1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_MATCHER_HPP
  26 #define SHARE_OPTO_MATCHER_HPP
  27 
  28 #include "libadt/vectset.hpp"
  29 #include "memory/resourceArea.hpp"
  30 #include "opto/node.hpp"
  31 #include "opto/phaseX.hpp"
  32 #include "opto/regmask.hpp"
  33 
  34 class Compile;
  35 class Node;
  36 class MachNode;
  37 class MachTypeNode;
  38 class MachOper;
  39 
  40 //---------------------------Matcher-------------------------------------------
  41 class Matcher : public PhaseTransform {
  42   friend class VMStructs;
  43 
  44 public:
  45 
  46   // State and MStack class used in xform() and find_shared() iterative methods.
  47   enum Node_State { Pre_Visit,  // node has to be pre-visited
  48                     Visit,  // visit node
  49                     Post_Visit,  // post-visit node
  50                     Alt_Post_Visit   // alternative post-visit path
  51   };
  52 
  53   class MStack: public Node_Stack {
  54   public:
  55     MStack(int size) : Node_Stack(size) { }
  56 
  57     void push(Node *n, Node_State ns) {
  58       Node_Stack::push(n, (uint)ns);
  59     }
  60     void push(Node *n, Node_State ns, Node *parent, int indx) {
  61       ++_inode_top;
  62       if ((_inode_top + 1) >= _inode_max) grow();
  63       _inode_top->node = parent;
  64       _inode_top->indx = (uint)indx;
  65       ++_inode_top;
  66       _inode_top->node = n;
  67       _inode_top->indx = (uint)ns;
  68     }
  69     Node *parent() {
  70       pop();
  71       return node();
  72     }
  73     Node_State state() const {
  74       return (Node_State)index();
  75     }
  76     void set_state(Node_State ns) {
  77       set_index((uint)ns);
  78     }
  79   };
  80 
  81 private:
  82   // Private arena of State objects
  83   ResourceArea _states_arena;
  84 
  85   VectorSet   _visited;         // Visit bits
  86 
  87   // Used to control the Label pass
  88   VectorSet   _shared;          // Shared Ideal Node
  89   VectorSet   _dontcare;        // Nothing the matcher cares about
  90 
  91   // Private methods which perform the actual matching and reduction
  92   // Walks the label tree, generating machine nodes
  93   MachNode *ReduceInst( State *s, int rule, Node *&mem);
  94   void ReduceInst_Chain_Rule( State *s, int rule, Node *&mem, MachNode *mach);
  95   uint ReduceInst_Interior(State *s, int rule, Node *&mem, MachNode *mach, uint num_opnds);
  96   void ReduceOper( State *s, int newrule, Node *&mem, MachNode *mach );
  97 
  98   // If this node already matched using "rule", return the MachNode for it.
  99   MachNode* find_shared_node(Node* n, uint rule);
 100 
 101   // Convert a dense opcode number to an expanded rule number
 102   const int *_reduceOp;
 103   const int *_leftOp;
 104   const int *_rightOp;
 105 
 106   // Map dense opcode number to info on when rule is swallowed constant.
 107   const bool *_swallowed;
 108 
 109   // Map dense rule number to determine if this is an instruction chain rule
 110   const uint _begin_inst_chain_rule;
 111   const uint _end_inst_chain_rule;
 112 
 113   // We want to clone constants and possible CmpI-variants.
 114   // If we do not clone CmpI, then we can have many instances of
 115   // condition codes alive at once.  This is OK on some chips and
 116   // bad on others.  Hence the machine-dependent table lookup.
 117   const char *_must_clone;
 118 
 119   // Find shared Nodes, or Nodes that otherwise are Matcher roots
 120   void find_shared( Node *n );
 121   bool find_shared_visit(MStack& mstack, Node* n, uint opcode, bool& mem_op, int& mem_addr_idx);
 122   void find_shared_post_visit(Node* n, uint opcode);
 123 
 124 #ifdef X86
 125   bool is_bmi_pattern(Node *n, Node *m);
 126 #endif
 127 
 128   // Debug and profile information for nodes in old space:
 129   GrowableArray<Node_Notes*>* _old_node_note_array;
 130 
 131   // Node labeling iterator for instruction selection
 132   Node *Label_Root( const Node *n, State *svec, Node *control, const Node *mem );
 133 
 134   Node *transform( Node *dummy );
 135 
 136   Node_List _projection_list;        // For Machine nodes killing many values
 137 
 138   Node_Array _shared_nodes;
 139 
 140   debug_only(Node_Array _old2new_map;)   // Map roots of ideal-trees to machine-roots
 141   debug_only(Node_Array _new2old_map;)   // Maps machine nodes back to ideal
 142 
 143   // Accessors for the inherited field PhaseTransform::_nodes:
 144   void   grow_new_node_array(uint idx_limit) {
 145     _nodes.map(idx_limit-1, NULL);
 146   }
 147   bool    has_new_node(const Node* n) const {
 148     return _nodes.at(n->_idx) != NULL;
 149   }
 150   Node*       new_node(const Node* n) const {
 151     assert(has_new_node(n), "set before get");
 152     return _nodes.at(n->_idx);
 153   }
 154   void    set_new_node(const Node* n, Node *nn) {
 155     assert(!has_new_node(n), "set only once");
 156     _nodes.map(n->_idx, nn);
 157   }
 158 
 159 #ifdef ASSERT
 160   // Make sure only new nodes are reachable from this node
 161   void verify_new_nodes_only(Node* root);
 162 
 163   Node* _mem_node;   // Ideal memory node consumed by mach node
 164 #endif
 165 
 166   // Mach node for ConP #NULL
 167   MachNode* _mach_null;
 168 
 169   void handle_precedence_edges(Node* n, MachNode *mach);
 170 
 171 public:
 172   int LabelRootDepth;
 173   // Convert ideal machine register to a register mask for spill-loads
 174   static const RegMask *idealreg2regmask[];
 175   RegMask *idealreg2spillmask  [_last_machine_leaf];
 176   RegMask *idealreg2debugmask  [_last_machine_leaf];
 177   RegMask *idealreg2mhdebugmask[_last_machine_leaf];
 178   void init_spill_mask( Node *ret );
 179   // Convert machine register number to register mask
 180   static uint mreg2regmask_max;
 181   static RegMask mreg2regmask[];
 182   static RegMask STACK_ONLY_mask;
 183 
 184   MachNode* mach_null() const { return _mach_null; }
 185 
 186   bool    is_shared( Node *n ) { return _shared.test(n->_idx) != 0; }
 187   void   set_shared( Node *n ) {  _shared.set(n->_idx); }
 188   bool   is_visited( Node *n ) { return _visited.test(n->_idx) != 0; }
 189   void  set_visited( Node *n ) { _visited.set(n->_idx); }
 190   bool  is_dontcare( Node *n ) { return _dontcare.test(n->_idx) != 0; }
 191   void set_dontcare( Node *n ) {  _dontcare.set(n->_idx); }
 192 
 193   // Mode bit to tell DFA and expand rules whether we are running after
 194   // (or during) register selection.  Usually, the matcher runs before,
 195   // but it will also get called to generate post-allocation spill code.
 196   // In this situation, it is a deadly error to attempt to allocate more
 197   // temporary registers.
 198   bool _allocation_started;
 199 
 200   // Machine register names
 201   static const char *regName[];
 202   // Machine register encodings
 203   static const unsigned char _regEncode[];
 204   // Machine Node names
 205   const char **_ruleName;
 206   // Rules that are cheaper to rematerialize than to spill
 207   static const uint _begin_rematerialize;
 208   static const uint _end_rematerialize;
 209 
 210   // An array of chars, from 0 to _last_Mach_Reg.
 211   // No Save       = 'N' (for register windows)
 212   // Save on Entry = 'E'
 213   // Save on Call  = 'C'
 214   // Always Save   = 'A' (same as SOE + SOC)
 215   const char *_register_save_policy;
 216   const char *_c_reg_save_policy;
 217   // Convert a machine register to a machine register type, so-as to
 218   // properly match spill code.
 219   const int *_register_save_type;
 220   // Maps from machine register to boolean; true if machine register can
 221   // be holding a call argument in some signature.
 222   static bool can_be_java_arg( int reg );
 223   // Maps from machine register to boolean; true if machine register holds
 224   // a spillable argument.
 225   static bool is_spillable_arg( int reg );
 226 
 227   // List of IfFalse or IfTrue Nodes that indicate a taken null test.
 228   // List is valid in the post-matching space.
 229   Node_List _null_check_tests;
 230   void collect_null_checks( Node *proj, Node *orig_proj );
 231   void validate_null_checks( );
 232 
 233   Matcher();
 234 
 235   // Get a projection node at position pos
 236   Node* get_projection(uint pos) {
 237     return _projection_list[pos];
 238   }
 239 
 240   // Push a projection node onto the projection list
 241   void push_projection(Node* node) {
 242     _projection_list.push(node);
 243   }
 244 
 245   Node* pop_projection() {
 246     return _projection_list.pop();
 247   }
 248 
 249   // Number of nodes in the projection list
 250   uint number_of_projections() const {
 251     return _projection_list.size();
 252   }
 253 
 254   // Select instructions for entire method
 255   void match();
 256 
 257   // Helper for match
 258   OptoReg::Name warp_incoming_stk_arg( VMReg reg );
 259 
 260   RegMask* return_values_mask(const TypeTuple *range);
 261 
 262   // Transform, then walk.  Does implicit DCE while walking.
 263   // Name changed from "transform" to avoid it being virtual.
 264   Node *xform( Node *old_space_node, int Nodes );
 265 
 266   // Match a single Ideal Node - turn it into a 1-Node tree; Label & Reduce.
 267   MachNode *match_tree( const Node *n );
 268   MachNode *match_sfpt( SafePointNode *sfpt );
 269   // Helper for match_sfpt
 270   OptoReg::Name warp_outgoing_stk_arg( VMReg reg, OptoReg::Name begin_out_arg_area, OptoReg::Name &out_arg_limit_per_call );
 271 
 272   // Initialize first stack mask and related masks.
 273   void init_first_stack_mask();
 274 
 275   // If we should save-on-entry this register
 276   bool is_save_on_entry( int reg );
 277 
 278   // Fixup the save-on-entry registers
 279   void Fixup_Save_On_Entry( );
 280 
 281   // --- Frame handling ---
 282 
 283   // Register number of the stack slot corresponding to the incoming SP.
 284   // Per the Big Picture in the AD file, it is:
 285   //   SharedInfo::stack0 + locks + in_preserve_stack_slots + pad2.
 286   OptoReg::Name _old_SP;
 287 
 288   // Register number of the stack slot corresponding to the highest incoming
 289   // argument on the stack.  Per the Big Picture in the AD file, it is:
 290   //   _old_SP + out_preserve_stack_slots + incoming argument size.
 291   OptoReg::Name _in_arg_limit;
 292 
 293   // Register number of the stack slot corresponding to the new SP.
 294   // Per the Big Picture in the AD file, it is:
 295   //   _in_arg_limit + pad0
 296   OptoReg::Name _new_SP;
 297 
 298   // Register number of the stack slot corresponding to the highest outgoing
 299   // argument on the stack.  Per the Big Picture in the AD file, it is:
 300   //   _new_SP + max outgoing arguments of all calls
 301   OptoReg::Name _out_arg_limit;
 302 
 303   OptoRegPair *_parm_regs;        // Array of machine registers per argument
 304   RegMask *_calling_convention_mask; // Array of RegMasks per argument
 305 
 306   // Does matcher have a match rule for this ideal node?
 307   static const bool has_match_rule(int opcode);
 308   static const bool _hasMatchRule[_last_opcode];
 309 
 310   // Does matcher have a match rule for this ideal node and is the
 311   // predicate (if there is one) true?
 312   // NOTE: If this function is used more commonly in the future, ADLC
 313   // should generate this one.
 314   static const bool match_rule_supported(int opcode);
 315 
 316   // identify extra cases that we might want to provide match rules for
 317   // e.g. Op_ vector nodes and other intrinsics while guarding with vlen
 318   static const bool match_rule_supported_vector(int opcode, int vlen);
 319 
 320   // Some microarchitectures have mask registers used on vectors
 321   static const bool has_predicated_vectors(void);
 322 
 323   // Some uarchs have different sized float register resources
 324   static const int float_pressure(int default_pressure_threshold);
 325 
 326   // Used to determine if we have fast l2f conversion
 327   // USII has it, USIII doesn't
 328   static const bool convL2FSupported(void);
 329 
 330   // Vector width in bytes
 331   static const int vector_width_in_bytes(BasicType bt);
 332 
 333   // Limits on vector size (number of elements).
 334   static const int max_vector_size(const BasicType bt);
 335   static const int min_vector_size(const BasicType bt);
 336   static const bool vector_size_supported(const BasicType bt, int size) {
 337     return (Matcher::max_vector_size(bt) >= size &&
 338             Matcher::min_vector_size(bt) <= size);
 339   }
 340 
 341   // Vector ideal reg
 342   static const uint vector_ideal_reg(int len);
 343   static const uint vector_shift_count_ideal_reg(int len);
 344 
 345   // CPU supports misaligned vectors store/load.
 346   static const bool misaligned_vectors_ok();
 347 
 348   // Should original key array reference be passed to AES stubs
 349   static const bool pass_original_key_for_aes();
 350 
 351   // Used to determine a "low complexity" 64-bit constant.  (Zero is simple.)
 352   // The standard of comparison is one (StoreL ConL) vs. two (StoreI ConI).
 353   // Depends on the details of 64-bit constant generation on the CPU.
 354   static const bool isSimpleConstant64(jlong con);
 355 
 356   // These calls are all generated by the ADLC
 357 
 358   // TRUE - grows up, FALSE - grows down (Intel)
 359   virtual bool stack_direction() const;
 360 
 361   // Java-Java calling convention
 362   // (what you use when Java calls Java)
 363 
 364   // Alignment of stack in bytes, standard Intel word alignment is 4.
 365   // Sparc probably wants at least double-word (8).
 366   static uint stack_alignment_in_bytes();
 367   // Alignment of stack, measured in stack slots.
 368   // The size of stack slots is defined by VMRegImpl::stack_slot_size.
 369   static uint stack_alignment_in_slots() {
 370     return stack_alignment_in_bytes() / (VMRegImpl::stack_slot_size);
 371   }
 372 
 373   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
 374   // pointer.  Registers can include stack-slots and regular registers.
 375   static void calling_convention( BasicType *, VMRegPair *, uint len, bool is_outgoing );
 376 
 377   // Convert a sig into a calling convention register layout
 378   // and find interesting things about it.
 379   static OptoReg::Name  find_receiver( bool is_outgoing );
 380   // Return address register.  On Intel it is a stack-slot.  On PowerPC
 381   // it is the Link register.  On Sparc it is r31?
 382   virtual OptoReg::Name return_addr() const;
 383   RegMask              _return_addr_mask;
 384   // Return value register.  On Intel it is EAX.  On Sparc i0/o0.
 385   static OptoRegPair   return_value(uint ideal_reg, bool is_outgoing);
 386   static OptoRegPair c_return_value(uint ideal_reg, bool is_outgoing);
 387   RegMask*             _return_values_mask;
 388   // Inline Cache Register
 389   static OptoReg::Name  inline_cache_reg();
 390   static int            inline_cache_reg_encode();
 391 
 392   // Register for DIVI projection of divmodI
 393   static RegMask divI_proj_mask();
 394   // Register for MODI projection of divmodI
 395   static RegMask modI_proj_mask();
 396 
 397   // Register for DIVL projection of divmodL
 398   static RegMask divL_proj_mask();
 399   // Register for MODL projection of divmodL
 400   static RegMask modL_proj_mask();
 401 
 402   // Use hardware DIV instruction when it is faster than
 403   // a code which use multiply for division by constant.
 404   static bool use_asm_for_ldiv_by_con( jlong divisor );
 405 
 406   static const RegMask method_handle_invoke_SP_save_mask();
 407 
 408   // Java-Interpreter calling convention
 409   // (what you use when calling between compiled-Java and Interpreted-Java
 410 
 411   // Number of callee-save + always-save registers
 412   // Ignores frame pointer and "special" registers
 413   static int  number_of_saved_registers();
 414 
 415   // The Method-klass-holder may be passed in the inline_cache_reg
 416   // and then expanded into the inline_cache_reg and a method_oop register
 417 
 418   static OptoReg::Name  interpreter_method_oop_reg();
 419   static int            interpreter_method_oop_reg_encode();
 420 
 421   static OptoReg::Name  compiler_method_oop_reg();
 422   static const RegMask &compiler_method_oop_reg_mask();
 423   static int            compiler_method_oop_reg_encode();
 424 
 425   // Interpreter's Frame Pointer Register
 426   static OptoReg::Name  interpreter_frame_pointer_reg();
 427 
 428   // Java-Native calling convention
 429   // (what you use when intercalling between Java and C++ code)
 430 
 431   // Array mapping arguments to registers.  Argument 0 is usually the 'this'
 432   // pointer.  Registers can include stack-slots and regular registers.
 433   static void c_calling_convention( BasicType*, VMRegPair *, uint );
 434   // Frame pointer. The frame pointer is kept at the base of the stack
 435   // and so is probably the stack pointer for most machines.  On Intel
 436   // it is ESP.  On the PowerPC it is R1.  On Sparc it is SP.
 437   OptoReg::Name  c_frame_pointer() const;
 438   static RegMask c_frame_ptr_mask;
 439 
 440   // !!!!! Special stuff for building ScopeDescs
 441   virtual int      regnum_to_fpu_offset(int regnum);
 442 
 443   // Is this branch offset small enough to be addressed by a short branch?
 444   bool is_short_branch_offset(int rule, int br_size, int offset);
 445 
 446   // Optional scaling for the parameter to the ClearArray/CopyArray node.
 447   static const bool init_array_count_is_in_bytes;
 448 
 449   // Some hardware needs 2 CMOV's for longs.
 450   static const int long_cmove_cost();
 451 
 452   // Some hardware have expensive CMOV for float and double.
 453   static const int float_cmove_cost();
 454 
 455   // Should the Matcher clone shifts on addressing modes, expecting them to
 456   // be subsumed into complex addressing expressions or compute them into
 457   // registers?  True for Intel but false for most RISCs
 458   bool clone_address_expressions(AddPNode* m, MStack& mstack, VectorSet& address_visited);
 459   // Clone base + offset address expression
 460   bool clone_base_plus_offset_address(AddPNode* m, MStack& mstack, VectorSet& address_visited);
 461 
 462   static bool narrow_oop_use_complex_address();
 463   static bool narrow_klass_use_complex_address();
 464 
 465   static bool const_oop_prefer_decode();
 466   static bool const_klass_prefer_decode();
 467 
 468   // Generate implicit null check for narrow oops if it can fold
 469   // into address expression (x64).
 470   //
 471   // [R12 + narrow_oop_reg<<3 + offset] // fold into address expression
 472   // NullCheck narrow_oop_reg
 473   //
 474   // When narrow oops can't fold into address expression (Sparc) and
 475   // base is not null use decode_not_null and normal implicit null check.
 476   // Note, decode_not_null node can be used here since it is referenced
 477   // only on non null path but it requires special handling, see
 478   // collect_null_checks():
 479   //
 480   // decode_not_null narrow_oop_reg, oop_reg // 'shift' and 'add base'
 481   // [oop_reg + offset]
 482   // NullCheck oop_reg
 483   //
 484   // With Zero base and when narrow oops can not fold into address
 485   // expression use normal implicit null check since only shift
 486   // is needed to decode narrow oop.
 487   //
 488   // decode narrow_oop_reg, oop_reg // only 'shift'
 489   // [oop_reg + offset]
 490   // NullCheck oop_reg
 491   //
 492   inline static bool gen_narrow_oop_implicit_null_checks() {
 493     // Advice matcher to perform null checks on the narrow oop side.
 494     // Implicit checks are not possible on the uncompressed oop side anyway
 495     // (at least not for read accesses).
 496     // Performs significantly better (especially on Power 6).
 497     if (!os::zero_page_read_protected()) {
 498       return true;
 499     }
 500     return Universe::narrow_oop_use_implicit_null_checks() &&
 501            (narrow_oop_use_complex_address() ||
 502             Universe::narrow_oop_base() != NULL);
 503   }
 504 
 505   // Is it better to copy float constants, or load them directly from memory?
 506   // Intel can load a float constant from a direct address, requiring no
 507   // extra registers.  Most RISCs will have to materialize an address into a
 508   // register first, so they may as well materialize the constant immediately.
 509   static const bool rematerialize_float_constants;
 510 
 511   // If CPU can load and store mis-aligned doubles directly then no fixup is
 512   // needed.  Else we split the double into 2 integer pieces and move it
 513   // piece-by-piece.  Only happens when passing doubles into C code or when
 514   // calling i2c adapters as the Java calling convention forces doubles to be
 515   // aligned.
 516   static const bool misaligned_doubles_ok;
 517 
 518   // Does the CPU require postalloc expand (see block.cpp for description of
 519   // postalloc expand)?
 520   static const bool require_postalloc_expand;
 521 
 522   // Perform a platform dependent implicit null fixup.  This is needed
 523   // on windows95 to take care of some unusual register constraints.
 524   void pd_implicit_null_fixup(MachNode *load, uint idx);
 525 
 526   // Advertise here if the CPU requires explicit rounding operations
 527   // to implement the UseStrictFP mode.
 528   static const bool strict_fp_requires_explicit_rounding;
 529 
 530   // Are floats conerted to double when stored to stack during deoptimization?
 531   static bool float_in_double();
 532   // Do ints take an entire long register or just half?
 533   static const bool int_in_long;
 534 
 535   // Do the processor's shift instructions only use the low 5/6 bits
 536   // of the count for 32/64 bit ints? If not we need to do the masking
 537   // ourselves.
 538   static const bool need_masked_shift_count;
 539 
 540   // Whether code generation need accurate ConvI2L types.
 541   static const bool convi2l_type_required;
 542 
 543   // This routine is run whenever a graph fails to match.
 544   // If it returns, the compiler should bailout to interpreter without error.
 545   // In non-product mode, SoftMatchFailure is false to detect non-canonical
 546   // graphs.  Print a message and exit.
 547   static void soft_match_failure() {
 548     if( SoftMatchFailure ) return;
 549     else { fatal("SoftMatchFailure is not allowed except in product"); }
 550   }
 551 
 552   // Check for a following volatile memory barrier without an
 553   // intervening load and thus we don't need a barrier here.  We
 554   // retain the Node to act as a compiler ordering barrier.
 555   static bool post_store_load_barrier(const Node* mb);
 556 
 557   // Does n lead to an uncommon trap that can cause deoptimization?
 558   static bool branches_to_uncommon_trap(const Node *n);
 559 
 560 #ifdef ASSERT
 561   void dump_old2new_map();      // machine-independent to machine-dependent
 562 
 563   Node* find_old_node(Node* new_node) {
 564     return _new2old_map[new_node->_idx];
 565   }
 566 #endif
 567 };
 568 
 569 #endif // SHARE_OPTO_MATCHER_HPP