1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/collectedHeap.hpp"
  27 #include "opto/machnode.hpp"
  28 #include "opto/regalloc.hpp"
  29 #include "utilities/vmError.hpp"
  30 
  31 //=============================================================================
  32 // Return the value requested
  33 // result register lookup, corresponding to int_format
  34 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node) const {
  35   return (int)ra_->get_encode(node);
  36 }
  37 // input register lookup, corresponding to ext_format
  38 int MachOper::reg(PhaseRegAlloc *ra_, const Node *node, int idx) const {
  39   return (int)(ra_->get_encode(node->in(idx)));
  40 }
  41 intptr_t  MachOper::constant() const { return 0x00; }
  42 relocInfo::relocType MachOper::constant_reloc() const { return relocInfo::none; }
  43 jdouble MachOper::constantD() const { ShouldNotReachHere(); return 0.0; }
  44 jfloat  MachOper::constantF() const { ShouldNotReachHere(); return 0.0; }
  45 jlong   MachOper::constantL() const { ShouldNotReachHere(); return CONST64(0) ; }
  46 TypeOopPtr *MachOper::oop() const { return NULL; }
  47 int MachOper::ccode() const { return 0x00; }
  48 // A zero, default, indicates this value is not needed.
  49 // May need to lookup the base register, as done in int_ and ext_format
  50 int MachOper::base (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  51 int MachOper::index(PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  52 int MachOper::scale()  const { return 0x00; }
  53 int MachOper::disp (PhaseRegAlloc *ra_, const Node *node, int idx)  const { return 0x00; }
  54 int MachOper::constant_disp()  const { return 0; }
  55 int MachOper::base_position()  const { return -1; }  // no base input
  56 int MachOper::index_position() const { return -1; }  // no index input
  57 // Check for PC-Relative displacement
  58 relocInfo::relocType MachOper::disp_reloc() const { return relocInfo::none; }
  59 // Return the label
  60 Label*   MachOper::label()  const { ShouldNotReachHere(); return 0; }
  61 intptr_t MachOper::method() const { ShouldNotReachHere(); return 0; }
  62 
  63 
  64 //------------------------------negate-----------------------------------------
  65 // Negate conditional branches.  Error for non-branch operands
  66 void MachOper::negate() {
  67   ShouldNotCallThis();
  68 }
  69 
  70 //-----------------------------type--------------------------------------------
  71 const Type *MachOper::type() const {
  72   return Type::BOTTOM;
  73 }
  74 
  75 //------------------------------in_RegMask-------------------------------------
  76 const RegMask *MachOper::in_RegMask(int index) const {
  77   ShouldNotReachHere();
  78   return NULL;
  79 }
  80 
  81 //------------------------------dump_spec--------------------------------------
  82 // Print any per-operand special info
  83 #ifndef PRODUCT
  84 void MachOper::dump_spec(outputStream *st) const { }
  85 #endif
  86 
  87 //------------------------------hash-------------------------------------------
  88 // Print any per-operand special info
  89 uint MachOper::hash() const {
  90   ShouldNotCallThis();
  91   return 5;
  92 }
  93 
  94 //------------------------------cmp--------------------------------------------
  95 // Print any per-operand special info
  96 uint MachOper::cmp( const MachOper &oper ) const {
  97   ShouldNotCallThis();
  98   return opcode() == oper.opcode();
  99 }
 100 
 101 //------------------------------hash-------------------------------------------
 102 // Print any per-operand special info
 103 uint labelOper::hash() const {
 104   return _block_num;
 105 }
 106 
 107 //------------------------------cmp--------------------------------------------
 108 // Print any per-operand special info
 109 uint labelOper::cmp( const MachOper &oper ) const {
 110   return (opcode() == oper.opcode()) && (_label == oper.label());
 111 }
 112 
 113 //------------------------------hash-------------------------------------------
 114 // Print any per-operand special info
 115 uint methodOper::hash() const {
 116   return (uint)_method;
 117 }
 118 
 119 //------------------------------cmp--------------------------------------------
 120 // Print any per-operand special info
 121 uint methodOper::cmp( const MachOper &oper ) const {
 122   return (opcode() == oper.opcode()) && (_method == oper.method());
 123 }
 124 
 125 
 126 //=============================================================================
 127 //------------------------------MachNode---------------------------------------
 128 
 129 //------------------------------emit-------------------------------------------
 130 void MachNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 131   #ifdef ASSERT
 132   tty->print("missing MachNode emit function: ");
 133   dump();
 134   #endif
 135   ShouldNotCallThis();
 136 }
 137 
 138 //---------------------------postalloc_expand----------------------------------
 139 // Expand node after register allocation.
 140 void MachNode::postalloc_expand(GrowableArray <Node *> *nodes, PhaseRegAlloc *ra_) {}
 141 
 142 //------------------------------size-------------------------------------------
 143 // Size of instruction in bytes
 144 uint MachNode::size(PhaseRegAlloc *ra_) const {
 145   // If a virtual was not defined for this specific instruction,
 146   // Call the helper which finds the size by emitting the bits.
 147   return MachNode::emit_size(ra_);
 148 }
 149 
 150 //------------------------------size-------------------------------------------
 151 // Helper function that computes size by emitting code
 152 uint MachNode::emit_size(PhaseRegAlloc *ra_) const {
 153   // Emit into a trash buffer and count bytes emitted.
 154   assert(ra_ == ra_->C->regalloc(), "sanity");
 155   return ra_->C->scratch_emit_size(this);
 156 }
 157 
 158 
 159 
 160 //------------------------------hash-------------------------------------------
 161 uint MachNode::hash() const {
 162   uint no = num_opnds();
 163   uint sum = rule();
 164   for( uint i=0; i<no; i++ )
 165     sum += _opnds[i]->hash();
 166   return sum+Node::hash();
 167 }
 168 
 169 //-----------------------------cmp---------------------------------------------
 170 uint MachNode::cmp( const Node &node ) const {
 171   MachNode& n = *((Node&)node).as_Mach();
 172   uint no = num_opnds();
 173   if( no != n.num_opnds() ) return 0;
 174   if( rule() != n.rule() ) return 0;
 175   for( uint i=0; i<no; i++ )    // All operands must match
 176     if( !_opnds[i]->cmp( *n._opnds[i] ) )
 177       return 0;                 // mis-matched operands
 178   return 1;                     // match
 179 }
 180 
 181 // Return an equivalent instruction using memory for cisc_operand position
 182 MachNode *MachNode::cisc_version(int offset) {
 183   ShouldNotCallThis();
 184   return NULL;
 185 }
 186 
 187 void MachNode::use_cisc_RegMask() {
 188   ShouldNotReachHere();
 189 }
 190 
 191 
 192 //-----------------------------in_RegMask--------------------------------------
 193 const RegMask &MachNode::in_RegMask( uint idx ) const {
 194   uint numopnds = num_opnds();        // Virtual call for number of operands
 195   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
 196   if( idx < skipped ) {
 197     assert( ideal_Opcode() == Op_AddP, "expected base ptr here" );
 198     assert( idx == 1, "expected base ptr here" );
 199     // debug info can be anywhere
 200     return *Compile::current()->matcher()->idealreg2spillmask[Op_RegP];
 201   }
 202   uint opcnt     = 1;                 // First operand
 203   uint num_edges = _opnds[1]->num_edges(); // leaves for first operand
 204   while( idx >= skipped+num_edges ) {
 205     skipped += num_edges;
 206     opcnt++;                          // Bump operand count
 207     assert( opcnt < numopnds, "Accessing non-existent operand" );
 208     num_edges = _opnds[opcnt]->num_edges(); // leaves for next operand
 209   }
 210 
 211   const RegMask *rm = cisc_RegMask();
 212   if( rm == NULL || (int)opcnt != cisc_operand() ) {
 213     rm = _opnds[opcnt]->in_RegMask(idx-skipped);
 214   }
 215   return *rm;
 216 }
 217 
 218 //-----------------------------memory_inputs--------------------------------
 219 const MachOper*  MachNode::memory_inputs(Node* &base, Node* &index) const {
 220   const MachOper* oper = memory_operand();
 221 
 222   if (oper == (MachOper*)-1) {
 223     base = NodeSentinel;
 224     index = NodeSentinel;
 225   } else {
 226     base = NULL;
 227     index = NULL;
 228     if (oper != NULL) {
 229       // It has a unique memory operand.  Find its index.
 230       int oper_idx = num_opnds();
 231       while (--oper_idx >= 0) {
 232         if (_opnds[oper_idx] == oper)  break;
 233       }
 234       int oper_pos = operand_index(oper_idx);
 235       int base_pos = oper->base_position();
 236       if (base_pos >= 0) {
 237         base = _in[oper_pos+base_pos];
 238       }
 239       int index_pos = oper->index_position();
 240       if (index_pos >= 0) {
 241         index = _in[oper_pos+index_pos];
 242       }
 243     }
 244   }
 245 
 246   return oper;
 247 }
 248 
 249 //-----------------------------get_base_and_disp----------------------------
 250 const Node* MachNode::get_base_and_disp(intptr_t &offset, const TypePtr* &adr_type) const {
 251 
 252   // Find the memory inputs using our helper function
 253   Node* base;
 254   Node* index;
 255   const MachOper* oper = memory_inputs(base, index);
 256 
 257   if (oper == NULL) {
 258     // Base has been set to NULL
 259     offset = 0;
 260   } else if (oper == (MachOper*)-1) {
 261     // Base has been set to NodeSentinel
 262     // There is not a unique memory use here.  We will fall to AliasIdxBot.
 263     offset = Type::OffsetBot;
 264   } else {
 265     // Base may be NULL, even if offset turns out to be != 0
 266 
 267     intptr_t disp = oper->constant_disp();
 268     int scale = oper->scale();
 269     // Now we have collected every part of the ADLC MEMORY_INTER.
 270     // See if it adds up to a base + offset.
 271     if (index != NULL) {
 272       const Type* t_index = index->bottom_type();
 273       if (t_index->isa_narrowoop() || t_index->isa_narrowklass()) { // EncodeN, LoadN, LoadConN, LoadNKlass,
 274                                                                     // EncodeNKlass, LoadConNklass.
 275         // Memory references through narrow oops have a
 276         // funny base so grab the type from the index:
 277         // [R12 + narrow_oop_reg<<3 + offset]
 278         assert(base == NULL, "Memory references through narrow oops have no base");
 279         offset = disp;
 280         adr_type = t_index->make_ptr()->add_offset(offset);
 281         return NULL;
 282       } else if (!index->is_Con()) {
 283         disp = Type::OffsetBot;
 284       } else if (disp != Type::OffsetBot) {
 285         const TypeX* ti = t_index->isa_intptr_t();
 286         if (ti == NULL) {
 287           disp = Type::OffsetBot;  // a random constant??
 288         } else {
 289           disp += ti->get_con() << scale;
 290         }
 291       }
 292     }
 293     offset = disp;
 294 
 295     // In i486.ad, indOffset32X uses base==RegI and disp==RegP,
 296     // this will prevent alias analysis without the following support:
 297     // Lookup the TypePtr used by indOffset32X, a compile-time constant oop,
 298     // Add the offset determined by the "base", or use Type::OffsetBot.
 299     if( adr_type == TYPE_PTR_SENTINAL ) {
 300       const TypePtr *t_disp = oper->disp_as_type();  // only !NULL for indOffset32X
 301       if (t_disp != NULL) {
 302         offset = Type::OffsetBot;
 303         const Type* t_base = base->bottom_type();
 304         if (t_base->isa_intptr_t()) {
 305           const TypeX *t_offset = t_base->is_intptr_t();
 306           if( t_offset->is_con() ) {
 307             offset = t_offset->get_con();
 308           }
 309         }
 310         adr_type = t_disp->add_offset(offset);
 311       } else if( base == NULL && offset != 0 && offset != Type::OffsetBot ) {
 312         // Use ideal type if it is oop ptr.
 313         const TypePtr *tp = oper->type()->isa_ptr();
 314         if( tp != NULL) {
 315           adr_type = tp;
 316         }
 317       }
 318     }
 319 
 320   }
 321   return base;
 322 }
 323 
 324 
 325 //---------------------------------adr_type---------------------------------
 326 const class TypePtr *MachNode::adr_type() const {
 327   intptr_t offset = 0;
 328   const TypePtr *adr_type = TYPE_PTR_SENTINAL;  // attempt computing adr_type
 329   const Node *base = get_base_and_disp(offset, adr_type);
 330   if( adr_type != TYPE_PTR_SENTINAL ) {
 331     return adr_type;      // get_base_and_disp has the answer
 332   }
 333 
 334   // Direct addressing modes have no base node, simply an indirect
 335   // offset, which is always to raw memory.
 336   // %%%%% Someday we'd like to allow constant oop offsets which
 337   // would let Intel load from static globals in 1 instruction.
 338   // Currently Intel requires 2 instructions and a register temp.
 339   if (base == NULL) {
 340     // NULL base, zero offset means no memory at all (a null pointer!)
 341     if (offset == 0) {
 342       return NULL;
 343     }
 344     // NULL base, any offset means any pointer whatever
 345     if (offset == Type::OffsetBot) {
 346       return TypePtr::BOTTOM;
 347     }
 348     // %%% make offset be intptr_t
 349     assert(!Universe::heap()->is_in_reserved(cast_to_oop(offset)), "must be a raw ptr");
 350     return TypeRawPtr::BOTTOM;
 351   }
 352 
 353   // base of -1 with no particular offset means all of memory
 354   if (base == NodeSentinel)  return TypePtr::BOTTOM;
 355 
 356   const Type* t = base->bottom_type();
 357   if (t->isa_narrowoop() && Universe::narrow_oop_shift() == 0) {
 358     // 32-bit unscaled narrow oop can be the base of any address expression
 359     t = t->make_ptr();
 360   }
 361   if (t->isa_narrowklass() && Universe::narrow_klass_shift() == 0) {
 362     // 32-bit unscaled narrow oop can be the base of any address expression
 363     t = t->make_ptr();
 364   }
 365   if (t->isa_intptr_t() && offset != 0 && offset != Type::OffsetBot) {
 366     // We cannot assert that the offset does not look oop-ish here.
 367     // Depending on the heap layout the cardmark base could land
 368     // inside some oopish region.  It definitely does for Win2K.
 369     // The sum of cardmark-base plus shift-by-9-oop lands outside
 370     // the oop-ish area but we can't assert for that statically.
 371     return TypeRawPtr::BOTTOM;
 372   }
 373 
 374   const TypePtr *tp = t->isa_ptr();
 375 
 376   // be conservative if we do not recognize the type
 377   if (tp == NULL) {
 378     assert(false, "this path may produce not optimal code");
 379     return TypePtr::BOTTOM;
 380   }
 381   assert(tp->base() != Type::AnyPtr, "not a bare pointer");
 382 
 383   if (tp->isa_aryptr()) {
 384     // In the case of a flattened value type array, each field has its
 385     // own slice so we need to extract the field being accessed from
 386     // the address computation
 387     if (offset == Type::OffsetBot) {
 388       Node* base;
 389       Node* index;
 390       const MachOper* oper = memory_inputs(base, index);
 391       if (oper != (MachOper*)-1) {
 392         offset = oper->constant_disp();
 393         return tp->is_aryptr()->add_field_offset_and_offset(offset)->add_offset(Type::OffsetBot);
 394       }
 395     }
 396     return tp->is_aryptr()->add_field_offset_and_offset(offset);
 397   }
 398 
 399   return tp->add_offset(offset);
 400 }
 401 
 402 
 403 //-----------------------------operand_index---------------------------------
 404 int MachNode::operand_index( uint operand ) const {
 405   if( operand < 1 )  return -1;
 406   assert(operand < num_opnds(), "oob");
 407   if( _opnds[operand]->num_edges() == 0 )  return -1;
 408 
 409   uint skipped   = oper_input_base(); // Sum of leaves skipped so far
 410   for (uint opcnt = 1; opcnt < operand; opcnt++) {
 411     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
 412     skipped += num_edges;
 413   }
 414   return skipped;
 415 }
 416 
 417 int MachNode::operand_index(const MachOper *oper) const {
 418   uint skipped = oper_input_base(); // Sum of leaves skipped so far
 419   uint opcnt;
 420   for (opcnt = 1; opcnt < num_opnds(); opcnt++) {
 421     if (_opnds[opcnt] == oper) break;
 422     uint num_edges = _opnds[opcnt]->num_edges(); // leaves for operand
 423     skipped += num_edges;
 424   }
 425   if (_opnds[opcnt] != oper) return -1;
 426   return skipped;
 427 }
 428 
 429 //------------------------------peephole---------------------------------------
 430 // Apply peephole rule(s) to this instruction
 431 MachNode *MachNode::peephole(Block *block, int block_index, PhaseRegAlloc *ra_, int &deleted) {
 432   return NULL;
 433 }
 434 
 435 //------------------------------add_case_label---------------------------------
 436 // Adds the label for the case
 437 void MachNode::add_case_label( int index_num, Label* blockLabel) {
 438   ShouldNotCallThis();
 439 }
 440 
 441 //------------------------------method_set-------------------------------------
 442 // Set the absolute address of a method
 443 void MachNode::method_set( intptr_t addr ) {
 444   ShouldNotCallThis();
 445 }
 446 
 447 //------------------------------rematerialize----------------------------------
 448 bool MachNode::rematerialize() const {
 449   // Temps are always rematerializable
 450   if (is_MachTemp()) return true;
 451 
 452   uint r = rule();              // Match rule
 453   if (r <  Matcher::_begin_rematerialize ||
 454       r >= Matcher::_end_rematerialize) {
 455     return false;
 456   }
 457 
 458   // For 2-address instructions, the input live range is also the output
 459   // live range. Remateralizing does not make progress on the that live range.
 460   if (two_adr()) return false;
 461 
 462   // Check for rematerializing float constants, or not
 463   if (!Matcher::rematerialize_float_constants) {
 464     int op = ideal_Opcode();
 465     if (op == Op_ConF || op == Op_ConD) {
 466       return false;
 467     }
 468   }
 469 
 470   // Defining flags - can't spill these! Must remateralize.
 471   if (ideal_reg() == Op_RegFlags) {
 472     return true;
 473   }
 474 
 475   // Stretching lots of inputs - don't do it.
 476   if (req() > 2) {
 477     return false;
 478   }
 479 
 480   if (req() == 2 && in(1) && in(1)->ideal_reg() == Op_RegFlags) {
 481     // In(1) will be rematerialized, too.
 482     // Stretching lots of inputs - don't do it.
 483     if (in(1)->req() > 2) {
 484       return false;
 485     }
 486   }
 487 
 488   // Don't remateralize somebody with bound inputs - it stretches a
 489   // fixed register lifetime.
 490   uint idx = oper_input_base();
 491   if (req() > idx) {
 492     const RegMask &rm = in_RegMask(idx);
 493     if (rm.is_bound(ideal_reg())) {
 494       return false;
 495     }
 496   }
 497 
 498   return true;
 499 }
 500 
 501 #ifndef PRODUCT
 502 //------------------------------dump_spec--------------------------------------
 503 // Print any per-operand special info
 504 void MachNode::dump_spec(outputStream *st) const {
 505   uint cnt = num_opnds();
 506   for( uint i=0; i<cnt; i++ ) {
 507     if (_opnds[i] != NULL) {
 508       _opnds[i]->dump_spec(st);
 509     } else {
 510       st->print(" _");
 511     }
 512   }
 513   const TypePtr *t = adr_type();
 514   if( t ) {
 515     Compile* C = Compile::current();
 516     if( C->alias_type(t)->is_volatile() )
 517       st->print(" Volatile!");
 518   }
 519 }
 520 
 521 //------------------------------dump_format------------------------------------
 522 // access to virtual
 523 void MachNode::dump_format(PhaseRegAlloc *ra, outputStream *st) const {
 524   format(ra, st); // access to virtual
 525 }
 526 #endif
 527 
 528 //=============================================================================
 529 #ifndef PRODUCT
 530 void MachTypeNode::dump_spec(outputStream *st) const {
 531   if (_bottom_type != NULL) {
 532     _bottom_type->dump_on(st);
 533   } else {
 534     st->print(" NULL");
 535   }
 536 }
 537 #endif
 538 
 539 
 540 //=============================================================================
 541 int MachConstantNode::constant_offset() {
 542   // Bind the offset lazily.
 543   if (_constant.offset() == -1) {
 544     Compile::ConstantTable& constant_table = Compile::current()->constant_table();
 545     int offset = constant_table.find_offset(_constant);
 546     // If called from Compile::scratch_emit_size return the
 547     // pre-calculated offset.
 548     // NOTE: If the AD file does some table base offset optimizations
 549     // later the AD file needs to take care of this fact.
 550     if (Compile::current()->in_scratch_emit_size()) {
 551       return constant_table.calculate_table_base_offset() + offset;
 552     }
 553     _constant.set_offset(constant_table.table_base_offset() + offset);
 554   }
 555   return _constant.offset();
 556 }
 557 
 558 int MachConstantNode::constant_offset_unchecked() const {
 559   return _constant.offset();
 560 }
 561 
 562 //=============================================================================
 563 #ifndef PRODUCT
 564 void MachNullCheckNode::format( PhaseRegAlloc *ra_, outputStream *st ) const {
 565   int reg = ra_->get_reg_first(in(1)->in(_vidx));
 566   st->print("%s %s", Name(), Matcher::regName[reg]);
 567 }
 568 #endif
 569 
 570 void MachNullCheckNode::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {
 571   // only emits entries in the null-pointer exception handler table
 572 }
 573 void MachNullCheckNode::label_set(Label* label, uint block_num) {
 574   // Nothing to emit
 575 }
 576 void MachNullCheckNode::save_label( Label** label, uint* block_num ) {
 577   // Nothing to emit
 578 }
 579 
 580 const RegMask &MachNullCheckNode::in_RegMask( uint idx ) const {
 581   if( idx == 0 ) return RegMask::Empty;
 582   else return in(1)->as_Mach()->out_RegMask();
 583 }
 584 
 585 //=============================================================================
 586 const Type *MachProjNode::bottom_type() const {
 587   if( _ideal_reg == fat_proj ) return Type::BOTTOM;
 588   // Try the normal mechanism first
 589   const Type *t = in(0)->bottom_type();
 590   if( t->base() == Type::Tuple ) {
 591     const TypeTuple *tt = t->is_tuple();
 592     if (_con < tt->cnt())
 593       return tt->field_at(_con);
 594   }
 595   // Else use generic type from ideal register set
 596   assert((uint)_ideal_reg < (uint)_last_machine_leaf && Type::mreg2type[_ideal_reg], "in bounds");
 597   return Type::mreg2type[_ideal_reg];
 598 }
 599 
 600 const TypePtr *MachProjNode::adr_type() const {
 601   if (bottom_type() == Type::MEMORY) {
 602     // in(0) might be a narrow MemBar; otherwise we will report TypePtr::BOTTOM
 603     Node* ctrl = in(0);
 604     if (ctrl == NULL)  return NULL; // node is dead
 605     const TypePtr* adr_type = ctrl->adr_type();
 606     #ifdef ASSERT
 607     if (!VMError::is_error_reported() && !Node::in_dump())
 608       assert(adr_type != NULL, "source must have adr_type");
 609     #endif
 610     return adr_type;
 611   }
 612   assert(bottom_type()->base() != Type::Memory, "no other memories?");
 613   return NULL;
 614 }
 615 
 616 #ifndef PRODUCT
 617 void MachProjNode::dump_spec(outputStream *st) const {
 618   ProjNode::dump_spec(st);
 619   switch (_ideal_reg) {
 620   case unmatched_proj:  st->print("/unmatched");                           break;
 621   case fat_proj:        st->print("/fat"); if (WizardMode) _rout.dump(st); break;
 622   }
 623 }
 624 #endif
 625 
 626 //=============================================================================
 627 #ifndef PRODUCT
 628 void MachIfNode::dump_spec(outputStream *st) const {
 629   st->print("P=%f, C=%f",_prob, _fcnt);
 630 }
 631 #endif
 632 
 633 //=============================================================================
 634 uint MachReturnNode::size_of() const { return sizeof(*this); }
 635 
 636 //------------------------------Registers--------------------------------------
 637 const RegMask &MachReturnNode::in_RegMask( uint idx ) const {
 638   return _in_rms[idx];
 639 }
 640 
 641 const TypePtr *MachReturnNode::adr_type() const {
 642   // most returns and calls are assumed to consume & modify all of memory
 643   // the matcher will copy non-wide adr_types from ideal originals
 644   return _adr_type;
 645 }
 646 
 647 //=============================================================================
 648 const Type *MachSafePointNode::bottom_type() const {  return TypeTuple::MEMBAR; }
 649 
 650 //------------------------------Registers--------------------------------------
 651 const RegMask &MachSafePointNode::in_RegMask( uint idx ) const {
 652   // Values in the domain use the users calling convention, embodied in the
 653   // _in_rms array of RegMasks.
 654   if( idx < TypeFunc::Parms ) return _in_rms[idx];
 655 
 656   if (SafePointNode::needs_polling_address_input() &&
 657       idx == TypeFunc::Parms &&
 658       ideal_Opcode() == Op_SafePoint) {
 659     return MachNode::in_RegMask(idx);
 660   }
 661 
 662   // Values outside the domain represent debug info
 663   assert(in(idx)->ideal_reg() != Op_RegFlags, "flags register is not spillable");
 664   return *Compile::current()->matcher()->idealreg2spillmask[in(idx)->ideal_reg()];
 665 }
 666 
 667 
 668 //=============================================================================
 669 
 670 uint MachCallNode::cmp( const Node &n ) const
 671 { return _tf == ((MachCallNode&)n)._tf; }
 672 const Type *MachCallNode::bottom_type() const { return tf()->range_cc(); }
 673 const Type* MachCallNode::Value(PhaseGVN* phase) const { return tf()->range_cc(); }
 674 
 675 #ifndef PRODUCT
 676 void MachCallNode::dump_spec(outputStream *st) const {
 677   st->print("# ");
 678   if (tf() != NULL)  tf()->dump_on(st);
 679   if (_cnt != COUNT_UNKNOWN)  st->print(" C=%f",_cnt);
 680   if (jvms() != NULL)  jvms()->dump_spec(st);
 681 }
 682 #endif
 683 
 684 bool MachCallNode::return_value_is_used() const {
 685   if (tf()->range_sig()->cnt() == TypeFunc::Parms) {
 686     // void return
 687     return false;
 688   }
 689 
 690   assert(tf()->returns_value_type_as_fields(), "multiple return values not supported");
 691 
 692   // find the projection corresponding to the return value
 693   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 694     Node *use = fast_out(i);
 695     if (!use->is_Proj()) continue;
 696     if (use->as_Proj()->_con == TypeFunc::Parms) {
 697       return true;
 698     }
 699   }
 700   return false;
 701 }
 702 
 703 // Similar to cousin class CallNode::returns_pointer
 704 // Because this is used in deoptimization, we want the type info, not the data
 705 // flow info; the interpreter will "use" things that are dead to the optimizer.
 706 bool MachCallNode::returns_pointer() const {
 707   const TypeTuple *r = tf()->range_sig();
 708   return (r->cnt() > TypeFunc::Parms &&
 709           r->field_at(TypeFunc::Parms)->isa_ptr());
 710 }
 711 
 712 bool MachCallNode::returns_vt() const {
 713   return tf()->returns_value_type_as_fields();
 714 }
 715 
 716 //------------------------------Registers--------------------------------------
 717 const RegMask &MachCallNode::in_RegMask(uint idx) const {
 718   // Values in the domain use the users calling convention, embodied in the
 719   // _in_rms array of RegMasks.
 720   if (entry_point() == NULL && idx == TypeFunc::Parms) {
 721     // Null entry point is a special cast where the target of the call
 722     // is in a register.
 723     return MachNode::in_RegMask(idx);
 724   }
 725   if (idx < tf()->domain_sig()->cnt()) {
 726     return _in_rms[idx];
 727   }
 728   if (idx == mach_constant_base_node_input()) {
 729     return MachConstantBaseNode::static_out_RegMask();
 730   }
 731   // Values outside the domain represent debug info
 732   return *Compile::current()->matcher()->idealreg2debugmask[in(idx)->ideal_reg()];
 733 }
 734 
 735 //=============================================================================
 736 uint MachCallJavaNode::size_of() const { return sizeof(*this); }
 737 uint MachCallJavaNode::cmp( const Node &n ) const {
 738   MachCallJavaNode &call = (MachCallJavaNode&)n;
 739   return MachCallNode::cmp(call) && _method->equals(call._method) &&
 740          _override_symbolic_info == call._override_symbolic_info;
 741 }
 742 #ifndef PRODUCT
 743 void MachCallJavaNode::dump_spec(outputStream *st) const {
 744   if (_method_handle_invoke)
 745     st->print("MethodHandle ");
 746   if (_method) {
 747     _method->print_short_name(st);
 748     st->print(" ");
 749   }
 750   MachCallNode::dump_spec(st);
 751 }
 752 #endif
 753 
 754 //------------------------------Registers--------------------------------------
 755 const RegMask &MachCallJavaNode::in_RegMask(uint idx) const {
 756   // Values in the domain use the users calling convention, embodied in the
 757   // _in_rms array of RegMasks.
 758   if (idx < tf()->domain_cc()->cnt()) {
 759     return _in_rms[idx];
 760   }
 761   if (idx == mach_constant_base_node_input()) {
 762     return MachConstantBaseNode::static_out_RegMask();
 763   }
 764   // Values outside the domain represent debug info
 765   Matcher* m = Compile::current()->matcher();
 766   // If this call is a MethodHandle invoke we have to use a different
 767   // debugmask which does not include the register we use to save the
 768   // SP over MH invokes.
 769   RegMask** debugmask = _method_handle_invoke ? m->idealreg2mhdebugmask : m->idealreg2debugmask;
 770   return *debugmask[in(idx)->ideal_reg()];
 771 }
 772 
 773 //=============================================================================
 774 uint MachCallStaticJavaNode::size_of() const { return sizeof(*this); }
 775 uint MachCallStaticJavaNode::cmp( const Node &n ) const {
 776   MachCallStaticJavaNode &call = (MachCallStaticJavaNode&)n;
 777   return MachCallJavaNode::cmp(call) && _name == call._name;
 778 }
 779 
 780 //----------------------------uncommon_trap_request----------------------------
 781 // If this is an uncommon trap, return the request code, else zero.
 782 int MachCallStaticJavaNode::uncommon_trap_request() const {
 783   if (_name != NULL && !strcmp(_name, "uncommon_trap")) {
 784     return CallStaticJavaNode::extract_uncommon_trap_request(this);
 785   }
 786   return 0;
 787 }
 788 
 789 #ifndef PRODUCT
 790 // Helper for summarizing uncommon_trap arguments.
 791 void MachCallStaticJavaNode::dump_trap_args(outputStream *st) const {
 792   int trap_req = uncommon_trap_request();
 793   if (trap_req != 0) {
 794     char buf[100];
 795     st->print("(%s)",
 796                Deoptimization::format_trap_request(buf, sizeof(buf),
 797                                                    trap_req));
 798   }
 799 }
 800 
 801 void MachCallStaticJavaNode::dump_spec(outputStream *st) const {
 802   st->print("Static ");
 803   if (_name != NULL) {
 804     st->print("wrapper for: %s", _name );
 805     dump_trap_args(st);
 806     st->print(" ");
 807   }
 808   MachCallJavaNode::dump_spec(st);
 809 }
 810 #endif
 811 
 812 //=============================================================================
 813 #ifndef PRODUCT
 814 void MachCallDynamicJavaNode::dump_spec(outputStream *st) const {
 815   st->print("Dynamic ");
 816   MachCallJavaNode::dump_spec(st);
 817 }
 818 #endif
 819 //=============================================================================
 820 uint MachCallRuntimeNode::size_of() const { return sizeof(*this); }
 821 uint MachCallRuntimeNode::cmp( const Node &n ) const {
 822   MachCallRuntimeNode &call = (MachCallRuntimeNode&)n;
 823   return MachCallNode::cmp(call) && !strcmp(_name,call._name);
 824 }
 825 #ifndef PRODUCT
 826 void MachCallRuntimeNode::dump_spec(outputStream *st) const {
 827   st->print("%s ",_name);
 828   MachCallNode::dump_spec(st);
 829 }
 830 #endif
 831 //=============================================================================
 832 // A shared JVMState for all HaltNodes.  Indicates the start of debug info
 833 // is at TypeFunc::Parms.  Only required for SOE register spill handling -
 834 // to indicate where the stack-slot-only debug info inputs begin.
 835 // There is no other JVM state needed here.
 836 JVMState jvms_for_throw(0);
 837 JVMState *MachHaltNode::jvms() const {
 838   return &jvms_for_throw;
 839 }
 840 
 841 uint MachMemBarNode::size_of() const { return sizeof(*this); }
 842 
 843 const TypePtr *MachMemBarNode::adr_type() const {
 844   return _adr_type;
 845 }
 846 
 847 
 848 //=============================================================================
 849 #ifndef PRODUCT
 850 void labelOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
 851   st->print("B%d", _block_num);
 852 }
 853 #endif // PRODUCT
 854 
 855 //=============================================================================
 856 #ifndef PRODUCT
 857 void methodOper::int_format(PhaseRegAlloc *ra, const MachNode *node, outputStream *st) const {
 858   st->print(INTPTR_FORMAT, _method);
 859 }
 860 #endif // PRODUCT