< prev index next >

src/hotspot/share/opto/type.hpp

Print this page




   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 

  28 #include "opto/adlcVMDeps.hpp"
  29 #include "runtime/handles.hpp"

  30 
  31 // Portions of code courtesy of Clifford Click
  32 
  33 // Optimization - Graph Style
  34 
  35 
  36 // This class defines a Type lattice.  The lattice is used in the constant
  37 // propagation algorithms, and for some type-checking of the iloc code.
  38 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  39 // float & double precision constants, sets of data-labels and code-labels.
  40 // The complete lattice is described below.  Subtypes have no relationship to
  41 // up or down in the lattice; that is entirely determined by the behavior of
  42 // the MEET/JOIN functions.
  43 
  44 class Dict;
  45 class Type;
  46 class   TypeD;
  47 class   TypeF;
  48 class   TypeInt;
  49 class   TypeLong;
  50 class   TypeNarrowPtr;
  51 class     TypeNarrowOop;
  52 class     TypeNarrowKlass;
  53 class   TypeAry;
  54 class   TypeTuple;

  55 class   TypeVect;
  56 class     TypeVectS;
  57 class     TypeVectD;
  58 class     TypeVectX;
  59 class     TypeVectY;
  60 class     TypeVectZ;
  61 class   TypePtr;
  62 class     TypeRawPtr;
  63 class     TypeOopPtr;
  64 class       TypeInstPtr;
  65 class       TypeAryPtr;
  66 class     TypeKlassPtr;
  67 class     TypeMetadataPtr;
  68 
  69 //------------------------------Type-------------------------------------------
  70 // Basic Type object, represents a set of primitive Values.
  71 // Types are hash-cons'd into a private class dictionary, so only one of each
  72 // different kind of Type exists.  Types are never modified after creation, so
  73 // all their interesting fields are constant.
  74 class Type {
  75   friend class VMStructs;
  76 
  77 public:
  78   enum TYPES {
  79     Bad=0,                      // Type check
  80     Control,                    // Control of code (not in lattice)
  81     Top,                        // Top of the lattice
  82     Int,                        // Integer range (lo-hi)
  83     Long,                       // Long integer range (lo-hi)
  84     Half,                       // Placeholder half of doubleword
  85     NarrowOop,                  // Compressed oop pointer
  86     NarrowKlass,                // Compressed klass pointer
  87 
  88     Tuple,                      // Method signature or object layout
  89     Array,                      // Array types
  90     VectorS,                    //  32bit Vector types
  91     VectorD,                    //  64bit Vector types
  92     VectorX,                    // 128bit Vector types
  93     VectorY,                    // 256bit Vector types
  94     VectorZ,                    // 512bit Vector types

  95 
  96     AnyPtr,                     // Any old raw, klass, inst, or array pointer
  97     RawPtr,                     // Raw (non-oop) pointers
  98     OopPtr,                     // Any and all Java heap entities
  99     InstPtr,                    // Instance pointers (non-array objects)
 100     AryPtr,                     // Array pointers
 101     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 102 
 103     MetadataPtr,                // Generic metadata
 104     KlassPtr,                   // Klass pointers
 105 
 106     Function,                   // Function signature
 107     Abio,                       // Abstract I/O
 108     Return_Address,             // Subroutine return address
 109     Memory,                     // Abstract store
 110     FloatTop,                   // No float value
 111     FloatCon,                   // Floating point constant
 112     FloatBot,                   // Any float value
 113     DoubleTop,                  // No double value
 114     DoubleCon,                  // Double precision constant
 115     DoubleBot,                  // Any double value
 116     Bottom,                     // Bottom of lattice
 117     lastype                     // Bogus ending type (not in lattice)
 118   };
 119 
 120   // Signal values for offsets from a base pointer
 121   enum OFFSET_SIGNALS {
 122     OffsetTop = -2000000000,    // undefined offset
 123     OffsetBot = -2000000001     // any possible offset
 124   };
 125 
























 126   // Min and max WIDEN values.
 127   enum WIDEN {
 128     WidenMin = 0,
 129     WidenMax = 3
 130   };
 131 
 132 private:
 133   typedef struct {
 134     TYPES                dual_type;
 135     BasicType            basic_type;
 136     const char*          msg;
 137     bool                 isa_oop;
 138     uint                 ideal_reg;
 139     relocInfo::relocType reloc;
 140   } TypeInfo;
 141 
 142   // Dictionary of types shared among compilations.
 143   static Dict* _shared_type_dict;
 144   static const TypeInfo _type_info[];
 145 


 256   // Currently, it also works around limitations involving interface types.
 257   // Variant that drops the speculative part of the types
 258   const Type *filter(const Type *kills) const {
 259     return filter_helper(kills, false);
 260   }
 261   // Variant that keeps the speculative part of the types
 262   const Type *filter_speculative(const Type *kills) const {
 263     return filter_helper(kills, true)->cleanup_speculative();
 264   }
 265 
 266 #ifdef ASSERT
 267   // One type is interface, the other is oop
 268   virtual bool interface_vs_oop(const Type *t) const;
 269 #endif
 270 
 271   // Returns true if this pointer points at memory which contains a
 272   // compressed oop references.
 273   bool is_ptr_to_narrowoop() const;
 274   bool is_ptr_to_narrowklass() const;
 275 
 276   bool is_ptr_to_boxing_obj() const;
 277 
 278 
 279   // Convenience access
 280   float getf() const;
 281   double getd() const;
 282 
 283   const TypeInt    *is_int() const;
 284   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 285   const TypeLong   *is_long() const;
 286   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 287   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 288   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 289   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 290   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 291   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 292   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 293   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 294   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 295   const TypeVect   *is_vect() const;             // Vector
 296   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 297   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 298   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 299   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 300   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 301   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 302   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 303   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 304   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 305   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 306   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 307   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 308   const TypeInstPtr  *is_instptr() const;        // Instance
 309   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 310   const TypeAryPtr   *is_aryptr() const;         // Array oop


 311 
 312   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 313   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 314   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 315   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 316 
 317   virtual bool      is_finite() const;           // Has a finite value
 318   virtual bool      is_nan()    const;           // Is not a number (NaN)
 319 



 320   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 321   const TypePtr* make_ptr() const;
 322 
 323   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 324   // Asserts if the underlying type is not an oopptr or narrowoop.
 325   const TypeOopPtr* make_oopptr() const;
 326 
 327   // Returns this compressed pointer or the equivalent compressed version
 328   // of this pointer type.
 329   const TypeNarrowOop* make_narrowoop() const;
 330 
 331   // Returns this compressed klass pointer or the equivalent
 332   // compressed version of this pointer type.
 333   const TypeNarrowKlass* make_narrowklass() const;
 334 
 335   // Special test for register pressure heuristic
 336   bool is_floatingpoint() const;        // True if Float or Double base type
 337 
 338   // Do you have memory, directly or through a tuple?
 339   bool has_memory( ) const;


 646   const Type ** const _fields;           // Array of field types
 647 
 648 public:
 649   virtual bool eq( const Type *t ) const;
 650   virtual int  hash() const;             // Type specific hashing
 651   virtual bool singleton(void) const;    // TRUE if type is a singleton
 652   virtual bool empty(void) const;        // TRUE if type is vacuous
 653 
 654   // Accessors:
 655   uint cnt() const { return _cnt; }
 656   const Type* field_at(uint i) const {
 657     assert(i < _cnt, "oob");
 658     return _fields[i];
 659   }
 660   void set_field_at(uint i, const Type* t) {
 661     assert(i < _cnt, "oob");
 662     _fields[i] = t;
 663   }
 664 
 665   static const TypeTuple *make( uint cnt, const Type **fields );
 666   static const TypeTuple *make_range(ciSignature *sig);
 667   static const TypeTuple *make_domain(ciInstanceKlass* recv, ciSignature *sig);
 668 
 669   // Subroutine call type with space allocated for argument types
 670   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 671   static const Type **fields( uint arg_cnt );
 672 
 673   virtual const Type *xmeet( const Type *t ) const;
 674   virtual const Type *xdual() const;    // Compute dual right now.
 675   // Convenience common pre-built types.
 676   static const TypeTuple *IFBOTH;
 677   static const TypeTuple *IFFALSE;
 678   static const TypeTuple *IFTRUE;
 679   static const TypeTuple *IFNEITHER;
 680   static const TypeTuple *LOOPBODY;
 681   static const TypeTuple *MEMBAR;
 682   static const TypeTuple *STORECONDITIONAL;
 683   static const TypeTuple *START_I2C;
 684   static const TypeTuple *INT_PAIR;
 685   static const TypeTuple *LONG_PAIR;
 686   static const TypeTuple *INT_CC_PAIR;
 687   static const TypeTuple *LONG_CC_PAIR;


 698 public:
 699   virtual bool eq( const Type *t ) const;
 700   virtual int  hash() const;             // Type specific hashing
 701   virtual bool singleton(void) const;    // TRUE if type is a singleton
 702   virtual bool empty(void) const;        // TRUE if type is vacuous
 703 
 704 private:
 705   const Type *_elem;            // Element type of array
 706   const TypeInt *_size;         // Elements in array
 707   const bool _stable;           // Are elements @Stable?
 708   friend class TypeAryPtr;
 709 
 710 public:
 711   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 712 
 713   virtual const Type *xmeet( const Type *t ) const;
 714   virtual const Type *xdual() const;    // Compute dual right now.
 715   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 716   virtual const Type* remove_speculative() const;
 717   virtual const Type* cleanup_speculative() const;



 718 #ifdef ASSERT
 719   // One type is interface, the other is oop
 720   virtual bool interface_vs_oop(const Type *t) const;
 721 #endif
 722 #ifndef PRODUCT
 723   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 724 #endif
 725 };
 726 



































 727 //------------------------------TypeVect---------------------------------------
 728 // Class of Vector Types
 729 class TypeVect : public Type {
 730   const Type*   _elem;  // Vector's element type
 731   const uint  _length;  // Elements in vector (power of 2)
 732 
 733 protected:
 734   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 735     _elem(elem), _length(length) {}
 736 
 737 public:
 738   const Type* element_type() const { return _elem; }
 739   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 740   uint length() const { return _length; }
 741   uint length_in_bytes() const {
 742    return _length * type2aelembytes(element_basic_type());
 743   }
 744 
 745   virtual bool eq(const Type *t) const;
 746   virtual int  hash() const;             // Type specific hashing


 786 class TypeVectY : public TypeVect {
 787   friend class TypeVect;
 788   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 789 };
 790 
 791 class TypeVectZ : public TypeVect {
 792   friend class TypeVect;
 793   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 794 };
 795 
 796 //------------------------------TypePtr----------------------------------------
 797 // Class of machine Pointer Types: raw data, instances or arrays.
 798 // If the _base enum is AnyPtr, then this refers to all of the above.
 799 // Otherwise the _base will indicate which subset of pointers is affected,
 800 // and the class will be inherited from.
 801 class TypePtr : public Type {
 802   friend class TypeNarrowPtr;
 803 public:
 804   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 805 protected:
 806   TypePtr(TYPES t, PTR ptr, int offset,
 807           const TypePtr* speculative = NULL,
 808           int inline_depth = InlineDepthBottom) :
 809     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 810     _ptr(ptr) {}
 811   static const PTR ptr_meet[lastPTR][lastPTR];
 812   static const PTR ptr_dual[lastPTR];
 813   static const char * const ptr_msg[lastPTR];
 814 
 815   enum {
 816     InlineDepthBottom = INT_MAX,
 817     InlineDepthTop = -InlineDepthBottom
 818   };
 819 
 820   // Extra type information profiling gave us. We propagate it the
 821   // same way the rest of the type info is propagated. If we want to
 822   // use it, then we have to emit a guard: this part of the type is
 823   // not something we know but something we speculate about the type.
 824   const TypePtr*   _speculative;
 825   // For speculative types, we record at what inlining depth the
 826   // profiling point that provided the data is. We want to favor


 829   int _inline_depth;
 830 
 831   // utility methods to work on the speculative part of the type
 832   const TypePtr* dual_speculative() const;
 833   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 834   bool eq_speculative(const TypePtr* other) const;
 835   int hash_speculative() const;
 836   const TypePtr* add_offset_speculative(intptr_t offset) const;
 837 #ifndef PRODUCT
 838   void dump_speculative(outputStream *st) const;
 839 #endif
 840 
 841   // utility methods to work on the inline depth of the type
 842   int dual_inline_depth() const;
 843   int meet_inline_depth(int depth) const;
 844 #ifndef PRODUCT
 845   void dump_inline_depth(outputStream *st) const;
 846 #endif
 847 
 848 public:
 849   const int _offset;            // Offset into oop, with TOP & BOT
 850   const PTR _ptr;               // Pointer equivalence class
 851 
 852   const int offset() const { return _offset; }
 853   const PTR ptr()    const { return _ptr; }
 854 
 855   static const TypePtr *make(TYPES t, PTR ptr, int offset,
 856                              const TypePtr* speculative = NULL,
 857                              int inline_depth = InlineDepthBottom);
 858 
 859   // Return a 'ptr' version of this type
 860   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 861 
 862   virtual intptr_t get_con() const;
 863 
 864   int xadd_offset( intptr_t offset ) const;
 865   virtual const TypePtr *add_offset( intptr_t offset ) const;


 866   virtual bool eq(const Type *t) const;
 867   virtual int  hash() const;             // Type specific hashing
 868 
 869   virtual bool singleton(void) const;    // TRUE if type is a singleton
 870   virtual bool empty(void) const;        // TRUE if type is vacuous
 871   virtual const Type *xmeet( const Type *t ) const;
 872   virtual const Type *xmeet_helper( const Type *t ) const;
 873   int meet_offset( int offset ) const;
 874   int dual_offset( ) const;
 875   virtual const Type *xdual() const;    // Compute dual right now.
 876 
 877   // meet, dual and join over pointer equivalence sets
 878   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 879   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 880 
 881   // This is textually confusing unless one recalls that
 882   // join(t) == dual()->meet(t->dual())->dual().
 883   PTR join_ptr( const PTR in_ptr ) const {
 884     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 885   }
 886 
 887   // Speculative type helper methods.
 888   virtual const TypePtr* speculative() const { return _speculative; }
 889   int inline_depth() const                   { return _inline_depth; }
 890   virtual ciKlass* speculative_type() const;
 891   virtual ciKlass* speculative_type_not_null() const;
 892   virtual bool speculative_maybe_null() const;
 893   virtual bool speculative_always_null() const;
 894   virtual const Type* remove_speculative() const;


 899 
 900   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
 901 
 902   // Tests for relation to centerline of type lattice:
 903   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 904   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 905   // Convenience common pre-built types.
 906   static const TypePtr *NULL_PTR;
 907   static const TypePtr *NOTNULL;
 908   static const TypePtr *BOTTOM;
 909 #ifndef PRODUCT
 910   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 911 #endif
 912 };
 913 
 914 //------------------------------TypeRawPtr-------------------------------------
 915 // Class of raw pointers, pointers to things other than Oops.  Examples
 916 // include the stack pointer, top of heap, card-marking area, handles, etc.
 917 class TypeRawPtr : public TypePtr {
 918 protected:
 919   TypeRawPtr( PTR ptr, address bits ) : TypePtr(RawPtr,ptr,0), _bits(bits){}
 920 public:
 921   virtual bool eq( const Type *t ) const;
 922   virtual int  hash() const;     // Type specific hashing
 923 
 924   const address _bits;          // Constant value, if applicable
 925 
 926   static const TypeRawPtr *make( PTR ptr );
 927   static const TypeRawPtr *make( address bits );
 928 
 929   // Return a 'ptr' version of this type
 930   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 931 
 932   virtual intptr_t get_con() const;
 933 
 934   virtual const TypePtr *add_offset( intptr_t offset ) const;
 935 
 936   virtual const Type *xmeet( const Type *t ) const;
 937   virtual const Type *xdual() const;    // Compute dual right now.
 938   // Convenience common pre-built types.
 939   static const TypeRawPtr *BOTTOM;
 940   static const TypeRawPtr *NOTNULL;
 941 #ifndef PRODUCT
 942   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 943 #endif
 944 };
 945 
 946 //------------------------------TypeOopPtr-------------------------------------
 947 // Some kind of oop (Java pointer), either instance or array.
 948 class TypeOopPtr : public TypePtr {
 949 protected:
 950   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
 951              const TypePtr* speculative, int inline_depth);
 952 public:
 953   virtual bool eq( const Type *t ) const;
 954   virtual int  hash() const;             // Type specific hashing
 955   virtual bool singleton(void) const;    // TRUE if type is a singleton
 956   enum {
 957    InstanceTop = -1,   // undefined instance
 958    InstanceBot = 0     // any possible instance
 959   };
 960 protected:
 961 
 962   // Oop is NULL, unless this is a constant oop.
 963   ciObject*     _const_oop;   // Constant oop
 964   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
 965   ciKlass*      _klass;       // Klass object
 966   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
 967   bool          _klass_is_exact;
 968   bool          _is_ptr_to_narrowoop;
 969   bool          _is_ptr_to_narrowklass;
 970   bool          _is_ptr_to_boxed_value;
 971 


 990     return make_from_klass_common(klass, true, false);
 991   }
 992   // Same as before, but will produce an exact type, even if
 993   // the klass is not final, as long as it has exactly one implementation.
 994   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
 995     return make_from_klass_common(klass, true, true);
 996   }
 997   // Same as before, but does not respects UseUniqueSubclasses.
 998   // Use this only for creating array element types.
 999   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
1000     return make_from_klass_common(klass, false, false);
1001   }
1002   // Creates a singleton type given an object.
1003   // If the object cannot be rendered as a constant,
1004   // may return a non-singleton type.
1005   // If require_constant, produce a NULL if a singleton is not possible.
1006   static const TypeOopPtr* make_from_constant(ciObject* o,
1007                                               bool require_constant = false);
1008 
1009   // Make a generic (unclassed) pointer to an oop.
1010   static const TypeOopPtr* make(PTR ptr, int offset, int instance_id,
1011                                 const TypePtr* speculative = NULL,
1012                                 int inline_depth = InlineDepthBottom);
1013 
1014   ciObject* const_oop()    const { return _const_oop; }
1015   virtual ciKlass* klass() const { return _klass;     }
1016   bool klass_is_exact()    const { return _klass_is_exact; }
1017 
1018   // Returns true if this pointer points at memory which contains a
1019   // compressed oop references.
1020   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1021   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1022   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1023   bool is_known_instance()       const { return _instance_id > 0; }
1024   int  instance_id()             const { return _instance_id; }
1025   bool is_known_instance_field() const { return is_known_instance() && _offset >= 0; }



1026 
1027   virtual intptr_t get_con() const;
1028 
1029   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1030 
1031   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1032 
1033   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1034 
1035   virtual const TypeOopPtr *cast_to_nonconst() const;
1036 
1037   // corresponding pointer to klass, for a given instance
1038   const TypeKlassPtr* as_klass_type() const;
1039 
1040   virtual const TypePtr *add_offset( intptr_t offset ) const;
1041 
1042   // Speculative type helper methods.
1043   virtual const Type* remove_speculative() const;
1044   virtual const Type* cleanup_speculative() const;
1045   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1046   virtual const TypePtr* with_inline_depth(int depth) const;
1047 
1048   virtual const TypePtr* with_instance_id(int instance_id) const;
1049 
1050   virtual const Type *xdual() const;    // Compute dual right now.
1051   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1052   virtual const Type *xmeet_helper(const Type *t) const;
1053 
1054   // Convenience common pre-built type.
1055   static const TypeOopPtr *BOTTOM;
1056 #ifndef PRODUCT
1057   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1058 #endif
1059 };
1060 
1061 //------------------------------TypeInstPtr------------------------------------
1062 // Class of Java object pointers, pointing either to non-array Java instances
1063 // or to a Klass* (including array klasses).
1064 class TypeInstPtr : public TypeOopPtr {
1065   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset, int instance_id,
1066               const TypePtr* speculative, int inline_depth);
1067   virtual bool eq( const Type *t ) const;
1068   virtual int  hash() const;             // Type specific hashing
1069 
1070   ciSymbol*  _name;        // class name
1071 
1072  public:
1073   ciSymbol* name()         const { return _name; }
1074 
1075   bool  is_loaded() const { return _klass->is_loaded(); }
1076 
1077   // Make a pointer to a constant oop.
1078   static const TypeInstPtr *make(ciObject* o) {
1079     return make(TypePtr::Constant, o->klass(), true, o, 0, InstanceBot);
1080   }
1081   // Make a pointer to a constant oop with offset.
1082   static const TypeInstPtr *make(ciObject* o, int offset) {
1083     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1084   }
1085 
1086   // Make a pointer to some value of type klass.
1087   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1088     return make(ptr, klass, false, NULL, 0, InstanceBot);
1089   }
1090 
1091   // Make a pointer to some non-polymorphic value of exactly type klass.
1092   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1093     return make(ptr, klass, true, NULL, 0, InstanceBot);
1094   }
1095 
1096   // Make a pointer to some value of type klass with offset.
1097   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, int offset) {
1098     return make(ptr, klass, false, NULL, offset, InstanceBot);
1099   }
1100 
1101   // Make a pointer to an oop.
1102   static const TypeInstPtr *make(PTR ptr, ciKlass* k, bool xk, ciObject* o, int offset,
1103                                  int instance_id = InstanceBot,
1104                                  const TypePtr* speculative = NULL,
1105                                  int inline_depth = InlineDepthBottom);
1106 
1107   /** Create constant type for a constant boxed value */
1108   const Type* get_const_boxed_value() const;
1109 
1110   // If this is a java.lang.Class constant, return the type for it or NULL.
1111   // Pass to Type::get_const_type to turn it to a type, which will usually
1112   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1113   ciType* java_mirror_type() const;
1114 
1115   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1116 
1117   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1118 
1119   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1120 
1121   virtual const TypeOopPtr *cast_to_nonconst() const;
1122 


1129 
1130   // the core of the computation of the meet of 2 types
1131   virtual const Type *xmeet_helper(const Type *t) const;
1132   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1133   virtual const Type *xdual() const;    // Compute dual right now.
1134 
1135   // Convenience common pre-built types.
1136   static const TypeInstPtr *NOTNULL;
1137   static const TypeInstPtr *BOTTOM;
1138   static const TypeInstPtr *MIRROR;
1139   static const TypeInstPtr *MARK;
1140   static const TypeInstPtr *KLASS;
1141 #ifndef PRODUCT
1142   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1143 #endif
1144 };
1145 
1146 //------------------------------TypeAryPtr-------------------------------------
1147 // Class of Java array pointers
1148 class TypeAryPtr : public TypeOopPtr {
1149   TypeAryPtr( PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1150               int offset, int instance_id, bool is_autobox_cache,
1151               const TypePtr* speculative, int inline_depth)
1152     : TypeOopPtr(AryPtr,ptr,k,xk,o,offset, instance_id, speculative, inline_depth),
1153     _ary(ary),
1154     _is_autobox_cache(is_autobox_cache)

1155  {
1156 #ifdef ASSERT
1157     if (k != NULL) {
1158       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1159       ciKlass* ck = compute_klass(true);
1160       if (k != ck) {
1161         this->dump(); tty->cr();
1162         tty->print(" k: ");
1163         k->print(); tty->cr();
1164         tty->print("ck: ");
1165         if (ck != NULL) ck->print();
1166         else tty->print("<NULL>");
1167         tty->cr();
1168         assert(false, "unexpected TypeAryPtr::_klass");
1169       }
1170     }
1171 #endif
1172   }
1173   virtual bool eq( const Type *t ) const;
1174   virtual int hash() const;     // Type specific hashing
1175   const TypeAry *_ary;          // Array we point into
1176   const bool     _is_autobox_cache;






1177 
1178   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1179 
1180 public:
1181   // Accessors
1182   ciKlass* klass() const;
1183   const TypeAry* ary() const  { return _ary; }
1184   const Type*    elem() const { return _ary->_elem; }
1185   const TypeInt* size() const { return _ary->_size; }
1186   bool      is_stable() const { return _ary->_stable; }
1187 
1188   bool is_autobox_cache() const { return _is_autobox_cache; }
1189 
1190   static const TypeAryPtr *make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, int offset,

1191                                 int instance_id = InstanceBot,
1192                                 const TypePtr* speculative = NULL,
1193                                 int inline_depth = InlineDepthBottom);
1194   // Constant pointer to array
1195   static const TypeAryPtr *make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, int offset,

1196                                 int instance_id = InstanceBot,
1197                                 const TypePtr* speculative = NULL,
1198                                 int inline_depth = InlineDepthBottom, bool is_autobox_cache = false);

1199 
1200   // Return a 'ptr' version of this type
1201   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1202 
1203   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1204 
1205   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1206 
1207   virtual const TypeOopPtr *cast_to_nonconst() const;
1208 
1209   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1210   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1211 
1212   virtual bool empty(void) const;        // TRUE if type is vacuous
1213   virtual const TypePtr *add_offset( intptr_t offset ) const;
1214 
1215   // Speculative type helper methods.
1216   virtual const Type* remove_speculative() const;
1217   virtual const TypePtr* with_inline_depth(int depth) const;
1218   virtual const TypePtr* with_instance_id(int instance_id) const;
1219 
1220   // the core of the computation of the meet of 2 types
1221   virtual const Type *xmeet_helper(const Type *t) const;
1222   virtual const Type *xdual() const;    // Compute dual right now.
1223 
1224   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1225   int stable_dimension() const;
1226 
1227   const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1228 







1229   // Convenience common pre-built types.
1230   static const TypeAryPtr *RANGE;
1231   static const TypeAryPtr *OOPS;
1232   static const TypeAryPtr *NARROWOOPS;
1233   static const TypeAryPtr *BYTES;
1234   static const TypeAryPtr *SHORTS;
1235   static const TypeAryPtr *CHARS;
1236   static const TypeAryPtr *INTS;
1237   static const TypeAryPtr *LONGS;
1238   static const TypeAryPtr *FLOATS;
1239   static const TypeAryPtr *DOUBLES;
1240   // selects one of the above:
1241   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1242     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1243     return _array_body_type[elem];
1244   }
1245   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1246   // sharpen the type of an int which is used as an array size
1247 #ifdef ASSERT
1248   // One type is interface, the other is oop
1249   virtual bool interface_vs_oop(const Type *t) const;
1250 #endif
1251 #ifndef PRODUCT
1252   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1253 #endif
1254 };
1255 
1256 //------------------------------TypeMetadataPtr-------------------------------------
1257 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1258 class TypeMetadataPtr : public TypePtr {
1259 protected:
1260   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, int offset);
1261   // Do not allow interface-vs.-noninterface joins to collapse to top.
1262   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1263 public:
1264   virtual bool eq( const Type *t ) const;
1265   virtual int  hash() const;             // Type specific hashing
1266   virtual bool singleton(void) const;    // TRUE if type is a singleton
1267 
1268 private:
1269   ciMetadata*   _metadata;
1270 
1271 public:
1272   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, int offset);
1273 
1274   static const TypeMetadataPtr* make(ciMethod* m);
1275   static const TypeMetadataPtr* make(ciMethodData* m);
1276 
1277   ciMetadata* metadata() const { return _metadata; }
1278 
1279   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1280 
1281   virtual const TypePtr *add_offset( intptr_t offset ) const;
1282 
1283   virtual const Type *xmeet( const Type *t ) const;
1284   virtual const Type *xdual() const;    // Compute dual right now.
1285 
1286   virtual intptr_t get_con() const;
1287 
1288   // Convenience common pre-built types.
1289   static const TypeMetadataPtr *BOTTOM;
1290 
1291 #ifndef PRODUCT
1292   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1293 #endif
1294 };
1295 
1296 //------------------------------TypeKlassPtr-----------------------------------
1297 // Class of Java Klass pointers
1298 class TypeKlassPtr : public TypePtr {
1299   TypeKlassPtr( PTR ptr, ciKlass* klass, int offset );
1300 
1301 protected:
1302   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1303  public:
1304   virtual bool eq( const Type *t ) const;
1305   virtual int hash() const;             // Type specific hashing
1306   virtual bool singleton(void) const;    // TRUE if type is a singleton
1307  private:
1308 
1309   static const TypeKlassPtr* make_from_klass_common(ciKlass* klass, bool klass_change, bool try_for_exact);
1310 
1311   ciKlass* _klass;
1312 
1313   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1314   bool          _klass_is_exact;
1315 
1316 public:
1317   ciSymbol* name()  const { return klass()->name(); }
1318 
1319   ciKlass* klass() const { return  _klass; }
1320   bool klass_is_exact()    const { return _klass_is_exact; }
1321 
1322   bool  is_loaded() const { return klass()->is_loaded(); }
1323 
1324   // Creates a type given a klass. Correctly handles multi-dimensional arrays
1325   // Respects UseUniqueSubclasses.
1326   // If the klass is final, the resulting type will be exact.
1327   static const TypeKlassPtr* make_from_klass(ciKlass* klass) {
1328     return make_from_klass_common(klass, true, false);
1329   }
1330   // Same as before, but will produce an exact type, even if
1331   // the klass is not final, as long as it has exactly one implementation.
1332   static const TypeKlassPtr* make_from_klass_unique(ciKlass* klass) {
1333     return make_from_klass_common(klass, true, true);
1334   }
1335   // Same as before, but does not respects UseUniqueSubclasses.
1336   // Use this only for creating array element types.
1337   static const TypeKlassPtr* make_from_klass_raw(ciKlass* klass) {
1338     return make_from_klass_common(klass, false, false);
1339   }
1340 
1341   // Make a generic (unclassed) pointer to metadata.
1342   static const TypeKlassPtr* make(PTR ptr, int offset);
1343 
1344   // ptr to klass 'k'
1345   static const TypeKlassPtr *make( ciKlass* k ) { return make( TypePtr::Constant, k, 0); }
1346   // ptr to klass 'k' with offset
1347   static const TypeKlassPtr *make( ciKlass* k, int offset ) { return make( TypePtr::Constant, k, offset); }
1348   // ptr to klass 'k' or sub-klass
1349   static const TypeKlassPtr *make( PTR ptr, ciKlass* k, int offset);
1350 
1351   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1352 
1353   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1354 
1355   // corresponding pointer to instance, for a given class
1356   const TypeOopPtr* as_instance_type() const;
1357 
1358   virtual const TypePtr *add_offset( intptr_t offset ) const;
1359   virtual const Type    *xmeet( const Type *t ) const;
1360   virtual const Type    *xdual() const;      // Compute dual right now.
1361 
1362   virtual intptr_t get_con() const;
1363 
1364   // Convenience common pre-built types.
1365   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1366   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1367 #ifndef PRODUCT
1368   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1369 #endif


1476   }
1477 
1478   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1479     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1480   }
1481 
1482 public:
1483   static const TypeNarrowKlass *make( const TypePtr* type);
1484 
1485   // static const TypeNarrowKlass *BOTTOM;
1486   static const TypeNarrowKlass *NULL_PTR;
1487 
1488 #ifndef PRODUCT
1489   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1490 #endif
1491 };
1492 
1493 //------------------------------TypeFunc---------------------------------------
1494 // Class of Array Types
1495 class TypeFunc : public Type {
1496   TypeFunc( const TypeTuple *domain, const TypeTuple *range ) : Type(Function),  _domain(domain), _range(range) {}

1497   virtual bool eq( const Type *t ) const;
1498   virtual int  hash() const;             // Type specific hashing
1499   virtual bool singleton(void) const;    // TRUE if type is a singleton
1500   virtual bool empty(void) const;        // TRUE if type is vacuous
1501 
1502   const TypeTuple* const _domain;     // Domain of inputs
1503   const TypeTuple* const _range;      // Range of results











1504 
1505 public:
1506   // Constants are shared among ADLC and VM
1507   enum { Control    = AdlcVMDeps::Control,
1508          I_O        = AdlcVMDeps::I_O,
1509          Memory     = AdlcVMDeps::Memory,
1510          FramePtr   = AdlcVMDeps::FramePtr,
1511          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1512          Parms      = AdlcVMDeps::Parms
1513   };
1514 
1515 
1516   // Accessors:
1517   const TypeTuple* domain() const { return _domain; }
1518   const TypeTuple* range()  const { return _range; }


1519 
1520   static const TypeFunc *make(ciMethod* method);
1521   static const TypeFunc *make(ciSignature signature, const Type* extra);


1522   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1523 
1524   virtual const Type *xmeet( const Type *t ) const;
1525   virtual const Type *xdual() const;    // Compute dual right now.
1526 
1527   BasicType return_type() const;
1528 


1529 #ifndef PRODUCT
1530   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1531 #endif
1532   // Convenience common pre-built types.
1533 };
1534 
1535 //------------------------------accessors--------------------------------------
1536 inline bool Type::is_ptr_to_narrowoop() const {
1537 #ifdef _LP64
1538   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1539 #else
1540   return false;
1541 #endif
1542 }
1543 
1544 inline bool Type::is_ptr_to_narrowklass() const {
1545 #ifdef _LP64
1546   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1547 #else
1548   return false;


1658 }
1659 
1660 inline const TypeInstPtr *Type::isa_instptr() const {
1661   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1662 }
1663 
1664 inline const TypeInstPtr *Type::is_instptr() const {
1665   assert( _base == InstPtr, "Not an object pointer" );
1666   return (TypeInstPtr*)this;
1667 }
1668 
1669 inline const TypeAryPtr *Type::isa_aryptr() const {
1670   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1671 }
1672 
1673 inline const TypeAryPtr *Type::is_aryptr() const {
1674   assert( _base == AryPtr, "Not an array pointer" );
1675   return (TypeAryPtr*)this;
1676 }
1677 









1678 inline const TypeNarrowOop *Type::is_narrowoop() const {
1679   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1680   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1681   return (TypeNarrowOop*)this;
1682 }
1683 
1684 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1685   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1686   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1687 }
1688 
1689 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1690   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1691   return (TypeNarrowKlass*)this;
1692 }
1693 
1694 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1695   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1696 }
1697 


1724   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1725 }
1726 
1727 inline const TypeNarrowOop* Type::make_narrowoop() const {
1728   return (_base == NarrowOop) ? is_narrowoop() :
1729                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1730 }
1731 
1732 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1733   return (_base == NarrowKlass) ? is_narrowklass() :
1734                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1735 }
1736 
1737 inline bool Type::is_floatingpoint() const {
1738   if( (_base == FloatCon)  || (_base == FloatBot) ||
1739       (_base == DoubleCon) || (_base == DoubleBot) )
1740     return true;
1741   return false;
1742 }
1743 
1744 inline bool Type::is_ptr_to_boxing_obj() const {
1745   const TypeInstPtr* tp = isa_instptr();
1746   return (tp != NULL) && (tp->offset() == 0) &&
1747          tp->klass()->is_instance_klass()  &&
1748          tp->klass()->as_instance_klass()->is_box_klass();



1749 }
1750 
1751 
1752 // ===============================================================
1753 // Things that need to be 64-bits in the 64-bit build but
1754 // 32-bits in the 32-bit build.  Done this way to get full
1755 // optimization AND strong typing.
1756 #ifdef _LP64
1757 
1758 // For type queries and asserts
1759 #define is_intptr_t  is_long
1760 #define isa_intptr_t isa_long
1761 #define find_intptr_t_type find_long_type
1762 #define find_intptr_t_con  find_long_con
1763 #define TypeX        TypeLong
1764 #define Type_X       Type::Long
1765 #define TypeX_X      TypeLong::LONG
1766 #define TypeX_ZERO   TypeLong::ZERO
1767 // For 'ideal_reg' machine registers
1768 #define Op_RegX      Op_RegL
1769 // For phase->intcon variants
1770 #define MakeConX     longcon
1771 #define ConXNode     ConLNode
1772 // For array index arithmetic
1773 #define MulXNode     MulLNode
1774 #define AndXNode     AndLNode
1775 #define OrXNode      OrLNode
1776 #define CmpXNode     CmpLNode

1777 #define SubXNode     SubLNode
1778 #define LShiftXNode  LShiftLNode
1779 // For object size computation:
1780 #define AddXNode     AddLNode
1781 #define RShiftXNode  RShiftLNode
1782 // For card marks and hashcodes
1783 #define URShiftXNode URShiftLNode
1784 // UseOptoBiasInlining
1785 #define XorXNode     XorLNode
1786 #define StoreXConditionalNode StoreLConditionalNode
1787 #define LoadXNode    LoadLNode
1788 #define StoreXNode   StoreLNode
1789 // Opcodes
1790 #define Op_LShiftX   Op_LShiftL
1791 #define Op_AndX      Op_AndL
1792 #define Op_AddX      Op_AddL
1793 #define Op_SubX      Op_SubL
1794 #define Op_XorX      Op_XorL
1795 #define Op_URShiftX  Op_URShiftL


1796 // conversions
1797 #define ConvI2X(x)   ConvI2L(x)
1798 #define ConvL2X(x)   (x)
1799 #define ConvX2I(x)   ConvL2I(x)
1800 #define ConvX2L(x)   (x)
1801 #define ConvX2UL(x)  (x)
1802 
1803 #else
1804 
1805 // For type queries and asserts
1806 #define is_intptr_t  is_int
1807 #define isa_intptr_t isa_int
1808 #define find_intptr_t_type find_int_type
1809 #define find_intptr_t_con  find_int_con
1810 #define TypeX        TypeInt
1811 #define Type_X       Type::Int
1812 #define TypeX_X      TypeInt::INT
1813 #define TypeX_ZERO   TypeInt::ZERO
1814 // For 'ideal_reg' machine registers
1815 #define Op_RegX      Op_RegI
1816 // For phase->intcon variants
1817 #define MakeConX     intcon
1818 #define ConXNode     ConINode
1819 // For array index arithmetic
1820 #define MulXNode     MulINode
1821 #define AndXNode     AndINode
1822 #define OrXNode      OrINode
1823 #define CmpXNode     CmpINode

1824 #define SubXNode     SubINode
1825 #define LShiftXNode  LShiftINode
1826 // For object size computation:
1827 #define AddXNode     AddINode
1828 #define RShiftXNode  RShiftINode
1829 // For card marks and hashcodes
1830 #define URShiftXNode URShiftINode
1831 // UseOptoBiasInlining
1832 #define XorXNode     XorINode
1833 #define StoreXConditionalNode StoreIConditionalNode
1834 #define LoadXNode    LoadINode
1835 #define StoreXNode   StoreINode
1836 // Opcodes
1837 #define Op_LShiftX   Op_LShiftI
1838 #define Op_AndX      Op_AndI
1839 #define Op_AddX      Op_AddI
1840 #define Op_SubX      Op_SubI
1841 #define Op_XorX      Op_XorI
1842 #define Op_URShiftX  Op_URShiftI


1843 // conversions
1844 #define ConvI2X(x)   (x)
1845 #define ConvL2X(x)   ConvL2I(x)
1846 #define ConvX2I(x)   (x)
1847 #define ConvX2L(x)   ConvI2L(x)
1848 #define ConvX2UL(x)  ConvI2UL(x)
1849 
1850 #endif
1851 
1852 #endif // SHARE_OPTO_TYPE_HPP


   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_OPTO_TYPE_HPP
  26 #define SHARE_OPTO_TYPE_HPP
  27 
  28 #include "ci/ciValueKlass.hpp"
  29 #include "opto/adlcVMDeps.hpp"
  30 #include "runtime/handles.hpp"
  31 #include "runtime/sharedRuntime.hpp"
  32 
  33 // Portions of code courtesy of Clifford Click
  34 
  35 // Optimization - Graph Style
  36 
  37 
  38 // This class defines a Type lattice.  The lattice is used in the constant
  39 // propagation algorithms, and for some type-checking of the iloc code.
  40 // Basic types include RSD's (lower bound, upper bound, stride for integers),
  41 // float & double precision constants, sets of data-labels and code-labels.
  42 // The complete lattice is described below.  Subtypes have no relationship to
  43 // up or down in the lattice; that is entirely determined by the behavior of
  44 // the MEET/JOIN functions.
  45 
  46 class Dict;
  47 class Type;
  48 class   TypeD;
  49 class   TypeF;
  50 class   TypeInt;
  51 class   TypeLong;
  52 class   TypeNarrowPtr;
  53 class     TypeNarrowOop;
  54 class     TypeNarrowKlass;
  55 class   TypeAry;
  56 class   TypeTuple;
  57 class   TypeValueType;
  58 class   TypeVect;
  59 class     TypeVectS;
  60 class     TypeVectD;
  61 class     TypeVectX;
  62 class     TypeVectY;
  63 class     TypeVectZ;
  64 class   TypePtr;
  65 class     TypeRawPtr;
  66 class     TypeOopPtr;
  67 class       TypeInstPtr;
  68 class       TypeAryPtr;
  69 class     TypeKlassPtr;
  70 class     TypeMetadataPtr;
  71 
  72 //------------------------------Type-------------------------------------------
  73 // Basic Type object, represents a set of primitive Values.
  74 // Types are hash-cons'd into a private class dictionary, so only one of each
  75 // different kind of Type exists.  Types are never modified after creation, so
  76 // all their interesting fields are constant.
  77 class Type {
  78   friend class VMStructs;
  79 
  80 public:
  81   enum TYPES {
  82     Bad=0,                      // Type check
  83     Control,                    // Control of code (not in lattice)
  84     Top,                        // Top of the lattice
  85     Int,                        // Integer range (lo-hi)
  86     Long,                       // Long integer range (lo-hi)
  87     Half,                       // Placeholder half of doubleword
  88     NarrowOop,                  // Compressed oop pointer
  89     NarrowKlass,                // Compressed klass pointer
  90 
  91     Tuple,                      // Method signature or object layout
  92     Array,                      // Array types
  93     VectorS,                    //  32bit Vector types
  94     VectorD,                    //  64bit Vector types
  95     VectorX,                    // 128bit Vector types
  96     VectorY,                    // 256bit Vector types
  97     VectorZ,                    // 512bit Vector types
  98     ValueType,                  // Value type
  99 
 100     AnyPtr,                     // Any old raw, klass, inst, or array pointer
 101     RawPtr,                     // Raw (non-oop) pointers
 102     OopPtr,                     // Any and all Java heap entities
 103     InstPtr,                    // Instance pointers (non-array objects)
 104     AryPtr,                     // Array pointers
 105     // (Ptr order matters:  See is_ptr, isa_ptr, is_oopptr, isa_oopptr.)
 106 
 107     MetadataPtr,                // Generic metadata
 108     KlassPtr,                   // Klass pointers
 109 
 110     Function,                   // Function signature
 111     Abio,                       // Abstract I/O
 112     Return_Address,             // Subroutine return address
 113     Memory,                     // Abstract store
 114     FloatTop,                   // No float value
 115     FloatCon,                   // Floating point constant
 116     FloatBot,                   // Any float value
 117     DoubleTop,                  // No double value
 118     DoubleCon,                  // Double precision constant
 119     DoubleBot,                  // Any double value
 120     Bottom,                     // Bottom of lattice
 121     lastype                     // Bogus ending type (not in lattice)
 122   };
 123 
 124   // Signal values for offsets from a base pointer
 125   enum OFFSET_SIGNALS {
 126     OffsetTop = -2000000000,    // undefined offset
 127     OffsetBot = -2000000001     // any possible offset
 128   };
 129 
 130   class Offset {
 131   private:
 132     const int _offset;
 133 
 134   public:
 135     explicit Offset(int offset) : _offset(offset) {}
 136 
 137     const Offset meet(const Offset other) const;
 138     const Offset dual() const;
 139     const Offset add(intptr_t offset) const;
 140     bool operator==(const Offset& other) const {
 141       return _offset == other._offset;
 142     }
 143     bool operator!=(const Offset& other) const {
 144       return _offset != other._offset;
 145     }
 146     int get() const { return _offset; }
 147 
 148     void dump2(outputStream *st) const;
 149 
 150     static const Offset top;
 151     static const Offset bottom;
 152   };
 153 
 154   // Min and max WIDEN values.
 155   enum WIDEN {
 156     WidenMin = 0,
 157     WidenMax = 3
 158   };
 159 
 160 private:
 161   typedef struct {
 162     TYPES                dual_type;
 163     BasicType            basic_type;
 164     const char*          msg;
 165     bool                 isa_oop;
 166     uint                 ideal_reg;
 167     relocInfo::relocType reloc;
 168   } TypeInfo;
 169 
 170   // Dictionary of types shared among compilations.
 171   static Dict* _shared_type_dict;
 172   static const TypeInfo _type_info[];
 173 


 284   // Currently, it also works around limitations involving interface types.
 285   // Variant that drops the speculative part of the types
 286   const Type *filter(const Type *kills) const {
 287     return filter_helper(kills, false);
 288   }
 289   // Variant that keeps the speculative part of the types
 290   const Type *filter_speculative(const Type *kills) const {
 291     return filter_helper(kills, true)->cleanup_speculative();
 292   }
 293 
 294 #ifdef ASSERT
 295   // One type is interface, the other is oop
 296   virtual bool interface_vs_oop(const Type *t) const;
 297 #endif
 298 
 299   // Returns true if this pointer points at memory which contains a
 300   // compressed oop references.
 301   bool is_ptr_to_narrowoop() const;
 302   bool is_ptr_to_narrowklass() const;
 303 



 304   // Convenience access
 305   float getf() const;
 306   double getd() const;
 307 
 308   const TypeInt    *is_int() const;
 309   const TypeInt    *isa_int() const;             // Returns NULL if not an Int
 310   const TypeLong   *is_long() const;
 311   const TypeLong   *isa_long() const;            // Returns NULL if not a Long
 312   const TypeD      *isa_double() const;          // Returns NULL if not a Double{Top,Con,Bot}
 313   const TypeD      *is_double_constant() const;  // Asserts it is a DoubleCon
 314   const TypeD      *isa_double_constant() const; // Returns NULL if not a DoubleCon
 315   const TypeF      *isa_float() const;           // Returns NULL if not a Float{Top,Con,Bot}
 316   const TypeF      *is_float_constant() const;   // Asserts it is a FloatCon
 317   const TypeF      *isa_float_constant() const;  // Returns NULL if not a FloatCon
 318   const TypeTuple  *is_tuple() const;            // Collection of fields, NOT a pointer
 319   const TypeAry    *is_ary() const;              // Array, NOT array pointer
 320   const TypeVect   *is_vect() const;             // Vector
 321   const TypeVect   *isa_vect() const;            // Returns NULL if not a Vector
 322   const TypePtr    *is_ptr() const;              // Asserts it is a ptr type
 323   const TypePtr    *isa_ptr() const;             // Returns NULL if not ptr type
 324   const TypeRawPtr *isa_rawptr() const;          // NOT Java oop
 325   const TypeRawPtr *is_rawptr() const;           // Asserts is rawptr
 326   const TypeNarrowOop  *is_narrowoop() const;    // Java-style GC'd pointer
 327   const TypeNarrowOop  *isa_narrowoop() const;   // Returns NULL if not oop ptr type
 328   const TypeNarrowKlass *is_narrowklass() const; // compressed klass pointer
 329   const TypeNarrowKlass *isa_narrowklass() const;// Returns NULL if not oop ptr type
 330   const TypeOopPtr   *isa_oopptr() const;        // Returns NULL if not oop ptr type
 331   const TypeOopPtr   *is_oopptr() const;         // Java-style GC'd pointer
 332   const TypeInstPtr  *isa_instptr() const;       // Returns NULL if not InstPtr
 333   const TypeInstPtr  *is_instptr() const;        // Instance
 334   const TypeAryPtr   *isa_aryptr() const;        // Returns NULL if not AryPtr
 335   const TypeAryPtr   *is_aryptr() const;         // Array oop
 336   const TypeValueType* isa_valuetype() const;    // Returns NULL if not Value Type
 337   const TypeValueType* is_valuetype() const;     // Value Type
 338 
 339   const TypeMetadataPtr   *isa_metadataptr() const;   // Returns NULL if not oop ptr type
 340   const TypeMetadataPtr   *is_metadataptr() const;    // Java-style GC'd pointer
 341   const TypeKlassPtr      *isa_klassptr() const;      // Returns NULL if not KlassPtr
 342   const TypeKlassPtr      *is_klassptr() const;       // assert if not KlassPtr
 343 
 344   virtual bool      is_finite() const;           // Has a finite value
 345   virtual bool      is_nan()    const;           // Is not a number (NaN)
 346 
 347   bool is_valuetypeptr() const;
 348   ciValueKlass* value_klass() const;
 349 
 350   // Returns this ptr type or the equivalent ptr type for this compressed pointer.
 351   const TypePtr* make_ptr() const;
 352 
 353   // Returns this oopptr type or the equivalent oopptr type for this compressed pointer.
 354   // Asserts if the underlying type is not an oopptr or narrowoop.
 355   const TypeOopPtr* make_oopptr() const;
 356 
 357   // Returns this compressed pointer or the equivalent compressed version
 358   // of this pointer type.
 359   const TypeNarrowOop* make_narrowoop() const;
 360 
 361   // Returns this compressed klass pointer or the equivalent
 362   // compressed version of this pointer type.
 363   const TypeNarrowKlass* make_narrowklass() const;
 364 
 365   // Special test for register pressure heuristic
 366   bool is_floatingpoint() const;        // True if Float or Double base type
 367 
 368   // Do you have memory, directly or through a tuple?
 369   bool has_memory( ) const;


 676   const Type ** const _fields;           // Array of field types
 677 
 678 public:
 679   virtual bool eq( const Type *t ) const;
 680   virtual int  hash() const;             // Type specific hashing
 681   virtual bool singleton(void) const;    // TRUE if type is a singleton
 682   virtual bool empty(void) const;        // TRUE if type is vacuous
 683 
 684   // Accessors:
 685   uint cnt() const { return _cnt; }
 686   const Type* field_at(uint i) const {
 687     assert(i < _cnt, "oob");
 688     return _fields[i];
 689   }
 690   void set_field_at(uint i, const Type* t) {
 691     assert(i < _cnt, "oob");
 692     _fields[i] = t;
 693   }
 694 
 695   static const TypeTuple *make( uint cnt, const Type **fields );
 696   static const TypeTuple *make_range(ciSignature* sig, bool ret_vt_fields = false);
 697   static const TypeTuple *make_domain(ciMethod* method, bool vt_fields_as_args = false);
 698 
 699   // Subroutine call type with space allocated for argument types
 700   // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
 701   static const Type **fields( uint arg_cnt );
 702 
 703   virtual const Type *xmeet( const Type *t ) const;
 704   virtual const Type *xdual() const;    // Compute dual right now.
 705   // Convenience common pre-built types.
 706   static const TypeTuple *IFBOTH;
 707   static const TypeTuple *IFFALSE;
 708   static const TypeTuple *IFTRUE;
 709   static const TypeTuple *IFNEITHER;
 710   static const TypeTuple *LOOPBODY;
 711   static const TypeTuple *MEMBAR;
 712   static const TypeTuple *STORECONDITIONAL;
 713   static const TypeTuple *START_I2C;
 714   static const TypeTuple *INT_PAIR;
 715   static const TypeTuple *LONG_PAIR;
 716   static const TypeTuple *INT_CC_PAIR;
 717   static const TypeTuple *LONG_CC_PAIR;


 728 public:
 729   virtual bool eq( const Type *t ) const;
 730   virtual int  hash() const;             // Type specific hashing
 731   virtual bool singleton(void) const;    // TRUE if type is a singleton
 732   virtual bool empty(void) const;        // TRUE if type is vacuous
 733 
 734 private:
 735   const Type *_elem;            // Element type of array
 736   const TypeInt *_size;         // Elements in array
 737   const bool _stable;           // Are elements @Stable?
 738   friend class TypeAryPtr;
 739 
 740 public:
 741   static const TypeAry* make(const Type* elem, const TypeInt* size, bool stable = false);
 742 
 743   virtual const Type *xmeet( const Type *t ) const;
 744   virtual const Type *xdual() const;    // Compute dual right now.
 745   bool ary_must_be_exact() const;  // true if arrays of such are never generic
 746   virtual const Type* remove_speculative() const;
 747   virtual const Type* cleanup_speculative() const;
 748 
 749   bool is_value_type_array() const { return _elem->isa_valuetype() != NULL; }
 750 
 751 #ifdef ASSERT
 752   // One type is interface, the other is oop
 753   virtual bool interface_vs_oop(const Type *t) const;
 754 #endif
 755 #ifndef PRODUCT
 756   virtual void dump2( Dict &d, uint, outputStream *st  ) const; // Specialized per-Type dumping
 757 #endif
 758 };
 759 
 760 
 761 //------------------------------TypeValue---------------------------------------
 762 // Class of Value Type Types
 763 class TypeValueType : public Type {
 764 private:
 765   ciValueKlass* _vk;
 766   bool _larval;
 767 
 768 protected:
 769   TypeValueType(ciValueKlass* vk, bool larval)
 770     : Type(ValueType),
 771       _vk(vk), _larval(larval) {
 772   }
 773 
 774 public:
 775   static const TypeValueType* make(ciValueKlass* vk, bool larval = false);
 776   ciValueKlass* value_klass() const { return _vk; }
 777   bool larval() const { return _larval; }
 778 
 779   virtual bool eq(const Type* t) const;
 780   virtual int  hash() const;             // Type specific hashing
 781   virtual bool singleton(void) const;    // TRUE if type is a singleton
 782   virtual bool empty(void) const;        // TRUE if type is vacuous
 783 
 784   virtual const Type* xmeet(const Type* t) const;
 785   virtual const Type* xdual() const;     // Compute dual right now.
 786 
 787   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const { return false; }
 788   virtual bool would_improve_ptr(ProfilePtrKind ptr_kind) const { return false; }
 789 
 790 #ifndef PRODUCT
 791   virtual void dump2(Dict &d, uint, outputStream* st) const; // Specialized per-Type dumping
 792 #endif
 793 };
 794 
 795 //------------------------------TypeVect---------------------------------------
 796 // Class of Vector Types
 797 class TypeVect : public Type {
 798   const Type*   _elem;  // Vector's element type
 799   const uint  _length;  // Elements in vector (power of 2)
 800 
 801 protected:
 802   TypeVect(TYPES t, const Type* elem, uint length) : Type(t),
 803     _elem(elem), _length(length) {}
 804 
 805 public:
 806   const Type* element_type() const { return _elem; }
 807   BasicType element_basic_type() const { return _elem->array_element_basic_type(); }
 808   uint length() const { return _length; }
 809   uint length_in_bytes() const {
 810    return _length * type2aelembytes(element_basic_type());
 811   }
 812 
 813   virtual bool eq(const Type *t) const;
 814   virtual int  hash() const;             // Type specific hashing


 854 class TypeVectY : public TypeVect {
 855   friend class TypeVect;
 856   TypeVectY(const Type* elem, uint length) : TypeVect(VectorY, elem, length) {}
 857 };
 858 
 859 class TypeVectZ : public TypeVect {
 860   friend class TypeVect;
 861   TypeVectZ(const Type* elem, uint length) : TypeVect(VectorZ, elem, length) {}
 862 };
 863 
 864 //------------------------------TypePtr----------------------------------------
 865 // Class of machine Pointer Types: raw data, instances or arrays.
 866 // If the _base enum is AnyPtr, then this refers to all of the above.
 867 // Otherwise the _base will indicate which subset of pointers is affected,
 868 // and the class will be inherited from.
 869 class TypePtr : public Type {
 870   friend class TypeNarrowPtr;
 871 public:
 872   enum PTR { TopPTR, AnyNull, Constant, Null, NotNull, BotPTR, lastPTR };
 873 protected:
 874   TypePtr(TYPES t, PTR ptr, Offset offset,
 875           const TypePtr* speculative = NULL,
 876           int inline_depth = InlineDepthBottom) :
 877     Type(t), _speculative(speculative), _inline_depth(inline_depth), _offset(offset),
 878     _ptr(ptr) {}
 879   static const PTR ptr_meet[lastPTR][lastPTR];
 880   static const PTR ptr_dual[lastPTR];
 881   static const char * const ptr_msg[lastPTR];
 882 
 883   enum {
 884     InlineDepthBottom = INT_MAX,
 885     InlineDepthTop = -InlineDepthBottom
 886   };
 887 
 888   // Extra type information profiling gave us. We propagate it the
 889   // same way the rest of the type info is propagated. If we want to
 890   // use it, then we have to emit a guard: this part of the type is
 891   // not something we know but something we speculate about the type.
 892   const TypePtr*   _speculative;
 893   // For speculative types, we record at what inlining depth the
 894   // profiling point that provided the data is. We want to favor


 897   int _inline_depth;
 898 
 899   // utility methods to work on the speculative part of the type
 900   const TypePtr* dual_speculative() const;
 901   const TypePtr* xmeet_speculative(const TypePtr* other) const;
 902   bool eq_speculative(const TypePtr* other) const;
 903   int hash_speculative() const;
 904   const TypePtr* add_offset_speculative(intptr_t offset) const;
 905 #ifndef PRODUCT
 906   void dump_speculative(outputStream *st) const;
 907 #endif
 908 
 909   // utility methods to work on the inline depth of the type
 910   int dual_inline_depth() const;
 911   int meet_inline_depth(int depth) const;
 912 #ifndef PRODUCT
 913   void dump_inline_depth(outputStream *st) const;
 914 #endif
 915 
 916 public:
 917   const Offset _offset;         // Offset into oop, with TOP & BOT
 918   const PTR _ptr;               // Pointer equivalence class
 919 
 920   const int offset() const { return _offset.get(); }
 921   const PTR ptr()    const { return _ptr; }
 922 
 923   static const TypePtr* make(TYPES t, PTR ptr, Offset offset,
 924                              const TypePtr* speculative = NULL,
 925                              int inline_depth = InlineDepthBottom);
 926 
 927   // Return a 'ptr' version of this type
 928   virtual const Type *cast_to_ptr_type(PTR ptr) const;
 929 
 930   virtual intptr_t get_con() const;
 931 
 932   Offset xadd_offset(intptr_t offset) const;
 933   virtual const TypePtr *add_offset( intptr_t offset ) const;
 934   virtual const int flattened_offset() const { return offset(); }
 935 
 936   virtual bool eq(const Type *t) const;
 937   virtual int  hash() const;             // Type specific hashing
 938 
 939   virtual bool singleton(void) const;    // TRUE if type is a singleton
 940   virtual bool empty(void) const;        // TRUE if type is vacuous
 941   virtual const Type *xmeet( const Type *t ) const;
 942   virtual const Type *xmeet_helper( const Type *t ) const;
 943   Offset meet_offset(int offset) const;
 944   Offset dual_offset() const;
 945   virtual const Type *xdual() const;    // Compute dual right now.
 946 
 947   // meet, dual and join over pointer equivalence sets
 948   PTR meet_ptr( const PTR in_ptr ) const { return ptr_meet[in_ptr][ptr()]; }
 949   PTR dual_ptr()                   const { return ptr_dual[ptr()];      }
 950 
 951   // This is textually confusing unless one recalls that
 952   // join(t) == dual()->meet(t->dual())->dual().
 953   PTR join_ptr( const PTR in_ptr ) const {
 954     return ptr_dual[ ptr_meet[ ptr_dual[in_ptr] ] [ dual_ptr() ] ];
 955   }
 956 
 957   // Speculative type helper methods.
 958   virtual const TypePtr* speculative() const { return _speculative; }
 959   int inline_depth() const                   { return _inline_depth; }
 960   virtual ciKlass* speculative_type() const;
 961   virtual ciKlass* speculative_type_not_null() const;
 962   virtual bool speculative_maybe_null() const;
 963   virtual bool speculative_always_null() const;
 964   virtual const Type* remove_speculative() const;


 969 
 970   virtual bool maybe_null() const { return meet_ptr(Null) == ptr(); }
 971 
 972   // Tests for relation to centerline of type lattice:
 973   static bool above_centerline(PTR ptr) { return (ptr <= AnyNull); }
 974   static bool below_centerline(PTR ptr) { return (ptr >= NotNull); }
 975   // Convenience common pre-built types.
 976   static const TypePtr *NULL_PTR;
 977   static const TypePtr *NOTNULL;
 978   static const TypePtr *BOTTOM;
 979 #ifndef PRODUCT
 980   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
 981 #endif
 982 };
 983 
 984 //------------------------------TypeRawPtr-------------------------------------
 985 // Class of raw pointers, pointers to things other than Oops.  Examples
 986 // include the stack pointer, top of heap, card-marking area, handles, etc.
 987 class TypeRawPtr : public TypePtr {
 988 protected:
 989   TypeRawPtr(PTR ptr, address bits) : TypePtr(RawPtr,ptr,Offset(0)), _bits(bits){}
 990 public:
 991   virtual bool eq( const Type *t ) const;
 992   virtual int  hash() const;     // Type specific hashing
 993 
 994   const address _bits;          // Constant value, if applicable
 995 
 996   static const TypeRawPtr *make( PTR ptr );
 997   static const TypeRawPtr *make( address bits );
 998 
 999   // Return a 'ptr' version of this type
1000   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1001 
1002   virtual intptr_t get_con() const;
1003 
1004   virtual const TypePtr *add_offset( intptr_t offset ) const;
1005 
1006   virtual const Type *xmeet( const Type *t ) const;
1007   virtual const Type *xdual() const;    // Compute dual right now.
1008   // Convenience common pre-built types.
1009   static const TypeRawPtr *BOTTOM;
1010   static const TypeRawPtr *NOTNULL;
1011 #ifndef PRODUCT
1012   virtual void dump2( Dict &d, uint depth, outputStream *st  ) const;
1013 #endif
1014 };
1015 
1016 //------------------------------TypeOopPtr-------------------------------------
1017 // Some kind of oop (Java pointer), either instance or array.
1018 class TypeOopPtr : public TypePtr {
1019 protected:
1020   TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
1021              int instance_id, const TypePtr* speculative, int inline_depth);
1022 public:
1023   virtual bool eq( const Type *t ) const;
1024   virtual int  hash() const;             // Type specific hashing
1025   virtual bool singleton(void) const;    // TRUE if type is a singleton
1026   enum {
1027    InstanceTop = -1,   // undefined instance
1028    InstanceBot = 0     // any possible instance
1029   };
1030 protected:
1031 
1032   // Oop is NULL, unless this is a constant oop.
1033   ciObject*     _const_oop;   // Constant oop
1034   // If _klass is NULL, then so is _sig.  This is an unloaded klass.
1035   ciKlass*      _klass;       // Klass object
1036   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1037   bool          _klass_is_exact;
1038   bool          _is_ptr_to_narrowoop;
1039   bool          _is_ptr_to_narrowklass;
1040   bool          _is_ptr_to_boxed_value;
1041 


1060     return make_from_klass_common(klass, true, false);
1061   }
1062   // Same as before, but will produce an exact type, even if
1063   // the klass is not final, as long as it has exactly one implementation.
1064   static const TypeOopPtr* make_from_klass_unique(ciKlass* klass) {
1065     return make_from_klass_common(klass, true, true);
1066   }
1067   // Same as before, but does not respects UseUniqueSubclasses.
1068   // Use this only for creating array element types.
1069   static const TypeOopPtr* make_from_klass_raw(ciKlass* klass) {
1070     return make_from_klass_common(klass, false, false);
1071   }
1072   // Creates a singleton type given an object.
1073   // If the object cannot be rendered as a constant,
1074   // may return a non-singleton type.
1075   // If require_constant, produce a NULL if a singleton is not possible.
1076   static const TypeOopPtr* make_from_constant(ciObject* o,
1077                                               bool require_constant = false);
1078 
1079   // Make a generic (unclassed) pointer to an oop.
1080   static const TypeOopPtr* make(PTR ptr, Offset offset, int instance_id,
1081                                 const TypePtr* speculative = NULL,
1082                                 int inline_depth = InlineDepthBottom);
1083 
1084   ciObject* const_oop()    const { return _const_oop; }
1085   virtual ciKlass* klass() const { return _klass;     }
1086   bool klass_is_exact()    const { return _klass_is_exact; }
1087 
1088   // Returns true if this pointer points at memory which contains a
1089   // compressed oop references.
1090   bool is_ptr_to_narrowoop_nv() const { return _is_ptr_to_narrowoop; }
1091   bool is_ptr_to_narrowklass_nv() const { return _is_ptr_to_narrowklass; }
1092   bool is_ptr_to_boxed_value()   const { return _is_ptr_to_boxed_value; }
1093   bool is_known_instance()       const { return _instance_id > 0; }
1094   int  instance_id()             const { return _instance_id; }
1095   bool is_known_instance_field() const { return is_known_instance() && _offset.get() >= 0; }
1096 
1097   virtual bool can_be_value_type() const { return EnableValhalla && can_be_value_type_raw(); }
1098   virtual bool can_be_value_type_raw() const { return _klass == NULL || _klass->is_valuetype() || ((_klass->is_java_lang_Object() || _klass->is_interface()) && !klass_is_exact()); }
1099 
1100   virtual intptr_t get_con() const;
1101 
1102   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1103 
1104   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1105 
1106   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1107 
1108   virtual const TypeOopPtr *cast_to_nonconst() const;
1109 
1110   // corresponding pointer to klass, for a given instance
1111   const TypeKlassPtr* as_klass_type() const;
1112 
1113   virtual const TypePtr *add_offset( intptr_t offset ) const;
1114 
1115   // Speculative type helper methods.
1116   virtual const Type* remove_speculative() const;
1117   virtual const Type* cleanup_speculative() const;
1118   virtual bool would_improve_type(ciKlass* exact_kls, int inline_depth) const;
1119   virtual const TypePtr* with_inline_depth(int depth) const;
1120 
1121   virtual const TypePtr* with_instance_id(int instance_id) const;
1122 
1123   virtual const Type *xdual() const;    // Compute dual right now.
1124   // the core of the computation of the meet for TypeOopPtr and for its subclasses
1125   virtual const Type *xmeet_helper(const Type *t) const;
1126 
1127   // Convenience common pre-built type.
1128   static const TypeOopPtr *BOTTOM;
1129 #ifndef PRODUCT
1130   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1131 #endif
1132 };
1133 
1134 //------------------------------TypeInstPtr------------------------------------
1135 // Class of Java object pointers, pointing either to non-array Java instances
1136 // or to a Klass* (including array klasses).
1137 class TypeInstPtr : public TypeOopPtr {
1138   TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, int instance_id,
1139               const TypePtr* speculative, int inline_depth);
1140   virtual bool eq( const Type *t ) const;
1141   virtual int  hash() const;             // Type specific hashing
1142 
1143   ciSymbol*  _name;        // class name
1144 
1145  public:
1146   ciSymbol* name()         const { return _name; }
1147 
1148   bool  is_loaded() const { return _klass->is_loaded(); }
1149 
1150   // Make a pointer to a constant oop.
1151   static const TypeInstPtr *make(ciObject* o) {
1152     return make(TypePtr::Constant, o->klass(), true, o, Offset(0), InstanceBot);
1153   }
1154   // Make a pointer to a constant oop with offset.
1155   static const TypeInstPtr* make(ciObject* o, Offset offset) {
1156     return make(TypePtr::Constant, o->klass(), true, o, offset, InstanceBot);
1157   }
1158 
1159   // Make a pointer to some value of type klass.
1160   static const TypeInstPtr *make(PTR ptr, ciKlass* klass) {
1161     return make(ptr, klass, false, NULL, Offset(0), InstanceBot);
1162   }
1163 
1164   // Make a pointer to some non-polymorphic value of exactly type klass.
1165   static const TypeInstPtr *make_exact(PTR ptr, ciKlass* klass) {
1166     return make(ptr, klass, true, NULL, Offset(0), InstanceBot);
1167   }
1168 
1169   // Make a pointer to some value of type klass with offset.
1170   static const TypeInstPtr *make(PTR ptr, ciKlass* klass, Offset offset) {
1171     return make(ptr, klass, false, NULL, offset, InstanceBot);
1172   }
1173 
1174   // Make a pointer to an oop.
1175   static const TypeInstPtr* make(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset,
1176                                  int instance_id = InstanceBot,
1177                                  const TypePtr* speculative = NULL,
1178                                  int inline_depth = InlineDepthBottom);
1179 
1180   /** Create constant type for a constant boxed value */
1181   const Type* get_const_boxed_value() const;
1182 
1183   // If this is a java.lang.Class constant, return the type for it or NULL.
1184   // Pass to Type::get_const_type to turn it to a type, which will usually
1185   // be a TypeInstPtr, but may also be a TypeInt::INT for int.class, etc.
1186   ciType* java_mirror_type() const;
1187 
1188   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1189 
1190   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1191 
1192   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1193 
1194   virtual const TypeOopPtr *cast_to_nonconst() const;
1195 


1202 
1203   // the core of the computation of the meet of 2 types
1204   virtual const Type *xmeet_helper(const Type *t) const;
1205   virtual const TypeInstPtr *xmeet_unloaded( const TypeInstPtr *t ) const;
1206   virtual const Type *xdual() const;    // Compute dual right now.
1207 
1208   // Convenience common pre-built types.
1209   static const TypeInstPtr *NOTNULL;
1210   static const TypeInstPtr *BOTTOM;
1211   static const TypeInstPtr *MIRROR;
1212   static const TypeInstPtr *MARK;
1213   static const TypeInstPtr *KLASS;
1214 #ifndef PRODUCT
1215   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1216 #endif
1217 };
1218 
1219 //------------------------------TypeAryPtr-------------------------------------
1220 // Class of Java array pointers
1221 class TypeAryPtr : public TypeOopPtr {
1222   TypeAryPtr(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk,
1223              Offset offset, Offset field_offset, int instance_id, bool is_autobox_cache,
1224              const TypePtr* speculative, int inline_depth)
1225     : TypeOopPtr(AryPtr, ptr, k, xk, o, offset, field_offset, instance_id, speculative, inline_depth),
1226     _ary(ary),
1227     _is_autobox_cache(is_autobox_cache),
1228     _field_offset(field_offset)
1229  {
1230 #ifdef ASSERT
1231     if (k != NULL) {
1232       // Verify that specified klass and TypeAryPtr::klass() follow the same rules.
1233       ciKlass* ck = compute_klass(true);
1234       if (k != ck) {
1235         this->dump(); tty->cr();
1236         tty->print(" k: ");
1237         k->print(); tty->cr();
1238         tty->print("ck: ");
1239         if (ck != NULL) ck->print();
1240         else tty->print("<NULL>");
1241         tty->cr();
1242         assert(false, "unexpected TypeAryPtr::_klass");
1243       }
1244     }
1245 #endif
1246   }
1247   virtual bool eq( const Type *t ) const;
1248   virtual int hash() const;     // Type specific hashing
1249   const TypeAry *_ary;          // Array we point into
1250   const bool     _is_autobox_cache;
1251   // For flattened value type arrays, each field of the value type in
1252   // the array has its own memory slice so we need to keep track of
1253   // which field is accessed
1254   const Offset _field_offset;
1255   Offset meet_field_offset(const Type::Offset offset) const;
1256   Offset dual_field_offset() const;
1257 
1258   ciKlass* compute_klass(DEBUG_ONLY(bool verify = false)) const;
1259 
1260 public:
1261   // Accessors
1262   ciKlass* klass() const;
1263   const TypeAry* ary() const  { return _ary; }
1264   const Type*    elem() const { return _ary->_elem; }
1265   const TypeInt* size() const { return _ary->_size; }
1266   bool      is_stable() const { return _ary->_stable; }
1267 
1268   bool is_autobox_cache() const { return _is_autobox_cache; }
1269 
1270   static const TypeAryPtr* make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1271                                 Offset field_offset = Offset::bottom,
1272                                 int instance_id = InstanceBot,
1273                                 const TypePtr* speculative = NULL,
1274                                 int inline_depth = InlineDepthBottom);
1275   // Constant pointer to array
1276   static const TypeAryPtr* make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset,
1277                                 Offset field_offset = Offset::bottom,
1278                                 int instance_id = InstanceBot,
1279                                 const TypePtr* speculative = NULL,
1280                                 int inline_depth = InlineDepthBottom,
1281                                 bool is_autobox_cache = false);
1282 
1283   // Return a 'ptr' version of this type
1284   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1285 
1286   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1287 
1288   virtual const TypeOopPtr *cast_to_instance_id(int instance_id) const;
1289 
1290   virtual const TypeOopPtr *cast_to_nonconst() const;
1291 
1292   virtual const TypeAryPtr* cast_to_size(const TypeInt* size) const;
1293   virtual const TypeInt* narrow_size_type(const TypeInt* size) const;
1294 
1295   virtual bool empty(void) const;        // TRUE if type is vacuous
1296   virtual const TypePtr *add_offset( intptr_t offset ) const;
1297 
1298   // Speculative type helper methods.
1299   virtual const Type* remove_speculative() const;
1300   virtual const TypePtr* with_inline_depth(int depth) const;
1301   virtual const TypePtr* with_instance_id(int instance_id) const;
1302 
1303   // the core of the computation of the meet of 2 types
1304   virtual const Type *xmeet_helper(const Type *t) const;
1305   virtual const Type *xdual() const;    // Compute dual right now.
1306 
1307   const TypeAryPtr* cast_to_stable(bool stable, int stable_dimension = 1) const;
1308   int stable_dimension() const;
1309 
1310   const TypeAryPtr* cast_to_autobox_cache(bool cache) const;
1311 
1312   const int flattened_offset() const;
1313   const Offset field_offset() const { return _field_offset; }
1314   const TypeAryPtr* with_field_offset(int offset) const;
1315   const TypePtr* add_field_offset_and_offset(intptr_t offset) const;
1316 
1317   virtual bool can_be_value_type() const { return false; }
1318 
1319   // Convenience common pre-built types.
1320   static const TypeAryPtr *RANGE;
1321   static const TypeAryPtr *OOPS;
1322   static const TypeAryPtr *NARROWOOPS;
1323   static const TypeAryPtr *BYTES;
1324   static const TypeAryPtr *SHORTS;
1325   static const TypeAryPtr *CHARS;
1326   static const TypeAryPtr *INTS;
1327   static const TypeAryPtr *LONGS;
1328   static const TypeAryPtr *FLOATS;
1329   static const TypeAryPtr *DOUBLES;
1330   // selects one of the above:
1331   static const TypeAryPtr *get_array_body_type(BasicType elem) {
1332     assert((uint)elem <= T_CONFLICT && _array_body_type[elem] != NULL, "bad elem type");
1333     return _array_body_type[elem];
1334   }
1335   static const TypeAryPtr *_array_body_type[T_CONFLICT+1];
1336   // sharpen the type of an int which is used as an array size
1337 #ifdef ASSERT
1338   // One type is interface, the other is oop
1339   virtual bool interface_vs_oop(const Type *t) const;
1340 #endif
1341 #ifndef PRODUCT
1342   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1343 #endif
1344 };
1345 
1346 //------------------------------TypeMetadataPtr-------------------------------------
1347 // Some kind of metadata, either Method*, MethodData* or CPCacheOop
1348 class TypeMetadataPtr : public TypePtr {
1349 protected:
1350   TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset);
1351   // Do not allow interface-vs.-noninterface joins to collapse to top.
1352   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1353 public:
1354   virtual bool eq( const Type *t ) const;
1355   virtual int  hash() const;             // Type specific hashing
1356   virtual bool singleton(void) const;    // TRUE if type is a singleton
1357 
1358 private:
1359   ciMetadata*   _metadata;
1360 
1361 public:
1362   static const TypeMetadataPtr* make(PTR ptr, ciMetadata* m, Offset offset);
1363 
1364   static const TypeMetadataPtr* make(ciMethod* m);
1365   static const TypeMetadataPtr* make(ciMethodData* m);
1366 
1367   ciMetadata* metadata() const { return _metadata; }
1368 
1369   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1370 
1371   virtual const TypePtr *add_offset( intptr_t offset ) const;
1372 
1373   virtual const Type *xmeet( const Type *t ) const;
1374   virtual const Type *xdual() const;    // Compute dual right now.
1375 
1376   virtual intptr_t get_con() const;
1377 
1378   // Convenience common pre-built types.
1379   static const TypeMetadataPtr *BOTTOM;
1380 
1381 #ifndef PRODUCT
1382   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1383 #endif
1384 };
1385 
1386 //------------------------------TypeKlassPtr-----------------------------------
1387 // Class of Java Klass pointers
1388 class TypeKlassPtr : public TypePtr {
1389   TypeKlassPtr(PTR ptr, ciKlass* klass, Offset offset);
1390 
1391 protected:
1392   virtual const Type *filter_helper(const Type *kills, bool include_speculative) const;
1393  public:
1394   virtual bool eq( const Type *t ) const;
1395   virtual int hash() const;             // Type specific hashing
1396   virtual bool singleton(void) const;    // TRUE if type is a singleton
1397  private:
1398 


1399   ciKlass* _klass;
1400 
1401   // Does the type exclude subclasses of the klass?  (Inexact == polymorphic.)
1402   bool          _klass_is_exact;
1403 
1404 public:


1405   ciKlass* klass() const { return  _klass; }
1406   bool klass_is_exact()    const { return _klass_is_exact; }
1407 
1408   bool  is_loaded() const { return klass() != NULL && klass()->is_loaded(); }




















1409 
1410   // ptr to klass 'k'
1411   static const TypeKlassPtr* make(ciKlass* k) { return make( TypePtr::Constant, k, Offset(0)); }
1412   // ptr to klass 'k' with offset
1413   static const TypeKlassPtr* make(ciKlass* k, Offset offset) { return make( TypePtr::Constant, k, offset); }
1414   // ptr to klass 'k' or sub-klass
1415   static const TypeKlassPtr* make(PTR ptr, ciKlass* k, Offset offset);
1416 
1417   virtual const Type *cast_to_ptr_type(PTR ptr) const;
1418 
1419   virtual const Type *cast_to_exactness(bool klass_is_exact) const;
1420 
1421   // corresponding pointer to instance, for a given class
1422   const TypeOopPtr* as_instance_type() const;
1423 
1424   virtual const TypePtr *add_offset( intptr_t offset ) const;
1425   virtual const Type    *xmeet( const Type *t ) const;
1426   virtual const Type    *xdual() const;      // Compute dual right now.
1427 
1428   virtual intptr_t get_con() const;
1429 
1430   // Convenience common pre-built types.
1431   static const TypeKlassPtr* OBJECT; // Not-null object klass or below
1432   static const TypeKlassPtr* OBJECT_OR_NULL; // Maybe-null version of same
1433 #ifndef PRODUCT
1434   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1435 #endif


1542   }
1543 
1544   virtual const TypeNarrowPtr *make_hash_same_narrowptr(const TypePtr *t) const {
1545     return (const TypeNarrowPtr*)((new TypeNarrowKlass(t))->hashcons());
1546   }
1547 
1548 public:
1549   static const TypeNarrowKlass *make( const TypePtr* type);
1550 
1551   // static const TypeNarrowKlass *BOTTOM;
1552   static const TypeNarrowKlass *NULL_PTR;
1553 
1554 #ifndef PRODUCT
1555   virtual void dump2( Dict &d, uint depth, outputStream *st ) const;
1556 #endif
1557 };
1558 
1559 //------------------------------TypeFunc---------------------------------------
1560 // Class of Array Types
1561 class TypeFunc : public Type {
1562   TypeFunc(const TypeTuple *domain_sig, const TypeTuple *domain_cc, const TypeTuple *range_sig, const TypeTuple *range_cc)
1563     : Type(Function), _domain_sig(domain_sig), _domain_cc(domain_cc), _range_sig(range_sig), _range_cc(range_cc) {}
1564   virtual bool eq( const Type *t ) const;
1565   virtual int  hash() const;             // Type specific hashing
1566   virtual bool singleton(void) const;    // TRUE if type is a singleton
1567   virtual bool empty(void) const;        // TRUE if type is vacuous
1568 
1569   // Domains of inputs: value type arguments are not passed by
1570   // reference, instead each field of the value type is passed as an
1571   // argument. We maintain 2 views of the argument list here: one
1572   // based on the signature (with a value type argument as a single
1573   // slot), one based on the actual calling convention (with a value
1574   // type argument as a list of its fields).
1575   const TypeTuple* const _domain_sig;
1576   const TypeTuple* const _domain_cc;
1577   // Range of results. Similar to domains: a value type result can be
1578   // returned in registers in which case range_cc lists all fields and
1579   // is the actual calling convention.
1580   const TypeTuple* const _range_sig;
1581   const TypeTuple* const _range_cc;
1582 
1583 public:
1584   // Constants are shared among ADLC and VM
1585   enum { Control    = AdlcVMDeps::Control,
1586          I_O        = AdlcVMDeps::I_O,
1587          Memory     = AdlcVMDeps::Memory,
1588          FramePtr   = AdlcVMDeps::FramePtr,
1589          ReturnAdr  = AdlcVMDeps::ReturnAdr,
1590          Parms      = AdlcVMDeps::Parms
1591   };
1592 
1593 
1594   // Accessors:
1595   const TypeTuple* domain_sig() const { return _domain_sig; }
1596   const TypeTuple* domain_cc() const { return _domain_cc; }
1597   const TypeTuple* range_sig()  const { return _range_sig; }
1598   const TypeTuple* range_cc()  const { return _range_cc; }
1599 
1600   static const TypeFunc *make(ciMethod* method);
1601   static const TypeFunc *make(ciSignature signature, const Type* extra);
1602   static const TypeFunc *make(const TypeTuple* domain_sig, const TypeTuple* domain_cc,
1603                               const TypeTuple* range_sig, const TypeTuple* range_cc);
1604   static const TypeFunc *make(const TypeTuple* domain, const TypeTuple* range);
1605 
1606   virtual const Type *xmeet( const Type *t ) const;
1607   virtual const Type *xdual() const;    // Compute dual right now.
1608 
1609   BasicType return_type() const;
1610 
1611   bool returns_value_type_as_fields() const { return range_sig() != range_cc(); }
1612 
1613 #ifndef PRODUCT
1614   virtual void dump2( Dict &d, uint depth, outputStream *st ) const; // Specialized per-Type dumping
1615 #endif
1616   // Convenience common pre-built types.
1617 };
1618 
1619 //------------------------------accessors--------------------------------------
1620 inline bool Type::is_ptr_to_narrowoop() const {
1621 #ifdef _LP64
1622   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowoop_nv());
1623 #else
1624   return false;
1625 #endif
1626 }
1627 
1628 inline bool Type::is_ptr_to_narrowklass() const {
1629 #ifdef _LP64
1630   return (isa_oopptr() != NULL && is_oopptr()->is_ptr_to_narrowklass_nv());
1631 #else
1632   return false;


1742 }
1743 
1744 inline const TypeInstPtr *Type::isa_instptr() const {
1745   return (_base == InstPtr) ? (TypeInstPtr*)this : NULL;
1746 }
1747 
1748 inline const TypeInstPtr *Type::is_instptr() const {
1749   assert( _base == InstPtr, "Not an object pointer" );
1750   return (TypeInstPtr*)this;
1751 }
1752 
1753 inline const TypeAryPtr *Type::isa_aryptr() const {
1754   return (_base == AryPtr) ? (TypeAryPtr*)this : NULL;
1755 }
1756 
1757 inline const TypeAryPtr *Type::is_aryptr() const {
1758   assert( _base == AryPtr, "Not an array pointer" );
1759   return (TypeAryPtr*)this;
1760 }
1761 
1762 inline const TypeValueType* Type::isa_valuetype() const {
1763   return (_base == ValueType) ? (TypeValueType*)this : NULL;
1764 }
1765 
1766 inline const TypeValueType* Type::is_valuetype() const {
1767   assert(_base == ValueType, "Not a value type");
1768   return (TypeValueType*)this;
1769 }
1770 
1771 inline const TypeNarrowOop *Type::is_narrowoop() const {
1772   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1773   assert(_base == NarrowOop, "Not a narrow oop" ) ;
1774   return (TypeNarrowOop*)this;
1775 }
1776 
1777 inline const TypeNarrowOop *Type::isa_narrowoop() const {
1778   // OopPtr is the first and KlassPtr the last, with no non-oops between.
1779   return (_base == NarrowOop) ? (TypeNarrowOop*)this : NULL;
1780 }
1781 
1782 inline const TypeNarrowKlass *Type::is_narrowklass() const {
1783   assert(_base == NarrowKlass, "Not a narrow oop" ) ;
1784   return (TypeNarrowKlass*)this;
1785 }
1786 
1787 inline const TypeNarrowKlass *Type::isa_narrowklass() const {
1788   return (_base == NarrowKlass) ? (TypeNarrowKlass*)this : NULL;
1789 }
1790 


1817   return (_base == NarrowOop) ? is_narrowoop()->get_ptrtype()->isa_oopptr() : isa_oopptr();
1818 }
1819 
1820 inline const TypeNarrowOop* Type::make_narrowoop() const {
1821   return (_base == NarrowOop) ? is_narrowoop() :
1822                                 (isa_ptr() ? TypeNarrowOop::make(is_ptr()) : NULL);
1823 }
1824 
1825 inline const TypeNarrowKlass* Type::make_narrowklass() const {
1826   return (_base == NarrowKlass) ? is_narrowklass() :
1827                                   (isa_ptr() ? TypeNarrowKlass::make(is_ptr()) : NULL);
1828 }
1829 
1830 inline bool Type::is_floatingpoint() const {
1831   if( (_base == FloatCon)  || (_base == FloatBot) ||
1832       (_base == DoubleCon) || (_base == DoubleBot) )
1833     return true;
1834   return false;
1835 }
1836 
1837 inline bool Type::is_valuetypeptr() const {
1838   return isa_instptr() != NULL && is_instptr()->klass()->is_valuetype();
1839 }
1840 
1841 
1842 inline ciValueKlass* Type::value_klass() const {
1843   assert(is_valuetypeptr(), "must be a value type ptr");
1844   return is_instptr()->klass()->as_value_klass();
1845 }
1846 
1847 
1848 // ===============================================================
1849 // Things that need to be 64-bits in the 64-bit build but
1850 // 32-bits in the 32-bit build.  Done this way to get full
1851 // optimization AND strong typing.
1852 #ifdef _LP64
1853 
1854 // For type queries and asserts
1855 #define is_intptr_t  is_long
1856 #define isa_intptr_t isa_long
1857 #define find_intptr_t_type find_long_type
1858 #define find_intptr_t_con  find_long_con
1859 #define TypeX        TypeLong
1860 #define Type_X       Type::Long
1861 #define TypeX_X      TypeLong::LONG
1862 #define TypeX_ZERO   TypeLong::ZERO
1863 // For 'ideal_reg' machine registers
1864 #define Op_RegX      Op_RegL
1865 // For phase->intcon variants
1866 #define MakeConX     longcon
1867 #define ConXNode     ConLNode
1868 // For array index arithmetic
1869 #define MulXNode     MulLNode
1870 #define AndXNode     AndLNode
1871 #define OrXNode      OrLNode
1872 #define CmpXNode     CmpLNode
1873 #define CmpUXNode    CmpULNode
1874 #define SubXNode     SubLNode
1875 #define LShiftXNode  LShiftLNode
1876 // For object size computation:
1877 #define AddXNode     AddLNode
1878 #define RShiftXNode  RShiftLNode
1879 // For card marks and hashcodes
1880 #define URShiftXNode URShiftLNode
1881 // UseOptoBiasInlining
1882 #define XorXNode     XorLNode
1883 #define StoreXConditionalNode StoreLConditionalNode
1884 #define LoadXNode    LoadLNode
1885 #define StoreXNode   StoreLNode
1886 // Opcodes
1887 #define Op_LShiftX   Op_LShiftL
1888 #define Op_AndX      Op_AndL
1889 #define Op_AddX      Op_AddL
1890 #define Op_SubX      Op_SubL
1891 #define Op_XorX      Op_XorL
1892 #define Op_URShiftX  Op_URShiftL
1893 #define Op_LoadX     Op_LoadL
1894 #define Op_StoreX    Op_StoreL
1895 // conversions
1896 #define ConvI2X(x)   ConvI2L(x)
1897 #define ConvL2X(x)   (x)
1898 #define ConvX2I(x)   ConvL2I(x)
1899 #define ConvX2L(x)   (x)
1900 #define ConvX2UL(x)  (x)
1901 
1902 #else
1903 
1904 // For type queries and asserts
1905 #define is_intptr_t  is_int
1906 #define isa_intptr_t isa_int
1907 #define find_intptr_t_type find_int_type
1908 #define find_intptr_t_con  find_int_con
1909 #define TypeX        TypeInt
1910 #define Type_X       Type::Int
1911 #define TypeX_X      TypeInt::INT
1912 #define TypeX_ZERO   TypeInt::ZERO
1913 // For 'ideal_reg' machine registers
1914 #define Op_RegX      Op_RegI
1915 // For phase->intcon variants
1916 #define MakeConX     intcon
1917 #define ConXNode     ConINode
1918 // For array index arithmetic
1919 #define MulXNode     MulINode
1920 #define AndXNode     AndINode
1921 #define OrXNode      OrINode
1922 #define CmpXNode     CmpINode
1923 #define CmpUXNode    CmpUNode
1924 #define SubXNode     SubINode
1925 #define LShiftXNode  LShiftINode
1926 // For object size computation:
1927 #define AddXNode     AddINode
1928 #define RShiftXNode  RShiftINode
1929 // For card marks and hashcodes
1930 #define URShiftXNode URShiftINode
1931 // UseOptoBiasInlining
1932 #define XorXNode     XorINode
1933 #define StoreXConditionalNode StoreIConditionalNode
1934 #define LoadXNode    LoadINode
1935 #define StoreXNode   StoreINode
1936 // Opcodes
1937 #define Op_LShiftX   Op_LShiftI
1938 #define Op_AndX      Op_AndI
1939 #define Op_AddX      Op_AddI
1940 #define Op_SubX      Op_SubI
1941 #define Op_XorX      Op_XorI
1942 #define Op_URShiftX  Op_URShiftI
1943 #define Op_LoadX     Op_LoadI
1944 #define Op_StoreX    Op_StoreI
1945 // conversions
1946 #define ConvI2X(x)   (x)
1947 #define ConvL2X(x)   ConvL2I(x)
1948 #define ConvX2I(x)   (x)
1949 #define ConvX2L(x)   ConvI2L(x)
1950 #define ConvX2UL(x)  ConvI2UL(x)
1951 
1952 #endif
1953 
1954 #endif // SHARE_OPTO_TYPE_HPP
< prev index next >