1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/shared/barrierSet.hpp"
  27 #include "gc/shared/c2/barrierSetC2.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/connode.hpp"
  34 #include "opto/loopnode.hpp"
  35 #include "opto/machnode.hpp"
  36 #include "opto/matcher.hpp"
  37 #include "opto/node.hpp"
  38 #include "opto/opcodes.hpp"
  39 #include "opto/regmask.hpp"
  40 #include "opto/rootnode.hpp"
  41 #include "opto/type.hpp"
  42 #include "utilities/copy.hpp"
  43 #include "utilities/macros.hpp"
  44 
  45 class RegMask;
  46 // #include "phase.hpp"
  47 class PhaseTransform;
  48 class PhaseGVN;
  49 
  50 // Arena we are currently building Nodes in
  51 const uint Node::NotAMachineReg = 0xffff0000;
  52 
  53 #ifndef PRODUCT
  54 extern int nodes_created;
  55 #endif
  56 #ifdef __clang__
  57 #pragma clang diagnostic push
  58 #pragma GCC diagnostic ignored "-Wuninitialized"
  59 #endif
  60 
  61 #ifdef ASSERT
  62 
  63 //-------------------------- construct_node------------------------------------
  64 // Set a breakpoint here to identify where a particular node index is built.
  65 void Node::verify_construction() {
  66   _debug_orig = NULL;
  67   int old_debug_idx = Compile::debug_idx();
  68   int new_debug_idx = old_debug_idx+1;
  69   if (new_debug_idx > 0) {
  70     // Arrange that the lowest five decimal digits of _debug_idx
  71     // will repeat those of _idx. In case this is somehow pathological,
  72     // we continue to assign negative numbers (!) consecutively.
  73     const int mod = 100000;
  74     int bump = (int)(_idx - new_debug_idx) % mod;
  75     if (bump < 0)  bump += mod;
  76     assert(bump >= 0 && bump < mod, "");
  77     new_debug_idx += bump;
  78   }
  79   Compile::set_debug_idx(new_debug_idx);
  80   set_debug_idx( new_debug_idx );
  81   assert(Compile::current()->unique() < (INT_MAX - 1), "Node limit exceeded INT_MAX");
  82   assert(Compile::current()->live_nodes() < Compile::current()->max_node_limit(), "Live Node limit exceeded limit");
  83   if (BreakAtNode != 0 && (_debug_idx == BreakAtNode || (int)_idx == BreakAtNode)) {
  84     tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d", _idx, _debug_idx);
  85     BREAKPOINT;
  86   }
  87 #if OPTO_DU_ITERATOR_ASSERT
  88   _last_del = NULL;
  89   _del_tick = 0;
  90 #endif
  91   _hash_lock = 0;
  92 }
  93 
  94 
  95 // #ifdef ASSERT ...
  96 
  97 #if OPTO_DU_ITERATOR_ASSERT
  98 void DUIterator_Common::sample(const Node* node) {
  99   _vdui     = VerifyDUIterators;
 100   _node     = node;
 101   _outcnt   = node->_outcnt;
 102   _del_tick = node->_del_tick;
 103   _last     = NULL;
 104 }
 105 
 106 void DUIterator_Common::verify(const Node* node, bool at_end_ok) {
 107   assert(_node     == node, "consistent iterator source");
 108   assert(_del_tick == node->_del_tick, "no unexpected deletions allowed");
 109 }
 110 
 111 void DUIterator_Common::verify_resync() {
 112   // Ensure that the loop body has just deleted the last guy produced.
 113   const Node* node = _node;
 114   // Ensure that at least one copy of the last-seen edge was deleted.
 115   // Note:  It is OK to delete multiple copies of the last-seen edge.
 116   // Unfortunately, we have no way to verify that all the deletions delete
 117   // that same edge.  On this point we must use the Honor System.
 118   assert(node->_del_tick >= _del_tick+1, "must have deleted an edge");
 119   assert(node->_last_del == _last, "must have deleted the edge just produced");
 120   // We liked this deletion, so accept the resulting outcnt and tick.
 121   _outcnt   = node->_outcnt;
 122   _del_tick = node->_del_tick;
 123 }
 124 
 125 void DUIterator_Common::reset(const DUIterator_Common& that) {
 126   if (this == &that)  return;  // ignore assignment to self
 127   if (!_vdui) {
 128     // We need to initialize everything, overwriting garbage values.
 129     _last = that._last;
 130     _vdui = that._vdui;
 131   }
 132   // Note:  It is legal (though odd) for an iterator over some node x
 133   // to be reassigned to iterate over another node y.  Some doubly-nested
 134   // progress loops depend on being able to do this.
 135   const Node* node = that._node;
 136   // Re-initialize everything, except _last.
 137   _node     = node;
 138   _outcnt   = node->_outcnt;
 139   _del_tick = node->_del_tick;
 140 }
 141 
 142 void DUIterator::sample(const Node* node) {
 143   DUIterator_Common::sample(node);      // Initialize the assertion data.
 144   _refresh_tick = 0;                    // No refreshes have happened, as yet.
 145 }
 146 
 147 void DUIterator::verify(const Node* node, bool at_end_ok) {
 148   DUIterator_Common::verify(node, at_end_ok);
 149   assert(_idx      <  node->_outcnt + (uint)at_end_ok, "idx in range");
 150 }
 151 
 152 void DUIterator::verify_increment() {
 153   if (_refresh_tick & 1) {
 154     // We have refreshed the index during this loop.
 155     // Fix up _idx to meet asserts.
 156     if (_idx > _outcnt)  _idx = _outcnt;
 157   }
 158   verify(_node, true);
 159 }
 160 
 161 void DUIterator::verify_resync() {
 162   // Note:  We do not assert on _outcnt, because insertions are OK here.
 163   DUIterator_Common::verify_resync();
 164   // Make sure we are still in sync, possibly with no more out-edges:
 165   verify(_node, true);
 166 }
 167 
 168 void DUIterator::reset(const DUIterator& that) {
 169   if (this == &that)  return;  // self assignment is always a no-op
 170   assert(that._refresh_tick == 0, "assign only the result of Node::outs()");
 171   assert(that._idx          == 0, "assign only the result of Node::outs()");
 172   assert(_idx               == that._idx, "already assigned _idx");
 173   if (!_vdui) {
 174     // We need to initialize everything, overwriting garbage values.
 175     sample(that._node);
 176   } else {
 177     DUIterator_Common::reset(that);
 178     if (_refresh_tick & 1) {
 179       _refresh_tick++;                  // Clear the "was refreshed" flag.
 180     }
 181     assert(_refresh_tick < 2*100000, "DU iteration must converge quickly");
 182   }
 183 }
 184 
 185 void DUIterator::refresh() {
 186   DUIterator_Common::sample(_node);     // Re-fetch assertion data.
 187   _refresh_tick |= 1;                   // Set the "was refreshed" flag.
 188 }
 189 
 190 void DUIterator::verify_finish() {
 191   // If the loop has killed the node, do not require it to re-run.
 192   if (_node->_outcnt == 0)  _refresh_tick &= ~1;
 193   // If this assert triggers, it means that a loop used refresh_out_pos
 194   // to re-synch an iteration index, but the loop did not correctly
 195   // re-run itself, using a "while (progress)" construct.
 196   // This iterator enforces the rule that you must keep trying the loop
 197   // until it "runs clean" without any need for refreshing.
 198   assert(!(_refresh_tick & 1), "the loop must run once with no refreshing");
 199 }
 200 
 201 
 202 void DUIterator_Fast::verify(const Node* node, bool at_end_ok) {
 203   DUIterator_Common::verify(node, at_end_ok);
 204   Node** out    = node->_out;
 205   uint   cnt    = node->_outcnt;
 206   assert(cnt == _outcnt, "no insertions allowed");
 207   assert(_outp >= out && _outp <= out + cnt - !at_end_ok, "outp in range");
 208   // This last check is carefully designed to work for NO_OUT_ARRAY.
 209 }
 210 
 211 void DUIterator_Fast::verify_limit() {
 212   const Node* node = _node;
 213   verify(node, true);
 214   assert(_outp == node->_out + node->_outcnt, "limit still correct");
 215 }
 216 
 217 void DUIterator_Fast::verify_resync() {
 218   const Node* node = _node;
 219   if (_outp == node->_out + _outcnt) {
 220     // Note that the limit imax, not the pointer i, gets updated with the
 221     // exact count of deletions.  (For the pointer it's always "--i".)
 222     assert(node->_outcnt+node->_del_tick == _outcnt+_del_tick, "no insertions allowed with deletion(s)");
 223     // This is a limit pointer, with a name like "imax".
 224     // Fudge the _last field so that the common assert will be happy.
 225     _last = (Node*) node->_last_del;
 226     DUIterator_Common::verify_resync();
 227   } else {
 228     assert(node->_outcnt < _outcnt, "no insertions allowed with deletion(s)");
 229     // A normal internal pointer.
 230     DUIterator_Common::verify_resync();
 231     // Make sure we are still in sync, possibly with no more out-edges:
 232     verify(node, true);
 233   }
 234 }
 235 
 236 void DUIterator_Fast::verify_relimit(uint n) {
 237   const Node* node = _node;
 238   assert((int)n > 0, "use imax -= n only with a positive count");
 239   // This must be a limit pointer, with a name like "imax".
 240   assert(_outp == node->_out + node->_outcnt, "apply -= only to a limit (imax)");
 241   // The reported number of deletions must match what the node saw.
 242   assert(node->_del_tick == _del_tick + n, "must have deleted n edges");
 243   // Fudge the _last field so that the common assert will be happy.
 244   _last = (Node*) node->_last_del;
 245   DUIterator_Common::verify_resync();
 246 }
 247 
 248 void DUIterator_Fast::reset(const DUIterator_Fast& that) {
 249   assert(_outp              == that._outp, "already assigned _outp");
 250   DUIterator_Common::reset(that);
 251 }
 252 
 253 void DUIterator_Last::verify(const Node* node, bool at_end_ok) {
 254   // at_end_ok means the _outp is allowed to underflow by 1
 255   _outp += at_end_ok;
 256   DUIterator_Fast::verify(node, at_end_ok);  // check _del_tick, etc.
 257   _outp -= at_end_ok;
 258   assert(_outp == (node->_out + node->_outcnt) - 1, "pointer must point to end of nodes");
 259 }
 260 
 261 void DUIterator_Last::verify_limit() {
 262   // Do not require the limit address to be resynched.
 263   //verify(node, true);
 264   assert(_outp == _node->_out, "limit still correct");
 265 }
 266 
 267 void DUIterator_Last::verify_step(uint num_edges) {
 268   assert((int)num_edges > 0, "need non-zero edge count for loop progress");
 269   _outcnt   -= num_edges;
 270   _del_tick += num_edges;
 271   // Make sure we are still in sync, possibly with no more out-edges:
 272   const Node* node = _node;
 273   verify(node, true);
 274   assert(node->_last_del == _last, "must have deleted the edge just produced");
 275 }
 276 
 277 #endif //OPTO_DU_ITERATOR_ASSERT
 278 
 279 
 280 #endif //ASSERT
 281 
 282 
 283 // This constant used to initialize _out may be any non-null value.
 284 // The value NULL is reserved for the top node only.
 285 #define NO_OUT_ARRAY ((Node**)-1)
 286 
 287 // Out-of-line code from node constructors.
 288 // Executed only when extra debug info. is being passed around.
 289 static void init_node_notes(Compile* C, int idx, Node_Notes* nn) {
 290   C->set_node_notes_at(idx, nn);
 291 }
 292 
 293 // Shared initialization code.
 294 inline int Node::Init(int req) {
 295   Compile* C = Compile::current();
 296   int idx = C->next_unique();
 297 
 298   // Allocate memory for the necessary number of edges.
 299   if (req > 0) {
 300     // Allocate space for _in array to have double alignment.
 301     _in = (Node **) ((char *) (C->node_arena()->Amalloc_D(req * sizeof(void*))));
 302   }
 303   // If there are default notes floating around, capture them:
 304   Node_Notes* nn = C->default_node_notes();
 305   if (nn != NULL)  init_node_notes(C, idx, nn);
 306 
 307   // Note:  At this point, C is dead,
 308   // and we begin to initialize the new Node.
 309 
 310   _cnt = _max = req;
 311   _outcnt = _outmax = 0;
 312   _class_id = Class_Node;
 313   _flags = 0;
 314   _out = NO_OUT_ARRAY;
 315   return idx;
 316 }
 317 
 318 //------------------------------Node-------------------------------------------
 319 // Create a Node, with a given number of required edges.
 320 Node::Node(uint req)
 321   : _idx(Init(req))
 322 #ifdef ASSERT
 323   , _parse_idx(_idx)
 324 #endif
 325 {
 326   assert( req < Compile::current()->max_node_limit() - NodeLimitFudgeFactor, "Input limit exceeded" );
 327   debug_only( verify_construction() );
 328   NOT_PRODUCT(nodes_created++);
 329   if (req == 0) {
 330     _in = NULL;
 331   } else {
 332     Node** to = _in;
 333     for(uint i = 0; i < req; i++) {
 334       to[i] = NULL;
 335     }
 336   }
 337 }
 338 
 339 //------------------------------Node-------------------------------------------
 340 Node::Node(Node *n0)
 341   : _idx(Init(1))
 342 #ifdef ASSERT
 343   , _parse_idx(_idx)
 344 #endif
 345 {
 346   debug_only( verify_construction() );
 347   NOT_PRODUCT(nodes_created++);
 348   assert( is_not_dead(n0), "can not use dead node");
 349   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 350 }
 351 
 352 //------------------------------Node-------------------------------------------
 353 Node::Node(Node *n0, Node *n1)
 354   : _idx(Init(2))
 355 #ifdef ASSERT
 356   , _parse_idx(_idx)
 357 #endif
 358 {
 359   debug_only( verify_construction() );
 360   NOT_PRODUCT(nodes_created++);
 361   assert( is_not_dead(n0), "can not use dead node");
 362   assert( is_not_dead(n1), "can not use dead node");
 363   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 364   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 365 }
 366 
 367 //------------------------------Node-------------------------------------------
 368 Node::Node(Node *n0, Node *n1, Node *n2)
 369   : _idx(Init(3))
 370 #ifdef ASSERT
 371   , _parse_idx(_idx)
 372 #endif
 373 {
 374   debug_only( verify_construction() );
 375   NOT_PRODUCT(nodes_created++);
 376   assert( is_not_dead(n0), "can not use dead node");
 377   assert( is_not_dead(n1), "can not use dead node");
 378   assert( is_not_dead(n2), "can not use dead node");
 379   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 380   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 381   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 382 }
 383 
 384 //------------------------------Node-------------------------------------------
 385 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3)
 386   : _idx(Init(4))
 387 #ifdef ASSERT
 388   , _parse_idx(_idx)
 389 #endif
 390 {
 391   debug_only( verify_construction() );
 392   NOT_PRODUCT(nodes_created++);
 393   assert( is_not_dead(n0), "can not use dead node");
 394   assert( is_not_dead(n1), "can not use dead node");
 395   assert( is_not_dead(n2), "can not use dead node");
 396   assert( is_not_dead(n3), "can not use dead node");
 397   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 398   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 399   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 400   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 401 }
 402 
 403 //------------------------------Node-------------------------------------------
 404 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3, Node *n4)
 405   : _idx(Init(5))
 406 #ifdef ASSERT
 407   , _parse_idx(_idx)
 408 #endif
 409 {
 410   debug_only( verify_construction() );
 411   NOT_PRODUCT(nodes_created++);
 412   assert( is_not_dead(n0), "can not use dead node");
 413   assert( is_not_dead(n1), "can not use dead node");
 414   assert( is_not_dead(n2), "can not use dead node");
 415   assert( is_not_dead(n3), "can not use dead node");
 416   assert( is_not_dead(n4), "can not use dead node");
 417   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 418   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 419   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 420   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 421   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 422 }
 423 
 424 //------------------------------Node-------------------------------------------
 425 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 426                      Node *n4, Node *n5)
 427   : _idx(Init(6))
 428 #ifdef ASSERT
 429   , _parse_idx(_idx)
 430 #endif
 431 {
 432   debug_only( verify_construction() );
 433   NOT_PRODUCT(nodes_created++);
 434   assert( is_not_dead(n0), "can not use dead node");
 435   assert( is_not_dead(n1), "can not use dead node");
 436   assert( is_not_dead(n2), "can not use dead node");
 437   assert( is_not_dead(n3), "can not use dead node");
 438   assert( is_not_dead(n4), "can not use dead node");
 439   assert( is_not_dead(n5), "can not use dead node");
 440   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 441   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 442   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 443   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 444   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 445   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 446 }
 447 
 448 //------------------------------Node-------------------------------------------
 449 Node::Node(Node *n0, Node *n1, Node *n2, Node *n3,
 450                      Node *n4, Node *n5, Node *n6)
 451   : _idx(Init(7))
 452 #ifdef ASSERT
 453   , _parse_idx(_idx)
 454 #endif
 455 {
 456   debug_only( verify_construction() );
 457   NOT_PRODUCT(nodes_created++);
 458   assert( is_not_dead(n0), "can not use dead node");
 459   assert( is_not_dead(n1), "can not use dead node");
 460   assert( is_not_dead(n2), "can not use dead node");
 461   assert( is_not_dead(n3), "can not use dead node");
 462   assert( is_not_dead(n4), "can not use dead node");
 463   assert( is_not_dead(n5), "can not use dead node");
 464   assert( is_not_dead(n6), "can not use dead node");
 465   _in[0] = n0; if (n0 != NULL) n0->add_out((Node *)this);
 466   _in[1] = n1; if (n1 != NULL) n1->add_out((Node *)this);
 467   _in[2] = n2; if (n2 != NULL) n2->add_out((Node *)this);
 468   _in[3] = n3; if (n3 != NULL) n3->add_out((Node *)this);
 469   _in[4] = n4; if (n4 != NULL) n4->add_out((Node *)this);
 470   _in[5] = n5; if (n5 != NULL) n5->add_out((Node *)this);
 471   _in[6] = n6; if (n6 != NULL) n6->add_out((Node *)this);
 472 }
 473 
 474 #ifdef __clang__
 475 #pragma clang diagnostic pop
 476 #endif
 477 
 478 
 479 //------------------------------clone------------------------------------------
 480 // Clone a Node.
 481 Node *Node::clone() const {
 482   Compile* C = Compile::current();
 483   uint s = size_of();           // Size of inherited Node
 484   Node *n = (Node*)C->node_arena()->Amalloc_D(size_of() + _max*sizeof(Node*));
 485   Copy::conjoint_words_to_lower((HeapWord*)this, (HeapWord*)n, s);
 486   // Set the new input pointer array
 487   n->_in = (Node**)(((char*)n)+s);
 488   // Cannot share the old output pointer array, so kill it
 489   n->_out = NO_OUT_ARRAY;
 490   // And reset the counters to 0
 491   n->_outcnt = 0;
 492   n->_outmax = 0;
 493   // Unlock this guy, since he is not in any hash table.
 494   debug_only(n->_hash_lock = 0);
 495   // Walk the old node's input list to duplicate its edges
 496   uint i;
 497   for( i = 0; i < len(); i++ ) {
 498     Node *x = in(i);
 499     n->_in[i] = x;
 500     if (x != NULL) x->add_out(n);
 501   }
 502   if (is_macro())
 503     C->add_macro_node(n);
 504   if (is_expensive())
 505     C->add_expensive_node(n);
 506   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 507   bs->register_potential_barrier_node(n);
 508   // If the cloned node is a range check dependent CastII, add it to the list.
 509   CastIINode* cast = n->isa_CastII();
 510   if (cast != NULL && cast->has_range_check()) {
 511     C->add_range_check_cast(cast);
 512   }
 513   if (n->Opcode() == Op_Opaque4) {
 514     C->add_opaque4_node(n);
 515   }
 516 
 517   n->set_idx(C->next_unique()); // Get new unique index as well
 518   debug_only( n->verify_construction() );
 519   NOT_PRODUCT(nodes_created++);
 520   // Do not patch over the debug_idx of a clone, because it makes it
 521   // impossible to break on the clone's moment of creation.
 522   //debug_only( n->set_debug_idx( debug_idx() ) );
 523 
 524   C->copy_node_notes_to(n, (Node*) this);
 525 
 526   // MachNode clone
 527   uint nopnds;
 528   if (this->is_Mach() && (nopnds = this->as_Mach()->num_opnds()) > 0) {
 529     MachNode *mach  = n->as_Mach();
 530     MachNode *mthis = this->as_Mach();
 531     // Get address of _opnd_array.
 532     // It should be the same offset since it is the clone of this node.
 533     MachOper **from = mthis->_opnds;
 534     MachOper **to = (MachOper **)((size_t)(&mach->_opnds) +
 535                     pointer_delta((const void*)from,
 536                                   (const void*)(&mthis->_opnds), 1));
 537     mach->_opnds = to;
 538     for ( uint i = 0; i < nopnds; ++i ) {
 539       to[i] = from[i]->clone();
 540     }
 541   }
 542   // cloning CallNode may need to clone JVMState
 543   if (n->is_Call()) {
 544     n->as_Call()->clone_jvms(C);
 545   }
 546   if (n->is_SafePoint()) {
 547     n->as_SafePoint()->clone_replaced_nodes();
 548   }
 549   if (n->is_ValueTypeBase()) {
 550     C->add_value_type(n);
 551   }
 552   return n;                     // Return the clone
 553 }
 554 
 555 //---------------------------setup_is_top--------------------------------------
 556 // Call this when changing the top node, to reassert the invariants
 557 // required by Node::is_top.  See Compile::set_cached_top_node.
 558 void Node::setup_is_top() {
 559   if (this == (Node*)Compile::current()->top()) {
 560     // This node has just become top.  Kill its out array.
 561     _outcnt = _outmax = 0;
 562     _out = NULL;                           // marker value for top
 563     assert(is_top(), "must be top");
 564   } else {
 565     if (_out == NULL)  _out = NO_OUT_ARRAY;
 566     assert(!is_top(), "must not be top");
 567   }
 568 }
 569 
 570 
 571 //------------------------------~Node------------------------------------------
 572 // Fancy destructor; eagerly attempt to reclaim Node numberings and storage
 573 void Node::destruct() {
 574   // Eagerly reclaim unique Node numberings
 575   Compile* compile = Compile::current();
 576   if ((uint)_idx+1 == compile->unique()) {
 577     compile->set_unique(compile->unique()-1);
 578   }
 579   // Clear debug info:
 580   Node_Notes* nn = compile->node_notes_at(_idx);
 581   if (nn != NULL)  nn->clear();
 582   // Walk the input array, freeing the corresponding output edges
 583   _cnt = _max;  // forget req/prec distinction
 584   uint i;
 585   for( i = 0; i < _max; i++ ) {
 586     set_req(i, NULL);
 587     //assert(def->out(def->outcnt()-1) == (Node *)this,"bad def-use hacking in reclaim");
 588   }
 589   assert(outcnt() == 0, "deleting a node must not leave a dangling use");
 590   // See if the input array was allocated just prior to the object
 591   int edge_size = _max*sizeof(void*);
 592   int out_edge_size = _outmax*sizeof(void*);
 593   char *edge_end = ((char*)_in) + edge_size;
 594   char *out_array = (char*)(_out == NO_OUT_ARRAY? NULL: _out);
 595   int node_size = size_of();
 596 
 597   // Free the output edge array
 598   if (out_edge_size > 0) {
 599     compile->node_arena()->Afree(out_array, out_edge_size);
 600   }
 601 
 602   // Free the input edge array and the node itself
 603   if( edge_end == (char*)this ) {
 604     // It was; free the input array and object all in one hit
 605 #ifndef ASSERT
 606     compile->node_arena()->Afree(_in,edge_size+node_size);
 607 #endif
 608   } else {
 609     // Free just the input array
 610     compile->node_arena()->Afree(_in,edge_size);
 611 
 612     // Free just the object
 613 #ifndef ASSERT
 614     compile->node_arena()->Afree(this,node_size);
 615 #endif
 616   }
 617   if (is_macro()) {
 618     compile->remove_macro_node(this);
 619   }
 620   if (is_expensive()) {
 621     compile->remove_expensive_node(this);
 622   }
 623   CastIINode* cast = isa_CastII();
 624   if (cast != NULL && cast->has_range_check()) {
 625     compile->remove_range_check_cast(cast);
 626   }
 627   if (Opcode() == Op_Opaque4) {
 628     compile->remove_opaque4_node(this);
 629   }
 630   if (is_ValueTypeBase()) {
 631     compile->remove_value_type(this);
 632   }
 633 
 634   if (is_SafePoint()) {
 635     as_SafePoint()->delete_replaced_nodes();
 636   }
 637   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 638   bs->unregister_potential_barrier_node(this);
 639 #ifdef ASSERT
 640   // We will not actually delete the storage, but we'll make the node unusable.
 641   *(address*)this = badAddress;  // smash the C++ vtbl, probably
 642   _in = _out = (Node**) badAddress;
 643   _max = _cnt = _outmax = _outcnt = 0;
 644   compile->remove_modified_node(this);
 645 #endif
 646 }
 647 
 648 //------------------------------grow-------------------------------------------
 649 // Grow the input array, making space for more edges
 650 void Node::grow( uint len ) {
 651   Arena* arena = Compile::current()->node_arena();
 652   uint new_max = _max;
 653   if( new_max == 0 ) {
 654     _max = 4;
 655     _in = (Node**)arena->Amalloc(4*sizeof(Node*));
 656     Node** to = _in;
 657     to[0] = NULL;
 658     to[1] = NULL;
 659     to[2] = NULL;
 660     to[3] = NULL;
 661     return;
 662   }
 663   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 664   // Trimming to limit allows a uint8 to handle up to 255 edges.
 665   // Previously I was using only powers-of-2 which peaked at 128 edges.
 666   //if( new_max >= limit ) new_max = limit-1;
 667   _in = (Node**)arena->Arealloc(_in, _max*sizeof(Node*), new_max*sizeof(Node*));
 668   Copy::zero_to_bytes(&_in[_max], (new_max-_max)*sizeof(Node*)); // NULL all new space
 669   _max = new_max;               // Record new max length
 670   // This assertion makes sure that Node::_max is wide enough to
 671   // represent the numerical value of new_max.
 672   assert(_max == new_max && _max > len, "int width of _max is too small");
 673 }
 674 
 675 //-----------------------------out_grow----------------------------------------
 676 // Grow the input array, making space for more edges
 677 void Node::out_grow( uint len ) {
 678   assert(!is_top(), "cannot grow a top node's out array");
 679   Arena* arena = Compile::current()->node_arena();
 680   uint new_max = _outmax;
 681   if( new_max == 0 ) {
 682     _outmax = 4;
 683     _out = (Node **)arena->Amalloc(4*sizeof(Node*));
 684     return;
 685   }
 686   while( new_max <= len ) new_max <<= 1; // Find next power-of-2
 687   // Trimming to limit allows a uint8 to handle up to 255 edges.
 688   // Previously I was using only powers-of-2 which peaked at 128 edges.
 689   //if( new_max >= limit ) new_max = limit-1;
 690   assert(_out != NULL && _out != NO_OUT_ARRAY, "out must have sensible value");
 691   _out = (Node**)arena->Arealloc(_out,_outmax*sizeof(Node*),new_max*sizeof(Node*));
 692   //Copy::zero_to_bytes(&_out[_outmax], (new_max-_outmax)*sizeof(Node*)); // NULL all new space
 693   _outmax = new_max;               // Record new max length
 694   // This assertion makes sure that Node::_max is wide enough to
 695   // represent the numerical value of new_max.
 696   assert(_outmax == new_max && _outmax > len, "int width of _outmax is too small");
 697 }
 698 
 699 #ifdef ASSERT
 700 //------------------------------is_dead----------------------------------------
 701 bool Node::is_dead() const {
 702   // Mach and pinch point nodes may look like dead.
 703   if( is_top() || is_Mach() || (Opcode() == Op_Node && _outcnt > 0) )
 704     return false;
 705   for( uint i = 0; i < _max; i++ )
 706     if( _in[i] != NULL )
 707       return false;
 708   dump();
 709   return true;
 710 }
 711 #endif
 712 
 713 
 714 //------------------------------is_unreachable---------------------------------
 715 bool Node::is_unreachable(PhaseIterGVN &igvn) const {
 716   assert(!is_Mach(), "doesn't work with MachNodes");
 717   return outcnt() == 0 || igvn.type(this) == Type::TOP || (in(0) != NULL && in(0)->is_top());
 718 }
 719 
 720 //------------------------------add_req----------------------------------------
 721 // Add a new required input at the end
 722 void Node::add_req( Node *n ) {
 723   assert( is_not_dead(n), "can not use dead node");
 724 
 725   // Look to see if I can move precedence down one without reallocating
 726   if( (_cnt >= _max) || (in(_max-1) != NULL) )
 727     grow( _max+1 );
 728 
 729   // Find a precedence edge to move
 730   if( in(_cnt) != NULL ) {       // Next precedence edge is busy?
 731     uint i;
 732     for( i=_cnt; i<_max; i++ )
 733       if( in(i) == NULL )       // Find the NULL at end of prec edge list
 734         break;                  // There must be one, since we grew the array
 735     _in[i] = in(_cnt);          // Move prec over, making space for req edge
 736   }
 737   _in[_cnt++] = n;            // Stuff over old prec edge
 738   if (n != NULL) n->add_out((Node *)this);
 739 }
 740 
 741 //---------------------------add_req_batch-------------------------------------
 742 // Add a new required input at the end
 743 void Node::add_req_batch( Node *n, uint m ) {
 744   assert( is_not_dead(n), "can not use dead node");
 745   // check various edge cases
 746   if ((int)m <= 1) {
 747     assert((int)m >= 0, "oob");
 748     if (m != 0)  add_req(n);
 749     return;
 750   }
 751 
 752   // Look to see if I can move precedence down one without reallocating
 753   if( (_cnt+m) > _max || _in[_max-m] )
 754     grow( _max+m );
 755 
 756   // Find a precedence edge to move
 757   if( _in[_cnt] != NULL ) {     // Next precedence edge is busy?
 758     uint i;
 759     for( i=_cnt; i<_max; i++ )
 760       if( _in[i] == NULL )      // Find the NULL at end of prec edge list
 761         break;                  // There must be one, since we grew the array
 762     // Slide all the precs over by m positions (assume #prec << m).
 763     Copy::conjoint_words_to_higher((HeapWord*)&_in[_cnt], (HeapWord*)&_in[_cnt+m], ((i-_cnt)*sizeof(Node*)));
 764   }
 765 
 766   // Stuff over the old prec edges
 767   for(uint i=0; i<m; i++ ) {
 768     _in[_cnt++] = n;
 769   }
 770 
 771   // Insert multiple out edges on the node.
 772   if (n != NULL && !n->is_top()) {
 773     for(uint i=0; i<m; i++ ) {
 774       n->add_out((Node *)this);
 775     }
 776   }
 777 }
 778 
 779 //------------------------------del_req----------------------------------------
 780 // Delete the required edge and compact the edge array
 781 void Node::del_req( uint idx ) {
 782   assert( idx < _cnt, "oob");
 783   assert( !VerifyHashTableKeys || _hash_lock == 0,
 784           "remove node from hash table before modifying it");
 785   // First remove corresponding def-use edge
 786   Node *n = in(idx);
 787   if (n != NULL) n->del_out((Node *)this);
 788   _in[idx] = in(--_cnt); // Compact the array
 789   // Avoid spec violation: Gap in prec edges.
 790   close_prec_gap_at(_cnt);
 791   Compile::current()->record_modified_node(this);
 792 }
 793 
 794 //------------------------------del_req_ordered--------------------------------
 795 // Delete the required edge and compact the edge array with preserved order
 796 void Node::del_req_ordered( uint idx ) {
 797   assert( idx < _cnt, "oob");
 798   assert( !VerifyHashTableKeys || _hash_lock == 0,
 799           "remove node from hash table before modifying it");
 800   // First remove corresponding def-use edge
 801   Node *n = in(idx);
 802   if (n != NULL) n->del_out((Node *)this);
 803   if (idx < --_cnt) {    // Not last edge ?
 804     Copy::conjoint_words_to_lower((HeapWord*)&_in[idx+1], (HeapWord*)&_in[idx], ((_cnt-idx)*sizeof(Node*)));
 805   }
 806   // Avoid spec violation: Gap in prec edges.
 807   close_prec_gap_at(_cnt);
 808   Compile::current()->record_modified_node(this);
 809 }
 810 
 811 //------------------------------ins_req----------------------------------------
 812 // Insert a new required input at the end
 813 void Node::ins_req( uint idx, Node *n ) {
 814   assert( is_not_dead(n), "can not use dead node");
 815   add_req(NULL);                // Make space
 816   assert( idx < _max, "Must have allocated enough space");
 817   // Slide over
 818   if(_cnt-idx-1 > 0) {
 819     Copy::conjoint_words_to_higher((HeapWord*)&_in[idx], (HeapWord*)&_in[idx+1], ((_cnt-idx-1)*sizeof(Node*)));
 820   }
 821   _in[idx] = n;                            // Stuff over old required edge
 822   if (n != NULL) n->add_out((Node *)this); // Add reciprocal def-use edge
 823 }
 824 
 825 //-----------------------------find_edge---------------------------------------
 826 int Node::find_edge(Node* n) {
 827   for (uint i = 0; i < len(); i++) {
 828     if (_in[i] == n)  return i;
 829   }
 830   return -1;
 831 }
 832 
 833 //----------------------------replace_edge-------------------------------------
 834 int Node::replace_edge(Node* old, Node* neww) {
 835   if (old == neww)  return 0;  // nothing to do
 836   uint nrep = 0;
 837   for (uint i = 0; i < len(); i++) {
 838     if (in(i) == old) {
 839       if (i < req()) {
 840         set_req(i, neww);
 841       } else {
 842         assert(find_prec_edge(neww) == -1, "spec violation: duplicated prec edge (node %d -> %d)", _idx, neww->_idx);
 843         set_prec(i, neww);
 844       }
 845       nrep++;
 846     }
 847   }
 848   return nrep;
 849 }
 850 
 851 /**
 852  * Replace input edges in the range pointing to 'old' node.
 853  */
 854 int Node::replace_edges_in_range(Node* old, Node* neww, int start, int end) {
 855   if (old == neww)  return 0;  // nothing to do
 856   uint nrep = 0;
 857   for (int i = start; i < end; i++) {
 858     if (in(i) == old) {
 859       set_req(i, neww);
 860       nrep++;
 861     }
 862   }
 863   return nrep;
 864 }
 865 
 866 //-------------------------disconnect_inputs-----------------------------------
 867 // NULL out all inputs to eliminate incoming Def-Use edges.
 868 // Return the number of edges between 'n' and 'this'
 869 int Node::disconnect_inputs(Node *n, Compile* C) {
 870   int edges_to_n = 0;
 871 
 872   uint cnt = req();
 873   for( uint i = 0; i < cnt; ++i ) {
 874     if( in(i) == 0 ) continue;
 875     if( in(i) == n ) ++edges_to_n;
 876     set_req(i, NULL);
 877   }
 878   // Remove precedence edges if any exist
 879   // Note: Safepoints may have precedence edges, even during parsing
 880   if( (req() != len()) && (in(req()) != NULL) ) {
 881     uint max = len();
 882     for( uint i = 0; i < max; ++i ) {
 883       if( in(i) == 0 ) continue;
 884       if( in(i) == n ) ++edges_to_n;
 885       set_prec(i, NULL);
 886     }
 887   }
 888 
 889   // Node::destruct requires all out edges be deleted first
 890   // debug_only(destruct();)   // no reuse benefit expected
 891   if (edges_to_n == 0) {
 892     C->record_dead_node(_idx);
 893   }
 894   return edges_to_n;
 895 }
 896 
 897 //-----------------------------uncast---------------------------------------
 898 // %%% Temporary, until we sort out CheckCastPP vs. CastPP.
 899 // Strip away casting.  (It is depth-limited.)
 900 Node* Node::uncast() const {
 901   // Should be inline:
 902   //return is_ConstraintCast() ? uncast_helper(this) : (Node*) this;
 903   if (is_ConstraintCast())
 904     return uncast_helper(this);
 905   else
 906     return (Node*) this;
 907 }
 908 
 909 // Find out of current node that matches opcode.
 910 Node* Node::find_out_with(int opcode) {
 911   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 912     Node* use = fast_out(i);
 913     if (use->Opcode() == opcode) {
 914       return use;
 915     }
 916   }
 917   return NULL;
 918 }
 919 
 920 // Return true if the current node has an out that matches opcode.
 921 bool Node::has_out_with(int opcode) {
 922   return (find_out_with(opcode) != NULL);
 923 }
 924 
 925 // Return true if the current node has an out that matches any of the opcodes.
 926 bool Node::has_out_with(int opcode1, int opcode2, int opcode3, int opcode4) {
 927   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 928       int opcode = fast_out(i)->Opcode();
 929       if (opcode == opcode1 || opcode == opcode2 || opcode == opcode3 || opcode == opcode4) {
 930         return true;
 931       }
 932   }
 933   return false;
 934 }
 935 
 936 
 937 //---------------------------uncast_helper-------------------------------------
 938 Node* Node::uncast_helper(const Node* p) {
 939 #ifdef ASSERT
 940   uint depth_count = 0;
 941   const Node* orig_p = p;
 942 #endif
 943 
 944   while (true) {
 945 #ifdef ASSERT
 946     if (depth_count >= K) {
 947       orig_p->dump(4);
 948       if (p != orig_p)
 949         p->dump(1);
 950     }
 951     assert(depth_count++ < K, "infinite loop in Node::uncast_helper");
 952 #endif
 953     if (p == NULL || p->req() != 2) {
 954       break;
 955     } else if (p->is_ConstraintCast()) {
 956       p = p->in(1);
 957     } else {
 958       break;
 959     }
 960   }
 961   return (Node*) p;
 962 }
 963 
 964 //------------------------------add_prec---------------------------------------
 965 // Add a new precedence input.  Precedence inputs are unordered, with
 966 // duplicates removed and NULLs packed down at the end.
 967 void Node::add_prec( Node *n ) {
 968   assert( is_not_dead(n), "can not use dead node");
 969 
 970   // Check for NULL at end
 971   if( _cnt >= _max || in(_max-1) )
 972     grow( _max+1 );
 973 
 974   // Find a precedence edge to move
 975   uint i = _cnt;
 976   while( in(i) != NULL ) {
 977     if (in(i) == n) return; // Avoid spec violation: duplicated prec edge.
 978     i++;
 979   }
 980   _in[i] = n;                                // Stuff prec edge over NULL
 981   if ( n != NULL) n->add_out((Node *)this);  // Add mirror edge
 982 
 983 #ifdef ASSERT
 984   while ((++i)<_max) { assert(_in[i] == NULL, "spec violation: Gap in prec edges (node %d)", _idx); }
 985 #endif
 986 }
 987 
 988 //------------------------------rm_prec----------------------------------------
 989 // Remove a precedence input.  Precedence inputs are unordered, with
 990 // duplicates removed and NULLs packed down at the end.
 991 void Node::rm_prec( uint j ) {
 992   assert(j < _max, "oob: i=%d, _max=%d", j, _max);
 993   assert(j >= _cnt, "not a precedence edge");
 994   if (_in[j] == NULL) return;   // Avoid spec violation: Gap in prec edges.
 995   _in[j]->del_out((Node *)this);
 996   close_prec_gap_at(j);
 997 }
 998 
 999 //------------------------------size_of----------------------------------------
1000 uint Node::size_of() const { return sizeof(*this); }
1001 
1002 //------------------------------ideal_reg--------------------------------------
1003 uint Node::ideal_reg() const { return 0; }
1004 
1005 //------------------------------jvms-------------------------------------------
1006 JVMState* Node::jvms() const { return NULL; }
1007 
1008 #ifdef ASSERT
1009 //------------------------------jvms-------------------------------------------
1010 bool Node::verify_jvms(const JVMState* using_jvms) const {
1011   for (JVMState* jvms = this->jvms(); jvms != NULL; jvms = jvms->caller()) {
1012     if (jvms == using_jvms)  return true;
1013   }
1014   return false;
1015 }
1016 
1017 //------------------------------init_NodeProperty------------------------------
1018 void Node::init_NodeProperty() {
1019   assert(_max_classes <= max_jushort, "too many NodeProperty classes");
1020   assert(_max_flags <= max_jushort, "too many NodeProperty flags");
1021 }
1022 #endif
1023 
1024 //------------------------------format-----------------------------------------
1025 // Print as assembly
1026 void Node::format( PhaseRegAlloc *, outputStream *st ) const {}
1027 //------------------------------emit-------------------------------------------
1028 // Emit bytes starting at parameter 'ptr'.
1029 void Node::emit(CodeBuffer &cbuf, PhaseRegAlloc *ra_) const {}
1030 //------------------------------size-------------------------------------------
1031 // Size of instruction in bytes
1032 uint Node::size(PhaseRegAlloc *ra_) const { return 0; }
1033 
1034 //------------------------------CFG Construction-------------------------------
1035 // Nodes that end basic blocks, e.g. IfTrue/IfFalse, JumpProjNode, Root,
1036 // Goto and Return.
1037 const Node *Node::is_block_proj() const { return 0; }
1038 
1039 // Minimum guaranteed type
1040 const Type *Node::bottom_type() const { return Type::BOTTOM; }
1041 
1042 
1043 //------------------------------raise_bottom_type------------------------------
1044 // Get the worst-case Type output for this Node.
1045 void Node::raise_bottom_type(const Type* new_type) {
1046   if (is_Type()) {
1047     TypeNode *n = this->as_Type();
1048     if (VerifyAliases) {
1049       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1050     }
1051     n->set_type(new_type);
1052   } else if (is_Load()) {
1053     LoadNode *n = this->as_Load();
1054     if (VerifyAliases) {
1055       assert(new_type->higher_equal_speculative(n->type()), "new type must refine old type");
1056     }
1057     n->set_type(new_type);
1058   }
1059 }
1060 
1061 //------------------------------Identity---------------------------------------
1062 // Return a node that the given node is equivalent to.
1063 Node* Node::Identity(PhaseGVN* phase) {
1064   return this;                  // Default to no identities
1065 }
1066 
1067 //------------------------------Value------------------------------------------
1068 // Compute a new Type for a node using the Type of the inputs.
1069 const Type* Node::Value(PhaseGVN* phase) const {
1070   return bottom_type();         // Default to worst-case Type
1071 }
1072 
1073 //------------------------------Ideal------------------------------------------
1074 //
1075 // 'Idealize' the graph rooted at this Node.
1076 //
1077 // In order to be efficient and flexible there are some subtle invariants
1078 // these Ideal calls need to hold.  Running with '+VerifyIterativeGVN' checks
1079 // these invariants, although its too slow to have on by default.  If you are
1080 // hacking an Ideal call, be sure to test with +VerifyIterativeGVN!
1081 //
1082 // The Ideal call almost arbitrarily reshape the graph rooted at the 'this'
1083 // pointer.  If ANY change is made, it must return the root of the reshaped
1084 // graph - even if the root is the same Node.  Example: swapping the inputs
1085 // to an AddINode gives the same answer and same root, but you still have to
1086 // return the 'this' pointer instead of NULL.
1087 //
1088 // You cannot return an OLD Node, except for the 'this' pointer.  Use the
1089 // Identity call to return an old Node; basically if Identity can find
1090 // another Node have the Ideal call make no change and return NULL.
1091 // Example: AddINode::Ideal must check for add of zero; in this case it
1092 // returns NULL instead of doing any graph reshaping.
1093 //
1094 // You cannot modify any old Nodes except for the 'this' pointer.  Due to
1095 // sharing there may be other users of the old Nodes relying on their current
1096 // semantics.  Modifying them will break the other users.
1097 // Example: when reshape "(X+3)+4" into "X+7" you must leave the Node for
1098 // "X+3" unchanged in case it is shared.
1099 //
1100 // If you modify the 'this' pointer's inputs, you should use
1101 // 'set_req'.  If you are making a new Node (either as the new root or
1102 // some new internal piece) you may use 'init_req' to set the initial
1103 // value.  You can make a new Node with either 'new' or 'clone'.  In
1104 // either case, def-use info is correctly maintained.
1105 //
1106 // Example: reshape "(X+3)+4" into "X+7":
1107 //    set_req(1, in(1)->in(1));
1108 //    set_req(2, phase->intcon(7));
1109 //    return this;
1110 // Example: reshape "X*4" into "X<<2"
1111 //    return new LShiftINode(in(1), phase->intcon(2));
1112 //
1113 // You must call 'phase->transform(X)' on any new Nodes X you make, except
1114 // for the returned root node.  Example: reshape "X*31" with "(X<<5)-X".
1115 //    Node *shift=phase->transform(new LShiftINode(in(1),phase->intcon(5)));
1116 //    return new AddINode(shift, in(1));
1117 //
1118 // When making a Node for a constant use 'phase->makecon' or 'phase->intcon'.
1119 // These forms are faster than 'phase->transform(new ConNode())' and Do
1120 // The Right Thing with def-use info.
1121 //
1122 // You cannot bury the 'this' Node inside of a graph reshape.  If the reshaped
1123 // graph uses the 'this' Node it must be the root.  If you want a Node with
1124 // the same Opcode as the 'this' pointer use 'clone'.
1125 //
1126 Node *Node::Ideal(PhaseGVN *phase, bool can_reshape) {
1127   return NULL;                  // Default to being Ideal already
1128 }
1129 
1130 // Some nodes have specific Ideal subgraph transformations only if they are
1131 // unique users of specific nodes. Such nodes should be put on IGVN worklist
1132 // for the transformations to happen.
1133 bool Node::has_special_unique_user() const {
1134   assert(outcnt() == 1, "match only for unique out");
1135   Node* n = unique_out();
1136   int op  = Opcode();
1137   if (this->is_Store()) {
1138     // Condition for back-to-back stores folding.
1139     return n->Opcode() == op && n->in(MemNode::Memory) == this;
1140   } else if (this->is_Load() || this->is_DecodeN() || this->is_Phi()) {
1141     // Condition for removing an unused LoadNode or DecodeNNode from the MemBarAcquire precedence input
1142     return n->Opcode() == Op_MemBarAcquire;
1143   } else if (op == Op_AddL) {
1144     // Condition for convL2I(addL(x,y)) ==> addI(convL2I(x),convL2I(y))
1145     return n->Opcode() == Op_ConvL2I && n->in(1) == this;
1146   } else if (op == Op_SubI || op == Op_SubL) {
1147     // Condition for subI(x,subI(y,z)) ==> subI(addI(x,z),y)
1148     return n->Opcode() == op && n->in(2) == this;
1149   } else if (is_If() && (n->is_IfFalse() || n->is_IfTrue())) {
1150     // See IfProjNode::Identity()
1151     return true;
1152   } else {
1153     return BarrierSet::barrier_set()->barrier_set_c2()->has_special_unique_user(this);
1154   }
1155 };
1156 
1157 //--------------------------find_exact_control---------------------------------
1158 // Skip Proj and CatchProj nodes chains. Check for Null and Top.
1159 Node* Node::find_exact_control(Node* ctrl) {
1160   if (ctrl == NULL && this->is_Region())
1161     ctrl = this->as_Region()->is_copy();
1162 
1163   if (ctrl != NULL && ctrl->is_CatchProj()) {
1164     if (ctrl->as_CatchProj()->_con == CatchProjNode::fall_through_index)
1165       ctrl = ctrl->in(0);
1166     if (ctrl != NULL && !ctrl->is_top())
1167       ctrl = ctrl->in(0);
1168   }
1169 
1170   if (ctrl != NULL && ctrl->is_Proj())
1171     ctrl = ctrl->in(0);
1172 
1173   return ctrl;
1174 }
1175 
1176 //--------------------------dominates------------------------------------------
1177 // Helper function for MemNode::all_controls_dominate().
1178 // Check if 'this' control node dominates or equal to 'sub' control node.
1179 // We already know that if any path back to Root or Start reaches 'this',
1180 // then all paths so, so this is a simple search for one example,
1181 // not an exhaustive search for a counterexample.
1182 bool Node::dominates(Node* sub, Node_List &nlist) {
1183   assert(this->is_CFG(), "expecting control");
1184   assert(sub != NULL && sub->is_CFG(), "expecting control");
1185 
1186   // detect dead cycle without regions
1187   int iterations_without_region_limit = DominatorSearchLimit;
1188 
1189   Node* orig_sub = sub;
1190   Node* dom      = this;
1191   bool  met_dom  = false;
1192   nlist.clear();
1193 
1194   // Walk 'sub' backward up the chain to 'dom', watching for regions.
1195   // After seeing 'dom', continue up to Root or Start.
1196   // If we hit a region (backward split point), it may be a loop head.
1197   // Keep going through one of the region's inputs.  If we reach the
1198   // same region again, go through a different input.  Eventually we
1199   // will either exit through the loop head, or give up.
1200   // (If we get confused, break out and return a conservative 'false'.)
1201   while (sub != NULL) {
1202     if (sub->is_top())  break; // Conservative answer for dead code.
1203     if (sub == dom) {
1204       if (nlist.size() == 0) {
1205         // No Region nodes except loops were visited before and the EntryControl
1206         // path was taken for loops: it did not walk in a cycle.
1207         return true;
1208       } else if (met_dom) {
1209         break;          // already met before: walk in a cycle
1210       } else {
1211         // Region nodes were visited. Continue walk up to Start or Root
1212         // to make sure that it did not walk in a cycle.
1213         met_dom = true; // first time meet
1214         iterations_without_region_limit = DominatorSearchLimit; // Reset
1215      }
1216     }
1217     if (sub->is_Start() || sub->is_Root()) {
1218       // Success if we met 'dom' along a path to Start or Root.
1219       // We assume there are no alternative paths that avoid 'dom'.
1220       // (This assumption is up to the caller to ensure!)
1221       return met_dom;
1222     }
1223     Node* up = sub->in(0);
1224     // Normalize simple pass-through regions and projections:
1225     up = sub->find_exact_control(up);
1226     // If sub == up, we found a self-loop.  Try to push past it.
1227     if (sub == up && sub->is_Loop()) {
1228       // Take loop entry path on the way up to 'dom'.
1229       up = sub->in(1); // in(LoopNode::EntryControl);
1230     } else if (sub == up && sub->is_Region() && sub->req() != 3) {
1231       // Always take in(1) path on the way up to 'dom' for clone regions
1232       // (with only one input) or regions which merge > 2 paths
1233       // (usually used to merge fast/slow paths).
1234       up = sub->in(1);
1235     } else if (sub == up && sub->is_Region()) {
1236       // Try both paths for Regions with 2 input paths (it may be a loop head).
1237       // It could give conservative 'false' answer without information
1238       // which region's input is the entry path.
1239       iterations_without_region_limit = DominatorSearchLimit; // Reset
1240 
1241       bool region_was_visited_before = false;
1242       // Was this Region node visited before?
1243       // If so, we have reached it because we accidentally took a
1244       // loop-back edge from 'sub' back into the body of the loop,
1245       // and worked our way up again to the loop header 'sub'.
1246       // So, take the first unexplored path on the way up to 'dom'.
1247       for (int j = nlist.size() - 1; j >= 0; j--) {
1248         intptr_t ni = (intptr_t)nlist.at(j);
1249         Node* visited = (Node*)(ni & ~1);
1250         bool  visited_twice_already = ((ni & 1) != 0);
1251         if (visited == sub) {
1252           if (visited_twice_already) {
1253             // Visited 2 paths, but still stuck in loop body.  Give up.
1254             return false;
1255           }
1256           // The Region node was visited before only once.
1257           // (We will repush with the low bit set, below.)
1258           nlist.remove(j);
1259           // We will find a new edge and re-insert.
1260           region_was_visited_before = true;
1261           break;
1262         }
1263       }
1264 
1265       // Find an incoming edge which has not been seen yet; walk through it.
1266       assert(up == sub, "");
1267       uint skip = region_was_visited_before ? 1 : 0;
1268       for (uint i = 1; i < sub->req(); i++) {
1269         Node* in = sub->in(i);
1270         if (in != NULL && !in->is_top() && in != sub) {
1271           if (skip == 0) {
1272             up = in;
1273             break;
1274           }
1275           --skip;               // skip this nontrivial input
1276         }
1277       }
1278 
1279       // Set 0 bit to indicate that both paths were taken.
1280       nlist.push((Node*)((intptr_t)sub + (region_was_visited_before ? 1 : 0)));
1281     }
1282 
1283     if (up == sub) {
1284       break;    // some kind of tight cycle
1285     }
1286     if (up == orig_sub && met_dom) {
1287       // returned back after visiting 'dom'
1288       break;    // some kind of cycle
1289     }
1290     if (--iterations_without_region_limit < 0) {
1291       break;    // dead cycle
1292     }
1293     sub = up;
1294   }
1295 
1296   // Did not meet Root or Start node in pred. chain.
1297   // Conservative answer for dead code.
1298   return false;
1299 }
1300 
1301 //------------------------------remove_dead_region-----------------------------
1302 // This control node is dead.  Follow the subgraph below it making everything
1303 // using it dead as well.  This will happen normally via the usual IterGVN
1304 // worklist but this call is more efficient.  Do not update use-def info
1305 // inside the dead region, just at the borders.
1306 static void kill_dead_code( Node *dead, PhaseIterGVN *igvn ) {
1307   // Con's are a popular node to re-hit in the hash table again.
1308   if( dead->is_Con() ) return;
1309 
1310   // Can't put ResourceMark here since igvn->_worklist uses the same arena
1311   // for verify pass with +VerifyOpto and we add/remove elements in it here.
1312   Node_List  nstack(Thread::current()->resource_area());
1313 
1314   Node *top = igvn->C->top();
1315   nstack.push(dead);
1316   bool has_irreducible_loop = igvn->C->has_irreducible_loop();
1317 
1318   while (nstack.size() > 0) {
1319     dead = nstack.pop();
1320     if (dead->Opcode() == Op_SafePoint) {
1321       dead->as_SafePoint()->disconnect_from_root(igvn);
1322     }
1323     if (dead->outcnt() > 0) {
1324       // Keep dead node on stack until all uses are processed.
1325       nstack.push(dead);
1326       // For all Users of the Dead...    ;-)
1327       for (DUIterator_Last kmin, k = dead->last_outs(kmin); k >= kmin; ) {
1328         Node* use = dead->last_out(k);
1329         igvn->hash_delete(use);       // Yank from hash table prior to mod
1330         if (use->in(0) == dead) {     // Found another dead node
1331           assert (!use->is_Con(), "Control for Con node should be Root node.");
1332           use->set_req(0, top);       // Cut dead edge to prevent processing
1333           nstack.push(use);           // the dead node again.
1334         } else if (!has_irreducible_loop && // Backedge could be alive in irreducible loop
1335                    use->is_Loop() && !use->is_Root() &&       // Don't kill Root (RootNode extends LoopNode)
1336                    use->in(LoopNode::EntryControl) == dead) { // Dead loop if its entry is dead
1337           use->set_req(LoopNode::EntryControl, top);          // Cut dead edge to prevent processing
1338           use->set_req(0, top);       // Cut self edge
1339           nstack.push(use);
1340         } else {                      // Else found a not-dead user
1341           // Dead if all inputs are top or null
1342           bool dead_use = !use->is_Root(); // Keep empty graph alive
1343           for (uint j = 1; j < use->req(); j++) {
1344             Node* in = use->in(j);
1345             if (in == dead) {         // Turn all dead inputs into TOP
1346               use->set_req(j, top);
1347             } else if (in != NULL && !in->is_top()) {
1348               dead_use = false;
1349             }
1350           }
1351           if (dead_use) {
1352             if (use->is_Region()) {
1353               use->set_req(0, top);   // Cut self edge
1354             }
1355             nstack.push(use);
1356           } else {
1357             igvn->_worklist.push(use);
1358           }
1359         }
1360         // Refresh the iterator, since any number of kills might have happened.
1361         k = dead->last_outs(kmin);
1362       }
1363     } else { // (dead->outcnt() == 0)
1364       // Done with outputs.
1365       igvn->hash_delete(dead);
1366       igvn->_worklist.remove(dead);
1367       igvn->C->remove_modified_node(dead);
1368       igvn->set_type(dead, Type::TOP);
1369       if (dead->is_macro()) {
1370         igvn->C->remove_macro_node(dead);
1371       }
1372       if (dead->is_expensive()) {
1373         igvn->C->remove_expensive_node(dead);
1374       }
1375       CastIINode* cast = dead->isa_CastII();
1376       if (cast != NULL && cast->has_range_check()) {
1377         igvn->C->remove_range_check_cast(cast);
1378       }
1379       if (dead->Opcode() == Op_Opaque4) {
1380         igvn->C->remove_opaque4_node(dead);
1381       }
1382       if (dead->is_ValueTypeBase()) {
1383         igvn->C->remove_value_type(dead);
1384       }
1385       BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
1386       bs->unregister_potential_barrier_node(dead);
1387       igvn->C->record_dead_node(dead->_idx);
1388       // Kill all inputs to the dead guy
1389       for (uint i=0; i < dead->req(); i++) {
1390         Node *n = dead->in(i);      // Get input to dead guy
1391         if (n != NULL && !n->is_top()) { // Input is valid?
1392           dead->set_req(i, top);    // Smash input away
1393           if (n->outcnt() == 0) {   // Input also goes dead?
1394             if (!n->is_Con())
1395               nstack.push(n);       // Clear it out as well
1396           } else if (n->outcnt() == 1 &&
1397                      n->has_special_unique_user()) {
1398             igvn->add_users_to_worklist( n );
1399           } else if (n->outcnt() <= 2 && n->is_Store()) {
1400             // Push store's uses on worklist to enable folding optimization for
1401             // store/store and store/load to the same address.
1402             // The restriction (outcnt() <= 2) is the same as in set_req_X()
1403             // and remove_globally_dead_node().
1404             igvn->add_users_to_worklist( n );
1405           } else {
1406             BarrierSet::barrier_set()->barrier_set_c2()->enqueue_useful_gc_barrier(igvn, n);
1407           }
1408         }
1409       }
1410     } // (dead->outcnt() == 0)
1411   }   // while (nstack.size() > 0) for outputs
1412   return;
1413 }
1414 
1415 //------------------------------remove_dead_region-----------------------------
1416 bool Node::remove_dead_region(PhaseGVN *phase, bool can_reshape) {
1417   Node *n = in(0);
1418   if( !n ) return false;
1419   // Lost control into this guy?  I.e., it became unreachable?
1420   // Aggressively kill all unreachable code.
1421   if (can_reshape && n->is_top()) {
1422     kill_dead_code(this, phase->is_IterGVN());
1423     return false; // Node is dead.
1424   }
1425 
1426   if( n->is_Region() && n->as_Region()->is_copy() ) {
1427     Node *m = n->nonnull_req();
1428     set_req(0, m);
1429     return true;
1430   }
1431   return false;
1432 }
1433 
1434 //------------------------------hash-------------------------------------------
1435 // Hash function over Nodes.
1436 uint Node::hash() const {
1437   uint sum = 0;
1438   for( uint i=0; i<_cnt; i++ )  // Add in all inputs
1439     sum = (sum<<1)-(uintptr_t)in(i);        // Ignore embedded NULLs
1440   return (sum>>2) + _cnt + Opcode();
1441 }
1442 
1443 //------------------------------cmp--------------------------------------------
1444 // Compare special parts of simple Nodes
1445 uint Node::cmp( const Node &n ) const {
1446   return 1;                     // Must be same
1447 }
1448 
1449 //------------------------------rematerialize-----------------------------------
1450 // Should we clone rather than spill this instruction?
1451 bool Node::rematerialize() const {
1452   if ( is_Mach() )
1453     return this->as_Mach()->rematerialize();
1454   else
1455     return (_flags & Flag_rematerialize) != 0;
1456 }
1457 
1458 //------------------------------needs_anti_dependence_check---------------------
1459 // Nodes which use memory without consuming it, hence need antidependences.
1460 bool Node::needs_anti_dependence_check() const {
1461   if( req() < 2 || (_flags & Flag_needs_anti_dependence_check) == 0 )
1462     return false;
1463   else
1464     return in(1)->bottom_type()->has_memory();
1465 }
1466 
1467 
1468 // Get an integer constant from a ConNode (or CastIINode).
1469 // Return a default value if there is no apparent constant here.
1470 const TypeInt* Node::find_int_type() const {
1471   if (this->is_Type()) {
1472     return this->as_Type()->type()->isa_int();
1473   } else if (this->is_Con()) {
1474     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1475     return this->bottom_type()->isa_int();
1476   }
1477   return NULL;
1478 }
1479 
1480 // Get a pointer constant from a ConstNode.
1481 // Returns the constant if it is a pointer ConstNode
1482 intptr_t Node::get_ptr() const {
1483   assert( Opcode() == Op_ConP, "" );
1484   return ((ConPNode*)this)->type()->is_ptr()->get_con();
1485 }
1486 
1487 // Get a narrow oop constant from a ConNNode.
1488 intptr_t Node::get_narrowcon() const {
1489   assert( Opcode() == Op_ConN, "" );
1490   return ((ConNNode*)this)->type()->is_narrowoop()->get_con();
1491 }
1492 
1493 // Get a long constant from a ConNode.
1494 // Return a default value if there is no apparent constant here.
1495 const TypeLong* Node::find_long_type() const {
1496   if (this->is_Type()) {
1497     return this->as_Type()->type()->isa_long();
1498   } else if (this->is_Con()) {
1499     assert(is_Mach(), "should be ConNode(TypeNode) or else a MachNode");
1500     return this->bottom_type()->isa_long();
1501   }
1502   return NULL;
1503 }
1504 
1505 
1506 /**
1507  * Return a ptr type for nodes which should have it.
1508  */
1509 const TypePtr* Node::get_ptr_type() const {
1510   const TypePtr* tp = this->bottom_type()->make_ptr();
1511 #ifdef ASSERT
1512   if (tp == NULL) {
1513     this->dump(1);
1514     assert((tp != NULL), "unexpected node type");
1515   }
1516 #endif
1517   return tp;
1518 }
1519 
1520 // Get a double constant from a ConstNode.
1521 // Returns the constant if it is a double ConstNode
1522 jdouble Node::getd() const {
1523   assert( Opcode() == Op_ConD, "" );
1524   return ((ConDNode*)this)->type()->is_double_constant()->getd();
1525 }
1526 
1527 // Get a float constant from a ConstNode.
1528 // Returns the constant if it is a float ConstNode
1529 jfloat Node::getf() const {
1530   assert( Opcode() == Op_ConF, "" );
1531   return ((ConFNode*)this)->type()->is_float_constant()->getf();
1532 }
1533 
1534 #ifndef PRODUCT
1535 
1536 //------------------------------find------------------------------------------
1537 // Find a neighbor of this Node with the given _idx
1538 // If idx is negative, find its absolute value, following both _in and _out.
1539 static void find_recur(Compile* C,  Node* &result, Node *n, int idx, bool only_ctrl,
1540                         VectorSet* old_space, VectorSet* new_space ) {
1541   int node_idx = (idx >= 0) ? idx : -idx;
1542   if (NotANode(n))  return;  // Gracefully handle NULL, -1, 0xabababab, etc.
1543   // Contained in new_space or old_space?   Check old_arena first since it's mostly empty.
1544   VectorSet *v = C->old_arena()->contains(n) ? old_space : new_space;
1545   if( v->test(n->_idx) ) return;
1546   if( (int)n->_idx == node_idx
1547       debug_only(|| n->debug_idx() == node_idx) ) {
1548     if (result != NULL)
1549       tty->print("find: " INTPTR_FORMAT " and " INTPTR_FORMAT " both have idx==%d\n",
1550                  (uintptr_t)result, (uintptr_t)n, node_idx);
1551     result = n;
1552   }
1553   v->set(n->_idx);
1554   for( uint i=0; i<n->len(); i++ ) {
1555     if( only_ctrl && !(n->is_Region()) && (n->Opcode() != Op_Root) && (i != TypeFunc::Control) ) continue;
1556     find_recur(C, result, n->in(i), idx, only_ctrl, old_space, new_space );
1557   }
1558   // Search along forward edges also:
1559   if (idx < 0 && !only_ctrl) {
1560     for( uint j=0; j<n->outcnt(); j++ ) {
1561       find_recur(C, result, n->raw_out(j), idx, only_ctrl, old_space, new_space );
1562     }
1563   }
1564 #ifdef ASSERT
1565   // Search along debug_orig edges last, checking for cycles
1566   Node* orig = n->debug_orig();
1567   if (orig != NULL) {
1568     do {
1569       if (NotANode(orig))  break;
1570       find_recur(C, result, orig, idx, only_ctrl, old_space, new_space );
1571       orig = orig->debug_orig();
1572     } while (orig != NULL && orig != n->debug_orig());
1573   }
1574 #endif //ASSERT
1575 }
1576 
1577 // call this from debugger:
1578 Node* find_node(Node* n, int idx) {
1579   return n->find(idx);
1580 }
1581 
1582 //------------------------------find-------------------------------------------
1583 Node* Node::find(int idx) const {
1584   ResourceArea *area = Thread::current()->resource_area();
1585   VectorSet old_space(area), new_space(area);
1586   Node* result = NULL;
1587   find_recur(Compile::current(), result, (Node*) this, idx, false, &old_space, &new_space );
1588   return result;
1589 }
1590 
1591 //------------------------------find_ctrl--------------------------------------
1592 // Find an ancestor to this node in the control history with given _idx
1593 Node* Node::find_ctrl(int idx) const {
1594   ResourceArea *area = Thread::current()->resource_area();
1595   VectorSet old_space(area), new_space(area);
1596   Node* result = NULL;
1597   find_recur(Compile::current(), result, (Node*) this, idx, true, &old_space, &new_space );
1598   return result;
1599 }
1600 #endif
1601 
1602 
1603 
1604 #ifndef PRODUCT
1605 
1606 // -----------------------------Name-------------------------------------------
1607 extern const char *NodeClassNames[];
1608 const char *Node::Name() const { return NodeClassNames[Opcode()]; }
1609 
1610 static bool is_disconnected(const Node* n) {
1611   for (uint i = 0; i < n->req(); i++) {
1612     if (n->in(i) != NULL)  return false;
1613   }
1614   return true;
1615 }
1616 
1617 #ifdef ASSERT
1618 static void dump_orig(Node* orig, outputStream *st) {
1619   Compile* C = Compile::current();
1620   if (NotANode(orig)) orig = NULL;
1621   if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1622   if (orig == NULL) return;
1623   st->print(" !orig=");
1624   Node* fast = orig->debug_orig(); // tortoise & hare algorithm to detect loops
1625   if (NotANode(fast)) fast = NULL;
1626   while (orig != NULL) {
1627     bool discon = is_disconnected(orig);  // if discon, print [123] else 123
1628     if (discon) st->print("[");
1629     if (!Compile::current()->node_arena()->contains(orig))
1630       st->print("o");
1631     st->print("%d", orig->_idx);
1632     if (discon) st->print("]");
1633     orig = orig->debug_orig();
1634     if (NotANode(orig)) orig = NULL;
1635     if (orig != NULL && !C->node_arena()->contains(orig)) orig = NULL;
1636     if (orig != NULL) st->print(",");
1637     if (fast != NULL) {
1638       // Step fast twice for each single step of orig:
1639       fast = fast->debug_orig();
1640       if (NotANode(fast)) fast = NULL;
1641       if (fast != NULL && fast != orig) {
1642         fast = fast->debug_orig();
1643         if (NotANode(fast)) fast = NULL;
1644       }
1645       if (fast == orig) {
1646         st->print("...");
1647         break;
1648       }
1649     }
1650   }
1651 }
1652 
1653 void Node::set_debug_orig(Node* orig) {
1654   _debug_orig = orig;
1655   if (BreakAtNode == 0)  return;
1656   if (NotANode(orig))  orig = NULL;
1657   int trip = 10;
1658   while (orig != NULL) {
1659     if (orig->debug_idx() == BreakAtNode || (int)orig->_idx == BreakAtNode) {
1660       tty->print_cr("BreakAtNode: _idx=%d _debug_idx=%d orig._idx=%d orig._debug_idx=%d",
1661                     this->_idx, this->debug_idx(), orig->_idx, orig->debug_idx());
1662       BREAKPOINT;
1663     }
1664     orig = orig->debug_orig();
1665     if (NotANode(orig))  orig = NULL;
1666     if (trip-- <= 0)  break;
1667   }
1668 }
1669 #endif //ASSERT
1670 
1671 //------------------------------dump------------------------------------------
1672 // Dump a Node
1673 void Node::dump(const char* suffix, bool mark, outputStream *st) const {
1674   Compile* C = Compile::current();
1675   bool is_new = C->node_arena()->contains(this);
1676   C->_in_dump_cnt++;
1677   st->print("%c%d%s\t%s\t=== ", is_new ? ' ' : 'o', _idx, mark ? " >" : "", Name());
1678 
1679   // Dump the required and precedence inputs
1680   dump_req(st);
1681   dump_prec(st);
1682   // Dump the outputs
1683   dump_out(st);
1684 
1685   if (is_disconnected(this)) {
1686 #ifdef ASSERT
1687     st->print("  [%d]",debug_idx());
1688     dump_orig(debug_orig(), st);
1689 #endif
1690     st->cr();
1691     C->_in_dump_cnt--;
1692     return;                     // don't process dead nodes
1693   }
1694 
1695   if (C->clone_map().value(_idx) != 0) {
1696     C->clone_map().dump(_idx);
1697   }
1698   // Dump node-specific info
1699   dump_spec(st);
1700 #ifdef ASSERT
1701   // Dump the non-reset _debug_idx
1702   if (Verbose && WizardMode) {
1703     st->print("  [%d]",debug_idx());
1704   }
1705 #endif
1706 
1707   const Type *t = bottom_type();
1708 
1709   if (t != NULL && (t->isa_instptr() || t->isa_klassptr())) {
1710     const TypeInstPtr  *toop = t->isa_instptr();
1711     const TypeKlassPtr *tkls = t->isa_klassptr();
1712     ciKlass*           klass = toop ? toop->klass() : (tkls ? tkls->klass() : NULL );
1713     if (klass && klass->is_loaded() && klass->is_interface()) {
1714       st->print("  Interface:");
1715     } else if (toop) {
1716       st->print("  Oop:");
1717     } else if (tkls) {
1718       st->print("  Klass:");
1719     }
1720     t->dump_on(st);
1721   } else if (t == Type::MEMORY) {
1722     st->print("  Memory:");
1723     MemNode::dump_adr_type(this, adr_type(), st);
1724   } else if (Verbose || WizardMode) {
1725     st->print("  Type:");
1726     if (t) {
1727       t->dump_on(st);
1728     } else {
1729       st->print("no type");
1730     }
1731   } else if (t->isa_vect() && this->is_MachSpillCopy()) {
1732     // Dump MachSpillcopy vector type.
1733     t->dump_on(st);
1734   }
1735   if (is_new) {
1736     debug_only(dump_orig(debug_orig(), st));
1737     Node_Notes* nn = C->node_notes_at(_idx);
1738     if (nn != NULL && !nn->is_clear()) {
1739       if (nn->jvms() != NULL) {
1740         st->print(" !jvms:");
1741         nn->jvms()->dump_spec(st);
1742       }
1743     }
1744   }
1745   if (suffix) st->print("%s", suffix);
1746   C->_in_dump_cnt--;
1747 }
1748 
1749 //------------------------------dump_req--------------------------------------
1750 void Node::dump_req(outputStream *st) const {
1751   // Dump the required input edges
1752   for (uint i = 0; i < req(); i++) {    // For all required inputs
1753     Node* d = in(i);
1754     if (d == NULL) {
1755       st->print("_ ");
1756     } else if (NotANode(d)) {
1757       st->print("NotANode ");  // uninitialized, sentinel, garbage, etc.
1758     } else {
1759       st->print("%c%d ", Compile::current()->node_arena()->contains(d) ? ' ' : 'o', d->_idx);
1760     }
1761   }
1762 }
1763 
1764 
1765 //------------------------------dump_prec-------------------------------------
1766 void Node::dump_prec(outputStream *st) const {
1767   // Dump the precedence edges
1768   int any_prec = 0;
1769   for (uint i = req(); i < len(); i++) {       // For all precedence inputs
1770     Node* p = in(i);
1771     if (p != NULL) {
1772       if (!any_prec++) st->print(" |");
1773       if (NotANode(p)) { st->print("NotANode "); continue; }
1774       st->print("%c%d ", Compile::current()->node_arena()->contains(in(i)) ? ' ' : 'o', in(i)->_idx);
1775     }
1776   }
1777 }
1778 
1779 //------------------------------dump_out--------------------------------------
1780 void Node::dump_out(outputStream *st) const {
1781   // Delimit the output edges
1782   st->print(" [[");
1783   // Dump the output edges
1784   for (uint i = 0; i < _outcnt; i++) {    // For all outputs
1785     Node* u = _out[i];
1786     if (u == NULL) {
1787       st->print("_ ");
1788     } else if (NotANode(u)) {
1789       st->print("NotANode ");
1790     } else {
1791       st->print("%c%d ", Compile::current()->node_arena()->contains(u) ? ' ' : 'o', u->_idx);
1792     }
1793   }
1794   st->print("]] ");
1795 }
1796 
1797 //----------------------------collect_nodes_i----------------------------------
1798 // Collects nodes from an Ideal graph, starting from a given start node and
1799 // moving in a given direction until a certain depth (distance from the start
1800 // node) is reached. Duplicates are ignored.
1801 // Arguments:
1802 //   nstack:        the nodes are collected into this array.
1803 //   start:         the node at which to start collecting.
1804 //   direction:     if this is a positive number, collect input nodes; if it is
1805 //                  a negative number, collect output nodes.
1806 //   depth:         collect nodes up to this distance from the start node.
1807 //   include_start: whether to include the start node in the result collection.
1808 //   only_ctrl:     whether to regard control edges only during traversal.
1809 //   only_data:     whether to regard data edges only during traversal.
1810 static void collect_nodes_i(GrowableArray<Node*> *nstack, const Node* start, int direction, uint depth, bool include_start, bool only_ctrl, bool only_data) {
1811   Node* s = (Node*) start; // remove const
1812   nstack->append(s);
1813   int begin = 0;
1814   int end = 0;
1815   for(uint i = 0; i < depth; i++) {
1816     end = nstack->length();
1817     for(int j = begin; j < end; j++) {
1818       Node* tp  = nstack->at(j);
1819       uint limit = direction > 0 ? tp->len() : tp->outcnt();
1820       for(uint k = 0; k < limit; k++) {
1821         Node* n = direction > 0 ? tp->in(k) : tp->raw_out(k);
1822 
1823         if (NotANode(n))  continue;
1824         // do not recurse through top or the root (would reach unrelated stuff)
1825         if (n->is_Root() || n->is_top()) continue;
1826         if (only_ctrl && !n->is_CFG()) continue;
1827         if (only_data && n->is_CFG()) continue;
1828 
1829         bool on_stack = nstack->contains(n);
1830         if (!on_stack) {
1831           nstack->append(n);
1832         }
1833       }
1834     }
1835     begin = end;
1836   }
1837   if (!include_start) {
1838     nstack->remove(s);
1839   }
1840 }
1841 
1842 //------------------------------dump_nodes-------------------------------------
1843 static void dump_nodes(const Node* start, int d, bool only_ctrl) {
1844   if (NotANode(start)) return;
1845 
1846   GrowableArray <Node *> nstack(Compile::current()->live_nodes());
1847   collect_nodes_i(&nstack, start, d, (uint) ABS(d), true, only_ctrl, false);
1848 
1849   int end = nstack.length();
1850   if (d > 0) {
1851     for(int j = end-1; j >= 0; j--) {
1852       nstack.at(j)->dump();
1853     }
1854   } else {
1855     for(int j = 0; j < end; j++) {
1856       nstack.at(j)->dump();
1857     }
1858   }
1859 }
1860 
1861 //------------------------------dump-------------------------------------------
1862 void Node::dump(int d) const {
1863   dump_nodes(this, d, false);
1864 }
1865 
1866 //------------------------------dump_ctrl--------------------------------------
1867 // Dump a Node's control history to depth
1868 void Node::dump_ctrl(int d) const {
1869   dump_nodes(this, d, true);
1870 }
1871 
1872 //-----------------------------dump_compact------------------------------------
1873 void Node::dump_comp() const {
1874   this->dump_comp("\n");
1875 }
1876 
1877 //-----------------------------dump_compact------------------------------------
1878 // Dump a Node in compact representation, i.e., just print its name and index.
1879 // Nodes can specify additional specifics to print in compact representation by
1880 // implementing dump_compact_spec.
1881 void Node::dump_comp(const char* suffix, outputStream *st) const {
1882   Compile* C = Compile::current();
1883   C->_in_dump_cnt++;
1884   st->print("%s(%d)", Name(), _idx);
1885   this->dump_compact_spec(st);
1886   if (suffix) {
1887     st->print("%s", suffix);
1888   }
1889   C->_in_dump_cnt--;
1890 }
1891 
1892 //----------------------------dump_related-------------------------------------
1893 // Dump a Node's related nodes - the notion of "related" depends on the Node at
1894 // hand and is determined by the implementation of the virtual method rel.
1895 void Node::dump_related() const {
1896   Compile* C = Compile::current();
1897   GrowableArray <Node *> in_rel(C->unique());
1898   GrowableArray <Node *> out_rel(C->unique());
1899   this->related(&in_rel, &out_rel, false);
1900   for (int i = in_rel.length() - 1; i >= 0; i--) {
1901     in_rel.at(i)->dump();
1902   }
1903   this->dump("\n", true);
1904   for (int i = 0; i < out_rel.length(); i++) {
1905     out_rel.at(i)->dump();
1906   }
1907 }
1908 
1909 //----------------------------dump_related-------------------------------------
1910 // Dump a Node's related nodes up to a given depth (distance from the start
1911 // node).
1912 // Arguments:
1913 //   d_in:  depth for input nodes.
1914 //   d_out: depth for output nodes (note: this also is a positive number).
1915 void Node::dump_related(uint d_in, uint d_out) const {
1916   Compile* C = Compile::current();
1917   GrowableArray <Node *> in_rel(C->unique());
1918   GrowableArray <Node *> out_rel(C->unique());
1919 
1920   // call collect_nodes_i directly
1921   collect_nodes_i(&in_rel, this, 1, d_in, false, false, false);
1922   collect_nodes_i(&out_rel, this, -1, d_out, false, false, false);
1923 
1924   for (int i = in_rel.length() - 1; i >= 0; i--) {
1925     in_rel.at(i)->dump();
1926   }
1927   this->dump("\n", true);
1928   for (int i = 0; i < out_rel.length(); i++) {
1929     out_rel.at(i)->dump();
1930   }
1931 }
1932 
1933 //------------------------dump_related_compact---------------------------------
1934 // Dump a Node's related nodes in compact representation. The notion of
1935 // "related" depends on the Node at hand and is determined by the implementation
1936 // of the virtual method rel.
1937 void Node::dump_related_compact() const {
1938   Compile* C = Compile::current();
1939   GrowableArray <Node *> in_rel(C->unique());
1940   GrowableArray <Node *> out_rel(C->unique());
1941   this->related(&in_rel, &out_rel, true);
1942   int n_in = in_rel.length();
1943   int n_out = out_rel.length();
1944 
1945   this->dump_comp(n_in == 0 ? "\n" : "  ");
1946   for (int i = 0; i < n_in; i++) {
1947     in_rel.at(i)->dump_comp(i == n_in - 1 ? "\n" : "  ");
1948   }
1949   for (int i = 0; i < n_out; i++) {
1950     out_rel.at(i)->dump_comp(i == n_out - 1 ? "\n" : "  ");
1951   }
1952 }
1953 
1954 //------------------------------related----------------------------------------
1955 // Collect a Node's related nodes. The default behaviour just collects the
1956 // inputs and outputs at depth 1, including both control and data flow edges,
1957 // regardless of whether the presentation is compact or not. For data nodes,
1958 // the default is to collect all data inputs (till level 1 if compact), and
1959 // outputs till level 1.
1960 void Node::related(GrowableArray<Node*> *in_rel, GrowableArray<Node*> *out_rel, bool compact) const {
1961   if (this->is_CFG()) {
1962     collect_nodes_i(in_rel, this, 1, 1, false, false, false);
1963     collect_nodes_i(out_rel, this, -1, 1, false, false, false);
1964   } else {
1965     if (compact) {
1966       this->collect_nodes(in_rel, 1, false, true);
1967     } else {
1968       this->collect_nodes_in_all_data(in_rel, false);
1969     }
1970     this->collect_nodes(out_rel, -1, false, false);
1971   }
1972 }
1973 
1974 //---------------------------collect_nodes-------------------------------------
1975 // An entry point to the low-level node collection facility, to start from a
1976 // given node in the graph. The start node is by default not included in the
1977 // result.
1978 // Arguments:
1979 //   ns:   collect the nodes into this data structure.
1980 //   d:    the depth (distance from start node) to which nodes should be
1981 //         collected. A value >0 indicates input nodes, a value <0, output
1982 //         nodes.
1983 //   ctrl: include only control nodes.
1984 //   data: include only data nodes.
1985 void Node::collect_nodes(GrowableArray<Node*> *ns, int d, bool ctrl, bool data) const {
1986   if (ctrl && data) {
1987     // ignore nonsensical combination
1988     return;
1989   }
1990   collect_nodes_i(ns, this, d, (uint) ABS(d), false, ctrl, data);
1991 }
1992 
1993 //--------------------------collect_nodes_in-----------------------------------
1994 static void collect_nodes_in(Node* start, GrowableArray<Node*> *ns, bool primary_is_data, bool collect_secondary) {
1995   // The maximum depth is determined using a BFS that visits all primary (data
1996   // or control) inputs and increments the depth at each level.
1997   uint d_in = 0;
1998   GrowableArray<Node*> nodes(Compile::current()->unique());
1999   nodes.push(start);
2000   int nodes_at_current_level = 1;
2001   int n_idx = 0;
2002   while (nodes_at_current_level > 0) {
2003     // Add all primary inputs reachable from the current level to the list, and
2004     // increase the depth if there were any.
2005     int nodes_at_next_level = 0;
2006     bool nodes_added = false;
2007     while (nodes_at_current_level > 0) {
2008       nodes_at_current_level--;
2009       Node* current = nodes.at(n_idx++);
2010       for (uint i = 0; i < current->len(); i++) {
2011         Node* n = current->in(i);
2012         if (NotANode(n)) {
2013           continue;
2014         }
2015         if ((primary_is_data && n->is_CFG()) || (!primary_is_data && !n->is_CFG())) {
2016           continue;
2017         }
2018         if (!nodes.contains(n)) {
2019           nodes.push(n);
2020           nodes_added = true;
2021           nodes_at_next_level++;
2022         }
2023       }
2024     }
2025     if (nodes_added) {
2026       d_in++;
2027     }
2028     nodes_at_current_level = nodes_at_next_level;
2029   }
2030   start->collect_nodes(ns, d_in, !primary_is_data, primary_is_data);
2031   if (collect_secondary) {
2032     // Now, iterate over the secondary nodes in ns and add the respective
2033     // boundary reachable from them.
2034     GrowableArray<Node*> sns(Compile::current()->unique());
2035     for (GrowableArrayIterator<Node*> it = ns->begin(); it != ns->end(); ++it) {
2036       Node* n = *it;
2037       n->collect_nodes(&sns, 1, primary_is_data, !primary_is_data);
2038       for (GrowableArrayIterator<Node*> d = sns.begin(); d != sns.end(); ++d) {
2039         ns->append_if_missing(*d);
2040       }
2041       sns.clear();
2042     }
2043   }
2044 }
2045 
2046 //---------------------collect_nodes_in_all_data-------------------------------
2047 // Collect the entire data input graph. Include the control boundary if
2048 // requested.
2049 // Arguments:
2050 //   ns:   collect the nodes into this data structure.
2051 //   ctrl: if true, include the control boundary.
2052 void Node::collect_nodes_in_all_data(GrowableArray<Node*> *ns, bool ctrl) const {
2053   collect_nodes_in((Node*) this, ns, true, ctrl);
2054 }
2055 
2056 //--------------------------collect_nodes_in_all_ctrl--------------------------
2057 // Collect the entire control input graph. Include the data boundary if
2058 // requested.
2059 //   ns:   collect the nodes into this data structure.
2060 //   data: if true, include the control boundary.
2061 void Node::collect_nodes_in_all_ctrl(GrowableArray<Node*> *ns, bool data) const {
2062   collect_nodes_in((Node*) this, ns, false, data);
2063 }
2064 
2065 //------------------collect_nodes_out_all_ctrl_boundary------------------------
2066 // Collect the entire output graph until hitting control node boundaries, and
2067 // include those.
2068 void Node::collect_nodes_out_all_ctrl_boundary(GrowableArray<Node*> *ns) const {
2069   // Perform a BFS and stop at control nodes.
2070   GrowableArray<Node*> nodes(Compile::current()->unique());
2071   nodes.push((Node*) this);
2072   while (nodes.length() > 0) {
2073     Node* current = nodes.pop();
2074     if (NotANode(current)) {
2075       continue;
2076     }
2077     ns->append_if_missing(current);
2078     if (!current->is_CFG()) {
2079       for (DUIterator i = current->outs(); current->has_out(i); i++) {
2080         nodes.push(current->out(i));
2081       }
2082     }
2083   }
2084   ns->remove((Node*) this);
2085 }
2086 
2087 // VERIFICATION CODE
2088 // For each input edge to a node (ie - for each Use-Def edge), verify that
2089 // there is a corresponding Def-Use edge.
2090 //------------------------------verify_edges-----------------------------------
2091 void Node::verify_edges(Unique_Node_List &visited) {
2092   uint i, j, idx;
2093   int  cnt;
2094   Node *n;
2095 
2096   // Recursive termination test
2097   if (visited.member(this))  return;
2098   visited.push(this);
2099 
2100   // Walk over all input edges, checking for correspondence
2101   for( i = 0; i < len(); i++ ) {
2102     n = in(i);
2103     if (n != NULL && !n->is_top()) {
2104       // Count instances of (Node *)this
2105       cnt = 0;
2106       for (idx = 0; idx < n->_outcnt; idx++ ) {
2107         if (n->_out[idx] == (Node *)this)  cnt++;
2108       }
2109       assert( cnt > 0,"Failed to find Def-Use edge." );
2110       // Check for duplicate edges
2111       // walk the input array downcounting the input edges to n
2112       for( j = 0; j < len(); j++ ) {
2113         if( in(j) == n ) cnt--;
2114       }
2115       assert( cnt == 0,"Mismatched edge count.");
2116     } else if (n == NULL) {
2117       assert(i >= req() || i == 0 || is_Region() || is_Phi(), "only regions or phis have null data edges");
2118     } else {
2119       assert(n->is_top(), "sanity");
2120       // Nothing to check.
2121     }
2122   }
2123   // Recursive walk over all input edges
2124   for( i = 0; i < len(); i++ ) {
2125     n = in(i);
2126     if( n != NULL )
2127       in(i)->verify_edges(visited);
2128   }
2129 }
2130 
2131 //------------------------------verify_recur-----------------------------------
2132 static const Node *unique_top = NULL;
2133 
2134 void Node::verify_recur(const Node *n, int verify_depth,
2135                         VectorSet &old_space, VectorSet &new_space) {
2136   if ( verify_depth == 0 )  return;
2137   if (verify_depth > 0)  --verify_depth;
2138 
2139   Compile* C = Compile::current();
2140 
2141   // Contained in new_space or old_space?
2142   VectorSet *v = C->node_arena()->contains(n) ? &new_space : &old_space;
2143   // Check for visited in the proper space.  Numberings are not unique
2144   // across spaces so we need a separate VectorSet for each space.
2145   if( v->test_set(n->_idx) ) return;
2146 
2147   if (n->is_Con() && n->bottom_type() == Type::TOP) {
2148     if (C->cached_top_node() == NULL)
2149       C->set_cached_top_node((Node*)n);
2150     assert(C->cached_top_node() == n, "TOP node must be unique");
2151   }
2152 
2153   for( uint i = 0; i < n->len(); i++ ) {
2154     Node *x = n->in(i);
2155     if (!x || x->is_top()) continue;
2156 
2157     // Verify my input has a def-use edge to me
2158     if (true /*VerifyDefUse*/) {
2159       // Count use-def edges from n to x
2160       int cnt = 0;
2161       for( uint j = 0; j < n->len(); j++ )
2162         if( n->in(j) == x )
2163           cnt++;
2164       // Count def-use edges from x to n
2165       uint max = x->_outcnt;
2166       for( uint k = 0; k < max; k++ )
2167         if (x->_out[k] == n)
2168           cnt--;
2169       assert( cnt == 0, "mismatched def-use edge counts" );
2170     }
2171 
2172     verify_recur(x, verify_depth, old_space, new_space);
2173   }
2174 
2175 }
2176 
2177 //------------------------------verify-----------------------------------------
2178 // Check Def-Use info for my subgraph
2179 void Node::verify() const {
2180   Compile* C = Compile::current();
2181   Node* old_top = C->cached_top_node();
2182   ResourceMark rm;
2183   ResourceArea *area = Thread::current()->resource_area();
2184   VectorSet old_space(area), new_space(area);
2185   verify_recur(this, -1, old_space, new_space);
2186   C->set_cached_top_node(old_top);
2187 }
2188 #endif
2189 
2190 
2191 //------------------------------walk-------------------------------------------
2192 // Graph walk, with both pre-order and post-order functions
2193 void Node::walk(NFunc pre, NFunc post, void *env) {
2194   VectorSet visited(Thread::current()->resource_area()); // Setup for local walk
2195   walk_(pre, post, env, visited);
2196 }
2197 
2198 void Node::walk_(NFunc pre, NFunc post, void *env, VectorSet &visited) {
2199   if( visited.test_set(_idx) ) return;
2200   pre(*this,env);               // Call the pre-order walk function
2201   for( uint i=0; i<_max; i++ )
2202     if( in(i) )                 // Input exists and is not walked?
2203       in(i)->walk_(pre,post,env,visited); // Walk it with pre & post functions
2204   post(*this,env);              // Call the post-order walk function
2205 }
2206 
2207 void Node::nop(Node &, void*) {}
2208 
2209 //------------------------------Registers--------------------------------------
2210 // Do we Match on this edge index or not?  Generally false for Control
2211 // and true for everything else.  Weird for calls & returns.
2212 uint Node::match_edge(uint idx) const {
2213   return idx;                   // True for other than index 0 (control)
2214 }
2215 
2216 static RegMask _not_used_at_all;
2217 // Register classes are defined for specific machines
2218 const RegMask &Node::out_RegMask() const {
2219   ShouldNotCallThis();
2220   return _not_used_at_all;
2221 }
2222 
2223 const RegMask &Node::in_RegMask(uint) const {
2224   ShouldNotCallThis();
2225   return _not_used_at_all;
2226 }
2227 
2228 //=============================================================================
2229 //-----------------------------------------------------------------------------
2230 void Node_Array::reset( Arena *new_arena ) {
2231   _a->Afree(_nodes,_max*sizeof(Node*));
2232   _max   = 0;
2233   _nodes = NULL;
2234   _a     = new_arena;
2235 }
2236 
2237 //------------------------------clear------------------------------------------
2238 // Clear all entries in _nodes to NULL but keep storage
2239 void Node_Array::clear() {
2240   Copy::zero_to_bytes( _nodes, _max*sizeof(Node*) );
2241 }
2242 
2243 //-----------------------------------------------------------------------------
2244 void Node_Array::grow( uint i ) {
2245   if( !_max ) {
2246     _max = 1;
2247     _nodes = (Node**)_a->Amalloc( _max * sizeof(Node*) );
2248     _nodes[0] = NULL;
2249   }
2250   uint old = _max;
2251   while( i >= _max ) _max <<= 1;        // Double to fit
2252   _nodes = (Node**)_a->Arealloc( _nodes, old*sizeof(Node*),_max*sizeof(Node*));
2253   Copy::zero_to_bytes( &_nodes[old], (_max-old)*sizeof(Node*) );
2254 }
2255 
2256 //-----------------------------------------------------------------------------
2257 void Node_Array::insert( uint i, Node *n ) {
2258   if( _nodes[_max-1] ) grow(_max);      // Get more space if full
2259   Copy::conjoint_words_to_higher((HeapWord*)&_nodes[i], (HeapWord*)&_nodes[i+1], ((_max-i-1)*sizeof(Node*)));
2260   _nodes[i] = n;
2261 }
2262 
2263 //-----------------------------------------------------------------------------
2264 void Node_Array::remove( uint i ) {
2265   Copy::conjoint_words_to_lower((HeapWord*)&_nodes[i+1], (HeapWord*)&_nodes[i], ((_max-i-1)*sizeof(Node*)));
2266   _nodes[_max-1] = NULL;
2267 }
2268 
2269 //-----------------------------------------------------------------------------
2270 void Node_Array::sort( C_sort_func_t func) {
2271   qsort( _nodes, _max, sizeof( Node* ), func );
2272 }
2273 
2274 //-----------------------------------------------------------------------------
2275 void Node_Array::dump() const {
2276 #ifndef PRODUCT
2277   for( uint i = 0; i < _max; i++ ) {
2278     Node *nn = _nodes[i];
2279     if( nn != NULL ) {
2280       tty->print("%5d--> ",i); nn->dump();
2281     }
2282   }
2283 #endif
2284 }
2285 
2286 //--------------------------is_iteratively_computed------------------------------
2287 // Operation appears to be iteratively computed (such as an induction variable)
2288 // It is possible for this operation to return false for a loop-varying
2289 // value, if it appears (by local graph inspection) to be computed by a simple conditional.
2290 bool Node::is_iteratively_computed() {
2291   if (ideal_reg()) { // does operation have a result register?
2292     for (uint i = 1; i < req(); i++) {
2293       Node* n = in(i);
2294       if (n != NULL && n->is_Phi()) {
2295         for (uint j = 1; j < n->req(); j++) {
2296           if (n->in(j) == this) {
2297             return true;
2298           }
2299         }
2300       }
2301     }
2302   }
2303   return false;
2304 }
2305 
2306 //--------------------------find_similar------------------------------
2307 // Return a node with opcode "opc" and same inputs as "this" if one can
2308 // be found; Otherwise return NULL;
2309 Node* Node::find_similar(int opc) {
2310   if (req() >= 2) {
2311     Node* def = in(1);
2312     if (def && def->outcnt() >= 2) {
2313       for (DUIterator_Fast dmax, i = def->fast_outs(dmax); i < dmax; i++) {
2314         Node* use = def->fast_out(i);
2315         if (use != this &&
2316             use->Opcode() == opc &&
2317             use->req() == req()) {
2318           uint j;
2319           for (j = 0; j < use->req(); j++) {
2320             if (use->in(j) != in(j)) {
2321               break;
2322             }
2323           }
2324           if (j == use->req()) {
2325             return use;
2326           }
2327         }
2328       }
2329     }
2330   }
2331   return NULL;
2332 }
2333 
2334 
2335 //--------------------------unique_ctrl_out------------------------------
2336 // Return the unique control out if only one. Null if none or more than one.
2337 Node* Node::unique_ctrl_out() const {
2338   Node* found = NULL;
2339   for (uint i = 0; i < outcnt(); i++) {
2340     Node* use = raw_out(i);
2341     if (use->is_CFG() && use != this) {
2342       if (found != NULL) return NULL;
2343       found = use;
2344     }
2345   }
2346   return found;
2347 }
2348 
2349 void Node::ensure_control_or_add_prec(Node* c) {
2350   if (in(0) == NULL) {
2351     set_req(0, c);
2352   } else if (in(0) != c) {
2353     add_prec(c);
2354   }
2355 }
2356 
2357 //=============================================================================
2358 //------------------------------yank-------------------------------------------
2359 // Find and remove
2360 void Node_List::yank( Node *n ) {
2361   uint i;
2362   for( i = 0; i < _cnt; i++ )
2363     if( _nodes[i] == n )
2364       break;
2365 
2366   if( i < _cnt )
2367     _nodes[i] = _nodes[--_cnt];
2368 }
2369 
2370 //------------------------------dump-------------------------------------------
2371 void Node_List::dump() const {
2372 #ifndef PRODUCT
2373   for( uint i = 0; i < _cnt; i++ )
2374     if( _nodes[i] ) {
2375       tty->print("%5d--> ",i);
2376       _nodes[i]->dump();
2377     }
2378 #endif
2379 }
2380 
2381 void Node_List::dump_simple() const {
2382 #ifndef PRODUCT
2383   for( uint i = 0; i < _cnt; i++ )
2384     if( _nodes[i] ) {
2385       tty->print(" %d", _nodes[i]->_idx);
2386     } else {
2387       tty->print(" NULL");
2388     }
2389 #endif
2390 }
2391 
2392 //=============================================================================
2393 //------------------------------remove-----------------------------------------
2394 void Unique_Node_List::remove( Node *n ) {
2395   if( _in_worklist[n->_idx] ) {
2396     for( uint i = 0; i < size(); i++ )
2397       if( _nodes[i] == n ) {
2398         map(i,Node_List::pop());
2399         _in_worklist >>= n->_idx;
2400         return;
2401       }
2402     ShouldNotReachHere();
2403   }
2404 }
2405 
2406 //-----------------------remove_useless_nodes----------------------------------
2407 // Remove useless nodes from worklist
2408 void Unique_Node_List::remove_useless_nodes(VectorSet &useful) {
2409 
2410   for( uint i = 0; i < size(); ++i ) {
2411     Node *n = at(i);
2412     assert( n != NULL, "Did not expect null entries in worklist");
2413     if( ! useful.test(n->_idx) ) {
2414       _in_worklist >>= n->_idx;
2415       map(i,Node_List::pop());
2416       // Node *replacement = Node_List::pop();
2417       // if( i != size() ) { // Check if removing last entry
2418       //   _nodes[i] = replacement;
2419       // }
2420       --i;  // Visit popped node
2421       // If it was last entry, loop terminates since size() was also reduced
2422     }
2423   }
2424 }
2425 
2426 //=============================================================================
2427 void Node_Stack::grow() {
2428   size_t old_top = pointer_delta(_inode_top,_inodes,sizeof(INode)); // save _top
2429   size_t old_max = pointer_delta(_inode_max,_inodes,sizeof(INode));
2430   size_t max = old_max << 1;             // max * 2
2431   _inodes = REALLOC_ARENA_ARRAY(_a, INode, _inodes, old_max, max);
2432   _inode_max = _inodes + max;
2433   _inode_top = _inodes + old_top;        // restore _top
2434 }
2435 
2436 // Node_Stack is used to map nodes.
2437 Node* Node_Stack::find(uint idx) const {
2438   uint sz = size();
2439   for (uint i=0; i < sz; i++) {
2440     if (idx == index_at(i) )
2441       return node_at(i);
2442   }
2443   return NULL;
2444 }
2445 
2446 //=============================================================================
2447 uint TypeNode::size_of() const { return sizeof(*this); }
2448 #ifndef PRODUCT
2449 void TypeNode::dump_spec(outputStream *st) const {
2450   if( !Verbose && !WizardMode ) {
2451     // standard dump does this in Verbose and WizardMode
2452     st->print(" #"); _type->dump_on(st);
2453   }
2454 }
2455 
2456 void TypeNode::dump_compact_spec(outputStream *st) const {
2457   st->print("#");
2458   _type->dump_on(st);
2459 }
2460 #endif
2461 uint TypeNode::hash() const {
2462   return Node::hash() + _type->hash();
2463 }
2464 uint TypeNode::cmp( const Node &n ) const
2465 { return !Type::cmp( _type, ((TypeNode&)n)._type ); }
2466 const Type *TypeNode::bottom_type() const { return _type; }
2467 const Type* TypeNode::Value(PhaseGVN* phase) const { return _type; }
2468 
2469 //------------------------------ideal_reg--------------------------------------
2470 uint TypeNode::ideal_reg() const {
2471   return _type->ideal_reg();
2472 }