1 /*
   2  * Copyright (c) 1998, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledMethod.inline.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/icBuffer.hpp"
  32 #include "code/nmethod.hpp"
  33 #include "code/pcDesc.hpp"
  34 #include "code/scopeDesc.hpp"
  35 #include "code/vtableStubs.hpp"
  36 #include "compiler/compileBroker.hpp"
  37 #include "compiler/oopMap.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "logging/logStream.hpp"
  47 #include "memory/oopFactory.hpp"
  48 #include "memory/resourceArea.hpp"
  49 #include "oops/objArrayKlass.hpp"
  50 #include "oops/oop.inline.hpp"
  51 #include "oops/typeArrayOop.inline.hpp"
  52 #include "oops/valueArrayKlass.hpp"
  53 #include "opto/ad.hpp"
  54 #include "opto/addnode.hpp"
  55 #include "opto/callnode.hpp"
  56 #include "opto/cfgnode.hpp"
  57 #include "opto/graphKit.hpp"
  58 #include "opto/machnode.hpp"
  59 #include "opto/matcher.hpp"
  60 #include "opto/memnode.hpp"
  61 #include "opto/mulnode.hpp"
  62 #include "opto/runtime.hpp"
  63 #include "opto/subnode.hpp"
  64 #include "runtime/atomic.hpp"
  65 #include "runtime/frame.inline.hpp"
  66 #include "runtime/handles.inline.hpp"
  67 #include "runtime/interfaceSupport.inline.hpp"
  68 #include "runtime/javaCalls.hpp"
  69 #include "runtime/sharedRuntime.hpp"
  70 #include "runtime/signature.hpp"
  71 #include "runtime/threadCritical.hpp"
  72 #include "runtime/vframe.hpp"
  73 #include "runtime/vframeArray.hpp"
  74 #include "runtime/vframe_hp.hpp"
  75 #include "utilities/copy.hpp"
  76 #include "utilities/preserveException.hpp"
  77 
  78 
  79 // For debugging purposes:
  80 //  To force FullGCALot inside a runtime function, add the following two lines
  81 //
  82 //  Universe::release_fullgc_alot_dummy();
  83 //  MarkSweep::invoke(0, "Debugging");
  84 //
  85 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  86 
  87 
  88 
  89 
  90 // Compiled code entry points
  91 address OptoRuntime::_new_instance_Java                           = NULL;
  92 address OptoRuntime::_new_array_Java                              = NULL;
  93 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  94 address OptoRuntime::_multianewarray2_Java                        = NULL;
  95 address OptoRuntime::_multianewarray3_Java                        = NULL;
  96 address OptoRuntime::_multianewarray4_Java                        = NULL;
  97 address OptoRuntime::_multianewarray5_Java                        = NULL;
  98 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  99 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
 100 address OptoRuntime::_g1_wb_post_Java                             = NULL;
 101 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 102 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 103 address OptoRuntime::_monitor_notify_Java                         = NULL;
 104 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 105 address OptoRuntime::_rethrow_Java                                = NULL;
 106 
 107 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 108 address OptoRuntime::_register_finalizer_Java                     = NULL;
 109 
 110 ExceptionBlob* OptoRuntime::_exception_blob;
 111 
 112 // This should be called in an assertion at the start of OptoRuntime routines
 113 // which are entered from compiled code (all of them)
 114 #ifdef ASSERT
 115 static bool check_compiled_frame(JavaThread* thread) {
 116   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 117   RegisterMap map(thread, false);
 118   frame caller = thread->last_frame().sender(&map);
 119   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 120   return true;
 121 }
 122 #endif // ASSERT
 123 
 124 
 125 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 126   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 127   if (var == NULL) { return false; }
 128 
 129 bool OptoRuntime::generate(ciEnv* env) {
 130 
 131   generate_exception_blob();
 132 
 133   // Note: tls: Means fetching the return oop out of the thread-local storage
 134   //
 135   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 136   // -------------------------------------------------------------------------------------------------------------------------------
 137   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 138   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 139   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 140   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 142   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 143   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 144   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 145 #if INCLUDE_G1GC
 146   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 147   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 148 #endif // INCLUDE_G1GC
 149   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 150   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 151   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 152   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 153 
 154   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 155   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 156 
 157   return true;
 158 }
 159 
 160 #undef gen
 161 
 162 
 163 // Helper method to do generation of RunTimeStub's
 164 address OptoRuntime::generate_stub( ciEnv* env,
 165                                     TypeFunc_generator gen, address C_function,
 166                                     const char *name, int is_fancy_jump,
 167                                     bool pass_tls,
 168                                     bool save_argument_registers,
 169                                     bool return_pc) {
 170 
 171   // Matching the default directive, we currently have no method to match.
 172   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 173   ResourceMark rm;
 174   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 175   DirectivesStack::release(directive);
 176   return  C.stub_entry_point();
 177 }
 178 
 179 const char* OptoRuntime::stub_name(address entry) {
 180 #ifndef PRODUCT
 181   CodeBlob* cb = CodeCache::find_blob(entry);
 182   RuntimeStub* rs =(RuntimeStub *)cb;
 183   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 184   return rs->name();
 185 #else
 186   // Fast implementation for product mode (maybe it should be inlined too)
 187   return "runtime stub";
 188 #endif
 189 }
 190 
 191 
 192 //=============================================================================
 193 // Opto compiler runtime routines
 194 //=============================================================================
 195 
 196 
 197 //=============================allocation======================================
 198 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 199 // and try allocation again.
 200 
 201 // object allocation
 202 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 203   JRT_BLOCK;
 204 #ifndef PRODUCT
 205   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 206 #endif
 207   assert(check_compiled_frame(thread), "incorrect caller");
 208 
 209   // These checks are cheap to make and support reflective allocation.
 210   int lh = klass->layout_helper();
 211   if (Klass::layout_helper_needs_slow_path(lh) || !InstanceKlass::cast(klass)->is_initialized()) {
 212     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 213     klass->check_valid_for_instantiation(false, THREAD);
 214     if (!HAS_PENDING_EXCEPTION) {
 215       InstanceKlass::cast(klass)->initialize(THREAD);
 216     }
 217   }
 218 
 219   if (!HAS_PENDING_EXCEPTION) {
 220     // Scavenge and allocate an instance.
 221     Handle holder(THREAD, klass->klass_holder()); // keep the klass alive
 222     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 223     thread->set_vm_result(result);
 224 
 225     // Pass oops back through thread local storage.  Our apparent type to Java
 226     // is that we return an oop, but we can block on exit from this routine and
 227     // a GC can trash the oop in C's return register.  The generated stub will
 228     // fetch the oop from TLS after any possible GC.
 229   }
 230 
 231   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 232   JRT_BLOCK_END;
 233 
 234   // inform GC that we won't do card marks for initializing writes.
 235   SharedRuntime::on_slowpath_allocation_exit(thread);
 236 JRT_END
 237 
 238 
 239 // array allocation
 240 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 241   JRT_BLOCK;
 242 #ifndef PRODUCT
 243   SharedRuntime::_new_array_ctr++;            // new array requires GC
 244 #endif
 245   assert(check_compiled_frame(thread), "incorrect caller");
 246 
 247   // Scavenge and allocate an instance.
 248   oop result;
 249 
 250   if (array_type->is_valueArray_klass()) {
 251     // TODO refactor all these checks, is_typeArray_klass should not be true for a value type array
 252     // TODO use oopFactory::new_array
 253     Klass* elem_type = ValueArrayKlass::cast(array_type)->element_klass();
 254     result = oopFactory::new_valueArray(elem_type, len, THREAD);
 255   } else if (array_type->is_typeArray_klass()) {
 256     // The oopFactory likes to work with the element type.
 257     // (We could bypass the oopFactory, since it doesn't add much value.)
 258     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 259     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 260   } else {
 261     // Although the oopFactory likes to work with the elem_type,
 262     // the compiler prefers the array_type, since it must already have
 263     // that latter value in hand for the fast path.
 264     Handle holder(THREAD, array_type->klass_holder()); // keep the array klass alive
 265     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 266     result = oopFactory::new_objArray(elem_type, len, THREAD);
 267   }
 268 
 269   // Pass oops back through thread local storage.  Our apparent type to Java
 270   // is that we return an oop, but we can block on exit from this routine and
 271   // a GC can trash the oop in C's return register.  The generated stub will
 272   // fetch the oop from TLS after any possible GC.
 273   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 274   thread->set_vm_result(result);
 275   JRT_BLOCK_END;
 276 
 277   // inform GC that we won't do card marks for initializing writes.
 278   SharedRuntime::on_slowpath_allocation_exit(thread);
 279 JRT_END
 280 
 281 // array allocation without zeroing
 282 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 283   JRT_BLOCK;
 284 #ifndef PRODUCT
 285   SharedRuntime::_new_array_ctr++;            // new array requires GC
 286 #endif
 287   assert(check_compiled_frame(thread), "incorrect caller");
 288 
 289   // Scavenge and allocate an instance.
 290   oop result;
 291 
 292   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 293   // The oopFactory likes to work with the element type.
 294   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 295   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 296 
 297   // Pass oops back through thread local storage.  Our apparent type to Java
 298   // is that we return an oop, but we can block on exit from this routine and
 299   // a GC can trash the oop in C's return register.  The generated stub will
 300   // fetch the oop from TLS after any possible GC.
 301   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 302   thread->set_vm_result(result);
 303   JRT_BLOCK_END;
 304 
 305 
 306   // inform GC that we won't do card marks for initializing writes.
 307   SharedRuntime::on_slowpath_allocation_exit(thread);
 308 
 309   oop result = thread->vm_result();
 310   if ((len > 0) && (result != NULL) &&
 311       is_deoptimized_caller_frame(thread)) {
 312     // Zero array here if the caller is deoptimized.
 313     int size = ((typeArrayOop)result)->object_size();
 314     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 315     const size_t hs = arrayOopDesc::header_size(elem_type);
 316     // Align to next 8 bytes to avoid trashing arrays's length.
 317     const size_t aligned_hs = align_object_offset(hs);
 318     HeapWord* obj = (HeapWord*)result;
 319     if (aligned_hs > hs) {
 320       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 321     }
 322     // Optimized zeroing.
 323     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 324   }
 325 
 326 JRT_END
 327 
 328 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 329 
 330 // multianewarray for 2 dimensions
 331 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 332 #ifndef PRODUCT
 333   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 334 #endif
 335   assert(check_compiled_frame(thread), "incorrect caller");
 336   assert(elem_type->is_klass(), "not a class");
 337   jint dims[2];
 338   dims[0] = len1;
 339   dims[1] = len2;
 340   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 341   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 342   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 343   thread->set_vm_result(obj);
 344 JRT_END
 345 
 346 // multianewarray for 3 dimensions
 347 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 348 #ifndef PRODUCT
 349   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 350 #endif
 351   assert(check_compiled_frame(thread), "incorrect caller");
 352   assert(elem_type->is_klass(), "not a class");
 353   jint dims[3];
 354   dims[0] = len1;
 355   dims[1] = len2;
 356   dims[2] = len3;
 357   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 358   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 359   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 360   thread->set_vm_result(obj);
 361 JRT_END
 362 
 363 // multianewarray for 4 dimensions
 364 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 365 #ifndef PRODUCT
 366   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 367 #endif
 368   assert(check_compiled_frame(thread), "incorrect caller");
 369   assert(elem_type->is_klass(), "not a class");
 370   jint dims[4];
 371   dims[0] = len1;
 372   dims[1] = len2;
 373   dims[2] = len3;
 374   dims[3] = len4;
 375   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 376   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 377   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 378   thread->set_vm_result(obj);
 379 JRT_END
 380 
 381 // multianewarray for 5 dimensions
 382 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 383 #ifndef PRODUCT
 384   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 385 #endif
 386   assert(check_compiled_frame(thread), "incorrect caller");
 387   assert(elem_type->is_klass(), "not a class");
 388   jint dims[5];
 389   dims[0] = len1;
 390   dims[1] = len2;
 391   dims[2] = len3;
 392   dims[3] = len4;
 393   dims[4] = len5;
 394   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 395   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 396   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 397   thread->set_vm_result(obj);
 398 JRT_END
 399 
 400 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 401   assert(check_compiled_frame(thread), "incorrect caller");
 402   assert(elem_type->is_klass(), "not a class");
 403   assert(oop(dims)->is_typeArray(), "not an array");
 404 
 405   ResourceMark rm;
 406   jint len = dims->length();
 407   assert(len > 0, "Dimensions array should contain data");
 408   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 409   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 410   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 411 
 412   Handle holder(THREAD, elem_type->klass_holder()); // keep the klass alive
 413   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 414   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 415   thread->set_vm_result(obj);
 416 JRT_END
 417 
 418 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 419 
 420   // Very few notify/notifyAll operations find any threads on the waitset, so
 421   // the dominant fast-path is to simply return.
 422   // Relatedly, it's critical that notify/notifyAll be fast in order to
 423   // reduce lock hold times.
 424   if (!SafepointSynchronize::is_synchronizing()) {
 425     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 426       return;
 427     }
 428   }
 429 
 430   // This is the case the fast-path above isn't provisioned to handle.
 431   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 432   // (The fast-path is just a degenerate variant of the slow-path).
 433   // Perform the dreaded state transition and pass control into the slow-path.
 434   JRT_BLOCK;
 435   Handle h_obj(THREAD, obj);
 436   ObjectSynchronizer::notify(h_obj, CHECK);
 437   JRT_BLOCK_END;
 438 JRT_END
 439 
 440 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 441 
 442   if (!SafepointSynchronize::is_synchronizing() ) {
 443     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 444       return;
 445     }
 446   }
 447 
 448   // This is the case the fast-path above isn't provisioned to handle.
 449   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 450   // (The fast-path is just a degenerate variant of the slow-path).
 451   // Perform the dreaded state transition and pass control into the slow-path.
 452   JRT_BLOCK;
 453   Handle h_obj(THREAD, obj);
 454   ObjectSynchronizer::notifyall(h_obj, CHECK);
 455   JRT_BLOCK_END;
 456 JRT_END
 457 
 458 const TypeFunc *OptoRuntime::new_instance_Type() {
 459   // create input type (domain)
 460   const Type **fields = TypeTuple::fields(1);
 461   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 462   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 463 
 464   // create result type (range)
 465   fields = TypeTuple::fields(1);
 466   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 467 
 468   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 469 
 470   return TypeFunc::make(domain, range);
 471 }
 472 
 473 
 474 const TypeFunc *OptoRuntime::athrow_Type() {
 475   // create input type (domain)
 476   const Type **fields = TypeTuple::fields(1);
 477   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 478   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 479 
 480   // create result type (range)
 481   fields = TypeTuple::fields(0);
 482 
 483   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 484 
 485   return TypeFunc::make(domain, range);
 486 }
 487 
 488 
 489 const TypeFunc *OptoRuntime::new_array_Type() {
 490   // create input type (domain)
 491   const Type **fields = TypeTuple::fields(2);
 492   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 493   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 494   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 495 
 496   // create result type (range)
 497   fields = TypeTuple::fields(1);
 498   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 499 
 500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 501 
 502   return TypeFunc::make(domain, range);
 503 }
 504 
 505 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 506   // create input type (domain)
 507   const int nargs = ndim + 1;
 508   const Type **fields = TypeTuple::fields(nargs);
 509   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 510   for( int i = 1; i < nargs; i++ )
 511     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 512   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 513 
 514   // create result type (range)
 515   fields = TypeTuple::fields(1);
 516   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 517   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 518 
 519   return TypeFunc::make(domain, range);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 523   return multianewarray_Type(2);
 524 }
 525 
 526 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 527   return multianewarray_Type(3);
 528 }
 529 
 530 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 531   return multianewarray_Type(4);
 532 }
 533 
 534 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 535   return multianewarray_Type(5);
 536 }
 537 
 538 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 539   // create input type (domain)
 540   const Type **fields = TypeTuple::fields(2);
 541   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 542   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 543   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 544 
 545   // create result type (range)
 546   fields = TypeTuple::fields(1);
 547   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 548   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 549 
 550   return TypeFunc::make(domain, range);
 551 }
 552 
 553 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 554   const Type **fields = TypeTuple::fields(2);
 555   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 556   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 557   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 558 
 559   // create result type (range)
 560   fields = TypeTuple::fields(0);
 561   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 562 
 563   return TypeFunc::make(domain, range);
 564 }
 565 
 566 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 567 
 568   const Type **fields = TypeTuple::fields(2);
 569   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 570   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 571   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 572 
 573   // create result type (range)
 574   fields = TypeTuple::fields(0);
 575   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 576 
 577   return TypeFunc::make(domain, range);
 578 }
 579 
 580 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 581   // create input type (domain)
 582   const Type **fields = TypeTuple::fields(1);
 583   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 584   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 585 
 586   // create result type (range)
 587   fields = TypeTuple::fields(0);
 588   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 589 
 590   return TypeFunc::make(domain, range);
 591 }
 592 
 593 //-----------------------------------------------------------------------------
 594 // Monitor Handling
 595 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 596   // create input type (domain)
 597   const Type **fields = TypeTuple::fields(2);
 598   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 599   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 600   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 601 
 602   // create result type (range)
 603   fields = TypeTuple::fields(0);
 604 
 605   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 606 
 607   return TypeFunc::make(domain, range);
 608 }
 609 
 610 
 611 //-----------------------------------------------------------------------------
 612 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 613   // create input type (domain)
 614   const Type **fields = TypeTuple::fields(3);
 615   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 616   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 617   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 618   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 619 
 620   // create result type (range)
 621   fields = TypeTuple::fields(0);
 622 
 623   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 624 
 625   return TypeFunc::make(domain, range);
 626 }
 627 
 628 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 629   // create input type (domain)
 630   const Type **fields = TypeTuple::fields(1);
 631   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 632   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 633 
 634   // create result type (range)
 635   fields = TypeTuple::fields(0);
 636   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 637   return TypeFunc::make(domain, range);
 638 }
 639 
 640 const TypeFunc* OptoRuntime::flush_windows_Type() {
 641   // create input type (domain)
 642   const Type** fields = TypeTuple::fields(1);
 643   fields[TypeFunc::Parms+0] = NULL; // void
 644   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 645 
 646   // create result type
 647   fields = TypeTuple::fields(1);
 648   fields[TypeFunc::Parms+0] = NULL; // void
 649   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 650 
 651   return TypeFunc::make(domain, range);
 652 }
 653 
 654 const TypeFunc* OptoRuntime::l2f_Type() {
 655   // create input type (domain)
 656   const Type **fields = TypeTuple::fields(2);
 657   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 658   fields[TypeFunc::Parms+1] = Type::HALF;
 659   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 660 
 661   // create result type (range)
 662   fields = TypeTuple::fields(1);
 663   fields[TypeFunc::Parms+0] = Type::FLOAT;
 664   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 665 
 666   return TypeFunc::make(domain, range);
 667 }
 668 
 669 const TypeFunc* OptoRuntime::modf_Type() {
 670   const Type **fields = TypeTuple::fields(2);
 671   fields[TypeFunc::Parms+0] = Type::FLOAT;
 672   fields[TypeFunc::Parms+1] = Type::FLOAT;
 673   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 674 
 675   // create result type (range)
 676   fields = TypeTuple::fields(1);
 677   fields[TypeFunc::Parms+0] = Type::FLOAT;
 678 
 679   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 680 
 681   return TypeFunc::make(domain, range);
 682 }
 683 
 684 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 685   // create input type (domain)
 686   const Type **fields = TypeTuple::fields(2);
 687   // Symbol* name of class to be loaded
 688   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 689   fields[TypeFunc::Parms+1] = Type::HALF;
 690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   // create result type (range)
 693   fields = TypeTuple::fields(2);
 694   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 695   fields[TypeFunc::Parms+1] = Type::HALF;
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 702   const Type **fields = TypeTuple::fields(4);
 703   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 704   fields[TypeFunc::Parms+1] = Type::HALF;
 705   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 706   fields[TypeFunc::Parms+3] = Type::HALF;
 707   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 708 
 709   // create result type (range)
 710   fields = TypeTuple::fields(2);
 711   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 712   fields[TypeFunc::Parms+1] = Type::HALF;
 713   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 714 
 715   return TypeFunc::make(domain, range);
 716 }
 717 
 718 //-------------- currentTimeMillis, currentTimeNanos, etc
 719 
 720 const TypeFunc* OptoRuntime::void_long_Type() {
 721   // create input type (domain)
 722   const Type **fields = TypeTuple::fields(0);
 723   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 724 
 725   // create result type (range)
 726   fields = TypeTuple::fields(2);
 727   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 728   fields[TypeFunc::Parms+1] = Type::HALF;
 729   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 730 
 731   return TypeFunc::make(domain, range);
 732 }
 733 
 734 // arraycopy stub variations:
 735 enum ArrayCopyType {
 736   ac_fast,                      // void(ptr, ptr, size_t)
 737   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 738   ac_slow,                      // void(ptr, int, ptr, int, int)
 739   ac_generic                    //  int(ptr, int, ptr, int, int)
 740 };
 741 
 742 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 743   // create input type (domain)
 744   int num_args      = (act == ac_fast ? 3 : 5);
 745   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 746   int argcnt = num_args;
 747   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 748   const Type** fields = TypeTuple::fields(argcnt);
 749   int argp = TypeFunc::Parms;
 750   fields[argp++] = TypePtr::NOTNULL;    // src
 751   if (num_size_args == 0) {
 752     fields[argp++] = TypeInt::INT;      // src_pos
 753   }
 754   fields[argp++] = TypePtr::NOTNULL;    // dest
 755   if (num_size_args == 0) {
 756     fields[argp++] = TypeInt::INT;      // dest_pos
 757     fields[argp++] = TypeInt::INT;      // length
 758   }
 759   while (num_size_args-- > 0) {
 760     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 761     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 762   }
 763   if (act == ac_checkcast) {
 764     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 765   }
 766   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 767   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 768 
 769   // create result type if needed
 770   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 771   fields = TypeTuple::fields(1);
 772   if (retcnt == 0)
 773     fields[TypeFunc::Parms+0] = NULL; // void
 774   else
 775     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 776   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 777   return TypeFunc::make(domain, range);
 778 }
 779 
 780 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 781   // This signature is simple:  Two base pointers and a size_t.
 782   return make_arraycopy_Type(ac_fast);
 783 }
 784 
 785 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 786   // An extension of fast_arraycopy_Type which adds type checking.
 787   return make_arraycopy_Type(ac_checkcast);
 788 }
 789 
 790 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 791   // This signature is exactly the same as System.arraycopy.
 792   // There are no intptr_t (int/long) arguments.
 793   return make_arraycopy_Type(ac_slow);
 794 }
 795 
 796 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 797   // This signature is like System.arraycopy, except that it returns status.
 798   return make_arraycopy_Type(ac_generic);
 799 }
 800 
 801 
 802 const TypeFunc* OptoRuntime::array_fill_Type() {
 803   const Type** fields;
 804   int argp = TypeFunc::Parms;
 805   // create input type (domain): pointer, int, size_t
 806   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 807   fields[argp++] = TypePtr::NOTNULL;
 808   fields[argp++] = TypeInt::INT;
 809   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 810   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 811   const TypeTuple *domain = TypeTuple::make(argp, fields);
 812 
 813   // create result type
 814   fields = TypeTuple::fields(1);
 815   fields[TypeFunc::Parms+0] = NULL; // void
 816   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 817 
 818   return TypeFunc::make(domain, range);
 819 }
 820 
 821 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 822 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 823   // create input type (domain)
 824   int num_args      = 3;
 825   if (Matcher::pass_original_key_for_aes()) {
 826     num_args = 4;
 827   }
 828   int argcnt = num_args;
 829   const Type** fields = TypeTuple::fields(argcnt);
 830   int argp = TypeFunc::Parms;
 831   fields[argp++] = TypePtr::NOTNULL;    // src
 832   fields[argp++] = TypePtr::NOTNULL;    // dest
 833   fields[argp++] = TypePtr::NOTNULL;    // k array
 834   if (Matcher::pass_original_key_for_aes()) {
 835     fields[argp++] = TypePtr::NOTNULL;    // original k array
 836   }
 837   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 838   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 839 
 840   // no result type needed
 841   fields = TypeTuple::fields(1);
 842   fields[TypeFunc::Parms+0] = NULL; // void
 843   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 844   return TypeFunc::make(domain, range);
 845 }
 846 
 847 /**
 848  * int updateBytesCRC32(int crc, byte* b, int len)
 849  */
 850 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 851   // create input type (domain)
 852   int num_args      = 3;
 853   int argcnt = num_args;
 854   const Type** fields = TypeTuple::fields(argcnt);
 855   int argp = TypeFunc::Parms;
 856   fields[argp++] = TypeInt::INT;        // crc
 857   fields[argp++] = TypePtr::NOTNULL;    // src
 858   fields[argp++] = TypeInt::INT;        // len
 859   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 860   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 861 
 862   // result type needed
 863   fields = TypeTuple::fields(1);
 864   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 865   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 866   return TypeFunc::make(domain, range);
 867 }
 868 
 869 /**
 870  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 871  */
 872 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 873   // create input type (domain)
 874   int num_args      = 4;
 875   int argcnt = num_args;
 876   const Type** fields = TypeTuple::fields(argcnt);
 877   int argp = TypeFunc::Parms;
 878   fields[argp++] = TypeInt::INT;        // crc
 879   fields[argp++] = TypePtr::NOTNULL;    // buf
 880   fields[argp++] = TypeInt::INT;        // len
 881   fields[argp++] = TypePtr::NOTNULL;    // table
 882   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 883   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 884 
 885   // result type needed
 886   fields = TypeTuple::fields(1);
 887   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 888   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 889   return TypeFunc::make(domain, range);
 890 }
 891 
 892 /**
 893 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 894 */
 895 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 896   // create input type (domain)
 897   int num_args      = 3;
 898   int argcnt = num_args;
 899   const Type** fields = TypeTuple::fields(argcnt);
 900   int argp = TypeFunc::Parms;
 901   fields[argp++] = TypeInt::INT;        // crc
 902   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 903   fields[argp++] = TypeInt::INT;        // len
 904   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 905   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 906 
 907   // result type needed
 908   fields = TypeTuple::fields(1);
 909   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 910   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 911   return TypeFunc::make(domain, range);
 912 }
 913 
 914 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 915 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 916   // create input type (domain)
 917   int num_args      = 5;
 918   if (Matcher::pass_original_key_for_aes()) {
 919     num_args = 6;
 920   }
 921   int argcnt = num_args;
 922   const Type** fields = TypeTuple::fields(argcnt);
 923   int argp = TypeFunc::Parms;
 924   fields[argp++] = TypePtr::NOTNULL;    // src
 925   fields[argp++] = TypePtr::NOTNULL;    // dest
 926   fields[argp++] = TypePtr::NOTNULL;    // k array
 927   fields[argp++] = TypePtr::NOTNULL;    // r array
 928   fields[argp++] = TypeInt::INT;        // src len
 929   if (Matcher::pass_original_key_for_aes()) {
 930     fields[argp++] = TypePtr::NOTNULL;    // original k array
 931   }
 932   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 933   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 934 
 935   // returning cipher len (int)
 936   fields = TypeTuple::fields(1);
 937   fields[TypeFunc::Parms+0] = TypeInt::INT;
 938   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 939   return TypeFunc::make(domain, range);
 940 }
 941 
 942 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 943 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 944   // create input type (domain)
 945   int num_args = 7;
 946   if (Matcher::pass_original_key_for_aes()) {
 947     num_args = 8;
 948   }
 949   int argcnt = num_args;
 950   const Type** fields = TypeTuple::fields(argcnt);
 951   int argp = TypeFunc::Parms;
 952   fields[argp++] = TypePtr::NOTNULL; // src
 953   fields[argp++] = TypePtr::NOTNULL; // dest
 954   fields[argp++] = TypePtr::NOTNULL; // k array
 955   fields[argp++] = TypePtr::NOTNULL; // counter array
 956   fields[argp++] = TypeInt::INT; // src len
 957   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 958   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 959   if (Matcher::pass_original_key_for_aes()) {
 960     fields[argp++] = TypePtr::NOTNULL; // original k array
 961   }
 962   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 963   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 964   // returning cipher len (int)
 965   fields = TypeTuple::fields(1);
 966   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 967   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 968   return TypeFunc::make(domain, range);
 969 }
 970 
 971 /*
 972  * void implCompress(byte[] buf, int ofs)
 973  */
 974 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 975   // create input type (domain)
 976   int num_args = 2;
 977   int argcnt = num_args;
 978   const Type** fields = TypeTuple::fields(argcnt);
 979   int argp = TypeFunc::Parms;
 980   fields[argp++] = TypePtr::NOTNULL; // buf
 981   fields[argp++] = TypePtr::NOTNULL; // state
 982   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 983   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 984 
 985   // no result type needed
 986   fields = TypeTuple::fields(1);
 987   fields[TypeFunc::Parms+0] = NULL; // void
 988   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 989   return TypeFunc::make(domain, range);
 990 }
 991 
 992 /*
 993  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
 994  */
 995 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
 996   // create input type (domain)
 997   int num_args = 4;
 998   int argcnt = num_args;
 999   const Type** fields = TypeTuple::fields(argcnt);
1000   int argp = TypeFunc::Parms;
1001   fields[argp++] = TypePtr::NOTNULL; // buf
1002   fields[argp++] = TypePtr::NOTNULL; // state
1003   fields[argp++] = TypeInt::INT;     // ofs
1004   fields[argp++] = TypeInt::INT;     // limit
1005   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1006   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1007 
1008   // returning ofs (int)
1009   fields = TypeTuple::fields(1);
1010   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1011   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1012   return TypeFunc::make(domain, range);
1013 }
1014 
1015 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1016   // create input type (domain)
1017   int num_args      = 6;
1018   int argcnt = num_args;
1019   const Type** fields = TypeTuple::fields(argcnt);
1020   int argp = TypeFunc::Parms;
1021   fields[argp++] = TypePtr::NOTNULL;    // x
1022   fields[argp++] = TypeInt::INT;        // xlen
1023   fields[argp++] = TypePtr::NOTNULL;    // y
1024   fields[argp++] = TypeInt::INT;        // ylen
1025   fields[argp++] = TypePtr::NOTNULL;    // z
1026   fields[argp++] = TypeInt::INT;        // zlen
1027   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1028   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1029 
1030   // no result type needed
1031   fields = TypeTuple::fields(1);
1032   fields[TypeFunc::Parms+0] = NULL;
1033   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1034   return TypeFunc::make(domain, range);
1035 }
1036 
1037 const TypeFunc* OptoRuntime::squareToLen_Type() {
1038   // create input type (domain)
1039   int num_args      = 4;
1040   int argcnt = num_args;
1041   const Type** fields = TypeTuple::fields(argcnt);
1042   int argp = TypeFunc::Parms;
1043   fields[argp++] = TypePtr::NOTNULL;    // x
1044   fields[argp++] = TypeInt::INT;        // len
1045   fields[argp++] = TypePtr::NOTNULL;    // z
1046   fields[argp++] = TypeInt::INT;        // zlen
1047   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1048   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1049 
1050   // no result type needed
1051   fields = TypeTuple::fields(1);
1052   fields[TypeFunc::Parms+0] = NULL;
1053   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1054   return TypeFunc::make(domain, range);
1055 }
1056 
1057 // for mulAdd calls, 2 pointers and 3 ints, returning int
1058 const TypeFunc* OptoRuntime::mulAdd_Type() {
1059   // create input type (domain)
1060   int num_args      = 5;
1061   int argcnt = num_args;
1062   const Type** fields = TypeTuple::fields(argcnt);
1063   int argp = TypeFunc::Parms;
1064   fields[argp++] = TypePtr::NOTNULL;    // out
1065   fields[argp++] = TypePtr::NOTNULL;    // in
1066   fields[argp++] = TypeInt::INT;        // offset
1067   fields[argp++] = TypeInt::INT;        // len
1068   fields[argp++] = TypeInt::INT;        // k
1069   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1070   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1071 
1072   // returning carry (int)
1073   fields = TypeTuple::fields(1);
1074   fields[TypeFunc::Parms+0] = TypeInt::INT;
1075   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1076   return TypeFunc::make(domain, range);
1077 }
1078 
1079 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1080   // create input type (domain)
1081   int num_args      = 7;
1082   int argcnt = num_args;
1083   const Type** fields = TypeTuple::fields(argcnt);
1084   int argp = TypeFunc::Parms;
1085   fields[argp++] = TypePtr::NOTNULL;    // a
1086   fields[argp++] = TypePtr::NOTNULL;    // b
1087   fields[argp++] = TypePtr::NOTNULL;    // n
1088   fields[argp++] = TypeInt::INT;        // len
1089   fields[argp++] = TypeLong::LONG;      // inv
1090   fields[argp++] = Type::HALF;
1091   fields[argp++] = TypePtr::NOTNULL;    // result
1092   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1093   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1094 
1095   // result type needed
1096   fields = TypeTuple::fields(1);
1097   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1098 
1099   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1100   return TypeFunc::make(domain, range);
1101 }
1102 
1103 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1104   // create input type (domain)
1105   int num_args      = 6;
1106   int argcnt = num_args;
1107   const Type** fields = TypeTuple::fields(argcnt);
1108   int argp = TypeFunc::Parms;
1109   fields[argp++] = TypePtr::NOTNULL;    // a
1110   fields[argp++] = TypePtr::NOTNULL;    // n
1111   fields[argp++] = TypeInt::INT;        // len
1112   fields[argp++] = TypeLong::LONG;      // inv
1113   fields[argp++] = Type::HALF;
1114   fields[argp++] = TypePtr::NOTNULL;    // result
1115   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1116   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1117 
1118   // result type needed
1119   fields = TypeTuple::fields(1);
1120   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1121 
1122   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1123   return TypeFunc::make(domain, range);
1124 }
1125 
1126 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1127   // create input type (domain)
1128   int num_args = 4;
1129   int argcnt = num_args;
1130   const Type** fields = TypeTuple::fields(argcnt);
1131   int argp = TypeFunc::Parms;
1132   fields[argp++] = TypePtr::NOTNULL;    // obja
1133   fields[argp++] = TypePtr::NOTNULL;    // objb
1134   fields[argp++] = TypeInt::INT;        // length, number of elements
1135   fields[argp++] = TypeInt::INT;        // log2scale, element size
1136   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1137   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1138 
1139   //return mismatch index (int)
1140   fields = TypeTuple::fields(1);
1141   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1142   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1143   return TypeFunc::make(domain, range);
1144 }
1145 
1146 // GHASH block processing
1147 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1148     int argcnt = 4;
1149 
1150     const Type** fields = TypeTuple::fields(argcnt);
1151     int argp = TypeFunc::Parms;
1152     fields[argp++] = TypePtr::NOTNULL;    // state
1153     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1154     fields[argp++] = TypePtr::NOTNULL;    // data
1155     fields[argp++] = TypeInt::INT;        // blocks
1156     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1157     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1158 
1159     // result type needed
1160     fields = TypeTuple::fields(1);
1161     fields[TypeFunc::Parms+0] = NULL; // void
1162     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1163     return TypeFunc::make(domain, range);
1164 }
1165 
1166 //------------- Interpreter state access for on stack replacement
1167 const TypeFunc* OptoRuntime::osr_end_Type() {
1168   // create input type (domain)
1169   const Type **fields = TypeTuple::fields(1);
1170   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1171   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1172 
1173   // create result type
1174   fields = TypeTuple::fields(1);
1175   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1176   fields[TypeFunc::Parms+0] = NULL; // void
1177   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1178   return TypeFunc::make(domain, range);
1179 }
1180 
1181 //-------------- methodData update helpers
1182 
1183 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1184   // create input type (domain)
1185   const Type **fields = TypeTuple::fields(2);
1186   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1187   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1188   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1189 
1190   // create result type
1191   fields = TypeTuple::fields(1);
1192   fields[TypeFunc::Parms+0] = NULL; // void
1193   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1194   return TypeFunc::make(domain, range);
1195 }
1196 
1197 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1198   if (receiver == NULL) return;
1199   Klass* receiver_klass = receiver->klass();
1200 
1201   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1202   int empty_row = -1;           // free row, if any is encountered
1203 
1204   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1205   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1206     // if (vc->receiver(row) == receiver_klass)
1207     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1208     intptr_t row_recv = *(mdp + receiver_off);
1209     if (row_recv == (intptr_t) receiver_klass) {
1210       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1211       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1212       *(mdp + count_off) += DataLayout::counter_increment;
1213       return;
1214     } else if (row_recv == 0) {
1215       // else if (vc->receiver(row) == NULL)
1216       empty_row = (int) row;
1217     }
1218   }
1219 
1220   if (empty_row != -1) {
1221     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1222     // vc->set_receiver(empty_row, receiver_klass);
1223     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1224     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1225     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1226     *(mdp + count_off) = DataLayout::counter_increment;
1227   } else {
1228     // Receiver did not match any saved receiver and there is no empty row for it.
1229     // Increment total counter to indicate polymorphic case.
1230     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1231     *count_p += DataLayout::counter_increment;
1232   }
1233 JRT_END
1234 
1235 //-------------------------------------------------------------------------------------
1236 // register policy
1237 
1238 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1239   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1240   switch (register_save_policy[reg]) {
1241     case 'C': return false; //SOC
1242     case 'E': return true ; //SOE
1243     case 'N': return false; //NS
1244     case 'A': return false; //AS
1245   }
1246   ShouldNotReachHere();
1247   return false;
1248 }
1249 
1250 //-----------------------------------------------------------------------
1251 // Exceptions
1252 //
1253 
1254 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1255 
1256 // The method is an entry that is always called by a C++ method not
1257 // directly from compiled code. Compiled code will call the C++ method following.
1258 // We can't allow async exception to be installed during  exception processing.
1259 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1260 
1261   // Do not confuse exception_oop with pending_exception. The exception_oop
1262   // is only used to pass arguments into the method. Not for general
1263   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1264   // the runtime stubs checks this on exit.
1265   assert(thread->exception_oop() != NULL, "exception oop is found");
1266   address handler_address = NULL;
1267 
1268   Handle exception(thread, thread->exception_oop());
1269   address pc = thread->exception_pc();
1270 
1271   // Clear out the exception oop and pc since looking up an
1272   // exception handler can cause class loading, which might throw an
1273   // exception and those fields are expected to be clear during
1274   // normal bytecode execution.
1275   thread->clear_exception_oop_and_pc();
1276 
1277   LogTarget(Info, exceptions) lt;
1278   if (lt.is_enabled()) {
1279     ResourceMark rm;
1280     LogStream ls(lt);
1281     trace_exception(&ls, exception(), pc, "");
1282   }
1283 
1284   // for AbortVMOnException flag
1285   Exceptions::debug_check_abort(exception);
1286 
1287 #ifdef ASSERT
1288   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1289     // should throw an exception here
1290     ShouldNotReachHere();
1291   }
1292 #endif
1293 
1294   // new exception handling: this method is entered only from adapters
1295   // exceptions from compiled java methods are handled in compiled code
1296   // using rethrow node
1297 
1298   nm = CodeCache::find_nmethod(pc);
1299   assert(nm != NULL, "No NMethod found");
1300   if (nm->is_native_method()) {
1301     fatal("Native method should not have path to exception handling");
1302   } else {
1303     // we are switching to old paradigm: search for exception handler in caller_frame
1304     // instead in exception handler of caller_frame.sender()
1305 
1306     if (JvmtiExport::can_post_on_exceptions()) {
1307       // "Full-speed catching" is not necessary here,
1308       // since we're notifying the VM on every catch.
1309       // Force deoptimization and the rest of the lookup
1310       // will be fine.
1311       deoptimize_caller_frame(thread);
1312     }
1313 
1314     // Check the stack guard pages.  If enabled, look for handler in this frame;
1315     // otherwise, forcibly unwind the frame.
1316     //
1317     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1318     bool force_unwind = !thread->reguard_stack();
1319     bool deopting = false;
1320     if (nm->is_deopt_pc(pc)) {
1321       deopting = true;
1322       RegisterMap map(thread, false);
1323       frame deoptee = thread->last_frame().sender(&map);
1324       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1325       // Adjust the pc back to the original throwing pc
1326       pc = deoptee.pc();
1327     }
1328 
1329     // If we are forcing an unwind because of stack overflow then deopt is
1330     // irrelevant since we are throwing the frame away anyway.
1331 
1332     if (deopting && !force_unwind) {
1333       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1334     } else {
1335 
1336       handler_address =
1337         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1338 
1339       if (handler_address == NULL) {
1340         bool recursive_exception = false;
1341         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1342         assert (handler_address != NULL, "must have compiled handler");
1343         // Update the exception cache only when the unwind was not forced
1344         // and there didn't happen another exception during the computation of the
1345         // compiled exception handler. Checking for exception oop equality is not
1346         // sufficient because some exceptions are pre-allocated and reused.
1347         if (!force_unwind && !recursive_exception) {
1348           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1349         }
1350       } else {
1351 #ifdef ASSERT
1352         bool recursive_exception = false;
1353         address computed_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true, recursive_exception);
1354         vmassert(recursive_exception || (handler_address == computed_address), "Handler address inconsistency: " PTR_FORMAT " != " PTR_FORMAT,
1355                  p2i(handler_address), p2i(computed_address));
1356 #endif
1357       }
1358     }
1359 
1360     thread->set_exception_pc(pc);
1361     thread->set_exception_handler_pc(handler_address);
1362 
1363     // Check if the exception PC is a MethodHandle call site.
1364     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1365   }
1366 
1367   // Restore correct return pc.  Was saved above.
1368   thread->set_exception_oop(exception());
1369   return handler_address;
1370 
1371 JRT_END
1372 
1373 // We are entering here from exception_blob
1374 // If there is a compiled exception handler in this method, we will continue there;
1375 // otherwise we will unwind the stack and continue at the caller of top frame method
1376 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1377 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1378 // we looked up the handler for has been deoptimized in the meantime. If it has been
1379 // we must not use the handler and instead return the deopt blob.
1380 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1381 //
1382 // We are in Java not VM and in debug mode we have a NoHandleMark
1383 //
1384 #ifndef PRODUCT
1385   SharedRuntime::_find_handler_ctr++;          // find exception handler
1386 #endif
1387   debug_only(NoHandleMark __hm;)
1388   nmethod* nm = NULL;
1389   address handler_address = NULL;
1390   {
1391     // Enter the VM
1392 
1393     ResetNoHandleMark rnhm;
1394     handler_address = handle_exception_C_helper(thread, nm);
1395   }
1396 
1397   // Back in java: Use no oops, DON'T safepoint
1398 
1399   // Now check to see if the handler we are returning is in a now
1400   // deoptimized frame
1401 
1402   if (nm != NULL) {
1403     RegisterMap map(thread, false);
1404     frame caller = thread->last_frame().sender(&map);
1405 #ifdef ASSERT
1406     assert(caller.is_compiled_frame(), "must be");
1407 #endif // ASSERT
1408     if (caller.is_deoptimized_frame()) {
1409       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1410     }
1411   }
1412   return handler_address;
1413 }
1414 
1415 //------------------------------rethrow----------------------------------------
1416 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1417 // is either throwing or rethrowing an exception.  The callee-save registers
1418 // have been restored, synchronized objects have been unlocked and the callee
1419 // stack frame has been removed.  The return address was passed in.
1420 // Exception oop is passed as the 1st argument.  This routine is then called
1421 // from the stub.  On exit, we know where to jump in the caller's code.
1422 // After this C code exits, the stub will pop his frame and end in a jump
1423 // (instead of a return).  We enter the caller's default handler.
1424 //
1425 // This must be JRT_LEAF:
1426 //     - caller will not change its state as we cannot block on exit,
1427 //       therefore raw_exception_handler_for_return_address is all it takes
1428 //       to handle deoptimized blobs
1429 //
1430 // However, there needs to be a safepoint check in the middle!  So compiled
1431 // safepoints are completely watertight.
1432 //
1433 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1434 //
1435 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1436 //
1437 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1438 #ifndef PRODUCT
1439   SharedRuntime::_rethrow_ctr++;               // count rethrows
1440 #endif
1441   assert (exception != NULL, "should have thrown a NULLPointerException");
1442 #ifdef ASSERT
1443   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1444     // should throw an exception here
1445     ShouldNotReachHere();
1446   }
1447 #endif
1448 
1449   thread->set_vm_result(exception);
1450   // Frame not compiled (handles deoptimization blob)
1451   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1452 }
1453 
1454 
1455 const TypeFunc *OptoRuntime::rethrow_Type() {
1456   // create input type (domain)
1457   const Type **fields = TypeTuple::fields(1);
1458   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1459   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1460 
1461   // create result type (range)
1462   fields = TypeTuple::fields(1);
1463   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1464   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1465 
1466   return TypeFunc::make(domain, range);
1467 }
1468 
1469 
1470 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1471   // Deoptimize the caller before continuing, as the compiled
1472   // exception handler table may not be valid.
1473   if (!StressCompiledExceptionHandlers && doit) {
1474     deoptimize_caller_frame(thread);
1475   }
1476 }
1477 
1478 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1479   // Called from within the owner thread, so no need for safepoint
1480   RegisterMap reg_map(thread);
1481   frame stub_frame = thread->last_frame();
1482   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1483   frame caller_frame = stub_frame.sender(&reg_map);
1484 
1485   // Deoptimize the caller frame.
1486   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1487 }
1488 
1489 
1490 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1491   // Called from within the owner thread, so no need for safepoint
1492   RegisterMap reg_map(thread);
1493   frame stub_frame = thread->last_frame();
1494   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1495   frame caller_frame = stub_frame.sender(&reg_map);
1496   return caller_frame.is_deoptimized_frame();
1497 }
1498 
1499 
1500 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1501   // create input type (domain)
1502   const Type **fields = TypeTuple::fields(1);
1503   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1504   // // The JavaThread* is passed to each routine as the last argument
1505   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1506   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1507 
1508   // create result type (range)
1509   fields = TypeTuple::fields(0);
1510 
1511   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1512 
1513   return TypeFunc::make(domain, range);
1514 }
1515 
1516 
1517 //-----------------------------------------------------------------------------
1518 // Dtrace support.  entry and exit probes have the same signature
1519 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1520   // create input type (domain)
1521   const Type **fields = TypeTuple::fields(2);
1522   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1523   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1524   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1525 
1526   // create result type (range)
1527   fields = TypeTuple::fields(0);
1528 
1529   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1530 
1531   return TypeFunc::make(domain, range);
1532 }
1533 
1534 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1535   // create input type (domain)
1536   const Type **fields = TypeTuple::fields(2);
1537   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1538   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1539 
1540   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1541 
1542   // create result type (range)
1543   fields = TypeTuple::fields(0);
1544 
1545   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1546 
1547   return TypeFunc::make(domain, range);
1548 }
1549 
1550 
1551 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1552   assert(oopDesc::is_oop(obj), "must be a valid oop");
1553   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1554   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1555 JRT_END
1556 
1557 //-----------------------------------------------------------------------------
1558 
1559 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1560 
1561 //
1562 // dump the collected NamedCounters.
1563 //
1564 void OptoRuntime::print_named_counters() {
1565   int total_lock_count = 0;
1566   int eliminated_lock_count = 0;
1567 
1568   NamedCounter* c = _named_counters;
1569   while (c) {
1570     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1571       int count = c->count();
1572       if (count > 0) {
1573         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1574         if (Verbose) {
1575           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1576         }
1577         total_lock_count += count;
1578         if (eliminated) {
1579           eliminated_lock_count += count;
1580         }
1581       }
1582     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1583       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1584       if (blc->nonzero()) {
1585         tty->print_cr("%s", c->name());
1586         blc->print_on(tty);
1587       }
1588 #if INCLUDE_RTM_OPT
1589     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1590       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1591       if (rlc->nonzero()) {
1592         tty->print_cr("%s", c->name());
1593         rlc->print_on(tty);
1594       }
1595 #endif
1596     }
1597     c = c->next();
1598   }
1599   if (total_lock_count > 0) {
1600     tty->print_cr("dynamic locks: %d", total_lock_count);
1601     if (eliminated_lock_count) {
1602       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1603                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1604     }
1605   }
1606 }
1607 
1608 //
1609 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1610 //  name which consists of method@line for the inlining tree.
1611 //
1612 
1613 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1614   int max_depth = youngest_jvms->depth();
1615 
1616   // Visit scopes from youngest to oldest.
1617   bool first = true;
1618   stringStream st;
1619   for (int depth = max_depth; depth >= 1; depth--) {
1620     JVMState* jvms = youngest_jvms->of_depth(depth);
1621     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1622     if (!first) {
1623       st.print(" ");
1624     } else {
1625       first = false;
1626     }
1627     int bci = jvms->bci();
1628     if (bci < 0) bci = 0;
1629     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1630     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1631   }
1632   NamedCounter* c;
1633   if (tag == NamedCounter::BiasedLockingCounter) {
1634     c = new BiasedLockingNamedCounter(st.as_string());
1635   } else if (tag == NamedCounter::RTMLockingCounter) {
1636     c = new RTMLockingNamedCounter(st.as_string());
1637   } else {
1638     c = new NamedCounter(st.as_string(), tag);
1639   }
1640 
1641   // atomically add the new counter to the head of the list.  We only
1642   // add counters so this is safe.
1643   NamedCounter* head;
1644   do {
1645     c->set_next(NULL);
1646     head = _named_counters;
1647     c->set_next(head);
1648   } while (Atomic::cmpxchg(c, &_named_counters, head) != head);
1649   return c;
1650 }
1651 
1652 int trace_exception_counter = 0;
1653 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1654   trace_exception_counter++;
1655   stringStream tempst;
1656 
1657   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1658   exception_oop->print_value_on(&tempst);
1659   tempst.print(" in ");
1660   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1661   if (blob->is_compiled()) {
1662     CompiledMethod* cm = blob->as_compiled_method_or_null();
1663     cm->method()->print_value_on(&tempst);
1664   } else if (blob->is_runtime_stub()) {
1665     tempst.print("<runtime-stub>");
1666   } else {
1667     tempst.print("<unknown>");
1668   }
1669   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1670   tempst.print("]");
1671 
1672   st->print_raw_cr(tempst.as_string());
1673 }
1674 
1675 const TypeFunc *OptoRuntime::store_value_type_fields_Type() {
1676   // create input type (domain)
1677   uint total = SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1678   const Type **fields = TypeTuple::fields(total);
1679   // We don't know the number of returned values and their
1680   // types. Assume all registers available to the return convention
1681   // are used.
1682   fields[TypeFunc::Parms] = TypePtr::BOTTOM;
1683   uint i = 1;
1684   for (; i < SharedRuntime::java_return_convention_max_int; i++) {
1685     fields[TypeFunc::Parms+i] = TypeInt::INT;
1686   }
1687   for (; i < total; i+=2) {
1688     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1689     fields[TypeFunc::Parms+i+1] = Type::HALF;
1690   }
1691   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1692 
1693   // create result type (range)
1694   fields = TypeTuple::fields(1);
1695   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1696 
1697   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1698 
1699   return TypeFunc::make(domain, range);
1700 }
1701 
1702 const TypeFunc *OptoRuntime::pack_value_type_Type() {
1703   // create input type (domain)
1704   uint total = 1 + SharedRuntime::java_return_convention_max_int + SharedRuntime::java_return_convention_max_float*2;
1705   const Type **fields = TypeTuple::fields(total);
1706   // We don't know the number of returned values and their
1707   // types. Assume all registers available to the return convention
1708   // are used.
1709   fields[TypeFunc::Parms] = TypeRawPtr::BOTTOM;
1710   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;
1711   uint i = 2;
1712   for (; i < SharedRuntime::java_return_convention_max_int+1; i++) {
1713     fields[TypeFunc::Parms+i] = TypeInt::INT;
1714   }
1715   for (; i < total; i+=2) {
1716     fields[TypeFunc::Parms+i] = Type::DOUBLE;
1717     fields[TypeFunc::Parms+i+1] = Type::HALF;
1718   }
1719   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + total, fields);
1720 
1721   // create result type (range)
1722   fields = TypeTuple::fields(1);
1723   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;
1724 
1725   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1,fields);
1726 
1727   return TypeFunc::make(domain, range);
1728 }