parsing.
3272     assert(_null_path == PATH_LIMIT-1, "delete last");
3273     region->del_req(_null_path);
3274     phi   ->del_req(_null_path);
3275   }
3276 
3277   Node* cast_obj = NULL;
3278   if (!is_value && tk->klass_is_exact()) {
3279     // The following optimization tries to statically cast the speculative type of the object
3280     // (for example obtained during profiling) to the type of the superklass and then do a
3281     // dynamic check that the type of the object is what we expect. To work correctly
3282     // for checkcast and aastore the type of superklass should be exact.
3283     const TypeOopPtr* obj_type = _gvn.type(obj)->is_oopptr();
3284     // We may not have profiling here or it may not help us. If we have
3285     // a speculative type use it to perform an exact cast.
3286     ciKlass* spec_obj_type = obj_type->speculative_type();
3287     if (spec_obj_type != NULL || data != NULL) {
3288       cast_obj = maybe_cast_profiled_receiver(not_null_obj, tk->klass(), spec_obj_type, safe_for_replace);
3289       if (cast_obj != NULL && cast_obj->is_ValueType()) {
3290         if (null_ctl != top()) {
3291           cast_obj = NULL; // A value that's sometimes null is not something we can optimize well
3292         } else {
3293           return cast_obj;
3294         }
3295       }
3296       if (cast_obj != NULL) {
3297         if (failure_control != NULL) // failure is now impossible
3298           (*failure_control) = top();
3299         // adjust the type of the phi to the exact klass:
3300         phi->raise_bottom_type(_gvn.type(cast_obj)->meet_speculative(TypePtr::NULL_PTR));
3301       }
3302     }
3303   }
3304 
3305   if (cast_obj == NULL) {
3306     // Load the object's klass
3307     Node* obj_klass = NULL;
3308     if (is_value) {
3309       obj_klass = makecon(TypeKlassPtr::make(_gvn.type(not_null_obj)->is_valuetype()->value_klass()));
3310     } else {
3311       obj_klass = load_object_klass(not_null_obj);
3312     }
3313 
3314     // Generate the subtype check
3315     Node* not_subtype_ctrl = gen_subtype_check( obj_klass, superklass );
3316 
3317     // Plug in success path into the merge
3318     cast_obj = is_value ? not_null_obj : _gvn.transform(new CheckCastPPNode(control(), not_null_obj, toop));
3319     // Failure path ends in uncommon trap (or may be dead - failure impossible)
3320     if (failure_control == NULL) {
3321       if (not_subtype_ctrl != top()) { // If failure is possible
3322         PreserveJVMState pjvms(this);
3323         set_control(not_subtype_ctrl);
3324         builtin_throw(Deoptimization::Reason_class_check, obj_klass);
3325       }
3326     } else {
3327       (*failure_control) = not_subtype_ctrl;
3328     }
3329   }
3330 
3331   region->init_req(_obj_path, control());
3332   phi   ->init_req(_obj_path, cast_obj);
3333 
3334   // A merge of NULL or Casted-NotNull obj
3335   Node* res = _gvn.transform(phi);
3336 
3337   // Note I do NOT always 'replace_in_map(obj,result)' here.
3338   //  if( tk->klass()->can_be_primary_super()  )
3339     // This means that if I successfully store an Object into an array-of-String
3340     // I 'forget' that the Object is really now known to be a String.  I have to
3341     // do this because we don't have true union types for interfaces - if I store
3342     // a Baz into an array-of-Interface and then tell the optimizer it's an
3343     // Interface, I forget that it's also a Baz and cannot do Baz-like field
3344     // references to it.  FIX THIS WHEN UNION TYPES APPEAR!
3345   //  replace_in_map( obj, res );
3346 
3347   // Return final merged results
3348   set_control( _gvn.transform(region) );
3349   record_for_igvn(region);
3350 
3351   if (!is_value) {
3352     res = record_profiled_receiver_for_speculation(res);
3353     if (toop->is_valuetypeptr() && toop->value_klass()->is_scalarizable() && !gvn().type(res)->maybe_null()) {
3354       res = ValueTypeNode::make_from_oop(this, res, toop->value_klass());
3355     }
3356   }
3357   return res;
3358 }
3359 
3360 Node* GraphKit::is_always_locked(Node* obj) {
3361   Node* mark_addr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
3362   Node* mark = make_load(NULL, mark_addr, TypeX_X, TypeX_X->basic_type(), MemNode::unordered);
3363   Node* value_mask = _gvn.MakeConX(markOopDesc::always_locked_pattern);
3364   return _gvn.transform(new AndXNode(mark, value_mask));
3365 }
3366 
3367 Node* GraphKit::gen_value_type_test(Node* kls) {
3368   Node* flags_addr = basic_plus_adr(kls, in_bytes(Klass::access_flags_offset()));
3369   Node* flags = make_load(NULL, flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
3370   Node* is_value = _gvn.transform(new AndINode(flags, intcon(JVM_ACC_VALUE)));
3371   Node* cmp = _gvn.transform(new CmpINode(is_value, intcon(0)));
3372   return cmp;
3373 }
3374 
3375 // Deoptimize if 'obj' is a value type
3376 void GraphKit::gen_value_type_guard(Node* obj, int nargs) {
3377   assert(EnableValhalla, "should only be used if value types are enabled");
3378   Node* bol = NULL;
3379   if (obj->is_ValueTypeBase()) {
3380     bol = intcon(0);
3381   } else {
3382     Node* is_value = is_always_locked(obj);
3383     Node* value_mask = _gvn.MakeConX(markOopDesc::always_locked_pattern);
3384     Node* cmp = _gvn.transform(new CmpXNode(is_value, value_mask));
3385     bol = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3386   }
3387   { BuildCutout unless(this, bol, PROB_MAX);
3388     inc_sp(nargs);
3389     uncommon_trap(Deoptimization::Reason_class_check,
3390                   Deoptimization::Action_none);
3391   }
3392 }
3393 
3394 // Deoptimize if 'ary' is flattened or if 'obj' is null and 'ary' is a value type array
3395 void GraphKit::gen_value_type_array_guard(Node* ary, Node* obj, int nargs) {
3396   assert(EnableValhalla, "should only be used if value types are enabled");
3397   // Load array element klass
3398   Node* kls = load_object_klass(ary);
3399   Node* k_adr = basic_plus_adr(kls, in_bytes(ArrayKlass::element_klass_offset()));
3400   Node* elem_klass = _gvn.transform(LoadKlassNode::make(_gvn, NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS));
3401   // Check if element is a value type
3402   Node* flags_addr = basic_plus_adr(elem_klass, in_bytes(Klass::access_flags_offset()));
3403   Node* flags = make_load(NULL, flags_addr, TypeInt::INT, T_INT, MemNode::unordered);
3404   Node* is_value_elem = _gvn.transform(new AndINode(flags, intcon(JVM_ACC_VALUE)));
3405 
3406   const Type* objtype = _gvn.type(obj);
3407   if (objtype == TypePtr::NULL_PTR) {
3408     // Object is always null, check if array is a value type array
3409     Node* cmp = _gvn.transform(new CmpINode(is_value_elem, intcon(0)));
3410     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
3411     { BuildCutout unless(this, bol, PROB_MAX);
3412       // TODO just deoptimize for now if we store null to a value type array
3413       inc_sp(nargs);
3414       uncommon_trap(Deoptimization::Reason_array_check,
3415                     Deoptimization::Action_none);
3416     }
3417   } else {
3418     // Check if (is_value_elem && obj_is_null) <=> (!is_value_elem | !obj_is_null == 0)
3419     // TODO what if we later figure out that obj is never null?
3420     Node* not_value = _gvn.transform(new XorINode(is_value_elem, intcon(JVM_ACC_VALUE)));
3421     not_value = _gvn.transform(new ConvI2LNode(not_value));
3422     Node* not_null = _gvn.transform(new CastP2XNode(NULL, obj));
3423     Node* both = _gvn.transform(new OrLNode(not_null, not_value));
3424     Node* cmp  = _gvn.transform(new CmpLNode(both, longcon(0)));
3425     Node* bol  = _gvn.transform(new BoolNode(cmp, BoolTest::ne));
3426     { BuildCutout unless(this, bol, PROB_MAX);
3427       // TODO just deoptimize for now if we store null to a value type array
3428       inc_sp(nargs);
3429       uncommon_trap(Deoptimization::Reason_array_check,
3430                     Deoptimization::Action_none);
3431     }
3432   }
3433 }
3434 
3435 Node* GraphKit::load_lh_array_tag(Node* kls) {
3436   Node* lhp = basic_plus_adr(kls, in_bytes(Klass::layout_helper_offset()));
3437   Node* layout_val = make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3438   return _gvn.transform(new RShiftINode(layout_val, intcon(Klass::_lh_array_tag_shift)));
3439 }
3440 
3441 
3442 Node* GraphKit::gen_lh_array_test(Node* kls, unsigned int lh_value) {
3443   Node* layout_val = load_lh_array_tag(kls);
3444   Node* cmp = _gvn.transform(new CmpINode(layout_val, intcon(lh_value)));
3445   return cmp;
3446 }
3447 
3448 
3449 //------------------------------next_monitor-----------------------------------
3450 // What number should be given to the next monitor?
3451 int GraphKit::next_monitor() {
3452   int current = jvms()->monitor_depth()* C->sync_stack_slots();
3453   int next = current + C->sync_stack_slots();
3454   // Keep the toplevel high water mark current:
3455   if (C->fixed_slots() < next)  C->set_fixed_slots(next);
3456   return current;
3457 }
3458 
3459 //------------------------------insert_mem_bar---------------------------------
3460 // Memory barrier to avoid floating things around
3461 // The membar serves as a pinch point between both control and all memory slices.
3462 Node* GraphKit::insert_mem_bar(int opcode, Node* precedent) {
3463   MemBarNode* mb = MemBarNode::make(C, opcode, Compile::AliasIdxBot, precedent);
3464   mb->init_req(TypeFunc::Control, control());
3465   mb->init_req(TypeFunc::Memory,  reset_memory());
3466   Node* membar = _gvn.transform(mb);
3467   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3468   set_all_memory_call(membar);


3494   }
3495   Node* membar = _gvn.transform(mb);
3496   set_control(_gvn.transform(new ProjNode(membar, TypeFunc::Control)));
3497   if (alias_idx == Compile::AliasIdxBot) {
3498     merged_memory()->set_base_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)));
3499   } else {
3500     set_memory(_gvn.transform(new ProjNode(membar, TypeFunc::Memory)),alias_idx);
3501   }
3502   return membar;
3503 }
3504 
3505 //------------------------------shared_lock------------------------------------
3506 // Emit locking code.
3507 FastLockNode* GraphKit::shared_lock(Node* obj) {
3508   // bci is either a monitorenter bc or InvocationEntryBci
3509   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3510   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3511 
3512   if( !GenerateSynchronizationCode )
3513     return NULL;                // Not locking things?
3514 
3515   // We cannot lock on a value type
3516   const TypeOopPtr* objptr = _gvn.type(obj)->make_oopptr();
3517   if (objptr->can_be_value_type()) {
3518     gen_value_type_guard(obj, 1);
3519   }
3520 
3521   if (stopped())                // Dead monitor?
3522     return NULL;
3523 
3524   assert(dead_locals_are_killed(), "should kill locals before sync. point");
3525 
3526   obj = access_resolve(obj, ACCESS_READ | ACCESS_WRITE);
3527 
3528   // Box the stack location
3529   Node* box = _gvn.transform(new BoxLockNode(next_monitor()));
3530   Node* mem = reset_memory();
3531 
3532   FastLockNode * flock = _gvn.transform(new FastLockNode(0, obj, box) )->as_FastLock();
3533   if (UseBiasedLocking && PrintPreciseBiasedLockingStatistics) {
3534     // Create the counters for this fast lock.
3535     flock->create_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3536   }
3537 
3538   // Create the rtm counters for this fast lock if needed.
3539   flock->create_rtm_lock_counter(sync_jvms()); // sync_jvms used to get current bci
3540 


3575   }
3576 #endif
3577 
3578   return flock;
3579 }
3580 
3581 
3582 //------------------------------shared_unlock----------------------------------
3583 // Emit unlocking code.
3584 void GraphKit::shared_unlock(Node* box, Node* obj) {
3585   // bci is either a monitorenter bc or InvocationEntryBci
3586   // %%% SynchronizationEntryBCI is redundant; use InvocationEntryBci in interfaces
3587   assert(SynchronizationEntryBCI == InvocationEntryBci, "");
3588 
3589   if( !GenerateSynchronizationCode )
3590     return;
3591   if (stopped()) {               // Dead monitor?
3592     map()->pop_monitor();        // Kill monitor from debug info
3593     return;
3594   }
3595   assert(!obj->is_ValueTypeBase(), "should not unlock on value type");
3596 
3597   // Memory barrier to avoid floating things down past the locked region
3598   insert_mem_bar(Op_MemBarReleaseLock);
3599 
3600   const TypeFunc *tf = OptoRuntime::complete_monitor_exit_Type();
3601   UnlockNode *unlock = new UnlockNode(C, tf);
3602 #ifdef ASSERT
3603   unlock->set_dbg_jvms(sync_jvms());
3604 #endif
3605   uint raw_idx = Compile::AliasIdxRaw;
3606   unlock->init_req( TypeFunc::Control, control() );
3607   unlock->init_req( TypeFunc::Memory , memory(raw_idx) );
3608   unlock->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
3609   unlock->init_req( TypeFunc::FramePtr, frameptr() );
3610   unlock->init_req( TypeFunc::ReturnAdr, top() );
3611 
3612   unlock->init_req(TypeFunc::Parms + 0, obj);
3613   unlock->init_req(TypeFunc::Parms + 1, box);
3614   unlock = _gvn.transform(unlock)->as_Unlock();
3615 
3616   Node* mem = reset_memory();
3617 
3618   // unlock has no side-effects, sets few values
3619   set_predefined_output_for_runtime_call(unlock, mem, TypeRawPtr::BOTTOM);
3620 
3621   // Kill monitor from debug info
3622   map()->pop_monitor( );
3623 }
3624 
3625 //-------------------------------get_layout_helper-----------------------------
3626 // If the given klass is a constant or known to be an array,
3627 // fetch the constant layout helper value into constant_value
3628 // and return (Node*)NULL.  Otherwise, load the non-constant
3629 // layout helper value, and return the node which represents it.
3630 // This two-faced routine is useful because allocation sites
3631 // almost always feature constant types.
3632 Node* GraphKit::get_layout_helper(Node* klass_node, jint& constant_value) {
3633   const TypeKlassPtr* inst_klass = _gvn.type(klass_node)->isa_klassptr();
3634   if (!StressReflectiveCode && inst_klass != NULL) {
3635     ciKlass* klass = inst_klass->klass();
3636     assert(klass != NULL, "klass should not be NULL");
3637     bool    xklass = inst_klass->klass_is_exact();
3638     bool can_be_value_array = false;
3639     if (klass->is_array_klass() && EnableValhalla && ValueArrayFlatten) {
3640       ciKlass* elem = klass->as_array_klass()->element_klass();
3641       can_be_value_array = elem != NULL && (elem->is_java_lang_Object() || elem->is_interface());
3642     }
3643     if (xklass || (klass->is_array_klass() && !can_be_value_array)) {
3644       jint lhelper = klass->layout_helper();
3645       if (lhelper != Klass::_lh_neutral_value) {
3646         constant_value = lhelper;
3647         return (Node*) NULL;
3648       }
3649     }
3650   }
3651   constant_value = Klass::_lh_neutral_value;  // put in a known value
3652   Node* lhp = basic_plus_adr(klass_node, klass_node, in_bytes(Klass::layout_helper_offset()));
3653   return make_load(NULL, lhp, TypeInt::INT, T_INT, MemNode::unordered);
3654 }
3655 
3656 // We just put in an allocate/initialize with a big raw-memory effect.
3657 // Hook selected additional alias categories on the initialization.
3658 static void hook_memory_on_init(GraphKit& kit, int alias_idx,
3659                                 MergeMemNode* init_in_merge,
3660                                 Node* init_out_raw) {
3661   DEBUG_ONLY(Node* init_in_raw = init_in_merge->base_memory());
3662   assert(init_in_merge->memory_at(alias_idx) == init_in_raw, "");
3663 


3685 
3686   // a normal slow-call doesn't change i_o, but an allocation does
3687   // we create a separate i_o projection for the normal control path
3688   set_i_o(_gvn.transform( new ProjNode(allocx, TypeFunc::I_O, false) ) );
3689   Node* rawoop = _gvn.transform( new ProjNode(allocx, TypeFunc::Parms) );
3690 
3691   // put in an initialization barrier
3692   InitializeNode* init = insert_mem_bar_volatile(Op_Initialize, rawidx,
3693                                                  rawoop)->as_Initialize();
3694   assert(alloc->initialization() == init,  "2-way macro link must work");
3695   assert(init ->allocation()     == alloc, "2-way macro link must work");
3696   {
3697     // Extract memory strands which may participate in the new object's
3698     // initialization, and source them from the new InitializeNode.
3699     // This will allow us to observe initializations when they occur,
3700     // and link them properly (as a group) to the InitializeNode.
3701     assert(init->in(InitializeNode::Memory) == malloc, "");
3702     MergeMemNode* minit_in = MergeMemNode::make(malloc);
3703     init->set_req(InitializeNode::Memory, minit_in);
3704     record_for_igvn(minit_in); // fold it up later, if possible
3705     _gvn.set_type(minit_in, Type::MEMORY);
3706     Node* minit_out = memory(rawidx);
3707     assert(minit_out->is_Proj() && minit_out->in(0) == init, "");
3708     // Add an edge in the MergeMem for the header fields so an access
3709     // to one of those has correct memory state
3710     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::mark_offset_in_bytes())));
3711     set_memory(minit_out, C->get_alias_index(oop_type->add_offset(oopDesc::klass_offset_in_bytes())));
3712     if (oop_type->isa_aryptr()) {
3713       const TypeAryPtr* arytype = oop_type->is_aryptr();
3714       if (arytype->klass()->is_value_array_klass()) {
3715         ciValueArrayKlass* vak = arytype->klass()->as_value_array_klass();
3716         ciValueKlass* vk = vak->element_klass()->as_value_klass();
3717         for (int i = 0, len = vk->nof_nonstatic_fields(); i < len; i++) {
3718           ciField* field = vk->nonstatic_field_at(i);
3719           if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3720             continue;  // do not bother to track really large numbers of fields
3721           int off_in_vt = field->offset() - vk->first_field_offset();
3722           const TypePtr* adr_type = arytype->with_field_offset(off_in_vt)->add_offset(Type::OffsetBot);
3723           int fieldidx = C->get_alias_index(adr_type);
3724           hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3725         }
3726       } else {
3727         const TypePtr* telemref = oop_type->add_offset(Type::OffsetBot);
3728         int            elemidx  = C->get_alias_index(telemref);
3729         hook_memory_on_init(*this, elemidx, minit_in, minit_out);
3730       }
3731     } else if (oop_type->isa_instptr()) {
3732       set_memory(minit_out, C->get_alias_index(oop_type)); // mark word
3733       ciInstanceKlass* ik = oop_type->klass()->as_instance_klass();
3734       for (int i = 0, len = ik->nof_nonstatic_fields(); i < len; i++) {
3735         ciField* field = ik->nonstatic_field_at(i);
3736         if (field->offset() >= TrackedInitializationLimit * HeapWordSize)
3737           continue;  // do not bother to track really large numbers of fields
3738         // Find (or create) the alias category for this field:
3739         int fieldidx = C->alias_type(field)->index();
3740         hook_memory_on_init(*this, fieldidx, minit_in, minit_out);
3741       }
3742     }
3743   }
3744 
3745   // Cast raw oop to the real thing...
3746   Node* javaoop = new CheckCastPPNode(control(), rawoop, oop_type);
3747   javaoop = _gvn.transform(javaoop);
3748   C->set_recent_alloc(control(), javaoop);
3749   assert(just_allocated_object(control()) == javaoop, "just allocated");
3750 
3751 #ifdef ASSERT
3752   { // Verify that the AllocateNode::Ideal_allocation recognizers work:


3763       assert(alloc->in(AllocateNode::ALength)->is_top(), "no length, please");
3764     }
3765   }
3766 #endif //ASSERT
3767 
3768   return javaoop;
3769 }
3770 
3771 //---------------------------new_instance--------------------------------------
3772 // This routine takes a klass_node which may be constant (for a static type)
3773 // or may be non-constant (for reflective code).  It will work equally well
3774 // for either, and the graph will fold nicely if the optimizer later reduces
3775 // the type to a constant.
3776 // The optional arguments are for specialized use by intrinsics:
3777 //  - If 'extra_slow_test' if not null is an extra condition for the slow-path.
3778 //  - If 'return_size_val', report the the total object size to the caller.
3779 //  - deoptimize_on_exception controls how Java exceptions are handled (rethrow vs deoptimize)
3780 Node* GraphKit::new_instance(Node* klass_node,
3781                              Node* extra_slow_test,
3782                              Node* *return_size_val,
3783                              bool deoptimize_on_exception,
3784                              ValueTypeBaseNode* value_node) {
3785   // Compute size in doublewords
3786   // The size is always an integral number of doublewords, represented
3787   // as a positive bytewise size stored in the klass's layout_helper.
3788   // The layout_helper also encodes (in a low bit) the need for a slow path.
3789   jint  layout_con = Klass::_lh_neutral_value;
3790   Node* layout_val = get_layout_helper(klass_node, layout_con);
3791   bool  layout_is_con = (layout_val == NULL);
3792 
3793   if (extra_slow_test == NULL)  extra_slow_test = intcon(0);
3794   // Generate the initial go-slow test.  It's either ALWAYS (return a
3795   // Node for 1) or NEVER (return a NULL) or perhaps (in the reflective
3796   // case) a computed value derived from the layout_helper.
3797   Node* initial_slow_test = NULL;
3798   if (layout_is_con) {
3799     assert(!StressReflectiveCode, "stress mode does not use these paths");
3800     bool must_go_slow = Klass::layout_helper_needs_slow_path(layout_con);
3801     initial_slow_test = must_go_slow ? intcon(1) : extra_slow_test;
3802   } else {   // reflective case
3803     // This reflective path is used by Unsafe.allocateInstance.
3804     // (It may be stress-tested by specifying StressReflectiveCode.)
3805     // Basically, we want to get into the VM is there's an illegal argument.
3806     Node* bit = intcon(Klass::_lh_instance_slow_path_bit);
3807     initial_slow_test = _gvn.transform( new AndINode(layout_val, bit) );
3808     if (extra_slow_test != intcon(0)) {
3809       initial_slow_test = _gvn.transform( new OrINode(initial_slow_test, extra_slow_test) );
3810     }
3811     // (Macro-expander will further convert this to a Bool, if necessary.)


3822 
3823     // Clear the low bits to extract layout_helper_size_in_bytes:
3824     assert((int)Klass::_lh_instance_slow_path_bit < BytesPerLong, "clear bit");
3825     Node* mask = MakeConX(~ (intptr_t)right_n_bits(LogBytesPerLong));
3826     size = _gvn.transform( new AndXNode(size, mask) );
3827   }
3828   if (return_size_val != NULL) {
3829     (*return_size_val) = size;
3830   }
3831 
3832   // This is a precise notnull oop of the klass.
3833   // (Actually, it need not be precise if this is a reflective allocation.)
3834   // It's what we cast the result to.
3835   const TypeKlassPtr* tklass = _gvn.type(klass_node)->isa_klassptr();
3836   if (!tklass)  tklass = TypeKlassPtr::OBJECT;
3837   const TypeOopPtr* oop_type = tklass->as_instance_type();
3838 
3839   // Now generate allocation code
3840 
3841   // The entire memory state is needed for slow path of the allocation
3842   // since GC and deoptimization can happen.
3843   Node *mem = reset_memory();
3844   set_all_memory(mem); // Create new memory state
3845 
3846   AllocateNode* alloc = new AllocateNode(C, AllocateNode::alloc_type(Type::TOP),
3847                                          control(), mem, i_o(),
3848                                          size, klass_node,
3849                                          initial_slow_test, value_node);
3850 
3851   return set_output_for_allocation(alloc, oop_type, deoptimize_on_exception);
3852 }
3853 
3854 // With compressed oops, the 64 bit init value for non flattened value
3855 // arrays is built from 2 32 bit compressed oops
3856 static Node* raw_default_for_coops(Node* default_value, GraphKit& kit) {
3857   Node* lower = kit.gvn().transform(new CastP2XNode(kit.control(), default_value));
3858   Node* upper = kit.gvn().transform(new LShiftLNode(lower, kit.intcon(32)));
3859   return kit.gvn().transform(new OrLNode(lower, upper));
3860 }
3861 
3862 //-------------------------------new_array-------------------------------------
3863 // helper for newarray and anewarray
3864 // The 'length' parameter is (obviously) the length of the array.
3865 // See comments on new_instance for the meaning of the other arguments.
3866 Node* GraphKit::new_array(Node* klass_node,     // array klass (maybe variable)
3867                           Node* length,         // number of array elements
3868                           int   nargs,          // number of arguments to push back for uncommon trap
3869                           Node* *return_size_val,
3870                           bool deoptimize_on_exception) {
3871   jint  layout_con = Klass::_lh_neutral_value;
3872   Node* layout_val = get_layout_helper(klass_node, layout_con);
3873   bool  layout_is_con = (layout_val == NULL);
3874 
3875   if (!layout_is_con && !StressReflectiveCode &&
3876       !too_many_traps(Deoptimization::Reason_class_check)) {
3877     // This is a reflective array creation site.
3878     // Optimistically assume that it is a subtype of Object[],
3879     // so that we can fold up all the address arithmetic.
3880     layout_con = Klass::array_layout_helper(T_OBJECT);
3881     Node* cmp_lh = _gvn.transform( new CmpINode(layout_val, intcon(layout_con)) );
3882     Node* bol_lh = _gvn.transform( new BoolNode(cmp_lh, BoolTest::eq) );
3883     { BuildCutout unless(this, bol_lh, PROB_MAX);
3884       inc_sp(nargs);
3885       uncommon_trap(Deoptimization::Reason_class_check,
3886                     Deoptimization::Action_maybe_recompile);
3887     }
3888     layout_val = NULL;
3889     layout_is_con = true;
3890   }
3891 
3892   // Generate the initial go-slow test.  Make sure we do not overflow
3893   // if length is huge (near 2Gig) or negative!  We do not need
3894   // exact double-words here, just a close approximation of needed
3895   // double-words.  We can't add any offset or rounding bits, lest we
3896   // take a size -1 of bytes and make it positive.  Use an unsigned
3897   // compare, so negative sizes look hugely positive.
3898   int fast_size_limit = FastAllocateSizeLimit;
3899   if (layout_is_con) {
3900     assert(!StressReflectiveCode, "stress mode does not use these paths");
3901     // Increase the size limit if we have exact knowledge of array type.
3902     int log2_esize = Klass::layout_helper_log2_element_size(layout_con);
3903     fast_size_limit <<= MAX2(LogBytesPerLong - log2_esize, 0);
3904   }
3905 
3906   Node* initial_slow_cmp  = _gvn.transform( new CmpUNode( length, intcon( fast_size_limit ) ) );
3907   Node* initial_slow_test = _gvn.transform( new BoolNode( initial_slow_cmp, BoolTest::gt ) );
3908 
3909   // --- Size Computation ---
3910   // array_size = round_to_heap(array_header + (length << elem_shift));
3911   // where round_to_heap(x) == align_to(x, MinObjAlignmentInBytes)
3912   // and align_to(x, y) == ((x + y-1) & ~(y-1))
3913   // The rounding mask is strength-reduced, if possible.
3914   int round_mask = MinObjAlignmentInBytes - 1;
3915   Node* header_size = NULL;
3916   int   header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
3917   // (T_BYTE has the weakest alignment and size restrictions...)
3918   if (layout_is_con) {
3919     int       hsize  = Klass::layout_helper_header_size(layout_con);
3920     int       eshift = Klass::layout_helper_log2_element_size(layout_con);
3921     BasicType etype  = Klass::layout_helper_element_type(layout_con);
3922     bool is_value_array = Klass::layout_helper_is_valueArray(layout_con);
3923     if ((round_mask & ~right_n_bits(eshift)) == 0)
3924       round_mask = 0;  // strength-reduce it if it goes away completely
3925     assert(is_value_array || (hsize & right_n_bits(eshift)) == 0, "hsize is pre-rounded");
3926     assert(header_size_min <= hsize, "generic minimum is smallest");
3927     header_size_min = hsize;
3928     header_size = intcon(hsize + round_mask);
3929   } else {
3930     Node* hss   = intcon(Klass::_lh_header_size_shift);
3931     Node* hsm   = intcon(Klass::_lh_header_size_mask);
3932     Node* hsize = _gvn.transform( new URShiftINode(layout_val, hss) );
3933     hsize       = _gvn.transform( new AndINode(hsize, hsm) );
3934     Node* mask  = intcon(round_mask);
3935     header_size = _gvn.transform( new AddINode(hsize, mask) );
3936   }
3937 
3938   Node* elem_shift = NULL;
3939   if (layout_is_con) {
3940     int eshift = Klass::layout_helper_log2_element_size(layout_con);
3941     if (eshift != 0)
3942       elem_shift = intcon(eshift);
3943   } else {
3944     // There is no need to mask or shift this value.
3945     // The semantics of LShiftINode include an implicit mask to 0x1F.


3989   // places, one where the length is sharply limited, and the other
3990   // after a successful allocation.
3991   Node* abody = lengthx;
3992   if (elem_shift != NULL)
3993     abody     = _gvn.transform( new LShiftXNode(lengthx, elem_shift) );
3994   Node* size  = _gvn.transform( new AddXNode(headerx, abody) );
3995   if (round_mask != 0) {
3996     Node* mask = MakeConX(~round_mask);
3997     size       = _gvn.transform( new AndXNode(size, mask) );
3998   }
3999   // else if round_mask == 0, the size computation is self-rounding
4000 
4001   if (return_size_val != NULL) {
4002     // This is the size
4003     (*return_size_val) = size;
4004   }
4005 
4006   // Now generate allocation code
4007 
4008   // The entire memory state is needed for slow path of the allocation
4009   // since GC and deoptimization can happen.
4010   Node *mem = reset_memory();
4011   set_all_memory(mem); // Create new memory state
4012 
4013   if (initial_slow_test->is_Bool()) {
4014     // Hide it behind a CMoveI, or else PhaseIdealLoop::split_up will get sick.
4015     initial_slow_test = initial_slow_test->as_Bool()->as_int_value(&_gvn);
4016   }
4017 
4018   const TypeOopPtr* ary_type = _gvn.type(klass_node)->is_klassptr()->as_instance_type();
4019   const TypeAryPtr* ary_ptr = ary_type->isa_aryptr();
4020   const Type* elem = NULL;
4021   ciKlass* elem_klass = NULL;
4022   if (ary_ptr != NULL) {
4023     elem = ary_ptr->elem();
4024     elem_klass = ary_ptr->klass()->as_array_klass()->element_klass();
4025   }
4026   Node* default_value = NULL;
4027   Node* raw_default_value = NULL;
4028   if (elem != NULL && elem->make_ptr()) {
4029     if (elem_klass != NULL && elem_klass->is_valuetype()) {
4030       ciValueKlass* vk = elem_klass->as_value_klass();
4031       if (!vk->flatten_array()) {
4032         default_value = ValueTypeNode::default_oop(gvn(), vk);
4033         if (elem->isa_narrowoop()) {
4034           default_value = _gvn.transform(new EncodePNode(default_value, elem));
4035           raw_default_value = raw_default_for_coops(default_value, *this);
4036         } else {
4037           raw_default_value = _gvn.transform(new CastP2XNode(control(), default_value));
4038         }
4039       }
4040     }
4041   }
4042 
4043   if (EnableValhalla && (elem == NULL || (elem_klass != NULL && elem_klass->is_java_lang_Object() && !ary_type->klass_is_exact()))) {
4044     assert(raw_default_value == NULL, "shouldn't be set yet");
4045 
4046     // unkown array type, could be a non flattened value array that's
4047     // initialize to a non zero default value
4048 
4049     Node* r = new RegionNode(4);
4050     Node* phi = new PhiNode(r, TypeX_X);
4051 
4052     Node* cmp = gen_lh_array_test(klass_node, Klass::_lh_array_tag_obj_value);
4053     Node* bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
4054     IfNode* iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4055     r->init_req(1, _gvn.transform(new IfFalseNode(iff)));
4056     phi->init_req(1, MakeConX(0));
4057     set_control(_gvn.transform(new IfTrueNode(iff)));
4058     Node* k_adr = basic_plus_adr(klass_node, in_bytes(ArrayKlass::element_klass_offset()));
4059     Node* elem_klass = _gvn.transform(LoadKlassNode::make(_gvn, control(), immutable_memory(), k_adr, TypeInstPtr::KLASS));
4060     cmp = gen_value_type_test(elem_klass);
4061     bol = _gvn.transform(new BoolNode(cmp, BoolTest::eq));
4062     iff = create_and_map_if(control(), bol, PROB_FAIR, COUNT_UNKNOWN);
4063     r->init_req(2, _gvn.transform(new IfTrueNode(iff)));
4064     phi->init_req(2, MakeConX(0));
4065     set_control(_gvn.transform(new IfFalseNode(iff)));
4066 
4067     Node* adr_fixed_block_addr = basic_plus_adr(elem_klass, in_bytes(InstanceKlass::adr_valueklass_fixed_block_offset()));
4068     Node* adr_fixed_block = make_load(control(), adr_fixed_block_addr, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4069 
4070     Node* default_value_offset_addr = basic_plus_adr(adr_fixed_block, in_bytes(ValueKlass::default_value_offset_offset()));
4071     Node* default_value_offset = make_load(control(), default_value_offset_addr, TypeInt::INT, T_INT, MemNode::unordered);
4072 
4073     Node* elem_mirror = load_mirror_from_klass(elem_klass);
4074 
4075     Node* default_value_addr = basic_plus_adr(elem_mirror, ConvI2X(default_value_offset));
4076     const TypePtr* adr_type = _gvn.type(default_value_addr)->is_ptr();
4077     Node* val = access_load_at(elem_mirror, default_value_addr, adr_type, TypeInstPtr::BOTTOM, T_OBJECT, IN_HEAP);
4078 
4079     if (UseCompressedOops) {
4080       val = _gvn.transform(new EncodePNode(val, elem));
4081       val = raw_default_for_coops(val, *this);
4082     } else {
4083       val = _gvn.transform(new CastP2XNode(control(), val));
4084     }
4085     r->init_req(3, control());
4086     phi->init_req(3, val);
4087     set_control(_gvn.transform(r));
4088     raw_default_value = _gvn.transform(phi);
4089   }
4090 
4091   // Create the AllocateArrayNode and its result projections
4092   AllocateArrayNode* alloc
4093     = new AllocateArrayNode(C, AllocateArrayNode::alloc_type(TypeInt::INT),
4094                             control(), mem, i_o(),
4095                             size, klass_node,
4096                             initial_slow_test,
4097                             length, default_value,
4098                             raw_default_value);
4099 
4100   // Cast to correct type.  Note that the klass_node may be constant or not,
4101   // and in the latter case the actual array type will be inexact also.
4102   // (This happens via a non-constant argument to inline_native_newArray.)
4103   // In any case, the value of klass_node provides the desired array type.
4104   const TypeInt* length_type = _gvn.find_int_type(length);

4105   if (ary_type->isa_aryptr() && length_type != NULL) {
4106     // Try to get a better type than POS for the size
4107     ary_type = ary_type->is_aryptr()->cast_to_size(length_type);
4108   }
4109 
4110   Node* javaoop = set_output_for_allocation(alloc, ary_type, deoptimize_on_exception);
4111 
4112   // Cast length on remaining path to be as narrow as possible
4113   if (map()->find_edge(length) >= 0) {
4114     Node* ccast = alloc->make_ideal_length(ary_type, &_gvn);
4115     if (ccast != length) {
4116       _gvn.set_type_bottom(ccast);
4117       record_for_igvn(ccast);
4118       replace_in_map(length, ccast);
4119     }
4120   }
4121 
4122   return javaoop;
4123 }
4124 


4239   set_all_memory(ideal.merged_memory());
4240   set_i_o(ideal.i_o());
4241   set_control(ideal.ctrl());
4242 }
4243 
4244 void GraphKit::final_sync(IdealKit& ideal) {
4245   // Final sync IdealKit and graphKit.
4246   sync_kit(ideal);
4247 }
4248 
4249 Node* GraphKit::load_String_length(Node* str, bool set_ctrl) {
4250   Node* len = load_array_length(load_String_value(str, set_ctrl));
4251   Node* coder = load_String_coder(str, set_ctrl);
4252   // Divide length by 2 if coder is UTF16
4253   return _gvn.transform(new RShiftINode(len, coder));
4254 }
4255 
4256 Node* GraphKit::load_String_value(Node* str, bool set_ctrl) {
4257   int value_offset = java_lang_String::value_offset_in_bytes();
4258   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4259                                                      false, NULL, Type::Offset(0));
4260   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4261   const TypeAryPtr* value_type = TypeAryPtr::make(TypePtr::NotNull,
4262                                                   TypeAry::make(TypeInt::BYTE, TypeInt::POS),
4263                                                   ciTypeArrayKlass::make(T_BYTE), true, Type::Offset(0));
4264   Node* p = basic_plus_adr(str, str, value_offset);
4265   Node* load = access_load_at(str, p, value_field_type, value_type, T_OBJECT,
4266                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4267   return load;
4268 }
4269 
4270 Node* GraphKit::load_String_coder(Node* str, bool set_ctrl) {
4271   if (!CompactStrings) {
4272     return intcon(java_lang_String::CODER_UTF16);
4273   }
4274   int coder_offset = java_lang_String::coder_offset_in_bytes();
4275   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4276                                                      false, NULL, Type::Offset(0));
4277   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4278 
4279   Node* p = basic_plus_adr(str, str, coder_offset);
4280   Node* load = access_load_at(str, p, coder_field_type, TypeInt::BYTE, T_BYTE,
4281                               IN_HEAP | (set_ctrl ? C2_CONTROL_DEPENDENT_LOAD : 0) | MO_UNORDERED);
4282   return load;
4283 }
4284 
4285 void GraphKit::store_String_value(Node* str, Node* value) {
4286   int value_offset = java_lang_String::value_offset_in_bytes();
4287   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4288                                                      false, NULL, Type::Offset(0));
4289   const TypePtr* value_field_type = string_type->add_offset(value_offset);
4290 
4291   access_store_at(str,  basic_plus_adr(str, value_offset), value_field_type,
4292                   value, TypeAryPtr::BYTES, T_OBJECT, IN_HEAP | MO_UNORDERED);
4293 }
4294 
4295 void GraphKit::store_String_coder(Node* str, Node* value) {
4296   int coder_offset = java_lang_String::coder_offset_in_bytes();
4297   const TypeInstPtr* string_type = TypeInstPtr::make(TypePtr::NotNull, C->env()->String_klass(),
4298                                                      false, NULL, Type::Offset(0));
4299   const TypePtr* coder_field_type = string_type->add_offset(coder_offset);
4300 
4301   access_store_at(str, basic_plus_adr(str, coder_offset), coder_field_type,
4302                   value, TypeInt::BYTE, T_BYTE, IN_HEAP | MO_UNORDERED);
4303 }
4304 
4305 // Capture src and dst memory state with a MergeMemNode
4306 Node* GraphKit::capture_memory(const TypePtr* src_type, const TypePtr* dst_type) {
4307   if (src_type == dst_type) {
4308     // Types are equal, we don't need a MergeMemNode
4309     return memory(src_type);
4310   }
4311   MergeMemNode* merge = MergeMemNode::make(map()->memory());
4312   record_for_igvn(merge); // fold it up later, if possible
4313   int src_idx = C->get_alias_index(src_type);
4314   int dst_idx = C->get_alias_index(dst_type);
4315   merge->set_memory_at(src_idx, memory(src_idx));
4316   merge->set_memory_at(dst_idx, memory(dst_idx));
4317   return merge;
4318 }


4391   i_char->init_req(2, AddI(i_char, intcon(2)));
4392 
4393   set_control(IfFalse(iff));
4394   set_memory(st, TypeAryPtr::BYTES);
4395 }
4396 
4397 Node* GraphKit::make_constant_from_field(ciField* field, Node* obj) {
4398   if (!field->is_constant()) {
4399     return NULL; // Field not marked as constant.
4400   }
4401   ciInstance* holder = NULL;
4402   if (!field->is_static()) {
4403     ciObject* const_oop = obj->bottom_type()->is_oopptr()->const_oop();
4404     if (const_oop != NULL && const_oop->is_instance()) {
4405       holder = const_oop->as_instance();
4406     }
4407   }
4408   const Type* con_type = Type::make_constant_from_field(field, holder, field->layout_type(),
4409                                                         /*is_unsigned_load=*/false);
4410   if (con_type != NULL) {
4411     Node* con = makecon(con_type);
4412     if (field->layout_type() == T_VALUETYPE && field->type()->as_value_klass()->is_scalarizable()) {
4413       // Load value type from constant oop
4414       assert(!con_type->maybe_null(), "should never be null");
4415       con = ValueTypeNode::make_from_oop(this, con, field->type()->as_value_klass());
4416     }
4417     return con;
4418   }
4419   return NULL;
4420 }
4421 
4422 //---------------------------load_mirror_from_klass----------------------------
4423 // Given a klass oop, load its java mirror (a java.lang.Class oop).
4424 Node* GraphKit::load_mirror_from_klass(Node* klass) {
4425   Node* p = basic_plus_adr(klass, in_bytes(Klass::java_mirror_offset()));
4426   Node* load = make_load(NULL, p, TypeRawPtr::NOTNULL, T_ADDRESS, MemNode::unordered);
4427   // mirror = ((OopHandle)mirror)->resolve();
4428   return access_load(load, TypeInstPtr::MIRROR, T_OBJECT, IN_NATIVE);
4429 }
< prev index next >