1 /*
   2  * Copyright (c) 1997, 2019, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "jvm.h"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/debugInfoRec.hpp"
  30 #include "code/nmethod.hpp"
  31 #include "code/pcDesc.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "interpreter/bytecode.hpp"
  34 #include "interpreter/interpreter.hpp"
  35 #include "interpreter/oopMapCache.hpp"
  36 #include "memory/allocation.inline.hpp"
  37 #include "memory/oopFactory.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "oops/constantPool.hpp"
  40 #include "oops/method.hpp"
  41 #include "oops/objArrayOop.inline.hpp"
  42 #include "oops/oop.inline.hpp"
  43 #include "oops/fieldStreams.hpp"
  44 #include "oops/typeArrayOop.inline.hpp"
  45 #include "oops/valueArrayKlass.hpp"
  46 #include "oops/valueArrayOop.hpp"
  47 #include "oops/valueKlass.hpp"
  48 #include "oops/verifyOopClosure.hpp"
  49 #include "prims/jvmtiThreadState.hpp"
  50 #include "runtime/biasedLocking.hpp"
  51 #include "runtime/compilationPolicy.hpp"
  52 #include "runtime/deoptimization.hpp"
  53 #include "runtime/frame.inline.hpp"
  54 #include "runtime/handles.inline.hpp"
  55 #include "runtime/interfaceSupport.inline.hpp"
  56 #include "runtime/safepointVerifiers.hpp"
  57 #include "runtime/sharedRuntime.hpp"
  58 #include "runtime/signature.hpp"
  59 #include "runtime/stubRoutines.hpp"
  60 #include "runtime/thread.hpp"
  61 #include "runtime/threadSMR.hpp"
  62 #include "runtime/vframe.hpp"
  63 #include "runtime/vframeArray.hpp"
  64 #include "runtime/vframe_hp.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/preserveException.hpp"
  67 #include "utilities/xmlstream.hpp"
  68 
  69 #if INCLUDE_JVMCI
  70 #include "jvmci/jvmciRuntime.hpp"
  71 #include "jvmci/jvmciJavaClasses.hpp"
  72 #endif
  73 
  74 
  75 bool DeoptimizationMarker::_is_active = false;
  76 
  77 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  78                                          int  caller_adjustment,
  79                                          int  caller_actual_parameters,
  80                                          int  number_of_frames,
  81                                          intptr_t* frame_sizes,
  82                                          address* frame_pcs,
  83                                          BasicType return_type,
  84                                          int exec_mode) {
  85   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  86   _caller_adjustment         = caller_adjustment;
  87   _caller_actual_parameters  = caller_actual_parameters;
  88   _number_of_frames          = number_of_frames;
  89   _frame_sizes               = frame_sizes;
  90   _frame_pcs                 = frame_pcs;
  91   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  92   _return_type               = return_type;
  93   _initial_info              = 0;
  94   // PD (x86 only)
  95   _counter_temp              = 0;
  96   _unpack_kind               = exec_mode;
  97   _sender_sp_temp            = 0;
  98 
  99   _total_frame_sizes         = size_of_frames();
 100   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
 101 }
 102 
 103 
 104 Deoptimization::UnrollBlock::~UnrollBlock() {
 105   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
 106   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
 107   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
 108 }
 109 
 110 
 111 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 112   assert(register_number < RegisterMap::reg_count, "checking register number");
 113   return &_register_block[register_number * 2];
 114 }
 115 
 116 
 117 
 118 int Deoptimization::UnrollBlock::size_of_frames() const {
 119   // Acount first for the adjustment of the initial frame
 120   int result = _caller_adjustment;
 121   for (int index = 0; index < number_of_frames(); index++) {
 122     result += frame_sizes()[index];
 123   }
 124   return result;
 125 }
 126 
 127 
 128 void Deoptimization::UnrollBlock::print() {
 129   ttyLocker ttyl;
 130   tty->print_cr("UnrollBlock");
 131   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 132   tty->print(   "  frame_sizes: ");
 133   for (int index = 0; index < number_of_frames(); index++) {
 134     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 135   }
 136   tty->cr();
 137 }
 138 
 139 
 140 // In order to make fetch_unroll_info work properly with escape
 141 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 142 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 143 // of previously eliminated objects occurs in realloc_objects, which is
 144 // called from the method fetch_unroll_info_helper below.
 145 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 146   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 147   // but makes the entry a little slower. There is however a little dance we have to
 148   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 149 
 150   // fetch_unroll_info() is called at the beginning of the deoptimization
 151   // handler. Note this fact before we start generating temporary frames
 152   // that can confuse an asynchronous stack walker. This counter is
 153   // decremented at the end of unpack_frames().
 154   if (TraceDeoptimization) {
 155     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 156   }
 157   thread->inc_in_deopt_handler();
 158 
 159   return fetch_unroll_info_helper(thread, exec_mode);
 160 JRT_END
 161 
 162 
 163 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 164 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 165 
 166   // Note: there is a safepoint safety issue here. No matter whether we enter
 167   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 168   // the vframeArray is created.
 169   //
 170 
 171   // Allocate our special deoptimization ResourceMark
 172   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 173   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 174   thread->set_deopt_mark(dmark);
 175 
 176   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 177   RegisterMap map(thread, true);
 178   RegisterMap dummy_map(thread, false);
 179   // Now get the deoptee with a valid map
 180   frame deoptee = stub_frame.sender(&map);
 181   // Set the deoptee nmethod
 182   assert(thread->deopt_compiled_method() == NULL, "Pending deopt!");
 183   CompiledMethod* cm = deoptee.cb()->as_compiled_method_or_null();
 184   thread->set_deopt_compiled_method(cm);
 185 
 186   if (VerifyStack) {
 187     thread->validate_frame_layout();
 188   }
 189 
 190   // Create a growable array of VFrames where each VFrame represents an inlined
 191   // Java frame.  This storage is allocated with the usual system arena.
 192   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 193   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 194   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 195   while (!vf->is_top()) {
 196     assert(vf->is_compiled_frame(), "Wrong frame type");
 197     chunk->push(compiledVFrame::cast(vf));
 198     vf = vf->sender();
 199   }
 200   assert(vf->is_compiled_frame(), "Wrong frame type");
 201   chunk->push(compiledVFrame::cast(vf));
 202 
 203   bool realloc_failures = false;
 204 
 205 #if COMPILER2_OR_JVMCI
 206   // Reallocate the non-escaping objects and restore their fields. Then
 207   // relock objects if synchronization on them was eliminated.
 208 #if !INCLUDE_JVMCI
 209   if (DoEscapeAnalysis || EliminateNestedLocks) {
 210     if (EliminateAllocations) {
 211 #endif // INCLUDE_JVMCI
 212       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 213       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 214 
 215       // The flag return_oop() indicates call sites which return oop
 216       // in compiled code. Such sites include java method calls,
 217       // runtime calls (for example, used to allocate new objects/arrays
 218       // on slow code path) and any other calls generated in compiled code.
 219       // It is not guaranteed that we can get such information here only
 220       // by analyzing bytecode in deoptimized frames. This is why this flag
 221       // is set during method compilation (see Compile::Process_OopMap_Node()).
 222       // If the previous frame was popped or if we are dispatching an exception,
 223       // we don't have an oop result.
 224       ScopeDesc* scope = chunk->at(0)->scope();
 225       bool save_oop_result = scope->return_oop() && !thread->popframe_forcing_deopt_reexecution() && (exec_mode == Unpack_deopt);
 226       // In case of the return of multiple values, we must take care
 227       // of all oop return values.
 228       GrowableArray<Handle> return_oops;
 229       ValueKlass* vk = NULL;
 230       if (save_oop_result && scope->return_vt()) {
 231         vk = ValueKlass::returned_value_klass(map);
 232         if (vk != NULL) {
 233           vk->save_oop_fields(map, return_oops);
 234           save_oop_result = false;
 235         }
 236       }
 237       if (save_oop_result) {
 238         // Reallocation may trigger GC. If deoptimization happened on return from
 239         // call which returns oop we need to save it since it is not in oopmap.
 240         oop result = deoptee.saved_oop_result(&map);
 241         assert(oopDesc::is_oop_or_null(result), "must be oop");
 242         return_oops.push(Handle(thread, result));
 243         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 244         if (TraceDeoptimization) {
 245           ttyLocker ttyl;
 246           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 247         }
 248       }
 249       if (objects != NULL || vk != NULL) {
 250         bool skip_internal = (cm != NULL) && !cm->is_compiled_by_jvmci();
 251         JRT_BLOCK
 252           if (vk != NULL) {
 253             realloc_failures = realloc_value_type_result(vk, map, return_oops, THREAD);
 254           }
 255           if (objects != NULL) {
 256             realloc_failures = realloc_failures || realloc_objects(thread, &deoptee, objects, THREAD);
 257             reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal, THREAD);
 258           }
 259         JRT_END
 260 #ifndef PRODUCT
 261         if (TraceDeoptimization) {
 262           ttyLocker ttyl;
 263           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 264           print_objects(objects, realloc_failures);
 265         }
 266 #endif
 267       }
 268       if (save_oop_result || vk != NULL) {
 269         // Restore result.
 270         assert(return_oops.length() == 1, "no value type");
 271         deoptee.set_saved_oop_result(&map, return_oops.pop()());
 272       }
 273 #if !INCLUDE_JVMCI
 274     }
 275     if (EliminateLocks) {
 276 #endif // INCLUDE_JVMCI
 277 #ifndef PRODUCT
 278       bool first = true;
 279 #endif
 280       for (int i = 0; i < chunk->length(); i++) {
 281         compiledVFrame* cvf = chunk->at(i);
 282         assert (cvf->scope() != NULL,"expect only compiled java frames");
 283         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 284         if (monitors->is_nonempty()) {
 285           relock_objects(monitors, thread, realloc_failures);
 286 #ifndef PRODUCT
 287           if (PrintDeoptimizationDetails) {
 288             ttyLocker ttyl;
 289             for (int j = 0; j < monitors->length(); j++) {
 290               MonitorInfo* mi = monitors->at(j);
 291               if (mi->eliminated()) {
 292                 if (first) {
 293                   first = false;
 294                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 295                 }
 296                 if (mi->owner_is_scalar_replaced()) {
 297                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 298                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 299                 } else {
 300                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 301                 }
 302               }
 303             }
 304           }
 305 #endif // !PRODUCT
 306         }
 307       }
 308 #if !INCLUDE_JVMCI
 309     }
 310   }
 311 #endif // INCLUDE_JVMCI
 312 #endif // COMPILER2_OR_JVMCI
 313 
 314   ScopeDesc* trap_scope = chunk->at(0)->scope();
 315   Handle exceptionObject;
 316   if (trap_scope->rethrow_exception()) {
 317     if (PrintDeoptimizationDetails) {
 318       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 319     }
 320     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 321     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 322     ScopeValue* topOfStack = expressions->top();
 323     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 324     guarantee(exceptionObject() != NULL, "exception oop can not be null");
 325   }
 326 
 327   // Ensure that no safepoint is taken after pointers have been stored
 328   // in fields of rematerialized objects.  If a safepoint occurs from here on
 329   // out the java state residing in the vframeArray will be missed.
 330   NoSafepointVerifier no_safepoint;
 331 
 332   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 333 #if COMPILER2_OR_JVMCI
 334   if (realloc_failures) {
 335     pop_frames_failed_reallocs(thread, array);
 336   }
 337 #endif
 338 
 339   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 340   thread->set_vframe_array_head(array);
 341 
 342   // Now that the vframeArray has been created if we have any deferred local writes
 343   // added by jvmti then we can free up that structure as the data is now in the
 344   // vframeArray
 345 
 346   if (thread->deferred_locals() != NULL) {
 347     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 348     int i = 0;
 349     do {
 350       // Because of inlining we could have multiple vframes for a single frame
 351       // and several of the vframes could have deferred writes. Find them all.
 352       if (list->at(i)->id() == array->original().id()) {
 353         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 354         list->remove_at(i);
 355         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 356         delete dlv;
 357       } else {
 358         i++;
 359       }
 360     } while ( i < list->length() );
 361     if (list->length() == 0) {
 362       thread->set_deferred_locals(NULL);
 363       // free the list and elements back to C heap.
 364       delete list;
 365     }
 366 
 367   }
 368 
 369   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 370   CodeBlob* cb = stub_frame.cb();
 371   // Verify we have the right vframeArray
 372   assert(cb->frame_size() >= 0, "Unexpected frame size");
 373   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 374 
 375   // If the deopt call site is a MethodHandle invoke call site we have
 376   // to adjust the unpack_sp.
 377   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 378   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 379     unpack_sp = deoptee.unextended_sp();
 380 
 381 #ifdef ASSERT
 382   assert(cb->is_deoptimization_stub() ||
 383          cb->is_uncommon_trap_stub() ||
 384          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 385          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 386          "unexpected code blob: %s", cb->name());
 387 #endif
 388 
 389   // This is a guarantee instead of an assert because if vframe doesn't match
 390   // we will unpack the wrong deoptimized frame and wind up in strange places
 391   // where it will be very difficult to figure out what went wrong. Better
 392   // to die an early death here than some very obscure death later when the
 393   // trail is cold.
 394   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 395   // in that it will fail to detect a problem when there is one. This needs
 396   // more work in tiger timeframe.
 397   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 398 
 399   int number_of_frames = array->frames();
 400 
 401   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 402   // virtual activation, which is the reverse of the elements in the vframes array.
 403   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 404   // +1 because we always have an interpreter return address for the final slot.
 405   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 406   int popframe_extra_args = 0;
 407   // Create an interpreter return address for the stub to use as its return
 408   // address so the skeletal frames are perfectly walkable
 409   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 410 
 411   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 412   // activation be put back on the expression stack of the caller for reexecution
 413   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 414     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 415   }
 416 
 417   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 418   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 419   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 420   //
 421   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 422   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 423 
 424   // It's possible that the number of parameters at the call site is
 425   // different than number of arguments in the callee when method
 426   // handles are used.  If the caller is interpreted get the real
 427   // value so that the proper amount of space can be added to it's
 428   // frame.
 429   bool caller_was_method_handle = false;
 430   if (deopt_sender.is_interpreted_frame()) {
 431     methodHandle method = deopt_sender.interpreter_frame_method();
 432     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 433     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 434       // Method handle invokes may involve fairly arbitrary chains of
 435       // calls so it's impossible to know how much actual space the
 436       // caller has for locals.
 437       caller_was_method_handle = true;
 438     }
 439   }
 440 
 441   //
 442   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 443   // frame_sizes/frame_pcs[1] next oldest frame (int)
 444   // frame_sizes/frame_pcs[n] youngest frame (int)
 445   //
 446   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 447   // owns the space for the return address to it's caller).  Confusing ain't it.
 448   //
 449   // The vframe array can address vframes with indices running from
 450   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 451   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 452   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 453   // so things look a little strange in this loop.
 454   //
 455   int callee_parameters = 0;
 456   int callee_locals = 0;
 457   for (int index = 0; index < array->frames(); index++ ) {
 458     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 459     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 460     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 461     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 462                                                                                                     callee_locals,
 463                                                                                                     index == 0,
 464                                                                                                     popframe_extra_args);
 465     // This pc doesn't have to be perfect just good enough to identify the frame
 466     // as interpreted so the skeleton frame will be walkable
 467     // The correct pc will be set when the skeleton frame is completely filled out
 468     // The final pc we store in the loop is wrong and will be overwritten below
 469     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 470 
 471     callee_parameters = array->element(index)->method()->size_of_parameters();
 472     callee_locals = array->element(index)->method()->max_locals();
 473     popframe_extra_args = 0;
 474   }
 475 
 476   // Compute whether the root vframe returns a float or double value.
 477   BasicType return_type;
 478   {
 479     methodHandle method(thread, array->element(0)->method());
 480     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 481     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 482   }
 483 
 484   // Compute information for handling adapters and adjusting the frame size of the caller.
 485   int caller_adjustment = 0;
 486 
 487   // Compute the amount the oldest interpreter frame will have to adjust
 488   // its caller's stack by. If the caller is a compiled frame then
 489   // we pretend that the callee has no parameters so that the
 490   // extension counts for the full amount of locals and not just
 491   // locals-parms. This is because without a c2i adapter the parm
 492   // area as created by the compiled frame will not be usable by
 493   // the interpreter. (Depending on the calling convention there
 494   // may not even be enough space).
 495 
 496   // QQQ I'd rather see this pushed down into last_frame_adjust
 497   // and have it take the sender (aka caller).
 498 
 499   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 500     caller_adjustment = last_frame_adjust(0, callee_locals);
 501   } else if (callee_locals > callee_parameters) {
 502     // The caller frame may need extending to accommodate
 503     // non-parameter locals of the first unpacked interpreted frame.
 504     // Compute that adjustment.
 505     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 506   }
 507 
 508   // If the sender is deoptimized we must retrieve the address of the handler
 509   // since the frame will "magically" show the original pc before the deopt
 510   // and we'd undo the deopt.
 511 
 512   frame_pcs[0] = deopt_sender.raw_pc();
 513 
 514   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 515 
 516 #if INCLUDE_JVMCI
 517   if (exceptionObject() != NULL) {
 518     thread->set_exception_oop(exceptionObject());
 519     exec_mode = Unpack_exception;
 520   }
 521 #endif
 522 
 523   if (thread->frames_to_pop_failed_realloc() > 0 && exec_mode != Unpack_uncommon_trap) {
 524     assert(thread->has_pending_exception(), "should have thrown OOME");
 525     thread->set_exception_oop(thread->pending_exception());
 526     thread->clear_pending_exception();
 527     exec_mode = Unpack_exception;
 528   }
 529 
 530 #if INCLUDE_JVMCI
 531   if (thread->frames_to_pop_failed_realloc() > 0) {
 532     thread->set_pending_monitorenter(false);
 533   }
 534 #endif
 535 
 536   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 537                                       caller_adjustment * BytesPerWord,
 538                                       caller_was_method_handle ? 0 : callee_parameters,
 539                                       number_of_frames,
 540                                       frame_sizes,
 541                                       frame_pcs,
 542                                       return_type,
 543                                       exec_mode);
 544   // On some platforms, we need a way to pass some platform dependent
 545   // information to the unpacking code so the skeletal frames come out
 546   // correct (initial fp value, unextended sp, ...)
 547   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 548 
 549   if (array->frames() > 1) {
 550     if (VerifyStack && TraceDeoptimization) {
 551       ttyLocker ttyl;
 552       tty->print_cr("Deoptimizing method containing inlining");
 553     }
 554   }
 555 
 556   array->set_unroll_block(info);
 557   return info;
 558 }
 559 
 560 // Called to cleanup deoptimization data structures in normal case
 561 // after unpacking to stack and when stack overflow error occurs
 562 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 563                                         vframeArray *array) {
 564 
 565   // Get array if coming from exception
 566   if (array == NULL) {
 567     array = thread->vframe_array_head();
 568   }
 569   thread->set_vframe_array_head(NULL);
 570 
 571   // Free the previous UnrollBlock
 572   vframeArray* old_array = thread->vframe_array_last();
 573   thread->set_vframe_array_last(array);
 574 
 575   if (old_array != NULL) {
 576     UnrollBlock* old_info = old_array->unroll_block();
 577     old_array->set_unroll_block(NULL);
 578     delete old_info;
 579     delete old_array;
 580   }
 581 
 582   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 583   // inside the vframeArray (StackValueCollections)
 584 
 585   delete thread->deopt_mark();
 586   thread->set_deopt_mark(NULL);
 587   thread->set_deopt_compiled_method(NULL);
 588 
 589 
 590   if (JvmtiExport::can_pop_frame()) {
 591 #ifndef CC_INTERP
 592     // Regardless of whether we entered this routine with the pending
 593     // popframe condition bit set, we should always clear it now
 594     thread->clear_popframe_condition();
 595 #else
 596     // C++ interpreter will clear has_pending_popframe when it enters
 597     // with method_resume. For deopt_resume2 we clear it now.
 598     if (thread->popframe_forcing_deopt_reexecution())
 599         thread->clear_popframe_condition();
 600 #endif /* CC_INTERP */
 601   }
 602 
 603   // unpack_frames() is called at the end of the deoptimization handler
 604   // and (in C2) at the end of the uncommon trap handler. Note this fact
 605   // so that an asynchronous stack walker can work again. This counter is
 606   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 607   // the beginning of uncommon_trap().
 608   thread->dec_in_deopt_handler();
 609 }
 610 
 611 // Moved from cpu directories because none of the cpus has callee save values.
 612 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 613 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 614 
 615   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 616   // the days we had adapter frames. When we deoptimize a situation where a
 617   // compiled caller calls a compiled caller will have registers it expects
 618   // to survive the call to the callee. If we deoptimize the callee the only
 619   // way we can restore these registers is to have the oldest interpreter
 620   // frame that we create restore these values. That is what this routine
 621   // will accomplish.
 622 
 623   // At the moment we have modified c2 to not have any callee save registers
 624   // so this problem does not exist and this routine is just a place holder.
 625 
 626   assert(f->is_interpreted_frame(), "must be interpreted");
 627 }
 628 
 629 // Return BasicType of value being returned
 630 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 631 
 632   // We are already active in the special DeoptResourceMark any ResourceObj's we
 633   // allocate will be freed at the end of the routine.
 634 
 635   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 636   // but makes the entry a little slower. There is however a little dance we have to
 637   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 638   ResetNoHandleMark rnhm; // No-op in release/product versions
 639   HandleMark hm;
 640 
 641   frame stub_frame = thread->last_frame();
 642 
 643   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 644   // must point to the vframeArray for the unpack frame.
 645   vframeArray* array = thread->vframe_array_head();
 646 
 647 #ifndef PRODUCT
 648   if (TraceDeoptimization) {
 649     ttyLocker ttyl;
 650     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 651                   p2i(thread), p2i(array), exec_mode);
 652   }
 653 #endif
 654   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 655               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 656 
 657   UnrollBlock* info = array->unroll_block();
 658 
 659   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 660   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 661 
 662   BasicType bt = info->return_type();
 663 
 664   // If we have an exception pending, claim that the return type is an oop
 665   // so the deopt_blob does not overwrite the exception_oop.
 666 
 667   if (exec_mode == Unpack_exception)
 668     bt = T_OBJECT;
 669 
 670   // Cleanup thread deopt data
 671   cleanup_deopt_info(thread, array);
 672 
 673 #ifndef PRODUCT
 674   if (VerifyStack) {
 675     ResourceMark res_mark;
 676     // Clear pending exception to not break verification code (restored afterwards)
 677     PRESERVE_EXCEPTION_MARK;
 678 
 679     thread->validate_frame_layout();
 680 
 681     // Verify that the just-unpacked frames match the interpreter's
 682     // notions of expression stack and locals
 683     vframeArray* cur_array = thread->vframe_array_last();
 684     RegisterMap rm(thread, false);
 685     rm.set_include_argument_oops(false);
 686     bool is_top_frame = true;
 687     int callee_size_of_parameters = 0;
 688     int callee_max_locals = 0;
 689     for (int i = 0; i < cur_array->frames(); i++) {
 690       vframeArrayElement* el = cur_array->element(i);
 691       frame* iframe = el->iframe();
 692       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 693 
 694       // Get the oop map for this bci
 695       InterpreterOopMap mask;
 696       int cur_invoke_parameter_size = 0;
 697       bool try_next_mask = false;
 698       int next_mask_expression_stack_size = -1;
 699       int top_frame_expression_stack_adjustment = 0;
 700       methodHandle mh(thread, iframe->interpreter_frame_method());
 701       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 702       BytecodeStream str(mh);
 703       str.set_start(iframe->interpreter_frame_bci());
 704       int max_bci = mh->code_size();
 705       // Get to the next bytecode if possible
 706       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 707       // Check to see if we can grab the number of outgoing arguments
 708       // at an uncommon trap for an invoke (where the compiler
 709       // generates debug info before the invoke has executed)
 710       Bytecodes::Code cur_code = str.next();
 711       if (Bytecodes::is_invoke(cur_code)) {
 712         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 713         cur_invoke_parameter_size = invoke.size_of_parameters();
 714         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 715           callee_size_of_parameters++;
 716         }
 717       }
 718       if (str.bci() < max_bci) {
 719         Bytecodes::Code next_code = str.next();
 720         if (next_code >= 0) {
 721           // The interpreter oop map generator reports results before
 722           // the current bytecode has executed except in the case of
 723           // calls. It seems to be hard to tell whether the compiler
 724           // has emitted debug information matching the "state before"
 725           // a given bytecode or the state after, so we try both
 726           if (!Bytecodes::is_invoke(cur_code) && cur_code != Bytecodes::_athrow) {
 727             // Get expression stack size for the next bytecode
 728             InterpreterOopMap next_mask;
 729             OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 730             next_mask_expression_stack_size = next_mask.expression_stack_size();
 731             if (Bytecodes::is_invoke(next_code)) {
 732               Bytecode_invoke invoke(mh, str.bci());
 733               next_mask_expression_stack_size += invoke.size_of_parameters();
 734             }
 735             // Need to subtract off the size of the result type of
 736             // the bytecode because this is not described in the
 737             // debug info but returned to the interpreter in the TOS
 738             // caching register
 739             BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 740             if (bytecode_result_type != T_ILLEGAL) {
 741               top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 742             }
 743             assert(top_frame_expression_stack_adjustment >= 0, "stack adjustment must be positive");
 744             try_next_mask = true;
 745           }
 746         }
 747       }
 748 
 749       // Verify stack depth and oops in frame
 750       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 751       if (!(
 752             /* SPARC */
 753             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 754             /* x86 */
 755             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 756             (try_next_mask &&
 757              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 758                                                                     top_frame_expression_stack_adjustment))) ||
 759             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 760             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 761              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 762             )) {
 763         {
 764           ttyLocker ttyl;
 765 
 766           // Print out some information that will help us debug the problem
 767           tty->print_cr("Wrong number of expression stack elements during deoptimization");
 768           tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 769           tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 770                         iframe->interpreter_frame_expression_stack_size());
 771           tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 772           tty->print_cr("  try_next_mask = %d", try_next_mask);
 773           tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 774           tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 775           tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 776           tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 777           tty->print_cr("  exec_mode = %d", exec_mode);
 778           tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 779           tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 780           tty->print_cr("  Interpreted frames:");
 781           for (int k = 0; k < cur_array->frames(); k++) {
 782             vframeArrayElement* el = cur_array->element(k);
 783             tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 784           }
 785           cur_array->print_on_2(tty);
 786         } // release tty lock before calling guarantee
 787         guarantee(false, "wrong number of expression stack elements during deopt");
 788       }
 789       VerifyOopClosure verify;
 790       iframe->oops_interpreted_do(&verify, &rm, false);
 791       callee_size_of_parameters = mh->size_of_parameters();
 792       callee_max_locals = mh->max_locals();
 793       is_top_frame = false;
 794     }
 795   }
 796 #endif /* !PRODUCT */
 797 
 798 
 799   return bt;
 800 JRT_END
 801 
 802 
 803 int Deoptimization::deoptimize_dependents() {
 804   Threads::deoptimized_wrt_marked_nmethods();
 805   return 0;
 806 }
 807 
 808 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 809   = Deoptimization::Action_reinterpret;
 810 
 811 #if COMPILER2_OR_JVMCI
 812 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 813   Handle pending_exception(THREAD, thread->pending_exception());
 814   const char* exception_file = thread->exception_file();
 815   int exception_line = thread->exception_line();
 816   thread->clear_pending_exception();
 817 
 818   bool failures = false;
 819 
 820   for (int i = 0; i < objects->length(); i++) {
 821     assert(objects->at(i)->is_object(), "invalid debug information");
 822     ObjectValue* sv = (ObjectValue*) objects->at(i);
 823 
 824     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
 825     oop obj = NULL;
 826 
 827     if (k->is_instance_klass()) {
 828       InstanceKlass* ik = InstanceKlass::cast(k);
 829       obj = ik->allocate_instance(THREAD);
 830     } else if (k->is_valueArray_klass()) {
 831       ValueArrayKlass* ak = ValueArrayKlass::cast(k);
 832       // Value type array must be zeroed because not all memory is reassigned
 833       obj = ak->allocate(sv->field_size(), THREAD);
 834     } else if (k->is_typeArray_klass()) {
 835       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
 836       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 837       int len = sv->field_size() / type2size[ak->element_type()];
 838       obj = ak->allocate(len, THREAD);
 839     } else if (k->is_objArray_klass()) {
 840       ObjArrayKlass* ak = ObjArrayKlass::cast(k);
 841       obj = ak->allocate(sv->field_size(), THREAD);
 842     }
 843 
 844     if (obj == NULL) {
 845       failures = true;
 846     }
 847 
 848     assert(sv->value().is_null(), "redundant reallocation");
 849     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 850     CLEAR_PENDING_EXCEPTION;
 851     sv->set_value(obj);
 852   }
 853 
 854   if (failures) {
 855     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 856   } else if (pending_exception.not_null()) {
 857     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 858   }
 859 
 860   return failures;
 861 }
 862 
 863 // We're deoptimizing at the return of a call, value type fields are
 864 // in registers. When we go back to the interpreter, it will expect a
 865 // reference to a value type instance. Allocate and initialize it from
 866 // the register values here.
 867 bool Deoptimization::realloc_value_type_result(ValueKlass* vk, const RegisterMap& map, GrowableArray<Handle>& return_oops, TRAPS) {
 868   oop new_vt = vk->realloc_result(map, return_oops, THREAD);
 869   if (new_vt == NULL) {
 870     CLEAR_PENDING_EXCEPTION;
 871     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), true);
 872   }
 873   return_oops.clear();
 874   return_oops.push(Handle(THREAD, new_vt));
 875   return false;
 876 }
 877 
 878 // restore elements of an eliminated type array
 879 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 880   int index = 0;
 881   intptr_t val;
 882 
 883   for (int i = 0; i < sv->field_size(); i++) {
 884     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 885     switch(type) {
 886     case T_LONG: case T_DOUBLE: {
 887       assert(value->type() == T_INT, "Agreement.");
 888       StackValue* low =
 889         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 890 #ifdef _LP64
 891       jlong res = (jlong)low->get_int();
 892 #else
 893 #ifdef SPARC
 894       // For SPARC we have to swap high and low words.
 895       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 896 #else
 897       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 898 #endif //SPARC
 899 #endif
 900       obj->long_at_put(index, res);
 901       break;
 902     }
 903 
 904     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 905     case T_INT: case T_FLOAT: { // 4 bytes.
 906       assert(value->type() == T_INT, "Agreement.");
 907       bool big_value = false;
 908       if (i + 1 < sv->field_size() && type == T_INT) {
 909         if (sv->field_at(i)->is_location()) {
 910           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 911           if (type == Location::dbl || type == Location::lng) {
 912             big_value = true;
 913           }
 914         } else if (sv->field_at(i)->is_constant_int()) {
 915           ScopeValue* next_scope_field = sv->field_at(i + 1);
 916           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 917             big_value = true;
 918           }
 919         }
 920       }
 921 
 922       if (big_value) {
 923         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 924   #ifdef _LP64
 925         jlong res = (jlong)low->get_int();
 926   #else
 927   #ifdef SPARC
 928         // For SPARC we have to swap high and low words.
 929         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 930   #else
 931         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 932   #endif //SPARC
 933   #endif
 934         obj->int_at_put(index, (jint)*((jint*)&res));
 935         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 936       } else {
 937         val = value->get_int();
 938         obj->int_at_put(index, (jint)*((jint*)&val));
 939       }
 940       break;
 941     }
 942 
 943     case T_SHORT:
 944       assert(value->type() == T_INT, "Agreement.");
 945       val = value->get_int();
 946       obj->short_at_put(index, (jshort)*((jint*)&val));
 947       break;
 948 
 949     case T_CHAR:
 950       assert(value->type() == T_INT, "Agreement.");
 951       val = value->get_int();
 952       obj->char_at_put(index, (jchar)*((jint*)&val));
 953       break;
 954 
 955     case T_BYTE:
 956       assert(value->type() == T_INT, "Agreement.");
 957       val = value->get_int();
 958       obj->byte_at_put(index, (jbyte)*((jint*)&val));
 959       break;
 960 
 961     case T_BOOLEAN:
 962       assert(value->type() == T_INT, "Agreement.");
 963       val = value->get_int();
 964       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 965       break;
 966 
 967       default:
 968         ShouldNotReachHere();
 969     }
 970     index++;
 971   }
 972 }
 973 
 974 
 975 // restore fields of an eliminated object array
 976 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 977   for (int i = 0; i < sv->field_size(); i++) {
 978     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 979     assert(value->type() == T_OBJECT, "object element expected");
 980     obj->obj_at_put(i, value->get_obj()());
 981   }
 982 }
 983 
 984 class ReassignedField {
 985 public:
 986   int _offset;
 987   BasicType _type;
 988   InstanceKlass* _klass;
 989 public:
 990   ReassignedField() {
 991     _offset = 0;
 992     _type = T_ILLEGAL;
 993     _klass = NULL;
 994   }
 995 };
 996 
 997 int compare(ReassignedField* left, ReassignedField* right) {
 998   return left->_offset - right->_offset;
 999 }
1000 
1001 // Restore fields of an eliminated instance object using the same field order
1002 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
1003 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal, int base_offset, TRAPS) {
1004   if (klass->superklass() != NULL) {
1005     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal, 0, CHECK_0);
1006   }
1007 
1008   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
1009   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
1010     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
1011       ReassignedField field;
1012       field._offset = fs.offset();
1013       field._type = FieldType::basic_type(fs.signature());
1014       if (field._type == T_VALUETYPE) {
1015         field._type = T_OBJECT;
1016       }
1017       if (fs.is_flattened()) {
1018         // Resolve klass of flattened value type field
1019         Klass* vk = klass->get_value_field_klass(fs.index());
1020         field._klass = ValueKlass::cast(vk);
1021         field._type = T_VALUETYPE;
1022       }
1023       fields->append(field);
1024     }
1025   }
1026   fields->sort(compare);
1027   for (int i = 0; i < fields->length(); i++) {
1028     intptr_t val;
1029     ScopeValue* scope_field = sv->field_at(svIndex);
1030     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
1031     int offset = base_offset + fields->at(i)._offset;
1032     BasicType type = fields->at(i)._type;
1033     switch (type) {
1034       case T_OBJECT:
1035       case T_ARRAY:
1036         assert(value->type() == T_OBJECT, "Agreement.");
1037         obj->obj_field_put(offset, value->get_obj()());
1038         break;
1039 
1040       case T_VALUETYPE: {
1041         // Recursively re-assign flattened value type fields
1042         InstanceKlass* vk = fields->at(i)._klass;
1043         assert(vk != NULL, "must be resolved");
1044         offset -= ValueKlass::cast(vk)->first_field_offset(); // Adjust offset to omit oop header
1045         svIndex = reassign_fields_by_klass(vk, fr, reg_map, sv, svIndex, obj, skip_internal, offset, CHECK_0);
1046         continue; // Continue because we don't need to increment svIndex
1047       }
1048 
1049       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
1050       case T_INT: case T_FLOAT: { // 4 bytes.
1051         assert(value->type() == T_INT, "Agreement.");
1052         bool big_value = false;
1053         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
1054           if (scope_field->is_location()) {
1055             Location::Type type = ((LocationValue*) scope_field)->location().type();
1056             if (type == Location::dbl || type == Location::lng) {
1057               big_value = true;
1058             }
1059           }
1060           if (scope_field->is_constant_int()) {
1061             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
1062             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
1063               big_value = true;
1064             }
1065           }
1066         }
1067 
1068         if (big_value) {
1069           i++;
1070           assert(i < fields->length(), "second T_INT field needed");
1071           assert(fields->at(i)._type == T_INT, "T_INT field needed");
1072         } else {
1073           val = value->get_int();
1074           obj->int_field_put(offset, (jint)*((jint*)&val));
1075           break;
1076         }
1077       }
1078         /* no break */
1079 
1080       case T_LONG: case T_DOUBLE: {
1081         assert(value->type() == T_INT, "Agreement.");
1082         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1083 #ifdef _LP64
1084         jlong res = (jlong)low->get_int();
1085 #else
1086 #ifdef SPARC
1087         // For SPARC we have to swap high and low words.
1088         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1089 #else
1090         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1091 #endif //SPARC
1092 #endif
1093         obj->long_field_put(offset, res);
1094         break;
1095       }
1096 
1097       case T_SHORT:
1098         assert(value->type() == T_INT, "Agreement.");
1099         val = value->get_int();
1100         obj->short_field_put(offset, (jshort)*((jint*)&val));
1101         break;
1102 
1103       case T_CHAR:
1104         assert(value->type() == T_INT, "Agreement.");
1105         val = value->get_int();
1106         obj->char_field_put(offset, (jchar)*((jint*)&val));
1107         break;
1108 
1109       case T_BYTE:
1110         assert(value->type() == T_INT, "Agreement.");
1111         val = value->get_int();
1112         obj->byte_field_put(offset, (jbyte)*((jint*)&val));
1113         break;
1114 
1115       case T_BOOLEAN:
1116         assert(value->type() == T_INT, "Agreement.");
1117         val = value->get_int();
1118         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1119         break;
1120 
1121       default:
1122         ShouldNotReachHere();
1123     }
1124     svIndex++;
1125   }
1126   return svIndex;
1127 }
1128 
1129 // restore fields of an eliminated value type array
1130 void Deoptimization::reassign_value_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, valueArrayOop obj, ValueArrayKlass* vak, TRAPS) {
1131   ValueKlass* vk = vak->element_klass();
1132   assert(vk->flatten_array(), "should only be used for flattened value type arrays");
1133   // Adjust offset to omit oop header
1134   int base_offset = arrayOopDesc::base_offset_in_bytes(T_VALUETYPE) - ValueKlass::cast(vk)->first_field_offset();
1135   // Initialize all elements of the flattened value type array
1136   for (int i = 0; i < sv->field_size(); i++) {
1137     ScopeValue* val = sv->field_at(i);
1138     int offset = base_offset + (i << Klass::layout_helper_log2_element_size(vak->layout_helper()));
1139     reassign_fields_by_klass(vk, fr, reg_map, val->as_ObjectValue(), 0, (oop)obj, false /* skip_internal */, offset, CHECK);
1140   }
1141 }
1142 
1143 // restore fields of all eliminated objects and arrays
1144 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal, TRAPS) {
1145   for (int i = 0; i < objects->length(); i++) {
1146     ObjectValue* sv = (ObjectValue*) objects->at(i);
1147     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1148     Handle obj = sv->value();
1149     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1150     if (PrintDeoptimizationDetails) {
1151       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1152     }
1153     if (obj.is_null()) {
1154       continue;
1155     }
1156 
1157     if (k->is_instance_klass()) {
1158       InstanceKlass* ik = InstanceKlass::cast(k);
1159       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal, 0, CHECK);
1160     } else if (k->is_valueArray_klass()) {
1161       ValueArrayKlass* vak = ValueArrayKlass::cast(k);
1162       reassign_value_array_elements(fr, reg_map, sv, (valueArrayOop) obj(), vak, CHECK);
1163     } else if (k->is_typeArray_klass()) {
1164       TypeArrayKlass* ak = TypeArrayKlass::cast(k);
1165       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1166     } else if (k->is_objArray_klass()) {
1167       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1168     }
1169   }
1170 }
1171 
1172 
1173 // relock objects for which synchronization was eliminated
1174 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1175   for (int i = 0; i < monitors->length(); i++) {
1176     MonitorInfo* mon_info = monitors->at(i);
1177     if (mon_info->eliminated()) {
1178       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1179       if (!mon_info->owner_is_scalar_replaced()) {
1180         Handle obj(thread, mon_info->owner());
1181         markOop mark = obj->mark();
1182         if (UseBiasedLocking && mark->has_bias_pattern()) {
1183           // New allocated objects may have the mark set to anonymously biased.
1184           // Also the deoptimized method may called methods with synchronization
1185           // where the thread-local object is bias locked to the current thread.
1186           assert(mark->is_biased_anonymously() ||
1187                  mark->biased_locker() == thread, "should be locked to current thread");
1188           // Reset mark word to unbiased prototype.
1189           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1190           obj->set_mark(unbiased_prototype);
1191         }
1192         BasicLock* lock = mon_info->lock();
1193         ObjectSynchronizer::slow_enter(obj, lock, thread);
1194         assert(mon_info->owner()->is_locked(), "object must be locked now");
1195       }
1196     }
1197   }
1198 }
1199 
1200 
1201 #ifndef PRODUCT
1202 // print information about reallocated objects
1203 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1204   fieldDescriptor fd;
1205 
1206   for (int i = 0; i < objects->length(); i++) {
1207     ObjectValue* sv = (ObjectValue*) objects->at(i);
1208     Klass* k = java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()());
1209     Handle obj = sv->value();
1210 
1211     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1212     k->print_value();
1213     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1214     if (obj.is_null()) {
1215       tty->print(" allocation failed");
1216     } else {
1217       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1218     }
1219     tty->cr();
1220 
1221     if (Verbose && !obj.is_null()) {
1222       k->oop_print_on(obj(), tty);
1223     }
1224   }
1225 }
1226 #endif
1227 #endif // COMPILER2_OR_JVMCI
1228 
1229 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1230   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1231 
1232 #ifndef PRODUCT
1233   if (PrintDeoptimizationDetails) {
1234     ttyLocker ttyl;
1235     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1236     fr.print_on(tty);
1237     tty->print_cr("     Virtual frames (innermost first):");
1238     for (int index = 0; index < chunk->length(); index++) {
1239       compiledVFrame* vf = chunk->at(index);
1240       tty->print("       %2d - ", index);
1241       vf->print_value();
1242       int bci = chunk->at(index)->raw_bci();
1243       const char* code_name;
1244       if (bci == SynchronizationEntryBCI) {
1245         code_name = "sync entry";
1246       } else {
1247         Bytecodes::Code code = vf->method()->code_at(bci);
1248         code_name = Bytecodes::name(code);
1249       }
1250       tty->print(" - %s", code_name);
1251       tty->print_cr(" @ bci %d ", bci);
1252       if (Verbose) {
1253         vf->print();
1254         tty->cr();
1255       }
1256     }
1257   }
1258 #endif
1259 
1260   // Register map for next frame (used for stack crawl).  We capture
1261   // the state of the deopt'ing frame's caller.  Thus if we need to
1262   // stuff a C2I adapter we can properly fill in the callee-save
1263   // register locations.
1264   frame caller = fr.sender(reg_map);
1265   int frame_size = caller.sp() - fr.sp();
1266 
1267   frame sender = caller;
1268 
1269   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1270   // the vframeArray containing the unpacking information is allocated in the C heap.
1271   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1272   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1273 
1274   // Compare the vframeArray to the collected vframes
1275   assert(array->structural_compare(thread, chunk), "just checking");
1276 
1277 #ifndef PRODUCT
1278   if (PrintDeoptimizationDetails) {
1279     ttyLocker ttyl;
1280     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1281   }
1282 #endif // PRODUCT
1283 
1284   return array;
1285 }
1286 
1287 #if COMPILER2_OR_JVMCI
1288 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1289   // Reallocation of some scalar replaced objects failed. Record
1290   // that we need to pop all the interpreter frames for the
1291   // deoptimized compiled frame.
1292   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1293   thread->set_frames_to_pop_failed_realloc(array->frames());
1294   // Unlock all monitors here otherwise the interpreter will see a
1295   // mix of locked and unlocked monitors (because of failed
1296   // reallocations of synchronized objects) and be confused.
1297   for (int i = 0; i < array->frames(); i++) {
1298     MonitorChunk* monitors = array->element(i)->monitors();
1299     if (monitors != NULL) {
1300       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1301         BasicObjectLock* src = monitors->at(j);
1302         if (src->obj() != NULL) {
1303           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1304         }
1305       }
1306       array->element(i)->free_monitors(thread);
1307 #ifdef ASSERT
1308       array->element(i)->set_removed_monitors();
1309 #endif
1310     }
1311   }
1312 }
1313 #endif
1314 
1315 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1316   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1317   Thread* thread = Thread::current();
1318   for (int i = 0; i < monitors->length(); i++) {
1319     MonitorInfo* mon_info = monitors->at(i);
1320     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1321       objects_to_revoke->append(Handle(thread, mon_info->owner()));
1322     }
1323   }
1324 }
1325 
1326 
1327 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1328   if (!UseBiasedLocking) {
1329     return;
1330   }
1331 
1332   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1333 
1334   // Unfortunately we don't have a RegisterMap available in most of
1335   // the places we want to call this routine so we need to walk the
1336   // stack again to update the register map.
1337   if (map == NULL || !map->update_map()) {
1338     StackFrameStream sfs(thread, true);
1339     bool found = false;
1340     while (!found && !sfs.is_done()) {
1341       frame* cur = sfs.current();
1342       sfs.next();
1343       found = cur->id() == fr.id();
1344     }
1345     assert(found, "frame to be deoptimized not found on target thread's stack");
1346     map = sfs.register_map();
1347   }
1348 
1349   vframe* vf = vframe::new_vframe(&fr, map, thread);
1350   compiledVFrame* cvf = compiledVFrame::cast(vf);
1351   // Revoke monitors' biases in all scopes
1352   while (!cvf->is_top()) {
1353     collect_monitors(cvf, objects_to_revoke);
1354     cvf = compiledVFrame::cast(cvf->sender());
1355   }
1356   collect_monitors(cvf, objects_to_revoke);
1357 
1358   if (SafepointSynchronize::is_at_safepoint()) {
1359     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1360   } else {
1361     BiasedLocking::revoke(objects_to_revoke);
1362   }
1363 }
1364 
1365 
1366 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1367   assert(fr.can_be_deoptimized(), "checking frame type");
1368 
1369   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1370 
1371   if (LogCompilation && xtty != NULL) {
1372     CompiledMethod* cm = fr.cb()->as_compiled_method_or_null();
1373     assert(cm != NULL, "only compiled methods can deopt");
1374 
1375     ttyLocker ttyl;
1376     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "' reason='%s' pc='" INTPTR_FORMAT "'",(uintx)thread->osthread()->thread_id(), trap_reason_name(reason), p2i(fr.pc()));
1377     cm->log_identity(xtty);
1378     xtty->end_head();
1379     for (ScopeDesc* sd = cm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1380       xtty->begin_elem("jvms bci='%d'", sd->bci());
1381       xtty->method(sd->method());
1382       xtty->end_elem();
1383       if (sd->is_top())  break;
1384     }
1385     xtty->tail("deoptimized");
1386   }
1387 
1388   // Patch the compiled method so that when execution returns to it we will
1389   // deopt the execution state and return to the interpreter.
1390   fr.deoptimize(thread);
1391 }
1392 
1393 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1394   deoptimize(thread, fr, map, Reason_constraint);
1395 }
1396 
1397 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1398   // Deoptimize only if the frame comes from compile code.
1399   // Do not deoptimize the frame which is already patched
1400   // during the execution of the loops below.
1401   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1402     return;
1403   }
1404   ResourceMark rm;
1405   DeoptimizationMarker dm;
1406   if (UseBiasedLocking) {
1407     revoke_biases_of_monitors(thread, fr, map);
1408   }
1409   deoptimize_single_frame(thread, fr, reason);
1410 
1411 }
1412 
1413 #if INCLUDE_JVMCI
1414 address Deoptimization::deoptimize_for_missing_exception_handler(CompiledMethod* cm) {
1415   // there is no exception handler for this pc => deoptimize
1416   cm->make_not_entrant();
1417 
1418   // Use Deoptimization::deoptimize for all of its side-effects:
1419   // revoking biases of monitors, gathering traps statistics, logging...
1420   // it also patches the return pc but we do not care about that
1421   // since we return a continuation to the deopt_blob below.
1422   JavaThread* thread = JavaThread::current();
1423   RegisterMap reg_map(thread, UseBiasedLocking);
1424   frame runtime_frame = thread->last_frame();
1425   frame caller_frame = runtime_frame.sender(&reg_map);
1426   assert(caller_frame.cb()->as_compiled_method_or_null() == cm, "expect top frame compiled method");
1427   Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
1428 
1429   MethodData* trap_mdo = get_method_data(thread, cm->method(), true);
1430   if (trap_mdo != NULL) {
1431     trap_mdo->inc_trap_count(Deoptimization::Reason_not_compiled_exception_handler);
1432   }
1433 
1434   return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
1435 }
1436 #endif
1437 
1438 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1439   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1440          "can only deoptimize other thread at a safepoint");
1441   // Compute frame and register map based on thread and sp.
1442   RegisterMap reg_map(thread, UseBiasedLocking);
1443   frame fr = thread->last_frame();
1444   while (fr.id() != id) {
1445     fr = fr.sender(&reg_map);
1446   }
1447   deoptimize(thread, fr, &reg_map, reason);
1448 }
1449 
1450 
1451 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1452   if (thread == Thread::current()) {
1453     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1454   } else {
1455     VM_DeoptimizeFrame deopt(thread, id, reason);
1456     VMThread::execute(&deopt);
1457   }
1458 }
1459 
1460 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1461   deoptimize_frame(thread, id, Reason_constraint);
1462 }
1463 
1464 // JVMTI PopFrame support
1465 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1466 {
1467   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1468 }
1469 JRT_END
1470 
1471 MethodData*
1472 Deoptimization::get_method_data(JavaThread* thread, const methodHandle& m,
1473                                 bool create_if_missing) {
1474   Thread* THREAD = thread;
1475   MethodData* mdo = m()->method_data();
1476   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1477     // Build an MDO.  Ignore errors like OutOfMemory;
1478     // that simply means we won't have an MDO to update.
1479     Method::build_interpreter_method_data(m, THREAD);
1480     if (HAS_PENDING_EXCEPTION) {
1481       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1482       CLEAR_PENDING_EXCEPTION;
1483     }
1484     mdo = m()->method_data();
1485   }
1486   return mdo;
1487 }
1488 
1489 #if COMPILER2_OR_JVMCI
1490 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1491   // in case of an unresolved klass entry, load the class.
1492   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1493     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1494     return;
1495   }
1496 
1497   if (!constant_pool->tag_at(index).is_symbol()) return;
1498 
1499   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1500   Symbol*  symbol  = constant_pool->symbol_at(index);
1501 
1502   // class name?
1503   if (symbol->char_at(0) != '(') {
1504     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1505     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1506     return;
1507   }
1508 
1509   // then it must be a signature!
1510   ResourceMark rm(THREAD);
1511   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1512     if (ss.is_object()) {
1513       Symbol* class_name = ss.as_symbol(CHECK);
1514       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1515       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1516     }
1517   }
1518 }
1519 
1520 
1521 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1522   EXCEPTION_MARK;
1523   load_class_by_index(constant_pool, index, THREAD);
1524   if (HAS_PENDING_EXCEPTION) {
1525     // Exception happened during classloading. We ignore the exception here, since it
1526     // is going to be rethrown since the current activation is going to be deoptimized and
1527     // the interpreter will re-execute the bytecode.
1528     CLEAR_PENDING_EXCEPTION;
1529     // Class loading called java code which may have caused a stack
1530     // overflow. If the exception was thrown right before the return
1531     // to the runtime the stack is no longer guarded. Reguard the
1532     // stack otherwise if we return to the uncommon trap blob and the
1533     // stack bang causes a stack overflow we crash.
1534     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1535     JavaThread* thread = (JavaThread*)THREAD;
1536     bool guard_pages_enabled = thread->stack_guards_enabled();
1537     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1538     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1539   }
1540 }
1541 
1542 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1543   HandleMark hm;
1544 
1545   // uncommon_trap() is called at the beginning of the uncommon trap
1546   // handler. Note this fact before we start generating temporary frames
1547   // that can confuse an asynchronous stack walker. This counter is
1548   // decremented at the end of unpack_frames().
1549   thread->inc_in_deopt_handler();
1550 
1551   // We need to update the map if we have biased locking.
1552 #if INCLUDE_JVMCI
1553   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1554   RegisterMap reg_map(thread, true);
1555 #else
1556   RegisterMap reg_map(thread, UseBiasedLocking);
1557 #endif
1558   frame stub_frame = thread->last_frame();
1559   frame fr = stub_frame.sender(&reg_map);
1560   // Make sure the calling nmethod is not getting deoptimized and removed
1561   // before we are done with it.
1562   nmethodLocker nl(fr.pc());
1563 
1564   // Log a message
1565   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1566               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1567 
1568   {
1569     ResourceMark rm;
1570 
1571     // Revoke biases of any monitors in the frame to ensure we can migrate them
1572     revoke_biases_of_monitors(thread, fr, &reg_map);
1573 
1574     DeoptReason reason = trap_request_reason(trap_request);
1575     DeoptAction action = trap_request_action(trap_request);
1576 #if INCLUDE_JVMCI
1577     int debug_id = trap_request_debug_id(trap_request);
1578 #endif
1579     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1580 
1581     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1582     compiledVFrame* cvf = compiledVFrame::cast(vf);
1583 
1584     CompiledMethod* nm = cvf->code();
1585 
1586     ScopeDesc*      trap_scope  = cvf->scope();
1587 
1588     if (TraceDeoptimization) {
1589       ttyLocker ttyl;
1590       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1591 #if INCLUDE_JVMCI
1592           , debug_id
1593 #endif
1594           );
1595     }
1596 
1597     methodHandle    trap_method = trap_scope->method();
1598     int             trap_bci    = trap_scope->bci();
1599 #if INCLUDE_JVMCI
1600     long speculation = thread->pending_failed_speculation();
1601     if (nm->is_compiled_by_jvmci()) {
1602       if (speculation != 0) {
1603         oop speculation_log = nm->as_nmethod()->speculation_log();
1604         if (speculation_log != NULL) {
1605           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1606             if (HotSpotSpeculationLog::lastFailed(speculation_log) != 0) {
1607               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1608             }
1609           }
1610           if (TraceDeoptimization) {
1611             tty->print_cr("Saving speculation to speculation log");
1612           }
1613           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1614         } else {
1615           if (TraceDeoptimization) {
1616             tty->print_cr("Speculation present but no speculation log");
1617           }
1618         }
1619         thread->set_pending_failed_speculation(0);
1620       } else {
1621         if (TraceDeoptimization) {
1622           tty->print_cr("No speculation");
1623         }
1624       }
1625     } else {
1626       assert(speculation == 0, "There should not be a speculation for method compiled by non-JVMCI compilers");
1627     }
1628 
1629     if (trap_bci == SynchronizationEntryBCI) {
1630       trap_bci = 0;
1631       thread->set_pending_monitorenter(true);
1632     }
1633 
1634     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1635       thread->set_pending_transfer_to_interpreter(true);
1636     }
1637 #endif
1638 
1639     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1640     // Record this event in the histogram.
1641     gather_statistics(reason, action, trap_bc);
1642 
1643     // Ensure that we can record deopt. history:
1644     // Need MDO to record RTM code generation state.
1645     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1646 
1647     methodHandle profiled_method;
1648 #if INCLUDE_JVMCI
1649     if (nm->is_compiled_by_jvmci()) {
1650       profiled_method = nm->method();
1651     } else {
1652       profiled_method = trap_method;
1653     }
1654 #else
1655     profiled_method = trap_method;
1656 #endif
1657 
1658     MethodData* trap_mdo =
1659       get_method_data(thread, profiled_method, create_if_missing);
1660 
1661     // Log a message
1662     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d %s",
1663                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1664                               trap_method->name_and_sig_as_C_string(), trap_bci, nm->compiler_name());
1665 
1666     // Print a bunch of diagnostics, if requested.
1667     if (TraceDeoptimization || LogCompilation) {
1668       ResourceMark rm;
1669       ttyLocker ttyl;
1670       char buf[100];
1671       if (xtty != NULL) {
1672         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1673                          os::current_thread_id(),
1674                          format_trap_request(buf, sizeof(buf), trap_request));
1675         nm->log_identity(xtty);
1676       }
1677       Symbol* class_name = NULL;
1678       bool unresolved = false;
1679       if (unloaded_class_index >= 0) {
1680         constantPoolHandle constants (THREAD, trap_method->constants());
1681         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1682           class_name = constants->klass_name_at(unloaded_class_index);
1683           unresolved = true;
1684           if (xtty != NULL)
1685             xtty->print(" unresolved='1'");
1686         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1687           class_name = constants->symbol_at(unloaded_class_index);
1688         }
1689         if (xtty != NULL)
1690           xtty->name(class_name);
1691       }
1692       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1693         // Dump the relevant MDO state.
1694         // This is the deopt count for the current reason, any previous
1695         // reasons or recompiles seen at this point.
1696         int dcnt = trap_mdo->trap_count(reason);
1697         if (dcnt != 0)
1698           xtty->print(" count='%d'", dcnt);
1699         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1700         int dos = (pdata == NULL)? 0: pdata->trap_state();
1701         if (dos != 0) {
1702           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1703           if (trap_state_is_recompiled(dos)) {
1704             int recnt2 = trap_mdo->overflow_recompile_count();
1705             if (recnt2 != 0)
1706               xtty->print(" recompiles2='%d'", recnt2);
1707           }
1708         }
1709       }
1710       if (xtty != NULL) {
1711         xtty->stamp();
1712         xtty->end_head();
1713       }
1714       if (TraceDeoptimization) {  // make noise on the tty
1715         tty->print("Uncommon trap occurred in");
1716         nm->method()->print_short_name(tty);
1717         tty->print(" compiler=%s compile_id=%d", nm->compiler_name(), nm->compile_id());
1718 #if INCLUDE_JVMCI
1719         if (nm->is_nmethod()) {
1720           char* installed_code_name = nm->as_nmethod()->jvmci_installed_code_name(buf, sizeof(buf));
1721           if (installed_code_name != NULL) {
1722             tty->print(" (JVMCI: installed code name=%s) ", installed_code_name);
1723           }
1724         }
1725 #endif
1726         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1727                    p2i(fr.pc()),
1728                    os::current_thread_id(),
1729                    trap_reason_name(reason),
1730                    trap_action_name(action),
1731                    unloaded_class_index
1732 #if INCLUDE_JVMCI
1733                    , debug_id
1734 #endif
1735                    );
1736         if (class_name != NULL) {
1737           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1738           class_name->print_symbol_on(tty);
1739         }
1740         tty->cr();
1741       }
1742       if (xtty != NULL) {
1743         // Log the precise location of the trap.
1744         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1745           xtty->begin_elem("jvms bci='%d'", sd->bci());
1746           xtty->method(sd->method());
1747           xtty->end_elem();
1748           if (sd->is_top())  break;
1749         }
1750         xtty->tail("uncommon_trap");
1751       }
1752     }
1753     // (End diagnostic printout.)
1754 
1755     // Load class if necessary
1756     if (unloaded_class_index >= 0) {
1757       constantPoolHandle constants(THREAD, trap_method->constants());
1758       load_class_by_index(constants, unloaded_class_index);
1759     }
1760 
1761     // Flush the nmethod if necessary and desirable.
1762     //
1763     // We need to avoid situations where we are re-flushing the nmethod
1764     // because of a hot deoptimization site.  Repeated flushes at the same
1765     // point need to be detected by the compiler and avoided.  If the compiler
1766     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1767     // module must take measures to avoid an infinite cycle of recompilation
1768     // and deoptimization.  There are several such measures:
1769     //
1770     //   1. If a recompilation is ordered a second time at some site X
1771     //   and for the same reason R, the action is adjusted to 'reinterpret',
1772     //   to give the interpreter time to exercise the method more thoroughly.
1773     //   If this happens, the method's overflow_recompile_count is incremented.
1774     //
1775     //   2. If the compiler fails to reduce the deoptimization rate, then
1776     //   the method's overflow_recompile_count will begin to exceed the set
1777     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1778     //   is adjusted to 'make_not_compilable', and the method is abandoned
1779     //   to the interpreter.  This is a performance hit for hot methods,
1780     //   but is better than a disastrous infinite cycle of recompilations.
1781     //   (Actually, only the method containing the site X is abandoned.)
1782     //
1783     //   3. In parallel with the previous measures, if the total number of
1784     //   recompilations of a method exceeds the much larger set limit
1785     //   PerMethodRecompilationCutoff, the method is abandoned.
1786     //   This should only happen if the method is very large and has
1787     //   many "lukewarm" deoptimizations.  The code which enforces this
1788     //   limit is elsewhere (class nmethod, class Method).
1789     //
1790     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1791     // to recompile at each bytecode independently of the per-BCI cutoff.
1792     //
1793     // The decision to update code is up to the compiler, and is encoded
1794     // in the Action_xxx code.  If the compiler requests Action_none
1795     // no trap state is changed, no compiled code is changed, and the
1796     // computation suffers along in the interpreter.
1797     //
1798     // The other action codes specify various tactics for decompilation
1799     // and recompilation.  Action_maybe_recompile is the loosest, and
1800     // allows the compiled code to stay around until enough traps are seen,
1801     // and until the compiler gets around to recompiling the trapping method.
1802     //
1803     // The other actions cause immediate removal of the present code.
1804 
1805     // Traps caused by injected profile shouldn't pollute trap counts.
1806     bool injected_profile_trap = trap_method->has_injected_profile() &&
1807                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1808 
1809     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1810     bool make_not_entrant = false;
1811     bool make_not_compilable = false;
1812     bool reprofile = false;
1813     switch (action) {
1814     case Action_none:
1815       // Keep the old code.
1816       update_trap_state = false;
1817       break;
1818     case Action_maybe_recompile:
1819       // Do not need to invalidate the present code, but we can
1820       // initiate another
1821       // Start compiler without (necessarily) invalidating the nmethod.
1822       // The system will tolerate the old code, but new code should be
1823       // generated when possible.
1824       break;
1825     case Action_reinterpret:
1826       // Go back into the interpreter for a while, and then consider
1827       // recompiling form scratch.
1828       make_not_entrant = true;
1829       // Reset invocation counter for outer most method.
1830       // This will allow the interpreter to exercise the bytecodes
1831       // for a while before recompiling.
1832       // By contrast, Action_make_not_entrant is immediate.
1833       //
1834       // Note that the compiler will track null_check, null_assert,
1835       // range_check, and class_check events and log them as if they
1836       // had been traps taken from compiled code.  This will update
1837       // the MDO trap history so that the next compilation will
1838       // properly detect hot trap sites.
1839       reprofile = true;
1840       break;
1841     case Action_make_not_entrant:
1842       // Request immediate recompilation, and get rid of the old code.
1843       // Make them not entrant, so next time they are called they get
1844       // recompiled.  Unloaded classes are loaded now so recompile before next
1845       // time they are called.  Same for uninitialized.  The interpreter will
1846       // link the missing class, if any.
1847       make_not_entrant = true;
1848       break;
1849     case Action_make_not_compilable:
1850       // Give up on compiling this method at all.
1851       make_not_entrant = true;
1852       make_not_compilable = true;
1853       break;
1854     default:
1855       ShouldNotReachHere();
1856     }
1857 
1858     // Setting +ProfileTraps fixes the following, on all platforms:
1859     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1860     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1861     // recompile relies on a MethodData* to record heroic opt failures.
1862 
1863     // Whether the interpreter is producing MDO data or not, we also need
1864     // to use the MDO to detect hot deoptimization points and control
1865     // aggressive optimization.
1866     bool inc_recompile_count = false;
1867     ProfileData* pdata = NULL;
1868     if (ProfileTraps && !is_client_compilation_mode_vm() && update_trap_state && trap_mdo != NULL) {
1869       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1870       uint this_trap_count = 0;
1871       bool maybe_prior_trap = false;
1872       bool maybe_prior_recompile = false;
1873       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1874 #if INCLUDE_JVMCI
1875                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1876 #endif
1877                                    nm->method(),
1878                                    //outputs:
1879                                    this_trap_count,
1880                                    maybe_prior_trap,
1881                                    maybe_prior_recompile);
1882       // Because the interpreter also counts null, div0, range, and class
1883       // checks, these traps from compiled code are double-counted.
1884       // This is harmless; it just means that the PerXTrapLimit values
1885       // are in effect a little smaller than they look.
1886 
1887       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1888       if (per_bc_reason != Reason_none) {
1889         // Now take action based on the partially known per-BCI history.
1890         if (maybe_prior_trap
1891             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1892           // If there are too many traps at this BCI, force a recompile.
1893           // This will allow the compiler to see the limit overflow, and
1894           // take corrective action, if possible.  The compiler generally
1895           // does not use the exact PerBytecodeTrapLimit value, but instead
1896           // changes its tactics if it sees any traps at all.  This provides
1897           // a little hysteresis, delaying a recompile until a trap happens
1898           // several times.
1899           //
1900           // Actually, since there is only one bit of counter per BCI,
1901           // the possible per-BCI counts are {0,1,(per-method count)}.
1902           // This produces accurate results if in fact there is only
1903           // one hot trap site, but begins to get fuzzy if there are
1904           // many sites.  For example, if there are ten sites each
1905           // trapping two or more times, they each get the blame for
1906           // all of their traps.
1907           make_not_entrant = true;
1908         }
1909 
1910         // Detect repeated recompilation at the same BCI, and enforce a limit.
1911         if (make_not_entrant && maybe_prior_recompile) {
1912           // More than one recompile at this point.
1913           inc_recompile_count = maybe_prior_trap;
1914         }
1915       } else {
1916         // For reasons which are not recorded per-bytecode, we simply
1917         // force recompiles unconditionally.
1918         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1919         make_not_entrant = true;
1920       }
1921 
1922       // Go back to the compiler if there are too many traps in this method.
1923       if (this_trap_count >= per_method_trap_limit(reason)) {
1924         // If there are too many traps in this method, force a recompile.
1925         // This will allow the compiler to see the limit overflow, and
1926         // take corrective action, if possible.
1927         // (This condition is an unlikely backstop only, because the
1928         // PerBytecodeTrapLimit is more likely to take effect first,
1929         // if it is applicable.)
1930         make_not_entrant = true;
1931       }
1932 
1933       // Here's more hysteresis:  If there has been a recompile at
1934       // this trap point already, run the method in the interpreter
1935       // for a while to exercise it more thoroughly.
1936       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1937         reprofile = true;
1938       }
1939     }
1940 
1941     // Take requested actions on the method:
1942 
1943     // Recompile
1944     if (make_not_entrant) {
1945       if (!nm->make_not_entrant()) {
1946         return; // the call did not change nmethod's state
1947       }
1948 
1949       if (pdata != NULL) {
1950         // Record the recompilation event, if any.
1951         int tstate0 = pdata->trap_state();
1952         int tstate1 = trap_state_set_recompiled(tstate0, true);
1953         if (tstate1 != tstate0)
1954           pdata->set_trap_state(tstate1);
1955       }
1956 
1957 #if INCLUDE_RTM_OPT
1958       // Restart collecting RTM locking abort statistic if the method
1959       // is recompiled for a reason other than RTM state change.
1960       // Assume that in new recompiled code the statistic could be different,
1961       // for example, due to different inlining.
1962       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1963           UseRTMDeopt && (nm->as_nmethod()->rtm_state() != ProfileRTM)) {
1964         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1965       }
1966 #endif
1967       // For code aging we count traps separately here, using make_not_entrant()
1968       // as a guard against simultaneous deopts in multiple threads.
1969       if (reason == Reason_tenured && trap_mdo != NULL) {
1970         trap_mdo->inc_tenure_traps();
1971       }
1972     }
1973 
1974     if (inc_recompile_count) {
1975       trap_mdo->inc_overflow_recompile_count();
1976       if ((uint)trap_mdo->overflow_recompile_count() >
1977           (uint)PerBytecodeRecompilationCutoff) {
1978         // Give up on the method containing the bad BCI.
1979         if (trap_method() == nm->method()) {
1980           make_not_compilable = true;
1981         } else {
1982           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1983           // But give grace to the enclosing nm->method().
1984         }
1985       }
1986     }
1987 
1988     // Reprofile
1989     if (reprofile) {
1990       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1991     }
1992 
1993     // Give up compiling
1994     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1995       assert(make_not_entrant, "consistent");
1996       nm->method()->set_not_compilable(CompLevel_full_optimization);
1997     }
1998 
1999   } // Free marked resources
2000 
2001 }
2002 JRT_END
2003 
2004 ProfileData*
2005 Deoptimization::query_update_method_data(MethodData* trap_mdo,
2006                                          int trap_bci,
2007                                          Deoptimization::DeoptReason reason,
2008                                          bool update_total_trap_count,
2009 #if INCLUDE_JVMCI
2010                                          bool is_osr,
2011 #endif
2012                                          Method* compiled_method,
2013                                          //outputs:
2014                                          uint& ret_this_trap_count,
2015                                          bool& ret_maybe_prior_trap,
2016                                          bool& ret_maybe_prior_recompile) {
2017   bool maybe_prior_trap = false;
2018   bool maybe_prior_recompile = false;
2019   uint this_trap_count = 0;
2020   if (update_total_trap_count) {
2021     uint idx = reason;
2022 #if INCLUDE_JVMCI
2023     if (is_osr) {
2024       idx += Reason_LIMIT;
2025     }
2026 #endif
2027     uint prior_trap_count = trap_mdo->trap_count(idx);
2028     this_trap_count  = trap_mdo->inc_trap_count(idx);
2029 
2030     // If the runtime cannot find a place to store trap history,
2031     // it is estimated based on the general condition of the method.
2032     // If the method has ever been recompiled, or has ever incurred
2033     // a trap with the present reason , then this BCI is assumed
2034     // (pessimistically) to be the culprit.
2035     maybe_prior_trap      = (prior_trap_count != 0);
2036     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
2037   }
2038   ProfileData* pdata = NULL;
2039 
2040 
2041   // For reasons which are recorded per bytecode, we check per-BCI data.
2042   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
2043   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
2044   if (per_bc_reason != Reason_none) {
2045     // Find the profile data for this BCI.  If there isn't one,
2046     // try to allocate one from the MDO's set of spares.
2047     // This will let us detect a repeated trap at this point.
2048     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
2049 
2050     if (pdata != NULL) {
2051       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
2052         if (LogCompilation && xtty != NULL) {
2053           ttyLocker ttyl;
2054           // no more room for speculative traps in this MDO
2055           xtty->elem("speculative_traps_oom");
2056         }
2057       }
2058       // Query the trap state of this profile datum.
2059       int tstate0 = pdata->trap_state();
2060       if (!trap_state_has_reason(tstate0, per_bc_reason))
2061         maybe_prior_trap = false;
2062       if (!trap_state_is_recompiled(tstate0))
2063         maybe_prior_recompile = false;
2064 
2065       // Update the trap state of this profile datum.
2066       int tstate1 = tstate0;
2067       // Record the reason.
2068       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
2069       // Store the updated state on the MDO, for next time.
2070       if (tstate1 != tstate0)
2071         pdata->set_trap_state(tstate1);
2072     } else {
2073       if (LogCompilation && xtty != NULL) {
2074         ttyLocker ttyl;
2075         // Missing MDP?  Leave a small complaint in the log.
2076         xtty->elem("missing_mdp bci='%d'", trap_bci);
2077       }
2078     }
2079   }
2080 
2081   // Return results:
2082   ret_this_trap_count = this_trap_count;
2083   ret_maybe_prior_trap = maybe_prior_trap;
2084   ret_maybe_prior_recompile = maybe_prior_recompile;
2085   return pdata;
2086 }
2087 
2088 void
2089 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2090   ResourceMark rm;
2091   // Ignored outputs:
2092   uint ignore_this_trap_count;
2093   bool ignore_maybe_prior_trap;
2094   bool ignore_maybe_prior_recompile;
2095   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2096   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2097   bool update_total_counts = true JVMCI_ONLY( && !UseJVMCICompiler);
2098   query_update_method_data(trap_mdo, trap_bci,
2099                            (DeoptReason)reason,
2100                            update_total_counts,
2101 #if INCLUDE_JVMCI
2102                            false,
2103 #endif
2104                            NULL,
2105                            ignore_this_trap_count,
2106                            ignore_maybe_prior_trap,
2107                            ignore_maybe_prior_recompile);
2108 }
2109 
2110 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2111   if (TraceDeoptimization) {
2112     tty->print("Uncommon trap ");
2113   }
2114   // Still in Java no safepoints
2115   {
2116     // This enters VM and may safepoint
2117     uncommon_trap_inner(thread, trap_request);
2118   }
2119   return fetch_unroll_info_helper(thread, exec_mode);
2120 }
2121 
2122 // Local derived constants.
2123 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2124 const int DS_REASON_MASK   = ((uint)DataLayout::trap_mask) >> 1;
2125 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2126 
2127 //---------------------------trap_state_reason---------------------------------
2128 Deoptimization::DeoptReason
2129 Deoptimization::trap_state_reason(int trap_state) {
2130   // This assert provides the link between the width of DataLayout::trap_bits
2131   // and the encoding of "recorded" reasons.  It ensures there are enough
2132   // bits to store all needed reasons in the per-BCI MDO profile.
2133   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2134   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2135   trap_state -= recompile_bit;
2136   if (trap_state == DS_REASON_MASK) {
2137     return Reason_many;
2138   } else {
2139     assert((int)Reason_none == 0, "state=0 => Reason_none");
2140     return (DeoptReason)trap_state;
2141   }
2142 }
2143 //-------------------------trap_state_has_reason-------------------------------
2144 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2145   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2146   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2147   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2148   trap_state -= recompile_bit;
2149   if (trap_state == DS_REASON_MASK) {
2150     return -1;  // true, unspecifically (bottom of state lattice)
2151   } else if (trap_state == reason) {
2152     return 1;   // true, definitely
2153   } else if (trap_state == 0) {
2154     return 0;   // false, definitely (top of state lattice)
2155   } else {
2156     return 0;   // false, definitely
2157   }
2158 }
2159 //-------------------------trap_state_add_reason-------------------------------
2160 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2161   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2162   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2163   trap_state -= recompile_bit;
2164   if (trap_state == DS_REASON_MASK) {
2165     return trap_state + recompile_bit;     // already at state lattice bottom
2166   } else if (trap_state == reason) {
2167     return trap_state + recompile_bit;     // the condition is already true
2168   } else if (trap_state == 0) {
2169     return reason + recompile_bit;          // no condition has yet been true
2170   } else {
2171     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2172   }
2173 }
2174 //-----------------------trap_state_is_recompiled------------------------------
2175 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2176   return (trap_state & DS_RECOMPILE_BIT) != 0;
2177 }
2178 //-----------------------trap_state_set_recompiled-----------------------------
2179 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2180   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2181   else    return trap_state & ~DS_RECOMPILE_BIT;
2182 }
2183 //---------------------------format_trap_state---------------------------------
2184 // This is used for debugging and diagnostics, including LogFile output.
2185 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2186                                               int trap_state) {
2187   assert(buflen > 0, "sanity");
2188   DeoptReason reason      = trap_state_reason(trap_state);
2189   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2190   // Re-encode the state from its decoded components.
2191   int decoded_state = 0;
2192   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2193     decoded_state = trap_state_add_reason(decoded_state, reason);
2194   if (recomp_flag)
2195     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2196   // If the state re-encodes properly, format it symbolically.
2197   // Because this routine is used for debugging and diagnostics,
2198   // be robust even if the state is a strange value.
2199   size_t len;
2200   if (decoded_state != trap_state) {
2201     // Random buggy state that doesn't decode??
2202     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2203   } else {
2204     len = jio_snprintf(buf, buflen, "%s%s",
2205                        trap_reason_name(reason),
2206                        recomp_flag ? " recompiled" : "");
2207   }
2208   return buf;
2209 }
2210 
2211 
2212 //--------------------------------statics--------------------------------------
2213 const char* Deoptimization::_trap_reason_name[] = {
2214   // Note:  Keep this in sync. with enum DeoptReason.
2215   "none",
2216   "null_check",
2217   "null_assert" JVMCI_ONLY("_or_unreached0"),
2218   "range_check",
2219   "class_check",
2220   "array_check",
2221   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2222   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2223   "profile_predicate",
2224   "unloaded",
2225   "uninitialized",
2226   "unreached",
2227   "unhandled",
2228   "constraint",
2229   "div0_check",
2230   "age",
2231   "predicate",
2232   "loop_limit_check",
2233   "speculate_class_check",
2234   "speculate_null_check",
2235   "speculate_null_assert",
2236   "rtm_state_change",
2237   "unstable_if",
2238   "unstable_fused_if",
2239 #if INCLUDE_JVMCI
2240   "aliasing",
2241   "transfer_to_interpreter",
2242   "not_compiled_exception_handler",
2243   "unresolved",
2244   "jsr_mismatch",
2245 #endif
2246   "tenured"
2247 };
2248 const char* Deoptimization::_trap_action_name[] = {
2249   // Note:  Keep this in sync. with enum DeoptAction.
2250   "none",
2251   "maybe_recompile",
2252   "reinterpret",
2253   "make_not_entrant",
2254   "make_not_compilable"
2255 };
2256 
2257 const char* Deoptimization::trap_reason_name(int reason) {
2258   // Check that every reason has a name
2259   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2260 
2261   if (reason == Reason_many)  return "many";
2262   if ((uint)reason < Reason_LIMIT)
2263     return _trap_reason_name[reason];
2264   static char buf[20];
2265   sprintf(buf, "reason%d", reason);
2266   return buf;
2267 }
2268 const char* Deoptimization::trap_action_name(int action) {
2269   // Check that every action has a name
2270   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2271 
2272   if ((uint)action < Action_LIMIT)
2273     return _trap_action_name[action];
2274   static char buf[20];
2275   sprintf(buf, "action%d", action);
2276   return buf;
2277 }
2278 
2279 // This is used for debugging and diagnostics, including LogFile output.
2280 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2281                                                 int trap_request) {
2282   jint unloaded_class_index = trap_request_index(trap_request);
2283   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2284   const char* action = trap_action_name(trap_request_action(trap_request));
2285 #if INCLUDE_JVMCI
2286   int debug_id = trap_request_debug_id(trap_request);
2287 #endif
2288   size_t len;
2289   if (unloaded_class_index < 0) {
2290     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2291                        reason, action
2292 #if INCLUDE_JVMCI
2293                        ,debug_id
2294 #endif
2295                        );
2296   } else {
2297     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2298                        reason, action, unloaded_class_index
2299 #if INCLUDE_JVMCI
2300                        ,debug_id
2301 #endif
2302                        );
2303   }
2304   return buf;
2305 }
2306 
2307 juint Deoptimization::_deoptimization_hist
2308         [Deoptimization::Reason_LIMIT]
2309     [1 + Deoptimization::Action_LIMIT]
2310         [Deoptimization::BC_CASE_LIMIT]
2311   = {0};
2312 
2313 enum {
2314   LSB_BITS = 8,
2315   LSB_MASK = right_n_bits(LSB_BITS)
2316 };
2317 
2318 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2319                                        Bytecodes::Code bc) {
2320   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2321   assert(action >= 0 && action < Action_LIMIT, "oob");
2322   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2323   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2324   juint* cases = _deoptimization_hist[reason][1+action];
2325   juint* bc_counter_addr = NULL;
2326   juint  bc_counter      = 0;
2327   // Look for an unused counter, or an exact match to this BC.
2328   if (bc != Bytecodes::_illegal) {
2329     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2330       juint* counter_addr = &cases[bc_case];
2331       juint  counter = *counter_addr;
2332       if ((counter == 0 && bc_counter_addr == NULL)
2333           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2334         // this counter is either free or is already devoted to this BC
2335         bc_counter_addr = counter_addr;
2336         bc_counter = counter | bc;
2337       }
2338     }
2339   }
2340   if (bc_counter_addr == NULL) {
2341     // Overflow, or no given bytecode.
2342     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2343     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2344   }
2345   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2346 }
2347 
2348 jint Deoptimization::total_deoptimization_count() {
2349   return _deoptimization_hist[Reason_none][0][0];
2350 }
2351 
2352 void Deoptimization::print_statistics() {
2353   juint total = total_deoptimization_count();
2354   juint account = total;
2355   if (total != 0) {
2356     ttyLocker ttyl;
2357     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2358     tty->print_cr("Deoptimization traps recorded:");
2359     #define PRINT_STAT_LINE(name, r) \
2360       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2361     PRINT_STAT_LINE("total", total);
2362     // For each non-zero entry in the histogram, print the reason,
2363     // the action, and (if specifically known) the type of bytecode.
2364     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2365       for (int action = 0; action < Action_LIMIT; action++) {
2366         juint* cases = _deoptimization_hist[reason][1+action];
2367         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2368           juint counter = cases[bc_case];
2369           if (counter != 0) {
2370             char name[1*K];
2371             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2372             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2373               bc = Bytecodes::_illegal;
2374             sprintf(name, "%s/%s/%s",
2375                     trap_reason_name(reason),
2376                     trap_action_name(action),
2377                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2378             juint r = counter >> LSB_BITS;
2379             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2380             account -= r;
2381           }
2382         }
2383       }
2384     }
2385     if (account != 0) {
2386       PRINT_STAT_LINE("unaccounted", account);
2387     }
2388     #undef PRINT_STAT_LINE
2389     if (xtty != NULL)  xtty->tail("statistics");
2390   }
2391 }
2392 #else // COMPILER2_OR_JVMCI
2393 
2394 
2395 // Stubs for C1 only system.
2396 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2397   return false;
2398 }
2399 
2400 const char* Deoptimization::trap_reason_name(int reason) {
2401   return "unknown";
2402 }
2403 
2404 void Deoptimization::print_statistics() {
2405   // no output
2406 }
2407 
2408 void
2409 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2410   // no udpate
2411 }
2412 
2413 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2414   return 0;
2415 }
2416 
2417 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2418                                        Bytecodes::Code bc) {
2419   // no update
2420 }
2421 
2422 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2423                                               int trap_state) {
2424   jio_snprintf(buf, buflen, "#%d", trap_state);
2425   return buf;
2426 }
2427 
2428 #endif // COMPILER2_OR_JVMCI