1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciValueKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeInt;
  51 class   TypeLong;
  52 class   TypeNarrowPtr;
  53 class     TypeNarrowOop;
  54 class     TypeNarrowKlass;
  55 class   TypeAry;
  56 class   TypeTuple;
  57 class   TypeValueType;
  58 class   TypeVect;
  59 class     TypeVectS;
  60 class     TypeVectD;
  61 class     TypeVectX;
  62 class     TypeVectY;
  63 class     TypeVectZ;
  64 class   TypePtr;
  65 class     TypeRawPtr;
  66 class     TypeOopPtr;
  67 class       TypeInstPtr;
  68 class       TypeAryPtr;
  69 class     TypeKlassPtr;
  70 class     TypeMetadataPtr;
  71 
  72 //------------------------------Type-------------------------------------------
  73 // Basic Type object, represents a set of primitive Values.
  74 // Types are hash-cons'd into a private class dictionary, so only one of each
  75 // different kind of Type exists.  Types are never modified after creation, so
  76 // all their interesting fields are constant.
  77 class Type {
  78   friend class VMStructs;
  79 
  80 public:
  81   enum TYPES {
  82     Bad=0,                      // Type check
  83     Control,                    // Control of code (not in lattice)
  84     Top,                        // Top of the lattice
  85     Int,                        // Integer range (lo-hi)
  86     Long,                       // Long integer range (lo-hi)
  87     Half,                       // Placeholder half of doubleword
  88     NarrowOop,                  // Compressed oop pointer
  89     NarrowKlass,                // Compressed klass pointer
  90 
  91     Tuple,                      // Method signature or object layout
  92     Array,                      // Array types
  93     VectorS,                    //  32bit Vector types
  94     VectorD,                    //  64bit Vector types
  95     VectorX,                    // 128bit Vector types
  96     VectorY,                    // 256bit Vector types
  97     VectorZ,                    // 512bit Vector types
  98     ValueType,                  // Value type
  99 
 100     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 101     RawPtr,                     // Raw (non-oop) pointers
 102     OopPtr,                     // Any and all Java heap entities
 103     InstPtr,                    // Instance pointers (non-array objects)
 104     AryPtr,                     // Array pointers
 105     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 106 
 107     MetadataPtr,                // Generic metadata
 108     KlassPtr,                   // Klass pointers
 109 
 110     Function,                   // Function signature
 111     Abio,                       // Abstract I/O
 112     Return_Address,             // Subroutine return address
 113     Memory,                     // Abstract store
 114     FloatTop,                   // No float value
 115     FloatCon,                   // Floating point constant
 116     FloatBot,                   // Any float value
 117     DoubleTop,                  // No double value
 118     DoubleCon,                  // Double precision constant
 119     DoubleBot,                  // Any double value
 120     Bottom,                     // Bottom of lattice
 121     lastype                     // Bogus ending type (not in lattice)
 122   };
 123 
 124   // Signal values for offsets from a base pointer
 125   enum OFFSET_SIGNALS {
 126     OffsetTop = -2000000000,    // undefined offset
 127     OffsetBot = -2000000001     // any possible offset
 128   };
 129 
 130   class Offset {
 131   private:
 132     const int _offset;
 133 
 134   public:
 135     explicit Offset(int offset) : _offset(offset) {}
 136 
 137     const Offset meet(const Offset other) const;
 138     const Offset dual() const;
 139     const Offset add(intptr_t offset) const;
 140     bool operator==(const Offset& other) const {
 141       return _offset == other._offset;
 142     }
 143     bool operator!=(const Offset& other) const {
 144       return _offset != other._offset;
 145     }
 146     int get() const { return _offset; }
 147 
 148     void dump2(outputStream *st) const;
 149 
 150     static const Offset top;
 151     static const Offset bottom;
 152   };
 153 
 154   // Min and max WIDEN values.
 155   enum WIDEN {
 156     WidenMin = 0,
 157     WidenMax = 3
 158   };
 159 
 160 private:
 161   typedef struct {
 162     TYPES                dual_type;
 163     BasicType            basic_type;
 164     const char*          msg;
 165     bool                 isa_oop;
 166     uint                 ideal_reg;
 167     relocInfo::relocType reloc;
 168   } TypeInfo;
 169 
 170   // Dictionary of types shared among compilations.
 171   static Dict* _shared_type_dict;
 172   static const TypeInfo _type_info[];
 173 
 174   static int uhash( const Type *const t );
 175   // Structural equality check.  Assumes that cmp() has already compared
 176   // the _base types and thus knows it can cast 't' appropriately.
 177   virtual bool eq( const Type *t ) const;
 178 
 179   // Top-level hash-table of types
 180   static Dict *type_dict() {
 181     return Compile::current()->type_dict();
 182   }
 183 
 184   // DUAL operation: reflect around lattice centerline.  Used instead of
 185   // join to ensure my lattice is symmetric up and down.  Dual is computed
 186   // lazily, on demand, and cached in _dual.
 187   const Type *_dual;            // Cached dual value
 188   // Table for efficient dualing of base types
 189   static const TYPES dual_type[lastype];
 190 
 191 #ifdef ASSERT
 192   // One type is interface, the other is oop
 193   virtual bool interface_vs_oop_helper(const Type *t) const;
 194 #endif
 195 
 196   const Type *meet_helper(const Type *t, bool include_speculative) const;
 197 
 198 protected:
 199   // Each class of type is also identified by its base.
 200   const TYPES _base;            // Enum of Types type
 201 
 202   Type( TYPES t ) : _dual(NULL),  _base(t) {} // Simple types
 203   // ~Type();                   // Use fast deallocation
 204   const Type *hashcons();       // Hash-cons the type
 205   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 206   const Type *join_helper(const Type *t, bool include_speculative) const {
 207     return dual()->meet_helper(t->dual(), include_speculative)->dual();
 208   }
 209 
 210 public:
 211 
 212   inline void* operator new( size_t x ) throw() {
 213     Compile* compile = Compile::current();
 214     compile->set_type_last_size(x);
 215     void *temp = compile->type_arena()->Amalloc_D(x);
 216     compile->set_type_hwm(temp);
 217     return temp;
 218   }
 219   inline void operator delete( void* ptr ) {
 220     Compile* compile = Compile::current();
 221     compile->type_arena()->Afree(ptr,compile->type_last_size());
 222   }
 223 
 224   // Initialize the type system for a particular compilation.
 225   static void Initialize(Compile* compile);
 226 
 227   // Initialize the types shared by all compilations.
 228   static void Initialize_shared(Compile* compile);
 229 
 230   TYPES base() const {
 231     assert(_base > Bad && _base < lastype, "sanity");
 232     return _base;
 233   }
 234 
 235   // Create a new hash-consd type
 236   static const Type *make(enum TYPES);
 237   // Test for equivalence of types
 238   static int cmp( const Type *const t1, const Type *const t2 );
 239   // Test for higher or equal in lattice
 240   // Variant that drops the speculative part of the types
 241   bool higher_equal(const Type *t) const {
 242     return !cmp(meet(t),t->remove_speculative());
 243   }
 244   // Variant that keeps the speculative part of the types
 245   bool higher_equal_speculative(const Type *t) const {
 246     return !cmp(meet_speculative(t),t);
 247   }
 248 
 249   // MEET operation; lower in lattice.
 250   // Variant that drops the speculative part of the types
 251   const Type *meet(const Type *t) const {
 252     return meet_helper(t, false);
 253   }
 254   // Variant that keeps the speculative part of the types
 255   const Type *meet_speculative(const Type *t) const {
 256     return meet_helper(t, true)->cleanup_speculative();
 257   }
 258   // WIDEN: 'widens' for Ints and other range types
 259   virtual const Type *widen( const Type *old, const Type* limit ) const { return this; }
 260   // NARROW: complement for widen, used by pessimistic phases
 261   virtual const Type *narrow( const Type *old ) const { return this; }
 262 
 263   // DUAL operation: reflect around lattice centerline.  Used instead of
 264   // join to ensure my lattice is symmetric up and down.
 265   const Type *dual() const { return _dual; }
 266 
 267   // Compute meet dependent on base type
 268   virtual const Type *xmeet( const Type *t ) const;
 269   virtual const Type *xdual() const;    // Compute dual right now.
 270 
 271   // JOIN operation; higher in lattice.  Done by finding the dual of the
 272   // meet of the dual of the 2 inputs.
 273   // Variant that drops the speculative part of the types
 274   const Type *join(const Type *t) const {
 275     return join_helper(t, false);
 276   }
 277   // Variant that keeps the speculative part of the types
 278   const Type *join_speculative(const Type *t) const {
 279     return join_helper(t, true)->cleanup_speculative();
 280   }
 281 
 282   // Modified version of JOIN adapted to the needs Node::Value.
 283   // Normalizes all empty values to TOP.  Does not kill _widen bits.
 284   // Currently, it also works around limitations involving interface types.
 285   // Variant that drops the speculative part of the types
 286   const Type *filter(const Type *kills) const {
 287     return filter_helper(kills, false);
 288   }
 289   // Variant that keeps the speculative part of the types
 290   const Type *filter_speculative(const Type *kills) const {
 291     return filter_helper(kills, true)->cleanup_speculative();
 292   }
 293 
 294 #ifdef ASSERT
 295   // One type is interface, the other is oop
 296   virtual bool interface_vs_oop(const Type *t) const;
 297 #endif
 298 
 299   // Returns true if this pointer points at memory which contains a
 300   // compressed oop references.
 301   bool is_ptr_to_narrowoop() const;
 302   bool is_ptr_to_narrowklass() const;
 303 
 304   // Convenience access
 305   float getf() const;
 306   double getd() const;
 307 
 308   const TypeInt    *is_int() const;
 309   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 310   const TypeLong   *is_long() const;
 311   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 312   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 313   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 314   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 315   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 316   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 317   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 318   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 319   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 320   const TypeVect   *is_vect() const;             // Vector
 321   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 322   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 323   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 324   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 325   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 326   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 327   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 328   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 329   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 330   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 331   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 332   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 333   const TypeInstPtr  *is_instptr() const;        // Instance
 334   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 335   const TypeAryPtr   *is_aryptr() const;         // Array oop
 336   const TypeValueType* isa_valuetype() const;    // Returns NULL if not Value Type
 337   const TypeValueType* is_valuetype() const;     // Value Type
 338 
 339   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 340   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 341   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 342   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 343 
 344   virtual bool      is_finite() const;           // Has a finite value
 345   virtual bool      is_nan()    const;           // Is not a number (NaN)
 346 
 347   bool is_valuetypeptr() const;
 348   ciValueKlass* value_klass() const;
 349 
 350   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 351   const TypePtr* make_ptr() const;
 352 
 353   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 354   // Asserts if the underlying type is not an oopptr or narrowoop.
 355   const TypeOopPtr* make_oopptr() const;
 356 
 357   // Returns this compressed pointer or the equivalent compressed version
 358   // of this pointer type.
 359   const TypeNarrowOop* make_narrowoop() const;
 360 
 361   // Returns this compressed klass pointer or the equivalent
 362   // compressed version of this pointer type.
 363   const TypeNarrowKlass* make_narrowklass() const;
 364 
 365   // Special test for register pressure heuristic
 366   bool is_floatingpoint() const;        // True if Float or Double base type
 367 
 368   // Do you have memory, directly or through a tuple?
 369   bool has_memory( ) const;
 370 
 371   // TRUE if type is a singleton
 372   virtual bool singleton(void) const;
 373 
 374   // TRUE if type is above the lattice centerline, and is therefore vacuous
 375   virtual bool empty(void) const;
 376 
 377   // Return a hash for this type.  The hash function is public so ConNode
 378   // (constants) can hash on their constant, which is represented by a Type.
 379   virtual int hash() const;
 380 
 381   // Map ideal registers (machine types) to ideal types
 382   static const Type *mreg2type[];
 383 
 384   // Printing, statistics
 385 #ifndef PRODUCT
 386   void         dump_on(outputStream *st) const;
 387   void         dump() const {
 388     dump_on(tty);
 389   }
 390   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 391   static  void dump_stats();
 392 
 393   static const char* str(const Type* t);
 394 #endif
 395   void typerr(const Type *t) const; // Mixing types error
 396 
 397   // Create basic type
 398   static const Type* get_const_basic_type(BasicType type) {
 399     assert((uint)type <= T_CONFLICT && _const_basic_type[type] != NULL, "bad type");
 400     return _const_basic_type[type];
 401   }
 402 
 403   // For two instance arrays of same dimension, return the base element types.
 404   // Otherwise or if the arrays have different dimensions, return NULL.
 405   static void get_arrays_base_elements(const Type *a1, const Type *a2,
 406                                        const TypeInstPtr **e1, const TypeInstPtr **e2);
 407 
 408   // Mapping to the array element's basic type.
 409   BasicType array_element_basic_type() const;
 410 
 411   // Create standard type for a ciType:
 412   static const Type* get_const_type(ciType* type);
 413 
 414   // Create standard zero value:
 415   static const Type* get_zero_type(BasicType type) {
 416     assert((uint)type <= T_CONFLICT && _zero_type[type] != NULL, "bad type");
 417     return _zero_type[type];
 418   }
 419 
 420   // Report if this is a zero value (not top).
 421   bool is_zero_type() const {
 422     BasicType type = basic_type();
 423     if (type == T_VOID || type >= T_CONFLICT)
 424       return false;
 425     else
 426       return (this == _zero_type[type]);
 427   }
 428 
 429   // Convenience common pre-built types.
 430   static const Type *ABIO;
 431   static const Type *BOTTOM;
 432   static const Type *CONTROL;
 433   static const Type *DOUBLE;
 434   static const Type *FLOAT;
 435   static const Type *HALF;
 436   static const Type *MEMORY;
 437   static const Type *MULTI;
 438   static const Type *RETURN_ADDRESS;
 439   static const Type *TOP;
 440 
 441   // Mapping from compiler type to VM BasicType
 442   BasicType basic_type() const       { return _type_info[_base].basic_type; }
 443   uint ideal_reg() const             { return _type_info[_base].ideal_reg; }
 444   const char* msg() const            { return _type_info[_base].msg; }
 445   bool isa_oop_ptr() const           { return _type_info[_base].isa_oop; }
 446   relocInfo::relocType reloc() const { return _type_info[_base].reloc; }
 447 
 448   // Mapping from CI type system to compiler type:
 449   static const Type* get_typeflow_type(ciType* type);
 450 
 451   static const Type* make_from_constant(ciConstant constant,
 452                                         bool require_constant = false,
 453                                         int stable_dimension = 0,
 454                                         bool is_narrow = false,
 455                                         bool is_autobox_cache = false);
 456 
 457   static const Type* make_constant_from_field(ciInstance* holder,
 458                                               int off,
 459                                               bool is_unsigned_load,
 460                                               BasicType loadbt);
 461 
 462   static const Type* make_constant_from_field(ciField* field,
 463                                               ciInstance* holder,
 464                                               BasicType loadbt,
 465                                               bool is_unsigned_load);
 466 
 467   static const Type* make_constant_from_array_element(ciArray* array,
 468                                                       int off,
 469                                                       int stable_dimension,
 470                                                       BasicType loadbt,
 471                                                       bool is_unsigned_load);
 472 
 473   // Speculative type helper methods. See TypePtr.
 474   virtual const TypePtr* speculative() const                                  { return NULL; }
 475   virtual ciKlass* speculative_type() const                                   { return NULL; }
 476   virtual ciKlass* speculative_type_not_null() const                          { return NULL; }
 477   virtual bool speculative_maybe_null() const                                 { return true; }
 478   virtual bool speculative_always_null() const                                { return true; }
 479   virtual const Type* remove_speculative() const                              { return this; }
 480   virtual const Type* cleanup_speculative() const                             { return this; }
 481   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return exact_kls != NULL; }
 482   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return ptr_kind == ProfileAlwaysNull || ptr_kind == ProfileNeverNull; }
 483   const Type* maybe_remove_speculative(bool include_speculative) const;
 484 
 485   virtual bool maybe_null() const { return true; }
 486 
 487 private:
 488   // support arrays
 489   static const BasicType _basic_type[];
 490   static const Type*        _zero_type[T_CONFLICT+1];
 491   static const Type* _const_basic_type[T_CONFLICT+1];
 492 };
 493 
 494 //------------------------------TypeF------------------------------------------
 495 // Class of Float-Constant Types.
 496 class TypeF : public Type {
 497   TypeF( float f ) : Type(FloatCon), _f(f) {};
 498 public:
 499   virtual bool eq( const Type *t ) const;
 500   virtual int  hash() const;             // Type specific hashing
 501   virtual bool singleton(void) const;    // TRUE if type is a singleton
 502   virtual bool empty(void) const;        // TRUE if type is vacuous
 503 public:
 504   const float _f;               // Float constant
 505 
 506   static const TypeF *make(float f);
 507 
 508   virtual bool        is_finite() const;  // Has a finite value
 509   virtual bool        is_nan()    const;  // Is not a number (NaN)
 510 
 511   virtual const Type *xmeet( const Type *t ) const;
 512   virtual const Type *xdual() const;    // Compute dual right now.
 513   // Convenience common pre-built types.
 514   static const TypeF *ZERO; // positive zero only
 515   static const TypeF *ONE;
 516   static const TypeF *POS_INF;
 517   static const TypeF *NEG_INF;
 518 #ifndef PRODUCT
 519   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 520 #endif
 521 };
 522 
 523 //------------------------------TypeD------------------------------------------
 524 // Class of Double-Constant Types.
 525 class TypeD : public Type {
 526   TypeD( double d ) : Type(DoubleCon), _d(d) {};
 527 public:
 528   virtual bool eq( const Type *t ) const;
 529   virtual int  hash() const;             // Type specific hashing
 530   virtual bool singleton(void) const;    // TRUE if type is a singleton
 531   virtual bool empty(void) const;        // TRUE if type is vacuous
 532 public:
 533   const double _d;              // Double constant
 534 
 535   static const TypeD *make(double d);
 536 
 537   virtual bool        is_finite() const;  // Has a finite value
 538   virtual bool        is_nan()    const;  // Is not a number (NaN)
 539 
 540   virtual const Type *xmeet( const Type *t ) const;
 541   virtual const Type *xdual() const;    // Compute dual right now.
 542   // Convenience common pre-built types.
 543   static const TypeD *ZERO; // positive zero only
 544   static const TypeD *ONE;
 545   static const TypeD *POS_INF;
 546   static const TypeD *NEG_INF;
 547 #ifndef PRODUCT
 548   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 549 #endif
 550 };
 551 
 552 //------------------------------TypeInt----------------------------------------
 553 // Class of integer ranges, the set of integers between a lower bound and an
 554 // upper bound, inclusive.
 555 class TypeInt : public Type {
 556   TypeInt( jint lo, jint hi, int w );
 557 protected:
 558   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 559 
 560 public:
 561   typedef jint NativeType;
 562   virtual bool eq( const Type *t ) const;
 563   virtual int  hash() const;             // Type specific hashing
 564   virtual bool singleton(void) const;    // TRUE if type is a singleton
 565   virtual bool empty(void) const;        // TRUE if type is vacuous
 566   const jint _lo, _hi;          // Lower bound, upper bound
 567   const short _widen;           // Limit on times we widen this sucker
 568 
 569   static const TypeInt *make(jint lo);
 570   // must always specify w
 571   static const TypeInt *make(jint lo, jint hi, int w);
 572 
 573   // Check for single integer
 574   int is_con() const { return _lo==_hi; }
 575   bool is_con(int i) const { return is_con() && _lo == i; }
 576   jint get_con() const { assert( is_con(), "" );  return _lo; }
 577 
 578   virtual bool        is_finite() const;  // Has a finite value
 579 
 580   virtual const Type *xmeet( const Type *t ) const;
 581   virtual const Type *xdual() const;    // Compute dual right now.
 582   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 583   virtual const Type *narrow( const Type *t ) const;
 584   // Do not kill _widen bits.
 585   // Convenience common pre-built types.
 586   static const TypeInt *MINUS_1;
 587   static const TypeInt *ZERO;
 588   static const TypeInt *ONE;
 589   static const TypeInt *BOOL;
 590   static const TypeInt *CC;
 591   static const TypeInt *CC_LT;  // [-1]  == MINUS_1
 592   static const TypeInt *CC_GT;  // [1]   == ONE
 593   static const TypeInt *CC_EQ;  // [0]   == ZERO
 594   static const TypeInt *CC_LE;  // [-1,0]
 595   static const TypeInt *CC_GE;  // [0,1] == BOOL (!)
 596   static const TypeInt *BYTE;
 597   static const TypeInt *UBYTE;
 598   static const TypeInt *CHAR;
 599   static const TypeInt *SHORT;
 600   static const TypeInt *POS;
 601   static const TypeInt *POS1;
 602   static const TypeInt *INT;
 603   static const TypeInt *SYMINT; // symmetric range [-max_jint..max_jint]
 604   static const TypeInt *TYPE_DOMAIN; // alias for TypeInt::INT
 605 
 606   static const TypeInt *as_self(const Type *t) { return t->is_int(); }
 607 #ifndef PRODUCT
 608   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
 609 #endif
 610 };
 611 
 612 
 613 //------------------------------TypeLong---------------------------------------
 614 // Class of long integer ranges, the set of integers between a lower bound and
 615 // an upper bound, inclusive.
 616 class TypeLong : public Type {
 617   TypeLong( jlong lo, jlong hi, int w );
 618 protected:
 619   // Do not kill _widen bits.
 620   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
 621 public:
 622   typedef jlong NativeType;
 623   virtual bool eq( const Type *t ) const;
 624   virtual int  hash() const;             // Type specific hashing
 625   virtual bool singleton(void) const;    // TRUE if type is a singleton
 626   virtual bool empty(void) const;        // TRUE if type is vacuous
 627 public:
 628   const jlong _lo, _hi;         // Lower bound, upper bound
 629   const short _widen;           // Limit on times we widen this sucker
 630 
 631   static const TypeLong *make(jlong lo);
 632   // must always specify w
 633   static const TypeLong *make(jlong lo, jlong hi, int w);
 634 
 635   // Check for single integer
 636   int is_con() const { return _lo==_hi; }
 637   bool is_con(int i) const { return is_con() && _lo == i; }
 638   jlong get_con() const { assert( is_con(), "" ); return _lo; }
 639 
 640   // Check for positive 32-bit value.
 641   int is_positive_int() const { return _lo >= 0 && _hi <= (jlong)max_jint; }
 642 
 643   virtual bool        is_finite() const;  // Has a finite value
 644 
 645 
 646   virtual const Type *xmeet( const Type *t ) const;
 647   virtual const Type *xdual() const;    // Compute dual right now.
 648   virtual const Type *widen( const Type *t, const Type* limit_type ) const;
 649   virtual const Type *narrow( const Type *t ) const;
 650   // Convenience common pre-built types.
 651   static const TypeLong *MINUS_1;
 652   static const TypeLong *ZERO;
 653   static const TypeLong *ONE;
 654   static const TypeLong *POS;
 655   static const TypeLong *LONG;
 656   static const TypeLong *INT;    // 32-bit subrange [min_jint..max_jint]
 657   static const TypeLong *UINT;   // 32-bit unsigned [0..max_juint]
 658   static const TypeLong *TYPE_DOMAIN; // alias for TypeLong::LONG
 659 
 660   // static convenience methods.
 661   static const TypeLong *as_self(const Type *t) { return t->is_long(); }
 662 
 663 #ifndef PRODUCT
 664   virtual void dump2( Dict &d, uint, outputStream *st  ) const;// Specialized per-Type dumping
 665 #endif
 666 };
 667 
 668 //------------------------------TypeTuple--------------------------------------
 669 // Class of Tuple Types, essentially type collections for function signatures
 670 // and class layouts.  It happens to also be a fast cache for the HotSpot
 671 // signature types.
 672 class TypeTuple : public Type {
 673   TypeTuple( uint cnt, const Type **fields ) : Type(Tuple), _cnt(cnt), _fields(fields) { }
 674 
 675   const uint          _cnt;              // Count of fields
 676   const Type ** const _fields;           // Array of field types
 677 
 678 public:
 679   virtual bool eq( const Type *t ) const;
 680   virtual int  hash() const;             // Type specific hashing
 681   virtual bool singleton(void) const;    // TRUE if type is a singleton
 682   virtual bool empty(void) const;        // TRUE if type is vacuous
 683 
 684   // Accessors:
 685   uint cnt() const { return _cnt; }
 686   const Type* field_at(uint i) const {
 687     assert(i < _cnt, "oob");
 688     return _fields[i];
 689   }
 690   void set_field_at(uint i, const Type* t) {
 691     assert(i < _cnt, "oob");
 692     _fields[i] = t;
 693   }
 694 
 695   static const TypeTuple *make( uint cnt, const Type **fields );
 696   static const TypeTuple *make_range(ciSignature* sig, bool ret_vt_fields = false);
 697   static const TypeTuple *make_domain(ciMethod* method, bool vt_fields_as_args = false);
 698 
 699   // Subroutine call type with space allocated for argument types
 700   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 701   static const Type **fields( uint arg_cnt );
 702 
 703   virtual const Type *xmeet( const Type *t ) const;
 704   virtual const Type *xdual() const;    // Compute dual right now.
 705   // Convenience common pre-built types.
 706   static const TypeTuple *IFBOTH;
 707   static const TypeTuple *IFFALSE;
 708   static const TypeTuple *IFTRUE;
 709   static const TypeTuple *IFNEITHER;
 710   static const TypeTuple *LOOPBODY;
 711   static const TypeTuple *MEMBAR;
 712   static const TypeTuple *STORECONDITIONAL;
 713   static const TypeTuple *START_I2C;
 714   static const TypeTuple *INT_PAIR;
 715   static const TypeTuple *LONG_PAIR;
 716   static const TypeTuple *INT_CC_PAIR;
 717   static const TypeTuple *LONG_CC_PAIR;
 718 #ifndef PRODUCT
 719   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 720 #endif
 721 };
 722 
 723 //------------------------------TypeAry----------------------------------------
 724 // Class of Array Types
 725 class TypeAry : public Type {
 726   TypeAry(const Type* elem, const TypeInt* size, bool stable) : Type(Array),
 727       _elem(elem), _size(size), _stable(stable) {}
 728 public:
 729   virtual bool eq( const Type *t ) const;
 730   virtual int  hash() const;             // Type specific hashing
 731   virtual bool singleton(void) const;    // TRUE if type is a singleton
 732   virtual bool empty(void) const;        // TRUE if type is vacuous
 733 
 734 private:
 735   const Type *_elem;            // Element type of array
 736   const TypeInt *_size;         // Elements in array
 737   const bool _stable;           // Are elements @Stable?
 738   friend class TypeAryPtr;
 739 
 740 public:
 741   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 742 
 743   virtual const Type *xmeet( const Type *t ) const;
 744   virtual const Type *xdual() const;    // Compute dual right now.
 745   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 746   virtual const Type* remove_speculative() const;
 747   virtual const Type* cleanup_speculative() const;
 748 
 749   bool is_value_type_array() const { return _elem->isa_valuetype() != NULL; }
 750 
 751 #ifdef ASSERT
 752   // One type is interface, the other is oop
 753   virtual bool interface_vs_oop(const Type *t) const;
 754 #endif
 755 #ifndef PRODUCT
 756   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 757 #endif
 758 };
 759 
 760 
 761 //------------------------------TypeValue---------------------------------------
 762 // Class of Value Type Types
 763 class TypeValueType : public Type {
 764 private:
 765   ciValueKlass* _vk;
 766   bool _larval;
 767 
 768 protected:
 769   TypeValueType(ciValueKlass* vk, bool larval)
 770     : Type(ValueType),
 771       _vk(vk), _larval(larval) {
 772   }
 773 
 774 public:
 775   static const TypeValueType* make(ciValueKlass* vk, bool larval = false);
 776   ciValueKlass* value_klass() const { return _vk; }
 777   bool larval() const { return _larval; }
 778 
 779   virtual bool eq(const Type* t) const;
 780   virtual int  hash() const;             // Type specific hashing
 781   virtual bool singleton(void) const;    // TRUE if type is a singleton
 782   virtual bool empty(void) const;        // TRUE if type is vacuous
 783 
 784   virtual const Type* xmeet(const Type* t) const;
 785   virtual const Type* xdual() const;     // Compute dual right now.
 786 
 787   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return false; }
 788   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return false; }
 789 
 790 #ifndef PRODUCT
 791   virtual void dump2(Dict &d, uint, outputStream* st) const; // Specialized per-Type dumping
 792 #endif
 793 };
 794 
 795 //------------------------------TypeVect---------------------------------------
 796 // Class of Vector Types
 797 class TypeVect : public Type {
 798   const Type*   _elem;  // Vector's element type
 799   const uint  _length;  // Elements in vector (power of 2)
 800 
 801 protected:
 802   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 803     _elem(elem), _length(length) {}
 804 
 805 public:
 806   const Type* element_type() const { return _elem; }
 807   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 808   uint length() const { return _length; }
 809   uint length_in_bytes() const {
 810    return _length * type2aelembytes(element_basic_type());
 811   }
 812 
 813   virtual bool eq(const Type *t) const;
 814   virtual int  hash() const;             // Type specific hashing
 815   virtual bool singleton(void) const;    // TRUE if type is a singleton
 816   virtual bool empty(void) const;        // TRUE if type is vacuous
 817 
 818   static const TypeVect *make(const BasicType elem_bt, uint length) {
 819     // Use bottom primitive type.
 820     return make(get_const_basic_type(elem_bt), length);
 821   }
 822   // Used directly by Replicate nodes to construct singleton vector.
 823   static const TypeVect *make(const Type* elem, uint length);
 824 
 825   virtual const Type *xmeet( const Type *t) const;
 826   virtual const Type *xdual() const;     // Compute dual right now.
 827 
 828   static const TypeVect *VECTS;
 829   static const TypeVect *VECTD;
 830   static const TypeVect *VECTX;
 831   static const TypeVect *VECTY;
 832   static const TypeVect *VECTZ;
 833 
 834 #ifndef PRODUCT
 835   virtual void dump2(Dict &d, uint, outputStream *st) const; // Specialized per-Type dumping
 836 #endif
 837 };
 838 
 839 class TypeVectS : public TypeVect {
 840   friend class TypeVect;
 841   TypeVectS(const Type* elem, uint length) : TypeVect(VectorS, elem, length) {}
 842 };
 843 
 844 class TypeVectD : public TypeVect {
 845   friend class TypeVect;
 846   TypeVectD(const Type* elem, uint length) : TypeVect(VectorD, elem, length) {}
 847 };
 848 
 849 class TypeVectX : public TypeVect {
 850   friend class TypeVect;
 851   TypeVectX(const Type* elem, uint length) : TypeVect(VectorX, elem, length) {}
 852 };
 853 
 854 class TypeVectY : public TypeVect {
 855   friend class TypeVect;
 856   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 857 };
 858 
 859 class TypeVectZ : public TypeVect {
 860   friend class TypeVect;
 861   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 862 };
 863 
 864 //------------------------------TypePtr----------------------------------------
 865 // Class of machine Pointer Types: raw data, instances or arrays.
 866 // If the _base enum is AnyPtr, then this refers to all of the above.
 867 // Otherwise the _base will indicate which subset of pointers is affected,
 868 // and the class will be inherited from.
 869 class TypePtr : public Type {
 870   friend class TypeNarrowPtr;
 871 public:
 872   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 873 protected:
 874   TypePtr(TYPES t, PTR ptr, Offset offset,
 875           const TypePtr* speculative = NULL,
 876           int inline_depth = InlineDepthBottom) :
 877     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 878     _ptr(ptr) {}
 879   static const PTR ptr_meet[lastPTR][lastPTR];
 880   static const PTR ptr_dual[lastPTR];
 881   static const char * const ptr_msg[lastPTR];
 882 
 883   enum {
 884     InlineDepthBottom = INT_MAX,
 885     InlineDepthTop = -InlineDepthBottom
 886   };
 887 
 888   // Extra type information profiling gave us. We propagate it the
 889   // same way the rest of the type info is propagated. If we want to
 890   // use it, then we have to emit a guard: this part of the type is
 891   // not something we know but something we speculate about the type.
 892   const TypePtr*   _speculative;
 893   // For speculative types, we record at what inlining depth the
 894   // profiling point that provided the data is. We want to favor
 895   // profile data coming from outer scopes which are likely better for
 896   // the current compilation.
 897   int _inline_depth;
 898 
 899   // utility methods to work on the speculative part of the type
 900   const TypePtr* dual_speculative() const;
 901   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 902   bool eq_speculative(const TypePtr* other) const;
 903   int hash_speculative() const;
 904   const TypePtr* add_offset_speculative(intptr_t offset) const;
 905 #ifndef PRODUCT
 906   void dump_speculative(outputStream *st) const;
 907 #endif
 908 
 909   // utility methods to work on the inline depth of the type
 910   int dual_inline_depth() const;
 911   int meet_inline_depth(int depth) const;
 912 #ifndef PRODUCT
 913   void dump_inline_depth(outputStream *st) const;
 914 #endif
 915 
 916 public:
 917   const Offset _offset;         // Offset into oop, with TOP & BOT
 918   const PTR _ptr;               // Pointer equivalence class
 919 
 920   const int offset() const { return _offset.get(); }
 921   const PTR ptr()    const { return _ptr; }
 922 
 923   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
 924                              const TypePtr* speculative = NULL,
 925                              int inline_depth = InlineDepthBottom);
 926 
 927   // Return a 'ptr' version of this type
 928   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 929 
 930   virtual intptr_t get_con() const;
 931 
 932   Offset xadd_offset(intptr_t offset) const;
 933   virtual const TypePtr *add_offset( intptr_t offset ) const;
 934   virtual const int flattened_offset() const { return offset(); }
 935 
 936   virtual bool eq(const Type *t) const;
 937   virtual int  hash() const;             // Type specific hashing
 938 
 939   virtual bool singleton(void) const;    // TRUE if type is a singleton
 940   virtual bool empty(void) const;        // TRUE if type is vacuous
 941   virtual const Type *xmeet( const Type *t ) const;
 942   virtual const Type *xmeet_helper( const Type *t ) const;
 943   Offset meet_offset(int offset) const;
 944   Offset dual_offset() const;
 945   virtual const Type *xdual() const;    // Compute dual right now.
 946 
 947   // meet, dual and join over pointer equivalence sets
 948   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 949   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 950 
 951   // This is textually confusing unless one recalls that
 952   // join(t) == dual()->meet(t->dual())->dual().
 953   PTR join_ptr( const PTR in_ptr ) const {
 954     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 955   }
 956 
 957   // Speculative type helper methods.
 958   virtual const TypePtr* speculative() const { return _speculative; }
 959   int inline_depth() const                   { return _inline_depth; }
 960   virtual ciKlass* speculative_type() const;
 961   virtual ciKlass* speculative_type_not_null() const;
 962   virtual bool speculative_maybe_null() const;
 963   virtual bool speculative_always_null() const;
 964   virtual const Type* remove_speculative() const;
 965   virtual const Type* cleanup_speculative() const;
 966   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
 967   virtual bool would_improve_ptr(ProfilePtrKind maybe_null) const;
 968   virtual const TypePtr* with_inline_depth(int depth) const;
 969 
 970   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
 971 
 972   // Tests for relation to centerline of type lattice:
 973   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 974   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 975   // Convenience common pre-built types.
 976   static const TypePtr *NULL_PTR;
 977   static const TypePtr *NOTNULL;
 978   static const TypePtr *BOTTOM;
 979 #ifndef PRODUCT
 980   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 981 #endif
 982 };
 983 
 984 //------------------------------TypeRawPtr-------------------------------------
 985 // Class of raw pointers, pointers to things other than Oops.  Examples
 986 // include the stack pointer, top of heap, card-marking area, handles, etc.
 987 class TypeRawPtr : public TypePtr {
 988 protected:
 989   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
 990 public:
 991   virtual bool eq( const Type *t ) const;
 992   virtual int  hash() const;     // Type specific hashing
 993 
 994   const address _bits;          // Constant value, if applicable
 995 
 996   static const TypeRawPtr *make( PTR ptr );
 997   static const TypeRawPtr *make( address bits );
 998 
 999   // Return a 'ptr' version of this type
1000   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1001 
1002   virtual intptr_t get_con() const;
1003 
1004   virtual const TypePtr *add_offset( intptr_t offset ) const;
1005 
1006   virtual const Type *xmeet( const Type *t ) const;
1007   virtual const Type *xdual() const;    // Compute dual right now.
1008   // Convenience common pre-built types.
1009   static const TypeRawPtr *BOTTOM;
1010   static const TypeRawPtr *NOTNULL;
1011 #ifndef PRODUCT
1012   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1013 #endif
1014 };
1015 
1016 //------------------------------TypeOopPtr-------------------------------------
1017 // Some kind of oop (Java pointer), either instance or array.
1018 class TypeOopPtr : public TypePtr {
1019 protected:
1020   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
1021              int instance_id, const TypePtr* speculative, int inline_depth);
1022 public:
1023   virtual bool eq( const Type *t ) const;
1024   virtual int  hash() const;             // Type specific hashing
1025   virtual bool singleton(void) const;    // TRUE if type is a singleton
1026   enum {
1027    InstanceTop = -1,   // undefined instance
1028    InstanceBot = 0     // any possible instance
1029   };
1030 protected:
1031 
1032   // Oop is NULL, unless this is a constant oop.
1033   ciObject*     _const_oop;   // Constant oop
1034   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
1035   ciKlass*      _klass;       // Klass object
1036   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1037   bool          _klass_is_exact;
1038   bool          _is_ptr_to_narrowoop;
1039   bool          _is_ptr_to_narrowklass;
1040   bool          _is_ptr_to_boxed_value;
1041 
1042   // If not InstanceTop or InstanceBot, indicates that this is
1043   // a particular instance of this type which is distinct.
1044   // This is the node index of the allocation node creating this instance.
1045   int           _instance_id;
1046 
1047   static const TypeOopPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1048 
1049   int dual_instance_id() const;
1050   int meet_instance_id(int uid) const;
1051 
1052   // Do not allow interface-vs.-noninterface joins to collapse to top.
1053   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1054 
1055 public:
1056   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1057   // Respects UseUniqueSubclasses.
1058   // If the klass is final, the resulting type will be exact.
1059   static const TypeOopPtr* make_from_klass(ciKlass* klass) {
1060     return make_from_klass_common(klass, true, false);
1061   }
1062   // Same as before, but will produce an exact type, even if
1063   // the klass is not final, as long as it has exactly one implementation.
1064   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
1065     return make_from_klass_common(klass, true, true);
1066   }
1067   // Same as before, but does not respects UseUniqueSubclasses.
1068   // Use this only for creating array element types.
1069   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
1070     return make_from_klass_common(klass, false, false);
1071   }
1072   // Creates a singleton type given an object.
1073   // If the object cannot be rendered as a constant,
1074   // may return a non-singleton type.
1075   // If require_constant, produce a NULL if a singleton is not possible.
1076   static const TypeOopPtr* make_from_constant(ciObject* o,
1077                                               bool require_constant = false);
1078 
1079   // Make a generic (unclassed) pointer to an oop.
1080   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1081                                 const TypePtr* speculative = NULL,
1082                                 int inline_depth = InlineDepthBottom);
1083 
1084   ciObject* const_oop()    const { return _const_oop; }
1085   virtual ciKlass* klass() const { return _klass;     }
1086   bool klass_is_exact()    const { return _klass_is_exact; }
1087 
1088   // Returns true if this pointer points at memory which contains a
1089   // compressed oop references.
1090   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1091   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1092   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1093   bool is_known_instance()       const { return _instance_id > 0; }
1094   int  instance_id()             const { return _instance_id; }
1095   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1096 
1097   virtual bool can_be_value_type() const { return EnableValhalla && can_be_value_type_raw(); }
1098   virtual bool can_be_value_type_raw() const { return _klass == NULL || _klass->is_valuetype() || ((_klass->is_java_lang_Object() || _klass->is_interface()) && !klass_is_exact()); }
1099 
1100   virtual intptr_t get_con() const;
1101 
1102   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1103 
1104   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1105 
1106   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1107 
1108   virtual const TypeOopPtr *cast_to_nonconst() const;
1109 
1110   // corresponding pointer to klass, for a given instance
1111   const TypeKlassPtr* as_klass_type() const;
1112 
1113   virtual const TypePtr *add_offset( intptr_t offset ) const;
1114 
1115   // Speculative type helper methods.
1116   virtual const Type* remove_speculative() const;
1117   virtual const Type* cleanup_speculative() const;
1118   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1119   virtual const TypePtr* with_inline_depth(int depth) const;
1120 
1121   virtual const TypePtr* with_instance_id(int instance_id) const;
1122 
1123   virtual const Type *xdual() const;    // Compute dual right now.
1124   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1125   virtual const Type *xmeet_helper(const Type *t) const;
1126 
1127   // Convenience common pre-built type.
1128   static const TypeOopPtr *BOTTOM;
1129 #ifndef PRODUCT
1130   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1131 #endif
1132 };
1133 
1134 //------------------------------TypeInstPtr------------------------------------
1135 // Class of Java object pointers, pointing either to non-array Java instances
1136 // or to a Klass* (including array klasses).
1137 class TypeInstPtr : public TypeOopPtr {
1138   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id,
1139               const TypePtr* speculative, int inline_depth);
1140   virtual bool eq( const Type *t ) const;
1141   virtual int  hash() const;             // Type specific hashing
1142 
1143   ciSymbol*  _name;        // class name
1144 
1145  public:
1146   ciSymbol* name()         const { return _name; }
1147 
1148   bool  is_loaded() const { return _klass->is_loaded(); }
1149 
1150   // Make a pointer to a constant oop.
1151   static const TypeInstPtr *make(ciObject* o) {
1152     return make(TypePtr::Constant, o->klass(), true, o, Offset(0), InstanceBot);
1153   }
1154   // Make a pointer to a constant oop with offset.
1155   static const TypeInstPtr* make(ciObject* o, Offset offset) {
1156     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1157   }
1158 
1159   // Make a pointer to some value of type klass.
1160   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1161     return make(ptr, klass, false, NULL, Offset(0), InstanceBot);
1162   }
1163 
1164   // Make a pointer to some non-polymorphic value of exactly type klass.
1165   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1166     return make(ptr, klass, true, NULL, Offset(0), InstanceBot);
1167   }
1168 
1169   // Make a pointer to some value of type klass with offset.
1170   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1171     return make(ptr, klass, false, NULL, offset, InstanceBot);
1172   }
1173 
1174   // Make a pointer to an oop.
1175   static const TypeInstPtr* make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset,
1176                                  int instance_id = InstanceBot,
1177                                  const TypePtr* speculative = NULL,
1178                                  int inline_depth = InlineDepthBottom);
1179 
1180   /** Create constant type for a constant boxed value */
1181   const Type* get_const_boxed_value() const;
1182 
1183   // If this is a java.lang.Class constant, return the type for it or NULL.
1184   // Pass to Type::get_const_type to turn it to a type, which will usually
1185   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1186   ciType* java_mirror_type() const;
1187 
1188   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1189 
1190   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1191 
1192   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1193 
1194   virtual const TypeOopPtr *cast_to_nonconst() const;
1195 
1196   virtual const TypePtr *add_offset( intptr_t offset ) const;
1197 
1198   // Speculative type helper methods.
1199   virtual const Type* remove_speculative() const;
1200   virtual const TypePtr* with_inline_depth(int depth) const;
1201   virtual const TypePtr* with_instance_id(int instance_id) const;
1202 
1203   // the core of the computation of the meet of 2 types
1204   virtual const Type *xmeet_helper(const Type *t) const;
1205   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1206   virtual const Type *xdual() const;    // Compute dual right now.
1207 
1208   // Convenience common pre-built types.
1209   static const TypeInstPtr *NOTNULL;
1210   static const TypeInstPtr *BOTTOM;
1211   static const TypeInstPtr *MIRROR;
1212   static const TypeInstPtr *MARK;
1213   static const TypeInstPtr *KLASS;
1214 #ifndef PRODUCT
1215   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1216 #endif
1217 };
1218 
1219 //------------------------------TypeAryPtr-------------------------------------
1220 // Class of Java array pointers
1221 class TypeAryPtr : public TypeOopPtr {
1222   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1223              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1224              const TypePtr* speculative, int inline_depth)
1225     : TypeOopPtr(AryPtr, ptr, k, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1226     _ary(ary),
1227     _is_autobox_cache(is_autobox_cache),
1228     _field_offset(field_offset)
1229  {
1230 #ifdef ASSERT
1231     if (k != NULL) {
1232       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1233       ciKlass* ck = compute_klass(true);
1234       if (k != ck) {
1235         this->dump(); tty->cr();
1236         tty->print(" k: ");
1237         k->print(); tty->cr();
1238         tty->print("ck: ");
1239         if (ck != NULL) ck->print();
1240         else tty->print("<NULL>");
1241         tty->cr();
1242         assert(false, "unexpected TypeAryPtr::_klass");
1243       }
1244     }
1245 #endif
1246   }
1247   virtual bool eq( const Type *t ) const;
1248   virtual int hash() const;     // Type specific hashing
1249   const TypeAry *_ary;          // Array we point into
1250   const bool     _is_autobox_cache;
1251   // For flattened value type arrays, each field of the value type in
1252   // the array has its own memory slice so we need to keep track of
1253   // which field is accessed
1254   const Offset _field_offset;
1255   Offset meet_field_offset(const Type::Offset offset) const;
1256   Offset dual_field_offset() const;
1257 
1258   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1259 
1260 public:
1261   // Accessors
1262   ciKlass* klass() const;
1263   const TypeAry* ary() const  { return _ary; }
1264   const Type*    elem() const { return _ary->_elem; }
1265   const TypeInt* size() const { return _ary->_size; }
1266   bool      is_stable() const { return _ary->_stable; }
1267 
1268   bool is_autobox_cache() const { return _is_autobox_cache; }
1269 
1270   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1271                                 Offset field_offset = Offset::bottom,
1272                                 int instance_id = InstanceBot,
1273                                 const TypePtr* speculative = NULL,
1274                                 int inline_depth = InlineDepthBottom);
1275   // Constant pointer to array
1276   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1277                                 Offset field_offset = Offset::bottom,
1278                                 int instance_id = InstanceBot,
1279                                 const TypePtr* speculative = NULL,
1280                                 int inline_depth = InlineDepthBottom,
1281                                 bool is_autobox_cache = false);
1282 
1283   // Return a 'ptr' version of this type
1284   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1285 
1286   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1287 
1288   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1289 
1290   virtual const TypeOopPtr *cast_to_nonconst() const;
1291 
1292   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1293   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1294 
1295   virtual bool empty(void) const;        // TRUE if type is vacuous
1296   virtual const TypePtr *add_offset( intptr_t offset ) const;
1297 
1298   // Speculative type helper methods.
1299   virtual const Type* remove_speculative() const;
1300   virtual const TypePtr* with_inline_depth(int depth) const;
1301   virtual const TypePtr* with_instance_id(int instance_id) const;
1302 
1303   // the core of the computation of the meet of 2 types
1304   virtual const Type *xmeet_helper(const Type *t) const;
1305   virtual const Type *xdual() const;    // Compute dual right now.
1306 
1307   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1308   int stable_dimension() const;
1309 
1310   const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1311 
1312   const int flattened_offset() const;
1313   const Offset field_offset() const { return _field_offset; }
1314   const TypeAryPtr* with_field_offset(int offset) const;
1315   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1316 
1317   virtual bool can_be_value_type() const { return false; }
1318 
1319   // Convenience common pre-built types.
1320   static const TypeAryPtr *RANGE;
1321   static const TypeAryPtr *OOPS;
1322   static const TypeAryPtr *NARROWOOPS;
1323   static const TypeAryPtr *BYTES;
1324   static const TypeAryPtr *SHORTS;
1325   static const TypeAryPtr *CHARS;
1326   static const TypeAryPtr *INTS;
1327   static const TypeAryPtr *LONGS;
1328   static const TypeAryPtr *FLOATS;
1329   static const TypeAryPtr *DOUBLES;
1330   // selects one of the above:
1331   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1332     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1333     return _array_body_type[elem];
1334   }
1335   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1336   // sharpen the type of an int which is used as an array size
1337 #ifdef ASSERT
1338   // One type is interface, the other is oop
1339   virtual bool interface_vs_oop(const Type *t) const;
1340 #endif
1341 #ifndef PRODUCT
1342   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1343 #endif
1344 };
1345 
1346 //------------------------------TypeMetadataPtr-------------------------------------
1347 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1348 class TypeMetadataPtr : public TypePtr {
1349 protected:
1350   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1351   // Do not allow interface-vs.-noninterface joins to collapse to top.
1352   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1353 public:
1354   virtual bool eq( const Type *t ) const;
1355   virtual int  hash() const;             // Type specific hashing
1356   virtual bool singleton(void) const;    // TRUE if type is a singleton
1357 
1358 private:
1359   ciMetadata*   _metadata;
1360 
1361 public:
1362   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1363 
1364   static const TypeMetadataPtr* make(ciMethod* m);
1365   static const TypeMetadataPtr* make(ciMethodData* m);
1366 
1367   ciMetadata* metadata() const { return _metadata; }
1368 
1369   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1370 
1371   virtual const TypePtr *add_offset( intptr_t offset ) const;
1372 
1373   virtual const Type *xmeet( const Type *t ) const;
1374   virtual const Type *xdual() const;    // Compute dual right now.
1375 
1376   virtual intptr_t get_con() const;
1377 
1378   // Convenience common pre-built types.
1379   static const TypeMetadataPtr *BOTTOM;
1380 
1381 #ifndef PRODUCT
1382   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1383 #endif
1384 };
1385 
1386 //------------------------------TypeKlassPtr-----------------------------------
1387 // Class of Java Klass pointers
1388 class TypeKlassPtr : public TypePtr {
1389   TypeKlassPtr(PTR ptr, ciKlass* klass, Offset offset);
1390 
1391 protected:
1392   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1393  public:
1394   virtual bool eq( const Type *t ) const;
1395   virtual int hash() const;             // Type specific hashing
1396   virtual bool singleton(void) const;    // TRUE if type is a singleton
1397  private:
1398 
1399   ciKlass* _klass;
1400 
1401   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1402   bool          _klass_is_exact;
1403 
1404 public:
1405   ciKlass* klass() const { return  _klass; }
1406   bool klass_is_exact()    const { return _klass_is_exact; }
1407 
1408   bool  is_loaded() const { return klass() != NULL && klass()->is_loaded(); }
1409 
1410   // ptr to klass 'k'
1411   static const TypeKlassPtr* make(ciKlass* k) { return make( TypePtr::Constant, k, Offset(0)); }
1412   // ptr to klass 'k' with offset
1413   static const TypeKlassPtr* make(ciKlass* k, Offset offset) { return make( TypePtr::Constant, k, offset); }
1414   // ptr to klass 'k' or sub-klass
1415   static const TypeKlassPtr* make(PTR ptr, ciKlass* k, Offset offset);
1416 
1417   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1418 
1419   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1420 
1421   // corresponding pointer to instance, for a given class
1422   const TypeOopPtr* as_instance_type() const;
1423 
1424   virtual const TypePtr *add_offset( intptr_t offset ) const;
1425   virtual const Type    *xmeet( const Type *t ) const;
1426   virtual const Type    *xdual() const;      // Compute dual right now.
1427 
1428   virtual intptr_t get_con() const;
1429 
1430   // Convenience common pre-built types.
1431   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1432   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1433 #ifndef PRODUCT
1434   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1435 #endif
1436 };
1437 
1438 class TypeNarrowPtr : public Type {
1439 protected:
1440   const TypePtr* _ptrtype; // Could be TypePtr::NULL_PTR
1441 
1442   TypeNarrowPtr(TYPES t, const TypePtr* ptrtype): Type(t),
1443                                                   _ptrtype(ptrtype) {
1444     assert(ptrtype->offset() == 0 ||
1445            ptrtype->offset() == OffsetBot ||
1446            ptrtype->offset() == OffsetTop, "no real offsets");
1447   }
1448 
1449   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const = 0;
1450   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const = 0;
1451   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const = 0;
1452   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const = 0;
1453   // Do not allow interface-vs.-noninterface joins to collapse to top.
1454   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1455 public:
1456   virtual bool eq( const Type *t ) const;
1457   virtual int  hash() const;             // Type specific hashing
1458   virtual bool singleton(void) const;    // TRUE if type is a singleton
1459 
1460   virtual const Type *xmeet( const Type *t ) const;
1461   virtual const Type *xdual() const;    // Compute dual right now.
1462 
1463   virtual intptr_t get_con() const;
1464 
1465   virtual bool empty(void) const;        // TRUE if type is vacuous
1466 
1467   // returns the equivalent ptr type for this compressed pointer
1468   const TypePtr *get_ptrtype() const {
1469     return _ptrtype;
1470   }
1471 
1472 #ifndef PRODUCT
1473   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1474 #endif
1475 };
1476 
1477 //------------------------------TypeNarrowOop----------------------------------
1478 // A compressed reference to some kind of Oop.  This type wraps around
1479 // a preexisting TypeOopPtr and forwards most of it's operations to
1480 // the underlying type.  It's only real purpose is to track the
1481 // oopness of the compressed oop value when we expose the conversion
1482 // between the normal and the compressed form.
1483 class TypeNarrowOop : public TypeNarrowPtr {
1484 protected:
1485   TypeNarrowOop( const TypePtr* ptrtype): TypeNarrowPtr(NarrowOop, ptrtype) {
1486   }
1487 
1488   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1489     return t->isa_narrowoop();
1490   }
1491 
1492   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1493     return t->is_narrowoop();
1494   }
1495 
1496   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1497     return new TypeNarrowOop(t);
1498   }
1499 
1500   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1501     return (const TypeNarrowPtr*)((new TypeNarrowOop(t))->hashcons());
1502   }
1503 
1504 public:
1505 
1506   static const TypeNarrowOop *make( const TypePtr* type);
1507 
1508   static const TypeNarrowOop* make_from_constant(ciObject* con, bool require_constant = false) {
1509     return make(TypeOopPtr::make_from_constant(con, require_constant));
1510   }
1511 
1512   static const TypeNarrowOop *BOTTOM;
1513   static const TypeNarrowOop *NULL_PTR;
1514 
1515   virtual const Type* remove_speculative() const;
1516   virtual const Type* cleanup_speculative() const;
1517 
1518 #ifndef PRODUCT
1519   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1520 #endif
1521 };
1522 
1523 //------------------------------TypeNarrowKlass----------------------------------
1524 // A compressed reference to klass pointer.  This type wraps around a
1525 // preexisting TypeKlassPtr and forwards most of it's operations to
1526 // the underlying type.
1527 class TypeNarrowKlass : public TypeNarrowPtr {
1528 protected:
1529   TypeNarrowKlass( const TypePtr* ptrtype): TypeNarrowPtr(NarrowKlass, ptrtype) {
1530   }
1531 
1532   virtual const TypeNarrowPtr *isa_same_narrowptr(const Type *t) const {
1533     return t->isa_narrowklass();
1534   }
1535 
1536   virtual const TypeNarrowPtr *is_same_narrowptr(const Type *t) const {
1537     return t->is_narrowklass();
1538   }
1539 
1540   virtual const TypeNarrowPtr *make_same_narrowptr(const TypePtr *t) const {
1541     return new TypeNarrowKlass(t);
1542   }
1543 
1544   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1545     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1546   }
1547 
1548 public:
1549   static const TypeNarrowKlass *make( const TypePtr* type);
1550 
1551   // static const TypeNarrowKlass *BOTTOM;
1552   static const TypeNarrowKlass *NULL_PTR;
1553 
1554 #ifndef PRODUCT
1555   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1556 #endif
1557 };
1558 
1559 //------------------------------TypeFunc---------------------------------------
1560 // Class of Array Types
1561 class TypeFunc : public Type {
1562   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
1563     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
1564   virtual bool eq( const Type *t ) const;
1565   virtual int  hash() const;             // Type specific hashing
1566   virtual bool singleton(void) const;    // TRUE if type is a singleton
1567   virtual bool empty(void) const;        // TRUE if type is vacuous
1568 
1569   // Domains of inputs: value type arguments are not passed by
1570   // reference, instead each field of the value type is passed as an
1571   // argument. We maintain 2 views of the argument list here: one
1572   // based on the signature (with a value type argument as a single
1573   // slot), one based on the actual calling convention (with a value
1574   // type argument as a list of its fields).
1575   const TypeTuple* const _domain_sig;
1576   const TypeTuple* const _domain_cc;
1577   // Range of results. Similar to domains: a value type result can be
1578   // returned in registers in which case range_cc lists all fields and
1579   // is the actual calling convention.
1580   const TypeTuple* const _range_sig;
1581   const TypeTuple* const _range_cc;
1582 
1583 public:
1584   // Constants are shared among ADLC and VM
1585   enum { Control    = AdlcVMDeps::Control,
1586          I_O        = AdlcVMDeps::I_O,
1587          Memory     = AdlcVMDeps::Memory,
1588          FramePtr   = AdlcVMDeps::FramePtr,
1589          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1590          Parms      = AdlcVMDeps::Parms
1591   };
1592 
1593 
1594   // Accessors:
1595   const TypeTuple* domain_sig() const { return _domain_sig; }
1596   const TypeTuple* domain_cc() const { return _domain_cc; }
1597   const TypeTuple* range_sig()  const { return _range_sig; }
1598   const TypeTuple* range_cc()  const { return _range_cc; }
1599 
1600   static const TypeFunc *make(ciMethod* method);
1601   static const TypeFunc *make(ciSignature signature, const Type* extra);
1602   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
1603                               const TypeTuple* range_sig, const TypeTuple* range_cc);
1604   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1605 
1606   virtual const Type *xmeet( const Type *t ) const;
1607   virtual const Type *xdual() const;    // Compute dual right now.
1608 
1609   BasicType return_type() const;
1610 
1611   bool returns_value_type_as_fields() const { return range_sig() != range_cc(); }
1612 
1613 #ifndef PRODUCT
1614   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1615 #endif
1616   // Convenience common pre-built types.
1617 };
1618 
1619 //------------------------------accessors--------------------------------------
1620 inline bool Type::is_ptr_to_narrowoop() const {
1621 #ifdef _LP64
1622   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1623 #else
1624   return false;
1625 #endif
1626 }
1627 
1628 inline bool Type::is_ptr_to_narrowklass() const {
1629 #ifdef _LP64
1630   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1631 #else
1632   return false;
1633 #endif
1634 }
1635 
1636 inline float Type::getf() const {
1637   assert( _base == FloatCon, "Not a FloatCon" );
1638   return ((TypeF*)this)->_f;
1639 }
1640 
1641 inline double Type::getd() const {
1642   assert( _base == DoubleCon, "Not a DoubleCon" );
1643   return ((TypeD*)this)->_d;
1644 }
1645 
1646 inline const TypeInt *Type::is_int() const {
1647   assert( _base == Int, "Not an Int" );
1648   return (TypeInt*)this;
1649 }
1650 
1651 inline const TypeInt *Type::isa_int() const {
1652   return ( _base == Int ? (TypeInt*)this : NULL);
1653 }
1654 
1655 inline const TypeLong *Type::is_long() const {
1656   assert( _base == Long, "Not a Long" );
1657   return (TypeLong*)this;
1658 }
1659 
1660 inline const TypeLong *Type::isa_long() const {
1661   return ( _base == Long ? (TypeLong*)this : NULL);
1662 }
1663 
1664 inline const TypeF *Type::isa_float() const {
1665   return ((_base == FloatTop ||
1666            _base == FloatCon ||
1667            _base == FloatBot) ? (TypeF*)this : NULL);
1668 }
1669 
1670 inline const TypeF *Type::is_float_constant() const {
1671   assert( _base == FloatCon, "Not a Float" );
1672   return (TypeF*)this;
1673 }
1674 
1675 inline const TypeF *Type::isa_float_constant() const {
1676   return ( _base == FloatCon ? (TypeF*)this : NULL);
1677 }
1678 
1679 inline const TypeD *Type::isa_double() const {
1680   return ((_base == DoubleTop ||
1681            _base == DoubleCon ||
1682            _base == DoubleBot) ? (TypeD*)this : NULL);
1683 }
1684 
1685 inline const TypeD *Type::is_double_constant() const {
1686   assert( _base == DoubleCon, "Not a Double" );
1687   return (TypeD*)this;
1688 }
1689 
1690 inline const TypeD *Type::isa_double_constant() const {
1691   return ( _base == DoubleCon ? (TypeD*)this : NULL);
1692 }
1693 
1694 inline const TypeTuple *Type::is_tuple() const {
1695   assert( _base == Tuple, "Not a Tuple" );
1696   return (TypeTuple*)this;
1697 }
1698 
1699 inline const TypeAry *Type::is_ary() const {
1700   assert( _base == Array , "Not an Array" );
1701   return (TypeAry*)this;
1702 }
1703 
1704 inline const TypeVect *Type::is_vect() const {
1705   assert( _base >= VectorS && _base <= VectorZ, "Not a Vector" );
1706   return (TypeVect*)this;
1707 }
1708 
1709 inline const TypeVect *Type::isa_vect() const {
1710   return (_base >= VectorS && _base <= VectorZ) ? (TypeVect*)this : NULL;
1711 }
1712 
1713 inline const TypePtr *Type::is_ptr() const {
1714   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1715   assert(_base >= AnyPtr && _base <= KlassPtr, "Not a pointer");
1716   return (TypePtr*)this;
1717 }
1718 
1719 inline const TypePtr *Type::isa_ptr() const {
1720   // AnyPtr is the first Ptr and KlassPtr the last, with no non-ptrs between.
1721   return (_base >= AnyPtr && _base <= KlassPtr) ? (TypePtr*)this : NULL;
1722 }
1723 
1724 inline const TypeOopPtr *Type::is_oopptr() const {
1725   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1726   assert(_base >= OopPtr && _base <= AryPtr, "Not a Java pointer" ) ;
1727   return (TypeOopPtr*)this;
1728 }
1729 
1730 inline const TypeOopPtr *Type::isa_oopptr() const {
1731   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1732   return (_base >= OopPtr && _base <= AryPtr) ? (TypeOopPtr*)this : NULL;
1733 }
1734 
1735 inline const TypeRawPtr *Type::isa_rawptr() const {
1736   return (_base == RawPtr) ? (TypeRawPtr*)this : NULL;
1737 }
1738 
1739 inline const TypeRawPtr *Type::is_rawptr() const {
1740   assert( _base == RawPtr, "Not a raw pointer" );
1741   return (TypeRawPtr*)this;
1742 }
1743 
1744 inline const TypeInstPtr *Type::isa_instptr() const {
1745   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1746 }
1747 
1748 inline const TypeInstPtr *Type::is_instptr() const {
1749   assert( _base == InstPtr, "Not an object pointer" );
1750   return (TypeInstPtr*)this;
1751 }
1752 
1753 inline const TypeAryPtr *Type::isa_aryptr() const {
1754   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1755 }
1756 
1757 inline const TypeAryPtr *Type::is_aryptr() const {
1758   assert( _base == AryPtr, "Not an array pointer" );
1759   return (TypeAryPtr*)this;
1760 }
1761 
1762 inline const TypeValueType* Type::isa_valuetype() const {
1763   return (_base == ValueType) ? (TypeValueType*)this : NULL;
1764 }
1765 
1766 inline const TypeValueType* Type::is_valuetype() const {
1767   assert(_base == ValueType, "Not a value type");
1768   return (TypeValueType*)this;
1769 }
1770 
1771 inline const TypeNarrowOop *Type::is_narrowoop() const {
1772   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1773   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1774   return (TypeNarrowOop*)this;
1775 }
1776 
1777 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1778   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1779   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1780 }
1781 
1782 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1783   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1784   return (TypeNarrowKlass*)this;
1785 }
1786 
1787 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1788   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1789 }
1790 
1791 inline const TypeMetadataPtr *Type::is_metadataptr() const {
1792   // MetadataPtr is the first and CPCachePtr the last
1793   assert(_base == MetadataPtr, "Not a metadata pointer" ) ;
1794   return (TypeMetadataPtr*)this;
1795 }
1796 
1797 inline const TypeMetadataPtr *Type::isa_metadataptr() const {
1798   return (_base == MetadataPtr) ? (TypeMetadataPtr*)this : NULL;
1799 }
1800 
1801 inline const TypeKlassPtr *Type::isa_klassptr() const {
1802   return (_base == KlassPtr) ? (TypeKlassPtr*)this : NULL;
1803 }
1804 
1805 inline const TypeKlassPtr *Type::is_klassptr() const {
1806   assert( _base == KlassPtr, "Not a klass pointer" );
1807   return (TypeKlassPtr*)this;
1808 }
1809 
1810 inline const TypePtr* Type::make_ptr() const {
1811   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype() :
1812                               ((_base == NarrowKlass) ? is_narrowklass()->get_ptrtype() :
1813                                                        isa_ptr());
1814 }
1815 
1816 inline const TypeOopPtr* Type::make_oopptr() const {
1817   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1818 }
1819 
1820 inline const TypeNarrowOop* Type::make_narrowoop() const {
1821   return (_base == NarrowOop) ? is_narrowoop() :
1822                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1823 }
1824 
1825 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1826   return (_base == NarrowKlass) ? is_narrowklass() :
1827                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1828 }
1829 
1830 inline bool Type::is_floatingpoint() const {
1831   if( (_base == FloatCon)  || (_base == FloatBot) ||
1832       (_base == DoubleCon) || (_base == DoubleBot) )
1833     return true;
1834   return false;
1835 }
1836 
1837 inline bool Type::is_valuetypeptr() const {
1838   return isa_instptr() != NULL && is_instptr()->klass()->is_valuetype();
1839 }
1840 
1841 
1842 inline ciValueKlass* Type::value_klass() const {
1843   assert(is_valuetypeptr(), "must be a value type ptr");
1844   return is_instptr()->klass()->as_value_klass();
1845 }
1846 
1847 
1848 // ===============================================================
1849 // Things that need to be 64-bits in the 64-bit build but
1850 // 32-bits in the 32-bit build.  Done this way to get full
1851 // optimization AND strong typing.
1852 #ifdef _LP64
1853 
1854 // For type queries and asserts
1855 #define is_intptr_t  is_long
1856 #define isa_intptr_t isa_long
1857 #define find_intptr_t_type find_long_type
1858 #define find_intptr_t_con  find_long_con
1859 #define TypeX        TypeLong
1860 #define Type_X       Type::Long
1861 #define TypeX_X      TypeLong::LONG
1862 #define TypeX_ZERO   TypeLong::ZERO
1863 // For 'ideal_reg' machine registers
1864 #define Op_RegX      Op_RegL
1865 // For phase->intcon variants
1866 #define MakeConX     longcon
1867 #define ConXNode     ConLNode
1868 // For array index arithmetic
1869 #define MulXNode     MulLNode
1870 #define AndXNode     AndLNode
1871 #define OrXNode      OrLNode
1872 #define CmpXNode     CmpLNode
1873 #define CmpUXNode    CmpULNode
1874 #define SubXNode     SubLNode
1875 #define LShiftXNode  LShiftLNode
1876 // For object size computation:
1877 #define AddXNode     AddLNode
1878 #define RShiftXNode  RShiftLNode
1879 // For card marks and hashcodes
1880 #define URShiftXNode URShiftLNode
1881 // UseOptoBiasInlining
1882 #define XorXNode     XorLNode
1883 #define StoreXConditionalNode StoreLConditionalNode
1884 #define LoadXNode    LoadLNode
1885 #define StoreXNode   StoreLNode
1886 // Opcodes
1887 #define Op_LShiftX   Op_LShiftL
1888 #define Op_AndX      Op_AndL
1889 #define Op_AddX      Op_AddL
1890 #define Op_SubX      Op_SubL
1891 #define Op_XorX      Op_XorL
1892 #define Op_URShiftX  Op_URShiftL
1893 #define Op_LoadX     Op_LoadL
1894 #define Op_StoreX    Op_StoreL
1895 // conversions
1896 #define ConvI2X(x)   ConvI2L(x)
1897 #define ConvL2X(x)   (x)
1898 #define ConvX2I(x)   ConvL2I(x)
1899 #define ConvX2L(x)   (x)
1900 #define ConvX2UL(x)  (x)
1901 
1902 #else
1903 
1904 // For type queries and asserts
1905 #define is_intptr_t  is_int
1906 #define isa_intptr_t isa_int
1907 #define find_intptr_t_type find_int_type
1908 #define find_intptr_t_con  find_int_con
1909 #define TypeX        TypeInt
1910 #define Type_X       Type::Int
1911 #define TypeX_X      TypeInt::INT
1912 #define TypeX_ZERO   TypeInt::ZERO
1913 // For 'ideal_reg' machine registers
1914 #define Op_RegX      Op_RegI
1915 // For phase->intcon variants
1916 #define MakeConX     intcon
1917 #define ConXNode     ConINode
1918 // For array index arithmetic
1919 #define MulXNode     MulINode
1920 #define AndXNode     AndINode
1921 #define OrXNode      OrINode
1922 #define CmpXNode     CmpINode
1923 #define CmpUXNode    CmpUNode
1924 #define SubXNode     SubINode
1925 #define LShiftXNode  LShiftINode
1926 // For object size computation:
1927 #define AddXNode     AddINode
1928 #define RShiftXNode  RShiftINode
1929 // For card marks and hashcodes
1930 #define URShiftXNode URShiftINode
1931 // UseOptoBiasInlining
1932 #define XorXNode     XorINode
1933 #define StoreXConditionalNode StoreIConditionalNode
1934 #define LoadXNode    LoadINode
1935 #define StoreXNode   StoreINode
1936 // Opcodes
1937 #define Op_LShiftX   Op_LShiftI
1938 #define Op_AndX      Op_AndI
1939 #define Op_AddX      Op_AddI
1940 #define Op_SubX      Op_SubI
1941 #define Op_XorX      Op_XorI
1942 #define Op_URShiftX  Op_URShiftI
1943 #define Op_LoadX     Op_LoadI
1944 #define Op_StoreX    Op_StoreI
1945 // conversions
1946 #define ConvI2X(x)   (x)
1947 #define ConvL2X(x)   ConvL2I(x)
1948 #define ConvX2I(x)   (x)
1949 #define ConvX2L(x)   ConvI2L(x)
1950 #define ConvX2UL(x)  ConvI2UL(x)
1951 
1952 #endif
1953 
1954 #endif // SHARE_OPTO_TYPE_HPP