1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_PHASEX_HPP
  26 #define SHARE_OPTO_PHASEX_HPP
  27 
  28 #include "libadt/dict.hpp"
  29 #include "libadt/vectset.hpp"
  30 #include "memory/resourceArea.hpp"
  31 #include "opto/memnode.hpp"
  32 #include "opto/node.hpp"
  33 #include "opto/phase.hpp"
  34 #include "opto/type.hpp"
  35 
  36 class Compile;
  37 class ConINode;
  38 class ConLNode;
  39 class Node;
  40 class Type;
  41 class PhaseTransform;
  42 class   PhaseGVN;
  43 class     PhaseIterGVN;
  44 class       PhaseCCP;
  45 class   PhasePeephole;
  46 class   PhaseRegAlloc;
  47 
  48 
  49 //-----------------------------------------------------------------------------
  50 // Expandable closed hash-table of nodes, initialized to NULL.
  51 // Note that the constructor just zeros things
  52 // Storage is reclaimed when the Arena's lifetime is over.
  53 class NodeHash : public StackObj {
  54 protected:
  55   Arena *_a;                    // Arena to allocate in
  56   uint   _max;                  // Size of table (power of 2)
  57   uint   _inserts;              // For grow and debug, count of hash_inserts
  58   uint   _insert_limit;         // 'grow' when _inserts reaches _insert_limit
  59   Node **_table;                // Hash table of Node pointers
  60   Node  *_sentinel;             // Replaces deleted entries in hash table
  61 
  62 public:
  63   NodeHash(uint est_max_size);
  64   NodeHash(Arena *arena, uint est_max_size);
  65   NodeHash(NodeHash *use_this_state);
  66 #ifdef ASSERT
  67   ~NodeHash();                  // Unlock all nodes upon destruction of table.
  68   void operator=(const NodeHash&); // Unlock all nodes upon replacement of table.
  69 #endif
  70   Node  *hash_find(const Node*);// Find an equivalent version in hash table
  71   Node  *hash_find_insert(Node*);// If not in table insert else return found node
  72   void   hash_insert(Node*);    // Insert into hash table
  73   bool   hash_delete(const Node*);// Replace with _sentinel in hash table
  74   void   check_grow() {
  75     _inserts++;
  76     if( _inserts == _insert_limit ) { grow(); }
  77     assert( _inserts <= _insert_limit, "hash table overflow");
  78     assert( _inserts < _max, "hash table overflow" );
  79   }
  80   static uint round_up(uint);   // Round up to nearest power of 2
  81   void   grow();                // Grow _table to next power of 2 and rehash
  82   // Return 75% of _max, rounded up.
  83   uint   insert_limit() const { return _max - (_max>>2); }
  84 
  85   void   clear();               // Set all entries to NULL, keep storage.
  86   // Size of hash table
  87   uint   size()         const { return _max; }
  88   // Return Node* at index in table
  89   Node  *at(uint table_index) {
  90     assert(table_index < _max, "Must be within table");
  91     return _table[table_index];
  92   }
  93 
  94   void   remove_useless_nodes(VectorSet &useful); // replace with sentinel
  95   void   replace_with(NodeHash* nh);
  96   void   check_no_speculative_types(); // Check no speculative part for type nodes in table
  97 
  98   Node  *sentinel() { return _sentinel; }
  99 
 100 #ifndef PRODUCT
 101   Node  *find_index(uint idx);  // For debugging
 102   void   dump();                // For debugging, dump statistics
 103   uint   _grows;                // For debugging, count of table grow()s
 104   uint   _look_probes;          // For debugging, count of hash probes
 105   uint   _lookup_hits;          // For debugging, count of hash_finds
 106   uint   _lookup_misses;        // For debugging, count of hash_finds
 107   uint   _insert_probes;        // For debugging, count of hash probes
 108   uint   _delete_probes;        // For debugging, count of hash probes for deletes
 109   uint   _delete_hits;          // For debugging, count of hash probes for deletes
 110   uint   _delete_misses;        // For debugging, count of hash probes for deletes
 111   uint   _total_inserts;        // For debugging, total inserts into hash table
 112   uint   _total_insert_probes;  // For debugging, total probes while inserting
 113 #endif
 114 };
 115 
 116 
 117 //-----------------------------------------------------------------------------
 118 // Map dense integer indices to Types.  Uses classic doubling-array trick.
 119 // Abstractly provides an infinite array of Type*'s, initialized to NULL.
 120 // Note that the constructor just zeros things, and since I use Arena
 121 // allocation I do not need a destructor to reclaim storage.
 122 // Despite the general name, this class is customized for use by PhaseTransform.
 123 class Type_Array : public StackObj {
 124   Arena *_a;                    // Arena to allocate in
 125   uint   _max;
 126   const Type **_types;
 127   void grow( uint i );          // Grow array node to fit
 128   const Type *operator[] ( uint i ) const // Lookup, or NULL for not mapped
 129   { return (i<_max) ? _types[i] : (Type*)NULL; }
 130   friend class PhaseTransform;
 131 public:
 132   Type_Array(Arena *a) : _a(a), _max(0), _types(0) {}
 133   Type_Array(Type_Array *ta) : _a(ta->_a), _max(ta->_max), _types(ta->_types) { }
 134   const Type *fast_lookup(uint i) const{assert(i<_max,"oob");return _types[i];}
 135   // Extend the mapping: index i maps to Type *n.
 136   void map( uint i, const Type *n ) { if( i>=_max ) grow(i); _types[i] = n; }
 137   uint Size() const { return _max; }
 138 #ifndef PRODUCT
 139   void dump() const;
 140 #endif
 141 };
 142 
 143 
 144 //------------------------------PhaseRemoveUseless-----------------------------
 145 // Remove useless nodes from GVN hash-table, worklist, and graph
 146 class PhaseRemoveUseless : public Phase {
 147 protected:
 148   Unique_Node_List _useful;   // Nodes reachable from root
 149                               // list is allocated from current resource area
 150 public:
 151   PhaseRemoveUseless(PhaseGVN *gvn, Unique_Node_List *worklist, PhaseNumber phase_num = Remove_Useless);
 152 
 153   Unique_Node_List *get_useful() { return &_useful; }
 154 };
 155 
 156 //------------------------------PhaseRenumber----------------------------------
 157 // Phase that first performs a PhaseRemoveUseless, then it renumbers compiler
 158 // structures accordingly.
 159 class PhaseRenumberLive : public PhaseRemoveUseless {
 160 protected:
 161   Type_Array _new_type_array; // Storage for the updated type information.
 162   GrowableArray<int> _old2new_map;
 163   Node_List _delayed;
 164   bool _is_pass_finished;
 165   uint _live_node_count;
 166 
 167   int update_embedded_ids(Node* n);
 168   int new_index(int old_idx);
 169 
 170 public:
 171   PhaseRenumberLive(PhaseGVN* gvn,
 172                     Unique_Node_List* worklist, Unique_Node_List* new_worklist,
 173                     PhaseNumber phase_num = Remove_Useless_And_Renumber_Live);
 174 };
 175 
 176 
 177 //------------------------------PhaseTransform---------------------------------
 178 // Phases that analyze, then transform.  Constructing the Phase object does any
 179 // global or slow analysis.  The results are cached later for a fast
 180 // transformation pass.  When the Phase object is deleted the cached analysis
 181 // results are deleted.
 182 class PhaseTransform : public Phase {
 183 protected:
 184   Arena*     _arena;
 185   Node_List  _nodes;           // Map old node indices to new nodes.
 186   Type_Array _types;           // Map old node indices to Types.
 187 
 188   // ConNode caches:
 189   enum { _icon_min = -1 * HeapWordSize,
 190          _icon_max = 16 * HeapWordSize,
 191          _lcon_min = _icon_min,
 192          _lcon_max = _icon_max,
 193          _zcon_max = (uint)T_CONFLICT
 194   };
 195   ConINode* _icons[_icon_max - _icon_min + 1];   // cached jint constant nodes
 196   ConLNode* _lcons[_lcon_max - _lcon_min + 1];   // cached jlong constant nodes
 197   ConNode*  _zcons[_zcon_max + 1];               // cached is_zero_type nodes
 198   void init_con_caches();
 199 
 200   // Support both int and long caches because either might be an intptr_t,
 201   // so they show up frequently in address computations.
 202 
 203 public:
 204   PhaseTransform( PhaseNumber pnum );
 205   PhaseTransform( Arena *arena, PhaseNumber pnum );
 206   PhaseTransform( PhaseTransform *phase, PhaseNumber pnum );
 207 
 208   Arena*      arena()   { return _arena; }
 209   Type_Array& types()   { return _types; }
 210   void replace_types(Type_Array new_types) {
 211     _types = new_types;
 212   }
 213   // _nodes is used in varying ways by subclasses, which define local accessors
 214   uint nodes_size() {
 215     return _nodes.size();
 216   }
 217 
 218 public:
 219   // Get a previously recorded type for the node n.
 220   // This type must already have been recorded.
 221   // If you want the type of a very new (untransformed) node,
 222   // you must use type_or_null, and test the result for NULL.
 223   const Type* type(const Node* n) const {
 224     assert(_pnum != Ideal_Loop, "should not be used from PhaseIdealLoop");
 225     assert(n != NULL, "must not be null");
 226     const Type* t = _types.fast_lookup(n->_idx);
 227     assert(t != NULL, "must set before get");
 228     return t;
 229   }
 230   // Get a previously recorded type for the node n,
 231   // or else return NULL if there is none.
 232   const Type* type_or_null(const Node* n) const {
 233     assert(_pnum != Ideal_Loop, "should not be used from PhaseIdealLoop");
 234     return _types.fast_lookup(n->_idx);
 235   }
 236   // Record a type for a node.
 237   void    set_type(const Node* n, const Type *t) {
 238     assert(t != NULL, "type must not be null");
 239     _types.map(n->_idx, t);
 240   }
 241   // Record an initial type for a node, the node's bottom type.
 242   void    set_type_bottom(const Node* n) {
 243     // Use this for initialization when bottom_type() (or better) is not handy.
 244     // Usually the initialization shoudl be to n->Value(this) instead,
 245     // or a hand-optimized value like Type::MEMORY or Type::CONTROL.
 246     assert(_types[n->_idx] == NULL, "must set the initial type just once");
 247     _types.map(n->_idx, n->bottom_type());
 248   }
 249   // Make sure the types array is big enough to record a size for the node n.
 250   // (In product builds, we never want to do range checks on the types array!)
 251   void ensure_type_or_null(const Node* n) {
 252     if (n->_idx >= _types.Size())
 253       _types.map(n->_idx, NULL);   // Grow the types array as needed.
 254   }
 255 
 256   // Utility functions:
 257   const TypeInt*  find_int_type( Node* n);
 258   const TypeLong* find_long_type(Node* n);
 259   jint  find_int_con( Node* n, jint  value_if_unknown) {
 260     const TypeInt* t = find_int_type(n);
 261     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 262   }
 263   jlong find_long_con(Node* n, jlong value_if_unknown) {
 264     const TypeLong* t = find_long_type(n);
 265     return (t != NULL && t->is_con()) ? t->get_con() : value_if_unknown;
 266   }
 267 
 268   // Make an idealized constant, i.e., one of ConINode, ConPNode, ConFNode, etc.
 269   // Same as transform(ConNode::make(t)).
 270   ConNode* makecon(const Type* t);
 271   virtual ConNode* uncached_makecon(const Type* t)  // override in PhaseValues
 272   { ShouldNotCallThis(); return NULL; }
 273 
 274   // Fast int or long constant.  Same as TypeInt::make(i) or TypeLong::make(l).
 275   ConINode* intcon(jint i);
 276   ConLNode* longcon(jlong l);
 277 
 278   // Fast zero or null constant.  Same as makecon(Type::get_zero_type(bt)).
 279   ConNode* zerocon(BasicType bt);
 280 
 281   // Return a node which computes the same function as this node, but
 282   // in a faster or cheaper fashion.
 283   virtual Node *transform( Node *n ) = 0;
 284 
 285   // Return whether two Nodes are equivalent.
 286   // Must not be recursive, since the recursive version is built from this.
 287   // For pessimistic optimizations this is simply pointer equivalence.
 288   bool eqv(const Node* n1, const Node* n2) const { return n1 == n2; }
 289 
 290   // For pessimistic passes, the return type must monotonically narrow.
 291   // For optimistic  passes, the return type must monotonically widen.
 292   // It is possible to get into a "death march" in either type of pass,
 293   // where the types are continually moving but it will take 2**31 or
 294   // more steps to converge.  This doesn't happen on most normal loops.
 295   //
 296   // Here is an example of a deadly loop for an optimistic pass, along
 297   // with a partial trace of inferred types:
 298   //    x = phi(0,x'); L: x' = x+1; if (x' >= 0) goto L;
 299   //    0                 1                join([0..max], 1)
 300   //    [0..1]            [1..2]           join([0..max], [1..2])
 301   //    [0..2]            [1..3]           join([0..max], [1..3])
 302   //      ... ... ...
 303   //    [0..max]          [min]u[1..max]   join([0..max], [min..max])
 304   //    [0..max] ==> fixpoint
 305   // We would have proven, the hard way, that the iteration space is all
 306   // non-negative ints, with the loop terminating due to 32-bit overflow.
 307   //
 308   // Here is the corresponding example for a pessimistic pass:
 309   //    x = phi(0,x'); L: x' = x-1; if (x' >= 0) goto L;
 310   //    int               int              join([0..max], int)
 311   //    [0..max]          [-1..max-1]      join([0..max], [-1..max-1])
 312   //    [0..max-1]        [-1..max-2]      join([0..max], [-1..max-2])
 313   //      ... ... ...
 314   //    [0..1]            [-1..0]          join([0..max], [-1..0])
 315   //    0                 -1               join([0..max], -1)
 316   //    0 == fixpoint
 317   // We would have proven, the hard way, that the iteration space is {0}.
 318   // (Usually, other optimizations will make the "if (x >= 0)" fold up
 319   // before we get into trouble.  But not always.)
 320   //
 321   // It's a pleasant thing to observe that the pessimistic pass
 322   // will make short work of the optimistic pass's deadly loop,
 323   // and vice versa.  That is a good example of the complementary
 324   // purposes of the CCP (optimistic) vs. GVN (pessimistic) phases.
 325   //
 326   // In any case, only widen or narrow a few times before going to the
 327   // correct flavor of top or bottom.
 328   //
 329   // This call only needs to be made once as the data flows around any
 330   // given cycle.  We do it at Phis, and nowhere else.
 331   // The types presented are the new type of a phi (computed by PhiNode::Value)
 332   // and the previously computed type, last time the phi was visited.
 333   //
 334   // The third argument is upper limit for the saturated value,
 335   // if the phase wishes to widen the new_type.
 336   // If the phase is narrowing, the old type provides a lower limit.
 337   // Caller guarantees that old_type and new_type are no higher than limit_type.
 338   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 339                                const Type* limit_type) const
 340   { ShouldNotCallThis(); return NULL; }
 341 
 342   // Delayed node rehash if this is an IGVN phase
 343   virtual void igvn_rehash_node_delayed(Node* n) {}
 344 
 345   // true if CFG node d dominates CFG node n
 346   virtual bool is_dominator(Node *d, Node *n) { fatal("unimplemented for this pass"); return false; };
 347 
 348 #ifndef PRODUCT
 349   void dump_old2new_map() const;
 350   void dump_new( uint new_lidx ) const;
 351   void dump_types() const;
 352   void dump_nodes_and_types(const Node *root, uint depth, bool only_ctrl = true);
 353   void dump_nodes_and_types_recur( const Node *n, uint depth, bool only_ctrl, VectorSet &visited);
 354 
 355   uint   _count_progress;       // For profiling, count transforms that make progress
 356   void   set_progress()        { ++_count_progress; assert( allow_progress(),"No progress allowed during verification"); }
 357   void   clear_progress()      { _count_progress = 0; }
 358   uint   made_progress() const { return _count_progress; }
 359 
 360   uint   _count_transforms;     // For profiling, count transforms performed
 361   void   set_transforms()      { ++_count_transforms; }
 362   void   clear_transforms()    { _count_transforms = 0; }
 363   uint   made_transforms() const{ return _count_transforms; }
 364 
 365   bool   _allow_progress;      // progress not allowed during verification pass
 366   void   set_allow_progress(bool allow) { _allow_progress = allow; }
 367   bool   allow_progress()               { return _allow_progress; }
 368 #endif
 369 };
 370 
 371 //------------------------------PhaseValues------------------------------------
 372 // Phase infrastructure to support values
 373 class PhaseValues : public PhaseTransform {
 374 protected:
 375   NodeHash  _table;             // Hash table for value-numbering
 376 
 377 public:
 378   PhaseValues( Arena *arena, uint est_max_size );
 379   PhaseValues( PhaseValues *pt );
 380   PhaseValues( PhaseValues *ptv, const char *dummy );
 381   NOT_PRODUCT( ~PhaseValues(); )
 382   virtual PhaseIterGVN *is_IterGVN() { return 0; }
 383 
 384   // Some Ideal and other transforms delete --> modify --> insert values
 385   bool   hash_delete(Node *n)     { return _table.hash_delete(n); }
 386   void   hash_insert(Node *n)     { _table.hash_insert(n); }
 387   Node  *hash_find_insert(Node *n){ return _table.hash_find_insert(n); }
 388   Node  *hash_find(const Node *n) { return _table.hash_find(n); }
 389 
 390   // Used after parsing to eliminate values that are no longer in program
 391   void   remove_useless_nodes(VectorSet &useful) {
 392     _table.remove_useless_nodes(useful);
 393     // this may invalidate cached cons so reset the cache
 394     init_con_caches();
 395   }
 396 
 397   virtual ConNode* uncached_makecon(const Type* t);  // override from PhaseTransform
 398 
 399   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 400                                const Type* limit_type) const
 401   { return new_type; }
 402 
 403 #ifndef PRODUCT
 404   uint   _count_new_values;     // For profiling, count new values produced
 405   void    inc_new_values()        { ++_count_new_values; }
 406   void    clear_new_values()      { _count_new_values = 0; }
 407   uint    made_new_values() const { return _count_new_values; }
 408 #endif
 409 };
 410 
 411 
 412 //------------------------------PhaseGVN---------------------------------------
 413 // Phase for performing local, pessimistic GVN-style optimizations.
 414 class PhaseGVN : public PhaseValues {
 415 protected:
 416   bool is_dominator_helper(Node *d, Node *n, bool linear_only);
 417 
 418 public:
 419   PhaseGVN( Arena *arena, uint est_max_size ) : PhaseValues( arena, est_max_size ) {}
 420   PhaseGVN( PhaseGVN *gvn ) : PhaseValues( gvn ) {}
 421   PhaseGVN( PhaseGVN *gvn, const char *dummy ) : PhaseValues( gvn, dummy ) {}
 422 
 423   // Return a node which computes the same function as this node, but
 424   // in a faster or cheaper fashion.
 425   Node  *transform( Node *n );
 426   Node  *transform_no_reclaim( Node *n );
 427   virtual void record_for_igvn(Node *n) {
 428     C->record_for_igvn(n);
 429   }
 430 
 431   void replace_with(PhaseGVN* gvn) {
 432     _table.replace_with(&gvn->_table);
 433     _types = gvn->_types;
 434   }
 435 
 436   bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, true); }
 437 
 438   // Helper to call Node::Ideal() and BarrierSetC2::ideal_node().
 439   Node* apply_ideal(Node* i, bool can_reshape);
 440 
 441   // Helper to call Node::Identity() and BarrierSetC2::identity_node().
 442   Node* apply_identity(Node* n);
 443 
 444   // Check for a simple dead loop when a data node references itself.
 445   DEBUG_ONLY(void dead_loop_check(Node *n);)
 446 };
 447 
 448 //------------------------------PhaseIterGVN-----------------------------------
 449 // Phase for iteratively performing local, pessimistic GVN-style optimizations.
 450 // and ideal transformations on the graph.
 451 class PhaseIterGVN : public PhaseGVN {
 452 private:
 453   bool _delay_transform;  // When true simply register the node when calling transform
 454                           // instead of actually optimizing it
 455 
 456   // Idealize old Node 'n' with respect to its inputs and its value
 457   virtual Node *transform_old( Node *a_node );
 458 
 459   // Subsume users of node 'old' into node 'nn'
 460   void subsume_node( Node *old, Node *nn );
 461 
 462   Node_Stack _stack;      // Stack used to avoid recursion
 463 
 464 protected:
 465 
 466   // Warm up hash table, type table and initial worklist
 467   void init_worklist( Node *a_root );
 468 
 469   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 470                                const Type* limit_type) const;
 471   // Usually returns new_type.  Returns old_type if new_type is only a slight
 472   // improvement, such that it would take many (>>10) steps to reach 2**32.
 473 
 474 public:
 475   PhaseIterGVN( PhaseIterGVN *igvn ); // Used by CCP constructor
 476   PhaseIterGVN( PhaseGVN *gvn ); // Used after Parser
 477   PhaseIterGVN( PhaseIterGVN *igvn, const char *dummy ); // Used after +VerifyOpto
 478 
 479   // Idealize new Node 'n' with respect to its inputs and its value
 480   virtual Node *transform( Node *a_node );
 481   virtual void record_for_igvn(Node *n) { }
 482 
 483   virtual PhaseIterGVN *is_IterGVN() { return this; }
 484 
 485   Unique_Node_List _worklist;       // Iterative worklist
 486 
 487   // Given def-use info and an initial worklist, apply Node::Ideal,
 488   // Node::Value, Node::Identity, hash-based value numbering, Node::Ideal_DU
 489   // and dominator info to a fixed point.
 490   void optimize();
 491 
 492 #ifndef PRODUCT
 493   void trace_PhaseIterGVN(Node* n, Node* nn, const Type* old_type);
 494   void init_verifyPhaseIterGVN();
 495   void verify_PhaseIterGVN();
 496 #endif
 497 
 498 #ifdef ASSERT
 499   void dump_infinite_loop_info(Node* n);
 500   void trace_PhaseIterGVN_verbose(Node* n, int num_processed);
 501 #endif
 502 
 503   // Register a new node with the iter GVN pass without transforming it.
 504   // Used when we need to restructure a Region/Phi area and all the Regions
 505   // and Phis need to complete this one big transform before any other
 506   // transforms can be triggered on the region.
 507   // Optional 'orig' is an earlier version of this node.
 508   // It is significant only for debugging and profiling.
 509   Node* register_new_node_with_optimizer(Node* n, Node* orig = NULL);
 510 
 511   // Kill a globally dead Node.  All uses are also globally dead and are
 512   // aggressively trimmed.
 513   void remove_globally_dead_node( Node *dead );
 514 
 515   // Kill all inputs to a dead node, recursively making more dead nodes.
 516   // The Node must be dead locally, i.e., have no uses.
 517   void remove_dead_node( Node *dead ) {
 518     assert(dead->outcnt() == 0 && !dead->is_top(), "node must be dead");
 519     remove_globally_dead_node(dead);
 520   }
 521 
 522   // Add users of 'n' to worklist
 523   void add_users_to_worklist0( Node *n );
 524   void add_users_to_worklist ( Node *n );
 525 
 526   // Replace old node with new one.
 527   void replace_node( Node *old, Node *nn ) {
 528     add_users_to_worklist(old);
 529     hash_delete(old); // Yank from hash before hacking edges
 530     subsume_node(old, nn);
 531   }
 532 
 533   // Delayed node rehash: remove a node from the hash table and rehash it during
 534   // next optimizing pass
 535   void rehash_node_delayed(Node* n) {
 536     hash_delete(n);
 537     _worklist.push(n);
 538   }
 539 
 540   void igvn_rehash_node_delayed(Node* n) {
 541     rehash_node_delayed(n);
 542   }
 543 
 544   // Replace ith edge of "n" with "in"
 545   void replace_input_of(Node* n, int i, Node* in) {
 546     rehash_node_delayed(n);
 547     n->set_req(i, in);
 548   }
 549 
 550   // Delete ith edge of "n"
 551   void delete_input_of(Node* n, int i) {
 552     rehash_node_delayed(n);
 553     n->del_req(i);
 554   }
 555 
 556   bool delay_transform() const { return _delay_transform; }
 557 
 558   void set_delay_transform(bool delay) {
 559     _delay_transform = delay;
 560   }
 561 
 562   // Clone loop predicates. Defined in loopTransform.cpp.
 563   Node* clone_loop_predicates(Node* old_entry, Node* new_entry, bool clone_limit_check);
 564   // Create a new if below new_entry for the predicate to be cloned
 565   ProjNode* create_new_if_for_predicate(ProjNode* cont_proj, Node* new_entry,
 566                                         Deoptimization::DeoptReason reason,
 567                                         int opcode);
 568 
 569   void remove_speculative_types();
 570   void check_no_speculative_types() {
 571     _table.check_no_speculative_types();
 572   }
 573 
 574   bool is_dominator(Node *d, Node *n) { return is_dominator_helper(d, n, false); }
 575 
 576 #ifndef PRODUCT
 577 protected:
 578   // Sub-quadratic implementation of VerifyIterativeGVN.
 579   julong _verify_counter;
 580   julong _verify_full_passes;
 581   enum { _verify_window_size = 30 };
 582   Node* _verify_window[_verify_window_size];
 583   void verify_step(Node* n);
 584 #endif
 585 };
 586 
 587 //------------------------------PhaseCCP---------------------------------------
 588 // Phase for performing global Conditional Constant Propagation.
 589 // Should be replaced with combined CCP & GVN someday.
 590 class PhaseCCP : public PhaseIterGVN {
 591   // Non-recursive.  Use analysis to transform single Node.
 592   virtual Node *transform_once( Node *n );
 593 
 594 public:
 595   PhaseCCP( PhaseIterGVN *igvn ); // Compute conditional constants
 596   NOT_PRODUCT( ~PhaseCCP(); )
 597 
 598   // Worklist algorithm identifies constants
 599   void analyze();
 600   // Recursive traversal of program.  Used analysis to modify program.
 601   virtual Node *transform( Node *n );
 602   // Do any transformation after analysis
 603   void          do_transform();
 604 
 605   virtual const Type* saturate(const Type* new_type, const Type* old_type,
 606                                const Type* limit_type) const;
 607   // Returns new_type->widen(old_type), which increments the widen bits until
 608   // giving up with TypeInt::INT or TypeLong::LONG.
 609   // Result is clipped to limit_type if necessary.
 610 
 611 #ifndef PRODUCT
 612   static uint _total_invokes;    // For profiling, count invocations
 613   void    inc_invokes()          { ++PhaseCCP::_total_invokes; }
 614 
 615   static uint _total_constants;  // For profiling, count constants found
 616   uint   _count_constants;
 617   void    clear_constants()      { _count_constants = 0; }
 618   void    inc_constants()        { ++_count_constants; }
 619   uint    count_constants() const { return _count_constants; }
 620 
 621   static void print_statistics();
 622 #endif
 623 };
 624 
 625 
 626 //------------------------------PhasePeephole----------------------------------
 627 // Phase for performing peephole optimizations on register allocated basic blocks.
 628 class PhasePeephole : public PhaseTransform {
 629   PhaseRegAlloc *_regalloc;
 630   PhaseCFG     &_cfg;
 631   // Recursive traversal of program.  Pure function is unused in this phase
 632   virtual Node *transform( Node *n );
 633 
 634 public:
 635   PhasePeephole( PhaseRegAlloc *regalloc, PhaseCFG &cfg );
 636   NOT_PRODUCT( ~PhasePeephole(); )
 637 
 638   // Do any transformation after analysis
 639   void          do_transform();
 640 
 641 #ifndef PRODUCT
 642   static uint _total_peepholes;  // For profiling, count peephole rules applied
 643   uint   _count_peepholes;
 644   void    clear_peepholes()      { _count_peepholes = 0; }
 645   void    inc_peepholes()        { ++_count_peepholes; }
 646   uint    count_peepholes() const { return _count_peepholes; }
 647 
 648   static void print_statistics();
 649 #endif
 650 };
 651 
 652 #endif // SHARE_OPTO_PHASEX_HPP