1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "gc/shared/collectedHeap.inline.hpp"
  28 #include "libadt/vectset.hpp"
  29 #include "opto/addnode.hpp"
  30 #include "opto/arraycopynode.hpp"
  31 #include "opto/callnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/cfgnode.hpp"
  34 #include "opto/compile.hpp"
  35 #include "opto/convertnode.hpp"
  36 #include "opto/graphKit.hpp"
  37 #include "opto/locknode.hpp"
  38 #include "opto/loopnode.hpp"
  39 #include "opto/macro.hpp"
  40 #include "opto/memnode.hpp"
  41 #include "opto/narrowptrnode.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opaquenode.hpp"
  44 #include "opto/phaseX.hpp"
  45 #include "opto/rootnode.hpp"
  46 #include "opto/runtime.hpp"
  47 #include "opto/subnode.hpp"
  48 #include "opto/type.hpp"
  49 #include "opto/valuetypenode.hpp"
  50 #include "runtime/sharedRuntime.hpp"
  51 #if INCLUDE_G1GC
  52 #include "gc/g1/g1ThreadLocalData.hpp"
  53 #endif // INCLUDE_G1GC
  54 
  55 
  56 //
  57 // Replace any references to "oldref" in inputs to "use" with "newref".
  58 // Returns the number of replacements made.
  59 //
  60 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  61   int nreplacements = 0;
  62   uint req = use->req();
  63   for (uint j = 0; j < use->len(); j++) {
  64     Node *uin = use->in(j);
  65     if (uin == oldref) {
  66       if (j < req)
  67         use->set_req(j, newref);
  68       else
  69         use->set_prec(j, newref);
  70       nreplacements++;
  71     } else if (j >= req && uin == NULL) {
  72       break;
  73     }
  74   }
  75   return nreplacements;
  76 }
  77 
  78 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  79   // Copy debug information and adjust JVMState information
  80   uint old_dbg_start = oldcall->tf()->domain_sig()->cnt();
  81   uint new_dbg_start = newcall->tf()->domain_sig()->cnt();
  82   int jvms_adj  = new_dbg_start - old_dbg_start;
  83   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  84 
  85   // SafePointScalarObject node could be referenced several times in debug info.
  86   // Use Dict to record cloned nodes.
  87   Dict* sosn_map = new Dict(cmpkey,hashkey);
  88   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  89     Node* old_in = oldcall->in(i);
  90     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  91     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  92       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  93       uint old_unique = C->unique();
  94       Node* new_in = old_sosn->clone(sosn_map);
  95       if (old_unique != C->unique()) { // New node?
  96         new_in->set_req(0, C->root()); // reset control edge
  97         new_in = transform_later(new_in); // Register new node.
  98       }
  99       old_in = new_in;
 100     }
 101     newcall->add_req(old_in);
 102   }
 103 
 104   // JVMS may be shared so clone it before we modify it
 105   newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
 106   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
 107     jvms->set_map(newcall);
 108     jvms->set_locoff(jvms->locoff()+jvms_adj);
 109     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
 110     jvms->set_monoff(jvms->monoff()+jvms_adj);
 111     jvms->set_scloff(jvms->scloff()+jvms_adj);
 112     jvms->set_endoff(jvms->endoff()+jvms_adj);
 113   }
 114 }
 115 
 116 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 117   Node* cmp;
 118   if (mask != 0) {
 119     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 120     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 121   } else {
 122     cmp = word;
 123   }
 124   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 125   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 126   transform_later(iff);
 127 
 128   // Fast path taken.
 129   Node *fast_taken = transform_later(new IfFalseNode(iff));
 130 
 131   // Fast path not-taken, i.e. slow path
 132   Node *slow_taken = transform_later(new IfTrueNode(iff));
 133 
 134   if (return_fast_path) {
 135     region->init_req(edge, slow_taken); // Capture slow-control
 136     return fast_taken;
 137   } else {
 138     region->init_req(edge, fast_taken); // Capture fast-control
 139     return slow_taken;
 140   }
 141 }
 142 
 143 //--------------------copy_predefined_input_for_runtime_call--------------------
 144 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 145   // Set fixed predefined input arguments
 146   call->init_req( TypeFunc::Control, ctrl );
 147   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 148   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 149   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 150   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 151 }
 152 
 153 //------------------------------make_slow_call---------------------------------
 154 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 155                                            address slow_call, const char* leaf_name, Node* slow_path,
 156                                            Node* parm0, Node* parm1, Node* parm2) {
 157 
 158   // Slow-path call
 159  CallNode *call = leaf_name
 160    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 161    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 162 
 163   // Slow path call has no side-effects, uses few values
 164   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 165   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 166   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 167   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
 168   copy_call_debug_info(oldcall, call);
 169   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 170   _igvn.replace_node(oldcall, call);
 171   transform_later(call);
 172 
 173   return call;
 174 }
 175 
 176 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 177   _fallthroughproj = NULL;
 178   _fallthroughcatchproj = NULL;
 179   _ioproj_fallthrough = NULL;
 180   _ioproj_catchall = NULL;
 181   _catchallcatchproj = NULL;
 182   _memproj_fallthrough = NULL;
 183   _memproj_catchall = NULL;
 184   _resproj = NULL;
 185   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 186     ProjNode *pn = call->fast_out(i)->as_Proj();
 187     switch (pn->_con) {
 188       case TypeFunc::Control:
 189       {
 190         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 191         _fallthroughproj = pn;
 192         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 193         const Node *cn = pn->fast_out(j);
 194         if (cn->is_Catch()) {
 195           ProjNode *cpn = NULL;
 196           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 197             cpn = cn->fast_out(k)->as_Proj();
 198             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 199             if (cpn->_con == CatchProjNode::fall_through_index)
 200               _fallthroughcatchproj = cpn;
 201             else {
 202               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 203               _catchallcatchproj = cpn;
 204             }
 205           }
 206         }
 207         break;
 208       }
 209       case TypeFunc::I_O:
 210         if (pn->_is_io_use)
 211           _ioproj_catchall = pn;
 212         else
 213           _ioproj_fallthrough = pn;
 214         break;
 215       case TypeFunc::Memory:
 216         if (pn->_is_io_use)
 217           _memproj_catchall = pn;
 218         else
 219           _memproj_fallthrough = pn;
 220         break;
 221       case TypeFunc::Parms:
 222         _resproj = pn;
 223         break;
 224       default:
 225         assert(false, "unexpected projection from allocation node.");
 226     }
 227   }
 228 
 229 }
 230 
 231 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 232 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 233   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 234   if (!UseG1GC) {
 235     // vanilla/CMS post barrier
 236     Node *shift = p2x->unique_out();
 237     Node *addp = shift->unique_out();
 238     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 239       Node *mem = addp->last_out(j);
 240       if (UseCondCardMark && mem->is_Load()) {
 241         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 242         // The load is checking if the card has been written so
 243         // replace it with zero to fold the test.
 244         _igvn.replace_node(mem, intcon(0));
 245         continue;
 246       }
 247       assert(mem->is_Store(), "store required");
 248       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 249     }
 250   }
 251 #if INCLUDE_G1GC
 252   else {
 253     // G1 pre/post barriers
 254     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 255     // It could be only one user, URShift node, in Object.clone() intrinsic
 256     // but the new allocation is passed to arraycopy stub and it could not
 257     // be scalar replaced. So we don't check the case.
 258 
 259     // An other case of only one user (Xor) is when the value check for NULL
 260     // in G1 post barrier is folded after CCP so the code which used URShift
 261     // is removed.
 262 
 263     // Take Region node before eliminating post barrier since it also
 264     // eliminates CastP2X node when it has only one user.
 265     Node* this_region = p2x->in(0);
 266     assert(this_region != NULL, "");
 267 
 268     // Remove G1 post barrier.
 269 
 270     // Search for CastP2X->Xor->URShift->Cmp path which
 271     // checks if the store done to a different from the value's region.
 272     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 273     Node* xorx = p2x->find_out_with(Op_XorX);
 274     if (xorx != NULL) {
 275       Node* shift = xorx->unique_out();
 276       Node* cmpx = shift->unique_out();
 277       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 278       cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 279       "missing region check in G1 post barrier");
 280       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 281 
 282       // Remove G1 pre barrier.
 283 
 284       // Search "if (marking != 0)" check and set it to "false".
 285       // There is no G1 pre barrier if previous stored value is NULL
 286       // (for example, after initialization).
 287       if (this_region->is_Region() && this_region->req() == 3) {
 288         int ind = 1;
 289         if (!this_region->in(ind)->is_IfFalse()) {
 290           ind = 2;
 291         }
 292         if (this_region->in(ind)->is_IfFalse() &&
 293             this_region->in(ind)->in(0)->Opcode() == Op_If) {
 294           Node* bol = this_region->in(ind)->in(0)->in(1);
 295           assert(bol->is_Bool(), "");
 296           cmpx = bol->in(1);
 297           if (bol->as_Bool()->_test._test == BoolTest::ne &&
 298               cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 299               cmpx->in(1)->is_Load()) {
 300             Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 301             const int marking_offset = in_bytes(G1ThreadLocalData::satb_mark_queue_active_offset());
 302             if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 303                 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 304                 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 305               _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 306             }
 307           }
 308         }
 309       }
 310     } else {
 311       assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
 312       // This is a G1 post barrier emitted by the Object.clone() intrinsic.
 313       // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
 314       // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
 315       Node* shift = p2x->find_out_with(Op_URShiftX);
 316       assert(shift != NULL, "missing G1 post barrier");
 317       Node* addp = shift->unique_out();
 318       Node* load = addp->find_out_with(Op_LoadB);
 319       assert(load != NULL, "missing G1 post barrier");
 320       Node* cmpx = load->unique_out();
 321       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 322              cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 323              "missing card value check in G1 post barrier");
 324       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 325       // There is no G1 pre barrier in this case
 326     }
 327     // Now CastP2X can be removed since it is used only on dead path
 328     // which currently still alive until igvn optimize it.
 329     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
 330     _igvn.replace_node(p2x, top());
 331   }
 332 #endif // INCLUDE_G1GC
 333 }
 334 
 335 // Search for a memory operation for the specified memory slice.
 336 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 337   Node *orig_mem = mem;
 338   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 339   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 340   while (true) {
 341     if (mem == alloc_mem || mem == start_mem ) {
 342       return mem;  // hit one of our sentinels
 343     } else if (mem->is_MergeMem()) {
 344       mem = mem->as_MergeMem()->memory_at(alias_idx);
 345     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 346       Node *in = mem->in(0);
 347       // we can safely skip over safepoints, calls, locks and membars because we
 348       // already know that the object is safe to eliminate.
 349       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 350         return in;
 351       } else if (in->is_Call()) {
 352         CallNode *call = in->as_Call();
 353         if (call->may_modify(tinst, phase)) {
 354           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 355           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 356             return in;
 357           }
 358         }
 359         mem = in->in(TypeFunc::Memory);
 360       } else if (in->is_MemBar()) {
 361         ArrayCopyNode* ac = NULL;
 362         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 363           assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 364           return ac;
 365         }
 366         mem = in->in(TypeFunc::Memory);
 367       } else {
 368         assert(false, "unexpected projection");
 369       }
 370     } else if (mem->is_Store()) {
 371       const TypePtr* atype = mem->as_Store()->adr_type();
 372       int adr_idx = phase->C->get_alias_index(atype);
 373       if (adr_idx == alias_idx) {
 374         assert(atype->isa_oopptr(), "address type must be oopptr");
 375         int adr_offset = atype->flattened_offset();
 376         uint adr_iid = atype->is_oopptr()->instance_id();
 377         // Array elements references have the same alias_idx
 378         // but different offset and different instance_id.
 379         if (adr_offset == offset && adr_iid == alloc->_idx)
 380           return mem;
 381       } else {
 382         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 383       }
 384       mem = mem->in(MemNode::Memory);
 385     } else if (mem->is_ClearArray()) {
 386       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 387         // Can not bypass initialization of the instance
 388         // we are looking.
 389         debug_only(intptr_t offset;)
 390         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 391         InitializeNode* init = alloc->as_Allocate()->initialization();
 392         // We are looking for stored value, return Initialize node
 393         // or memory edge from Allocate node.
 394         if (init != NULL)
 395           return init;
 396         else
 397           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 398       }
 399       // Otherwise skip it (the call updated 'mem' value).
 400     } else if (mem->Opcode() == Op_SCMemProj) {
 401       mem = mem->in(0);
 402       Node* adr = NULL;
 403       if (mem->is_LoadStore()) {
 404         adr = mem->in(MemNode::Address);
 405       } else {
 406         assert(mem->Opcode() == Op_EncodeISOArray ||
 407                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 408         adr = mem->in(3); // Destination array
 409       }
 410       const TypePtr* atype = adr->bottom_type()->is_ptr();
 411       int adr_idx = phase->C->get_alias_index(atype);
 412       if (adr_idx == alias_idx) {
 413         DEBUG_ONLY(mem->dump();)
 414         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 415         return NULL;
 416       }
 417       mem = mem->in(MemNode::Memory);
 418     } else if (mem->Opcode() == Op_StrInflatedCopy) {
 419       Node* adr = mem->in(3); // Destination array
 420       const TypePtr* atype = adr->bottom_type()->is_ptr();
 421       int adr_idx = phase->C->get_alias_index(atype);
 422       if (adr_idx == alias_idx) {
 423         DEBUG_ONLY(mem->dump();)
 424         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 425         return NULL;
 426       }
 427       mem = mem->in(MemNode::Memory);
 428     } else {
 429       return mem;
 430     }
 431     assert(mem != orig_mem, "dead memory loop");
 432   }
 433 }
 434 
 435 // Generate loads from source of the arraycopy for fields of
 436 // destination needed at a deoptimization point
 437 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 438   BasicType bt = ft;
 439   const Type *type = ftype;
 440   if (ft == T_NARROWOOP) {
 441     bt = T_OBJECT;
 442     type = ftype->make_oopptr();
 443   }
 444   Node* res = NULL;
 445   if (ac->is_clonebasic()) {
 446     Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base);
 447     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
 448     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 449     res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 450   } else {
 451     if (ac->modifies(offset, offset, &_igvn, true)) {
 452       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 453       uint shift  = exact_log2(type2aelembytes(bt));
 454       Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 455 #ifdef _LP64
 456       diff = _igvn.transform(new ConvI2LNode(diff));
 457 #endif
 458       diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
 459 
 460       Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
 461       Node* base = ac->in(ArrayCopyNode::Src);
 462       Node* adr = _igvn.transform(new AddPNode(base, base, off));
 463       const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 464       res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 465     }
 466   }
 467   if (res != NULL) {
 468     res = _igvn.transform(res);
 469     if (ftype->isa_narrowoop()) {
 470       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 471       res = _igvn.transform(new EncodePNode(res, ftype));
 472     }
 473     return res;
 474   }
 475   return NULL;
 476 }
 477 
 478 //
 479 // Given a Memory Phi, compute a value Phi containing the values from stores
 480 // on the input paths.
 481 // Note: this function is recursive, its depth is limited by the "level" argument
 482 // Returns the computed Phi, or NULL if it cannot compute it.
 483 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 484   assert(mem->is_Phi(), "sanity");
 485   int alias_idx = C->get_alias_index(adr_t);
 486   int offset = adr_t->flattened_offset();
 487   int instance_id = adr_t->instance_id();
 488 
 489   // Check if an appropriate value phi already exists.
 490   Node* region = mem->in(0);
 491   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 492     Node* phi = region->fast_out(k);
 493     if (phi->is_Phi() && phi != mem &&
 494         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 495       return phi;
 496     }
 497   }
 498   // Check if an appropriate new value phi already exists.
 499   Node* new_phi = value_phis->find(mem->_idx);
 500   if (new_phi != NULL)
 501     return new_phi;
 502 
 503   if (level <= 0) {
 504     return NULL; // Give up: phi tree too deep
 505   }
 506   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 507   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 508 
 509   uint length = mem->req();
 510   GrowableArray <Node *> values(length, length, NULL, false);
 511 
 512   // create a new Phi for the value
 513   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
 514   transform_later(phi);
 515   value_phis->push(phi, mem->_idx);
 516 
 517   for (uint j = 1; j < length; j++) {
 518     Node *in = mem->in(j);
 519     if (in == NULL || in->is_top()) {
 520       values.at_put(j, in);
 521     } else  {
 522       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 523       if (val == start_mem || val == alloc_mem) {
 524         // hit a sentinel, return appropriate 0 value
 525         values.at_put(j, _igvn.zerocon(ft));
 526         continue;
 527       }
 528       if (val->is_Initialize()) {
 529         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 530       }
 531       if (val == NULL) {
 532         return NULL;  // can't find a value on this path
 533       }
 534       if (val == mem) {
 535         values.at_put(j, mem);
 536       } else if (val->is_Store()) {
 537         values.at_put(j, val->in(MemNode::ValueIn));
 538       } else if(val->is_Proj() && val->in(0) == alloc) {
 539         values.at_put(j, _igvn.zerocon(ft));
 540       } else if (val->is_Phi()) {
 541         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 542         if (val == NULL) {
 543           return NULL;
 544         }
 545         values.at_put(j, val);
 546       } else if (val->Opcode() == Op_SCMemProj) {
 547         assert(val->in(0)->is_LoadStore() ||
 548                val->in(0)->Opcode() == Op_EncodeISOArray ||
 549                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 550         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 551         return NULL;
 552       } else if (val->is_ArrayCopy()) {
 553         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 554         if (res == NULL) {
 555           return NULL;
 556         }
 557         values.at_put(j, res);
 558       } else {
 559 #ifdef ASSERT
 560         val->dump();
 561         assert(false, "unknown node on this path");
 562 #endif
 563         return NULL;  // unknown node on this path
 564       }
 565     }
 566   }
 567   // Set Phi's inputs
 568   for (uint j = 1; j < length; j++) {
 569     if (values.at(j) == mem) {
 570       phi->init_req(j, phi);
 571     } else {
 572       phi->init_req(j, values.at(j));
 573     }
 574   }
 575   return phi;
 576 }
 577 
 578 // Search the last value stored into the object's field.
 579 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 580   assert(adr_t->is_known_instance_field(), "instance required");
 581   int instance_id = adr_t->instance_id();
 582   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 583 
 584   int alias_idx = C->get_alias_index(adr_t);
 585   int offset = adr_t->flattened_offset();
 586   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 587   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 588   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 589   Arena *a = Thread::current()->resource_area();
 590   VectorSet visited(a);
 591 
 592   bool done = sfpt_mem == alloc_mem;
 593   Node *mem = sfpt_mem;
 594   while (!done) {
 595     if (visited.test_set(mem->_idx)) {
 596       return NULL;  // found a loop, give up
 597     }
 598     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 599     if (mem == start_mem || mem == alloc_mem) {
 600       done = true;  // hit a sentinel, return appropriate 0 value
 601     } else if (mem->is_Initialize()) {
 602       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 603       if (mem == NULL) {
 604         done = true; // Something went wrong.
 605       } else if (mem->is_Store()) {
 606         const TypePtr* atype = mem->as_Store()->adr_type();
 607         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 608         done = true;
 609       }
 610     } else if (mem->is_Store()) {
 611       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 612       assert(atype != NULL, "address type must be oopptr");
 613       assert(C->get_alias_index(atype) == alias_idx &&
 614              atype->is_known_instance_field() && atype->flattened_offset() == offset &&
 615              atype->instance_id() == instance_id, "store is correct memory slice");
 616       done = true;
 617     } else if (mem->is_Phi()) {
 618       // try to find a phi's unique input
 619       Node *unique_input = NULL;
 620       Node *top = C->top();
 621       for (uint i = 1; i < mem->req(); i++) {
 622         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 623         if (n == NULL || n == top || n == mem) {
 624           continue;
 625         } else if (unique_input == NULL) {
 626           unique_input = n;
 627         } else if (unique_input != n) {
 628           unique_input = top;
 629           break;
 630         }
 631       }
 632       if (unique_input != NULL && unique_input != top) {
 633         mem = unique_input;
 634       } else {
 635         done = true;
 636       }
 637     } else if (mem->is_ArrayCopy()) {
 638       done = true;
 639     } else {
 640       assert(false, "unexpected node");
 641     }
 642   }
 643   if (mem != NULL) {
 644     if (mem == start_mem || mem == alloc_mem) {
 645       // hit a sentinel, return appropriate 0 value
 646       return _igvn.zerocon(ft);
 647     } else if (mem->is_Store()) {
 648       return mem->in(MemNode::ValueIn);
 649     } else if (mem->is_Phi()) {
 650       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 651       Node_Stack value_phis(a, 8);
 652       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 653       if (phi != NULL) {
 654         return phi;
 655       } else {
 656         // Kill all new Phis
 657         while(value_phis.is_nonempty()) {
 658           Node* n = value_phis.node();
 659           _igvn.replace_node(n, C->top());
 660           value_phis.pop();
 661         }
 662       }
 663     } else if (mem->is_ArrayCopy()) {
 664       Node* ctl = mem->in(0);
 665       Node* m = mem->in(TypeFunc::Memory);
 666       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
 667         // pin the loads in the uncommon trap path
 668         ctl = sfpt_ctl;
 669         m = sfpt_mem;
 670       }
 671       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 672     }
 673   }
 674   // Something went wrong.
 675   return NULL;
 676 }
 677 
 678 // Search the last value stored into the value type's fields.
 679 Node* PhaseMacroExpand::value_type_from_mem(Node* mem, Node* ctl, ciValueKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) {
 680   // Subtract the offset of the first field to account for the missing oop header
 681   offset -= vk->first_field_offset();
 682   // Create a new ValueTypeNode and retrieve the field values from memory
 683   ValueTypeNode* vt = ValueTypeNode::make_uninitialized(_igvn, vk)->as_ValueType();
 684   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) {
 685     ciType* field_type = vt->field_type(i);
 686     int field_offset = offset + vt->field_offset(i);
 687     // Each value type field has its own memory slice
 688     adr_type = adr_type->with_field_offset(field_offset);
 689     Node* value = NULL;
 690     if (vt->field_is_flattened(i)) {
 691       value = value_type_from_mem(mem, ctl, field_type->as_value_klass(), adr_type, field_offset, alloc);
 692     } else {
 693       const Type* ft = Type::get_const_type(field_type);
 694       BasicType bt = field_type->basic_type();
 695       if (UseCompressedOops && !is_java_primitive(bt)) {
 696         ft = ft->make_narrowoop();
 697         bt = T_NARROWOOP;
 698       }
 699       value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc);
 700       if (value != NULL && ft->isa_narrowoop()) {
 701         assert(UseCompressedOops, "unexpected narrow oop");
 702         value = transform_later(new DecodeNNode(value, value->get_ptr_type()));
 703       }
 704     }
 705     if (value != NULL) {
 706       vt->set_field_value(i, value);
 707     } else {
 708       // We might have reached the TrackedInitializationLimit
 709       return NULL;
 710     }
 711   }
 712   return vt;
 713 }
 714 
 715 // Check the possibility of scalar replacement.
 716 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 717   //  Scan the uses of the allocation to check for anything that would
 718   //  prevent us from eliminating it.
 719   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 720   DEBUG_ONLY( Node* disq_node = NULL; )
 721   bool  can_eliminate = true;
 722 
 723   Node* res = alloc->result_cast();
 724   const TypeOopPtr* res_type = NULL;
 725   if (res == NULL) {
 726     // All users were eliminated.
 727   } else if (!res->is_CheckCastPP()) {
 728     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 729     can_eliminate = false;
 730   } else {
 731     res_type = _igvn.type(res)->isa_oopptr();
 732     if (res_type == NULL) {
 733       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 734       can_eliminate = false;
 735     } else if (res_type->isa_aryptr()) {
 736       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 737       if (length < 0) {
 738         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 739         can_eliminate = false;
 740       }
 741     }
 742   }
 743 
 744   if (can_eliminate && res != NULL) {
 745     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 746                                j < jmax && can_eliminate; j++) {
 747       Node* use = res->fast_out(j);
 748 
 749       if (use->is_AddP()) {
 750         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 751         int offset = addp_type->offset();
 752 
 753         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 754           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 755           can_eliminate = false;
 756           break;
 757         }
 758         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 759                                    k < kmax && can_eliminate; k++) {
 760           Node* n = use->fast_out(k);
 761           if (!n->is_Store() && n->Opcode() != Op_CastP2X &&
 762               !(n->is_ArrayCopy() &&
 763                 n->as_ArrayCopy()->is_clonebasic() &&
 764                 n->in(ArrayCopyNode::Dest) == use)) {
 765             DEBUG_ONLY(disq_node = n;)
 766             if (n->is_Load() || n->is_LoadStore()) {
 767               NOT_PRODUCT(fail_eliminate = "Field load";)
 768             } else {
 769               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 770             }
 771             can_eliminate = false;
 772           }
 773         }
 774       } else if (use->is_ArrayCopy() &&
 775                  (use->as_ArrayCopy()->is_arraycopy_validated() ||
 776                   use->as_ArrayCopy()->is_copyof_validated() ||
 777                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 778                  use->in(ArrayCopyNode::Dest) == res) {
 779         // ok to eliminate
 780       } else if (use->is_SafePoint()) {
 781         SafePointNode* sfpt = use->as_SafePoint();
 782         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 783           // Object is passed as argument.
 784           DEBUG_ONLY(disq_node = use;)
 785           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 786           can_eliminate = false;
 787         }
 788         Node* sfptMem = sfpt->memory();
 789         if (sfptMem == NULL || sfptMem->is_top()) {
 790           DEBUG_ONLY(disq_node = use;)
 791           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 792           can_eliminate = false;
 793         } else {
 794           safepoints.append_if_missing(sfpt);
 795         }
 796       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 797         if (use->is_Phi()) {
 798           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 799             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 800           } else {
 801             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 802           }
 803           DEBUG_ONLY(disq_node = use;)
 804         } else {
 805           if (use->Opcode() == Op_Return) {
 806             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 807           } else {
 808             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 809           }
 810           DEBUG_ONLY(disq_node = use;)
 811         }
 812         can_eliminate = false;
 813       }
 814     }
 815   }
 816 
 817 #ifndef PRODUCT
 818   if (PrintEliminateAllocations) {
 819     if (can_eliminate) {
 820       tty->print("Scalar ");
 821       if (res == NULL)
 822         alloc->dump();
 823       else
 824         res->dump();
 825     } else if (alloc->_is_scalar_replaceable) {
 826       tty->print("NotScalar (%s)", fail_eliminate);
 827       if (res == NULL)
 828         alloc->dump();
 829       else
 830         res->dump();
 831 #ifdef ASSERT
 832       if (disq_node != NULL) {
 833           tty->print("  >>>> ");
 834           disq_node->dump();
 835       }
 836 #endif /*ASSERT*/
 837     }
 838   }
 839 #endif
 840   return can_eliminate;
 841 }
 842 
 843 // Do scalar replacement.
 844 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 845   GrowableArray <SafePointNode *> safepoints_done;
 846 
 847   ciKlass* klass = NULL;
 848   ciInstanceKlass* iklass = NULL;
 849   int nfields = 0;
 850   int array_base = 0;
 851   int element_size = 0;
 852   BasicType basic_elem_type = T_ILLEGAL;
 853   ciType* elem_type = NULL;
 854 
 855   Node* res = alloc->result_cast();
 856   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
 857   const TypeOopPtr* res_type = NULL;
 858   if (res != NULL) { // Could be NULL when there are no users
 859     res_type = _igvn.type(res)->isa_oopptr();
 860   }
 861 
 862   if (res != NULL) {
 863     klass = res_type->klass();
 864     // Value types are only allocated on demand
 865     if (res_type->isa_instptr() || res_type->isa_valuetypeptr()) {
 866       // find the fields of the class which will be needed for safepoint debug information
 867       assert(klass->is_instance_klass(), "must be an instance klass.");
 868       iklass = klass->as_instance_klass();
 869       nfields = iklass->nof_nonstatic_fields();
 870     } else {
 871       // find the array's elements which will be needed for safepoint debug information
 872       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 873       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 874       elem_type = klass->as_array_klass()->element_type();
 875       basic_elem_type = elem_type->basic_type();
 876       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 877       element_size = type2aelembytes(basic_elem_type);
 878       if (klass->is_value_array_klass()) {
 879         // Flattened value type array
 880         element_size = klass->as_value_array_klass()->element_byte_size();
 881       }
 882     }
 883   }
 884   //
 885   // Process the safepoint uses
 886   //
 887   Unique_Node_List value_worklist;
 888   while (safepoints.length() > 0) {
 889     SafePointNode* sfpt = safepoints.pop();
 890     Node* mem = sfpt->memory();
 891     Node* ctl = sfpt->control();
 892     assert(sfpt->jvms() != NULL, "missed JVMS");
 893     // Fields of scalar objs are referenced only at the end
 894     // of regular debuginfo at the last (youngest) JVMS.
 895     // Record relative start index.
 896     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
 897     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 898 #ifdef ASSERT
 899                                                  alloc,
 900 #endif
 901                                                  first_ind, nfields);
 902     sobj->init_req(0, C->root());
 903     transform_later(sobj);
 904 
 905     // Scan object's fields adding an input to the safepoint for each field.
 906     for (int j = 0; j < nfields; j++) {
 907       intptr_t offset;
 908       ciField* field = NULL;
 909       if (iklass != NULL) {
 910         field = iklass->nonstatic_field_at(j);
 911         offset = field->offset();
 912         elem_type = field->type();
 913         basic_elem_type = field->layout_type();
 914         assert(!field->is_flattened(), "flattened value type fields should not have safepoint uses");
 915       } else {
 916         offset = array_base + j * (intptr_t)element_size;
 917       }
 918 
 919       const Type *field_type;
 920       // The next code is taken from Parse::do_get_xxx().
 921       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 922         if (!elem_type->is_loaded()) {
 923           field_type = TypeInstPtr::BOTTOM;
 924         } else if (field != NULL && field->is_static_constant()) {
 925           // This can happen if the constant oop is non-perm.
 926           ciObject* con = field->constant_value().as_object();
 927           // Do not "join" in the previous type; it doesn't add value,
 928           // and may yield a vacuous result if the field is of interface type.
 929           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 930           assert(field_type != NULL, "field singleton type must be consistent");
 931         } else {
 932           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 933         }
 934         if (UseCompressedOops) {
 935           field_type = field_type->make_narrowoop();
 936           basic_elem_type = T_NARROWOOP;
 937         }
 938       } else {
 939         field_type = Type::get_const_basic_type(basic_elem_type);
 940       }
 941 
 942       Node* field_val = NULL;
 943       const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 944       if (klass->is_value_array_klass()) {
 945         ciValueKlass* vk = elem_type->as_value_klass();
 946         assert(vk->flatten_array(), "must be flattened");
 947         field_val = value_type_from_mem(mem, ctl, vk, field_addr_type->isa_aryptr(), 0, alloc);
 948       } else {
 949         field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
 950       }
 951       if (field_val == NULL) {
 952         // We weren't able to find a value for this field,
 953         // give up on eliminating this allocation.
 954 
 955         // Remove any extra entries we added to the safepoint.
 956         uint last = sfpt->req() - 1;
 957         for (int k = 0;  k < j; k++) {
 958           sfpt->del_req(last--);
 959         }
 960         _igvn._worklist.push(sfpt);
 961         // rollback processed safepoints
 962         while (safepoints_done.length() > 0) {
 963           SafePointNode* sfpt_done = safepoints_done.pop();
 964           // remove any extra entries we added to the safepoint
 965           last = sfpt_done->req() - 1;
 966           for (int k = 0;  k < nfields; k++) {
 967             sfpt_done->del_req(last--);
 968           }
 969           JVMState *jvms = sfpt_done->jvms();
 970           jvms->set_endoff(sfpt_done->req());
 971           // Now make a pass over the debug information replacing any references
 972           // to SafePointScalarObjectNode with the allocated object.
 973           int start = jvms->debug_start();
 974           int end   = jvms->debug_end();
 975           for (int i = start; i < end; i++) {
 976             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 977               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 978               if (scobj->first_index(jvms) == sfpt_done->req() &&
 979                   scobj->n_fields() == (uint)nfields) {
 980                 assert(scobj->alloc() == alloc, "sanity");
 981                 sfpt_done->set_req(i, res);
 982               }
 983             }
 984           }
 985           _igvn._worklist.push(sfpt_done);
 986         }
 987 #ifndef PRODUCT
 988         if (PrintEliminateAllocations) {
 989           if (field != NULL) {
 990             tty->print("=== At SafePoint node %d can't find value of Field: ",
 991                        sfpt->_idx);
 992             field->print();
 993             int field_idx = C->get_alias_index(field_addr_type);
 994             tty->print(" (alias_idx=%d)", field_idx);
 995           } else { // Array's element
 996             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 997                        sfpt->_idx, j);
 998           }
 999           tty->print(", which prevents elimination of: ");
1000           if (res == NULL)
1001             alloc->dump();
1002           else
1003             res->dump();
1004         }
1005 #endif
1006         return false;
1007       }
1008       if (UseCompressedOops && field_type->isa_narrowoop()) {
1009         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
1010         // to be able scalar replace the allocation.
1011         if (field_val->is_EncodeP()) {
1012           field_val = field_val->in(1);
1013         } else {
1014           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
1015         }
1016       } else if (field_val->is_ValueType()) {
1017         // Keep track of value types to scalarize them later
1018         value_worklist.push(field_val);
1019       }
1020       sfpt->add_req(field_val);
1021     }
1022     JVMState *jvms = sfpt->jvms();
1023     jvms->set_endoff(sfpt->req());
1024     // Now make a pass over the debug information replacing any references
1025     // to the allocated object with "sobj"
1026     int start = jvms->debug_start();
1027     int end   = jvms->debug_end();
1028     sfpt->replace_edges_in_range(res, sobj, start, end);
1029     _igvn._worklist.push(sfpt);
1030     safepoints_done.append_if_missing(sfpt); // keep it for rollback
1031   }
1032   // Scalarize value types that were added to the safepoint
1033   for (uint i = 0; i < value_worklist.size(); ++i) {
1034     Node* vt = value_worklist.at(i);
1035     vt->as_ValueType()->make_scalar_in_safepoints(C->root(), &_igvn);
1036   }
1037   return true;
1038 }
1039 
1040 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
1041   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
1042   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
1043   if (ctl_proj != NULL) {
1044     igvn.replace_node(ctl_proj, n->in(0));
1045   }
1046   if (mem_proj != NULL) {
1047     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
1048   }
1049 }
1050 
1051 // Process users of eliminated allocation.
1052 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
1053   Node* res = alloc->result_cast();
1054   if (res != NULL) {
1055     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
1056       Node *use = res->last_out(j);
1057       uint oc1 = res->outcnt();
1058 
1059       if (use->is_AddP()) {
1060         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
1061           Node *n = use->last_out(k);
1062           uint oc2 = use->outcnt();
1063           if (n->is_Store()) {
1064 #ifdef ASSERT
1065             // Verify that there is no dependent MemBarVolatile nodes,
1066             // they should be removed during IGVN, see MemBarNode::Ideal().
1067             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
1068                                        p < pmax; p++) {
1069               Node* mb = n->fast_out(p);
1070               assert(mb->is_Initialize() || !mb->is_MemBar() ||
1071                      mb->req() <= MemBarNode::Precedent ||
1072                      mb->in(MemBarNode::Precedent) != n,
1073                      "MemBarVolatile should be eliminated for non-escaping object");
1074             }
1075 #endif
1076             _igvn.replace_node(n, n->in(MemNode::Memory));
1077           } else if (n->is_ArrayCopy()) {
1078             // Disconnect ArrayCopy node
1079             ArrayCopyNode* ac = n->as_ArrayCopy();
1080             assert(ac->is_clonebasic(), "unexpected array copy kind");
1081             Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1082             disconnect_projections(ac, _igvn);
1083             assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1084             Node* membar_before = alloc->in(0)->in(0);
1085             disconnect_projections(membar_before->as_MemBar(), _igvn);
1086             if (membar_after->is_MemBar()) {
1087               disconnect_projections(membar_after->as_MemBar(), _igvn);
1088             }
1089           } else {
1090             eliminate_card_mark(n);
1091           }
1092           k -= (oc2 - use->outcnt());
1093         }
1094       } else if (use->is_ArrayCopy()) {
1095         // Disconnect ArrayCopy node
1096         ArrayCopyNode* ac = use->as_ArrayCopy();
1097         assert(ac->is_arraycopy_validated() ||
1098                ac->is_copyof_validated() ||
1099                ac->is_copyofrange_validated(), "unsupported");
1100         CallProjections* callprojs = ac->extract_projections(true);
1101 
1102         _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O));
1103         _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory));
1104         _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control));
1105 
1106         // Set control to top. IGVN will remove the remaining projections
1107         ac->set_req(0, top());
1108         ac->replace_edge(res, top());
1109 
1110         // Disconnect src right away: it can help find new
1111         // opportunities for allocation elimination
1112         Node* src = ac->in(ArrayCopyNode::Src);
1113         ac->replace_edge(src, top());
1114         // src can be top at this point if src and dest of the
1115         // arraycopy were the same
1116         if (src->outcnt() == 0 && !src->is_top()) {
1117           _igvn.remove_dead_node(src);
1118         }
1119 
1120         _igvn._worklist.push(ac);
1121       } else {
1122         eliminate_card_mark(use);
1123       }
1124       j -= (oc1 - res->outcnt());
1125     }
1126     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1127     _igvn.remove_dead_node(res);
1128   }
1129 
1130   //
1131   // Process other users of allocation's projections
1132   //
1133   if (_resproj != NULL && _resproj->outcnt() != 0) {
1134     // First disconnect stores captured by Initialize node.
1135     // If Initialize node is eliminated first in the following code,
1136     // it will kill such stores and DUIterator_Last will assert.
1137     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
1138       Node *use = _resproj->fast_out(j);
1139       if (use->is_AddP()) {
1140         // raw memory addresses used only by the initialization
1141         _igvn.replace_node(use, C->top());
1142         --j; --jmax;
1143       }
1144     }
1145     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1146       Node *use = _resproj->last_out(j);
1147       uint oc1 = _resproj->outcnt();
1148       if (use->is_Initialize()) {
1149         // Eliminate Initialize node.
1150         InitializeNode *init = use->as_Initialize();
1151         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1152         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1153         if (ctrl_proj != NULL) {
1154            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
1155           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
1156         }
1157         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1158         if (mem_proj != NULL) {
1159           Node *mem = init->in(TypeFunc::Memory);
1160 #ifdef ASSERT
1161           if (mem->is_MergeMem()) {
1162             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1163           } else {
1164             assert(mem == _memproj_fallthrough, "allocation memory projection");
1165           }
1166 #endif
1167           _igvn.replace_node(mem_proj, mem);
1168         }
1169       } else  {
1170         assert(false, "only Initialize or AddP expected");
1171       }
1172       j -= (oc1 - _resproj->outcnt());
1173     }
1174   }
1175   if (_fallthroughcatchproj != NULL) {
1176     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1177   }
1178   if (_memproj_fallthrough != NULL) {
1179     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1180   }
1181   if (_memproj_catchall != NULL) {
1182     _igvn.replace_node(_memproj_catchall, C->top());
1183   }
1184   if (_ioproj_fallthrough != NULL) {
1185     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1186   }
1187   if (_ioproj_catchall != NULL) {
1188     _igvn.replace_node(_ioproj_catchall, C->top());
1189   }
1190   if (_catchallcatchproj != NULL) {
1191     _igvn.replace_node(_catchallcatchproj, C->top());
1192   }
1193 }
1194 
1195 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1196   // Don't do scalar replacement if the frame can be popped by JVMTI:
1197   // if reallocation fails during deoptimization we'll pop all
1198   // interpreter frames for this compiled frame and that won't play
1199   // nice with JVMTI popframe.
1200   if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
1201     return false;
1202   }
1203   Node* klass = alloc->in(AllocateNode::KlassNode);
1204   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1205   Node* res = alloc->result_cast();
1206   // Eliminate boxing allocations which are not used
1207   // regardless scalar replacable status.
1208   bool boxing_alloc = C->eliminate_boxing() &&
1209                       tklass->klass()->is_instance_klass()  &&
1210                       tklass->klass()->as_instance_klass()->is_box_klass();
1211   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1212     return false;
1213   }
1214 
1215   extract_call_projections(alloc);
1216 
1217   GrowableArray <SafePointNode *> safepoints;
1218   if (!can_eliminate_allocation(alloc, safepoints)) {
1219     return false;
1220   }
1221 
1222   if (!alloc->_is_scalar_replaceable) {
1223     assert(res == NULL, "sanity");
1224     // We can only eliminate allocation if all debug info references
1225     // are already replaced with SafePointScalarObject because
1226     // we can't search for a fields value without instance_id.
1227     if (safepoints.length() > 0) {
1228       return false;
1229     }
1230   }
1231 
1232   if (!scalar_replacement(alloc, safepoints)) {
1233     return false;
1234   }
1235 
1236   CompileLog* log = C->log();
1237   if (log != NULL) {
1238     log->head("eliminate_allocation type='%d'",
1239               log->identify(tklass->klass()));
1240     JVMState* p = alloc->jvms();
1241     while (p != NULL) {
1242       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1243       p = p->caller();
1244     }
1245     log->tail("eliminate_allocation");
1246   }
1247 
1248   process_users_of_allocation(alloc);
1249 
1250 #ifndef PRODUCT
1251   if (PrintEliminateAllocations) {
1252     if (alloc->is_AllocateArray())
1253       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1254     else
1255       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1256   }
1257 #endif
1258 
1259   return true;
1260 }
1261 
1262 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1263   // EA should remove all uses of non-escaping boxing node.
1264   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
1265     return false;
1266   }
1267 
1268   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1269 
1270   extract_call_projections(boxing);
1271 
1272   const TypeTuple* r = boxing->tf()->range_sig();
1273   assert(r->cnt() > TypeFunc::Parms, "sanity");
1274   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1275   assert(t != NULL, "sanity");
1276 
1277   CompileLog* log = C->log();
1278   if (log != NULL) {
1279     log->head("eliminate_boxing type='%d'",
1280               log->identify(t->klass()));
1281     JVMState* p = boxing->jvms();
1282     while (p != NULL) {
1283       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1284       p = p->caller();
1285     }
1286     log->tail("eliminate_boxing");
1287   }
1288 
1289   process_users_of_allocation(boxing);
1290 
1291 #ifndef PRODUCT
1292   if (PrintEliminateAllocations) {
1293     tty->print("++++ Eliminated: %d ", boxing->_idx);
1294     boxing->method()->print_short_name(tty);
1295     tty->cr();
1296   }
1297 #endif
1298 
1299   return true;
1300 }
1301 
1302 //---------------------------set_eden_pointers-------------------------
1303 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1304   if (UseTLAB) {                // Private allocation: load from TLS
1305     Node* thread = transform_later(new ThreadLocalNode());
1306     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1307     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1308     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1309     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1310   } else {                      // Shared allocation: load from globals
1311     CollectedHeap* ch = Universe::heap();
1312     address top_adr = (address)ch->top_addr();
1313     address end_adr = (address)ch->end_addr();
1314     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1315     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1316   }
1317 }
1318 
1319 
1320 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1321   Node* adr = basic_plus_adr(base, offset);
1322   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1323   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1324   transform_later(value);
1325   return value;
1326 }
1327 
1328 
1329 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1330   Node* adr = basic_plus_adr(base, offset);
1331   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1332   transform_later(mem);
1333   return mem;
1334 }
1335 
1336 //=============================================================================
1337 //
1338 //                              A L L O C A T I O N
1339 //
1340 // Allocation attempts to be fast in the case of frequent small objects.
1341 // It breaks down like this:
1342 //
1343 // 1) Size in doublewords is computed.  This is a constant for objects and
1344 // variable for most arrays.  Doubleword units are used to avoid size
1345 // overflow of huge doubleword arrays.  We need doublewords in the end for
1346 // rounding.
1347 //
1348 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1349 // the slow path into the VM.  The slow path can throw any required
1350 // exceptions, and does all the special checks for very large arrays.  The
1351 // size test can constant-fold away for objects.  For objects with
1352 // finalizers it constant-folds the otherway: you always go slow with
1353 // finalizers.
1354 //
1355 // 3) If NOT using TLABs, this is the contended loop-back point.
1356 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1357 //
1358 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1359 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1360 // "size*8" we always enter the VM, where "largish" is a constant picked small
1361 // enough that there's always space between the eden max and 4Gig (old space is
1362 // there so it's quite large) and large enough that the cost of entering the VM
1363 // is dwarfed by the cost to initialize the space.
1364 //
1365 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1366 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1367 // adjusted heap top back down; there is no contention.
1368 //
1369 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1370 // fields.
1371 //
1372 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1373 // oop flavor.
1374 //
1375 //=============================================================================
1376 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1377 // Allocations bigger than this always go the slow route.
1378 // This value must be small enough that allocation attempts that need to
1379 // trigger exceptions go the slow route.  Also, it must be small enough so
1380 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1381 //=============================================================================j//
1382 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1383 // The allocator will coalesce int->oop copies away.  See comment in
1384 // coalesce.cpp about how this works.  It depends critically on the exact
1385 // code shape produced here, so if you are changing this code shape
1386 // make sure the GC info for the heap-top is correct in and around the
1387 // slow-path call.
1388 //
1389 
1390 void PhaseMacroExpand::expand_allocate_common(
1391             AllocateNode* alloc, // allocation node to be expanded
1392             Node* length,  // array length for an array allocation
1393             const TypeFunc* slow_call_type, // Type of slow call
1394             address slow_call_address  // Address of slow call
1395     )
1396 {
1397 
1398   Node* ctrl = alloc->in(TypeFunc::Control);
1399   Node* mem  = alloc->in(TypeFunc::Memory);
1400   Node* i_o  = alloc->in(TypeFunc::I_O);
1401   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1402   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1403   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1404 
1405   assert(ctrl != NULL, "must have control");
1406   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1407   // they will not be used if "always_slow" is set
1408   enum { slow_result_path = 1, fast_result_path = 2 };
1409   Node *result_region = NULL;
1410   Node *result_phi_rawmem = NULL;
1411   Node *result_phi_rawoop = NULL;
1412   Node *result_phi_i_o = NULL;
1413 
1414   // The initial slow comparison is a size check, the comparison
1415   // we want to do is a BoolTest::gt
1416   bool always_slow = false;
1417   int tv = _igvn.find_int_con(initial_slow_test, -1);
1418   if (tv >= 0) {
1419     always_slow = (tv == 1);
1420     initial_slow_test = NULL;
1421   } else {
1422     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1423   }
1424 
1425   if (C->env()->dtrace_alloc_probes() ||
1426       (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1427     // Force slow-path allocation
1428     always_slow = true;
1429     initial_slow_test = NULL;
1430   }
1431 
1432 
1433   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1434   Node *slow_region = NULL;
1435   Node *toobig_false = ctrl;
1436 
1437   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1438   // generate the initial test if necessary
1439   if (initial_slow_test != NULL ) {
1440     slow_region = new RegionNode(3);
1441 
1442     // Now make the initial failure test.  Usually a too-big test but
1443     // might be a TRUE for finalizers or a fancy class check for
1444     // newInstance0.
1445     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1446     transform_later(toobig_iff);
1447     // Plug the failing-too-big test into the slow-path region
1448     Node *toobig_true = new IfTrueNode( toobig_iff );
1449     transform_later(toobig_true);
1450     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1451     toobig_false = new IfFalseNode( toobig_iff );
1452     transform_later(toobig_false);
1453   } else {         // No initial test, just fall into next case
1454     toobig_false = ctrl;
1455     debug_only(slow_region = NodeSentinel);
1456   }
1457 
1458   Node *slow_mem = mem;  // save the current memory state for slow path
1459   // generate the fast allocation code unless we know that the initial test will always go slow
1460   if (!always_slow) {
1461     // Fast path modifies only raw memory.
1462     if (mem->is_MergeMem()) {
1463       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1464     }
1465 
1466     Node* eden_top_adr;
1467     Node* eden_end_adr;
1468 
1469     set_eden_pointers(eden_top_adr, eden_end_adr);
1470 
1471     // Load Eden::end.  Loop invariant and hoisted.
1472     //
1473     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1474     //       a TLAB to work around a bug where these values were being moved across
1475     //       a safepoint.  These are not oops, so they cannot be include in the oop
1476     //       map, but they can be changed by a GC.   The proper way to fix this would
1477     //       be to set the raw memory state when generating a  SafepointNode.  However
1478     //       this will require extensive changes to the loop optimization in order to
1479     //       prevent a degradation of the optimization.
1480     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1481     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1482 
1483     // allocate the Region and Phi nodes for the result
1484     result_region = new RegionNode(3);
1485     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1486     result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1487     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1488 
1489     // We need a Region for the loop-back contended case.
1490     enum { fall_in_path = 1, contended_loopback_path = 2 };
1491     Node *contended_region;
1492     Node *contended_phi_rawmem;
1493     if (UseTLAB) {
1494       contended_region = toobig_false;
1495       contended_phi_rawmem = mem;
1496     } else {
1497       contended_region = new RegionNode(3);
1498       contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1499       // Now handle the passing-too-big test.  We fall into the contended
1500       // loop-back merge point.
1501       contended_region    ->init_req(fall_in_path, toobig_false);
1502       contended_phi_rawmem->init_req(fall_in_path, mem);
1503       transform_later(contended_region);
1504       transform_later(contended_phi_rawmem);
1505     }
1506 
1507     // Load(-locked) the heap top.
1508     // See note above concerning the control input when using a TLAB
1509     Node *old_eden_top = UseTLAB
1510       ? new LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
1511       : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
1512 
1513     transform_later(old_eden_top);
1514     // Add to heap top to get a new heap top
1515     Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes);
1516     transform_later(new_eden_top);
1517     // Check for needing a GC; compare against heap end
1518     Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
1519     transform_later(needgc_cmp);
1520     Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
1521     transform_later(needgc_bol);
1522     IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1523     transform_later(needgc_iff);
1524 
1525     // Plug the failing-heap-space-need-gc test into the slow-path region
1526     Node *needgc_true = new IfTrueNode(needgc_iff);
1527     transform_later(needgc_true);
1528     if (initial_slow_test) {
1529       slow_region->init_req(need_gc_path, needgc_true);
1530       // This completes all paths into the slow merge point
1531       transform_later(slow_region);
1532     } else {                      // No initial slow path needed!
1533       // Just fall from the need-GC path straight into the VM call.
1534       slow_region = needgc_true;
1535     }
1536     // No need for a GC.  Setup for the Store-Conditional
1537     Node *needgc_false = new IfFalseNode(needgc_iff);
1538     transform_later(needgc_false);
1539 
1540     // Grab regular I/O before optional prefetch may change it.
1541     // Slow-path does no I/O so just set it to the original I/O.
1542     result_phi_i_o->init_req(slow_result_path, i_o);
1543 
1544     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1545                               old_eden_top, new_eden_top, length);
1546 
1547     // Name successful fast-path variables
1548     Node* fast_oop = old_eden_top;
1549     Node* fast_oop_ctrl;
1550     Node* fast_oop_rawmem;
1551 
1552     // Store (-conditional) the modified eden top back down.
1553     // StorePConditional produces flags for a test PLUS a modified raw
1554     // memory state.
1555     if (UseTLAB) {
1556       Node* store_eden_top =
1557         new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1558                               TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
1559       transform_later(store_eden_top);
1560       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1561       fast_oop_rawmem = store_eden_top;
1562     } else {
1563       Node* store_eden_top =
1564         new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1565                                          new_eden_top, fast_oop/*old_eden_top*/);
1566       transform_later(store_eden_top);
1567       Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
1568       transform_later(contention_check);
1569       store_eden_top = new SCMemProjNode(store_eden_top);
1570       transform_later(store_eden_top);
1571 
1572       // If not using TLABs, check to see if there was contention.
1573       IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1574       transform_later(contention_iff);
1575       Node *contention_true = new IfTrueNode(contention_iff);
1576       transform_later(contention_true);
1577       // If contention, loopback and try again.
1578       contended_region->init_req(contended_loopback_path, contention_true);
1579       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1580 
1581       // Fast-path succeeded with no contention!
1582       Node *contention_false = new IfFalseNode(contention_iff);
1583       transform_later(contention_false);
1584       fast_oop_ctrl = contention_false;
1585 
1586       // Bump total allocated bytes for this thread
1587       Node* thread = new ThreadLocalNode();
1588       transform_later(thread);
1589       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1590                                              in_bytes(JavaThread::allocated_bytes_offset()));
1591       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1592                                     0, TypeLong::LONG, T_LONG);
1593 #ifdef _LP64
1594       Node* alloc_size = size_in_bytes;
1595 #else
1596       Node* alloc_size = new ConvI2LNode(size_in_bytes);
1597       transform_later(alloc_size);
1598 #endif
1599       Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
1600       transform_later(new_alloc_bytes);
1601       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1602                                    0, new_alloc_bytes, T_LONG);
1603     }
1604 
1605     InitializeNode* init = alloc->initialization();
1606     fast_oop_rawmem = initialize_object(alloc,
1607                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1608                                         klass_node, length, size_in_bytes);
1609 
1610     // If initialization is performed by an array copy, any required
1611     // MemBarStoreStore was already added. If the object does not
1612     // escape no need for a MemBarStoreStore. If the object does not
1613     // escape in its initializer and memory barrier (MemBarStoreStore or
1614     // stronger) is already added at exit of initializer, also no need
1615     // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1616     // so that stores that initialize this object can't be reordered
1617     // with a subsequent store that makes this object accessible by
1618     // other threads.
1619     // Other threads include java threads and JVM internal threads
1620     // (for example concurrent GC threads). Current concurrent GC
1621     // implementation: CMS and G1 will not scan newly created object,
1622     // so it's safe to skip storestore barrier when allocation does
1623     // not escape.
1624     if (!alloc->does_not_escape_thread() &&
1625         !alloc->is_allocation_MemBar_redundant() &&
1626         (init == NULL || !init->is_complete_with_arraycopy())) {
1627       if (init == NULL || init->req() < InitializeNode::RawStores) {
1628         // No InitializeNode or no stores captured by zeroing
1629         // elimination. Simply add the MemBarStoreStore after object
1630         // initialization.
1631         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1632         transform_later(mb);
1633 
1634         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1635         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1636         fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
1637         transform_later(fast_oop_ctrl);
1638         fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
1639         transform_later(fast_oop_rawmem);
1640       } else {
1641         // Add the MemBarStoreStore after the InitializeNode so that
1642         // all stores performing the initialization that were moved
1643         // before the InitializeNode happen before the storestore
1644         // barrier.
1645 
1646         Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1647         Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1648 
1649         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1650         transform_later(mb);
1651 
1652         Node* ctrl = new ProjNode(init,TypeFunc::Control);
1653         transform_later(ctrl);
1654         Node* mem = new ProjNode(init,TypeFunc::Memory);
1655         transform_later(mem);
1656 
1657         // The MemBarStoreStore depends on control and memory coming
1658         // from the InitializeNode
1659         mb->init_req(TypeFunc::Memory, mem);
1660         mb->init_req(TypeFunc::Control, ctrl);
1661 
1662         ctrl = new ProjNode(mb,TypeFunc::Control);
1663         transform_later(ctrl);
1664         mem = new ProjNode(mb,TypeFunc::Memory);
1665         transform_later(mem);
1666 
1667         // All nodes that depended on the InitializeNode for control
1668         // and memory must now depend on the MemBarNode that itself
1669         // depends on the InitializeNode
1670         if (init_ctrl != NULL) {
1671           _igvn.replace_node(init_ctrl, ctrl);
1672         }
1673         if (init_mem != NULL) {
1674           _igvn.replace_node(init_mem, mem);
1675         }
1676       }
1677     }
1678 
1679     if (C->env()->dtrace_extended_probes()) {
1680       // Slow-path call
1681       int size = TypeFunc::Parms + 2;
1682       CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1683                                             CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1684                                             "dtrace_object_alloc",
1685                                             TypeRawPtr::BOTTOM);
1686 
1687       // Get base of thread-local storage area
1688       Node* thread = new ThreadLocalNode();
1689       transform_later(thread);
1690 
1691       call->init_req(TypeFunc::Parms+0, thread);
1692       call->init_req(TypeFunc::Parms+1, fast_oop);
1693       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1694       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1695       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1696       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1697       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1698       transform_later(call);
1699       fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
1700       transform_later(fast_oop_ctrl);
1701       fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
1702       transform_later(fast_oop_rawmem);
1703     }
1704 
1705     // Plug in the successful fast-path into the result merge point
1706     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1707     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1708     result_phi_i_o   ->init_req(fast_result_path, i_o);
1709     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1710   } else {
1711     slow_region = ctrl;
1712     result_phi_i_o = i_o; // Rename it to use in the following code.
1713   }
1714 
1715   // Generate slow-path call
1716   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1717                                OptoRuntime::stub_name(slow_call_address),
1718                                alloc->jvms()->bci(),
1719                                TypePtr::BOTTOM);
1720   call->init_req( TypeFunc::Control, slow_region );
1721   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1722   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1723   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1724   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1725 
1726   call->init_req(TypeFunc::Parms+0, klass_node);
1727   if (length != NULL) {
1728     call->init_req(TypeFunc::Parms+1, length);
1729   }
1730 
1731   // Copy debug information and adjust JVMState information, then replace
1732   // allocate node with the call
1733   copy_call_debug_info((CallNode *) alloc,  call);
1734   if (!always_slow) {
1735     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1736   } else {
1737     // Hook i_o projection to avoid its elimination during allocation
1738     // replacement (when only a slow call is generated).
1739     call->set_req(TypeFunc::I_O, result_phi_i_o);
1740   }
1741   _igvn.replace_node(alloc, call);
1742   transform_later(call);
1743 
1744   // Identify the output projections from the allocate node and
1745   // adjust any references to them.
1746   // The control and io projections look like:
1747   //
1748   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1749   //  Allocate                   Catch
1750   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1751   //
1752   //  We are interested in the CatchProj nodes.
1753   //
1754   extract_call_projections(call);
1755 
1756   // An allocate node has separate memory projections for the uses on
1757   // the control and i_o paths. Replace the control memory projection with
1758   // result_phi_rawmem (unless we are only generating a slow call when
1759   // both memory projections are combined)
1760   if (!always_slow && _memproj_fallthrough != NULL) {
1761     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1762       Node *use = _memproj_fallthrough->fast_out(i);
1763       _igvn.rehash_node_delayed(use);
1764       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1765       // back up iterator
1766       --i;
1767     }
1768   }
1769   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1770   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1771   if (_memproj_catchall != NULL ) {
1772     if (_memproj_fallthrough == NULL) {
1773       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1774       transform_later(_memproj_fallthrough);
1775     }
1776     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1777       Node *use = _memproj_catchall->fast_out(i);
1778       _igvn.rehash_node_delayed(use);
1779       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1780       // back up iterator
1781       --i;
1782     }
1783     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1784     _igvn.remove_dead_node(_memproj_catchall);
1785   }
1786 
1787   // An allocate node has separate i_o projections for the uses on the control
1788   // and i_o paths. Always replace the control i_o projection with result i_o
1789   // otherwise incoming i_o become dead when only a slow call is generated
1790   // (it is different from memory projections where both projections are
1791   // combined in such case).
1792   if (_ioproj_fallthrough != NULL) {
1793     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1794       Node *use = _ioproj_fallthrough->fast_out(i);
1795       _igvn.rehash_node_delayed(use);
1796       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1797       // back up iterator
1798       --i;
1799     }
1800   }
1801   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1802   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1803   if (_ioproj_catchall != NULL ) {
1804     if (_ioproj_fallthrough == NULL) {
1805       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1806       transform_later(_ioproj_fallthrough);
1807     }
1808     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1809       Node *use = _ioproj_catchall->fast_out(i);
1810       _igvn.rehash_node_delayed(use);
1811       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1812       // back up iterator
1813       --i;
1814     }
1815     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1816     _igvn.remove_dead_node(_ioproj_catchall);
1817   }
1818 
1819   // if we generated only a slow call, we are done
1820   if (always_slow) {
1821     // Now we can unhook i_o.
1822     if (result_phi_i_o->outcnt() > 1) {
1823       call->set_req(TypeFunc::I_O, top());
1824     } else {
1825       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1826       // Case of new array with negative size known during compilation.
1827       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1828       // following code since call to runtime will throw exception.
1829       // As result there will be no users of i_o after the call.
1830       // Leave i_o attached to this call to avoid problems in preceding graph.
1831     }
1832     return;
1833   }
1834 
1835 
1836   if (_fallthroughcatchproj != NULL) {
1837     ctrl = _fallthroughcatchproj->clone();
1838     transform_later(ctrl);
1839     _igvn.replace_node(_fallthroughcatchproj, result_region);
1840   } else {
1841     ctrl = top();
1842   }
1843   Node *slow_result;
1844   if (_resproj == NULL) {
1845     // no uses of the allocation result
1846     slow_result = top();
1847   } else {
1848     slow_result = _resproj->clone();
1849     transform_later(slow_result);
1850     _igvn.replace_node(_resproj, result_phi_rawoop);
1851   }
1852 
1853   // Plug slow-path into result merge point
1854   result_region    ->init_req( slow_result_path, ctrl );
1855   result_phi_rawoop->init_req( slow_result_path, slow_result);
1856   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1857   transform_later(result_region);
1858   transform_later(result_phi_rawoop);
1859   transform_later(result_phi_rawmem);
1860   transform_later(result_phi_i_o);
1861   // This completes all paths into the result merge point
1862 }
1863 
1864 
1865 // Helper for PhaseMacroExpand::expand_allocate_common.
1866 // Initializes the newly-allocated storage.
1867 Node*
1868 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1869                                     Node* control, Node* rawmem, Node* object,
1870                                     Node* klass_node, Node* length,
1871                                     Node* size_in_bytes) {
1872   InitializeNode* init = alloc->initialization();
1873   // Store the klass & mark bits
1874   Node* mark_node = NULL;
1875   // For now only enable fast locking for non-array types
1876   if (UseBiasedLocking && (length == NULL)) {
1877     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1878   } else {
1879     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1880   }
1881   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1882 
1883   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1884   int header_size = alloc->minimum_header_size();  // conservatively small
1885 
1886   // Array length
1887   if (length != NULL) {         // Arrays need length field
1888     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1889     // conservatively small header size:
1890     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1891     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1892     if (k->is_array_klass())    // we know the exact header size in most cases:
1893       header_size = Klass::layout_helper_header_size(k->layout_helper());
1894   }
1895 
1896   // Clear the object body, if necessary.
1897   if (init == NULL) {
1898     // The init has somehow disappeared; be cautious and clear everything.
1899     //
1900     // This can happen if a node is allocated but an uncommon trap occurs
1901     // immediately.  In this case, the Initialize gets associated with the
1902     // trap, and may be placed in a different (outer) loop, if the Allocate
1903     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1904     // there can be two Allocates to one Initialize.  The answer in all these
1905     // edge cases is safety first.  It is always safe to clear immediately
1906     // within an Allocate, and then (maybe or maybe not) clear some more later.
1907     if (!(UseTLAB && ZeroTLAB)) {
1908       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1909                                             header_size, size_in_bytes,
1910                                             &_igvn);
1911     }
1912   } else {
1913     if (!init->is_complete()) {
1914       // Try to win by zeroing only what the init does not store.
1915       // We can also try to do some peephole optimizations,
1916       // such as combining some adjacent subword stores.
1917       rawmem = init->complete_stores(control, rawmem, object,
1918                                      header_size, size_in_bytes, &_igvn);
1919     }
1920     // We have no more use for this link, since the AllocateNode goes away:
1921     init->set_req(InitializeNode::RawAddress, top());
1922     // (If we keep the link, it just confuses the register allocator,
1923     // who thinks he sees a real use of the address by the membar.)
1924   }
1925 
1926   return rawmem;
1927 }
1928 
1929 // Generate prefetch instructions for next allocations.
1930 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1931                                         Node*& contended_phi_rawmem,
1932                                         Node* old_eden_top, Node* new_eden_top,
1933                                         Node* length) {
1934    enum { fall_in_path = 1, pf_path = 2 };
1935    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1936       // Generate prefetch allocation with watermark check.
1937       // As an allocation hits the watermark, we will prefetch starting
1938       // at a "distance" away from watermark.
1939 
1940       Node *pf_region = new RegionNode(3);
1941       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1942                                                 TypeRawPtr::BOTTOM );
1943       // I/O is used for Prefetch
1944       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1945 
1946       Node *thread = new ThreadLocalNode();
1947       transform_later(thread);
1948 
1949       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1950                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1951       transform_later(eden_pf_adr);
1952 
1953       Node *old_pf_wm = new LoadPNode(needgc_false,
1954                                    contended_phi_rawmem, eden_pf_adr,
1955                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1956                                    MemNode::unordered);
1957       transform_later(old_pf_wm);
1958 
1959       // check against new_eden_top
1960       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1961       transform_later(need_pf_cmp);
1962       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1963       transform_later(need_pf_bol);
1964       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1965                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1966       transform_later(need_pf_iff);
1967 
1968       // true node, add prefetchdistance
1969       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1970       transform_later(need_pf_true);
1971 
1972       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1973       transform_later(need_pf_false);
1974 
1975       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1976                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1977       transform_later(new_pf_wmt );
1978       new_pf_wmt->set_req(0, need_pf_true);
1979 
1980       Node *store_new_wmt = new StorePNode(need_pf_true,
1981                                        contended_phi_rawmem, eden_pf_adr,
1982                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1983                                        MemNode::unordered);
1984       transform_later(store_new_wmt);
1985 
1986       // adding prefetches
1987       pf_phi_abio->init_req( fall_in_path, i_o );
1988 
1989       Node *prefetch_adr;
1990       Node *prefetch;
1991       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1992       uint step_size = AllocatePrefetchStepSize;
1993       uint distance = 0;
1994 
1995       for ( uint i = 0; i < lines; i++ ) {
1996         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1997                                             _igvn.MakeConX(distance) );
1998         transform_later(prefetch_adr);
1999         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2000         transform_later(prefetch);
2001         distance += step_size;
2002         i_o = prefetch;
2003       }
2004       pf_phi_abio->set_req( pf_path, i_o );
2005 
2006       pf_region->init_req( fall_in_path, need_pf_false );
2007       pf_region->init_req( pf_path, need_pf_true );
2008 
2009       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
2010       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
2011 
2012       transform_later(pf_region);
2013       transform_later(pf_phi_rawmem);
2014       transform_later(pf_phi_abio);
2015 
2016       needgc_false = pf_region;
2017       contended_phi_rawmem = pf_phi_rawmem;
2018       i_o = pf_phi_abio;
2019    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
2020       // Insert a prefetch instruction for each allocation.
2021       // This code is used to generate 1 prefetch instruction per cache line.
2022 
2023       // Generate several prefetch instructions.
2024       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2025       uint step_size = AllocatePrefetchStepSize;
2026       uint distance = AllocatePrefetchDistance;
2027 
2028       // Next cache address.
2029       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
2030                                      _igvn.MakeConX(step_size + distance));
2031       transform_later(cache_adr);
2032       cache_adr = new CastP2XNode(needgc_false, cache_adr);
2033       transform_later(cache_adr);
2034       // Address is aligned to execute prefetch to the beginning of cache line size
2035       // (it is important when BIS instruction is used on SPARC as prefetch).
2036       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
2037       cache_adr = new AndXNode(cache_adr, mask);
2038       transform_later(cache_adr);
2039       cache_adr = new CastX2PNode(cache_adr);
2040       transform_later(cache_adr);
2041 
2042       // Prefetch
2043       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
2044       prefetch->set_req(0, needgc_false);
2045       transform_later(prefetch);
2046       contended_phi_rawmem = prefetch;
2047       Node *prefetch_adr;
2048       distance = step_size;
2049       for ( uint i = 1; i < lines; i++ ) {
2050         prefetch_adr = new AddPNode( cache_adr, cache_adr,
2051                                             _igvn.MakeConX(distance) );
2052         transform_later(prefetch_adr);
2053         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
2054         transform_later(prefetch);
2055         distance += step_size;
2056         contended_phi_rawmem = prefetch;
2057       }
2058    } else if( AllocatePrefetchStyle > 0 ) {
2059       // Insert a prefetch for each allocation only on the fast-path
2060       Node *prefetch_adr;
2061       Node *prefetch;
2062       // Generate several prefetch instructions.
2063       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2064       uint step_size = AllocatePrefetchStepSize;
2065       uint distance = AllocatePrefetchDistance;
2066       for ( uint i = 0; i < lines; i++ ) {
2067         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
2068                                             _igvn.MakeConX(distance) );
2069         transform_later(prefetch_adr);
2070         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2071         // Do not let it float too high, since if eden_top == eden_end,
2072         // both might be null.
2073         if( i == 0 ) { // Set control for first prefetch, next follows it
2074           prefetch->init_req(0, needgc_false);
2075         }
2076         transform_later(prefetch);
2077         distance += step_size;
2078         i_o = prefetch;
2079       }
2080    }
2081    return i_o;
2082 }
2083 
2084 
2085 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
2086   expand_allocate_common(alloc, NULL,
2087                          OptoRuntime::new_instance_Type(),
2088                          OptoRuntime::new_instance_Java());
2089 }
2090 
2091 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
2092   Node* length = alloc->in(AllocateNode::ALength);
2093   InitializeNode* init = alloc->initialization();
2094   Node* klass_node = alloc->in(AllocateNode::KlassNode);
2095   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
2096   address slow_call_address;  // Address of slow call
2097   if (init != NULL && init->is_complete_with_arraycopy() &&
2098       k->is_type_array_klass()) {
2099     // Don't zero type array during slow allocation in VM since
2100     // it will be initialized later by arraycopy in compiled code.
2101     slow_call_address = OptoRuntime::new_array_nozero_Java();
2102   } else {
2103     slow_call_address = OptoRuntime::new_array_Java();
2104   }
2105   expand_allocate_common(alloc, length,
2106                          OptoRuntime::new_array_Type(),
2107                          slow_call_address);
2108 }
2109 
2110 //-------------------mark_eliminated_box----------------------------------
2111 //
2112 // During EA obj may point to several objects but after few ideal graph
2113 // transformations (CCP) it may point to only one non escaping object
2114 // (but still using phi), corresponding locks and unlocks will be marked
2115 // for elimination. Later obj could be replaced with a new node (new phi)
2116 // and which does not have escape information. And later after some graph
2117 // reshape other locks and unlocks (which were not marked for elimination
2118 // before) are connected to this new obj (phi) but they still will not be
2119 // marked for elimination since new obj has no escape information.
2120 // Mark all associated (same box and obj) lock and unlock nodes for
2121 // elimination if some of them marked already.
2122 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
2123   if (oldbox->as_BoxLock()->is_eliminated())
2124     return; // This BoxLock node was processed already.
2125 
2126   // New implementation (EliminateNestedLocks) has separate BoxLock
2127   // node for each locked region so mark all associated locks/unlocks as
2128   // eliminated even if different objects are referenced in one locked region
2129   // (for example, OSR compilation of nested loop inside locked scope).
2130   if (EliminateNestedLocks ||
2131       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
2132     // Box is used only in one lock region. Mark this box as eliminated.
2133     _igvn.hash_delete(oldbox);
2134     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
2135      _igvn.hash_insert(oldbox);
2136 
2137     for (uint i = 0; i < oldbox->outcnt(); i++) {
2138       Node* u = oldbox->raw_out(i);
2139       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2140         AbstractLockNode* alock = u->as_AbstractLock();
2141         // Check lock's box since box could be referenced by Lock's debug info.
2142         if (alock->box_node() == oldbox) {
2143           // Mark eliminated all related locks and unlocks.
2144 #ifdef ASSERT
2145           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2146 #endif
2147           alock->set_non_esc_obj();
2148         }
2149       }
2150     }
2151     return;
2152   }
2153 
2154   // Create new "eliminated" BoxLock node and use it in monitor debug info
2155   // instead of oldbox for the same object.
2156   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2157 
2158   // Note: BoxLock node is marked eliminated only here and it is used
2159   // to indicate that all associated lock and unlock nodes are marked
2160   // for elimination.
2161   newbox->set_eliminated();
2162   transform_later(newbox);
2163 
2164   // Replace old box node with new box for all users of the same object.
2165   for (uint i = 0; i < oldbox->outcnt();) {
2166     bool next_edge = true;
2167 
2168     Node* u = oldbox->raw_out(i);
2169     if (u->is_AbstractLock()) {
2170       AbstractLockNode* alock = u->as_AbstractLock();
2171       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2172         // Replace Box and mark eliminated all related locks and unlocks.
2173 #ifdef ASSERT
2174         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2175 #endif
2176         alock->set_non_esc_obj();
2177         _igvn.rehash_node_delayed(alock);
2178         alock->set_box_node(newbox);
2179         next_edge = false;
2180       }
2181     }
2182     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2183       FastLockNode* flock = u->as_FastLock();
2184       assert(flock->box_node() == oldbox, "sanity");
2185       _igvn.rehash_node_delayed(flock);
2186       flock->set_box_node(newbox);
2187       next_edge = false;
2188     }
2189 
2190     // Replace old box in monitor debug info.
2191     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2192       SafePointNode* sfn = u->as_SafePoint();
2193       JVMState* youngest_jvms = sfn->jvms();
2194       int max_depth = youngest_jvms->depth();
2195       for (int depth = 1; depth <= max_depth; depth++) {
2196         JVMState* jvms = youngest_jvms->of_depth(depth);
2197         int num_mon  = jvms->nof_monitors();
2198         // Loop over monitors
2199         for (int idx = 0; idx < num_mon; idx++) {
2200           Node* obj_node = sfn->monitor_obj(jvms, idx);
2201           Node* box_node = sfn->monitor_box(jvms, idx);
2202           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2203             int j = jvms->monitor_box_offset(idx);
2204             _igvn.replace_input_of(u, j, newbox);
2205             next_edge = false;
2206           }
2207         }
2208       }
2209     }
2210     if (next_edge) i++;
2211   }
2212 }
2213 
2214 //-----------------------mark_eliminated_locking_nodes-----------------------
2215 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2216   if (EliminateNestedLocks) {
2217     if (alock->is_nested()) {
2218        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2219        return;
2220     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2221       // Only Lock node has JVMState needed here.
2222       // Not that preceding claim is documented anywhere else.
2223       if (alock->jvms() != NULL) {
2224         if (alock->as_Lock()->is_nested_lock_region()) {
2225           // Mark eliminated related nested locks and unlocks.
2226           Node* obj = alock->obj_node();
2227           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2228           assert(!box_node->is_eliminated(), "should not be marked yet");
2229           // Note: BoxLock node is marked eliminated only here
2230           // and it is used to indicate that all associated lock
2231           // and unlock nodes are marked for elimination.
2232           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2233           for (uint i = 0; i < box_node->outcnt(); i++) {
2234             Node* u = box_node->raw_out(i);
2235             if (u->is_AbstractLock()) {
2236               alock = u->as_AbstractLock();
2237               if (alock->box_node() == box_node) {
2238                 // Verify that this Box is referenced only by related locks.
2239                 assert(alock->obj_node()->eqv_uncast(obj), "");
2240                 // Mark all related locks and unlocks.
2241 #ifdef ASSERT
2242                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2243 #endif
2244                 alock->set_nested();
2245               }
2246             }
2247           }
2248         } else {
2249 #ifdef ASSERT
2250           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2251           if (C->log() != NULL)
2252             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2253 #endif
2254         }
2255       }
2256       return;
2257     }
2258     // Process locks for non escaping object
2259     assert(alock->is_non_esc_obj(), "");
2260   } // EliminateNestedLocks
2261 
2262   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2263     // Look for all locks of this object and mark them and
2264     // corresponding BoxLock nodes as eliminated.
2265     Node* obj = alock->obj_node();
2266     for (uint j = 0; j < obj->outcnt(); j++) {
2267       Node* o = obj->raw_out(j);
2268       if (o->is_AbstractLock() &&
2269           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2270         alock = o->as_AbstractLock();
2271         Node* box = alock->box_node();
2272         // Replace old box node with new eliminated box for all users
2273         // of the same object and mark related locks as eliminated.
2274         mark_eliminated_box(box, obj);
2275       }
2276     }
2277   }
2278 }
2279 
2280 // we have determined that this lock/unlock can be eliminated, we simply
2281 // eliminate the node without expanding it.
2282 //
2283 // Note:  The membar's associated with the lock/unlock are currently not
2284 //        eliminated.  This should be investigated as a future enhancement.
2285 //
2286 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2287 
2288   if (!alock->is_eliminated()) {
2289     return false;
2290   }
2291 #ifdef ASSERT
2292   if (!alock->is_coarsened()) {
2293     // Check that new "eliminated" BoxLock node is created.
2294     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2295     assert(oldbox->is_eliminated(), "should be done already");
2296   }
2297 #endif
2298 
2299   alock->log_lock_optimization(C, "eliminate_lock");
2300 
2301 #ifndef PRODUCT
2302   if (PrintEliminateLocks) {
2303     if (alock->is_Lock()) {
2304       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2305     } else {
2306       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2307     }
2308   }
2309 #endif
2310 
2311   Node* mem  = alock->in(TypeFunc::Memory);
2312   Node* ctrl = alock->in(TypeFunc::Control);
2313 
2314   extract_call_projections(alock);
2315   // There are 2 projections from the lock.  The lock node will
2316   // be deleted when its last use is subsumed below.
2317   assert(alock->outcnt() == 2 &&
2318          _fallthroughproj != NULL &&
2319          _memproj_fallthrough != NULL,
2320          "Unexpected projections from Lock/Unlock");
2321 
2322   Node* fallthroughproj = _fallthroughproj;
2323   Node* memproj_fallthrough = _memproj_fallthrough;
2324 
2325   // The memory projection from a lock/unlock is RawMem
2326   // The input to a Lock is merged memory, so extract its RawMem input
2327   // (unless the MergeMem has been optimized away.)
2328   if (alock->is_Lock()) {
2329     // Seach for MemBarAcquireLock node and delete it also.
2330     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2331     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2332     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2333     Node* memproj = membar->proj_out(TypeFunc::Memory);
2334     _igvn.replace_node(ctrlproj, fallthroughproj);
2335     _igvn.replace_node(memproj, memproj_fallthrough);
2336 
2337     // Delete FastLock node also if this Lock node is unique user
2338     // (a loop peeling may clone a Lock node).
2339     Node* flock = alock->as_Lock()->fastlock_node();
2340     if (flock->outcnt() == 1) {
2341       assert(flock->unique_out() == alock, "sanity");
2342       _igvn.replace_node(flock, top());
2343     }
2344   }
2345 
2346   // Seach for MemBarReleaseLock node and delete it also.
2347   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2348       ctrl->in(0)->is_MemBar()) {
2349     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2350     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2351            mem->is_Proj() && membar == mem->in(0), "");
2352     _igvn.replace_node(fallthroughproj, ctrl);
2353     _igvn.replace_node(memproj_fallthrough, mem);
2354     fallthroughproj = ctrl;
2355     memproj_fallthrough = mem;
2356     ctrl = membar->in(TypeFunc::Control);
2357     mem  = membar->in(TypeFunc::Memory);
2358   }
2359 
2360   _igvn.replace_node(fallthroughproj, ctrl);
2361   _igvn.replace_node(memproj_fallthrough, mem);
2362   return true;
2363 }
2364 
2365 
2366 //------------------------------expand_lock_node----------------------
2367 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2368 
2369   Node* ctrl = lock->in(TypeFunc::Control);
2370   Node* mem = lock->in(TypeFunc::Memory);
2371   Node* obj = lock->obj_node();
2372   Node* box = lock->box_node();
2373   Node* flock = lock->fastlock_node();
2374 
2375   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2376 
2377   // Make the merge point
2378   Node *region;
2379   Node *mem_phi;
2380   Node *slow_path;
2381 
2382   if (UseOptoBiasInlining) {
2383     /*
2384      *  See the full description in MacroAssembler::biased_locking_enter().
2385      *
2386      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2387      *    // The object is biased.
2388      *    proto_node = klass->prototype_header;
2389      *    o_node = thread | proto_node;
2390      *    x_node = o_node ^ mark_word;
2391      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2392      *      // Done.
2393      *    } else {
2394      *      if( (x_node & biased_lock_mask) != 0 ) {
2395      *        // The klass's prototype header is no longer biased.
2396      *        cas(&mark_word, mark_word, proto_node)
2397      *        goto cas_lock;
2398      *      } else {
2399      *        // The klass's prototype header is still biased.
2400      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2401      *          old = mark_word;
2402      *          new = o_node;
2403      *        } else {
2404      *          // Different thread or anonymous biased.
2405      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2406      *          new = thread | old;
2407      *        }
2408      *        // Try to rebias.
2409      *        if( cas(&mark_word, old, new) == 0 ) {
2410      *          // Done.
2411      *        } else {
2412      *          goto slow_path; // Failed.
2413      *        }
2414      *      }
2415      *    }
2416      *  } else {
2417      *    // The object is not biased.
2418      *    cas_lock:
2419      *    if( FastLock(obj) == 0 ) {
2420      *      // Done.
2421      *    } else {
2422      *      slow_path:
2423      *      OptoRuntime::complete_monitor_locking_Java(obj);
2424      *    }
2425      *  }
2426      */
2427 
2428     region  = new RegionNode(5);
2429     // create a Phi for the memory state
2430     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2431 
2432     Node* fast_lock_region  = new RegionNode(3);
2433     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2434 
2435     // First, check mark word for the biased lock pattern.
2436     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2437 
2438     // Get fast path - mark word has the biased lock pattern.
2439     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2440                          markOopDesc::biased_lock_mask_in_place,
2441                          markOopDesc::biased_lock_pattern, true);
2442     // fast_lock_region->in(1) is set to slow path.
2443     fast_lock_mem_phi->init_req(1, mem);
2444 
2445     // Now check that the lock is biased to the current thread and has
2446     // the same epoch and bias as Klass::_prototype_header.
2447 
2448     // Special-case a fresh allocation to avoid building nodes:
2449     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2450     if (klass_node == NULL) {
2451       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2452       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2453 #ifdef _LP64
2454       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2455         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2456         klass_node->in(1)->init_req(0, ctrl);
2457       } else
2458 #endif
2459       klass_node->init_req(0, ctrl);
2460     }
2461     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2462 
2463     Node* thread = transform_later(new ThreadLocalNode());
2464     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2465     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2466     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2467 
2468     // Get slow path - mark word does NOT match the value.
2469     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2470                                       (~markOopDesc::age_mask_in_place), 0);
2471     // region->in(3) is set to fast path - the object is biased to the current thread.
2472     mem_phi->init_req(3, mem);
2473 
2474 
2475     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2476 
2477 
2478     // First, check biased pattern.
2479     // Get fast path - _prototype_header has the same biased lock pattern.
2480     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2481                           markOopDesc::biased_lock_mask_in_place, 0, true);
2482 
2483     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2484     // fast_lock_region->in(2) - the prototype header is no longer biased
2485     // and we have to revoke the bias on this object.
2486     // We are going to try to reset the mark of this object to the prototype
2487     // value and fall through to the CAS-based locking scheme.
2488     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2489     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2490                                           proto_node, mark_node);
2491     transform_later(cas);
2492     Node* proj = transform_later(new SCMemProjNode(cas));
2493     fast_lock_mem_phi->init_req(2, proj);
2494 
2495 
2496     // Second, check epoch bits.
2497     Node* rebiased_region  = new RegionNode(3);
2498     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2499     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2500 
2501     // Get slow path - mark word does NOT match epoch bits.
2502     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2503                                       markOopDesc::epoch_mask_in_place, 0);
2504     // The epoch of the current bias is not valid, attempt to rebias the object
2505     // toward the current thread.
2506     rebiased_region->init_req(2, epoch_ctrl);
2507     old_phi->init_req(2, mark_node);
2508     new_phi->init_req(2, o_node);
2509 
2510     // rebiased_region->in(1) is set to fast path.
2511     // The epoch of the current bias is still valid but we know
2512     // nothing about the owner; it might be set or it might be clear.
2513     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2514                              markOopDesc::age_mask_in_place |
2515                              markOopDesc::epoch_mask_in_place);
2516     Node* old = transform_later(new AndXNode(mark_node, cmask));
2517     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2518     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2519     old_phi->init_req(1, old);
2520     new_phi->init_req(1, new_mark);
2521 
2522     transform_later(rebiased_region);
2523     transform_later(old_phi);
2524     transform_later(new_phi);
2525 
2526     // Try to acquire the bias of the object using an atomic operation.
2527     // If this fails we will go in to the runtime to revoke the object's bias.
2528     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2529     transform_later(cas);
2530     proj = transform_later(new SCMemProjNode(cas));
2531 
2532     // Get slow path - Failed to CAS.
2533     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2534     mem_phi->init_req(4, proj);
2535     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2536 
2537     // Failed to CAS.
2538     slow_path  = new RegionNode(3);
2539     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2540 
2541     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2542     slow_mem->init_req(1, proj);
2543 
2544     // Call CAS-based locking scheme (FastLock node).
2545 
2546     transform_later(fast_lock_region);
2547     transform_later(fast_lock_mem_phi);
2548 
2549     // Get slow path - FastLock failed to lock the object.
2550     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2551     mem_phi->init_req(2, fast_lock_mem_phi);
2552     // region->in(2) is set to fast path - the object is locked to the current thread.
2553 
2554     slow_path->init_req(2, ctrl); // Capture slow-control
2555     slow_mem->init_req(2, fast_lock_mem_phi);
2556 
2557     transform_later(slow_path);
2558     transform_later(slow_mem);
2559     // Reset lock's memory edge.
2560     lock->set_req(TypeFunc::Memory, slow_mem);
2561 
2562   } else {
2563     region  = new RegionNode(3);
2564     // create a Phi for the memory state
2565     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2566 
2567     // Optimize test; set region slot 2
2568     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2569     mem_phi->init_req(2, mem);
2570   }
2571 
2572   // Make slow path call
2573   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2574                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2575                                   obj, box, NULL);
2576 
2577   extract_call_projections(call);
2578 
2579   // Slow path can only throw asynchronous exceptions, which are always
2580   // de-opted.  So the compiler thinks the slow-call can never throw an
2581   // exception.  If it DOES throw an exception we would need the debug
2582   // info removed first (since if it throws there is no monitor).
2583   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2584            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2585 
2586   // Capture slow path
2587   // disconnect fall-through projection from call and create a new one
2588   // hook up users of fall-through projection to region
2589   Node *slow_ctrl = _fallthroughproj->clone();
2590   transform_later(slow_ctrl);
2591   _igvn.hash_delete(_fallthroughproj);
2592   _fallthroughproj->disconnect_inputs(NULL, C);
2593   region->init_req(1, slow_ctrl);
2594   // region inputs are now complete
2595   transform_later(region);
2596   _igvn.replace_node(_fallthroughproj, region);
2597 
2598   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2599   mem_phi->init_req(1, memproj );
2600   transform_later(mem_phi);
2601   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2602 }
2603 
2604 //------------------------------expand_unlock_node----------------------
2605 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2606 
2607   Node* ctrl = unlock->in(TypeFunc::Control);
2608   Node* mem = unlock->in(TypeFunc::Memory);
2609   Node* obj = unlock->obj_node();
2610   Node* box = unlock->box_node();
2611 
2612   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2613 
2614   // No need for a null check on unlock
2615 
2616   // Make the merge point
2617   Node *region;
2618   Node *mem_phi;
2619 
2620   if (UseOptoBiasInlining) {
2621     // Check for biased locking unlock case, which is a no-op.
2622     // See the full description in MacroAssembler::biased_locking_exit().
2623     region  = new RegionNode(4);
2624     // create a Phi for the memory state
2625     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2626     mem_phi->init_req(3, mem);
2627 
2628     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2629     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2630                          markOopDesc::biased_lock_mask_in_place,
2631                          markOopDesc::biased_lock_pattern);
2632   } else {
2633     region  = new RegionNode(3);
2634     // create a Phi for the memory state
2635     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2636   }
2637 
2638   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2639   funlock = transform_later( funlock )->as_FastUnlock();
2640   // Optimize test; set region slot 2
2641   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2642   Node *thread = transform_later(new ThreadLocalNode());
2643 
2644   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2645                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2646                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2647 
2648   extract_call_projections(call);
2649 
2650   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2651            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2652 
2653   // No exceptions for unlocking
2654   // Capture slow path
2655   // disconnect fall-through projection from call and create a new one
2656   // hook up users of fall-through projection to region
2657   Node *slow_ctrl = _fallthroughproj->clone();
2658   transform_later(slow_ctrl);
2659   _igvn.hash_delete(_fallthroughproj);
2660   _fallthroughproj->disconnect_inputs(NULL, C);
2661   region->init_req(1, slow_ctrl);
2662   // region inputs are now complete
2663   transform_later(region);
2664   _igvn.replace_node(_fallthroughproj, region);
2665 
2666   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2667   mem_phi->init_req(1, memproj );
2668   mem_phi->init_req(2, mem);
2669   transform_later(mem_phi);
2670   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2671 }
2672 
2673 // A value type is returned from the call but we don't know its
2674 // type. Either we get a buffered value (and nothing needs to be done)
2675 // or one of the values being returned is the klass of the value type
2676 // and we need to allocate a value type instance of that type and
2677 // initialize it with other values being returned. In that case, we
2678 // first try a fast path allocation and initialize the value with the
2679 // value klass's pack handler or we fall back to a runtime call.
2680 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) {
2681   Node* ret = call->proj_out(TypeFunc::Parms);
2682   if (ret == NULL) {
2683     return;
2684   }
2685   assert(ret->bottom_type()->is_valuetypeptr()->is__Value(), "unexpected return type from MH intrinsic");
2686   const TypeFunc* tf = call->_tf;
2687   const TypeTuple* domain = OptoRuntime::store_value_type_fields_Type()->domain_cc();
2688   const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2689   call->_tf = new_tf;
2690   // Make sure the change of type is applied before projections are
2691   // processed by igvn
2692   _igvn.set_type(call, call->Value(&_igvn));
2693   _igvn.set_type(ret, ret->Value(&_igvn));
2694 
2695   // Before any new projection is added:
2696   CallProjections* projs = call->extract_projections(true, true);
2697 
2698   Node* ctl = new Node(1);
2699   Node* mem = new Node(1);
2700   Node* io = new Node(1);
2701   Node* ex_ctl = new Node(1);
2702   Node* ex_mem = new Node(1);
2703   Node* ex_io = new Node(1);
2704   Node* res = new Node(1);
2705 
2706   Node* cast = transform_later(new CastP2XNode(ctl, res));
2707   Node* mask = MakeConX(0x1);
2708   Node* masked = transform_later(new AndXNode(cast, mask));
2709   Node* cmp = transform_later(new CmpXNode(masked, mask));
2710   Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2711   IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN);
2712   transform_later(allocation_iff);
2713   Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff));
2714   Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff));
2715 
2716   Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeValueTypePtr::NOTNULL));
2717 
2718   Node* mask2 = MakeConX(-2);
2719   Node* masked2 = transform_later(new AndXNode(cast, mask2));
2720   Node* rawklassptr = transform_later(new CastX2PNode(masked2));
2721   Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeKlassPtr::OBJECT_OR_NULL));
2722 
2723   Node* slowpath_bol = NULL;
2724   Node* top_adr = NULL;
2725   Node* old_top = NULL;
2726   Node* new_top = NULL;
2727   if (UseTLAB) {
2728     Node* end_adr = NULL;
2729     set_eden_pointers(top_adr, end_adr);
2730     Node* end = make_load(ctl, mem, end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
2731     old_top = new LoadPNode(ctl, mem, top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered);
2732     transform_later(old_top);
2733     Node* layout_val = make_load(NULL, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT);
2734     Node* size_in_bytes = ConvI2X(layout_val);
2735     new_top = new AddPNode(top(), old_top, size_in_bytes);
2736     transform_later(new_top);
2737     Node* slowpath_cmp = new CmpPNode(new_top, end);
2738     transform_later(slowpath_cmp);
2739     slowpath_bol = new BoolNode(slowpath_cmp, BoolTest::ge);
2740     transform_later(slowpath_bol);
2741   } else {
2742     slowpath_bol = intcon(1);
2743     top_adr = top();
2744     old_top = top();
2745     new_top = top();
2746   }
2747   IfNode* slowpath_iff = new IfNode(allocation_ctl, slowpath_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
2748   transform_later(slowpath_iff);
2749 
2750   Node* slowpath_true = new IfTrueNode(slowpath_iff);
2751   transform_later(slowpath_true);
2752 
2753   CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_value_type_fields_Type(),
2754                                                          StubRoutines::store_value_type_fields_to_buf(),
2755                                                          "store_value_type_fields",
2756                                                          call->jvms()->bci(),
2757                                                          TypePtr::BOTTOM);
2758   slow_call->init_req(TypeFunc::Control, slowpath_true);
2759   slow_call->init_req(TypeFunc::Memory, mem);
2760   slow_call->init_req(TypeFunc::I_O, io);
2761   slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2762   slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
2763   slow_call->init_req(TypeFunc::Parms, res);
2764 
2765   Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control));
2766   Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory));
2767   Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O));
2768   Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms));
2769   Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2));
2770   Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci));
2771   Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci));
2772 
2773   Node* ex_r = new RegionNode(3);
2774   Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM);
2775   Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO);
2776   ex_r->init_req(1, slow_excp);
2777   ex_mem_phi->init_req(1, slow_mem);
2778   ex_io_phi->init_req(1, slow_io);
2779   ex_r->init_req(2, ex_ctl);
2780   ex_mem_phi->init_req(2, ex_mem);
2781   ex_io_phi->init_req(2, ex_io);
2782 
2783   transform_later(ex_r);
2784   transform_later(ex_mem_phi);
2785   transform_later(ex_io_phi);
2786 
2787   Node* slowpath_false = new IfFalseNode(slowpath_iff);
2788   transform_later(slowpath_false);
2789   Node* rawmem = new StorePNode(slowpath_false, mem, top_adr, TypeRawPtr::BOTTOM, new_top, MemNode::unordered);
2790   transform_later(rawmem);
2791   Node* mark_node = NULL;
2792   // For now only enable fast locking for non-array types
2793   if (UseBiasedLocking) {
2794     mark_node = make_load(slowpath_false, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2795   } else {
2796     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
2797   }
2798   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
2799   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
2800   if (UseCompressedClassPointers) {
2801     rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT);
2802   }
2803   Node* pack_handler = make_load(slowpath_false, rawmem, klass_node, in_bytes(ValueKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2804 
2805   CallLeafNoFPNode* handler_call = new CallLeafNoFPNode(OptoRuntime::pack_value_type_Type(),
2806                                                         NULL,
2807                                                         "pack handler",
2808                                                         TypeRawPtr::BOTTOM);
2809   handler_call->init_req(TypeFunc::Control, slowpath_false);
2810   handler_call->init_req(TypeFunc::Memory, rawmem);
2811   handler_call->init_req(TypeFunc::I_O, top());
2812   handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2813   handler_call->init_req(TypeFunc::ReturnAdr, top());
2814   handler_call->init_req(TypeFunc::Parms, pack_handler);
2815   handler_call->init_req(TypeFunc::Parms+1, old_top);
2816 
2817   // We don't know how many values are returned. This assumes the
2818   // worst case, that all available registers are used.
2819   for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2820     if (domain->field_at(i) == Type::HALF) {
2821       slow_call->init_req(i, top());
2822       handler_call->init_req(i+1, top());
2823       continue;
2824     }
2825     Node* proj = transform_later(new ProjNode(call, i));
2826     slow_call->init_req(i, proj);
2827     handler_call->init_req(i+1, proj);
2828   }
2829 
2830   // We can safepoint at that new call
2831   copy_call_debug_info(call, slow_call);
2832   transform_later(slow_call);
2833   transform_later(handler_call);
2834 
2835   Node* handler_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control));
2836   rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory));
2837   Node* slowpath_false_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms));
2838 
2839   MergeMemNode* slowpath_false_mem = MergeMemNode::make(mem);
2840   slowpath_false_mem->set_memory_at(Compile::AliasIdxRaw, rawmem);
2841   transform_later(slowpath_false_mem);
2842 
2843   Node* r = new RegionNode(4);
2844   Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2845   Node* io_phi = new PhiNode(r, Type::ABIO);
2846   Node* res_phi = new PhiNode(r, ret->bottom_type());
2847 
2848   r->init_req(1, no_allocation_ctl);
2849   mem_phi->init_req(1, mem);
2850   io_phi->init_req(1, io);
2851   res_phi->init_req(1, no_allocation_res);
2852   r->init_req(2, slow_norm);
2853   mem_phi->init_req(2, slow_mem);
2854   io_phi->init_req(2, slow_io);
2855   res_phi->init_req(2, slow_res);
2856   r->init_req(3, handler_ctl);
2857   mem_phi->init_req(3, slowpath_false_mem);
2858   io_phi->init_req(3, io);
2859   res_phi->init_req(3, slowpath_false_res);
2860 
2861   transform_later(r);
2862   transform_later(mem_phi);
2863   transform_later(io_phi);
2864   transform_later(res_phi);
2865 
2866   assert(projs->nb_resproj == 1, "unexpected number of results");
2867   _igvn.replace_in_uses(projs->fallthrough_catchproj, r);
2868   _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi);
2869   _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi);
2870   _igvn.replace_in_uses(projs->resproj[0], res_phi);
2871   _igvn.replace_in_uses(projs->catchall_catchproj, ex_r);
2872   _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi);
2873   _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi);
2874 
2875   _igvn.replace_node(ctl, projs->fallthrough_catchproj);
2876   _igvn.replace_node(mem, projs->fallthrough_memproj);
2877   _igvn.replace_node(io, projs->fallthrough_ioproj);
2878   _igvn.replace_node(res, projs->resproj[0]);
2879   _igvn.replace_node(ex_ctl, projs->catchall_catchproj);
2880   _igvn.replace_node(ex_mem, projs->catchall_memproj);
2881   _igvn.replace_node(ex_io, projs->catchall_ioproj);
2882  }
2883 
2884 //---------------------------eliminate_macro_nodes----------------------
2885 // Eliminate scalar replaced allocations and associated locks.
2886 void PhaseMacroExpand::eliminate_macro_nodes() {
2887   if (C->macro_count() == 0)
2888     return;
2889 
2890   // First, attempt to eliminate locks
2891   int cnt = C->macro_count();
2892   for (int i=0; i < cnt; i++) {
2893     Node *n = C->macro_node(i);
2894     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2895       // Before elimination mark all associated (same box and obj)
2896       // lock and unlock nodes.
2897       mark_eliminated_locking_nodes(n->as_AbstractLock());
2898     }
2899   }
2900   bool progress = true;
2901   while (progress) {
2902     progress = false;
2903     for (int i = C->macro_count(); i > 0; i--) {
2904       Node * n = C->macro_node(i-1);
2905       bool success = false;
2906       debug_only(int old_macro_count = C->macro_count(););
2907       if (n->is_AbstractLock()) {
2908         success = eliminate_locking_node(n->as_AbstractLock());
2909       }
2910       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2911       progress = progress || success;
2912     }
2913   }
2914   // Next, attempt to eliminate allocations
2915   _has_locks = false;
2916   progress = true;
2917   while (progress) {
2918     progress = false;
2919     for (int i = C->macro_count(); i > 0; i--) {
2920       Node * n = C->macro_node(i-1);
2921       bool success = false;
2922       debug_only(int old_macro_count = C->macro_count(););
2923       switch (n->class_id()) {
2924       case Node::Class_Allocate:
2925       case Node::Class_AllocateArray:
2926         success = eliminate_allocate_node(n->as_Allocate());
2927         break;
2928       case Node::Class_CallStaticJava: {
2929         CallStaticJavaNode* call = n->as_CallStaticJava();
2930         if (!call->method()->is_method_handle_intrinsic()) {
2931           success = eliminate_boxing_node(n->as_CallStaticJava());
2932         }
2933         break;
2934       }
2935       case Node::Class_Lock:
2936       case Node::Class_Unlock:
2937         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2938         _has_locks = true;
2939         break;
2940       case Node::Class_ArrayCopy:
2941         break;
2942       case Node::Class_OuterStripMinedLoop:
2943         break;
2944       default:
2945         assert(n->Opcode() == Op_LoopLimit ||
2946                n->Opcode() == Op_Opaque1   ||
2947                n->Opcode() == Op_Opaque2   ||
2948                n->Opcode() == Op_Opaque3, "unknown node type in macro list");
2949       }
2950       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2951       progress = progress || success;
2952     }
2953   }
2954 }
2955 
2956 //------------------------------expand_macro_nodes----------------------
2957 //  Returns true if a failure occurred.
2958 bool PhaseMacroExpand::expand_macro_nodes() {
2959   // Last attempt to eliminate macro nodes.
2960   eliminate_macro_nodes();
2961 
2962   // Make sure expansion will not cause node limit to be exceeded.
2963   // Worst case is a macro node gets expanded into about 200 nodes.
2964   // Allow 50% more for optimization.
2965   if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) )
2966     return true;
2967 
2968   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2969   bool progress = true;
2970   while (progress) {
2971     progress = false;
2972     for (int i = C->macro_count(); i > 0; i--) {
2973       Node * n = C->macro_node(i-1);
2974       bool success = false;
2975       debug_only(int old_macro_count = C->macro_count(););
2976       if (n->Opcode() == Op_LoopLimit) {
2977         // Remove it from macro list and put on IGVN worklist to optimize.
2978         C->remove_macro_node(n);
2979         _igvn._worklist.push(n);
2980         success = true;
2981       } else if (n->Opcode() == Op_CallStaticJava) {
2982         CallStaticJavaNode* call = n->as_CallStaticJava();
2983         if (!call->method()->is_method_handle_intrinsic()) {
2984           // Remove it from macro list and put on IGVN worklist to optimize.
2985           C->remove_macro_node(n);
2986           _igvn._worklist.push(n);
2987           success = true;
2988         }
2989       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2990         _igvn.replace_node(n, n->in(1));
2991         success = true;
2992 #if INCLUDE_RTM_OPT
2993       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2994         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2995         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2996         Node* cmp = n->unique_out();
2997 #ifdef ASSERT
2998         // Validate graph.
2999         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
3000         BoolNode* bol = cmp->unique_out()->as_Bool();
3001         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
3002                (bol->_test._test == BoolTest::ne), "");
3003         IfNode* ifn = bol->unique_out()->as_If();
3004         assert((ifn->outcnt() == 2) &&
3005                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
3006 #endif
3007         Node* repl = n->in(1);
3008         if (!_has_locks) {
3009           // Remove RTM state check if there are no locks in the code.
3010           // Replace input to compare the same value.
3011           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
3012         }
3013         _igvn.replace_node(n, repl);
3014         success = true;
3015 #endif
3016       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
3017         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
3018         C->remove_macro_node(n);
3019         success = true;
3020       }
3021       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
3022       progress = progress || success;
3023     }
3024   }
3025 
3026   // expand arraycopy "macro" nodes first
3027   // For ReduceBulkZeroing, we must first process all arraycopy nodes
3028   // before the allocate nodes are expanded.
3029   int macro_idx = C->macro_count() - 1;
3030   while (macro_idx >= 0) {
3031     Node * n = C->macro_node(macro_idx);
3032     assert(n->is_macro(), "only macro nodes expected here");
3033     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
3034       // node is unreachable, so don't try to expand it
3035       C->remove_macro_node(n);
3036     } else if (n->is_ArrayCopy()){
3037       int macro_count = C->macro_count();
3038       expand_arraycopy_node(n->as_ArrayCopy());
3039       assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3040     }
3041     if (C->failing())  return true;
3042     macro_idx --;
3043   }
3044 
3045   // expand "macro" nodes
3046   // nodes are removed from the macro list as they are processed
3047   while (C->macro_count() > 0) {
3048     int macro_count = C->macro_count();
3049     Node * n = C->macro_node(macro_count-1);
3050     assert(n->is_macro(), "only macro nodes expected here");
3051     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
3052       // node is unreachable, so don't try to expand it
3053       C->remove_macro_node(n);
3054       continue;
3055     }
3056     switch (n->class_id()) {
3057     case Node::Class_Allocate:
3058       expand_allocate(n->as_Allocate());
3059       break;
3060     case Node::Class_AllocateArray:
3061       expand_allocate_array(n->as_AllocateArray());
3062       break;
3063     case Node::Class_Lock:
3064       expand_lock_node(n->as_Lock());
3065       break;
3066     case Node::Class_Unlock:
3067       expand_unlock_node(n->as_Unlock());
3068       break;
3069     case Node::Class_CallStaticJava:
3070       expand_mh_intrinsic_return(n->as_CallStaticJava());
3071       C->remove_macro_node(n);
3072       break;
3073     default:
3074       assert(false, "unknown node type in macro list");
3075     }
3076     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3077     if (C->failing())  return true;
3078   }
3079 
3080   _igvn.set_delay_transform(false);
3081   _igvn.optimize();
3082   if (C->failing())  return true;
3083   return false;
3084 }