1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/macroAssembler.hpp"
  27 #include "asm/macroAssembler.inline.hpp"
  28 #include "ci/ciReplay.hpp"
  29 #include "classfile/systemDictionary.hpp"
  30 #include "code/exceptionHandlerTable.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "compiler/compileBroker.hpp"
  33 #include "compiler/compileLog.hpp"
  34 #include "compiler/disassembler.hpp"
  35 #include "compiler/oopMap.hpp"
  36 #include "gc/shared/barrierSet.hpp"
  37 #include "gc/shared/c2/barrierSetC2.hpp"
  38 #include "memory/resourceArea.hpp"
  39 #include "opto/addnode.hpp"
  40 #include "opto/block.hpp"
  41 #include "opto/c2compiler.hpp"
  42 #include "opto/callGenerator.hpp"
  43 #include "opto/callnode.hpp"
  44 #include "opto/castnode.hpp"
  45 #include "opto/cfgnode.hpp"
  46 #include "opto/chaitin.hpp"
  47 #include "opto/compile.hpp"
  48 #include "opto/connode.hpp"
  49 #include "opto/convertnode.hpp"
  50 #include "opto/divnode.hpp"
  51 #include "opto/escape.hpp"
  52 #include "opto/idealGraphPrinter.hpp"
  53 #include "opto/loopnode.hpp"
  54 #include "opto/machnode.hpp"
  55 #include "opto/macro.hpp"
  56 #include "opto/matcher.hpp"
  57 #include "opto/mathexactnode.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/narrowptrnode.hpp"
  61 #include "opto/node.hpp"
  62 #include "opto/opcodes.hpp"
  63 #include "opto/output.hpp"
  64 #include "opto/parse.hpp"
  65 #include "opto/phaseX.hpp"
  66 #include "opto/rootnode.hpp"
  67 #include "opto/runtime.hpp"
  68 #include "opto/stringopts.hpp"
  69 #include "opto/type.hpp"
  70 #include "opto/valuetypenode.hpp"
  71 #include "opto/vectornode.hpp"
  72 #include "runtime/arguments.hpp"
  73 #include "runtime/sharedRuntime.hpp"
  74 #include "runtime/signature.hpp"
  75 #include "runtime/stubRoutines.hpp"
  76 #include "runtime/timer.hpp"
  77 #include "utilities/align.hpp"
  78 #include "utilities/copy.hpp"
  79 #include "utilities/macros.hpp"
  80 #if INCLUDE_G1GC
  81 #include "gc/g1/g1ThreadLocalData.hpp"
  82 #endif // INCLUDE_G1GC
  83 #if INCLUDE_ZGC
  84 #include "gc/z/c2/zBarrierSetC2.hpp"
  85 #endif
  86 
  87 
  88 // -------------------- Compile::mach_constant_base_node -----------------------
  89 // Constant table base node singleton.
  90 MachConstantBaseNode* Compile::mach_constant_base_node() {
  91   if (_mach_constant_base_node == NULL) {
  92     _mach_constant_base_node = new MachConstantBaseNode();
  93     _mach_constant_base_node->add_req(C->root());
  94   }
  95   return _mach_constant_base_node;
  96 }
  97 
  98 
  99 /// Support for intrinsics.
 100 
 101 // Return the index at which m must be inserted (or already exists).
 102 // The sort order is by the address of the ciMethod, with is_virtual as minor key.
 103 class IntrinsicDescPair {
 104  private:
 105   ciMethod* _m;
 106   bool _is_virtual;
 107  public:
 108   IntrinsicDescPair(ciMethod* m, bool is_virtual) : _m(m), _is_virtual(is_virtual) {}
 109   static int compare(IntrinsicDescPair* const& key, CallGenerator* const& elt) {
 110     ciMethod* m= elt->method();
 111     ciMethod* key_m = key->_m;
 112     if (key_m < m)      return -1;
 113     else if (key_m > m) return 1;
 114     else {
 115       bool is_virtual = elt->is_virtual();
 116       bool key_virtual = key->_is_virtual;
 117       if (key_virtual < is_virtual)      return -1;
 118       else if (key_virtual > is_virtual) return 1;
 119       else                               return 0;
 120     }
 121   }
 122 };
 123 int Compile::intrinsic_insertion_index(ciMethod* m, bool is_virtual, bool& found) {
 124 #ifdef ASSERT
 125   for (int i = 1; i < _intrinsics->length(); i++) {
 126     CallGenerator* cg1 = _intrinsics->at(i-1);
 127     CallGenerator* cg2 = _intrinsics->at(i);
 128     assert(cg1->method() != cg2->method()
 129            ? cg1->method()     < cg2->method()
 130            : cg1->is_virtual() < cg2->is_virtual(),
 131            "compiler intrinsics list must stay sorted");
 132   }
 133 #endif
 134   IntrinsicDescPair pair(m, is_virtual);
 135   return _intrinsics->find_sorted<IntrinsicDescPair*, IntrinsicDescPair::compare>(&pair, found);
 136 }
 137 
 138 void Compile::register_intrinsic(CallGenerator* cg) {
 139   if (_intrinsics == NULL) {
 140     _intrinsics = new (comp_arena())GrowableArray<CallGenerator*>(comp_arena(), 60, 0, NULL);
 141   }
 142   int len = _intrinsics->length();
 143   bool found = false;
 144   int index = intrinsic_insertion_index(cg->method(), cg->is_virtual(), found);
 145   assert(!found, "registering twice");
 146   _intrinsics->insert_before(index, cg);
 147   assert(find_intrinsic(cg->method(), cg->is_virtual()) == cg, "registration worked");
 148 }
 149 
 150 CallGenerator* Compile::find_intrinsic(ciMethod* m, bool is_virtual) {
 151   assert(m->is_loaded(), "don't try this on unloaded methods");
 152   if (_intrinsics != NULL) {
 153     bool found = false;
 154     int index = intrinsic_insertion_index(m, is_virtual, found);
 155      if (found) {
 156       return _intrinsics->at(index);
 157     }
 158   }
 159   // Lazily create intrinsics for intrinsic IDs well-known in the runtime.
 160   if (m->intrinsic_id() != vmIntrinsics::_none &&
 161       m->intrinsic_id() <= vmIntrinsics::LAST_COMPILER_INLINE) {
 162     CallGenerator* cg = make_vm_intrinsic(m, is_virtual);
 163     if (cg != NULL) {
 164       // Save it for next time:
 165       register_intrinsic(cg);
 166       return cg;
 167     } else {
 168       gather_intrinsic_statistics(m->intrinsic_id(), is_virtual, _intrinsic_disabled);
 169     }
 170   }
 171   return NULL;
 172 }
 173 
 174 // Compile:: register_library_intrinsics and make_vm_intrinsic are defined
 175 // in library_call.cpp.
 176 
 177 
 178 #ifndef PRODUCT
 179 // statistics gathering...
 180 
 181 juint  Compile::_intrinsic_hist_count[vmIntrinsics::ID_LIMIT] = {0};
 182 jubyte Compile::_intrinsic_hist_flags[vmIntrinsics::ID_LIMIT] = {0};
 183 
 184 bool Compile::gather_intrinsic_statistics(vmIntrinsics::ID id, bool is_virtual, int flags) {
 185   assert(id > vmIntrinsics::_none && id < vmIntrinsics::ID_LIMIT, "oob");
 186   int oflags = _intrinsic_hist_flags[id];
 187   assert(flags != 0, "what happened?");
 188   if (is_virtual) {
 189     flags |= _intrinsic_virtual;
 190   }
 191   bool changed = (flags != oflags);
 192   if ((flags & _intrinsic_worked) != 0) {
 193     juint count = (_intrinsic_hist_count[id] += 1);
 194     if (count == 1) {
 195       changed = true;           // first time
 196     }
 197     // increment the overall count also:
 198     _intrinsic_hist_count[vmIntrinsics::_none] += 1;
 199   }
 200   if (changed) {
 201     if (((oflags ^ flags) & _intrinsic_virtual) != 0) {
 202       // Something changed about the intrinsic's virtuality.
 203       if ((flags & _intrinsic_virtual) != 0) {
 204         // This is the first use of this intrinsic as a virtual call.
 205         if (oflags != 0) {
 206           // We already saw it as a non-virtual, so note both cases.
 207           flags |= _intrinsic_both;
 208         }
 209       } else if ((oflags & _intrinsic_both) == 0) {
 210         // This is the first use of this intrinsic as a non-virtual
 211         flags |= _intrinsic_both;
 212       }
 213     }
 214     _intrinsic_hist_flags[id] = (jubyte) (oflags | flags);
 215   }
 216   // update the overall flags also:
 217   _intrinsic_hist_flags[vmIntrinsics::_none] |= (jubyte) flags;
 218   return changed;
 219 }
 220 
 221 static char* format_flags(int flags, char* buf) {
 222   buf[0] = 0;
 223   if ((flags & Compile::_intrinsic_worked) != 0)    strcat(buf, ",worked");
 224   if ((flags & Compile::_intrinsic_failed) != 0)    strcat(buf, ",failed");
 225   if ((flags & Compile::_intrinsic_disabled) != 0)  strcat(buf, ",disabled");
 226   if ((flags & Compile::_intrinsic_virtual) != 0)   strcat(buf, ",virtual");
 227   if ((flags & Compile::_intrinsic_both) != 0)      strcat(buf, ",nonvirtual");
 228   if (buf[0] == 0)  strcat(buf, ",");
 229   assert(buf[0] == ',', "must be");
 230   return &buf[1];
 231 }
 232 
 233 void Compile::print_intrinsic_statistics() {
 234   char flagsbuf[100];
 235   ttyLocker ttyl;
 236   if (xtty != NULL)  xtty->head("statistics type='intrinsic'");
 237   tty->print_cr("Compiler intrinsic usage:");
 238   juint total = _intrinsic_hist_count[vmIntrinsics::_none];
 239   if (total == 0)  total = 1;  // avoid div0 in case of no successes
 240   #define PRINT_STAT_LINE(name, c, f) \
 241     tty->print_cr("  %4d (%4.1f%%) %s (%s)", (int)(c), ((c) * 100.0) / total, name, f);
 242   for (int index = 1 + (int)vmIntrinsics::_none; index < (int)vmIntrinsics::ID_LIMIT; index++) {
 243     vmIntrinsics::ID id = (vmIntrinsics::ID) index;
 244     int   flags = _intrinsic_hist_flags[id];
 245     juint count = _intrinsic_hist_count[id];
 246     if ((flags | count) != 0) {
 247       PRINT_STAT_LINE(vmIntrinsics::name_at(id), count, format_flags(flags, flagsbuf));
 248     }
 249   }
 250   PRINT_STAT_LINE("total", total, format_flags(_intrinsic_hist_flags[vmIntrinsics::_none], flagsbuf));
 251   if (xtty != NULL)  xtty->tail("statistics");
 252 }
 253 
 254 void Compile::print_statistics() {
 255   { ttyLocker ttyl;
 256     if (xtty != NULL)  xtty->head("statistics type='opto'");
 257     Parse::print_statistics();
 258     PhaseCCP::print_statistics();
 259     PhaseRegAlloc::print_statistics();
 260     Scheduling::print_statistics();
 261     PhasePeephole::print_statistics();
 262     PhaseIdealLoop::print_statistics();
 263     if (xtty != NULL)  xtty->tail("statistics");
 264   }
 265   if (_intrinsic_hist_flags[vmIntrinsics::_none] != 0) {
 266     // put this under its own <statistics> element.
 267     print_intrinsic_statistics();
 268   }
 269 }
 270 #endif //PRODUCT
 271 
 272 // Support for bundling info
 273 Bundle* Compile::node_bundling(const Node *n) {
 274   assert(valid_bundle_info(n), "oob");
 275   return &_node_bundling_base[n->_idx];
 276 }
 277 
 278 bool Compile::valid_bundle_info(const Node *n) {
 279   return (_node_bundling_limit > n->_idx);
 280 }
 281 
 282 
 283 void Compile::gvn_replace_by(Node* n, Node* nn) {
 284   for (DUIterator_Last imin, i = n->last_outs(imin); i >= imin; ) {
 285     Node* use = n->last_out(i);
 286     bool is_in_table = initial_gvn()->hash_delete(use);
 287     uint uses_found = 0;
 288     for (uint j = 0; j < use->len(); j++) {
 289       if (use->in(j) == n) {
 290         if (j < use->req())
 291           use->set_req(j, nn);
 292         else
 293           use->set_prec(j, nn);
 294         uses_found++;
 295       }
 296     }
 297     if (is_in_table) {
 298       // reinsert into table
 299       initial_gvn()->hash_find_insert(use);
 300     }
 301     record_for_igvn(use);
 302     i -= uses_found;    // we deleted 1 or more copies of this edge
 303   }
 304 }
 305 
 306 
 307 static inline bool not_a_node(const Node* n) {
 308   if (n == NULL)                   return true;
 309   if (((intptr_t)n & 1) != 0)      return true;  // uninitialized, etc.
 310   if (*(address*)n == badAddress)  return true;  // kill by Node::destruct
 311   return false;
 312 }
 313 
 314 // Identify all nodes that are reachable from below, useful.
 315 // Use breadth-first pass that records state in a Unique_Node_List,
 316 // recursive traversal is slower.
 317 void Compile::identify_useful_nodes(Unique_Node_List &useful) {
 318   int estimated_worklist_size = live_nodes();
 319   useful.map( estimated_worklist_size, NULL );  // preallocate space
 320 
 321   // Initialize worklist
 322   if (root() != NULL)     { useful.push(root()); }
 323   // If 'top' is cached, declare it useful to preserve cached node
 324   if( cached_top_node() ) { useful.push(cached_top_node()); }
 325 
 326   // Push all useful nodes onto the list, breadthfirst
 327   for( uint next = 0; next < useful.size(); ++next ) {
 328     assert( next < unique(), "Unique useful nodes < total nodes");
 329     Node *n  = useful.at(next);
 330     uint max = n->len();
 331     for( uint i = 0; i < max; ++i ) {
 332       Node *m = n->in(i);
 333       if (not_a_node(m))  continue;
 334       useful.push(m);
 335     }
 336   }
 337 }
 338 
 339 // Update dead_node_list with any missing dead nodes using useful
 340 // list. Consider all non-useful nodes to be useless i.e., dead nodes.
 341 void Compile::update_dead_node_list(Unique_Node_List &useful) {
 342   uint max_idx = unique();
 343   VectorSet& useful_node_set = useful.member_set();
 344 
 345   for (uint node_idx = 0; node_idx < max_idx; node_idx++) {
 346     // If node with index node_idx is not in useful set,
 347     // mark it as dead in dead node list.
 348     if (! useful_node_set.test(node_idx) ) {
 349       record_dead_node(node_idx);
 350     }
 351   }
 352 }
 353 
 354 void Compile::remove_useless_late_inlines(GrowableArray<CallGenerator*>* inlines, Unique_Node_List &useful) {
 355   int shift = 0;
 356   for (int i = 0; i < inlines->length(); i++) {
 357     CallGenerator* cg = inlines->at(i);
 358     CallNode* call = cg->call_node();
 359     if (shift > 0) {
 360       inlines->at_put(i-shift, cg);
 361     }
 362     if (!useful.member(call)) {
 363       shift++;
 364     }
 365   }
 366   inlines->trunc_to(inlines->length()-shift);
 367 }
 368 
 369 // Disconnect all useless nodes by disconnecting those at the boundary.
 370 void Compile::remove_useless_nodes(Unique_Node_List &useful) {
 371   uint next = 0;
 372   while (next < useful.size()) {
 373     Node *n = useful.at(next++);
 374     if (n->is_SafePoint()) {
 375       // We're done with a parsing phase. Replaced nodes are not valid
 376       // beyond that point.
 377       n->as_SafePoint()->delete_replaced_nodes();
 378     }
 379     // Use raw traversal of out edges since this code removes out edges
 380     int max = n->outcnt();
 381     for (int j = 0; j < max; ++j) {
 382       Node* child = n->raw_out(j);
 383       if (! useful.member(child)) {
 384         assert(!child->is_top() || child != top(),
 385                "If top is cached in Compile object it is in useful list");
 386         // Only need to remove this out-edge to the useless node
 387         n->raw_del_out(j);
 388         --j;
 389         --max;
 390       }
 391     }
 392     if (n->outcnt() == 1 && n->has_special_unique_user()) {
 393       record_for_igvn(n->unique_out());
 394     }
 395   }
 396   // Remove useless macro and predicate opaq nodes
 397   for (int i = C->macro_count()-1; i >= 0; i--) {
 398     Node* n = C->macro_node(i);
 399     if (!useful.member(n)) {
 400       remove_macro_node(n);
 401     }
 402   }
 403   // Remove useless CastII nodes with range check dependency
 404   for (int i = range_check_cast_count() - 1; i >= 0; i--) {
 405     Node* cast = range_check_cast_node(i);
 406     if (!useful.member(cast)) {
 407       remove_range_check_cast(cast);
 408     }
 409   }
 410   // Remove useless expensive nodes
 411   for (int i = C->expensive_count()-1; i >= 0; i--) {
 412     Node* n = C->expensive_node(i);
 413     if (!useful.member(n)) {
 414       remove_expensive_node(n);
 415     }
 416   }
 417   // Remove useless Opaque4 nodes
 418   for (int i = opaque4_count() - 1; i >= 0; i--) {
 419     Node* opaq = opaque4_node(i);
 420     if (!useful.member(opaq)) {
 421       remove_opaque4_node(opaq);
 422     }
 423   }
 424   // Remove useless value type nodes
 425   if (_value_type_nodes != NULL) {
 426     _value_type_nodes->remove_useless_nodes(useful.member_set());
 427   }
 428   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
 429   bs->eliminate_useless_gc_barriers(useful);
 430   // clean up the late inline lists
 431   remove_useless_late_inlines(&_string_late_inlines, useful);
 432   remove_useless_late_inlines(&_boxing_late_inlines, useful);
 433   remove_useless_late_inlines(&_late_inlines, useful);
 434   debug_only(verify_graph_edges(true/*check for no_dead_code*/);)
 435 }
 436 
 437 //------------------------------frame_size_in_words-----------------------------
 438 // frame_slots in units of words
 439 int Compile::frame_size_in_words() const {
 440   // shift is 0 in LP32 and 1 in LP64
 441   const int shift = (LogBytesPerWord - LogBytesPerInt);
 442   int words = _frame_slots >> shift;
 443   assert( words << shift == _frame_slots, "frame size must be properly aligned in LP64" );
 444   return words;
 445 }
 446 
 447 // To bang the stack of this compiled method we use the stack size
 448 // that the interpreter would need in case of a deoptimization. This
 449 // removes the need to bang the stack in the deoptimization blob which
 450 // in turn simplifies stack overflow handling.
 451 int Compile::bang_size_in_bytes() const {
 452   return MAX2(frame_size_in_bytes() + os::extra_bang_size_in_bytes(), _interpreter_frame_size);
 453 }
 454 
 455 // ============================================================================
 456 //------------------------------CompileWrapper---------------------------------
 457 class CompileWrapper : public StackObj {
 458   Compile *const _compile;
 459  public:
 460   CompileWrapper(Compile* compile);
 461 
 462   ~CompileWrapper();
 463 };
 464 
 465 CompileWrapper::CompileWrapper(Compile* compile) : _compile(compile) {
 466   // the Compile* pointer is stored in the current ciEnv:
 467   ciEnv* env = compile->env();
 468   assert(env == ciEnv::current(), "must already be a ciEnv active");
 469   assert(env->compiler_data() == NULL, "compile already active?");
 470   env->set_compiler_data(compile);
 471   assert(compile == Compile::current(), "sanity");
 472 
 473   compile->set_type_dict(NULL);
 474   compile->set_clone_map(new Dict(cmpkey, hashkey, _compile->comp_arena()));
 475   compile->clone_map().set_clone_idx(0);
 476   compile->set_type_hwm(NULL);
 477   compile->set_type_last_size(0);
 478   compile->set_last_tf(NULL, NULL);
 479   compile->set_indexSet_arena(NULL);
 480   compile->set_indexSet_free_block_list(NULL);
 481   compile->init_type_arena();
 482   Type::Initialize(compile);
 483   _compile->set_scratch_buffer_blob(NULL);
 484   _compile->begin_method();
 485   _compile->clone_map().set_debug(_compile->has_method() && _compile->directive()->CloneMapDebugOption);
 486 }
 487 CompileWrapper::~CompileWrapper() {
 488   _compile->end_method();
 489   if (_compile->scratch_buffer_blob() != NULL)
 490     BufferBlob::free(_compile->scratch_buffer_blob());
 491   _compile->env()->set_compiler_data(NULL);
 492 }
 493 
 494 
 495 //----------------------------print_compile_messages---------------------------
 496 void Compile::print_compile_messages() {
 497 #ifndef PRODUCT
 498   // Check if recompiling
 499   if (_subsume_loads == false && PrintOpto) {
 500     // Recompiling without allowing machine instructions to subsume loads
 501     tty->print_cr("*********************************************************");
 502     tty->print_cr("** Bailout: Recompile without subsuming loads          **");
 503     tty->print_cr("*********************************************************");
 504   }
 505   if (_do_escape_analysis != DoEscapeAnalysis && PrintOpto) {
 506     // Recompiling without escape analysis
 507     tty->print_cr("*********************************************************");
 508     tty->print_cr("** Bailout: Recompile without escape analysis          **");
 509     tty->print_cr("*********************************************************");
 510   }
 511   if (_eliminate_boxing != EliminateAutoBox && PrintOpto) {
 512     // Recompiling without boxing elimination
 513     tty->print_cr("*********************************************************");
 514     tty->print_cr("** Bailout: Recompile without boxing elimination       **");
 515     tty->print_cr("*********************************************************");
 516   }
 517   if (C->directive()->BreakAtCompileOption) {
 518     // Open the debugger when compiling this method.
 519     tty->print("### Breaking when compiling: ");
 520     method()->print_short_name();
 521     tty->cr();
 522     BREAKPOINT;
 523   }
 524 
 525   if( PrintOpto ) {
 526     if (is_osr_compilation()) {
 527       tty->print("[OSR]%3d", _compile_id);
 528     } else {
 529       tty->print("%3d", _compile_id);
 530     }
 531   }
 532 #endif
 533 }
 534 
 535 
 536 //-----------------------init_scratch_buffer_blob------------------------------
 537 // Construct a temporary BufferBlob and cache it for this compile.
 538 void Compile::init_scratch_buffer_blob(int const_size) {
 539   // If there is already a scratch buffer blob allocated and the
 540   // constant section is big enough, use it.  Otherwise free the
 541   // current and allocate a new one.
 542   BufferBlob* blob = scratch_buffer_blob();
 543   if ((blob != NULL) && (const_size <= _scratch_const_size)) {
 544     // Use the current blob.
 545   } else {
 546     if (blob != NULL) {
 547       BufferBlob::free(blob);
 548     }
 549 
 550     ResourceMark rm;
 551     _scratch_const_size = const_size;
 552     int size = (MAX_inst_size + MAX_stubs_size + _scratch_const_size);
 553     blob = BufferBlob::create("Compile::scratch_buffer", size);
 554     // Record the buffer blob for next time.
 555     set_scratch_buffer_blob(blob);
 556     // Have we run out of code space?
 557     if (scratch_buffer_blob() == NULL) {
 558       // Let CompilerBroker disable further compilations.
 559       record_failure("Not enough space for scratch buffer in CodeCache");
 560       return;
 561     }
 562   }
 563 
 564   // Initialize the relocation buffers
 565   relocInfo* locs_buf = (relocInfo*) blob->content_end() - MAX_locs_size;
 566   set_scratch_locs_memory(locs_buf);
 567 }
 568 
 569 
 570 //-----------------------scratch_emit_size-------------------------------------
 571 // Helper function that computes size by emitting code
 572 uint Compile::scratch_emit_size(const Node* n) {
 573   // Start scratch_emit_size section.
 574   set_in_scratch_emit_size(true);
 575 
 576   // Emit into a trash buffer and count bytes emitted.
 577   // This is a pretty expensive way to compute a size,
 578   // but it works well enough if seldom used.
 579   // All common fixed-size instructions are given a size
 580   // method by the AD file.
 581   // Note that the scratch buffer blob and locs memory are
 582   // allocated at the beginning of the compile task, and
 583   // may be shared by several calls to scratch_emit_size.
 584   // The allocation of the scratch buffer blob is particularly
 585   // expensive, since it has to grab the code cache lock.
 586   BufferBlob* blob = this->scratch_buffer_blob();
 587   assert(blob != NULL, "Initialize BufferBlob at start");
 588   assert(blob->size() > MAX_inst_size, "sanity");
 589   relocInfo* locs_buf = scratch_locs_memory();
 590   address blob_begin = blob->content_begin();
 591   address blob_end   = (address)locs_buf;
 592   assert(blob->contains(blob_end), "sanity");
 593   CodeBuffer buf(blob_begin, blob_end - blob_begin);
 594   buf.initialize_consts_size(_scratch_const_size);
 595   buf.initialize_stubs_size(MAX_stubs_size);
 596   assert(locs_buf != NULL, "sanity");
 597   int lsize = MAX_locs_size / 3;
 598   buf.consts()->initialize_shared_locs(&locs_buf[lsize * 0], lsize);
 599   buf.insts()->initialize_shared_locs( &locs_buf[lsize * 1], lsize);
 600   buf.stubs()->initialize_shared_locs( &locs_buf[lsize * 2], lsize);
 601   // Mark as scratch buffer.
 602   buf.consts()->set_scratch_emit();
 603   buf.insts()->set_scratch_emit();
 604   buf.stubs()->set_scratch_emit();
 605 
 606   // Do the emission.
 607 
 608   Label fakeL; // Fake label for branch instructions.
 609   Label*   saveL = NULL;
 610   uint save_bnum = 0;
 611   bool is_branch = n->is_MachBranch();
 612   if (is_branch) {
 613     MacroAssembler masm(&buf);
 614     masm.bind(fakeL);
 615     n->as_MachBranch()->save_label(&saveL, &save_bnum);
 616     n->as_MachBranch()->label_set(&fakeL, 0);
 617   } else if (n->is_MachProlog()) {
 618     MacroAssembler masm(&buf);
 619     masm.bind(fakeL);
 620     saveL = ((MachPrologNode*)n)->_verified_entry;
 621     ((MachPrologNode*)n)->_verified_entry = &fakeL;
 622   }
 623   n->emit(buf, this->regalloc());
 624 
 625   // Emitting into the scratch buffer should not fail
 626   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
 627 
 628   // Restore label.
 629   if (is_branch) {
 630     n->as_MachBranch()->label_set(saveL, save_bnum);
 631   } else if (n->is_MachProlog()) {
 632     ((MachPrologNode*)n)->_verified_entry = saveL;
 633   }
 634 
 635   // End scratch_emit_size section.
 636   set_in_scratch_emit_size(false);
 637 
 638   return buf.insts_size();
 639 }
 640 
 641 
 642 // ============================================================================
 643 //------------------------------Compile standard-------------------------------
 644 debug_only( int Compile::_debug_idx = 100000; )
 645 
 646 // Compile a method.  entry_bci is -1 for normal compilations and indicates
 647 // the continuation bci for on stack replacement.
 648 
 649 
 650 Compile::Compile( ciEnv* ci_env, C2Compiler* compiler, ciMethod* target, int osr_bci,
 651                   bool subsume_loads, bool do_escape_analysis, bool eliminate_boxing, DirectiveSet* directive)
 652                 : Phase(Compiler),
 653                   _compile_id(ci_env->compile_id()),
 654                   _save_argument_registers(false),
 655                   _subsume_loads(subsume_loads),
 656                   _do_escape_analysis(do_escape_analysis),
 657                   _eliminate_boxing(eliminate_boxing),
 658                   _method(target),
 659                   _entry_bci(osr_bci),
 660                   _stub_function(NULL),
 661                   _stub_name(NULL),
 662                   _stub_entry_point(NULL),
 663                   _max_node_limit(MaxNodeLimit),
 664                   _orig_pc_slot(0),
 665                   _orig_pc_slot_offset_in_bytes(0),
 666                   _inlining_progress(false),
 667                   _inlining_incrementally(false),
 668                   _has_reserved_stack_access(target->has_reserved_stack_access()),
 669 #ifndef PRODUCT
 670                   _trace_opto_output(directive->TraceOptoOutputOption),
 671 #endif
 672                   _has_method_handle_invokes(false),
 673                   _comp_arena(mtCompiler),
 674                   _barrier_set_state(BarrierSet::barrier_set()->barrier_set_c2()->create_barrier_state(comp_arena())),
 675                   _env(ci_env),
 676                   _directive(directive),
 677                   _log(ci_env->log()),
 678                   _failure_reason(NULL),
 679                   _congraph(NULL),
 680 #ifndef PRODUCT
 681                   _printer(IdealGraphPrinter::printer()),
 682 #endif
 683                   _dead_node_list(comp_arena()),
 684                   _dead_node_count(0),
 685                   _node_arena(mtCompiler),
 686                   _old_arena(mtCompiler),
 687                   _mach_constant_base_node(NULL),
 688                   _Compile_types(mtCompiler),
 689                   _initial_gvn(NULL),
 690                   _for_igvn(NULL),
 691                   _warm_calls(NULL),
 692                   _late_inlines(comp_arena(), 2, 0, NULL),
 693                   _string_late_inlines(comp_arena(), 2, 0, NULL),
 694                   _boxing_late_inlines(comp_arena(), 2, 0, NULL),
 695                   _late_inlines_pos(0),
 696                   _number_of_mh_late_inlines(0),
 697                   _print_inlining_stream(NULL),
 698                   _print_inlining_list(NULL),
 699                   _print_inlining_idx(0),
 700                   _print_inlining_output(NULL),
 701                   _replay_inline_data(NULL),
 702                   _java_calls(0),
 703                   _inner_loops(0),
 704                   _interpreter_frame_size(0),
 705                   _node_bundling_limit(0),
 706                   _node_bundling_base(NULL),
 707                   _code_buffer("Compile::Fill_buffer"),
 708                   _scratch_const_size(-1),
 709                   _in_scratch_emit_size(false)
 710 #ifndef PRODUCT
 711                   , _in_dump_cnt(0)
 712 #endif
 713 {
 714   C = this;
 715 #ifndef PRODUCT
 716   if (_printer != NULL) {
 717     _printer->set_compile(this);
 718   }
 719 #endif
 720   CompileWrapper cw(this);
 721 
 722   if (CITimeVerbose) {
 723     tty->print(" ");
 724     target->holder()->name()->print();
 725     tty->print(".");
 726     target->print_short_name();
 727     tty->print("  ");
 728   }
 729   TraceTime t1("Total compilation time", &_t_totalCompilation, CITime, CITimeVerbose);
 730   TraceTime t2(NULL, &_t_methodCompilation, CITime, false);
 731 
 732 #ifndef PRODUCT
 733   bool print_opto_assembly = directive->PrintOptoAssemblyOption;
 734   if (!print_opto_assembly) {
 735     bool print_assembly = directive->PrintAssemblyOption;
 736     if (print_assembly && !Disassembler::can_decode()) {
 737       tty->print_cr("PrintAssembly request changed to PrintOptoAssembly");
 738       print_opto_assembly = true;
 739     }
 740   }
 741   set_print_assembly(print_opto_assembly);
 742   set_parsed_irreducible_loop(false);
 743 
 744   if (directive->ReplayInlineOption) {
 745     _replay_inline_data = ciReplay::load_inline_data(method(), entry_bci(), ci_env->comp_level());
 746   }
 747 #endif
 748   set_print_inlining(directive->PrintInliningOption || PrintOptoInlining);
 749   set_print_intrinsics(directive->PrintIntrinsicsOption);
 750   set_has_irreducible_loop(true); // conservative until build_loop_tree() reset it
 751 
 752   if (ProfileTraps RTM_OPT_ONLY( || UseRTMLocking )) {
 753     // Make sure the method being compiled gets its own MDO,
 754     // so we can at least track the decompile_count().
 755     // Need MDO to record RTM code generation state.
 756     method()->ensure_method_data();
 757   }
 758 
 759   Init(::AliasLevel);
 760 
 761 
 762   print_compile_messages();
 763 
 764   _ilt = InlineTree::build_inline_tree_root();
 765 
 766   // Even if NO memory addresses are used, MergeMem nodes must have at least 1 slice
 767   assert(num_alias_types() >= AliasIdxRaw, "");
 768 
 769 #define MINIMUM_NODE_HASH  1023
 770   // Node list that Iterative GVN will start with
 771   Unique_Node_List for_igvn(comp_arena());
 772   set_for_igvn(&for_igvn);
 773 
 774   // GVN that will be run immediately on new nodes
 775   uint estimated_size = method()->code_size()*4+64;
 776   estimated_size = (estimated_size < MINIMUM_NODE_HASH ? MINIMUM_NODE_HASH : estimated_size);
 777   PhaseGVN gvn(node_arena(), estimated_size);
 778   set_initial_gvn(&gvn);
 779 
 780   print_inlining_init();
 781   { // Scope for timing the parser
 782     TracePhase tp("parse", &timers[_t_parser]);
 783 
 784     // Put top into the hash table ASAP.
 785     initial_gvn()->transform_no_reclaim(top());
 786 
 787     // Set up tf(), start(), and find a CallGenerator.
 788     CallGenerator* cg = NULL;
 789     if (is_osr_compilation()) {
 790       const TypeTuple *domain = StartOSRNode::osr_domain();
 791       const TypeTuple *range = TypeTuple::make_range(method());
 792       init_tf(TypeFunc::make(domain, range));
 793       StartNode* s = new StartOSRNode(root(), domain);
 794       initial_gvn()->set_type_bottom(s);
 795       init_start(s);
 796       cg = CallGenerator::for_osr(method(), entry_bci());
 797     } else {
 798       // Normal case.
 799       init_tf(TypeFunc::make(method()));
 800       StartNode* s = new StartNode(root(), tf()->domain_cc());
 801       initial_gvn()->set_type_bottom(s);
 802       init_start(s);
 803       if (method()->intrinsic_id() == vmIntrinsics::_Reference_get) {
 804         // With java.lang.ref.reference.get() we must go through the
 805         // intrinsic - even when get() is the root
 806         // method of the compile - so that, if necessary, the value in
 807         // the referent field of the reference object gets recorded by
 808         // the pre-barrier code.
 809         cg = find_intrinsic(method(), false);
 810       }
 811       if (cg == NULL) {
 812         float past_uses = method()->interpreter_invocation_count();
 813         float expected_uses = past_uses;
 814         cg = CallGenerator::for_inline(method(), expected_uses);
 815       }
 816     }
 817     if (failing())  return;
 818     if (cg == NULL) {
 819       record_method_not_compilable("cannot parse method");
 820       return;
 821     }
 822     JVMState* jvms = build_start_state(start(), tf());
 823     if ((jvms = cg->generate(jvms)) == NULL) {
 824       if (!failure_reason_is(C2Compiler::retry_class_loading_during_parsing())) {
 825         record_method_not_compilable("method parse failed");
 826       }
 827       return;
 828     }
 829     GraphKit kit(jvms);
 830 
 831     if (!kit.stopped()) {
 832       // Accept return values, and transfer control we know not where.
 833       // This is done by a special, unique ReturnNode bound to root.
 834       return_values(kit.jvms());
 835     }
 836 
 837     if (kit.has_exceptions()) {
 838       // Any exceptions that escape from this call must be rethrown
 839       // to whatever caller is dynamically above us on the stack.
 840       // This is done by a special, unique RethrowNode bound to root.
 841       rethrow_exceptions(kit.transfer_exceptions_into_jvms());
 842     }
 843 
 844     assert(IncrementalInline || (_late_inlines.length() == 0 && !has_mh_late_inlines()), "incremental inlining is off");
 845 
 846     if (_late_inlines.length() == 0 && !has_mh_late_inlines() && !failing() && has_stringbuilder()) {
 847       inline_string_calls(true);
 848     }
 849 
 850     if (failing())  return;
 851 
 852     print_method(PHASE_BEFORE_REMOVEUSELESS, 3);
 853 
 854     // Remove clutter produced by parsing.
 855     if (!failing()) {
 856       ResourceMark rm;
 857       PhaseRemoveUseless pru(initial_gvn(), &for_igvn);
 858     }
 859   }
 860 
 861   // Note:  Large methods are capped off in do_one_bytecode().
 862   if (failing())  return;
 863 
 864   // After parsing, node notes are no longer automagic.
 865   // They must be propagated by register_new_node_with_optimizer(),
 866   // clone(), or the like.
 867   set_default_node_notes(NULL);
 868 
 869   for (;;) {
 870     int successes = Inline_Warm();
 871     if (failing())  return;
 872     if (successes == 0)  break;
 873   }
 874 
 875   // Drain the list.
 876   Finish_Warm();
 877 #ifndef PRODUCT
 878   if (_printer && _printer->should_print(1)) {
 879     _printer->print_inlining();
 880   }
 881 #endif
 882 
 883   if (failing())  return;
 884   NOT_PRODUCT( verify_graph_edges(); )
 885 
 886   // Now optimize
 887   Optimize();
 888   if (failing())  return;
 889   NOT_PRODUCT( verify_graph_edges(); )
 890 
 891 #ifndef PRODUCT
 892   if (PrintIdeal) {
 893     ttyLocker ttyl;  // keep the following output all in one block
 894     // This output goes directly to the tty, not the compiler log.
 895     // To enable tools to match it up with the compilation activity,
 896     // be sure to tag this tty output with the compile ID.
 897     if (xtty != NULL) {
 898       xtty->head("ideal compile_id='%d'%s", compile_id(),
 899                  is_osr_compilation()    ? " compile_kind='osr'" :
 900                  "");
 901     }
 902     root()->dump(9999);
 903     if (xtty != NULL) {
 904       xtty->tail("ideal");
 905     }
 906   }
 907 #endif
 908 
 909   NOT_PRODUCT( verify_barriers(); )
 910 
 911   // Dump compilation data to replay it.
 912   if (directive->DumpReplayOption) {
 913     env()->dump_replay_data(_compile_id);
 914   }
 915   if (directive->DumpInlineOption && (ilt() != NULL)) {
 916     env()->dump_inline_data(_compile_id);
 917   }
 918 
 919   // Now that we know the size of all the monitors we can add a fixed slot
 920   // for the original deopt pc.
 921 
 922   _orig_pc_slot =  fixed_slots();
 923   int next_slot = _orig_pc_slot + (sizeof(address) / VMRegImpl::stack_slot_size);
 924   set_fixed_slots(next_slot);
 925 
 926   // Compute when to use implicit null checks. Used by matching trap based
 927   // nodes and NullCheck optimization.
 928   set_allowed_deopt_reasons();
 929 
 930   // Now generate code
 931   Code_Gen();
 932   if (failing())  return;
 933 
 934   // Check if we want to skip execution of all compiled code.
 935   {
 936 #ifndef PRODUCT
 937     if (OptoNoExecute) {
 938       record_method_not_compilable("+OptoNoExecute");  // Flag as failed
 939       return;
 940     }
 941 #endif
 942     TracePhase tp("install_code", &timers[_t_registerMethod]);
 943 
 944     if (is_osr_compilation()) {
 945       _code_offsets.set_value(CodeOffsets::Verified_Entry, 0);
 946       _code_offsets.set_value(CodeOffsets::OSR_Entry, _first_block_size);
 947     } else {
 948       _code_offsets.set_value(CodeOffsets::Verified_Entry, _first_block_size);
 949       if (_code_offsets.value(CodeOffsets::Entry) == -1) {
 950         // We emitted a value type entry point, adjust normal entry
 951         _code_offsets.set_value(CodeOffsets::Entry, _first_block_size);
 952       }
 953       _code_offsets.set_value(CodeOffsets::OSR_Entry, 0);
 954     }
 955 
 956     env()->register_method(_method, _entry_bci,
 957                            &_code_offsets,
 958                            _orig_pc_slot_offset_in_bytes,
 959                            code_buffer(),
 960                            frame_size_in_words(), _oop_map_set,
 961                            &_handler_table, &_inc_table,
 962                            compiler,
 963                            has_unsafe_access(),
 964                            SharedRuntime::is_wide_vector(max_vector_size()),
 965                            rtm_state()
 966                            );
 967 
 968     if (log() != NULL) // Print code cache state into compiler log
 969       log()->code_cache_state();
 970   }
 971 }
 972 
 973 //------------------------------Compile----------------------------------------
 974 // Compile a runtime stub
 975 Compile::Compile( ciEnv* ci_env,
 976                   TypeFunc_generator generator,
 977                   address stub_function,
 978                   const char *stub_name,
 979                   int is_fancy_jump,
 980                   bool pass_tls,
 981                   bool save_arg_registers,
 982                   bool return_pc,
 983                   DirectiveSet* directive)
 984   : Phase(Compiler),
 985     _compile_id(0),
 986     _save_argument_registers(save_arg_registers),
 987     _subsume_loads(true),
 988     _do_escape_analysis(false),
 989     _eliminate_boxing(false),
 990     _method(NULL),
 991     _entry_bci(InvocationEntryBci),
 992     _stub_function(stub_function),
 993     _stub_name(stub_name),
 994     _stub_entry_point(NULL),
 995     _max_node_limit(MaxNodeLimit),
 996     _orig_pc_slot(0),
 997     _orig_pc_slot_offset_in_bytes(0),
 998     _inlining_progress(false),
 999     _inlining_incrementally(false),
1000     _has_reserved_stack_access(false),
1001 #ifndef PRODUCT
1002     _trace_opto_output(directive->TraceOptoOutputOption),
1003 #endif
1004     _has_method_handle_invokes(false),
1005     _comp_arena(mtCompiler),
1006     _env(ci_env),
1007     _directive(directive),
1008     _log(ci_env->log()),
1009     _failure_reason(NULL),
1010     _congraph(NULL),
1011 #ifndef PRODUCT
1012     _printer(NULL),
1013 #endif
1014     _dead_node_list(comp_arena()),
1015     _dead_node_count(0),
1016     _node_arena(mtCompiler),
1017     _old_arena(mtCompiler),
1018     _mach_constant_base_node(NULL),
1019     _Compile_types(mtCompiler),
1020     _initial_gvn(NULL),
1021     _for_igvn(NULL),
1022     _warm_calls(NULL),
1023     _number_of_mh_late_inlines(0),
1024     _print_inlining_stream(NULL),
1025     _print_inlining_list(NULL),
1026     _print_inlining_idx(0),
1027     _print_inlining_output(NULL),
1028     _replay_inline_data(NULL),
1029     _java_calls(0),
1030     _inner_loops(0),
1031     _interpreter_frame_size(0),
1032     _node_bundling_limit(0),
1033     _node_bundling_base(NULL),
1034     _code_buffer("Compile::Fill_buffer"),
1035 #ifndef PRODUCT
1036     _in_dump_cnt(0),
1037 #endif
1038     _allowed_reasons(0) {
1039   C = this;
1040 
1041   TraceTime t1(NULL, &_t_totalCompilation, CITime, false);
1042   TraceTime t2(NULL, &_t_stubCompilation, CITime, false);
1043 
1044 #ifndef PRODUCT
1045   set_print_assembly(PrintFrameConverterAssembly);
1046   set_parsed_irreducible_loop(false);
1047 #endif
1048   set_has_irreducible_loop(false); // no loops
1049 
1050   CompileWrapper cw(this);
1051   Init(/*AliasLevel=*/ 0);
1052   init_tf((*generator)());
1053 
1054   {
1055     // The following is a dummy for the sake of GraphKit::gen_stub
1056     Unique_Node_List for_igvn(comp_arena());
1057     set_for_igvn(&for_igvn);  // not used, but some GraphKit guys push on this
1058     PhaseGVN gvn(Thread::current()->resource_area(),255);
1059     set_initial_gvn(&gvn);    // not significant, but GraphKit guys use it pervasively
1060     gvn.transform_no_reclaim(top());
1061 
1062     GraphKit kit;
1063     kit.gen_stub(stub_function, stub_name, is_fancy_jump, pass_tls, return_pc);
1064   }
1065 
1066   NOT_PRODUCT( verify_graph_edges(); )
1067   Code_Gen();
1068   if (failing())  return;
1069 
1070 
1071   // Entry point will be accessed using compile->stub_entry_point();
1072   if (code_buffer() == NULL) {
1073     Matcher::soft_match_failure();
1074   } else {
1075     if (PrintAssembly && (WizardMode || Verbose))
1076       tty->print_cr("### Stub::%s", stub_name);
1077 
1078     if (!failing()) {
1079       assert(_fixed_slots == 0, "no fixed slots used for runtime stubs");
1080 
1081       // Make the NMethod
1082       // For now we mark the frame as never safe for profile stackwalking
1083       RuntimeStub *rs = RuntimeStub::new_runtime_stub(stub_name,
1084                                                       code_buffer(),
1085                                                       CodeOffsets::frame_never_safe,
1086                                                       // _code_offsets.value(CodeOffsets::Frame_Complete),
1087                                                       frame_size_in_words(),
1088                                                       _oop_map_set,
1089                                                       save_arg_registers);
1090       assert(rs != NULL && rs->is_runtime_stub(), "sanity check");
1091 
1092       _stub_entry_point = rs->entry_point();
1093     }
1094   }
1095 }
1096 
1097 //------------------------------Init-------------------------------------------
1098 // Prepare for a single compilation
1099 void Compile::Init(int aliaslevel) {
1100   _unique  = 0;
1101   _regalloc = NULL;
1102 
1103   _tf      = NULL;  // filled in later
1104   _top     = NULL;  // cached later
1105   _matcher = NULL;  // filled in later
1106   _cfg     = NULL;  // filled in later
1107 
1108   set_24_bit_selection_and_mode(Use24BitFP, false);
1109 
1110   _node_note_array = NULL;
1111   _default_node_notes = NULL;
1112   DEBUG_ONLY( _modified_nodes = NULL; ) // Used in Optimize()
1113 
1114   _immutable_memory = NULL; // filled in at first inquiry
1115 
1116   // Globally visible Nodes
1117   // First set TOP to NULL to give safe behavior during creation of RootNode
1118   set_cached_top_node(NULL);
1119   set_root(new RootNode());
1120   // Now that you have a Root to point to, create the real TOP
1121   set_cached_top_node( new ConNode(Type::TOP) );
1122   set_recent_alloc(NULL, NULL);
1123 
1124   // Create Debug Information Recorder to record scopes, oopmaps, etc.
1125   env()->set_oop_recorder(new OopRecorder(env()->arena()));
1126   env()->set_debug_info(new DebugInformationRecorder(env()->oop_recorder()));
1127   env()->set_dependencies(new Dependencies(env()));
1128 
1129   _fixed_slots = 0;
1130   set_has_split_ifs(false);
1131   set_has_loops(has_method() && method()->has_loops()); // first approximation
1132   set_has_stringbuilder(false);
1133   set_has_boxed_value(false);
1134   _trap_can_recompile = false;  // no traps emitted yet
1135   _major_progress = true; // start out assuming good things will happen
1136   set_has_unsafe_access(false);
1137   set_max_vector_size(0);
1138   set_clear_upper_avx(false);  //false as default for clear upper bits of ymm registers
1139   Copy::zero_to_bytes(_trap_hist, sizeof(_trap_hist));
1140   set_decompile_count(0);
1141 
1142   set_do_freq_based_layout(_directive->BlockLayoutByFrequencyOption);
1143   set_num_loop_opts(LoopOptsCount);
1144   set_do_inlining(Inline);
1145   set_max_inline_size(MaxInlineSize);
1146   set_freq_inline_size(FreqInlineSize);
1147   set_do_scheduling(OptoScheduling);
1148   set_do_count_invocations(false);
1149   set_do_method_data_update(false);
1150 
1151   set_do_vector_loop(false);
1152 
1153   if (AllowVectorizeOnDemand) {
1154     if (has_method() && (_directive->VectorizeOption || _directive->VectorizeDebugOption)) {
1155       set_do_vector_loop(true);
1156       NOT_PRODUCT(if (do_vector_loop() && Verbose) {tty->print("Compile::Init: do vectorized loops (SIMD like) for method %s\n",  method()->name()->as_quoted_ascii());})
1157     } else if (has_method() && method()->name() != 0 &&
1158                method()->intrinsic_id() == vmIntrinsics::_forEachRemaining) {
1159       set_do_vector_loop(true);
1160     }
1161   }
1162   set_use_cmove(UseCMoveUnconditionally /* || do_vector_loop()*/); //TODO: consider do_vector_loop() mandate use_cmove unconditionally
1163   NOT_PRODUCT(if (use_cmove() && Verbose && has_method()) {tty->print("Compile::Init: use CMove without profitability tests for method %s\n",  method()->name()->as_quoted_ascii());})
1164 
1165   set_age_code(has_method() && method()->profile_aging());
1166   set_rtm_state(NoRTM); // No RTM lock eliding by default
1167   _max_node_limit = _directive->MaxNodeLimitOption;
1168 
1169 #if INCLUDE_RTM_OPT
1170   if (UseRTMLocking && has_method() && (method()->method_data_or_null() != NULL)) {
1171     int rtm_state = method()->method_data()->rtm_state();
1172     if (method_has_option("NoRTMLockEliding") || ((rtm_state & NoRTM) != 0)) {
1173       // Don't generate RTM lock eliding code.
1174       set_rtm_state(NoRTM);
1175     } else if (method_has_option("UseRTMLockEliding") || ((rtm_state & UseRTM) != 0) || !UseRTMDeopt) {
1176       // Generate RTM lock eliding code without abort ratio calculation code.
1177       set_rtm_state(UseRTM);
1178     } else if (UseRTMDeopt) {
1179       // Generate RTM lock eliding code and include abort ratio calculation
1180       // code if UseRTMDeopt is on.
1181       set_rtm_state(ProfileRTM);
1182     }
1183   }
1184 #endif
1185   if (debug_info()->recording_non_safepoints()) {
1186     set_node_note_array(new(comp_arena()) GrowableArray<Node_Notes*>
1187                         (comp_arena(), 8, 0, NULL));
1188     set_default_node_notes(Node_Notes::make(this));
1189   }
1190 
1191   // // -- Initialize types before each compile --
1192   // // Update cached type information
1193   // if( _method && _method->constants() )
1194   //   Type::update_loaded_types(_method, _method->constants());
1195 
1196   // Init alias_type map.
1197   if (!_do_escape_analysis && aliaslevel == 3)
1198     aliaslevel = 2;  // No unique types without escape analysis
1199   _AliasLevel = aliaslevel;
1200   const int grow_ats = 16;
1201   _max_alias_types = grow_ats;
1202   _alias_types   = NEW_ARENA_ARRAY(comp_arena(), AliasType*, grow_ats);
1203   AliasType* ats = NEW_ARENA_ARRAY(comp_arena(), AliasType,  grow_ats);
1204   Copy::zero_to_bytes(ats, sizeof(AliasType)*grow_ats);
1205   {
1206     for (int i = 0; i < grow_ats; i++)  _alias_types[i] = &ats[i];
1207   }
1208   // Initialize the first few types.
1209   _alias_types[AliasIdxTop]->Init(AliasIdxTop, NULL);
1210   _alias_types[AliasIdxBot]->Init(AliasIdxBot, TypePtr::BOTTOM);
1211   _alias_types[AliasIdxRaw]->Init(AliasIdxRaw, TypeRawPtr::BOTTOM);
1212   _num_alias_types = AliasIdxRaw+1;
1213   // Zero out the alias type cache.
1214   Copy::zero_to_bytes(_alias_cache, sizeof(_alias_cache));
1215   // A NULL adr_type hits in the cache right away.  Preload the right answer.
1216   probe_alias_cache(NULL)->_index = AliasIdxTop;
1217 
1218   _intrinsics = NULL;
1219   _macro_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1220   _predicate_opaqs = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1221   _expensive_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1222   _range_check_casts = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1223   _opaque4_nodes = new(comp_arena()) GrowableArray<Node*>(comp_arena(), 8,  0, NULL);
1224   _value_type_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
1225   register_library_intrinsics();
1226 }
1227 
1228 //---------------------------init_start----------------------------------------
1229 // Install the StartNode on this compile object.
1230 void Compile::init_start(StartNode* s) {
1231   if (failing())
1232     return; // already failing
1233   assert(s == start(), "");
1234 }
1235 
1236 /**
1237  * Return the 'StartNode'. We must not have a pending failure, since the ideal graph
1238  * can be in an inconsistent state, i.e., we can get segmentation faults when traversing
1239  * the ideal graph.
1240  */
1241 StartNode* Compile::start() const {
1242   assert (!failing(), "Must not have pending failure. Reason is: %s", failure_reason());
1243   for (DUIterator_Fast imax, i = root()->fast_outs(imax); i < imax; i++) {
1244     Node* start = root()->fast_out(i);
1245     if (start->is_Start()) {
1246       return start->as_Start();
1247     }
1248   }
1249   fatal("Did not find Start node!");
1250   return NULL;
1251 }
1252 
1253 //-------------------------------immutable_memory-------------------------------------
1254 // Access immutable memory
1255 Node* Compile::immutable_memory() {
1256   if (_immutable_memory != NULL) {
1257     return _immutable_memory;
1258   }
1259   StartNode* s = start();
1260   for (DUIterator_Fast imax, i = s->fast_outs(imax); true; i++) {
1261     Node *p = s->fast_out(i);
1262     if (p != s && p->as_Proj()->_con == TypeFunc::Memory) {
1263       _immutable_memory = p;
1264       return _immutable_memory;
1265     }
1266   }
1267   ShouldNotReachHere();
1268   return NULL;
1269 }
1270 
1271 //----------------------set_cached_top_node------------------------------------
1272 // Install the cached top node, and make sure Node::is_top works correctly.
1273 void Compile::set_cached_top_node(Node* tn) {
1274   if (tn != NULL)  verify_top(tn);
1275   Node* old_top = _top;
1276   _top = tn;
1277   // Calling Node::setup_is_top allows the nodes the chance to adjust
1278   // their _out arrays.
1279   if (_top != NULL)     _top->setup_is_top();
1280   if (old_top != NULL)  old_top->setup_is_top();
1281   assert(_top == NULL || top()->is_top(), "");
1282 }
1283 
1284 #ifdef ASSERT
1285 uint Compile::count_live_nodes_by_graph_walk() {
1286   Unique_Node_List useful(comp_arena());
1287   // Get useful node list by walking the graph.
1288   identify_useful_nodes(useful);
1289   return useful.size();
1290 }
1291 
1292 void Compile::print_missing_nodes() {
1293 
1294   // Return if CompileLog is NULL and PrintIdealNodeCount is false.
1295   if ((_log == NULL) && (! PrintIdealNodeCount)) {
1296     return;
1297   }
1298 
1299   // This is an expensive function. It is executed only when the user
1300   // specifies VerifyIdealNodeCount option or otherwise knows the
1301   // additional work that needs to be done to identify reachable nodes
1302   // by walking the flow graph and find the missing ones using
1303   // _dead_node_list.
1304 
1305   Unique_Node_List useful(comp_arena());
1306   // Get useful node list by walking the graph.
1307   identify_useful_nodes(useful);
1308 
1309   uint l_nodes = C->live_nodes();
1310   uint l_nodes_by_walk = useful.size();
1311 
1312   if (l_nodes != l_nodes_by_walk) {
1313     if (_log != NULL) {
1314       _log->begin_head("mismatched_nodes count='%d'", abs((int) (l_nodes - l_nodes_by_walk)));
1315       _log->stamp();
1316       _log->end_head();
1317     }
1318     VectorSet& useful_member_set = useful.member_set();
1319     int last_idx = l_nodes_by_walk;
1320     for (int i = 0; i < last_idx; i++) {
1321       if (useful_member_set.test(i)) {
1322         if (_dead_node_list.test(i)) {
1323           if (_log != NULL) {
1324             _log->elem("mismatched_node_info node_idx='%d' type='both live and dead'", i);
1325           }
1326           if (PrintIdealNodeCount) {
1327             // Print the log message to tty
1328               tty->print_cr("mismatched_node idx='%d' both live and dead'", i);
1329               useful.at(i)->dump();
1330           }
1331         }
1332       }
1333       else if (! _dead_node_list.test(i)) {
1334         if (_log != NULL) {
1335           _log->elem("mismatched_node_info node_idx='%d' type='neither live nor dead'", i);
1336         }
1337         if (PrintIdealNodeCount) {
1338           // Print the log message to tty
1339           tty->print_cr("mismatched_node idx='%d' type='neither live nor dead'", i);
1340         }
1341       }
1342     }
1343     if (_log != NULL) {
1344       _log->tail("mismatched_nodes");
1345     }
1346   }
1347 }
1348 void Compile::record_modified_node(Node* n) {
1349   if (_modified_nodes != NULL && !_inlining_incrementally &&
1350       n->outcnt() != 0 && !n->is_Con()) {
1351     _modified_nodes->push(n);
1352   }
1353 }
1354 
1355 void Compile::remove_modified_node(Node* n) {
1356   if (_modified_nodes != NULL) {
1357     _modified_nodes->remove(n);
1358   }
1359 }
1360 #endif
1361 
1362 #ifndef PRODUCT
1363 void Compile::verify_top(Node* tn) const {
1364   if (tn != NULL) {
1365     assert(tn->is_Con(), "top node must be a constant");
1366     assert(((ConNode*)tn)->type() == Type::TOP, "top node must have correct type");
1367     assert(tn->in(0) != NULL, "must have live top node");
1368   }
1369 }
1370 #endif
1371 
1372 
1373 ///-------------------Managing Per-Node Debug & Profile Info-------------------
1374 
1375 void Compile::grow_node_notes(GrowableArray<Node_Notes*>* arr, int grow_by) {
1376   guarantee(arr != NULL, "");
1377   int num_blocks = arr->length();
1378   if (grow_by < num_blocks)  grow_by = num_blocks;
1379   int num_notes = grow_by * _node_notes_block_size;
1380   Node_Notes* notes = NEW_ARENA_ARRAY(node_arena(), Node_Notes, num_notes);
1381   Copy::zero_to_bytes(notes, num_notes * sizeof(Node_Notes));
1382   while (num_notes > 0) {
1383     arr->append(notes);
1384     notes     += _node_notes_block_size;
1385     num_notes -= _node_notes_block_size;
1386   }
1387   assert(num_notes == 0, "exact multiple, please");
1388 }
1389 
1390 bool Compile::copy_node_notes_to(Node* dest, Node* source) {
1391   if (source == NULL || dest == NULL)  return false;
1392 
1393   if (dest->is_Con())
1394     return false;               // Do not push debug info onto constants.
1395 
1396 #ifdef ASSERT
1397   // Leave a bread crumb trail pointing to the original node:
1398   if (dest != NULL && dest != source && dest->debug_orig() == NULL) {
1399     dest->set_debug_orig(source);
1400   }
1401 #endif
1402 
1403   if (node_note_array() == NULL)
1404     return false;               // Not collecting any notes now.
1405 
1406   // This is a copy onto a pre-existing node, which may already have notes.
1407   // If both nodes have notes, do not overwrite any pre-existing notes.
1408   Node_Notes* source_notes = node_notes_at(source->_idx);
1409   if (source_notes == NULL || source_notes->is_clear())  return false;
1410   Node_Notes* dest_notes   = node_notes_at(dest->_idx);
1411   if (dest_notes == NULL || dest_notes->is_clear()) {
1412     return set_node_notes_at(dest->_idx, source_notes);
1413   }
1414 
1415   Node_Notes merged_notes = (*source_notes);
1416   // The order of operations here ensures that dest notes will win...
1417   merged_notes.update_from(dest_notes);
1418   return set_node_notes_at(dest->_idx, &merged_notes);
1419 }
1420 
1421 
1422 //--------------------------allow_range_check_smearing-------------------------
1423 // Gating condition for coalescing similar range checks.
1424 // Sometimes we try 'speculatively' replacing a series of a range checks by a
1425 // single covering check that is at least as strong as any of them.
1426 // If the optimization succeeds, the simplified (strengthened) range check
1427 // will always succeed.  If it fails, we will deopt, and then give up
1428 // on the optimization.
1429 bool Compile::allow_range_check_smearing() const {
1430   // If this method has already thrown a range-check,
1431   // assume it was because we already tried range smearing
1432   // and it failed.
1433   uint already_trapped = trap_count(Deoptimization::Reason_range_check);
1434   return !already_trapped;
1435 }
1436 
1437 
1438 //------------------------------flatten_alias_type-----------------------------
1439 const TypePtr *Compile::flatten_alias_type( const TypePtr *tj ) const {
1440   int offset = tj->offset();
1441   TypePtr::PTR ptr = tj->ptr();
1442 
1443   // Known instance (scalarizable allocation) alias only with itself.
1444   bool is_known_inst = tj->isa_oopptr() != NULL &&
1445                        tj->is_oopptr()->is_known_instance();
1446 
1447   // Process weird unsafe references.
1448   if (offset == Type::OffsetBot && (tj->isa_instptr() /*|| tj->isa_klassptr()*/)) {
1449     assert(InlineUnsafeOps, "indeterminate pointers come only from unsafe ops");
1450     assert(!is_known_inst, "scalarizable allocation should not have unsafe references");
1451     tj = TypeOopPtr::BOTTOM;
1452     ptr = tj->ptr();
1453     offset = tj->offset();
1454   }
1455 
1456   // Array pointers need some flattening
1457   const TypeAryPtr *ta = tj->isa_aryptr();
1458   if (ta && ta->is_stable()) {
1459     // Erase stability property for alias analysis.
1460     tj = ta = ta->cast_to_stable(false);
1461   }
1462   if( ta && is_known_inst ) {
1463     if ( offset != Type::OffsetBot &&
1464          offset > arrayOopDesc::length_offset_in_bytes() ) {
1465       offset = Type::OffsetBot; // Flatten constant access into array body only
1466       tj = ta = TypeAryPtr::make(ptr, ta->ary(), ta->klass(), true, Type::Offset(offset), ta->field_offset(), ta->instance_id());
1467     }
1468   } else if( ta && _AliasLevel >= 2 ) {
1469     // For arrays indexed by constant indices, we flatten the alias
1470     // space to include all of the array body.  Only the header, klass
1471     // and array length can be accessed un-aliased.
1472     // For flattened value type array, each field has its own slice so
1473     // we must include the field offset.
1474     if( offset != Type::OffsetBot ) {
1475       if( ta->const_oop() ) { // MethodData* or Method*
1476         offset = Type::OffsetBot;   // Flatten constant access into array body
1477         tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1478       } else if( offset == arrayOopDesc::length_offset_in_bytes() ) {
1479         // range is OK as-is.
1480         tj = ta = TypeAryPtr::RANGE;
1481       } else if( offset == oopDesc::klass_offset_in_bytes() ) {
1482         tj = TypeInstPtr::KLASS; // all klass loads look alike
1483         ta = TypeAryPtr::RANGE; // generic ignored junk
1484         ptr = TypePtr::BotPTR;
1485       } else if( offset == oopDesc::mark_offset_in_bytes() ) {
1486         tj = TypeInstPtr::MARK;
1487         ta = TypeAryPtr::RANGE; // generic ignored junk
1488         ptr = TypePtr::BotPTR;
1489       } else {                  // Random constant offset into array body
1490         offset = Type::OffsetBot;   // Flatten constant access into array body
1491         tj = ta = TypeAryPtr::make(ptr,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1492       }
1493     }
1494     // Arrays of fixed size alias with arrays of unknown size.
1495     if (ta->size() != TypeInt::POS) {
1496       const TypeAry *tary = TypeAry::make(ta->elem(), TypeInt::POS);
1497       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,ta->klass(),false,Type::Offset(offset), ta->field_offset());
1498     }
1499     // Arrays of known objects become arrays of unknown objects.
1500     if (ta->elem()->isa_narrowoop() && ta->elem() != TypeNarrowOop::BOTTOM) {
1501       const TypeAry *tary = TypeAry::make(TypeNarrowOop::BOTTOM, ta->size());
1502       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1503     }
1504     if (ta->elem()->isa_oopptr() && ta->elem() != TypeInstPtr::BOTTOM) {
1505       const TypeAry *tary = TypeAry::make(TypeInstPtr::BOTTOM, ta->size());
1506       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,NULL,false,Type::Offset(offset), ta->field_offset());
1507     }
1508     // Arrays of bytes and of booleans both use 'bastore' and 'baload' so
1509     // cannot be distinguished by bytecode alone.
1510     if (ta->elem() == TypeInt::BOOL) {
1511       const TypeAry *tary = TypeAry::make(TypeInt::BYTE, ta->size());
1512       ciKlass* aklass = ciTypeArrayKlass::make(T_BYTE);
1513       tj = ta = TypeAryPtr::make(ptr,ta->const_oop(),tary,aklass,false,Type::Offset(offset), ta->field_offset());
1514     }
1515     // During the 2nd round of IterGVN, NotNull castings are removed.
1516     // Make sure the Bottom and NotNull variants alias the same.
1517     // Also, make sure exact and non-exact variants alias the same.
1518     if (ptr == TypePtr::NotNull || ta->klass_is_exact() || ta->speculative() != NULL) {
1519       tj = ta = TypeAryPtr::make(TypePtr::BotPTR,ta->ary(),ta->klass(),false,Type::Offset(offset), ta->field_offset());
1520     }
1521   }
1522 
1523   // Oop pointers need some flattening
1524   const TypeInstPtr *to = tj->isa_instptr();
1525   if( to && _AliasLevel >= 2 && to != TypeOopPtr::BOTTOM ) {
1526     ciInstanceKlass *k = to->klass()->as_instance_klass();
1527     if( ptr == TypePtr::Constant ) {
1528       if (to->klass() != ciEnv::current()->Class_klass() ||
1529           offset < k->size_helper() * wordSize) {
1530         // No constant oop pointers (such as Strings); they alias with
1531         // unknown strings.
1532         assert(!is_known_inst, "not scalarizable allocation");
1533         tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1534       }
1535     } else if( is_known_inst ) {
1536       tj = to; // Keep NotNull and klass_is_exact for instance type
1537     } else if( ptr == TypePtr::NotNull || to->klass_is_exact() ) {
1538       // During the 2nd round of IterGVN, NotNull castings are removed.
1539       // Make sure the Bottom and NotNull variants alias the same.
1540       // Also, make sure exact and non-exact variants alias the same.
1541       tj = to = TypeInstPtr::make(TypePtr::BotPTR,to->klass(),false,0,Type::Offset(offset));
1542     }
1543     if (to->speculative() != NULL) {
1544       tj = to = TypeInstPtr::make(to->ptr(),to->klass(),to->klass_is_exact(),to->const_oop(),Type::Offset(to->offset()), to->instance_id());
1545     }
1546     // Canonicalize the holder of this field
1547     if (offset >= 0 && offset < instanceOopDesc::base_offset_in_bytes()) {
1548       // First handle header references such as a LoadKlassNode, even if the
1549       // object's klass is unloaded at compile time (4965979).
1550       if (!is_known_inst) { // Do it only for non-instance types
1551         tj = to = TypeInstPtr::make(TypePtr::BotPTR, env()->Object_klass(), false, NULL, Type::Offset(offset));
1552       }
1553     } else if (offset < 0 || offset >= k->size_helper() * wordSize) {
1554       // Static fields are in the space above the normal instance
1555       // fields in the java.lang.Class instance.
1556       if (to->klass() != ciEnv::current()->Class_klass()) {
1557         to = NULL;
1558         tj = TypeOopPtr::BOTTOM;
1559         offset = tj->offset();
1560       }
1561     } else {
1562       ciInstanceKlass *canonical_holder = k->get_canonical_holder(offset);
1563       if (!k->equals(canonical_holder) || tj->offset() != offset) {
1564         if( is_known_inst ) {
1565           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, true, NULL, Type::Offset(offset), to->instance_id());
1566         } else {
1567           tj = to = TypeInstPtr::make(to->ptr(), canonical_holder, false, NULL, Type::Offset(offset));
1568         }
1569       }
1570     }
1571   }
1572 
1573   // Klass pointers to object array klasses need some flattening
1574   const TypeKlassPtr *tk = tj->isa_klassptr();
1575   if( tk ) {
1576     // If we are referencing a field within a Klass, we need
1577     // to assume the worst case of an Object.  Both exact and
1578     // inexact types must flatten to the same alias class so
1579     // use NotNull as the PTR.
1580     if ( offset == Type::OffsetBot || (offset >= 0 && (size_t)offset < sizeof(Klass)) ) {
1581 
1582       tj = tk = TypeKlassPtr::make(TypePtr::NotNull,
1583                                    TypeKlassPtr::OBJECT->klass(),
1584                                    Type::Offset(offset));
1585     }
1586 
1587     ciKlass* klass = tk->klass();
1588     if (klass != NULL && klass->is_obj_array_klass()) {
1589       ciKlass* k = TypeAryPtr::OOPS->klass();
1590       if( !k || !k->is_loaded() )                  // Only fails for some -Xcomp runs
1591         k = TypeInstPtr::BOTTOM->klass();
1592       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, k, Type::Offset(offset));
1593     }
1594 
1595     // Check for precise loads from the primary supertype array and force them
1596     // to the supertype cache alias index.  Check for generic array loads from
1597     // the primary supertype array and also force them to the supertype cache
1598     // alias index.  Since the same load can reach both, we need to merge
1599     // these 2 disparate memories into the same alias class.  Since the
1600     // primary supertype array is read-only, there's no chance of confusion
1601     // where we bypass an array load and an array store.
1602     int primary_supers_offset = in_bytes(Klass::primary_supers_offset());
1603     if (offset == Type::OffsetBot ||
1604         (offset >= primary_supers_offset &&
1605          offset < (int)(primary_supers_offset + Klass::primary_super_limit() * wordSize)) ||
1606         offset == (int)in_bytes(Klass::secondary_super_cache_offset())) {
1607       offset = in_bytes(Klass::secondary_super_cache_offset());
1608       tj = tk = TypeKlassPtr::make(TypePtr::NotNull, tk->klass(), Type::Offset(offset));
1609     }
1610   }
1611 
1612   // Flatten all Raw pointers together.
1613   if (tj->base() == Type::RawPtr)
1614     tj = TypeRawPtr::BOTTOM;
1615 
1616   if (tj->base() == Type::AnyPtr)
1617     tj = TypePtr::BOTTOM;      // An error, which the caller must check for.
1618 
1619   // Flatten all to bottom for now
1620   switch( _AliasLevel ) {
1621   case 0:
1622     tj = TypePtr::BOTTOM;
1623     break;
1624   case 1:                       // Flatten to: oop, static, field or array
1625     switch (tj->base()) {
1626     //case Type::AryPtr: tj = TypeAryPtr::RANGE;    break;
1627     case Type::RawPtr:   tj = TypeRawPtr::BOTTOM;   break;
1628     case Type::AryPtr:   // do not distinguish arrays at all
1629     case Type::InstPtr:  tj = TypeInstPtr::BOTTOM;  break;
1630     case Type::KlassPtr: tj = TypeKlassPtr::OBJECT; break;
1631     case Type::AnyPtr:   tj = TypePtr::BOTTOM;      break;  // caller checks it
1632     default: ShouldNotReachHere();
1633     }
1634     break;
1635   case 2:                       // No collapsing at level 2; keep all splits
1636   case 3:                       // No collapsing at level 3; keep all splits
1637     break;
1638   default:
1639     Unimplemented();
1640   }
1641 
1642   offset = tj->offset();
1643   assert( offset != Type::OffsetTop, "Offset has fallen from constant" );
1644 
1645   assert( (offset != Type::OffsetBot && tj->base() != Type::AryPtr) ||
1646           (offset == Type::OffsetBot && tj->base() == Type::AryPtr) ||
1647           (offset == Type::OffsetBot && tj == TypeOopPtr::BOTTOM) ||
1648           (offset == Type::OffsetBot && tj == TypePtr::BOTTOM) ||
1649           (offset == oopDesc::mark_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1650           (offset == oopDesc::klass_offset_in_bytes() && tj->base() == Type::AryPtr) ||
1651           (offset == arrayOopDesc::length_offset_in_bytes() && tj->base() == Type::AryPtr)  ,
1652           "For oops, klasses, raw offset must be constant; for arrays the offset is never known" );
1653   assert( tj->ptr() != TypePtr::TopPTR &&
1654           tj->ptr() != TypePtr::AnyNull &&
1655           tj->ptr() != TypePtr::Null, "No imprecise addresses" );
1656 //    assert( tj->ptr() != TypePtr::Constant ||
1657 //            tj->base() == Type::RawPtr ||
1658 //            tj->base() == Type::KlassPtr, "No constant oop addresses" );
1659 
1660   return tj;
1661 }
1662 
1663 void Compile::AliasType::Init(int i, const TypePtr* at) {
1664   _index = i;
1665   _adr_type = at;
1666   _field = NULL;
1667   _element = NULL;
1668   _is_rewritable = true; // default
1669   const TypeOopPtr *atoop = (at != NULL) ? at->isa_oopptr() : NULL;
1670   if (atoop != NULL && atoop->is_known_instance()) {
1671     const TypeOopPtr *gt = atoop->cast_to_instance_id(TypeOopPtr::InstanceBot);
1672     _general_index = Compile::current()->get_alias_index(gt);
1673   } else {
1674     _general_index = 0;
1675   }
1676 }
1677 
1678 BasicType Compile::AliasType::basic_type() const {
1679   if (element() != NULL) {
1680     const Type* element = adr_type()->is_aryptr()->elem();
1681     return element->isa_narrowoop() ? T_OBJECT : element->array_element_basic_type();
1682   } if (field() != NULL) {
1683     return field()->layout_type();
1684   } else {
1685     return T_ILLEGAL; // unknown
1686   }
1687 }
1688 
1689 //---------------------------------print_on------------------------------------
1690 #ifndef PRODUCT
1691 void Compile::AliasType::print_on(outputStream* st) {
1692   if (index() < 10)
1693         st->print("@ <%d> ", index());
1694   else  st->print("@ <%d>",  index());
1695   st->print(is_rewritable() ? "   " : " RO");
1696   int offset = adr_type()->offset();
1697   if (offset == Type::OffsetBot)
1698         st->print(" +any");
1699   else  st->print(" +%-3d", offset);
1700   st->print(" in ");
1701   adr_type()->dump_on(st);
1702   const TypeOopPtr* tjp = adr_type()->isa_oopptr();
1703   if (field() != NULL && tjp) {
1704     if (tjp->klass()  != field()->holder() ||
1705         tjp->offset() != field()->offset_in_bytes()) {
1706       st->print(" != ");
1707       field()->print();
1708       st->print(" ***");
1709     }
1710   }
1711 }
1712 
1713 void print_alias_types() {
1714   Compile* C = Compile::current();
1715   tty->print_cr("--- Alias types, AliasIdxBot .. %d", C->num_alias_types()-1);
1716   for (int idx = Compile::AliasIdxBot; idx < C->num_alias_types(); idx++) {
1717     C->alias_type(idx)->print_on(tty);
1718     tty->cr();
1719   }
1720 }
1721 #endif
1722 
1723 
1724 //----------------------------probe_alias_cache--------------------------------
1725 Compile::AliasCacheEntry* Compile::probe_alias_cache(const TypePtr* adr_type) {
1726   intptr_t key = (intptr_t) adr_type;
1727   key ^= key >> logAliasCacheSize;
1728   return &_alias_cache[key & right_n_bits(logAliasCacheSize)];
1729 }
1730 
1731 
1732 //-----------------------------grow_alias_types--------------------------------
1733 void Compile::grow_alias_types() {
1734   const int old_ats  = _max_alias_types; // how many before?
1735   const int new_ats  = old_ats;          // how many more?
1736   const int grow_ats = old_ats+new_ats;  // how many now?
1737   _max_alias_types = grow_ats;
1738   _alias_types =  REALLOC_ARENA_ARRAY(comp_arena(), AliasType*, _alias_types, old_ats, grow_ats);
1739   AliasType* ats =    NEW_ARENA_ARRAY(comp_arena(), AliasType, new_ats);
1740   Copy::zero_to_bytes(ats, sizeof(AliasType)*new_ats);
1741   for (int i = 0; i < new_ats; i++)  _alias_types[old_ats+i] = &ats[i];
1742 }
1743 
1744 
1745 //--------------------------------find_alias_type------------------------------
1746 Compile::AliasType* Compile::find_alias_type(const TypePtr* adr_type, bool no_create, ciField* original_field) {
1747   if (_AliasLevel == 0)
1748     return alias_type(AliasIdxBot);
1749 
1750   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1751   if (ace->_adr_type == adr_type) {
1752     return alias_type(ace->_index);
1753   }
1754 
1755   // Handle special cases.
1756   if (adr_type == NULL)             return alias_type(AliasIdxTop);
1757   if (adr_type == TypePtr::BOTTOM)  return alias_type(AliasIdxBot);
1758 
1759   // Do it the slow way.
1760   const TypePtr* flat = flatten_alias_type(adr_type);
1761 
1762 #ifdef ASSERT
1763   {
1764     ResourceMark rm;
1765     assert(flat == flatten_alias_type(flat), "not idempotent: adr_type = %s; flat = %s => %s",
1766            Type::str(adr_type), Type::str(flat), Type::str(flatten_alias_type(flat)));
1767     assert(flat != TypePtr::BOTTOM, "cannot alias-analyze an untyped ptr: adr_type = %s",
1768            Type::str(adr_type));
1769     if (flat->isa_oopptr() && !flat->isa_klassptr()) {
1770       const TypeOopPtr* foop = flat->is_oopptr();
1771       // Scalarizable allocations have exact klass always.
1772       bool exact = !foop->klass_is_exact() || foop->is_known_instance();
1773       const TypePtr* xoop = foop->cast_to_exactness(exact)->is_ptr();
1774       assert(foop == flatten_alias_type(xoop), "exactness must not affect alias type: foop = %s; xoop = %s",
1775              Type::str(foop), Type::str(xoop));
1776     }
1777   }
1778 #endif
1779 
1780   int idx = AliasIdxTop;
1781   for (int i = 0; i < num_alias_types(); i++) {
1782     if (alias_type(i)->adr_type() == flat) {
1783       idx = i;
1784       break;
1785     }
1786   }
1787 
1788   if (idx == AliasIdxTop) {
1789     if (no_create)  return NULL;
1790     // Grow the array if necessary.
1791     if (_num_alias_types == _max_alias_types)  grow_alias_types();
1792     // Add a new alias type.
1793     idx = _num_alias_types++;
1794     _alias_types[idx]->Init(idx, flat);
1795     if (flat == TypeInstPtr::KLASS)  alias_type(idx)->set_rewritable(false);
1796     if (flat == TypeAryPtr::RANGE)   alias_type(idx)->set_rewritable(false);
1797     if (flat->isa_instptr()) {
1798       if (flat->offset() == java_lang_Class::klass_offset_in_bytes()
1799           && flat->is_instptr()->klass() == env()->Class_klass())
1800         alias_type(idx)->set_rewritable(false);
1801     }
1802     ciField* field = NULL;
1803     if (flat->isa_aryptr()) {
1804 #ifdef ASSERT
1805       const int header_size_min  = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1806       // (T_BYTE has the weakest alignment and size restrictions...)
1807       assert(flat->offset() < header_size_min, "array body reference must be OffsetBot");
1808 #endif
1809       const Type* elemtype = flat->is_aryptr()->elem();
1810       if (flat->offset() == TypePtr::OffsetBot) {
1811         alias_type(idx)->set_element(elemtype);
1812       }
1813       int field_offset = flat->is_aryptr()->field_offset().get();
1814       if (elemtype->isa_valuetype() && field_offset != Type::OffsetBot) {
1815         ciValueKlass* vk = elemtype->is_valuetype()->value_klass();
1816         field_offset += vk->first_field_offset();
1817         field = vk->get_field_by_offset(field_offset, false);
1818       }
1819     }
1820     if (flat->isa_klassptr()) {
1821       if (flat->offset() == in_bytes(Klass::super_check_offset_offset()))
1822         alias_type(idx)->set_rewritable(false);
1823       if (flat->offset() == in_bytes(Klass::modifier_flags_offset()))
1824         alias_type(idx)->set_rewritable(false);
1825       if (flat->offset() == in_bytes(Klass::access_flags_offset()))
1826         alias_type(idx)->set_rewritable(false);
1827       if (flat->offset() == in_bytes(Klass::java_mirror_offset()))
1828         alias_type(idx)->set_rewritable(false);
1829     }
1830     // %%% (We would like to finalize JavaThread::threadObj_offset(),
1831     // but the base pointer type is not distinctive enough to identify
1832     // references into JavaThread.)
1833 
1834     // Check for final fields.
1835     const TypeInstPtr* tinst = flat->isa_instptr();
1836     if (tinst && tinst->offset() >= instanceOopDesc::base_offset_in_bytes()) {
1837       if (tinst->const_oop() != NULL &&
1838           tinst->klass() == ciEnv::current()->Class_klass() &&
1839           tinst->offset() >= (tinst->klass()->as_instance_klass()->size_helper() * wordSize)) {
1840         // static field
1841         ciInstanceKlass* k = tinst->const_oop()->as_instance()->java_lang_Class_klass()->as_instance_klass();
1842         field = k->get_field_by_offset(tinst->offset(), true);
1843       } else if (tinst->klass()->is_valuetype()) {
1844         // Value type field
1845         ciValueKlass* vk = tinst->value_klass();
1846         field = vk->get_field_by_offset(tinst->offset(), false);
1847       } else {
1848         ciInstanceKlass* k = tinst->klass()->as_instance_klass();
1849         field = k->get_field_by_offset(tinst->offset(), false);
1850       }
1851     }
1852     assert(field == NULL ||
1853            original_field == NULL ||
1854            (field->holder() == original_field->holder() &&
1855             field->offset() == original_field->offset() &&
1856             field->is_static() == original_field->is_static()), "wrong field?");
1857     // Set field() and is_rewritable() attributes.
1858     if (field != NULL)  alias_type(idx)->set_field(field);
1859   }
1860 
1861   // Fill the cache for next time.
1862   ace->_adr_type = adr_type;
1863   ace->_index    = idx;
1864   assert(alias_type(adr_type) == alias_type(idx),  "type must be installed");
1865 
1866   // Might as well try to fill the cache for the flattened version, too.
1867   AliasCacheEntry* face = probe_alias_cache(flat);
1868   if (face->_adr_type == NULL) {
1869     face->_adr_type = flat;
1870     face->_index    = idx;
1871     assert(alias_type(flat) == alias_type(idx), "flat type must work too");
1872   }
1873 
1874   return alias_type(idx);
1875 }
1876 
1877 
1878 Compile::AliasType* Compile::alias_type(ciField* field) {
1879   const TypeOopPtr* t;
1880   if (field->is_static())
1881     t = TypeInstPtr::make(field->holder()->java_mirror());
1882   else
1883     t = TypeOopPtr::make_from_klass_raw(field->holder());
1884   AliasType* atp = alias_type(t->add_offset(field->offset_in_bytes()), field);
1885   assert((field->is_final() || field->is_stable()) == !atp->is_rewritable(), "must get the rewritable bits correct");
1886   return atp;
1887 }
1888 
1889 
1890 //------------------------------have_alias_type--------------------------------
1891 bool Compile::have_alias_type(const TypePtr* adr_type) {
1892   AliasCacheEntry* ace = probe_alias_cache(adr_type);
1893   if (ace->_adr_type == adr_type) {
1894     return true;
1895   }
1896 
1897   // Handle special cases.
1898   if (adr_type == NULL)             return true;
1899   if (adr_type == TypePtr::BOTTOM)  return true;
1900 
1901   return find_alias_type(adr_type, true, NULL) != NULL;
1902 }
1903 
1904 //-----------------------------must_alias--------------------------------------
1905 // True if all values of the given address type are in the given alias category.
1906 bool Compile::must_alias(const TypePtr* adr_type, int alias_idx) {
1907   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1908   if (adr_type == NULL)                 return true;  // NULL serves as TypePtr::TOP
1909   if (alias_idx == AliasIdxTop)         return false; // the empty category
1910   if (adr_type->base() == Type::AnyPtr) return false; // TypePtr::BOTTOM or its twins
1911 
1912   // the only remaining possible overlap is identity
1913   int adr_idx = get_alias_index(adr_type);
1914   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1915   assert(adr_idx == alias_idx ||
1916          (alias_type(alias_idx)->adr_type() != TypeOopPtr::BOTTOM
1917           && adr_type                       != TypeOopPtr::BOTTOM),
1918          "should not be testing for overlap with an unsafe pointer");
1919   return adr_idx == alias_idx;
1920 }
1921 
1922 //------------------------------can_alias--------------------------------------
1923 // True if any values of the given address type are in the given alias category.
1924 bool Compile::can_alias(const TypePtr* adr_type, int alias_idx) {
1925   if (alias_idx == AliasIdxTop)         return false; // the empty category
1926   if (adr_type == NULL)                 return false; // NULL serves as TypePtr::TOP
1927   if (alias_idx == AliasIdxBot)         return true;  // the universal category
1928   if (adr_type->base() == Type::AnyPtr) return true;  // TypePtr::BOTTOM or its twins
1929 
1930   // the only remaining possible overlap is identity
1931   int adr_idx = get_alias_index(adr_type);
1932   assert(adr_idx != AliasIdxBot && adr_idx != AliasIdxTop, "");
1933   return adr_idx == alias_idx;
1934 }
1935 
1936 
1937 
1938 //---------------------------pop_warm_call-------------------------------------
1939 WarmCallInfo* Compile::pop_warm_call() {
1940   WarmCallInfo* wci = _warm_calls;
1941   if (wci != NULL)  _warm_calls = wci->remove_from(wci);
1942   return wci;
1943 }
1944 
1945 //----------------------------Inline_Warm--------------------------------------
1946 int Compile::Inline_Warm() {
1947   // If there is room, try to inline some more warm call sites.
1948   // %%% Do a graph index compaction pass when we think we're out of space?
1949   if (!InlineWarmCalls)  return 0;
1950 
1951   int calls_made_hot = 0;
1952   int room_to_grow   = NodeCountInliningCutoff - unique();
1953   int amount_to_grow = MIN2(room_to_grow, (int)NodeCountInliningStep);
1954   int amount_grown   = 0;
1955   WarmCallInfo* call;
1956   while (amount_to_grow > 0 && (call = pop_warm_call()) != NULL) {
1957     int est_size = (int)call->size();
1958     if (est_size > (room_to_grow - amount_grown)) {
1959       // This one won't fit anyway.  Get rid of it.
1960       call->make_cold();
1961       continue;
1962     }
1963     call->make_hot();
1964     calls_made_hot++;
1965     amount_grown   += est_size;
1966     amount_to_grow -= est_size;
1967   }
1968 
1969   if (calls_made_hot > 0)  set_major_progress();
1970   return calls_made_hot;
1971 }
1972 
1973 
1974 //----------------------------Finish_Warm--------------------------------------
1975 void Compile::Finish_Warm() {
1976   if (!InlineWarmCalls)  return;
1977   if (failing())  return;
1978   if (warm_calls() == NULL)  return;
1979 
1980   // Clean up loose ends, if we are out of space for inlining.
1981   WarmCallInfo* call;
1982   while ((call = pop_warm_call()) != NULL) {
1983     call->make_cold();
1984   }
1985 }
1986 
1987 //---------------------cleanup_loop_predicates-----------------------
1988 // Remove the opaque nodes that protect the predicates so that all unused
1989 // checks and uncommon_traps will be eliminated from the ideal graph
1990 void Compile::cleanup_loop_predicates(PhaseIterGVN &igvn) {
1991   if (predicate_count()==0) return;
1992   for (int i = predicate_count(); i > 0; i--) {
1993     Node * n = predicate_opaque1_node(i-1);
1994     assert(n->Opcode() == Op_Opaque1, "must be");
1995     igvn.replace_node(n, n->in(1));
1996   }
1997   assert(predicate_count()==0, "should be clean!");
1998 }
1999 
2000 void Compile::add_range_check_cast(Node* n) {
2001   assert(n->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2002   assert(!_range_check_casts->contains(n), "duplicate entry in range check casts");
2003   _range_check_casts->append(n);
2004 }
2005 
2006 // Remove all range check dependent CastIINodes.
2007 void Compile::remove_range_check_casts(PhaseIterGVN &igvn) {
2008   for (int i = range_check_cast_count(); i > 0; i--) {
2009     Node* cast = range_check_cast_node(i-1);
2010     assert(cast->isa_CastII()->has_range_check(), "CastII should have range check dependency");
2011     igvn.replace_node(cast, cast->in(1));
2012   }
2013   assert(range_check_cast_count() == 0, "should be empty");
2014 }
2015 
2016 void Compile::add_opaque4_node(Node* n) {
2017   assert(n->Opcode() == Op_Opaque4, "Opaque4 only");
2018   assert(!_opaque4_nodes->contains(n), "duplicate entry in Opaque4 list");
2019   _opaque4_nodes->append(n);
2020 }
2021 
2022 // Remove all Opaque4 nodes.
2023 void Compile::remove_opaque4_nodes(PhaseIterGVN &igvn) {
2024   for (int i = opaque4_count(); i > 0; i--) {
2025     Node* opaq = opaque4_node(i-1);
2026     assert(opaq->Opcode() == Op_Opaque4, "Opaque4 only");
2027     igvn.replace_node(opaq, opaq->in(2));
2028   }
2029   assert(opaque4_count() == 0, "should be empty");
2030 }
2031 
2032 void Compile::add_value_type(Node* n) {
2033   assert(n->is_ValueTypeBase(), "unexpected node");
2034   if (_value_type_nodes != NULL) {
2035     _value_type_nodes->push(n);
2036   }
2037 }
2038 
2039 void Compile::remove_value_type(Node* n) {
2040   assert(n->is_ValueTypeBase(), "unexpected node");
2041   if (_value_type_nodes != NULL) {
2042     _value_type_nodes->remove(n);
2043   }
2044 }
2045 
2046 void Compile::process_value_types(PhaseIterGVN &igvn) {
2047   // Make value types scalar in safepoints
2048   while (_value_type_nodes->size() != 0) {
2049     ValueTypeBaseNode* vt = _value_type_nodes->pop()->as_ValueTypeBase();
2050     vt->make_scalar_in_safepoints(igvn.C->root(), &igvn);
2051     if (vt->is_ValueTypePtr()) {
2052       igvn.replace_node(vt, vt->get_oop());
2053     }
2054   }
2055   _value_type_nodes = NULL;
2056   igvn.optimize();
2057 }
2058 
2059 // StringOpts and late inlining of string methods
2060 void Compile::inline_string_calls(bool parse_time) {
2061   {
2062     // remove useless nodes to make the usage analysis simpler
2063     ResourceMark rm;
2064     PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2065   }
2066 
2067   {
2068     ResourceMark rm;
2069     print_method(PHASE_BEFORE_STRINGOPTS, 3);
2070     PhaseStringOpts pso(initial_gvn(), for_igvn());
2071     print_method(PHASE_AFTER_STRINGOPTS, 3);
2072   }
2073 
2074   // now inline anything that we skipped the first time around
2075   if (!parse_time) {
2076     _late_inlines_pos = _late_inlines.length();
2077   }
2078 
2079   while (_string_late_inlines.length() > 0) {
2080     CallGenerator* cg = _string_late_inlines.pop();
2081     cg->do_late_inline();
2082     if (failing())  return;
2083   }
2084   _string_late_inlines.trunc_to(0);
2085 }
2086 
2087 // Late inlining of boxing methods
2088 void Compile::inline_boxing_calls(PhaseIterGVN& igvn) {
2089   if (_boxing_late_inlines.length() > 0) {
2090     assert(has_boxed_value(), "inconsistent");
2091 
2092     PhaseGVN* gvn = initial_gvn();
2093     set_inlining_incrementally(true);
2094 
2095     assert( igvn._worklist.size() == 0, "should be done with igvn" );
2096     for_igvn()->clear();
2097     gvn->replace_with(&igvn);
2098 
2099     _late_inlines_pos = _late_inlines.length();
2100 
2101     while (_boxing_late_inlines.length() > 0) {
2102       CallGenerator* cg = _boxing_late_inlines.pop();
2103       cg->do_late_inline();
2104       if (failing())  return;
2105     }
2106     _boxing_late_inlines.trunc_to(0);
2107 
2108     {
2109       ResourceMark rm;
2110       PhaseRemoveUseless pru(gvn, for_igvn());
2111     }
2112 
2113     igvn = PhaseIterGVN(gvn);
2114     igvn.optimize();
2115 
2116     set_inlining_progress(false);
2117     set_inlining_incrementally(false);
2118   }
2119 }
2120 
2121 void Compile::inline_incrementally_one(PhaseIterGVN& igvn) {
2122   assert(IncrementalInline, "incremental inlining should be on");
2123   PhaseGVN* gvn = initial_gvn();
2124 
2125   set_inlining_progress(false);
2126   for_igvn()->clear();
2127   gvn->replace_with(&igvn);
2128 
2129   {
2130     TracePhase tp("incrementalInline_inline", &timers[_t_incrInline_inline]);
2131     int i = 0;
2132     for (; i <_late_inlines.length() && !inlining_progress(); i++) {
2133       CallGenerator* cg = _late_inlines.at(i);
2134       _late_inlines_pos = i+1;
2135       cg->do_late_inline();
2136       if (failing())  return;
2137     }
2138     int j = 0;
2139     for (; i < _late_inlines.length(); i++, j++) {
2140       _late_inlines.at_put(j, _late_inlines.at(i));
2141     }
2142     _late_inlines.trunc_to(j);
2143   }
2144 
2145   {
2146     TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2147     ResourceMark rm;
2148     PhaseRemoveUseless pru(gvn, for_igvn());
2149   }
2150 
2151   {
2152     TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2153     igvn = PhaseIterGVN(gvn);
2154   }
2155 }
2156 
2157 // Perform incremental inlining until bound on number of live nodes is reached
2158 void Compile::inline_incrementally(PhaseIterGVN& igvn) {
2159   TracePhase tp("incrementalInline", &timers[_t_incrInline]);
2160 
2161   PhaseGVN* gvn = initial_gvn();
2162 
2163   set_inlining_incrementally(true);
2164   set_inlining_progress(true);
2165   uint low_live_nodes = 0;
2166 
2167   while(inlining_progress() && _late_inlines.length() > 0) {
2168 
2169     if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2170       if (low_live_nodes < (uint)LiveNodeCountInliningCutoff * 8 / 10) {
2171         TracePhase tp("incrementalInline_ideal", &timers[_t_incrInline_ideal]);
2172         // PhaseIdealLoop is expensive so we only try it once we are
2173         // out of live nodes and we only try it again if the previous
2174         // helped got the number of nodes down significantly
2175         PhaseIdealLoop ideal_loop( igvn, false, true );
2176         if (failing())  return;
2177         low_live_nodes = live_nodes();
2178         _major_progress = true;
2179       }
2180 
2181       if (live_nodes() > (uint)LiveNodeCountInliningCutoff) {
2182         break;
2183       }
2184     }
2185 
2186     inline_incrementally_one(igvn);
2187 
2188     if (failing())  return;
2189 
2190     {
2191       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2192       igvn.optimize();
2193     }
2194 
2195     if (failing())  return;
2196   }
2197 
2198   assert( igvn._worklist.size() == 0, "should be done with igvn" );
2199 
2200   if (_string_late_inlines.length() > 0) {
2201     assert(has_stringbuilder(), "inconsistent");
2202     for_igvn()->clear();
2203     initial_gvn()->replace_with(&igvn);
2204 
2205     inline_string_calls(false);
2206 
2207     if (failing())  return;
2208 
2209     {
2210       TracePhase tp("incrementalInline_pru", &timers[_t_incrInline_pru]);
2211       ResourceMark rm;
2212       PhaseRemoveUseless pru(initial_gvn(), for_igvn());
2213     }
2214 
2215     {
2216       TracePhase tp("incrementalInline_igvn", &timers[_t_incrInline_igvn]);
2217       igvn = PhaseIterGVN(gvn);
2218       igvn.optimize();
2219     }
2220   }
2221 
2222   set_inlining_incrementally(false);
2223 }
2224 
2225 
2226 //------------------------------Optimize---------------------------------------
2227 // Given a graph, optimize it.
2228 void Compile::Optimize() {
2229   TracePhase tp("optimizer", &timers[_t_optimizer]);
2230 
2231 #ifndef PRODUCT
2232   if (_directive->BreakAtCompileOption) {
2233     BREAKPOINT;
2234   }
2235 
2236 #endif
2237 
2238 #ifdef ASSERT
2239   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2240   bs->verify_gc_barriers(true);
2241 #endif
2242 
2243   ResourceMark rm;
2244   int          loop_opts_cnt;
2245 
2246   print_inlining_reinit();
2247 
2248   NOT_PRODUCT( verify_graph_edges(); )
2249 
2250   print_method(PHASE_AFTER_PARSING);
2251 
2252  {
2253   // Iterative Global Value Numbering, including ideal transforms
2254   // Initialize IterGVN with types and values from parse-time GVN
2255   PhaseIterGVN igvn(initial_gvn());
2256 #ifdef ASSERT
2257   _modified_nodes = new (comp_arena()) Unique_Node_List(comp_arena());
2258 #endif
2259   {
2260     TracePhase tp("iterGVN", &timers[_t_iterGVN]);
2261     igvn.optimize();
2262   }
2263 
2264   print_method(PHASE_ITER_GVN1, 2);
2265 
2266   if (failing())  return;
2267 
2268   inline_incrementally(igvn);
2269 
2270   print_method(PHASE_INCREMENTAL_INLINE, 2);
2271 
2272   if (failing())  return;
2273 
2274   if (eliminate_boxing()) {
2275     // Inline valueOf() methods now.
2276     inline_boxing_calls(igvn);
2277 
2278     if (AlwaysIncrementalInline) {
2279       inline_incrementally(igvn);
2280     }
2281 
2282     print_method(PHASE_INCREMENTAL_BOXING_INLINE, 2);
2283 
2284     if (failing())  return;
2285   }
2286 
2287   // Remove the speculative part of types and clean up the graph from
2288   // the extra CastPP nodes whose only purpose is to carry them. Do
2289   // that early so that optimizations are not disrupted by the extra
2290   // CastPP nodes.
2291   remove_speculative_types(igvn);
2292 
2293   // No more new expensive nodes will be added to the list from here
2294   // so keep only the actual candidates for optimizations.
2295   cleanup_expensive_nodes(igvn);
2296 
2297   if (!failing() && RenumberLiveNodes && live_nodes() + NodeLimitFudgeFactor < unique()) {
2298     Compile::TracePhase tp("", &timers[_t_renumberLive]);
2299     initial_gvn()->replace_with(&igvn);
2300     for_igvn()->clear();
2301     Unique_Node_List new_worklist(C->comp_arena());
2302     {
2303       ResourceMark rm;
2304       PhaseRenumberLive prl = PhaseRenumberLive(initial_gvn(), for_igvn(), &new_worklist);
2305     }
2306     set_for_igvn(&new_worklist);
2307     igvn = PhaseIterGVN(initial_gvn());
2308     igvn.optimize();
2309   }
2310 
2311   if (_value_type_nodes->size() > 0) {
2312     // Do this once all inlining is over to avoid getting inconsistent debug info
2313     process_value_types(igvn);
2314   }
2315 
2316   // Perform escape analysis
2317   if (_do_escape_analysis && ConnectionGraph::has_candidates(this)) {
2318     if (has_loops()) {
2319       // Cleanup graph (remove dead nodes).
2320       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2321       PhaseIdealLoop ideal_loop( igvn, false, true );
2322       if (major_progress()) print_method(PHASE_PHASEIDEAL_BEFORE_EA, 2);
2323       if (failing())  return;
2324     }
2325     ConnectionGraph::do_analysis(this, &igvn);
2326 
2327     if (failing())  return;
2328 
2329     // Optimize out fields loads from scalar replaceable allocations.
2330     igvn.optimize();
2331     print_method(PHASE_ITER_GVN_AFTER_EA, 2);
2332 
2333     if (failing())  return;
2334 
2335     if (congraph() != NULL && macro_count() > 0) {
2336       TracePhase tp("macroEliminate", &timers[_t_macroEliminate]);
2337       PhaseMacroExpand mexp(igvn);
2338       mexp.eliminate_macro_nodes();
2339       igvn.set_delay_transform(false);
2340 
2341       igvn.optimize();
2342       print_method(PHASE_ITER_GVN_AFTER_ELIMINATION, 2);
2343 
2344       if (failing())  return;
2345     }
2346   }
2347 
2348   // Loop transforms on the ideal graph.  Range Check Elimination,
2349   // peeling, unrolling, etc.
2350 
2351   // Set loop opts counter
2352   loop_opts_cnt = num_loop_opts();
2353   if((loop_opts_cnt > 0) && (has_loops() || has_split_ifs())) {
2354     {
2355       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2356       PhaseIdealLoop ideal_loop( igvn, true );
2357       loop_opts_cnt--;
2358       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP1, 2);
2359       if (failing())  return;
2360     }
2361     // Loop opts pass if partial peeling occurred in previous pass
2362     if(PartialPeelLoop && major_progress() && (loop_opts_cnt > 0)) {
2363       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2364       PhaseIdealLoop ideal_loop( igvn, false );
2365       loop_opts_cnt--;
2366       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP2, 2);
2367       if (failing())  return;
2368     }
2369     // Loop opts pass for loop-unrolling before CCP
2370     if(major_progress() && (loop_opts_cnt > 0)) {
2371       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2372       PhaseIdealLoop ideal_loop( igvn, false );
2373       loop_opts_cnt--;
2374       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP3, 2);
2375     }
2376     if (!failing()) {
2377       // Verify that last round of loop opts produced a valid graph
2378       TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2379       PhaseIdealLoop::verify(igvn);
2380     }
2381   }
2382   if (failing())  return;
2383 
2384   // Conditional Constant Propagation;
2385   PhaseCCP ccp( &igvn );
2386   assert( true, "Break here to ccp.dump_nodes_and_types(_root,999,1)");
2387   {
2388     TracePhase tp("ccp", &timers[_t_ccp]);
2389     ccp.do_transform();
2390   }
2391   print_method(PHASE_CPP1, 2);
2392 
2393   assert( true, "Break here to ccp.dump_old2new_map()");
2394 
2395   // Iterative Global Value Numbering, including ideal transforms
2396   {
2397     TracePhase tp("iterGVN2", &timers[_t_iterGVN2]);
2398     igvn = ccp;
2399     igvn.optimize();
2400   }
2401 
2402   print_method(PHASE_ITER_GVN2, 2);
2403 
2404   if (failing())  return;
2405 
2406   // Loop transforms on the ideal graph.  Range Check Elimination,
2407   // peeling, unrolling, etc.
2408   if(loop_opts_cnt > 0) {
2409     debug_only( int cnt = 0; );
2410     while(major_progress() && (loop_opts_cnt > 0)) {
2411       TracePhase tp("idealLoop", &timers[_t_idealLoop]);
2412       assert( cnt++ < 40, "infinite cycle in loop optimization" );
2413       PhaseIdealLoop ideal_loop( igvn, true);
2414       loop_opts_cnt--;
2415       if (major_progress()) print_method(PHASE_PHASEIDEALLOOP_ITERATIONS, 2);
2416       if (failing())  return;
2417     }
2418   }
2419 
2420 #if INCLUDE_ZGC
2421   if (UseZGC) {
2422     ZBarrierSetC2::find_dominating_barriers(igvn);
2423   }
2424 #endif
2425 
2426   if (failing())  return;
2427 
2428   // Ensure that major progress is now clear
2429   C->clear_major_progress();
2430 
2431   {
2432     // Verify that all previous optimizations produced a valid graph
2433     // at least to this point, even if no loop optimizations were done.
2434     TracePhase tp("idealLoopVerify", &timers[_t_idealLoopVerify]);
2435     PhaseIdealLoop::verify(igvn);
2436   }
2437 
2438   if (range_check_cast_count() > 0) {
2439     // No more loop optimizations. Remove all range check dependent CastIINodes.
2440     C->remove_range_check_casts(igvn);
2441     igvn.optimize();
2442   }
2443 
2444 #ifdef ASSERT
2445   BarrierSetC2* bs = BarrierSet::barrier_set()->barrier_set_c2();
2446   bs->verify_gc_barriers(false);
2447 #endif
2448 
2449   {
2450     TracePhase tp("macroExpand", &timers[_t_macroExpand]);
2451     PhaseMacroExpand  mex(igvn);
2452     print_method(PHASE_BEFORE_MACRO_EXPANSION, 2);
2453     if (mex.expand_macro_nodes()) {
2454       assert(failing(), "must bail out w/ explicit message");
2455       return;
2456     }
2457   }
2458 
2459   if (opaque4_count() > 0) {
2460     C->remove_opaque4_nodes(igvn);
2461     igvn.optimize();
2462   }
2463 
2464   DEBUG_ONLY( _modified_nodes = NULL; )
2465  } // (End scope of igvn; run destructor if necessary for asserts.)
2466 
2467  process_print_inlining();
2468  // A method with only infinite loops has no edges entering loops from root
2469  {
2470    TracePhase tp("graphReshape", &timers[_t_graphReshaping]);
2471    if (final_graph_reshaping()) {
2472      assert(failing(), "must bail out w/ explicit message");
2473      return;
2474    }
2475  }
2476 
2477  print_method(PHASE_OPTIMIZE_FINISHED, 2);
2478 }
2479 
2480 //------------------------------Code_Gen---------------------------------------
2481 // Given a graph, generate code for it
2482 void Compile::Code_Gen() {
2483   if (failing()) {
2484     return;
2485   }
2486 
2487   // Perform instruction selection.  You might think we could reclaim Matcher
2488   // memory PDQ, but actually the Matcher is used in generating spill code.
2489   // Internals of the Matcher (including some VectorSets) must remain live
2490   // for awhile - thus I cannot reclaim Matcher memory lest a VectorSet usage
2491   // set a bit in reclaimed memory.
2492 
2493   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2494   // nodes.  Mapping is only valid at the root of each matched subtree.
2495   NOT_PRODUCT( verify_graph_edges(); )
2496 
2497   Matcher matcher;
2498   _matcher = &matcher;
2499   {
2500     TracePhase tp("matcher", &timers[_t_matcher]);
2501     matcher.match();
2502   }
2503   // In debug mode can dump m._nodes.dump() for mapping of ideal to machine
2504   // nodes.  Mapping is only valid at the root of each matched subtree.
2505   NOT_PRODUCT( verify_graph_edges(); )
2506 
2507   // If you have too many nodes, or if matching has failed, bail out
2508   check_node_count(0, "out of nodes matching instructions");
2509   if (failing()) {
2510     return;
2511   }
2512 
2513   print_method(PHASE_MATCHING, 2);
2514 
2515   // Build a proper-looking CFG
2516   PhaseCFG cfg(node_arena(), root(), matcher);
2517   _cfg = &cfg;
2518   {
2519     TracePhase tp("scheduler", &timers[_t_scheduler]);
2520     bool success = cfg.do_global_code_motion();
2521     if (!success) {
2522       return;
2523     }
2524 
2525     print_method(PHASE_GLOBAL_CODE_MOTION, 2);
2526     NOT_PRODUCT( verify_graph_edges(); )
2527     debug_only( cfg.verify(); )
2528   }
2529 
2530   PhaseChaitin regalloc(unique(), cfg, matcher, false);
2531   _regalloc = &regalloc;
2532   {
2533     TracePhase tp("regalloc", &timers[_t_registerAllocation]);
2534     // Perform register allocation.  After Chaitin, use-def chains are
2535     // no longer accurate (at spill code) and so must be ignored.
2536     // Node->LRG->reg mappings are still accurate.
2537     _regalloc->Register_Allocate();
2538 
2539     // Bail out if the allocator builds too many nodes
2540     if (failing()) {
2541       return;
2542     }
2543   }
2544 
2545   // Prior to register allocation we kept empty basic blocks in case the
2546   // the allocator needed a place to spill.  After register allocation we
2547   // are not adding any new instructions.  If any basic block is empty, we
2548   // can now safely remove it.
2549   {
2550     TracePhase tp("blockOrdering", &timers[_t_blockOrdering]);
2551     cfg.remove_empty_blocks();
2552     if (do_freq_based_layout()) {
2553       PhaseBlockLayout layout(cfg);
2554     } else {
2555       cfg.set_loop_alignment();
2556     }
2557     cfg.fixup_flow();
2558   }
2559 
2560   // Apply peephole optimizations
2561   if( OptoPeephole ) {
2562     TracePhase tp("peephole", &timers[_t_peephole]);
2563     PhasePeephole peep( _regalloc, cfg);
2564     peep.do_transform();
2565   }
2566 
2567   // Do late expand if CPU requires this.
2568   if (Matcher::require_postalloc_expand) {
2569     TracePhase tp("postalloc_expand", &timers[_t_postalloc_expand]);
2570     cfg.postalloc_expand(_regalloc);
2571   }
2572 
2573   // Convert Nodes to instruction bits in a buffer
2574   {
2575     TraceTime tp("output", &timers[_t_output], CITime);
2576     Output();
2577   }
2578 
2579   print_method(PHASE_FINAL_CODE);
2580 
2581   // He's dead, Jim.
2582   _cfg     = (PhaseCFG*)((intptr_t)0xdeadbeef);
2583   _regalloc = (PhaseChaitin*)((intptr_t)0xdeadbeef);
2584 }
2585 
2586 
2587 //------------------------------dump_asm---------------------------------------
2588 // Dump formatted assembly
2589 #ifndef PRODUCT
2590 void Compile::dump_asm(int *pcs, uint pc_limit) {
2591   bool cut_short = false;
2592   tty->print_cr("#");
2593   tty->print("#  ");  _tf->dump();  tty->cr();
2594   tty->print_cr("#");
2595 
2596   // For all blocks
2597   int pc = 0x0;                 // Program counter
2598   char starts_bundle = ' ';
2599   _regalloc->dump_frame();
2600 
2601   Node *n = NULL;
2602   for (uint i = 0; i < _cfg->number_of_blocks(); i++) {
2603     if (VMThread::should_terminate()) {
2604       cut_short = true;
2605       break;
2606     }
2607     Block* block = _cfg->get_block(i);
2608     if (block->is_connector() && !Verbose) {
2609       continue;
2610     }
2611     n = block->head();
2612     if (pcs && n->_idx < pc_limit) {
2613       tty->print("%3.3x   ", pcs[n->_idx]);
2614     } else {
2615       tty->print("      ");
2616     }
2617     block->dump_head(_cfg);
2618     if (block->is_connector()) {
2619       tty->print_cr("        # Empty connector block");
2620     } else if (block->num_preds() == 2 && block->pred(1)->is_CatchProj() && block->pred(1)->as_CatchProj()->_con == CatchProjNode::fall_through_index) {
2621       tty->print_cr("        # Block is sole successor of call");
2622     }
2623 
2624     // For all instructions
2625     Node *delay = NULL;
2626     for (uint j = 0; j < block->number_of_nodes(); j++) {
2627       if (VMThread::should_terminate()) {
2628         cut_short = true;
2629         break;
2630       }
2631       n = block->get_node(j);
2632       if (valid_bundle_info(n)) {
2633         Bundle* bundle = node_bundling(n);
2634         if (bundle->used_in_unconditional_delay()) {
2635           delay = n;
2636           continue;
2637         }
2638         if (bundle->starts_bundle()) {
2639           starts_bundle = '+';
2640         }
2641       }
2642 
2643       if (WizardMode) {
2644         n->dump();
2645       }
2646 
2647       if( !n->is_Region() &&    // Dont print in the Assembly
2648           !n->is_Phi() &&       // a few noisely useless nodes
2649           !n->is_Proj() &&
2650           !n->is_MachTemp() &&
2651           !n->is_SafePointScalarObject() &&
2652           !n->is_Catch() &&     // Would be nice to print exception table targets
2653           !n->is_MergeMem() &&  // Not very interesting
2654           !n->is_top() &&       // Debug info table constants
2655           !(n->is_Con() && !n->is_Mach())// Debug info table constants
2656           ) {
2657         if (pcs && n->_idx < pc_limit)
2658           tty->print("%3.3x", pcs[n->_idx]);
2659         else
2660           tty->print("   ");
2661         tty->print(" %c ", starts_bundle);
2662         starts_bundle = ' ';
2663         tty->print("\t");
2664         n->format(_regalloc, tty);
2665         tty->cr();
2666       }
2667 
2668       // If we have an instruction with a delay slot, and have seen a delay,
2669       // then back up and print it
2670       if (valid_bundle_info(n) && node_bundling(n)->use_unconditional_delay()) {
2671         assert(delay != NULL, "no unconditional delay instruction");
2672         if (WizardMode) delay->dump();
2673 
2674         if (node_bundling(delay)->starts_bundle())
2675           starts_bundle = '+';
2676         if (pcs && n->_idx < pc_limit)
2677           tty->print("%3.3x", pcs[n->_idx]);
2678         else
2679           tty->print("   ");
2680         tty->print(" %c ", starts_bundle);
2681         starts_bundle = ' ';
2682         tty->print("\t");
2683         delay->format(_regalloc, tty);
2684         tty->cr();
2685         delay = NULL;
2686       }
2687 
2688       // Dump the exception table as well
2689       if( n->is_Catch() && (Verbose || WizardMode) ) {
2690         // Print the exception table for this offset
2691         _handler_table.print_subtable_for(pc);
2692       }
2693     }
2694 
2695     if (pcs && n->_idx < pc_limit)
2696       tty->print_cr("%3.3x", pcs[n->_idx]);
2697     else
2698       tty->cr();
2699 
2700     assert(cut_short || delay == NULL, "no unconditional delay branch");
2701 
2702   } // End of per-block dump
2703   tty->cr();
2704 
2705   if (cut_short)  tty->print_cr("*** disassembly is cut short ***");
2706 }
2707 #endif
2708 
2709 //------------------------------Final_Reshape_Counts---------------------------
2710 // This class defines counters to help identify when a method
2711 // may/must be executed using hardware with only 24-bit precision.
2712 struct Final_Reshape_Counts : public StackObj {
2713   int  _call_count;             // count non-inlined 'common' calls
2714   int  _float_count;            // count float ops requiring 24-bit precision
2715   int  _double_count;           // count double ops requiring more precision
2716   int  _java_call_count;        // count non-inlined 'java' calls
2717   int  _inner_loop_count;       // count loops which need alignment
2718   VectorSet _visited;           // Visitation flags
2719   Node_List _tests;             // Set of IfNodes & PCTableNodes
2720 
2721   Final_Reshape_Counts() :
2722     _call_count(0), _float_count(0), _double_count(0),
2723     _java_call_count(0), _inner_loop_count(0),
2724     _visited( Thread::current()->resource_area() ) { }
2725 
2726   void inc_call_count  () { _call_count  ++; }
2727   void inc_float_count () { _float_count ++; }
2728   void inc_double_count() { _double_count++; }
2729   void inc_java_call_count() { _java_call_count++; }
2730   void inc_inner_loop_count() { _inner_loop_count++; }
2731 
2732   int  get_call_count  () const { return _call_count  ; }
2733   int  get_float_count () const { return _float_count ; }
2734   int  get_double_count() const { return _double_count; }
2735   int  get_java_call_count() const { return _java_call_count; }
2736   int  get_inner_loop_count() const { return _inner_loop_count; }
2737 };
2738 
2739 #ifdef ASSERT
2740 static bool oop_offset_is_sane(const TypeInstPtr* tp) {
2741   ciInstanceKlass *k = tp->klass()->as_instance_klass();
2742   // Make sure the offset goes inside the instance layout.
2743   return k->contains_field_offset(tp->offset());
2744   // Note that OffsetBot and OffsetTop are very negative.
2745 }
2746 #endif
2747 
2748 // Eliminate trivially redundant StoreCMs and accumulate their
2749 // precedence edges.
2750 void Compile::eliminate_redundant_card_marks(Node* n) {
2751   assert(n->Opcode() == Op_StoreCM, "expected StoreCM");
2752   if (n->in(MemNode::Address)->outcnt() > 1) {
2753     // There are multiple users of the same address so it might be
2754     // possible to eliminate some of the StoreCMs
2755     Node* mem = n->in(MemNode::Memory);
2756     Node* adr = n->in(MemNode::Address);
2757     Node* val = n->in(MemNode::ValueIn);
2758     Node* prev = n;
2759     bool done = false;
2760     // Walk the chain of StoreCMs eliminating ones that match.  As
2761     // long as it's a chain of single users then the optimization is
2762     // safe.  Eliminating partially redundant StoreCMs would require
2763     // cloning copies down the other paths.
2764     while (mem->Opcode() == Op_StoreCM && mem->outcnt() == 1 && !done) {
2765       if (adr == mem->in(MemNode::Address) &&
2766           val == mem->in(MemNode::ValueIn)) {
2767         // redundant StoreCM
2768         if (mem->req() > MemNode::OopStore) {
2769           // Hasn't been processed by this code yet.
2770           n->add_prec(mem->in(MemNode::OopStore));
2771         } else {
2772           // Already converted to precedence edge
2773           for (uint i = mem->req(); i < mem->len(); i++) {
2774             // Accumulate any precedence edges
2775             if (mem->in(i) != NULL) {
2776               n->add_prec(mem->in(i));
2777             }
2778           }
2779           // Everything above this point has been processed.
2780           done = true;
2781         }
2782         // Eliminate the previous StoreCM
2783         prev->set_req(MemNode::Memory, mem->in(MemNode::Memory));
2784         assert(mem->outcnt() == 0, "should be dead");
2785         mem->disconnect_inputs(NULL, this);
2786       } else {
2787         prev = mem;
2788       }
2789       mem = prev->in(MemNode::Memory);
2790     }
2791   }
2792 }
2793 
2794 
2795 //------------------------------final_graph_reshaping_impl----------------------
2796 // Implement items 1-5 from final_graph_reshaping below.
2797 void Compile::final_graph_reshaping_impl( Node *n, Final_Reshape_Counts &frc) {
2798 
2799   if ( n->outcnt() == 0 ) return; // dead node
2800   uint nop = n->Opcode();
2801 
2802   // Check for 2-input instruction with "last use" on right input.
2803   // Swap to left input.  Implements item (2).
2804   if( n->req() == 3 &&          // two-input instruction
2805       n->in(1)->outcnt() > 1 && // left use is NOT a last use
2806       (!n->in(1)->is_Phi() || n->in(1)->in(2) != n) && // it is not data loop
2807       n->in(2)->outcnt() == 1 &&// right use IS a last use
2808       !n->in(2)->is_Con() ) {   // right use is not a constant
2809     // Check for commutative opcode
2810     switch( nop ) {
2811     case Op_AddI:  case Op_AddF:  case Op_AddD:  case Op_AddL:
2812     case Op_MaxI:  case Op_MinI:
2813     case Op_MulI:  case Op_MulF:  case Op_MulD:  case Op_MulL:
2814     case Op_AndL:  case Op_XorL:  case Op_OrL:
2815     case Op_AndI:  case Op_XorI:  case Op_OrI: {
2816       // Move "last use" input to left by swapping inputs
2817       n->swap_edges(1, 2);
2818       break;
2819     }
2820     default:
2821       break;
2822     }
2823   }
2824 
2825 #ifdef ASSERT
2826   if( n->is_Mem() ) {
2827     int alias_idx = get_alias_index(n->as_Mem()->adr_type());
2828     assert( n->in(0) != NULL || alias_idx != Compile::AliasIdxRaw ||
2829             // oop will be recorded in oop map if load crosses safepoint
2830             n->is_Load() && (n->as_Load()->bottom_type()->isa_oopptr() ||
2831                              LoadNode::is_immutable_value(n->in(MemNode::Address))),
2832             "raw memory operations should have control edge");
2833   }
2834 #endif
2835   // Count FPU ops and common calls, implements item (3)
2836   switch( nop ) {
2837   // Count all float operations that may use FPU
2838   case Op_AddF:
2839   case Op_SubF:
2840   case Op_MulF:
2841   case Op_DivF:
2842   case Op_NegF:
2843   case Op_ModF:
2844   case Op_ConvI2F:
2845   case Op_ConF:
2846   case Op_CmpF:
2847   case Op_CmpF3:
2848   // case Op_ConvL2F: // longs are split into 32-bit halves
2849     frc.inc_float_count();
2850     break;
2851 
2852   case Op_ConvF2D:
2853   case Op_ConvD2F:
2854     frc.inc_float_count();
2855     frc.inc_double_count();
2856     break;
2857 
2858   // Count all double operations that may use FPU
2859   case Op_AddD:
2860   case Op_SubD:
2861   case Op_MulD:
2862   case Op_DivD:
2863   case Op_NegD:
2864   case Op_ModD:
2865   case Op_ConvI2D:
2866   case Op_ConvD2I:
2867   // case Op_ConvL2D: // handled by leaf call
2868   // case Op_ConvD2L: // handled by leaf call
2869   case Op_ConD:
2870   case Op_CmpD:
2871   case Op_CmpD3:
2872     frc.inc_double_count();
2873     break;
2874   case Op_Opaque1:              // Remove Opaque Nodes before matching
2875   case Op_Opaque2:              // Remove Opaque Nodes before matching
2876   case Op_Opaque3:
2877     n->subsume_by(n->in(1), this);
2878     break;
2879   case Op_CallStaticJava:
2880   case Op_CallJava:
2881   case Op_CallDynamicJava:
2882     frc.inc_java_call_count(); // Count java call site;
2883   case Op_CallRuntime:
2884   case Op_CallLeaf:
2885   case Op_CallLeafNoFP: {
2886     assert (n->is_Call(), "");
2887     CallNode *call = n->as_Call();
2888     // Count call sites where the FP mode bit would have to be flipped.
2889     // Do not count uncommon runtime calls:
2890     // uncommon_trap, _complete_monitor_locking, _complete_monitor_unlocking,
2891     // _new_Java, _new_typeArray, _new_objArray, _rethrow_Java, ...
2892     if (!call->is_CallStaticJava() || !call->as_CallStaticJava()->_name) {
2893       frc.inc_call_count();   // Count the call site
2894     } else {                  // See if uncommon argument is shared
2895       Node *n = call->in(TypeFunc::Parms);
2896       int nop = n->Opcode();
2897       // Clone shared simple arguments to uncommon calls, item (1).
2898       if (n->outcnt() > 1 &&
2899           !n->is_Proj() &&
2900           nop != Op_CreateEx &&
2901           nop != Op_CheckCastPP &&
2902           nop != Op_DecodeN &&
2903           nop != Op_DecodeNKlass &&
2904           !n->is_Mem() &&
2905           !n->is_Phi()) {
2906         Node *x = n->clone();
2907         call->set_req(TypeFunc::Parms, x);
2908       }
2909     }
2910     break;
2911   }
2912 
2913   case Op_StoreD:
2914   case Op_LoadD:
2915   case Op_LoadD_unaligned:
2916     frc.inc_double_count();
2917     goto handle_mem;
2918   case Op_StoreF:
2919   case Op_LoadF:
2920     frc.inc_float_count();
2921     goto handle_mem;
2922 
2923   case Op_StoreCM:
2924     {
2925       // Convert OopStore dependence into precedence edge
2926       Node* prec = n->in(MemNode::OopStore);
2927       n->del_req(MemNode::OopStore);
2928       n->add_prec(prec);
2929       eliminate_redundant_card_marks(n);
2930     }
2931 
2932     // fall through
2933 
2934   case Op_StoreB:
2935   case Op_StoreC:
2936   case Op_StorePConditional:
2937   case Op_StoreI:
2938   case Op_StoreL:
2939   case Op_StoreIConditional:
2940   case Op_StoreLConditional:
2941   case Op_CompareAndSwapB:
2942   case Op_CompareAndSwapS:
2943   case Op_CompareAndSwapI:
2944   case Op_CompareAndSwapL:
2945   case Op_CompareAndSwapP:
2946   case Op_CompareAndSwapN:
2947   case Op_WeakCompareAndSwapB:
2948   case Op_WeakCompareAndSwapS:
2949   case Op_WeakCompareAndSwapI:
2950   case Op_WeakCompareAndSwapL:
2951   case Op_WeakCompareAndSwapP:
2952   case Op_WeakCompareAndSwapN:
2953   case Op_CompareAndExchangeB:
2954   case Op_CompareAndExchangeS:
2955   case Op_CompareAndExchangeI:
2956   case Op_CompareAndExchangeL:
2957   case Op_CompareAndExchangeP:
2958   case Op_CompareAndExchangeN:
2959   case Op_GetAndAddS:
2960   case Op_GetAndAddB:
2961   case Op_GetAndAddI:
2962   case Op_GetAndAddL:
2963   case Op_GetAndSetS:
2964   case Op_GetAndSetB:
2965   case Op_GetAndSetI:
2966   case Op_GetAndSetL:
2967   case Op_GetAndSetP:
2968   case Op_GetAndSetN:
2969   case Op_StoreP:
2970   case Op_StoreN:
2971   case Op_StoreNKlass:
2972   case Op_LoadB:
2973   case Op_LoadUB:
2974   case Op_LoadUS:
2975   case Op_LoadI:
2976   case Op_LoadKlass:
2977   case Op_LoadNKlass:
2978   case Op_LoadL:
2979   case Op_LoadL_unaligned:
2980   case Op_LoadPLocked:
2981   case Op_LoadP:
2982 #if INCLUDE_ZGC
2983   case Op_LoadBarrierSlowReg:
2984   case Op_LoadBarrierWeakSlowReg:
2985 #endif
2986   case Op_LoadN:
2987   case Op_LoadRange:
2988   case Op_LoadS: {
2989   handle_mem:
2990 #ifdef ASSERT
2991     if( VerifyOptoOopOffsets ) {
2992       assert( n->is_Mem(), "" );
2993       MemNode *mem  = (MemNode*)n;
2994       // Check to see if address types have grounded out somehow.
2995       const TypeInstPtr *tp = mem->in(MemNode::Address)->bottom_type()->isa_instptr();
2996       assert( !tp || oop_offset_is_sane(tp), "" );
2997     }
2998 #endif
2999     break;
3000   }
3001 
3002   case Op_AddP: {               // Assert sane base pointers
3003     Node *addp = n->in(AddPNode::Address);
3004     assert( !addp->is_AddP() ||
3005             addp->in(AddPNode::Base)->is_top() || // Top OK for allocation
3006             addp->in(AddPNode::Base) == n->in(AddPNode::Base),
3007             "Base pointers must match (addp %u)", addp->_idx );
3008 #ifdef _LP64
3009     if ((UseCompressedOops || UseCompressedClassPointers) &&
3010         addp->Opcode() == Op_ConP &&
3011         addp == n->in(AddPNode::Base) &&
3012         n->in(AddPNode::Offset)->is_Con()) {
3013       // If the transformation of ConP to ConN+DecodeN is beneficial depends
3014       // on the platform and on the compressed oops mode.
3015       // Use addressing with narrow klass to load with offset on x86.
3016       // Some platforms can use the constant pool to load ConP.
3017       // Do this transformation here since IGVN will convert ConN back to ConP.
3018       const Type* t = addp->bottom_type();
3019       bool is_oop   = t->isa_oopptr() != NULL;
3020       bool is_klass = t->isa_klassptr() != NULL;
3021 
3022       if ((is_oop   && Matcher::const_oop_prefer_decode()  ) ||
3023           (is_klass && Matcher::const_klass_prefer_decode())) {
3024         Node* nn = NULL;
3025 
3026         int op = is_oop ? Op_ConN : Op_ConNKlass;
3027 
3028         // Look for existing ConN node of the same exact type.
3029         Node* r  = root();
3030         uint cnt = r->outcnt();
3031         for (uint i = 0; i < cnt; i++) {
3032           Node* m = r->raw_out(i);
3033           if (m!= NULL && m->Opcode() == op &&
3034               m->bottom_type()->make_ptr() == t) {
3035             nn = m;
3036             break;
3037           }
3038         }
3039         if (nn != NULL) {
3040           // Decode a narrow oop to match address
3041           // [R12 + narrow_oop_reg<<3 + offset]
3042           if (is_oop) {
3043             nn = new DecodeNNode(nn, t);
3044           } else {
3045             nn = new DecodeNKlassNode(nn, t);
3046           }
3047           // Check for succeeding AddP which uses the same Base.
3048           // Otherwise we will run into the assertion above when visiting that guy.
3049           for (uint i = 0; i < n->outcnt(); ++i) {
3050             Node *out_i = n->raw_out(i);
3051             if (out_i && out_i->is_AddP() && out_i->in(AddPNode::Base) == addp) {
3052               out_i->set_req(AddPNode::Base, nn);
3053 #ifdef ASSERT
3054               for (uint j = 0; j < out_i->outcnt(); ++j) {
3055                 Node *out_j = out_i->raw_out(j);
3056                 assert(out_j == NULL || !out_j->is_AddP() || out_j->in(AddPNode::Base) != addp,
3057                        "more than 2 AddP nodes in a chain (out_j %u)", out_j->_idx);
3058               }
3059 #endif
3060             }
3061           }
3062           n->set_req(AddPNode::Base, nn);
3063           n->set_req(AddPNode::Address, nn);
3064           if (addp->outcnt() == 0) {
3065             addp->disconnect_inputs(NULL, this);
3066           }
3067         }
3068       }
3069     }
3070 #endif
3071     // platform dependent reshaping of the address expression
3072     reshape_address(n->as_AddP());
3073     break;
3074   }
3075 
3076   case Op_CastPP: {
3077     // Remove CastPP nodes to gain more freedom during scheduling but
3078     // keep the dependency they encode as control or precedence edges
3079     // (if control is set already) on memory operations. Some CastPP
3080     // nodes don't have a control (don't carry a dependency): skip
3081     // those.
3082     if (n->in(0) != NULL) {
3083       ResourceMark rm;
3084       Unique_Node_List wq;
3085       wq.push(n);
3086       for (uint next = 0; next < wq.size(); ++next) {
3087         Node *m = wq.at(next);
3088         for (DUIterator_Fast imax, i = m->fast_outs(imax); i < imax; i++) {
3089           Node* use = m->fast_out(i);
3090           if (use->is_Mem() || use->is_EncodeNarrowPtr()) {
3091             use->ensure_control_or_add_prec(n->in(0));
3092           } else {
3093             switch(use->Opcode()) {
3094             case Op_AddP:
3095             case Op_DecodeN:
3096             case Op_DecodeNKlass:
3097             case Op_CheckCastPP:
3098             case Op_CastPP:
3099               wq.push(use);
3100               break;
3101             }
3102           }
3103         }
3104       }
3105     }
3106     const bool is_LP64 = LP64_ONLY(true) NOT_LP64(false);
3107     if (is_LP64 && n->in(1)->is_DecodeN() && Matcher::gen_narrow_oop_implicit_null_checks()) {
3108       Node* in1 = n->in(1);
3109       const Type* t = n->bottom_type();
3110       Node* new_in1 = in1->clone();
3111       new_in1->as_DecodeN()->set_type(t);
3112 
3113       if (!Matcher::narrow_oop_use_complex_address()) {
3114         //
3115         // x86, ARM and friends can handle 2 adds in addressing mode
3116         // and Matcher can fold a DecodeN node into address by using
3117         // a narrow oop directly and do implicit NULL check in address:
3118         //
3119         // [R12 + narrow_oop_reg<<3 + offset]
3120         // NullCheck narrow_oop_reg
3121         //
3122         // On other platforms (Sparc) we have to keep new DecodeN node and
3123         // use it to do implicit NULL check in address:
3124         //
3125         // decode_not_null narrow_oop_reg, base_reg
3126         // [base_reg + offset]
3127         // NullCheck base_reg
3128         //
3129         // Pin the new DecodeN node to non-null path on these platform (Sparc)
3130         // to keep the information to which NULL check the new DecodeN node
3131         // corresponds to use it as value in implicit_null_check().
3132         //
3133         new_in1->set_req(0, n->in(0));
3134       }
3135 
3136       n->subsume_by(new_in1, this);
3137       if (in1->outcnt() == 0) {
3138         in1->disconnect_inputs(NULL, this);
3139       }
3140     } else {
3141       n->subsume_by(n->in(1), this);
3142       if (n->outcnt() == 0) {
3143         n->disconnect_inputs(NULL, this);
3144       }
3145     }
3146     break;
3147   }
3148 #ifdef _LP64
3149   case Op_CmpP:
3150     // Do this transformation here to preserve CmpPNode::sub() and
3151     // other TypePtr related Ideal optimizations (for example, ptr nullness).
3152     if (n->in(1)->is_DecodeNarrowPtr() || n->in(2)->is_DecodeNarrowPtr()) {
3153       Node* in1 = n->in(1);
3154       Node* in2 = n->in(2);
3155       if (!in1->is_DecodeNarrowPtr()) {
3156         in2 = in1;
3157         in1 = n->in(2);
3158       }
3159       assert(in1->is_DecodeNarrowPtr(), "sanity");
3160 
3161       Node* new_in2 = NULL;
3162       if (in2->is_DecodeNarrowPtr()) {
3163         assert(in2->Opcode() == in1->Opcode(), "must be same node type");
3164         new_in2 = in2->in(1);
3165       } else if (in2->Opcode() == Op_ConP) {
3166         const Type* t = in2->bottom_type();
3167         if (t == TypePtr::NULL_PTR) {
3168           assert(in1->is_DecodeN(), "compare klass to null?");
3169           // Don't convert CmpP null check into CmpN if compressed
3170           // oops implicit null check is not generated.
3171           // This will allow to generate normal oop implicit null check.
3172           if (Matcher::gen_narrow_oop_implicit_null_checks())
3173             new_in2 = ConNode::make(TypeNarrowOop::NULL_PTR);
3174           //
3175           // This transformation together with CastPP transformation above
3176           // will generated code for implicit NULL checks for compressed oops.
3177           //
3178           // The original code after Optimize()
3179           //
3180           //    LoadN memory, narrow_oop_reg
3181           //    decode narrow_oop_reg, base_reg
3182           //    CmpP base_reg, NULL
3183           //    CastPP base_reg // NotNull
3184           //    Load [base_reg + offset], val_reg
3185           //
3186           // after these transformations will be
3187           //
3188           //    LoadN memory, narrow_oop_reg
3189           //    CmpN narrow_oop_reg, NULL
3190           //    decode_not_null narrow_oop_reg, base_reg
3191           //    Load [base_reg + offset], val_reg
3192           //
3193           // and the uncommon path (== NULL) will use narrow_oop_reg directly
3194           // since narrow oops can be used in debug info now (see the code in
3195           // final_graph_reshaping_walk()).
3196           //
3197           // At the end the code will be matched to
3198           // on x86:
3199           //
3200           //    Load_narrow_oop memory, narrow_oop_reg
3201           //    Load [R12 + narrow_oop_reg<<3 + offset], val_reg
3202           //    NullCheck narrow_oop_reg
3203           //
3204           // and on sparc:
3205           //
3206           //    Load_narrow_oop memory, narrow_oop_reg
3207           //    decode_not_null narrow_oop_reg, base_reg
3208           //    Load [base_reg + offset], val_reg
3209           //    NullCheck base_reg
3210           //
3211         } else if (t->isa_oopptr()) {
3212           new_in2 = ConNode::make(t->make_narrowoop());
3213         } else if (t->isa_klassptr()) {
3214           new_in2 = ConNode::make(t->make_narrowklass());
3215         }
3216       }
3217       if (new_in2 != NULL) {
3218         Node* cmpN = new CmpNNode(in1->in(1), new_in2);
3219         n->subsume_by(cmpN, this);
3220         if (in1->outcnt() == 0) {
3221           in1->disconnect_inputs(NULL, this);
3222         }
3223         if (in2->outcnt() == 0) {
3224           in2->disconnect_inputs(NULL, this);
3225         }
3226       }
3227     }
3228     break;
3229 
3230   case Op_DecodeN:
3231   case Op_DecodeNKlass:
3232     assert(!n->in(1)->is_EncodeNarrowPtr(), "should be optimized out");
3233     // DecodeN could be pinned when it can't be fold into
3234     // an address expression, see the code for Op_CastPP above.
3235     assert(n->in(0) == NULL || (UseCompressedOops && !Matcher::narrow_oop_use_complex_address()), "no control");
3236     break;
3237 
3238   case Op_EncodeP:
3239   case Op_EncodePKlass: {
3240     Node* in1 = n->in(1);
3241     if (in1->is_DecodeNarrowPtr()) {
3242       n->subsume_by(in1->in(1), this);
3243     } else if (in1->Opcode() == Op_ConP) {
3244       const Type* t = in1->bottom_type();
3245       if (t == TypePtr::NULL_PTR) {
3246         assert(t->isa_oopptr(), "null klass?");
3247         n->subsume_by(ConNode::make(TypeNarrowOop::NULL_PTR), this);
3248       } else if (t->isa_oopptr()) {
3249         n->subsume_by(ConNode::make(t->make_narrowoop()), this);
3250       } else if (t->isa_klassptr()) {
3251         n->subsume_by(ConNode::make(t->make_narrowklass()), this);
3252       }
3253     }
3254     if (in1->outcnt() == 0) {
3255       in1->disconnect_inputs(NULL, this);
3256     }
3257     break;
3258   }
3259 
3260   case Op_Proj: {
3261     if (OptimizeStringConcat) {
3262       ProjNode* p = n->as_Proj();
3263       if (p->_is_io_use) {
3264         // Separate projections were used for the exception path which
3265         // are normally removed by a late inline.  If it wasn't inlined
3266         // then they will hang around and should just be replaced with
3267         // the original one.
3268         Node* proj = NULL;
3269         // Replace with just one
3270         for (SimpleDUIterator i(p->in(0)); i.has_next(); i.next()) {
3271           Node *use = i.get();
3272           if (use->is_Proj() && p != use && use->as_Proj()->_con == p->_con) {
3273             proj = use;
3274             break;
3275           }
3276         }
3277         assert(proj != NULL, "must be found");
3278         p->subsume_by(proj, this);
3279       }
3280     }
3281     break;
3282   }
3283 
3284   case Op_Phi:
3285     if (n->as_Phi()->bottom_type()->isa_narrowoop() || n->as_Phi()->bottom_type()->isa_narrowklass()) {
3286       // The EncodeP optimization may create Phi with the same edges
3287       // for all paths. It is not handled well by Register Allocator.
3288       Node* unique_in = n->in(1);
3289       assert(unique_in != NULL, "");
3290       uint cnt = n->req();
3291       for (uint i = 2; i < cnt; i++) {
3292         Node* m = n->in(i);
3293         assert(m != NULL, "");
3294         if (unique_in != m)
3295           unique_in = NULL;
3296       }
3297       if (unique_in != NULL) {
3298         n->subsume_by(unique_in, this);
3299       }
3300     }
3301     break;
3302 
3303 #endif
3304 
3305 #ifdef ASSERT
3306   case Op_CastII:
3307     // Verify that all range check dependent CastII nodes were removed.
3308     if (n->isa_CastII()->has_range_check()) {
3309       n->dump(3);
3310       assert(false, "Range check dependent CastII node was not removed");
3311     }
3312     break;
3313 #endif
3314 
3315   case Op_ModI:
3316     if (UseDivMod) {
3317       // Check if a%b and a/b both exist
3318       Node* d = n->find_similar(Op_DivI);
3319       if (d) {
3320         // Replace them with a fused divmod if supported
3321         if (Matcher::has_match_rule(Op_DivModI)) {
3322           DivModINode* divmod = DivModINode::make(n);
3323           d->subsume_by(divmod->div_proj(), this);
3324           n->subsume_by(divmod->mod_proj(), this);
3325         } else {
3326           // replace a%b with a-((a/b)*b)
3327           Node* mult = new MulINode(d, d->in(2));
3328           Node* sub  = new SubINode(d->in(1), mult);
3329           n->subsume_by(sub, this);
3330         }
3331       }
3332     }
3333     break;
3334 
3335   case Op_ModL:
3336     if (UseDivMod) {
3337       // Check if a%b and a/b both exist
3338       Node* d = n->find_similar(Op_DivL);
3339       if (d) {
3340         // Replace them with a fused divmod if supported
3341         if (Matcher::has_match_rule(Op_DivModL)) {
3342           DivModLNode* divmod = DivModLNode::make(n);
3343           d->subsume_by(divmod->div_proj(), this);
3344           n->subsume_by(divmod->mod_proj(), this);
3345         } else {
3346           // replace a%b with a-((a/b)*b)
3347           Node* mult = new MulLNode(d, d->in(2));
3348           Node* sub  = new SubLNode(d->in(1), mult);
3349           n->subsume_by(sub, this);
3350         }
3351       }
3352     }
3353     break;
3354 
3355   case Op_LoadVector:
3356   case Op_StoreVector:
3357     break;
3358 
3359   case Op_AddReductionVI:
3360   case Op_AddReductionVL:
3361   case Op_AddReductionVF:
3362   case Op_AddReductionVD:
3363   case Op_MulReductionVI:
3364   case Op_MulReductionVL:
3365   case Op_MulReductionVF:
3366   case Op_MulReductionVD:
3367     break;
3368 
3369   case Op_PackB:
3370   case Op_PackS:
3371   case Op_PackI:
3372   case Op_PackF:
3373   case Op_PackL:
3374   case Op_PackD:
3375     if (n->req()-1 > 2) {
3376       // Replace many operand PackNodes with a binary tree for matching
3377       PackNode* p = (PackNode*) n;
3378       Node* btp = p->binary_tree_pack(1, n->req());
3379       n->subsume_by(btp, this);
3380     }
3381     break;
3382   case Op_Loop:
3383   case Op_CountedLoop:
3384   case Op_OuterStripMinedLoop:
3385     if (n->as_Loop()->is_inner_loop()) {
3386       frc.inc_inner_loop_count();
3387     }
3388     n->as_Loop()->verify_strip_mined(0);
3389     break;
3390   case Op_LShiftI:
3391   case Op_RShiftI:
3392   case Op_URShiftI:
3393   case Op_LShiftL:
3394   case Op_RShiftL:
3395   case Op_URShiftL:
3396     if (Matcher::need_masked_shift_count) {
3397       // The cpu's shift instructions don't restrict the count to the
3398       // lower 5/6 bits. We need to do the masking ourselves.
3399       Node* in2 = n->in(2);
3400       juint mask = (n->bottom_type() == TypeInt::INT) ? (BitsPerInt - 1) : (BitsPerLong - 1);
3401       const TypeInt* t = in2->find_int_type();
3402       if (t != NULL && t->is_con()) {
3403         juint shift = t->get_con();
3404         if (shift > mask) { // Unsigned cmp
3405           n->set_req(2, ConNode::make(TypeInt::make(shift & mask)));
3406         }
3407       } else {
3408         if (t == NULL || t->_lo < 0 || t->_hi > (int)mask) {
3409           Node* shift = new AndINode(in2, ConNode::make(TypeInt::make(mask)));
3410           n->set_req(2, shift);
3411         }
3412       }
3413       if (in2->outcnt() == 0) { // Remove dead node
3414         in2->disconnect_inputs(NULL, this);
3415       }
3416     }
3417     break;
3418   case Op_MemBarStoreStore:
3419   case Op_MemBarRelease:
3420     // Break the link with AllocateNode: it is no longer useful and
3421     // confuses register allocation.
3422     if (n->req() > MemBarNode::Precedent) {
3423       n->set_req(MemBarNode::Precedent, top());
3424     }
3425     break;
3426   case Op_RangeCheck: {
3427     RangeCheckNode* rc = n->as_RangeCheck();
3428     Node* iff = new IfNode(rc->in(0), rc->in(1), rc->_prob, rc->_fcnt);
3429     n->subsume_by(iff, this);
3430     frc._tests.push(iff);
3431     break;
3432   }
3433   case Op_ConvI2L: {
3434     if (!Matcher::convi2l_type_required) {
3435       // Code generation on some platforms doesn't need accurate
3436       // ConvI2L types. Widening the type can help remove redundant
3437       // address computations.
3438       n->as_Type()->set_type(TypeLong::INT);
3439       ResourceMark rm;
3440       Node_List wq;
3441       wq.push(n);
3442       for (uint next = 0; next < wq.size(); next++) {
3443         Node *m = wq.at(next);
3444 
3445         for(;;) {
3446           // Loop over all nodes with identical inputs edges as m
3447           Node* k = m->find_similar(m->Opcode());
3448           if (k == NULL) {
3449             break;
3450           }
3451           // Push their uses so we get a chance to remove node made
3452           // redundant
3453           for (DUIterator_Fast imax, i = k->fast_outs(imax); i < imax; i++) {
3454             Node* u = k->fast_out(i);
3455             assert(!wq.contains(u), "shouldn't process one node several times");
3456             if (u->Opcode() == Op_LShiftL ||
3457                 u->Opcode() == Op_AddL ||
3458                 u->Opcode() == Op_SubL ||
3459                 u->Opcode() == Op_AddP) {
3460               wq.push(u);
3461             }
3462           }
3463           // Replace all nodes with identical edges as m with m
3464           k->subsume_by(m, this);
3465         }
3466       }
3467     }
3468     break;
3469   }
3470   case Op_CmpUL: {
3471     if (!Matcher::has_match_rule(Op_CmpUL)) {
3472       // We don't support unsigned long comparisons. Set 'max_idx_expr'
3473       // to max_julong if < 0 to make the signed comparison fail.
3474       ConINode* sign_pos = new ConINode(TypeInt::make(BitsPerLong - 1));
3475       Node* sign_bit_mask = new RShiftLNode(n->in(1), sign_pos);
3476       Node* orl = new OrLNode(n->in(1), sign_bit_mask);
3477       ConLNode* remove_sign_mask = new ConLNode(TypeLong::make(max_jlong));
3478       Node* andl = new AndLNode(orl, remove_sign_mask);
3479       Node* cmp = new CmpLNode(andl, n->in(2));
3480       n->subsume_by(cmp, this);
3481     }
3482     break;
3483   }
3484 #ifdef ASSERT
3485   case Op_ValueTypePtr:
3486   case Op_ValueType: {
3487     n->dump(-1);
3488     assert(false, "value type node was not removed");
3489     break;
3490   }
3491 #endif
3492   default:
3493     assert( !n->is_Call(), "" );
3494     assert( !n->is_Mem(), "" );
3495     assert( nop != Op_ProfileBoolean, "should be eliminated during IGVN");
3496     break;
3497   }
3498 
3499   // Collect CFG split points
3500   if (n->is_MultiBranch() && !n->is_RangeCheck()) {
3501     frc._tests.push(n);
3502   }
3503 }
3504 
3505 //------------------------------final_graph_reshaping_walk---------------------
3506 // Replacing Opaque nodes with their input in final_graph_reshaping_impl(),
3507 // requires that the walk visits a node's inputs before visiting the node.
3508 void Compile::final_graph_reshaping_walk( Node_Stack &nstack, Node *root, Final_Reshape_Counts &frc ) {
3509   ResourceArea *area = Thread::current()->resource_area();
3510   Unique_Node_List sfpt(area);
3511 
3512   frc._visited.set(root->_idx); // first, mark node as visited
3513   uint cnt = root->req();
3514   Node *n = root;
3515   uint  i = 0;
3516   while (true) {
3517     if (i < cnt) {
3518       // Place all non-visited non-null inputs onto stack
3519       Node* m = n->in(i);
3520       ++i;
3521       if (m != NULL && !frc._visited.test_set(m->_idx)) {
3522         if (m->is_SafePoint() && m->as_SafePoint()->jvms() != NULL) {
3523           // compute worst case interpreter size in case of a deoptimization
3524           update_interpreter_frame_size(m->as_SafePoint()->jvms()->interpreter_frame_size());
3525 
3526           sfpt.push(m);
3527         }
3528         cnt = m->req();
3529         nstack.push(n, i); // put on stack parent and next input's index
3530         n = m;
3531         i = 0;
3532       }
3533     } else {
3534       // Now do post-visit work
3535       final_graph_reshaping_impl( n, frc );
3536       if (nstack.is_empty())
3537         break;             // finished
3538       n = nstack.node();   // Get node from stack
3539       cnt = n->req();
3540       i = nstack.index();
3541       nstack.pop();        // Shift to the next node on stack
3542     }
3543   }
3544 
3545   // Skip next transformation if compressed oops are not used.
3546   if ((UseCompressedOops && !Matcher::gen_narrow_oop_implicit_null_checks()) ||
3547       (!UseCompressedOops && !UseCompressedClassPointers))
3548     return;
3549 
3550   // Go over safepoints nodes to skip DecodeN/DecodeNKlass nodes for debug edges.
3551   // It could be done for an uncommon traps or any safepoints/calls
3552   // if the DecodeN/DecodeNKlass node is referenced only in a debug info.
3553   while (sfpt.size() > 0) {
3554     n = sfpt.pop();
3555     JVMState *jvms = n->as_SafePoint()->jvms();
3556     assert(jvms != NULL, "sanity");
3557     int start = jvms->debug_start();
3558     int end   = n->req();
3559     bool is_uncommon = (n->is_CallStaticJava() &&
3560                         n->as_CallStaticJava()->uncommon_trap_request() != 0);
3561     for (int j = start; j < end; j++) {
3562       Node* in = n->in(j);
3563       if (in->is_DecodeNarrowPtr()) {
3564         bool safe_to_skip = true;
3565         if (!is_uncommon ) {
3566           // Is it safe to skip?
3567           for (uint i = 0; i < in->outcnt(); i++) {
3568             Node* u = in->raw_out(i);
3569             if (!u->is_SafePoint() ||
3570                 (u->is_Call() && u->as_Call()->has_non_debug_use(n))) {
3571               safe_to_skip = false;
3572             }
3573           }
3574         }
3575         if (safe_to_skip) {
3576           n->set_req(j, in->in(1));
3577         }
3578         if (in->outcnt() == 0) {
3579           in->disconnect_inputs(NULL, this);
3580         }
3581       }
3582     }
3583   }
3584 }
3585 
3586 //------------------------------final_graph_reshaping--------------------------
3587 // Final Graph Reshaping.
3588 //
3589 // (1) Clone simple inputs to uncommon calls, so they can be scheduled late
3590 //     and not commoned up and forced early.  Must come after regular
3591 //     optimizations to avoid GVN undoing the cloning.  Clone constant
3592 //     inputs to Loop Phis; these will be split by the allocator anyways.
3593 //     Remove Opaque nodes.
3594 // (2) Move last-uses by commutative operations to the left input to encourage
3595 //     Intel update-in-place two-address operations and better register usage
3596 //     on RISCs.  Must come after regular optimizations to avoid GVN Ideal
3597 //     calls canonicalizing them back.
3598 // (3) Count the number of double-precision FP ops, single-precision FP ops
3599 //     and call sites.  On Intel, we can get correct rounding either by
3600 //     forcing singles to memory (requires extra stores and loads after each
3601 //     FP bytecode) or we can set a rounding mode bit (requires setting and
3602 //     clearing the mode bit around call sites).  The mode bit is only used
3603 //     if the relative frequency of single FP ops to calls is low enough.
3604 //     This is a key transform for SPEC mpeg_audio.
3605 // (4) Detect infinite loops; blobs of code reachable from above but not
3606 //     below.  Several of the Code_Gen algorithms fail on such code shapes,
3607 //     so we simply bail out.  Happens a lot in ZKM.jar, but also happens
3608 //     from time to time in other codes (such as -Xcomp finalizer loops, etc).
3609 //     Detection is by looking for IfNodes where only 1 projection is
3610 //     reachable from below or CatchNodes missing some targets.
3611 // (5) Assert for insane oop offsets in debug mode.
3612 
3613 bool Compile::final_graph_reshaping() {
3614   // an infinite loop may have been eliminated by the optimizer,
3615   // in which case the graph will be empty.
3616   if (root()->req() == 1) {
3617     record_method_not_compilable("trivial infinite loop");
3618     return true;
3619   }
3620 
3621   // Expensive nodes have their control input set to prevent the GVN
3622   // from freely commoning them. There's no GVN beyond this point so
3623   // no need to keep the control input. We want the expensive nodes to
3624   // be freely moved to the least frequent code path by gcm.
3625   assert(OptimizeExpensiveOps || expensive_count() == 0, "optimization off but list non empty?");
3626   for (int i = 0; i < expensive_count(); i++) {
3627     _expensive_nodes->at(i)->set_req(0, NULL);
3628   }
3629 
3630   Final_Reshape_Counts frc;
3631 
3632   // Visit everybody reachable!
3633   // Allocate stack of size C->live_nodes()/2 to avoid frequent realloc
3634   Node_Stack nstack(live_nodes() >> 1);
3635   final_graph_reshaping_walk(nstack, root(), frc);
3636 
3637   // Check for unreachable (from below) code (i.e., infinite loops).
3638   for( uint i = 0; i < frc._tests.size(); i++ ) {
3639     MultiBranchNode *n = frc._tests[i]->as_MultiBranch();
3640     // Get number of CFG targets.
3641     // Note that PCTables include exception targets after calls.
3642     uint required_outcnt = n->required_outcnt();
3643     if (n->outcnt() != required_outcnt) {
3644       // Check for a few special cases.  Rethrow Nodes never take the
3645       // 'fall-thru' path, so expected kids is 1 less.
3646       if (n->is_PCTable() && n->in(0) && n->in(0)->in(0)) {
3647         if (n->in(0)->in(0)->is_Call()) {
3648           CallNode *call = n->in(0)->in(0)->as_Call();
3649           if (call->entry_point() == OptoRuntime::rethrow_stub()) {
3650             required_outcnt--;      // Rethrow always has 1 less kid
3651           } else if (call->req() > TypeFunc::Parms &&
3652                      call->is_CallDynamicJava()) {
3653             // Check for null receiver. In such case, the optimizer has
3654             // detected that the virtual call will always result in a null
3655             // pointer exception. The fall-through projection of this CatchNode
3656             // will not be populated.
3657             Node *arg0 = call->in(TypeFunc::Parms);
3658             if (arg0->is_Type() &&
3659                 arg0->as_Type()->type()->higher_equal(TypePtr::NULL_PTR)) {
3660               required_outcnt--;
3661             }
3662           } else if (call->entry_point() == OptoRuntime::new_array_Java() &&
3663                      call->req() > TypeFunc::Parms+1 &&
3664                      call->is_CallStaticJava()) {
3665             // Check for negative array length. In such case, the optimizer has
3666             // detected that the allocation attempt will always result in an
3667             // exception. There is no fall-through projection of this CatchNode .
3668             Node *arg1 = call->in(TypeFunc::Parms+1);
3669             if (arg1->is_Type() &&
3670                 arg1->as_Type()->type()->join(TypeInt::POS)->empty()) {
3671               required_outcnt--;
3672             }
3673           }
3674         }
3675       }
3676       // Recheck with a better notion of 'required_outcnt'
3677       if (n->outcnt() != required_outcnt) {
3678         record_method_not_compilable("malformed control flow");
3679         return true;            // Not all targets reachable!
3680       }
3681     }
3682     // Check that I actually visited all kids.  Unreached kids
3683     // must be infinite loops.
3684     for (DUIterator_Fast jmax, j = n->fast_outs(jmax); j < jmax; j++)
3685       if (!frc._visited.test(n->fast_out(j)->_idx)) {
3686         record_method_not_compilable("infinite loop");
3687         return true;            // Found unvisited kid; must be unreach
3688       }
3689 
3690     // Here so verification code in final_graph_reshaping_walk()
3691     // always see an OuterStripMinedLoopEnd
3692     if (n->is_OuterStripMinedLoopEnd()) {
3693       IfNode* init_iff = n->as_If();
3694       Node* iff = new IfNode(init_iff->in(0), init_iff->in(1), init_iff->_prob, init_iff->_fcnt);
3695       n->subsume_by(iff, this);
3696     }
3697   }
3698 
3699   // If original bytecodes contained a mixture of floats and doubles
3700   // check if the optimizer has made it homogenous, item (3).
3701   if( Use24BitFPMode && Use24BitFP && UseSSE == 0 &&
3702       frc.get_float_count() > 32 &&
3703       frc.get_double_count() == 0 &&
3704       (10 * frc.get_call_count() < frc.get_float_count()) ) {
3705     set_24_bit_selection_and_mode( false,  true );
3706   }
3707 
3708   set_java_calls(frc.get_java_call_count());
3709   set_inner_loops(frc.get_inner_loop_count());
3710 
3711   // No infinite loops, no reason to bail out.
3712   return false;
3713 }
3714 
3715 //-----------------------------too_many_traps----------------------------------
3716 // Report if there are too many traps at the current method and bci.
3717 // Return true if there was a trap, and/or PerMethodTrapLimit is exceeded.
3718 bool Compile::too_many_traps(ciMethod* method,
3719                              int bci,
3720                              Deoptimization::DeoptReason reason) {
3721   ciMethodData* md = method->method_data();
3722   if (md->is_empty()) {
3723     // Assume the trap has not occurred, or that it occurred only
3724     // because of a transient condition during start-up in the interpreter.
3725     return false;
3726   }
3727   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3728   if (md->has_trap_at(bci, m, reason) != 0) {
3729     // Assume PerBytecodeTrapLimit==0, for a more conservative heuristic.
3730     // Also, if there are multiple reasons, or if there is no per-BCI record,
3731     // assume the worst.
3732     if (log())
3733       log()->elem("observe trap='%s' count='%d'",
3734                   Deoptimization::trap_reason_name(reason),
3735                   md->trap_count(reason));
3736     return true;
3737   } else {
3738     // Ignore method/bci and see if there have been too many globally.
3739     return too_many_traps(reason, md);
3740   }
3741 }
3742 
3743 // Less-accurate variant which does not require a method and bci.
3744 bool Compile::too_many_traps(Deoptimization::DeoptReason reason,
3745                              ciMethodData* logmd) {
3746   if (trap_count(reason) >= Deoptimization::per_method_trap_limit(reason)) {
3747     // Too many traps globally.
3748     // Note that we use cumulative trap_count, not just md->trap_count.
3749     if (log()) {
3750       int mcount = (logmd == NULL)? -1: (int)logmd->trap_count(reason);
3751       log()->elem("observe trap='%s' count='0' mcount='%d' ccount='%d'",
3752                   Deoptimization::trap_reason_name(reason),
3753                   mcount, trap_count(reason));
3754     }
3755     return true;
3756   } else {
3757     // The coast is clear.
3758     return false;
3759   }
3760 }
3761 
3762 //--------------------------too_many_recompiles--------------------------------
3763 // Report if there are too many recompiles at the current method and bci.
3764 // Consults PerBytecodeRecompilationCutoff and PerMethodRecompilationCutoff.
3765 // Is not eager to return true, since this will cause the compiler to use
3766 // Action_none for a trap point, to avoid too many recompilations.
3767 bool Compile::too_many_recompiles(ciMethod* method,
3768                                   int bci,
3769                                   Deoptimization::DeoptReason reason) {
3770   ciMethodData* md = method->method_data();
3771   if (md->is_empty()) {
3772     // Assume the trap has not occurred, or that it occurred only
3773     // because of a transient condition during start-up in the interpreter.
3774     return false;
3775   }
3776   // Pick a cutoff point well within PerBytecodeRecompilationCutoff.
3777   uint bc_cutoff = (uint) PerBytecodeRecompilationCutoff / 8;
3778   uint m_cutoff  = (uint) PerMethodRecompilationCutoff / 2 + 1;  // not zero
3779   Deoptimization::DeoptReason per_bc_reason
3780     = Deoptimization::reason_recorded_per_bytecode_if_any(reason);
3781   ciMethod* m = Deoptimization::reason_is_speculate(reason) ? this->method() : NULL;
3782   if ((per_bc_reason == Deoptimization::Reason_none
3783        || md->has_trap_at(bci, m, reason) != 0)
3784       // The trap frequency measure we care about is the recompile count:
3785       && md->trap_recompiled_at(bci, m)
3786       && md->overflow_recompile_count() >= bc_cutoff) {
3787     // Do not emit a trap here if it has already caused recompilations.
3788     // Also, if there are multiple reasons, or if there is no per-BCI record,
3789     // assume the worst.
3790     if (log())
3791       log()->elem("observe trap='%s recompiled' count='%d' recompiles2='%d'",
3792                   Deoptimization::trap_reason_name(reason),
3793                   md->trap_count(reason),
3794                   md->overflow_recompile_count());
3795     return true;
3796   } else if (trap_count(reason) != 0
3797              && decompile_count() >= m_cutoff) {
3798     // Too many recompiles globally, and we have seen this sort of trap.
3799     // Use cumulative decompile_count, not just md->decompile_count.
3800     if (log())
3801       log()->elem("observe trap='%s' count='%d' mcount='%d' decompiles='%d' mdecompiles='%d'",
3802                   Deoptimization::trap_reason_name(reason),
3803                   md->trap_count(reason), trap_count(reason),
3804                   md->decompile_count(), decompile_count());
3805     return true;
3806   } else {
3807     // The coast is clear.
3808     return false;
3809   }
3810 }
3811 
3812 // Compute when not to trap. Used by matching trap based nodes and
3813 // NullCheck optimization.
3814 void Compile::set_allowed_deopt_reasons() {
3815   _allowed_reasons = 0;
3816   if (is_method_compilation()) {
3817     for (int rs = (int)Deoptimization::Reason_none+1; rs < Compile::trapHistLength; rs++) {
3818       assert(rs < BitsPerInt, "recode bit map");
3819       if (!too_many_traps((Deoptimization::DeoptReason) rs)) {
3820         _allowed_reasons |= nth_bit(rs);
3821       }
3822     }
3823   }
3824 }
3825 
3826 #ifndef PRODUCT
3827 //------------------------------verify_graph_edges---------------------------
3828 // Walk the Graph and verify that there is a one-to-one correspondence
3829 // between Use-Def edges and Def-Use edges in the graph.
3830 void Compile::verify_graph_edges(bool no_dead_code) {
3831   if (VerifyGraphEdges) {
3832     ResourceArea *area = Thread::current()->resource_area();
3833     Unique_Node_List visited(area);
3834     // Call recursive graph walk to check edges
3835     _root->verify_edges(visited);
3836     if (no_dead_code) {
3837       // Now make sure that no visited node is used by an unvisited node.
3838       bool dead_nodes = false;
3839       Unique_Node_List checked(area);
3840       while (visited.size() > 0) {
3841         Node* n = visited.pop();
3842         checked.push(n);
3843         for (uint i = 0; i < n->outcnt(); i++) {
3844           Node* use = n->raw_out(i);
3845           if (checked.member(use))  continue;  // already checked
3846           if (visited.member(use))  continue;  // already in the graph
3847           if (use->is_Con())        continue;  // a dead ConNode is OK
3848           // At this point, we have found a dead node which is DU-reachable.
3849           if (!dead_nodes) {
3850             tty->print_cr("*** Dead nodes reachable via DU edges:");
3851             dead_nodes = true;
3852           }
3853           use->dump(2);
3854           tty->print_cr("---");
3855           checked.push(use);  // No repeats; pretend it is now checked.
3856         }
3857       }
3858       assert(!dead_nodes, "using nodes must be reachable from root");
3859     }
3860   }
3861 }
3862 
3863 // Verify GC barriers consistency
3864 // Currently supported:
3865 // - G1 pre-barriers (see GraphKit::g1_write_barrier_pre())
3866 void Compile::verify_barriers() {
3867 #if INCLUDE_G1GC
3868   if (UseG1GC) {
3869     // Verify G1 pre-barriers
3870     const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
3871 
3872     ResourceArea *area = Thread::current()->resource_area();
3873     Unique_Node_List visited(area);
3874     Node_List worklist(area);
3875     // We're going to walk control flow backwards starting from the Root
3876     worklist.push(_root);
3877     while (worklist.size() > 0) {
3878       Node* x = worklist.pop();
3879       if (x == NULL || x == top()) continue;
3880       if (visited.member(x)) {
3881         continue;
3882       } else {
3883         visited.push(x);
3884       }
3885 
3886       if (x->is_Region()) {
3887         for (uint i = 1; i < x->req(); i++) {
3888           worklist.push(x->in(i));
3889         }
3890       } else {
3891         worklist.push(x->in(0));
3892         // We are looking for the pattern:
3893         //                            /->ThreadLocal
3894         // If->Bool->CmpI->LoadB->AddP->ConL(marking_offset)
3895         //              \->ConI(0)
3896         // We want to verify that the If and the LoadB have the same control
3897         // See GraphKit::g1_write_barrier_pre()
3898         if (x->is_If()) {
3899           IfNode *iff = x->as_If();
3900           if (iff->in(1)->is_Bool() && iff->in(1)->in(1)->is_Cmp()) {
3901             CmpNode *cmp = iff->in(1)->in(1)->as_Cmp();
3902             if (cmp->Opcode() == Op_CmpI && cmp->in(2)->is_Con() && cmp->in(2)->bottom_type()->is_int()->get_con() == 0
3903                 && cmp->in(1)->is_Load()) {
3904               LoadNode* load = cmp->in(1)->as_Load();
3905               if (load->Opcode() == Op_LoadB && load->in(2)->is_AddP() && load->in(2)->in(2)->Opcode() == Op_ThreadLocal
3906                   && load->in(2)->in(3)->is_Con()
3907                   && load->in(2)->in(3)->bottom_type()->is_intptr_t()->get_con() == marking_offset) {
3908 
3909                 Node* if_ctrl = iff->in(0);
3910                 Node* load_ctrl = load->in(0);
3911 
3912                 if (if_ctrl != load_ctrl) {
3913                   // Skip possible CProj->NeverBranch in infinite loops
3914                   if ((if_ctrl->is_Proj() && if_ctrl->Opcode() == Op_CProj)
3915                       && (if_ctrl->in(0)->is_MultiBranch() && if_ctrl->in(0)->Opcode() == Op_NeverBranch)) {
3916                     if_ctrl = if_ctrl->in(0)->in(0);
3917                   }
3918                 }
3919                 assert(load_ctrl != NULL && if_ctrl == load_ctrl, "controls must match");
3920               }
3921             }
3922           }
3923         }
3924       }
3925     }
3926   }
3927 #endif
3928 }
3929 
3930 #endif
3931 
3932 // The Compile object keeps track of failure reasons separately from the ciEnv.
3933 // This is required because there is not quite a 1-1 relation between the
3934 // ciEnv and its compilation task and the Compile object.  Note that one
3935 // ciEnv might use two Compile objects, if C2Compiler::compile_method decides
3936 // to backtrack and retry without subsuming loads.  Other than this backtracking
3937 // behavior, the Compile's failure reason is quietly copied up to the ciEnv
3938 // by the logic in C2Compiler.
3939 void Compile::record_failure(const char* reason) {
3940   if (log() != NULL) {
3941     log()->elem("failure reason='%s' phase='compile'", reason);
3942   }
3943   if (_failure_reason == NULL) {
3944     // Record the first failure reason.
3945     _failure_reason = reason;
3946   }
3947 
3948   if (!C->failure_reason_is(C2Compiler::retry_no_subsuming_loads())) {
3949     C->print_method(PHASE_FAILURE);
3950   }
3951   _root = NULL;  // flush the graph, too
3952 }
3953 
3954 Compile::TracePhase::TracePhase(const char* name, elapsedTimer* accumulator)
3955   : TraceTime(name, accumulator, CITime, CITimeVerbose),
3956     _phase_name(name), _dolog(CITimeVerbose)
3957 {
3958   if (_dolog) {
3959     C = Compile::current();
3960     _log = C->log();
3961   } else {
3962     C = NULL;
3963     _log = NULL;
3964   }
3965   if (_log != NULL) {
3966     _log->begin_head("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3967     _log->stamp();
3968     _log->end_head();
3969   }
3970 }
3971 
3972 Compile::TracePhase::~TracePhase() {
3973 
3974   C = Compile::current();
3975   if (_dolog) {
3976     _log = C->log();
3977   } else {
3978     _log = NULL;
3979   }
3980 
3981 #ifdef ASSERT
3982   if (PrintIdealNodeCount) {
3983     tty->print_cr("phase name='%s' nodes='%d' live='%d' live_graph_walk='%d'",
3984                   _phase_name, C->unique(), C->live_nodes(), C->count_live_nodes_by_graph_walk());
3985   }
3986 
3987   if (VerifyIdealNodeCount) {
3988     Compile::current()->print_missing_nodes();
3989   }
3990 #endif
3991 
3992   if (_log != NULL) {
3993     _log->done("phase name='%s' nodes='%d' live='%d'", _phase_name, C->unique(), C->live_nodes());
3994   }
3995 }
3996 
3997 //=============================================================================
3998 // Two Constant's are equal when the type and the value are equal.
3999 bool Compile::Constant::operator==(const Constant& other) {
4000   if (type()          != other.type()         )  return false;
4001   if (can_be_reused() != other.can_be_reused())  return false;
4002   // For floating point values we compare the bit pattern.
4003   switch (type()) {
4004   case T_INT:
4005   case T_FLOAT:   return (_v._value.i == other._v._value.i);
4006   case T_LONG:
4007   case T_DOUBLE:  return (_v._value.j == other._v._value.j);
4008   case T_OBJECT:
4009   case T_ADDRESS: return (_v._value.l == other._v._value.l);
4010   case T_VOID:    return (_v._value.l == other._v._value.l);  // jump-table entries
4011   case T_METADATA: return (_v._metadata == other._v._metadata);
4012   default: ShouldNotReachHere(); return false;
4013   }
4014 }
4015 
4016 static int type_to_size_in_bytes(BasicType t) {
4017   switch (t) {
4018   case T_INT:     return sizeof(jint   );
4019   case T_LONG:    return sizeof(jlong  );
4020   case T_FLOAT:   return sizeof(jfloat );
4021   case T_DOUBLE:  return sizeof(jdouble);
4022   case T_METADATA: return sizeof(Metadata*);
4023     // We use T_VOID as marker for jump-table entries (labels) which
4024     // need an internal word relocation.
4025   case T_VOID:
4026   case T_ADDRESS:
4027   case T_OBJECT:  return sizeof(jobject);
4028   default:
4029     ShouldNotReachHere();
4030     return -1;
4031   }
4032 }
4033 
4034 int Compile::ConstantTable::qsort_comparator(Constant* a, Constant* b) {
4035   // sort descending
4036   if (a->freq() > b->freq())  return -1;
4037   if (a->freq() < b->freq())  return  1;
4038   return 0;
4039 }
4040 
4041 void Compile::ConstantTable::calculate_offsets_and_size() {
4042   // First, sort the array by frequencies.
4043   _constants.sort(qsort_comparator);
4044 
4045 #ifdef ASSERT
4046   // Make sure all jump-table entries were sorted to the end of the
4047   // array (they have a negative frequency).
4048   bool found_void = false;
4049   for (int i = 0; i < _constants.length(); i++) {
4050     Constant con = _constants.at(i);
4051     if (con.type() == T_VOID)
4052       found_void = true;  // jump-tables
4053     else
4054       assert(!found_void, "wrong sorting");
4055   }
4056 #endif
4057 
4058   int offset = 0;
4059   for (int i = 0; i < _constants.length(); i++) {
4060     Constant* con = _constants.adr_at(i);
4061 
4062     // Align offset for type.
4063     int typesize = type_to_size_in_bytes(con->type());
4064     offset = align_up(offset, typesize);
4065     con->set_offset(offset);   // set constant's offset
4066 
4067     if (con->type() == T_VOID) {
4068       MachConstantNode* n = (MachConstantNode*) con->get_jobject();
4069       offset = offset + typesize * n->outcnt();  // expand jump-table
4070     } else {
4071       offset = offset + typesize;
4072     }
4073   }
4074 
4075   // Align size up to the next section start (which is insts; see
4076   // CodeBuffer::align_at_start).
4077   assert(_size == -1, "already set?");
4078   _size = align_up(offset, (int)CodeEntryAlignment);
4079 }
4080 
4081 void Compile::ConstantTable::emit(CodeBuffer& cb) {
4082   MacroAssembler _masm(&cb);
4083   for (int i = 0; i < _constants.length(); i++) {
4084     Constant con = _constants.at(i);
4085     address constant_addr = NULL;
4086     switch (con.type()) {
4087     case T_INT:    constant_addr = _masm.int_constant(   con.get_jint()   ); break;
4088     case T_LONG:   constant_addr = _masm.long_constant(  con.get_jlong()  ); break;
4089     case T_FLOAT:  constant_addr = _masm.float_constant( con.get_jfloat() ); break;
4090     case T_DOUBLE: constant_addr = _masm.double_constant(con.get_jdouble()); break;
4091     case T_OBJECT: {
4092       jobject obj = con.get_jobject();
4093       int oop_index = _masm.oop_recorder()->find_index(obj);
4094       constant_addr = _masm.address_constant((address) obj, oop_Relocation::spec(oop_index));
4095       break;
4096     }
4097     case T_ADDRESS: {
4098       address addr = (address) con.get_jobject();
4099       constant_addr = _masm.address_constant(addr);
4100       break;
4101     }
4102     // We use T_VOID as marker for jump-table entries (labels) which
4103     // need an internal word relocation.
4104     case T_VOID: {
4105       MachConstantNode* n = (MachConstantNode*) con.get_jobject();
4106       // Fill the jump-table with a dummy word.  The real value is
4107       // filled in later in fill_jump_table.
4108       address dummy = (address) n;
4109       constant_addr = _masm.address_constant(dummy);
4110       // Expand jump-table
4111       for (uint i = 1; i < n->outcnt(); i++) {
4112         address temp_addr = _masm.address_constant(dummy + i);
4113         assert(temp_addr, "consts section too small");
4114       }
4115       break;
4116     }
4117     case T_METADATA: {
4118       Metadata* obj = con.get_metadata();
4119       int metadata_index = _masm.oop_recorder()->find_index(obj);
4120       constant_addr = _masm.address_constant((address) obj, metadata_Relocation::spec(metadata_index));
4121       break;
4122     }
4123     default: ShouldNotReachHere();
4124     }
4125     assert(constant_addr, "consts section too small");
4126     assert((constant_addr - _masm.code()->consts()->start()) == con.offset(),
4127             "must be: %d == %d", (int) (constant_addr - _masm.code()->consts()->start()), (int)(con.offset()));
4128   }
4129 }
4130 
4131 int Compile::ConstantTable::find_offset(Constant& con) const {
4132   int idx = _constants.find(con);
4133   guarantee(idx != -1, "constant must be in constant table");
4134   int offset = _constants.at(idx).offset();
4135   guarantee(offset != -1, "constant table not emitted yet?");
4136   return offset;
4137 }
4138 
4139 void Compile::ConstantTable::add(Constant& con) {
4140   if (con.can_be_reused()) {
4141     int idx = _constants.find(con);
4142     if (idx != -1 && _constants.at(idx).can_be_reused()) {
4143       _constants.adr_at(idx)->inc_freq(con.freq());  // increase the frequency by the current value
4144       return;
4145     }
4146   }
4147   (void) _constants.append(con);
4148 }
4149 
4150 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, BasicType type, jvalue value) {
4151   Block* b = Compile::current()->cfg()->get_block_for_node(n);
4152   Constant con(type, value, b->_freq);
4153   add(con);
4154   return con;
4155 }
4156 
4157 Compile::Constant Compile::ConstantTable::add(Metadata* metadata) {
4158   Constant con(metadata);
4159   add(con);
4160   return con;
4161 }
4162 
4163 Compile::Constant Compile::ConstantTable::add(MachConstantNode* n, MachOper* oper) {
4164   jvalue value;
4165   BasicType type = oper->type()->basic_type();
4166   switch (type) {
4167   case T_LONG:    value.j = oper->constantL(); break;
4168   case T_FLOAT:   value.f = oper->constantF(); break;
4169   case T_DOUBLE:  value.d = oper->constantD(); break;
4170   case T_OBJECT:
4171   case T_ADDRESS: value.l = (jobject) oper->constant(); break;
4172   case T_METADATA: return add((Metadata*)oper->constant()); break;
4173   default: guarantee(false, "unhandled type: %s", type2name(type));
4174   }
4175   return add(n, type, value);
4176 }
4177 
4178 Compile::Constant Compile::ConstantTable::add_jump_table(MachConstantNode* n) {
4179   jvalue value;
4180   // We can use the node pointer here to identify the right jump-table
4181   // as this method is called from Compile::Fill_buffer right before
4182   // the MachNodes are emitted and the jump-table is filled (means the
4183   // MachNode pointers do not change anymore).
4184   value.l = (jobject) n;
4185   Constant con(T_VOID, value, next_jump_table_freq(), false);  // Labels of a jump-table cannot be reused.
4186   add(con);
4187   return con;
4188 }
4189 
4190 void Compile::ConstantTable::fill_jump_table(CodeBuffer& cb, MachConstantNode* n, GrowableArray<Label*> labels) const {
4191   // If called from Compile::scratch_emit_size do nothing.
4192   if (Compile::current()->in_scratch_emit_size())  return;
4193 
4194   assert(labels.is_nonempty(), "must be");
4195   assert((uint) labels.length() == n->outcnt(), "must be equal: %d == %d", labels.length(), n->outcnt());
4196 
4197   // Since MachConstantNode::constant_offset() also contains
4198   // table_base_offset() we need to subtract the table_base_offset()
4199   // to get the plain offset into the constant table.
4200   int offset = n->constant_offset() - table_base_offset();
4201 
4202   MacroAssembler _masm(&cb);
4203   address* jump_table_base = (address*) (_masm.code()->consts()->start() + offset);
4204 
4205   for (uint i = 0; i < n->outcnt(); i++) {
4206     address* constant_addr = &jump_table_base[i];
4207     assert(*constant_addr == (((address) n) + i), "all jump-table entries must contain adjusted node pointer: " INTPTR_FORMAT " == " INTPTR_FORMAT, p2i(*constant_addr), p2i(((address) n) + i));
4208     *constant_addr = cb.consts()->target(*labels.at(i), (address) constant_addr);
4209     cb.consts()->relocate((address) constant_addr, relocInfo::internal_word_type);
4210   }
4211 }
4212 
4213 //----------------------------static_subtype_check-----------------------------
4214 // Shortcut important common cases when superklass is exact:
4215 // (0) superklass is java.lang.Object (can occur in reflective code)
4216 // (1) subklass is already limited to a subtype of superklass => always ok
4217 // (2) subklass does not overlap with superklass => always fail
4218 // (3) superklass has NO subtypes and we can check with a simple compare.
4219 int Compile::static_subtype_check(ciKlass* superk, ciKlass* subk) {
4220   if (StressReflectiveCode || superk == NULL || subk == NULL) {
4221     return SSC_full_test;       // Let caller generate the general case.
4222   }
4223 
4224   if (!EnableValhalla && superk == env()->Object_klass()) {
4225     return SSC_always_true;     // (0) this test cannot fail
4226   }
4227 
4228   ciType* superelem = superk;
4229   if (superelem->is_array_klass())
4230     superelem = superelem->as_array_klass()->base_element_type();
4231 
4232   if (!subk->is_interface()) {  // cannot trust static interface types yet
4233     if (subk->is_subtype_of(superk)) {
4234       return SSC_always_true;   // (1) false path dead; no dynamic test needed
4235     }
4236     if (!(superelem->is_klass() && superelem->as_klass()->is_interface()) &&
4237         !superk->is_subtype_of(subk)) {
4238       return SSC_always_false;
4239     }
4240   }
4241 
4242   // If casting to an instance klass, it must have no subtypes
4243   if (superk->is_interface()) {
4244     // Cannot trust interfaces yet.
4245     // %%% S.B. superk->nof_implementors() == 1
4246   } else if (superelem->is_instance_klass()) {
4247     ciInstanceKlass* ik = superelem->as_instance_klass();
4248     if (!ik->has_subklass() && !ik->is_interface()) {
4249       if (!ik->is_final()) {
4250         // Add a dependency if there is a chance of a later subclass.
4251         dependencies()->assert_leaf_type(ik);
4252       }
4253       return SSC_easy_test;     // (3) caller can do a simple ptr comparison
4254     }
4255   } else {
4256     // A primitive array type has no subtypes.
4257     return SSC_easy_test;       // (3) caller can do a simple ptr comparison
4258   }
4259 
4260   return SSC_full_test;
4261 }
4262 
4263 Node* Compile::conv_I2X_index(PhaseGVN* phase, Node* idx, const TypeInt* sizetype, Node* ctrl) {
4264 #ifdef _LP64
4265   // The scaled index operand to AddP must be a clean 64-bit value.
4266   // Java allows a 32-bit int to be incremented to a negative
4267   // value, which appears in a 64-bit register as a large
4268   // positive number.  Using that large positive number as an
4269   // operand in pointer arithmetic has bad consequences.
4270   // On the other hand, 32-bit overflow is rare, and the possibility
4271   // can often be excluded, if we annotate the ConvI2L node with
4272   // a type assertion that its value is known to be a small positive
4273   // number.  (The prior range check has ensured this.)
4274   // This assertion is used by ConvI2LNode::Ideal.
4275   int index_max = max_jint - 1;  // array size is max_jint, index is one less
4276   if (sizetype != NULL) index_max = sizetype->_hi - 1;
4277   const TypeInt* iidxtype = TypeInt::make(0, index_max, Type::WidenMax);
4278   idx = constrained_convI2L(phase, idx, iidxtype, ctrl);
4279 #endif
4280   return idx;
4281 }
4282 
4283 // Convert integer value to a narrowed long type dependent on ctrl (for example, a range check)
4284 Node* Compile::constrained_convI2L(PhaseGVN* phase, Node* value, const TypeInt* itype, Node* ctrl) {
4285   if (ctrl != NULL) {
4286     // Express control dependency by a CastII node with a narrow type.
4287     value = new CastIINode(value, itype, false, true /* range check dependency */);
4288     // Make the CastII node dependent on the control input to prevent the narrowed ConvI2L
4289     // node from floating above the range check during loop optimizations. Otherwise, the
4290     // ConvI2L node may be eliminated independently of the range check, causing the data path
4291     // to become TOP while the control path is still there (although it's unreachable).
4292     value->set_req(0, ctrl);
4293     // Save CastII node to remove it after loop optimizations.
4294     phase->C->add_range_check_cast(value);
4295     value = phase->transform(value);
4296   }
4297   const TypeLong* ltype = TypeLong::make(itype->_lo, itype->_hi, itype->_widen);
4298   return phase->transform(new ConvI2LNode(value, ltype));
4299 }
4300 
4301 // The message about the current inlining is accumulated in
4302 // _print_inlining_stream and transfered into the _print_inlining_list
4303 // once we know whether inlining succeeds or not. For regular
4304 // inlining, messages are appended to the buffer pointed by
4305 // _print_inlining_idx in the _print_inlining_list. For late inlining,
4306 // a new buffer is added after _print_inlining_idx in the list. This
4307 // way we can update the inlining message for late inlining call site
4308 // when the inlining is attempted again.
4309 void Compile::print_inlining_init() {
4310   if (print_inlining() || print_intrinsics()) {
4311     _print_inlining_stream = new stringStream();
4312     _print_inlining_list = new (comp_arena())GrowableArray<PrintInliningBuffer>(comp_arena(), 1, 1, PrintInliningBuffer());
4313   }
4314 }
4315 
4316 void Compile::print_inlining_reinit() {
4317   if (print_inlining() || print_intrinsics()) {
4318     // Re allocate buffer when we change ResourceMark
4319     _print_inlining_stream = new stringStream();
4320   }
4321 }
4322 
4323 void Compile::print_inlining_reset() {
4324   _print_inlining_stream->reset();
4325 }
4326 
4327 void Compile::print_inlining_commit() {
4328   assert(print_inlining() || print_intrinsics(), "PrintInlining off?");
4329   // Transfer the message from _print_inlining_stream to the current
4330   // _print_inlining_list buffer and clear _print_inlining_stream.
4331   _print_inlining_list->at(_print_inlining_idx).ss()->write(_print_inlining_stream->as_string(), _print_inlining_stream->size());
4332   print_inlining_reset();
4333 }
4334 
4335 void Compile::print_inlining_push() {
4336   // Add new buffer to the _print_inlining_list at current position
4337   _print_inlining_idx++;
4338   _print_inlining_list->insert_before(_print_inlining_idx, PrintInliningBuffer());
4339 }
4340 
4341 Compile::PrintInliningBuffer& Compile::print_inlining_current() {
4342   return _print_inlining_list->at(_print_inlining_idx);
4343 }
4344 
4345 void Compile::print_inlining_update(CallGenerator* cg) {
4346   if (print_inlining() || print_intrinsics()) {
4347     if (!cg->is_late_inline()) {
4348       if (print_inlining_current().cg() != NULL) {
4349         print_inlining_push();
4350       }
4351       print_inlining_commit();
4352     } else {
4353       if (print_inlining_current().cg() != cg &&
4354           (print_inlining_current().cg() != NULL ||
4355            print_inlining_current().ss()->size() != 0)) {
4356         print_inlining_push();
4357       }
4358       print_inlining_commit();
4359       print_inlining_current().set_cg(cg);
4360     }
4361   }
4362 }
4363 
4364 void Compile::print_inlining_move_to(CallGenerator* cg) {
4365   // We resume inlining at a late inlining call site. Locate the
4366   // corresponding inlining buffer so that we can update it.
4367   if (print_inlining()) {
4368     for (int i = 0; i < _print_inlining_list->length(); i++) {
4369       if (_print_inlining_list->adr_at(i)->cg() == cg) {
4370         _print_inlining_idx = i;
4371         return;
4372       }
4373     }
4374     ShouldNotReachHere();
4375   }
4376 }
4377 
4378 void Compile::print_inlining_update_delayed(CallGenerator* cg) {
4379   if (print_inlining()) {
4380     assert(_print_inlining_stream->size() > 0, "missing inlining msg");
4381     assert(print_inlining_current().cg() == cg, "wrong entry");
4382     // replace message with new message
4383     _print_inlining_list->at_put(_print_inlining_idx, PrintInliningBuffer());
4384     print_inlining_commit();
4385     print_inlining_current().set_cg(cg);
4386   }
4387 }
4388 
4389 void Compile::print_inlining_assert_ready() {
4390   assert(!_print_inlining || _print_inlining_stream->size() == 0, "loosing data");
4391 }
4392 
4393 void Compile::process_print_inlining() {
4394   bool do_print_inlining = print_inlining() || print_intrinsics();
4395   if (do_print_inlining || log() != NULL) {
4396     // Print inlining message for candidates that we couldn't inline
4397     // for lack of space
4398     for (int i = 0; i < _late_inlines.length(); i++) {
4399       CallGenerator* cg = _late_inlines.at(i);
4400       if (!cg->is_mh_late_inline()) {
4401         const char* msg = "live nodes > LiveNodeCountInliningCutoff";
4402         if (do_print_inlining) {
4403           cg->print_inlining_late(msg);
4404         }
4405         log_late_inline_failure(cg, msg);
4406       }
4407     }
4408   }
4409   if (do_print_inlining) {
4410     ResourceMark rm;
4411     stringStream ss;
4412     for (int i = 0; i < _print_inlining_list->length(); i++) {
4413       ss.print("%s", _print_inlining_list->adr_at(i)->ss()->as_string());
4414     }
4415     size_t end = ss.size();
4416     _print_inlining_output = NEW_ARENA_ARRAY(comp_arena(), char, end+1);
4417     strncpy(_print_inlining_output, ss.base(), end+1);
4418     _print_inlining_output[end] = 0;
4419   }
4420 }
4421 
4422 void Compile::dump_print_inlining() {
4423   if (_print_inlining_output != NULL) {
4424     tty->print_raw(_print_inlining_output);
4425   }
4426 }
4427 
4428 void Compile::log_late_inline(CallGenerator* cg) {
4429   if (log() != NULL) {
4430     log()->head("late_inline method='%d'  inline_id='" JLONG_FORMAT "'", log()->identify(cg->method()),
4431                 cg->unique_id());
4432     JVMState* p = cg->call_node()->jvms();
4433     while (p != NULL) {
4434       log()->elem("jvms bci='%d' method='%d'", p->bci(), log()->identify(p->method()));
4435       p = p->caller();
4436     }
4437     log()->tail("late_inline");
4438   }
4439 }
4440 
4441 void Compile::log_late_inline_failure(CallGenerator* cg, const char* msg) {
4442   log_late_inline(cg);
4443   if (log() != NULL) {
4444     log()->inline_fail(msg);
4445   }
4446 }
4447 
4448 void Compile::log_inline_id(CallGenerator* cg) {
4449   if (log() != NULL) {
4450     // The LogCompilation tool needs a unique way to identify late
4451     // inline call sites. This id must be unique for this call site in
4452     // this compilation. Try to have it unique across compilations as
4453     // well because it can be convenient when grepping through the log
4454     // file.
4455     // Distinguish OSR compilations from others in case CICountOSR is
4456     // on.
4457     jlong id = ((jlong)unique()) + (((jlong)compile_id()) << 33) + (CICountOSR && is_osr_compilation() ? ((jlong)1) << 32 : 0);
4458     cg->set_unique_id(id);
4459     log()->elem("inline_id id='" JLONG_FORMAT "'", id);
4460   }
4461 }
4462 
4463 void Compile::log_inline_failure(const char* msg) {
4464   if (C->log() != NULL) {
4465     C->log()->inline_fail(msg);
4466   }
4467 }
4468 
4469 
4470 // Dump inlining replay data to the stream.
4471 // Don't change thread state and acquire any locks.
4472 void Compile::dump_inline_data(outputStream* out) {
4473   InlineTree* inl_tree = ilt();
4474   if (inl_tree != NULL) {
4475     out->print(" inline %d", inl_tree->count());
4476     inl_tree->dump_replay_data(out);
4477   }
4478 }
4479 
4480 int Compile::cmp_expensive_nodes(Node* n1, Node* n2) {
4481   if (n1->Opcode() < n2->Opcode())      return -1;
4482   else if (n1->Opcode() > n2->Opcode()) return 1;
4483 
4484   assert(n1->req() == n2->req(), "can't compare %s nodes: n1->req() = %d, n2->req() = %d", NodeClassNames[n1->Opcode()], n1->req(), n2->req());
4485   for (uint i = 1; i < n1->req(); i++) {
4486     if (n1->in(i) < n2->in(i))      return -1;
4487     else if (n1->in(i) > n2->in(i)) return 1;
4488   }
4489 
4490   return 0;
4491 }
4492 
4493 int Compile::cmp_expensive_nodes(Node** n1p, Node** n2p) {
4494   Node* n1 = *n1p;
4495   Node* n2 = *n2p;
4496 
4497   return cmp_expensive_nodes(n1, n2);
4498 }
4499 
4500 void Compile::sort_expensive_nodes() {
4501   if (!expensive_nodes_sorted()) {
4502     _expensive_nodes->sort(cmp_expensive_nodes);
4503   }
4504 }
4505 
4506 bool Compile::expensive_nodes_sorted() const {
4507   for (int i = 1; i < _expensive_nodes->length(); i++) {
4508     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i-1)) < 0) {
4509       return false;
4510     }
4511   }
4512   return true;
4513 }
4514 
4515 bool Compile::should_optimize_expensive_nodes(PhaseIterGVN &igvn) {
4516   if (_expensive_nodes->length() == 0) {
4517     return false;
4518   }
4519 
4520   assert(OptimizeExpensiveOps, "optimization off?");
4521 
4522   // Take this opportunity to remove dead nodes from the list
4523   int j = 0;
4524   for (int i = 0; i < _expensive_nodes->length(); i++) {
4525     Node* n = _expensive_nodes->at(i);
4526     if (!n->is_unreachable(igvn)) {
4527       assert(n->is_expensive(), "should be expensive");
4528       _expensive_nodes->at_put(j, n);
4529       j++;
4530     }
4531   }
4532   _expensive_nodes->trunc_to(j);
4533 
4534   // Then sort the list so that similar nodes are next to each other
4535   // and check for at least two nodes of identical kind with same data
4536   // inputs.
4537   sort_expensive_nodes();
4538 
4539   for (int i = 0; i < _expensive_nodes->length()-1; i++) {
4540     if (cmp_expensive_nodes(_expensive_nodes->adr_at(i), _expensive_nodes->adr_at(i+1)) == 0) {
4541       return true;
4542     }
4543   }
4544 
4545   return false;
4546 }
4547 
4548 void Compile::cleanup_expensive_nodes(PhaseIterGVN &igvn) {
4549   if (_expensive_nodes->length() == 0) {
4550     return;
4551   }
4552 
4553   assert(OptimizeExpensiveOps, "optimization off?");
4554 
4555   // Sort to bring similar nodes next to each other and clear the
4556   // control input of nodes for which there's only a single copy.
4557   sort_expensive_nodes();
4558 
4559   int j = 0;
4560   int identical = 0;
4561   int i = 0;
4562   bool modified = false;
4563   for (; i < _expensive_nodes->length()-1; i++) {
4564     assert(j <= i, "can't write beyond current index");
4565     if (_expensive_nodes->at(i)->Opcode() == _expensive_nodes->at(i+1)->Opcode()) {
4566       identical++;
4567       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4568       continue;
4569     }
4570     if (identical > 0) {
4571       _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4572       identical = 0;
4573     } else {
4574       Node* n = _expensive_nodes->at(i);
4575       igvn.replace_input_of(n, 0, NULL);
4576       igvn.hash_insert(n);
4577       modified = true;
4578     }
4579   }
4580   if (identical > 0) {
4581     _expensive_nodes->at_put(j++, _expensive_nodes->at(i));
4582   } else if (_expensive_nodes->length() >= 1) {
4583     Node* n = _expensive_nodes->at(i);
4584     igvn.replace_input_of(n, 0, NULL);
4585     igvn.hash_insert(n);
4586     modified = true;
4587   }
4588   _expensive_nodes->trunc_to(j);
4589   if (modified) {
4590     igvn.optimize();
4591   }
4592 }
4593 
4594 void Compile::add_expensive_node(Node * n) {
4595   assert(!_expensive_nodes->contains(n), "duplicate entry in expensive list");
4596   assert(n->is_expensive(), "expensive nodes with non-null control here only");
4597   assert(!n->is_CFG() && !n->is_Mem(), "no cfg or memory nodes here");
4598   if (OptimizeExpensiveOps) {
4599     _expensive_nodes->append(n);
4600   } else {
4601     // Clear control input and let IGVN optimize expensive nodes if
4602     // OptimizeExpensiveOps is off.
4603     n->set_req(0, NULL);
4604   }
4605 }
4606 
4607 /**
4608  * Remove the speculative part of types and clean up the graph
4609  */
4610 void Compile::remove_speculative_types(PhaseIterGVN &igvn) {
4611   if (UseTypeSpeculation) {
4612     Unique_Node_List worklist;
4613     worklist.push(root());
4614     int modified = 0;
4615     // Go over all type nodes that carry a speculative type, drop the
4616     // speculative part of the type and enqueue the node for an igvn
4617     // which may optimize it out.
4618     for (uint next = 0; next < worklist.size(); ++next) {
4619       Node *n  = worklist.at(next);
4620       if (n->is_Type()) {
4621         TypeNode* tn = n->as_Type();
4622         const Type* t = tn->type();
4623         const Type* t_no_spec = t->remove_speculative();
4624         if (t_no_spec != t) {
4625           bool in_hash = igvn.hash_delete(n);
4626           assert(in_hash, "node should be in igvn hash table");
4627           tn->set_type(t_no_spec);
4628           igvn.hash_insert(n);
4629           igvn._worklist.push(n); // give it a chance to go away
4630           modified++;
4631         }
4632       }
4633       uint max = n->len();
4634       for( uint i = 0; i < max; ++i ) {
4635         Node *m = n->in(i);
4636         if (not_a_node(m))  continue;
4637         worklist.push(m);
4638       }
4639     }
4640     // Drop the speculative part of all types in the igvn's type table
4641     igvn.remove_speculative_types();
4642     if (modified > 0) {
4643       igvn.optimize();
4644     }
4645 #ifdef ASSERT
4646     // Verify that after the IGVN is over no speculative type has resurfaced
4647     worklist.clear();
4648     worklist.push(root());
4649     for (uint next = 0; next < worklist.size(); ++next) {
4650       Node *n  = worklist.at(next);
4651       const Type* t = igvn.type_or_null(n);
4652       assert((t == NULL) || (t == t->remove_speculative()), "no more speculative types");
4653       if (n->is_Type()) {
4654         t = n->as_Type()->type();
4655         assert(t == t->remove_speculative(), "no more speculative types");
4656       }
4657       uint max = n->len();
4658       for( uint i = 0; i < max; ++i ) {
4659         Node *m = n->in(i);
4660         if (not_a_node(m))  continue;
4661         worklist.push(m);
4662       }
4663     }
4664     igvn.check_no_speculative_types();
4665 #endif
4666   }
4667 }
4668 
4669 Node* Compile::load_is_value_bit(PhaseGVN* phase, Node* oop) {
4670   // Load the klass pointer and check if it's odd, i.e., if it defines a value type
4671   // is_value = (klass & oop_metadata_valuetype_mask) >> LogKlassAlignmentInBytes
4672   Node* k_adr = phase->transform(new AddPNode(oop, oop, phase->MakeConX(oopDesc::klass_offset_in_bytes())));
4673   Node* klass = NULL;
4674   if (UseCompressedClassPointers) {
4675     klass = phase->transform(new LoadNKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT->make_narrowklass(), MemNode::unordered));
4676   } else {
4677     klass = phase->transform(new LoadKlassNode(NULL, immutable_memory(), k_adr, TypeInstPtr::KLASS, TypeKlassPtr::OBJECT, MemNode::unordered));
4678   }
4679   const int mask = Universe::oop_metadata_valuetype_mask();
4680   Node* is_value = phase->transform(new CastP2XNode(NULL, klass));
4681   is_value = phase->transform(new AndXNode(is_value, phase->MakeConX(mask)));
4682   // Check if a shift is required for perturbation to affect aligned bits of oop
4683   if (mask == KlassPtrValueTypeMask && ObjectAlignmentInBytes <= KlassAlignmentInBytes) {
4684     assert((mask >> LogKlassAlignmentInBytes) == 1, "invalid shift");
4685     is_value = phase->transform(new URShiftXNode(is_value, phase->intcon(LogKlassAlignmentInBytes)));
4686   } else {
4687     assert(mask < ObjectAlignmentInBytes, "invalid mask");
4688   }
4689   return is_value;
4690 }
4691 
4692 Node* Compile::optimize_acmp(PhaseGVN* phase, Node* a, Node* b) {
4693   const TypeInstPtr* ta = phase->type(a)->isa_instptr();
4694   const TypeInstPtr* tb = phase->type(b)->isa_instptr();
4695   if (!EnableValhalla || ta == NULL || tb == NULL ||
4696       ta->is_zero_type() || tb->is_zero_type() ||
4697       !ta->can_be_value_type() || !tb->can_be_value_type()) {
4698     // Use old acmp if one operand is null or not a value type
4699     return new CmpPNode(a, b);
4700   } else if (ta->is_valuetypeptr() || tb->is_valuetypeptr()) {
4701     // We know that one operand is a value type. Therefore,
4702     // new acmp will only return true if both operands are NULL.
4703     // Check if both operands are null by or'ing the oops.
4704     a = phase->transform(new CastP2XNode(NULL, a));
4705     b = phase->transform(new CastP2XNode(NULL, b));
4706     a = phase->transform(new OrXNode(a, b));
4707     return new CmpXNode(a, phase->MakeConX(0));
4708   }
4709   // Use new acmp
4710   return NULL;
4711 }
4712 
4713 // Auxiliary method to support randomized stressing/fuzzing.
4714 //
4715 // This method can be called the arbitrary number of times, with current count
4716 // as the argument. The logic allows selecting a single candidate from the
4717 // running list of candidates as follows:
4718 //    int count = 0;
4719 //    Cand* selected = null;
4720 //    while(cand = cand->next()) {
4721 //      if (randomized_select(++count)) {
4722 //        selected = cand;
4723 //      }
4724 //    }
4725 //
4726 // Including count equalizes the chances any candidate is "selected".
4727 // This is useful when we don't have the complete list of candidates to choose
4728 // from uniformly. In this case, we need to adjust the randomicity of the
4729 // selection, or else we will end up biasing the selection towards the latter
4730 // candidates.
4731 //
4732 // Quick back-envelope calculation shows that for the list of n candidates
4733 // the equal probability for the candidate to persist as "best" can be
4734 // achieved by replacing it with "next" k-th candidate with the probability
4735 // of 1/k. It can be easily shown that by the end of the run, the
4736 // probability for any candidate is converged to 1/n, thus giving the
4737 // uniform distribution among all the candidates.
4738 //
4739 // We don't care about the domain size as long as (RANDOMIZED_DOMAIN / count) is large.
4740 #define RANDOMIZED_DOMAIN_POW 29
4741 #define RANDOMIZED_DOMAIN (1 << RANDOMIZED_DOMAIN_POW)
4742 #define RANDOMIZED_DOMAIN_MASK ((1 << (RANDOMIZED_DOMAIN_POW + 1)) - 1)
4743 bool Compile::randomized_select(int count) {
4744   assert(count > 0, "only positive");
4745   return (os::random() & RANDOMIZED_DOMAIN_MASK) < (RANDOMIZED_DOMAIN / count);
4746 }
4747 
4748 CloneMap&     Compile::clone_map()                 { return _clone_map; }
4749 void          Compile::set_clone_map(Dict* d)      { _clone_map._dict = d; }
4750 
4751 void NodeCloneInfo::dump() const {
4752   tty->print(" {%d:%d} ", idx(), gen());
4753 }
4754 
4755 void CloneMap::clone(Node* old, Node* nnn, int gen) {
4756   uint64_t val = value(old->_idx);
4757   NodeCloneInfo cio(val);
4758   assert(val != 0, "old node should be in the map");
4759   NodeCloneInfo cin(cio.idx(), gen + cio.gen());
4760   insert(nnn->_idx, cin.get());
4761 #ifndef PRODUCT
4762   if (is_debug()) {
4763     tty->print_cr("CloneMap::clone inserted node %d info {%d:%d} into CloneMap", nnn->_idx, cin.idx(), cin.gen());
4764   }
4765 #endif
4766 }
4767 
4768 void CloneMap::verify_insert_and_clone(Node* old, Node* nnn, int gen) {
4769   NodeCloneInfo cio(value(old->_idx));
4770   if (cio.get() == 0) {
4771     cio.set(old->_idx, 0);
4772     insert(old->_idx, cio.get());
4773 #ifndef PRODUCT
4774     if (is_debug()) {
4775       tty->print_cr("CloneMap::verify_insert_and_clone inserted node %d info {%d:%d} into CloneMap", old->_idx, cio.idx(), cio.gen());
4776     }
4777 #endif
4778   }
4779   clone(old, nnn, gen);
4780 }
4781 
4782 int CloneMap::max_gen() const {
4783   int g = 0;
4784   DictI di(_dict);
4785   for(; di.test(); ++di) {
4786     int t = gen(di._key);
4787     if (g < t) {
4788       g = t;
4789 #ifndef PRODUCT
4790       if (is_debug()) {
4791         tty->print_cr("CloneMap::max_gen() update max=%d from %d", g, _2_node_idx_t(di._key));
4792       }
4793 #endif
4794     }
4795   }
4796   return g;
4797 }
4798 
4799 void CloneMap::dump(node_idx_t key) const {
4800   uint64_t val = value(key);
4801   if (val != 0) {
4802     NodeCloneInfo ni(val);
4803     ni.dump();
4804   }
4805 }