1 /*
   2  * Copyright (c) 1997, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "libadt/dict.hpp"
  34 #include "memory/oopFactory.hpp"
  35 #include "memory/resourceArea.hpp"
  36 #include "oops/instanceKlass.hpp"
  37 #include "oops/instanceMirrorKlass.hpp"
  38 #include "oops/objArrayKlass.hpp"
  39 #include "oops/typeArrayKlass.hpp"
  40 #include "opto/matcher.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opcodes.hpp"
  43 #include "opto/type.hpp"
  44 
  45 // Portions of code courtesy of Clifford Click
  46 
  47 // Optimization - Graph Style
  48 
  49 // Dictionary of types shared among compilations.
  50 Dict* Type::_shared_type_dict = NULL;
  51 const Type::Offset Type::Offset::top(Type::OffsetTop);
  52 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  53 
  54 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  55   // Either is 'TOP' offset?  Return the other offset!
  56   int offset = other._offset;
  57   if (_offset == OffsetTop) return Offset(offset);
  58   if (offset == OffsetTop) return Offset(_offset);
  59   // If either is different, return 'BOTTOM' offset
  60   if (_offset != offset) return bottom;
  61   return Offset(_offset);
  62 }
  63 
  64 const Type::Offset Type::Offset::dual() const {
  65   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  66   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  67   return Offset(_offset);               // Map everything else into self
  68 }
  69 
  70 const Type::Offset Type::Offset::add(intptr_t offset) const {
  71   // Adding to 'TOP' offset?  Return 'TOP'!
  72   if (_offset == OffsetTop || offset == OffsetTop) return top;
  73   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  74   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  75   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  76   offset += (intptr_t)_offset;
  77   if (offset != (int)offset || offset == OffsetTop) return bottom;
  78 
  79   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  80   // It is possible to construct a negative offset during PhaseCCP
  81 
  82   return Offset((int)offset);        // Sum valid offsets
  83 }
  84 
  85 void Type::Offset::dump2(outputStream *st) const {
  86   if (_offset == 0) {
  87     return;
  88   } else if (_offset == OffsetTop) {
  89     st->print("+top");
  90   }
  91   else if (_offset == OffsetBot) {
  92     st->print("+bot");
  93   } else if (_offset) {
  94     st->print("+%d", _offset);
  95   }
  96 }
  97 
  98 // Array which maps compiler types to Basic Types
  99 const Type::TypeInfo Type::_type_info[Type::lastype] = {
 100   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 101   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 102   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 103   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 104   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 105   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 106   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 107   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 108   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 109   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 110 
 111 #ifdef SPARC
 112   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 113   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 114   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 115   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 116   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 117 #elif defined(PPC64)
 118   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 119   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 120   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 121   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 122   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 123 #elif defined(S390)
 124   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 125   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 126   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 127   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 128   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 129 #else // all other
 130   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 131   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 132   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 133   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 134   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 135 #endif
 136   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 137   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 138   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 139   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 140   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 141   { Bad,             T_VALUETYPEPTR,"valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 142   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 143   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 144   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 145   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 146   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 147   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 148   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 149   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 150   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 151   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 152   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 153   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 154   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 155   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 156 };
 157 
 158 // Map ideal registers (machine types) to ideal types
 159 const Type *Type::mreg2type[_last_machine_leaf];
 160 
 161 // Map basic types to canonical Type* pointers.
 162 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 163 
 164 // Map basic types to constant-zero Types.
 165 const Type* Type::            _zero_type[T_CONFLICT+1];
 166 
 167 // Map basic types to array-body alias types.
 168 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 169 
 170 //=============================================================================
 171 // Convenience common pre-built types.
 172 const Type *Type::ABIO;         // State-of-machine only
 173 const Type *Type::BOTTOM;       // All values
 174 const Type *Type::CONTROL;      // Control only
 175 const Type *Type::DOUBLE;       // All doubles
 176 const Type *Type::FLOAT;        // All floats
 177 const Type *Type::HALF;         // Placeholder half of doublewide type
 178 const Type *Type::MEMORY;       // Abstract store only
 179 const Type *Type::RETURN_ADDRESS;
 180 const Type *Type::TOP;          // No values in set
 181 
 182 //------------------------------get_const_type---------------------------
 183 const Type* Type::get_const_type(ciType* type) {
 184   if (type == NULL) {
 185     return NULL;
 186   } else if (type->is_primitive_type()) {
 187     return get_const_basic_type(type->basic_type());
 188   } else {
 189     return TypeOopPtr::make_from_klass(type->as_klass());
 190   }
 191 }
 192 
 193 //---------------------------array_element_basic_type---------------------------------
 194 // Mapping to the array element's basic type.
 195 BasicType Type::array_element_basic_type() const {
 196   BasicType bt = basic_type();
 197   if (bt == T_INT) {
 198     if (this == TypeInt::INT)   return T_INT;
 199     if (this == TypeInt::CHAR)  return T_CHAR;
 200     if (this == TypeInt::BYTE)  return T_BYTE;
 201     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 202     if (this == TypeInt::SHORT) return T_SHORT;
 203     return T_VOID;
 204   }
 205   return bt;
 206 }
 207 
 208 // For two instance arrays of same dimension, return the base element types.
 209 // Otherwise or if the arrays have different dimensions, return NULL.
 210 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 211                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 212 
 213   if (e1) *e1 = NULL;
 214   if (e2) *e2 = NULL;
 215   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 216   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 217 
 218   if (a1tap != NULL && a2tap != NULL) {
 219     // Handle multidimensional arrays
 220     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 221     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 222     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 223       a1tap = a1tp->is_aryptr();
 224       a2tap = a2tp->is_aryptr();
 225       a1tp = a1tap->elem()->make_ptr();
 226       a2tp = a2tap->elem()->make_ptr();
 227     }
 228     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 229       if (e1) *e1 = a1tp->is_instptr();
 230       if (e2) *e2 = a2tp->is_instptr();
 231     }
 232   }
 233 }
 234 
 235 //---------------------------get_typeflow_type---------------------------------
 236 // Import a type produced by ciTypeFlow.
 237 const Type* Type::get_typeflow_type(ciType* type) {
 238   switch (type->basic_type()) {
 239 
 240   case ciTypeFlow::StateVector::T_BOTTOM:
 241     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 242     return Type::BOTTOM;
 243 
 244   case ciTypeFlow::StateVector::T_TOP:
 245     assert(type == ciTypeFlow::StateVector::top_type(), "");
 246     return Type::TOP;
 247 
 248   case ciTypeFlow::StateVector::T_NULL:
 249     assert(type == ciTypeFlow::StateVector::null_type(), "");
 250     return TypePtr::NULL_PTR;
 251 
 252   case ciTypeFlow::StateVector::T_LONG2:
 253     // The ciTypeFlow pass pushes a long, then the half.
 254     // We do the same.
 255     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 256     return TypeInt::TOP;
 257 
 258   case ciTypeFlow::StateVector::T_DOUBLE2:
 259     // The ciTypeFlow pass pushes double, then the half.
 260     // Our convention is the same.
 261     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 262     return Type::TOP;
 263 
 264   case T_ADDRESS:
 265     assert(type->is_return_address(), "");
 266     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 267 
 268   case T_VALUETYPE:
 269     if (type->is__Value()) {
 270       return TypeValueTypePtr::NOTNULL;
 271     } else {
 272       return TypeValueType::make(type->as_value_klass());
 273     }
 274 
 275   default:
 276     // make sure we did not mix up the cases:
 277     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 278     assert(type != ciTypeFlow::StateVector::top_type(), "");
 279     assert(type != ciTypeFlow::StateVector::null_type(), "");
 280     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 281     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 282     assert(!type->is_return_address(), "");
 283 
 284     return Type::get_const_type(type);
 285   }
 286 }
 287 
 288 
 289 //-----------------------make_from_constant------------------------------------
 290 const Type* Type::make_from_constant(ciConstant constant, bool require_constant,
 291                                      int stable_dimension, bool is_narrow_oop,
 292                                      bool is_autobox_cache) {
 293   switch (constant.basic_type()) {
 294     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 295     case T_CHAR:     return TypeInt::make(constant.as_char());
 296     case T_BYTE:     return TypeInt::make(constant.as_byte());
 297     case T_SHORT:    return TypeInt::make(constant.as_short());
 298     case T_INT:      return TypeInt::make(constant.as_int());
 299     case T_LONG:     return TypeLong::make(constant.as_long());
 300     case T_FLOAT:    return TypeF::make(constant.as_float());
 301     case T_DOUBLE:   return TypeD::make(constant.as_double());
 302     case T_ARRAY:
 303     case T_VALUETYPE:
 304     case T_OBJECT: {
 305         // cases:
 306         //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 307         //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 308         // An oop is not scavengable if it is in the perm gen.
 309         const Type* con_type = NULL;
 310         ciObject* oop_constant = constant.as_object();
 311         if (oop_constant->is_null_object()) {
 312           con_type = Type::get_zero_type(T_OBJECT);
 313         } else if (require_constant || oop_constant->should_be_constant()) {
 314           con_type = TypeOopPtr::make_from_constant(oop_constant, require_constant);
 315           if (con_type != NULL) {
 316             if (Compile::current()->eliminate_boxing() && is_autobox_cache) {
 317               con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 318             }
 319             if (stable_dimension > 0) {
 320               assert(FoldStableValues, "sanity");
 321               assert(!con_type->is_zero_type(), "default value for stable field");
 322               con_type = con_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 323             }
 324           }
 325         }
 326         if (is_narrow_oop) {
 327           con_type = con_type->make_narrowoop();
 328         }
 329         return con_type;
 330       }
 331     case T_ILLEGAL:
 332       // Invalid ciConstant returned due to OutOfMemoryError in the CI
 333       assert(Compile::current()->env()->failing(), "otherwise should not see this");
 334       return NULL;
 335     default:
 336       // Fall through to failure
 337       return NULL;
 338   }
 339 }
 340 
 341 static ciConstant check_mismatched_access(ciConstant con, BasicType loadbt, bool is_unsigned) {
 342   BasicType conbt = con.basic_type();
 343   switch (conbt) {
 344     case T_BOOLEAN: conbt = T_BYTE;   break;
 345     case T_ARRAY:   conbt = T_OBJECT; break;
 346     case T_VALUETYPE: conbt = T_OBJECT; break;
 347     default:                          break;
 348   }
 349   switch (loadbt) {
 350     case T_BOOLEAN:   loadbt = T_BYTE;   break;
 351     case T_NARROWOOP: loadbt = T_OBJECT; break;
 352     case T_ARRAY:     loadbt = T_OBJECT; break;
 353     case T_VALUETYPE: loadbt = T_OBJECT; break;
 354     case T_ADDRESS:   loadbt = T_OBJECT; break;
 355     default:                             break;
 356   }
 357   if (conbt == loadbt) {
 358     if (is_unsigned && conbt == T_BYTE) {
 359       // LoadB (T_BYTE) with a small mask (<=8-bit) is converted to LoadUB (T_BYTE).
 360       return ciConstant(T_INT, con.as_int() & 0xFF);
 361     } else {
 362       return con;
 363     }
 364   }
 365   if (conbt == T_SHORT && loadbt == T_CHAR) {
 366     // LoadS (T_SHORT) with a small mask (<=16-bit) is converted to LoadUS (T_CHAR).
 367     return ciConstant(T_INT, con.as_int() & 0xFFFF);
 368   }
 369   return ciConstant(); // T_ILLEGAL
 370 }
 371 
 372 // Try to constant-fold a stable array element.
 373 const Type* Type::make_constant_from_array_element(ciArray* array, int off, int stable_dimension,
 374                                                    BasicType loadbt, bool is_unsigned_load) {
 375   // Decode the results of GraphKit::array_element_address.
 376   ciConstant element_value = array->element_value_by_offset(off);
 377   if (element_value.basic_type() == T_ILLEGAL) {
 378     return NULL; // wrong offset
 379   }
 380   ciConstant con = check_mismatched_access(element_value, loadbt, is_unsigned_load);
 381 
 382   assert(con.basic_type() != T_ILLEGAL, "elembt=%s; loadbt=%s; unsigned=%d",
 383          type2name(element_value.basic_type()), type2name(loadbt), is_unsigned_load);
 384 
 385   if (con.is_valid() &&          // not a mismatched access
 386       !con.is_null_or_zero()) {  // not a default value
 387     bool is_narrow_oop = (loadbt == T_NARROWOOP);
 388     return Type::make_from_constant(con, /*require_constant=*/true, stable_dimension, is_narrow_oop, /*is_autobox_cache=*/false);
 389   }
 390   return NULL;
 391 }
 392 
 393 const Type* Type::make_constant_from_field(ciInstance* holder, int off, bool is_unsigned_load, BasicType loadbt) {
 394   ciField* field;
 395   ciType* type = holder->java_mirror_type();
 396   if (type != NULL && type->is_instance_klass() && off >= InstanceMirrorKlass::offset_of_static_fields()) {
 397     // Static field
 398     field = type->as_instance_klass()->get_field_by_offset(off, /*is_static=*/true);
 399   } else {
 400     // Instance field
 401     field = holder->klass()->as_instance_klass()->get_field_by_offset(off, /*is_static=*/false);
 402   }
 403   if (field == NULL) {
 404     return NULL; // Wrong offset
 405   }
 406   return Type::make_constant_from_field(field, holder, loadbt, is_unsigned_load);
 407 }
 408 
 409 const Type* Type::make_constant_from_field(ciField* field, ciInstance* holder,
 410                                            BasicType loadbt, bool is_unsigned_load) {
 411   if (!field->is_constant()) {
 412     return NULL; // Non-constant field
 413   }
 414   ciConstant field_value;
 415   if (field->is_static()) {
 416     // final static field
 417     field_value = field->constant_value();
 418   } else if (holder != NULL) {
 419     // final or stable non-static field
 420     // Treat final non-static fields of trusted classes (classes in
 421     // java.lang.invoke and sun.invoke packages and subpackages) as
 422     // compile time constants.
 423     field_value = field->constant_value_of(holder);
 424   }
 425   if (!field_value.is_valid()) {
 426     return NULL; // Not a constant
 427   }
 428 
 429   ciConstant con = check_mismatched_access(field_value, loadbt, is_unsigned_load);
 430 
 431   assert(con.is_valid(), "elembt=%s; loadbt=%s; unsigned=%d",
 432          type2name(field_value.basic_type()), type2name(loadbt), is_unsigned_load);
 433 
 434   bool is_stable_array = FoldStableValues && field->is_stable() && field->type()->is_array_klass();
 435   int stable_dimension = (is_stable_array ? field->type()->as_array_klass()->dimension() : 0);
 436   bool is_narrow_oop = (loadbt == T_NARROWOOP);
 437 
 438   const Type* con_type = make_from_constant(con, /*require_constant=*/ true,
 439                                             stable_dimension, is_narrow_oop,
 440                                             field->is_autobox_cache());
 441   if (con_type != NULL && field->is_call_site_target()) {
 442     ciCallSite* call_site = holder->as_call_site();
 443     if (!call_site->is_constant_call_site()) {
 444       ciMethodHandle* target = con.as_object()->as_method_handle();
 445       Compile::current()->dependencies()->assert_call_site_target_value(call_site, target);
 446     }
 447   }
 448   return con_type;
 449 }
 450 
 451 //------------------------------make-------------------------------------------
 452 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 453 // and look for an existing copy in the type dictionary.
 454 const Type *Type::make( enum TYPES t ) {
 455   return (new Type(t))->hashcons();
 456 }
 457 
 458 //------------------------------cmp--------------------------------------------
 459 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 460   if( t1->_base != t2->_base )
 461     return 1;                   // Missed badly
 462   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 463   return !t1->eq(t2);           // Return ZERO if equal
 464 }
 465 
 466 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 467   if (!include_speculative) {
 468     return remove_speculative();
 469   }
 470   return this;
 471 }
 472 
 473 //------------------------------hash-------------------------------------------
 474 int Type::uhash( const Type *const t ) {
 475   return t->hash();
 476 }
 477 
 478 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 479 
 480 //--------------------------Initialize_shared----------------------------------
 481 void Type::Initialize_shared(Compile* current) {
 482   // This method does not need to be locked because the first system
 483   // compilations (stub compilations) occur serially.  If they are
 484   // changed to proceed in parallel, then this section will need
 485   // locking.
 486 
 487   Arena* save = current->type_arena();
 488   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 489 
 490   current->set_type_arena(shared_type_arena);
 491   _shared_type_dict =
 492     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 493                                   shared_type_arena, 128 );
 494   current->set_type_dict(_shared_type_dict);
 495 
 496   // Make shared pre-built types.
 497   CONTROL = make(Control);      // Control only
 498   TOP     = make(Top);          // No values in set
 499   MEMORY  = make(Memory);       // Abstract store only
 500   ABIO    = make(Abio);         // State-of-machine only
 501   RETURN_ADDRESS=make(Return_Address);
 502   FLOAT   = make(FloatBot);     // All floats
 503   DOUBLE  = make(DoubleBot);    // All doubles
 504   BOTTOM  = make(Bottom);       // Everything
 505   HALF    = make(Half);         // Placeholder half of doublewide type
 506 
 507   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 508   TypeF::ONE  = TypeF::make(1.0); // Float 1
 509 
 510   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 511   TypeD::ONE  = TypeD::make(1.0); // Double 1
 512 
 513   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 514   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 515   TypeInt::ONE     = TypeInt::make( 1);  //  1
 516   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 517   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 518   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 519   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 520   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 521   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 522   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 523   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 524   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 525   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 526   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 527   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 528   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 529   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 530   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 531   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 532   // CmpL is overloaded both as the bytecode computation returning
 533   // a trinary (-1,0,+1) integer result AND as an efficient long
 534   // compare returning optimizer ideal-type flags.
 535   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 536   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 537   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 538   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 539   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 540 
 541   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 542   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 543   TypeLong::ONE     = TypeLong::make( 1);        //  1
 544   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 545   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 546   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 547   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 548   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 549 
 550   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 551   fboth[0] = Type::CONTROL;
 552   fboth[1] = Type::CONTROL;
 553   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 554 
 555   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 556   ffalse[0] = Type::CONTROL;
 557   ffalse[1] = Type::TOP;
 558   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 559 
 560   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 561   fneither[0] = Type::TOP;
 562   fneither[1] = Type::TOP;
 563   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 564 
 565   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 566   ftrue[0] = Type::TOP;
 567   ftrue[1] = Type::CONTROL;
 568   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 569 
 570   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 571   floop[0] = Type::CONTROL;
 572   floop[1] = TypeInt::INT;
 573   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 574 
 575   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 576   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 577   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 578 
 579   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 580   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 581 
 582   const Type **fmembar = TypeTuple::fields(0);
 583   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 584 
 585   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 586   fsc[0] = TypeInt::CC;
 587   fsc[1] = Type::MEMORY;
 588   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 589 
 590   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 591   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 592   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 593   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 594                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 595   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 596                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 597   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 598 
 599   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 600 
 601   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 602   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 603 
 604   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 605 
 606   // TypeValueTypePtr::NOTNULL = EnableValhalla ? TypeValueTypePtr::make(TypePtr::NotNull, current->env()->Object_klass()) : NULL;
 607   TypeValueTypePtr::NOTNULL = NULL;
 608 
 609   mreg2type[Op_Node] = Type::BOTTOM;
 610   mreg2type[Op_Set ] = 0;
 611   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 612   mreg2type[Op_RegI] = TypeInt::INT;
 613   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 614   mreg2type[Op_RegF] = Type::FLOAT;
 615   mreg2type[Op_RegD] = Type::DOUBLE;
 616   mreg2type[Op_RegL] = TypeLong::LONG;
 617   mreg2type[Op_RegFlags] = TypeInt::CC;
 618 
 619   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 620 
 621   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 622 
 623 #ifdef _LP64
 624   if (UseCompressedOops) {
 625     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 626     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 627   } else
 628 #endif
 629   {
 630     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 631     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 632   }
 633   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 634   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 635   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 636   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 637   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 638   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 639   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 640 
 641   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 642   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 643   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 644   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 645   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 646   TypeAryPtr::_array_body_type[T_VALUETYPEPTR] = NULL;
 647   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 648   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 649   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 650   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 651   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 652   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 653   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 654   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 655 
 656   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 657   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 658   TypeKlassPtr::BOTTOM = EnableValhalla ? TypeKlassPtr::make(TypePtr::BotPTR, NULL, Offset(0)) : TypeKlassPtr::OBJECT_OR_NULL;
 659 
 660   const Type **fi2c = TypeTuple::fields(2);
 661   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 662   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 663   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 664 
 665   const Type **intpair = TypeTuple::fields(2);
 666   intpair[0] = TypeInt::INT;
 667   intpair[1] = TypeInt::INT;
 668   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 669 
 670   const Type **longpair = TypeTuple::fields(2);
 671   longpair[0] = TypeLong::LONG;
 672   longpair[1] = TypeLong::LONG;
 673   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 674 
 675   const Type **intccpair = TypeTuple::fields(2);
 676   intccpair[0] = TypeInt::INT;
 677   intccpair[1] = TypeInt::CC;
 678   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 679 
 680   const Type **longccpair = TypeTuple::fields(2);
 681   longccpair[0] = TypeLong::LONG;
 682   longccpair[1] = TypeInt::CC;
 683   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 684 
 685   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 686   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 687   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 688   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 689   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 690   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 691   _const_basic_type[T_INT]         = TypeInt::INT;
 692   _const_basic_type[T_LONG]        = TypeLong::LONG;
 693   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 694   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 695   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 696   _const_basic_type[T_VALUETYPEPTR]= TypeInstPtr::BOTTOM;
 697   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 698   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 699   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 700   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 701   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 702 
 703   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 704   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 705   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 706   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 707   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 708   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 709   _zero_type[T_INT]         = TypeInt::ZERO;
 710   _zero_type[T_LONG]        = TypeLong::ZERO;
 711   _zero_type[T_FLOAT]       = TypeF::ZERO;
 712   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 713   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 714   _zero_type[T_VALUETYPEPTR]= TypePtr::NULL_PTR;
 715   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 716   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 717   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 718   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 719 
 720   // get_zero_type() should not happen for T_CONFLICT
 721   _zero_type[T_CONFLICT]= NULL;
 722 
 723   // Vector predefined types, it needs initialized _const_basic_type[].
 724   if (Matcher::vector_size_supported(T_BYTE,4)) {
 725     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 726   }
 727   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 728     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 729   }
 730   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 731     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 732   }
 733   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 734     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 735   }
 736   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 737     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 738   }
 739   mreg2type[Op_VecS] = TypeVect::VECTS;
 740   mreg2type[Op_VecD] = TypeVect::VECTD;
 741   mreg2type[Op_VecX] = TypeVect::VECTX;
 742   mreg2type[Op_VecY] = TypeVect::VECTY;
 743   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 744 
 745   // Restore working type arena.
 746   current->set_type_arena(save);
 747   current->set_type_dict(NULL);
 748 }
 749 
 750 //------------------------------Initialize-------------------------------------
 751 void Type::Initialize(Compile* current) {
 752   assert(current->type_arena() != NULL, "must have created type arena");
 753 
 754   if (_shared_type_dict == NULL) {
 755     Initialize_shared(current);
 756   }
 757 
 758   Arena* type_arena = current->type_arena();
 759 
 760   // Create the hash-cons'ing dictionary with top-level storage allocation
 761   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 762   current->set_type_dict(tdic);
 763 
 764   // Transfer the shared types.
 765   DictI i(_shared_type_dict);
 766   for( ; i.test(); ++i ) {
 767     Type* t = (Type*)i._value;
 768     tdic->Insert(t,t);  // New Type, insert into Type table
 769   }
 770 }
 771 
 772 //------------------------------hashcons---------------------------------------
 773 // Do the hash-cons trick.  If the Type already exists in the type table,
 774 // delete the current Type and return the existing Type.  Otherwise stick the
 775 // current Type in the Type table.
 776 const Type *Type::hashcons(void) {
 777   debug_only(base());           // Check the assertion in Type::base().
 778   // Look up the Type in the Type dictionary
 779   Dict *tdic = type_dict();
 780   Type* old = (Type*)(tdic->Insert(this, this, false));
 781   if( old ) {                   // Pre-existing Type?
 782     if( old != this )           // Yes, this guy is not the pre-existing?
 783       delete this;              // Yes, Nuke this guy
 784     assert( old->_dual, "" );
 785     return old;                 // Return pre-existing
 786   }
 787 
 788   // Every type has a dual (to make my lattice symmetric).
 789   // Since we just discovered a new Type, compute its dual right now.
 790   assert( !_dual, "" );         // No dual yet
 791   _dual = xdual();              // Compute the dual
 792   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 793     _dual = this;
 794     return this;
 795   }
 796   assert( !_dual->_dual, "" );  // No reverse dual yet
 797   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 798   // New Type, insert into Type table
 799   tdic->Insert((void*)_dual,(void*)_dual);
 800   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 801 #ifdef ASSERT
 802   Type *dual_dual = (Type*)_dual->xdual();
 803   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 804   delete dual_dual;
 805 #endif
 806   return this;                  // Return new Type
 807 }
 808 
 809 //------------------------------eq---------------------------------------------
 810 // Structural equality check for Type representations
 811 bool Type::eq( const Type * ) const {
 812   return true;                  // Nothing else can go wrong
 813 }
 814 
 815 //------------------------------hash-------------------------------------------
 816 // Type-specific hashing function.
 817 int Type::hash(void) const {
 818   return _base;
 819 }
 820 
 821 //------------------------------is_finite--------------------------------------
 822 // Has a finite value
 823 bool Type::is_finite() const {
 824   return false;
 825 }
 826 
 827 //------------------------------is_nan-----------------------------------------
 828 // Is not a number (NaN)
 829 bool Type::is_nan()    const {
 830   return false;
 831 }
 832 
 833 //----------------------interface_vs_oop---------------------------------------
 834 #ifdef ASSERT
 835 bool Type::interface_vs_oop_helper(const Type *t) const {
 836   bool result = false;
 837 
 838   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 839   const TypePtr*    t_ptr =    t->make_ptr();
 840   if( this_ptr == NULL || t_ptr == NULL )
 841     return result;
 842 
 843   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 844   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 845   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 846     bool this_interface = this_inst->klass()->is_interface();
 847     bool    t_interface =    t_inst->klass()->is_interface();
 848     result = this_interface ^ t_interface;
 849   }
 850 
 851   return result;
 852 }
 853 
 854 bool Type::interface_vs_oop(const Type *t) const {
 855   if (interface_vs_oop_helper(t)) {
 856     return true;
 857   }
 858   // Now check the speculative parts as well
 859   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 860   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 861   if (this_spec != NULL && t_spec != NULL) {
 862     if (this_spec->interface_vs_oop_helper(t_spec)) {
 863       return true;
 864     }
 865     return false;
 866   }
 867   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 868     return true;
 869   }
 870   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 871     return true;
 872   }
 873   return false;
 874 }
 875 
 876 #endif
 877 
 878 //------------------------------meet-------------------------------------------
 879 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 880 // commutative and the lattice is symmetric.
 881 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 882   if (isa_narrowoop() && t->isa_narrowoop()) {
 883     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 884     return result->make_narrowoop();
 885   }
 886   if (isa_narrowklass() && t->isa_narrowklass()) {
 887     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 888     return result->make_narrowklass();
 889   }
 890 
 891   const Type *this_t = maybe_remove_speculative(include_speculative);
 892   t = t->maybe_remove_speculative(include_speculative);
 893 
 894   const Type *mt = this_t->xmeet(t);
 895   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 896   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 897 #ifdef ASSERT
 898   assert(mt == t->xmeet(this_t), "meet not commutative");
 899   const Type* dual_join = mt->_dual;
 900   const Type *t2t    = dual_join->xmeet(t->_dual);
 901   const Type *t2this = dual_join->xmeet(this_t->_dual);
 902 
 903   // TODO a value type (array) meeting an oop is not symmetric
 904   if (_base == ValueType || t->_base == ValueType ||
 905       (isa_aryptr() && is_aryptr()->ary()->is_value_type_array()) ||
 906       (t->isa_aryptr() && t->is_aryptr()->ary()->is_value_type_array()) ||
 907       (_base == Array && ((TypeAry*)this)->is_value_type_array()) ||
 908       (t->_base == Array && ((TypeAry*)t)->is_value_type_array())) {
 909     return mt;
 910   }
 911 
 912   // Interface meet Oop is Not Symmetric:
 913   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 914   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 915 
 916   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 917     tty->print_cr("=== Meet Not Symmetric ===");
 918     tty->print("t   =                   ");              t->dump(); tty->cr();
 919     tty->print("this=                   ");         this_t->dump(); tty->cr();
 920     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 921 
 922     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 923     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 924     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 925 
 926     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 927     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 928 
 929     fatal("meet not symmetric" );
 930   }
 931 #endif
 932   return mt;
 933 }
 934 
 935 //------------------------------xmeet------------------------------------------
 936 // Compute the MEET of two types.  It returns a new Type object.
 937 const Type *Type::xmeet( const Type *t ) const {
 938   // Perform a fast test for common case; meeting the same types together.
 939   if( this == t ) return this;  // Meeting same type-rep?
 940 
 941   // Meeting TOP with anything?
 942   if( _base == Top ) return t;
 943 
 944   // Meeting BOTTOM with anything?
 945   if( _base == Bottom ) return BOTTOM;
 946 
 947   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 948   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 949   switch (t->base()) {  // Switch on original type
 950 
 951   // Cut in half the number of cases I must handle.  Only need cases for when
 952   // the given enum "t->type" is less than or equal to the local enum "type".
 953   case FloatCon:
 954   case DoubleCon:
 955   case Int:
 956   case Long:
 957     return t->xmeet(this);
 958 
 959   case OopPtr:
 960     return t->xmeet(this);
 961 
 962   case InstPtr:
 963   case ValueTypePtr:
 964     return t->xmeet(this);
 965 
 966   case MetadataPtr:
 967   case KlassPtr:
 968     return t->xmeet(this);
 969 
 970   case AryPtr:
 971     return t->xmeet(this);
 972 
 973   case NarrowOop:
 974     return t->xmeet(this);
 975 
 976   case NarrowKlass:
 977     return t->xmeet(this);
 978 
 979   case ValueType:
 980     return t->xmeet(this);
 981 
 982   case Bad:                     // Type check
 983   default:                      // Bogus type not in lattice
 984     typerr(t);
 985     return Type::BOTTOM;
 986 
 987   case Bottom:                  // Ye Olde Default
 988     return t;
 989 
 990   case FloatTop:
 991     if( _base == FloatTop ) return this;
 992   case FloatBot:                // Float
 993     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 994     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 995     typerr(t);
 996     return Type::BOTTOM;
 997 
 998   case DoubleTop:
 999     if( _base == DoubleTop ) return this;
1000   case DoubleBot:               // Double
1001     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
1002     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
1003     typerr(t);
1004     return Type::BOTTOM;
1005 
1006   // These next few cases must match exactly or it is a compile-time error.
1007   case Control:                 // Control of code
1008   case Abio:                    // State of world outside of program
1009   case Memory:
1010     if( _base == t->_base )  return this;
1011     typerr(t);
1012     return Type::BOTTOM;
1013 
1014   case Top:                     // Top of the lattice
1015     return this;
1016   }
1017 
1018   // The type is unchanged
1019   return this;
1020 }
1021 
1022 //-----------------------------filter------------------------------------------
1023 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
1024   const Type* ft = join_helper(kills, include_speculative);
1025   if (ft->empty())
1026     return Type::TOP;           // Canonical empty value
1027   return ft;
1028 }
1029 
1030 //------------------------------xdual------------------------------------------
1031 // Compute dual right now.
1032 const Type::TYPES Type::dual_type[Type::lastype] = {
1033   Bad,          // Bad
1034   Control,      // Control
1035   Bottom,       // Top
1036   Bad,          // Int - handled in v-call
1037   Bad,          // Long - handled in v-call
1038   Half,         // Half
1039   Bad,          // NarrowOop - handled in v-call
1040   Bad,          // NarrowKlass - handled in v-call
1041 
1042   Bad,          // Tuple - handled in v-call
1043   Bad,          // Array - handled in v-call
1044   Bad,          // VectorS - handled in v-call
1045   Bad,          // VectorD - handled in v-call
1046   Bad,          // VectorX - handled in v-call
1047   Bad,          // VectorY - handled in v-call
1048   Bad,          // VectorZ - handled in v-call
1049   Bad,          // ValueType - handled in v-call
1050 
1051   Bad,          // AnyPtr - handled in v-call
1052   Bad,          // RawPtr - handled in v-call
1053   Bad,          // OopPtr - handled in v-call
1054   Bad,          // InstPtr - handled in v-call
1055   Bad,          // ValueTypePtr - handled in v-call
1056   Bad,          // AryPtr - handled in v-call
1057 
1058   Bad,          //  MetadataPtr - handled in v-call
1059   Bad,          // KlassPtr - handled in v-call
1060 
1061   Bad,          // Function - handled in v-call
1062   Abio,         // Abio
1063   Return_Address,// Return_Address
1064   Memory,       // Memory
1065   FloatBot,     // FloatTop
1066   FloatCon,     // FloatCon
1067   FloatTop,     // FloatBot
1068   DoubleBot,    // DoubleTop
1069   DoubleCon,    // DoubleCon
1070   DoubleTop,    // DoubleBot
1071   Top           // Bottom
1072 };
1073 
1074 const Type *Type::xdual() const {
1075   // Note: the base() accessor asserts the sanity of _base.
1076   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
1077   return new Type(_type_info[_base].dual_type);
1078 }
1079 
1080 //------------------------------has_memory-------------------------------------
1081 bool Type::has_memory() const {
1082   Type::TYPES tx = base();
1083   if (tx == Memory) return true;
1084   if (tx == Tuple) {
1085     const TypeTuple *t = is_tuple();
1086     for (uint i=0; i < t->cnt(); i++) {
1087       tx = t->field_at(i)->base();
1088       if (tx == Memory)  return true;
1089     }
1090   }
1091   return false;
1092 }
1093 
1094 #ifndef PRODUCT
1095 //------------------------------dump2------------------------------------------
1096 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
1097   st->print("%s", _type_info[_base].msg);
1098 }
1099 
1100 //------------------------------dump-------------------------------------------
1101 void Type::dump_on(outputStream *st) const {
1102   ResourceMark rm;
1103   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
1104   dump2(d,1, st);
1105   if (is_ptr_to_narrowoop()) {
1106     st->print(" [narrow]");
1107   } else if (is_ptr_to_narrowklass()) {
1108     st->print(" [narrowklass]");
1109   }
1110 }
1111 
1112 //-----------------------------------------------------------------------------
1113 const char* Type::str(const Type* t) {
1114   stringStream ss;
1115   t->dump_on(&ss);
1116   return ss.as_string();
1117 }
1118 #endif
1119 
1120 //------------------------------singleton--------------------------------------
1121 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1122 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1123 bool Type::singleton(void) const {
1124   return _base == Top || _base == Half;
1125 }
1126 
1127 //------------------------------empty------------------------------------------
1128 // TRUE if Type is a type with no values, FALSE otherwise.
1129 bool Type::empty(void) const {
1130   switch (_base) {
1131   case DoubleTop:
1132   case FloatTop:
1133   case Top:
1134     return true;
1135 
1136   case Half:
1137   case Abio:
1138   case Return_Address:
1139   case Memory:
1140   case Bottom:
1141   case FloatBot:
1142   case DoubleBot:
1143     return false;  // never a singleton, therefore never empty
1144 
1145   default:
1146     ShouldNotReachHere();
1147     return false;
1148   }
1149 }
1150 
1151 //------------------------------dump_stats-------------------------------------
1152 // Dump collected statistics to stderr
1153 #ifndef PRODUCT
1154 void Type::dump_stats() {
1155   tty->print("Types made: %d\n", type_dict()->Size());
1156 }
1157 #endif
1158 
1159 //------------------------------typerr-----------------------------------------
1160 void Type::typerr( const Type *t ) const {
1161 #ifndef PRODUCT
1162   tty->print("\nError mixing types: ");
1163   dump();
1164   tty->print(" and ");
1165   t->dump();
1166   tty->print("\n");
1167 #endif
1168   ShouldNotReachHere();
1169 }
1170 
1171 
1172 //=============================================================================
1173 // Convenience common pre-built types.
1174 const TypeF *TypeF::ZERO;       // Floating point zero
1175 const TypeF *TypeF::ONE;        // Floating point one
1176 
1177 //------------------------------make-------------------------------------------
1178 // Create a float constant
1179 const TypeF *TypeF::make(float f) {
1180   return (TypeF*)(new TypeF(f))->hashcons();
1181 }
1182 
1183 //------------------------------meet-------------------------------------------
1184 // Compute the MEET of two types.  It returns a new Type object.
1185 const Type *TypeF::xmeet( const Type *t ) const {
1186   // Perform a fast test for common case; meeting the same types together.
1187   if( this == t ) return this;  // Meeting same type-rep?
1188 
1189   // Current "this->_base" is FloatCon
1190   switch (t->base()) {          // Switch on original type
1191   case AnyPtr:                  // Mixing with oops happens when javac
1192   case RawPtr:                  // reuses local variables
1193   case OopPtr:
1194   case InstPtr:
1195   case ValueTypePtr:
1196   case AryPtr:
1197   case MetadataPtr:
1198   case KlassPtr:
1199   case NarrowOop:
1200   case NarrowKlass:
1201   case Int:
1202   case Long:
1203   case DoubleTop:
1204   case DoubleCon:
1205   case DoubleBot:
1206   case Bottom:                  // Ye Olde Default
1207     return Type::BOTTOM;
1208 
1209   case FloatBot:
1210     return t;
1211 
1212   default:                      // All else is a mistake
1213     typerr(t);
1214 
1215   case FloatCon:                // Float-constant vs Float-constant?
1216     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1217                                 // must compare bitwise as positive zero, negative zero and NaN have
1218                                 // all the same representation in C++
1219       return FLOAT;             // Return generic float
1220                                 // Equal constants
1221   case Top:
1222   case FloatTop:
1223     break;                      // Return the float constant
1224   }
1225   return this;                  // Return the float constant
1226 }
1227 
1228 //------------------------------xdual------------------------------------------
1229 // Dual: symmetric
1230 const Type *TypeF::xdual() const {
1231   return this;
1232 }
1233 
1234 //------------------------------eq---------------------------------------------
1235 // Structural equality check for Type representations
1236 bool TypeF::eq(const Type *t) const {
1237   // Bitwise comparison to distinguish between +/-0. These values must be treated
1238   // as different to be consistent with C1 and the interpreter.
1239   return (jint_cast(_f) == jint_cast(t->getf()));
1240 }
1241 
1242 //------------------------------hash-------------------------------------------
1243 // Type-specific hashing function.
1244 int TypeF::hash(void) const {
1245   return *(int*)(&_f);
1246 }
1247 
1248 //------------------------------is_finite--------------------------------------
1249 // Has a finite value
1250 bool TypeF::is_finite() const {
1251   return g_isfinite(getf()) != 0;
1252 }
1253 
1254 //------------------------------is_nan-----------------------------------------
1255 // Is not a number (NaN)
1256 bool TypeF::is_nan()    const {
1257   return g_isnan(getf()) != 0;
1258 }
1259 
1260 //------------------------------dump2------------------------------------------
1261 // Dump float constant Type
1262 #ifndef PRODUCT
1263 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1264   Type::dump2(d,depth, st);
1265   st->print("%f", _f);
1266 }
1267 #endif
1268 
1269 //------------------------------singleton--------------------------------------
1270 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1271 // constants (Ldi nodes).  Singletons are integer, float or double constants
1272 // or a single symbol.
1273 bool TypeF::singleton(void) const {
1274   return true;                  // Always a singleton
1275 }
1276 
1277 bool TypeF::empty(void) const {
1278   return false;                 // always exactly a singleton
1279 }
1280 
1281 //=============================================================================
1282 // Convenience common pre-built types.
1283 const TypeD *TypeD::ZERO;       // Floating point zero
1284 const TypeD *TypeD::ONE;        // Floating point one
1285 
1286 //------------------------------make-------------------------------------------
1287 const TypeD *TypeD::make(double d) {
1288   return (TypeD*)(new TypeD(d))->hashcons();
1289 }
1290 
1291 //------------------------------meet-------------------------------------------
1292 // Compute the MEET of two types.  It returns a new Type object.
1293 const Type *TypeD::xmeet( const Type *t ) const {
1294   // Perform a fast test for common case; meeting the same types together.
1295   if( this == t ) return this;  // Meeting same type-rep?
1296 
1297   // Current "this->_base" is DoubleCon
1298   switch (t->base()) {          // Switch on original type
1299   case AnyPtr:                  // Mixing with oops happens when javac
1300   case RawPtr:                  // reuses local variables
1301   case OopPtr:
1302   case InstPtr:
1303   case ValueTypePtr:
1304   case AryPtr:
1305   case MetadataPtr:
1306   case KlassPtr:
1307   case NarrowOop:
1308   case NarrowKlass:
1309   case Int:
1310   case Long:
1311   case FloatTop:
1312   case FloatCon:
1313   case FloatBot:
1314   case Bottom:                  // Ye Olde Default
1315     return Type::BOTTOM;
1316 
1317   case DoubleBot:
1318     return t;
1319 
1320   default:                      // All else is a mistake
1321     typerr(t);
1322 
1323   case DoubleCon:               // Double-constant vs Double-constant?
1324     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1325       return DOUBLE;            // Return generic double
1326   case Top:
1327   case DoubleTop:
1328     break;
1329   }
1330   return this;                  // Return the double constant
1331 }
1332 
1333 //------------------------------xdual------------------------------------------
1334 // Dual: symmetric
1335 const Type *TypeD::xdual() const {
1336   return this;
1337 }
1338 
1339 //------------------------------eq---------------------------------------------
1340 // Structural equality check for Type representations
1341 bool TypeD::eq(const Type *t) const {
1342   // Bitwise comparison to distinguish between +/-0. These values must be treated
1343   // as different to be consistent with C1 and the interpreter.
1344   return (jlong_cast(_d) == jlong_cast(t->getd()));
1345 }
1346 
1347 //------------------------------hash-------------------------------------------
1348 // Type-specific hashing function.
1349 int TypeD::hash(void) const {
1350   return *(int*)(&_d);
1351 }
1352 
1353 //------------------------------is_finite--------------------------------------
1354 // Has a finite value
1355 bool TypeD::is_finite() const {
1356   return g_isfinite(getd()) != 0;
1357 }
1358 
1359 //------------------------------is_nan-----------------------------------------
1360 // Is not a number (NaN)
1361 bool TypeD::is_nan()    const {
1362   return g_isnan(getd()) != 0;
1363 }
1364 
1365 //------------------------------dump2------------------------------------------
1366 // Dump double constant Type
1367 #ifndef PRODUCT
1368 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1369   Type::dump2(d,depth,st);
1370   st->print("%f", _d);
1371 }
1372 #endif
1373 
1374 //------------------------------singleton--------------------------------------
1375 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1376 // constants (Ldi nodes).  Singletons are integer, float or double constants
1377 // or a single symbol.
1378 bool TypeD::singleton(void) const {
1379   return true;                  // Always a singleton
1380 }
1381 
1382 bool TypeD::empty(void) const {
1383   return false;                 // always exactly a singleton
1384 }
1385 
1386 //=============================================================================
1387 // Convience common pre-built types.
1388 const TypeInt *TypeInt::MINUS_1;// -1
1389 const TypeInt *TypeInt::ZERO;   // 0
1390 const TypeInt *TypeInt::ONE;    // 1
1391 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1392 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1393 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1394 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1395 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1396 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1397 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1398 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1399 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1400 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1401 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1402 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1403 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1404 const TypeInt *TypeInt::INT;    // 32-bit integers
1405 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1406 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1407 
1408 //------------------------------TypeInt----------------------------------------
1409 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1410 }
1411 
1412 //------------------------------make-------------------------------------------
1413 const TypeInt *TypeInt::make( jint lo ) {
1414   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1415 }
1416 
1417 static int normalize_int_widen( jint lo, jint hi, int w ) {
1418   // Certain normalizations keep us sane when comparing types.
1419   // The 'SMALLINT' covers constants and also CC and its relatives.
1420   if (lo <= hi) {
1421     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1422     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1423   } else {
1424     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1425     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1426   }
1427   return w;
1428 }
1429 
1430 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1431   w = normalize_int_widen(lo, hi, w);
1432   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1433 }
1434 
1435 //------------------------------meet-------------------------------------------
1436 // Compute the MEET of two types.  It returns a new Type representation object
1437 // with reference count equal to the number of Types pointing at it.
1438 // Caller should wrap a Types around it.
1439 const Type *TypeInt::xmeet( const Type *t ) const {
1440   // Perform a fast test for common case; meeting the same types together.
1441   if( this == t ) return this;  // Meeting same type?
1442 
1443   // Currently "this->_base" is a TypeInt
1444   switch (t->base()) {          // Switch on original type
1445   case AnyPtr:                  // Mixing with oops happens when javac
1446   case RawPtr:                  // reuses local variables
1447   case OopPtr:
1448   case InstPtr:
1449   case ValueTypePtr:
1450   case AryPtr:
1451   case MetadataPtr:
1452   case KlassPtr:
1453   case NarrowOop:
1454   case NarrowKlass:
1455   case Long:
1456   case FloatTop:
1457   case FloatCon:
1458   case FloatBot:
1459   case DoubleTop:
1460   case DoubleCon:
1461   case DoubleBot:
1462   case Bottom:                  // Ye Olde Default
1463     return Type::BOTTOM;
1464   default:                      // All else is a mistake
1465     typerr(t);
1466   case Top:                     // No change
1467     return this;
1468   case Int:                     // Int vs Int?
1469     break;
1470   }
1471 
1472   // Expand covered set
1473   const TypeInt *r = t->is_int();
1474   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1475 }
1476 
1477 //------------------------------xdual------------------------------------------
1478 // Dual: reverse hi & lo; flip widen
1479 const Type *TypeInt::xdual() const {
1480   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1481   return new TypeInt(_hi,_lo,w);
1482 }
1483 
1484 //------------------------------widen------------------------------------------
1485 // Only happens for optimistic top-down optimizations.
1486 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1487   // Coming from TOP or such; no widening
1488   if( old->base() != Int ) return this;
1489   const TypeInt *ot = old->is_int();
1490 
1491   // If new guy is equal to old guy, no widening
1492   if( _lo == ot->_lo && _hi == ot->_hi )
1493     return old;
1494 
1495   // If new guy contains old, then we widened
1496   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1497     // New contains old
1498     // If new guy is already wider than old, no widening
1499     if( _widen > ot->_widen ) return this;
1500     // If old guy was a constant, do not bother
1501     if (ot->_lo == ot->_hi)  return this;
1502     // Now widen new guy.
1503     // Check for widening too far
1504     if (_widen == WidenMax) {
1505       int max = max_jint;
1506       int min = min_jint;
1507       if (limit->isa_int()) {
1508         max = limit->is_int()->_hi;
1509         min = limit->is_int()->_lo;
1510       }
1511       if (min < _lo && _hi < max) {
1512         // If neither endpoint is extremal yet, push out the endpoint
1513         // which is closer to its respective limit.
1514         if (_lo >= 0 ||                 // easy common case
1515             (juint)(_lo - min) >= (juint)(max - _hi)) {
1516           // Try to widen to an unsigned range type of 31 bits:
1517           return make(_lo, max, WidenMax);
1518         } else {
1519           return make(min, _hi, WidenMax);
1520         }
1521       }
1522       return TypeInt::INT;
1523     }
1524     // Returned widened new guy
1525     return make(_lo,_hi,_widen+1);
1526   }
1527 
1528   // If old guy contains new, then we probably widened too far & dropped to
1529   // bottom.  Return the wider fellow.
1530   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1531     return old;
1532 
1533   //fatal("Integer value range is not subset");
1534   //return this;
1535   return TypeInt::INT;
1536 }
1537 
1538 //------------------------------narrow---------------------------------------
1539 // Only happens for pessimistic optimizations.
1540 const Type *TypeInt::narrow( const Type *old ) const {
1541   if (_lo >= _hi)  return this;   // already narrow enough
1542   if (old == NULL)  return this;
1543   const TypeInt* ot = old->isa_int();
1544   if (ot == NULL)  return this;
1545   jint olo = ot->_lo;
1546   jint ohi = ot->_hi;
1547 
1548   // If new guy is equal to old guy, no narrowing
1549   if (_lo == olo && _hi == ohi)  return old;
1550 
1551   // If old guy was maximum range, allow the narrowing
1552   if (olo == min_jint && ohi == max_jint)  return this;
1553 
1554   if (_lo < olo || _hi > ohi)
1555     return this;                // doesn't narrow; pretty wierd
1556 
1557   // The new type narrows the old type, so look for a "death march".
1558   // See comments on PhaseTransform::saturate.
1559   juint nrange = (juint)_hi - _lo;
1560   juint orange = (juint)ohi - olo;
1561   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1562     // Use the new type only if the range shrinks a lot.
1563     // We do not want the optimizer computing 2^31 point by point.
1564     return old;
1565   }
1566 
1567   return this;
1568 }
1569 
1570 //-----------------------------filter------------------------------------------
1571 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1572   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1573   if (ft == NULL || ft->empty())
1574     return Type::TOP;           // Canonical empty value
1575   if (ft->_widen < this->_widen) {
1576     // Do not allow the value of kill->_widen to affect the outcome.
1577     // The widen bits must be allowed to run freely through the graph.
1578     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1579   }
1580   return ft;
1581 }
1582 
1583 //------------------------------eq---------------------------------------------
1584 // Structural equality check for Type representations
1585 bool TypeInt::eq( const Type *t ) const {
1586   const TypeInt *r = t->is_int(); // Handy access
1587   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1588 }
1589 
1590 //------------------------------hash-------------------------------------------
1591 // Type-specific hashing function.
1592 int TypeInt::hash(void) const {
1593   return java_add(java_add(_lo, _hi), java_add((jint)_widen, (jint)Type::Int));
1594 }
1595 
1596 //------------------------------is_finite--------------------------------------
1597 // Has a finite value
1598 bool TypeInt::is_finite() const {
1599   return true;
1600 }
1601 
1602 //------------------------------dump2------------------------------------------
1603 // Dump TypeInt
1604 #ifndef PRODUCT
1605 static const char* intname(char* buf, jint n) {
1606   if (n == min_jint)
1607     return "min";
1608   else if (n < min_jint + 10000)
1609     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1610   else if (n == max_jint)
1611     return "max";
1612   else if (n > max_jint - 10000)
1613     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1614   else
1615     sprintf(buf, INT32_FORMAT, n);
1616   return buf;
1617 }
1618 
1619 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1620   char buf[40], buf2[40];
1621   if (_lo == min_jint && _hi == max_jint)
1622     st->print("int");
1623   else if (is_con())
1624     st->print("int:%s", intname(buf, get_con()));
1625   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1626     st->print("bool");
1627   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1628     st->print("byte");
1629   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1630     st->print("char");
1631   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1632     st->print("short");
1633   else if (_hi == max_jint)
1634     st->print("int:>=%s", intname(buf, _lo));
1635   else if (_lo == min_jint)
1636     st->print("int:<=%s", intname(buf, _hi));
1637   else
1638     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1639 
1640   if (_widen != 0 && this != TypeInt::INT)
1641     st->print(":%.*s", _widen, "wwww");
1642 }
1643 #endif
1644 
1645 //------------------------------singleton--------------------------------------
1646 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1647 // constants.
1648 bool TypeInt::singleton(void) const {
1649   return _lo >= _hi;
1650 }
1651 
1652 bool TypeInt::empty(void) const {
1653   return _lo > _hi;
1654 }
1655 
1656 //=============================================================================
1657 // Convenience common pre-built types.
1658 const TypeLong *TypeLong::MINUS_1;// -1
1659 const TypeLong *TypeLong::ZERO; // 0
1660 const TypeLong *TypeLong::ONE;  // 1
1661 const TypeLong *TypeLong::POS;  // >=0
1662 const TypeLong *TypeLong::LONG; // 64-bit integers
1663 const TypeLong *TypeLong::INT;  // 32-bit subrange
1664 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1665 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1666 
1667 //------------------------------TypeLong---------------------------------------
1668 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1669 }
1670 
1671 //------------------------------make-------------------------------------------
1672 const TypeLong *TypeLong::make( jlong lo ) {
1673   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1674 }
1675 
1676 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1677   // Certain normalizations keep us sane when comparing types.
1678   // The 'SMALLINT' covers constants.
1679   if (lo <= hi) {
1680     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1681     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1682   } else {
1683     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1684     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1685   }
1686   return w;
1687 }
1688 
1689 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1690   w = normalize_long_widen(lo, hi, w);
1691   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1692 }
1693 
1694 
1695 //------------------------------meet-------------------------------------------
1696 // Compute the MEET of two types.  It returns a new Type representation object
1697 // with reference count equal to the number of Types pointing at it.
1698 // Caller should wrap a Types around it.
1699 const Type *TypeLong::xmeet( const Type *t ) const {
1700   // Perform a fast test for common case; meeting the same types together.
1701   if( this == t ) return this;  // Meeting same type?
1702 
1703   // Currently "this->_base" is a TypeLong
1704   switch (t->base()) {          // Switch on original type
1705   case AnyPtr:                  // Mixing with oops happens when javac
1706   case RawPtr:                  // reuses local variables
1707   case OopPtr:
1708   case InstPtr:
1709   case ValueTypePtr:
1710   case AryPtr:
1711   case MetadataPtr:
1712   case KlassPtr:
1713   case NarrowOop:
1714   case NarrowKlass:
1715   case Int:
1716   case FloatTop:
1717   case FloatCon:
1718   case FloatBot:
1719   case DoubleTop:
1720   case DoubleCon:
1721   case DoubleBot:
1722   case Bottom:                  // Ye Olde Default
1723     return Type::BOTTOM;
1724   default:                      // All else is a mistake
1725     typerr(t);
1726   case Top:                     // No change
1727     return this;
1728   case Long:                    // Long vs Long?
1729     break;
1730   }
1731 
1732   // Expand covered set
1733   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1734   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1735 }
1736 
1737 //------------------------------xdual------------------------------------------
1738 // Dual: reverse hi & lo; flip widen
1739 const Type *TypeLong::xdual() const {
1740   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1741   return new TypeLong(_hi,_lo,w);
1742 }
1743 
1744 //------------------------------widen------------------------------------------
1745 // Only happens for optimistic top-down optimizations.
1746 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1747   // Coming from TOP or such; no widening
1748   if( old->base() != Long ) return this;
1749   const TypeLong *ot = old->is_long();
1750 
1751   // If new guy is equal to old guy, no widening
1752   if( _lo == ot->_lo && _hi == ot->_hi )
1753     return old;
1754 
1755   // If new guy contains old, then we widened
1756   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1757     // New contains old
1758     // If new guy is already wider than old, no widening
1759     if( _widen > ot->_widen ) return this;
1760     // If old guy was a constant, do not bother
1761     if (ot->_lo == ot->_hi)  return this;
1762     // Now widen new guy.
1763     // Check for widening too far
1764     if (_widen == WidenMax) {
1765       jlong max = max_jlong;
1766       jlong min = min_jlong;
1767       if (limit->isa_long()) {
1768         max = limit->is_long()->_hi;
1769         min = limit->is_long()->_lo;
1770       }
1771       if (min < _lo && _hi < max) {
1772         // If neither endpoint is extremal yet, push out the endpoint
1773         // which is closer to its respective limit.
1774         if (_lo >= 0 ||                 // easy common case
1775             ((julong)_lo - min) >= ((julong)max - _hi)) {
1776           // Try to widen to an unsigned range type of 32/63 bits:
1777           if (max >= max_juint && _hi < max_juint)
1778             return make(_lo, max_juint, WidenMax);
1779           else
1780             return make(_lo, max, WidenMax);
1781         } else {
1782           return make(min, _hi, WidenMax);
1783         }
1784       }
1785       return TypeLong::LONG;
1786     }
1787     // Returned widened new guy
1788     return make(_lo,_hi,_widen+1);
1789   }
1790 
1791   // If old guy contains new, then we probably widened too far & dropped to
1792   // bottom.  Return the wider fellow.
1793   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1794     return old;
1795 
1796   //  fatal("Long value range is not subset");
1797   // return this;
1798   return TypeLong::LONG;
1799 }
1800 
1801 //------------------------------narrow----------------------------------------
1802 // Only happens for pessimistic optimizations.
1803 const Type *TypeLong::narrow( const Type *old ) const {
1804   if (_lo >= _hi)  return this;   // already narrow enough
1805   if (old == NULL)  return this;
1806   const TypeLong* ot = old->isa_long();
1807   if (ot == NULL)  return this;
1808   jlong olo = ot->_lo;
1809   jlong ohi = ot->_hi;
1810 
1811   // If new guy is equal to old guy, no narrowing
1812   if (_lo == olo && _hi == ohi)  return old;
1813 
1814   // If old guy was maximum range, allow the narrowing
1815   if (olo == min_jlong && ohi == max_jlong)  return this;
1816 
1817   if (_lo < olo || _hi > ohi)
1818     return this;                // doesn't narrow; pretty wierd
1819 
1820   // The new type narrows the old type, so look for a "death march".
1821   // See comments on PhaseTransform::saturate.
1822   julong nrange = _hi - _lo;
1823   julong orange = ohi - olo;
1824   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1825     // Use the new type only if the range shrinks a lot.
1826     // We do not want the optimizer computing 2^31 point by point.
1827     return old;
1828   }
1829 
1830   return this;
1831 }
1832 
1833 //-----------------------------filter------------------------------------------
1834 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1835   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1836   if (ft == NULL || ft->empty())
1837     return Type::TOP;           // Canonical empty value
1838   if (ft->_widen < this->_widen) {
1839     // Do not allow the value of kill->_widen to affect the outcome.
1840     // The widen bits must be allowed to run freely through the graph.
1841     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1842   }
1843   return ft;
1844 }
1845 
1846 //------------------------------eq---------------------------------------------
1847 // Structural equality check for Type representations
1848 bool TypeLong::eq( const Type *t ) const {
1849   const TypeLong *r = t->is_long(); // Handy access
1850   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1851 }
1852 
1853 //------------------------------hash-------------------------------------------
1854 // Type-specific hashing function.
1855 int TypeLong::hash(void) const {
1856   return (int)(_lo+_hi+_widen+(int)Type::Long);
1857 }
1858 
1859 //------------------------------is_finite--------------------------------------
1860 // Has a finite value
1861 bool TypeLong::is_finite() const {
1862   return true;
1863 }
1864 
1865 //------------------------------dump2------------------------------------------
1866 // Dump TypeLong
1867 #ifndef PRODUCT
1868 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1869   if (n > x) {
1870     if (n >= x + 10000)  return NULL;
1871     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1872   } else if (n < x) {
1873     if (n <= x - 10000)  return NULL;
1874     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1875   } else {
1876     return xname;
1877   }
1878   return buf;
1879 }
1880 
1881 static const char* longname(char* buf, jlong n) {
1882   const char* str;
1883   if (n == min_jlong)
1884     return "min";
1885   else if (n < min_jlong + 10000)
1886     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1887   else if (n == max_jlong)
1888     return "max";
1889   else if (n > max_jlong - 10000)
1890     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1891   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1892     return str;
1893   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1894     return str;
1895   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1896     return str;
1897   else
1898     sprintf(buf, JLONG_FORMAT, n);
1899   return buf;
1900 }
1901 
1902 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1903   char buf[80], buf2[80];
1904   if (_lo == min_jlong && _hi == max_jlong)
1905     st->print("long");
1906   else if (is_con())
1907     st->print("long:%s", longname(buf, get_con()));
1908   else if (_hi == max_jlong)
1909     st->print("long:>=%s", longname(buf, _lo));
1910   else if (_lo == min_jlong)
1911     st->print("long:<=%s", longname(buf, _hi));
1912   else
1913     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1914 
1915   if (_widen != 0 && this != TypeLong::LONG)
1916     st->print(":%.*s", _widen, "wwww");
1917 }
1918 #endif
1919 
1920 //------------------------------singleton--------------------------------------
1921 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1922 // constants
1923 bool TypeLong::singleton(void) const {
1924   return _lo >= _hi;
1925 }
1926 
1927 bool TypeLong::empty(void) const {
1928   return _lo > _hi;
1929 }
1930 
1931 //=============================================================================
1932 // Convenience common pre-built types.
1933 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1934 const TypeTuple *TypeTuple::IFFALSE;
1935 const TypeTuple *TypeTuple::IFTRUE;
1936 const TypeTuple *TypeTuple::IFNEITHER;
1937 const TypeTuple *TypeTuple::LOOPBODY;
1938 const TypeTuple *TypeTuple::MEMBAR;
1939 const TypeTuple *TypeTuple::STORECONDITIONAL;
1940 const TypeTuple *TypeTuple::START_I2C;
1941 const TypeTuple *TypeTuple::INT_PAIR;
1942 const TypeTuple *TypeTuple::LONG_PAIR;
1943 const TypeTuple *TypeTuple::INT_CC_PAIR;
1944 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1945 
1946 static void collect_value_fields(ciValueKlass* vk, const Type** field_array, uint& pos) {
1947   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1948     ciField* field = vk->nonstatic_field_at(j);
1949     BasicType bt = field->type()->basic_type();
1950     const Type* ft = Type::get_const_type(field->type());
1951     field_array[pos++] = ft;
1952     if (bt == T_LONG || bt == T_DOUBLE) {
1953       field_array[pos++] = Type::HALF;
1954     }
1955   }
1956 }
1957 
1958 //------------------------------make-------------------------------------------
1959 // Make a TypeTuple from the range of a method signature
1960 const TypeTuple *TypeTuple::make_range(ciSignature* sig, bool ret_vt_fields) {
1961   ciType* return_type = sig->return_type();
1962   return make_range(return_type, ret_vt_fields);
1963 }
1964 
1965 const TypeTuple *TypeTuple::make_range(ciType* return_type, bool ret_vt_fields) {
1966   uint arg_cnt = 0;
1967   if (ret_vt_fields) {
1968     ret_vt_fields = return_type->is_valuetype() && ((ciValueKlass*)return_type)->can_be_returned_as_fields();
1969   }
1970   if (ret_vt_fields) {
1971     ciValueKlass* vk = (ciValueKlass*)return_type;
1972     arg_cnt = vk->value_arg_slots()+1;
1973   } else {
1974     arg_cnt = return_type->size();
1975   }
1976 
1977   const Type **field_array = fields(arg_cnt);
1978   switch (return_type->basic_type()) {
1979   case T_LONG:
1980     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1981     field_array[TypeFunc::Parms+1] = Type::HALF;
1982     break;
1983   case T_DOUBLE:
1984     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1985     field_array[TypeFunc::Parms+1] = Type::HALF;
1986     break;
1987   case T_OBJECT:
1988   case T_ARRAY:
1989   case T_BOOLEAN:
1990   case T_CHAR:
1991   case T_FLOAT:
1992   case T_BYTE:
1993   case T_SHORT:
1994   case T_INT:
1995     field_array[TypeFunc::Parms] = get_const_type(return_type);
1996     break;
1997   case T_VALUETYPE:
1998     if (ret_vt_fields) {
1999       ciValueKlass* vk = (ciValueKlass*)return_type;
2000       uint pos = TypeFunc::Parms;
2001       field_array[pos] = TypePtr::BOTTOM;
2002       pos++;
2003       collect_value_fields(vk, field_array, pos);
2004     } else {
2005       // Value type returns cannot be NULL
2006       //field_array[TypeFunc::Parms] = get_const_type(return_type)->join_speculative(TypePtr::NOTNULL);
2007       field_array[TypeFunc::Parms] = get_const_type(return_type);
2008     }
2009     break;
2010   case T_VOID:
2011     break;
2012   default:
2013     ShouldNotReachHere();
2014   }
2015   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
2016 }
2017 
2018 // Make a TypeTuple from the domain of a method signature
2019 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
2020   uint arg_cnt = sig->size();
2021 
2022   int vt_extra = 0;
2023   if (vt_fields_as_args) {
2024     for (int i = 0; i < sig->count(); i++) {
2025       ciType* type = sig->type_at(i);
2026       if (type->basic_type() == T_VALUETYPE && !type->is__Value()) {
2027         assert(type->is_valuetype(), "inconsistent type");
2028         ciValueKlass* vk = (ciValueKlass*)type;
2029         vt_extra += vk->value_arg_slots()-1;
2030       }
2031     }
2032     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
2033   }
2034 
2035   uint pos = TypeFunc::Parms;
2036   const Type **field_array;
2037   if (recv != NULL) {
2038     arg_cnt++;
2039     bool vt_fields_for_recv = vt_fields_as_args && recv->is_valuetype() && !recv->is__Value();
2040     if (vt_fields_for_recv) {
2041       ciValueKlass* vk = (ciValueKlass*)recv;
2042       vt_extra += vk->value_arg_slots()-1;
2043     }
2044     field_array = fields(arg_cnt + vt_extra);
2045     // Use get_const_type here because it respects UseUniqueSubclasses:
2046     if (vt_fields_for_recv) {
2047       ciValueKlass* vk = (ciValueKlass*)recv;
2048       collect_value_fields(vk, field_array, pos);
2049     } else {
2050       if (recv->is_valuetype()) {
2051         // TODO For now, we just deoptimize if the value type receiver is null
2052         field_array[pos++] = get_const_type(recv);
2053       } else {
2054         field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
2055       }
2056     }
2057   } else {
2058     field_array = fields(arg_cnt + vt_extra);
2059   }
2060 
2061   int i = 0;
2062   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
2063     ciType* type = sig->type_at(i);
2064 
2065     switch (type->basic_type()) {
2066     case T_LONG:
2067       field_array[pos++] = TypeLong::LONG;
2068       field_array[pos++] = Type::HALF;
2069       break;
2070     case T_DOUBLE:
2071       field_array[pos++] = Type::DOUBLE;
2072       field_array[pos++] = Type::HALF;
2073       break;
2074     case T_OBJECT:
2075     case T_ARRAY:
2076     case T_FLOAT:
2077     case T_INT:
2078       field_array[pos++] = get_const_type(type);
2079       break;
2080     case T_BOOLEAN:
2081     case T_CHAR:
2082     case T_BYTE:
2083     case T_SHORT:
2084       field_array[pos++] = TypeInt::INT;
2085       break;
2086     case T_VALUETYPE: {
2087       assert(type->is_valuetype(), "inconsistent type");
2088       if (vt_fields_as_args && !type->is__Value()) {
2089         ciValueKlass* vk = (ciValueKlass*)type;
2090         collect_value_fields(vk, field_array, pos);
2091       } else {
2092         // Value types arguments cannot be NULL
2093         // field_array[pos++] = get_const_type(type)->join_speculative(TypePtr::NOTNULL);
2094         // TODO they can be NULL in LWorld
2095         field_array[pos++] = get_const_type(type);
2096       }
2097       break;
2098     }
2099     default:
2100       ShouldNotReachHere();
2101     }
2102     i++;
2103   }
2104   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
2105 
2106   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
2107 }
2108 
2109 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
2110   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
2111 }
2112 
2113 //------------------------------fields-----------------------------------------
2114 // Subroutine call type with space allocated for argument types
2115 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
2116 const Type **TypeTuple::fields( uint arg_cnt ) {
2117   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
2118   flds[TypeFunc::Control  ] = Type::CONTROL;
2119   flds[TypeFunc::I_O      ] = Type::ABIO;
2120   flds[TypeFunc::Memory   ] = Type::MEMORY;
2121   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
2122   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
2123 
2124   return flds;
2125 }
2126 
2127 //------------------------------meet-------------------------------------------
2128 // Compute the MEET of two types.  It returns a new Type object.
2129 const Type *TypeTuple::xmeet( const Type *t ) const {
2130   // Perform a fast test for common case; meeting the same types together.
2131   if( this == t ) return this;  // Meeting same type-rep?
2132 
2133   // Current "this->_base" is Tuple
2134   switch (t->base()) {          // switch on original type
2135 
2136   case Bottom:                  // Ye Olde Default
2137     return t;
2138 
2139   default:                      // All else is a mistake
2140     typerr(t);
2141 
2142   case Tuple: {                 // Meeting 2 signatures?
2143     const TypeTuple *x = t->is_tuple();
2144     assert( _cnt == x->_cnt, "" );
2145     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2146     for( uint i=0; i<_cnt; i++ )
2147       fields[i] = field_at(i)->xmeet( x->field_at(i) );
2148     return TypeTuple::make(_cnt,fields);
2149   }
2150   case Top:
2151     break;
2152   }
2153   return this;                  // Return the double constant
2154 }
2155 
2156 //------------------------------xdual------------------------------------------
2157 // Dual: compute field-by-field dual
2158 const Type *TypeTuple::xdual() const {
2159   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2160   for( uint i=0; i<_cnt; i++ )
2161     fields[i] = _fields[i]->dual();
2162   return new TypeTuple(_cnt,fields);
2163 }
2164 
2165 //------------------------------eq---------------------------------------------
2166 // Structural equality check for Type representations
2167 bool TypeTuple::eq( const Type *t ) const {
2168   const TypeTuple *s = (const TypeTuple *)t;
2169   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2170   for (uint i = 0; i < _cnt; i++)
2171     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2172       return false;             // Missed
2173   return true;
2174 }
2175 
2176 //------------------------------hash-------------------------------------------
2177 // Type-specific hashing function.
2178 int TypeTuple::hash(void) const {
2179   intptr_t sum = _cnt;
2180   for( uint i=0; i<_cnt; i++ )
2181     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2182   return sum;
2183 }
2184 
2185 //------------------------------dump2------------------------------------------
2186 // Dump signature Type
2187 #ifndef PRODUCT
2188 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2189   st->print("{");
2190   if( !depth || d[this] ) {     // Check for recursive print
2191     st->print("...}");
2192     return;
2193   }
2194   d.Insert((void*)this, (void*)this);   // Stop recursion
2195   if( _cnt ) {
2196     uint i;
2197     for( i=0; i<_cnt-1; i++ ) {
2198       st->print("%d:", i);
2199       _fields[i]->dump2(d, depth-1, st);
2200       st->print(", ");
2201     }
2202     st->print("%d:", i);
2203     _fields[i]->dump2(d, depth-1, st);
2204   }
2205   st->print("}");
2206 }
2207 #endif
2208 
2209 //------------------------------singleton--------------------------------------
2210 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2211 // constants (Ldi nodes).  Singletons are integer, float or double constants
2212 // or a single symbol.
2213 bool TypeTuple::singleton(void) const {
2214   return false;                 // Never a singleton
2215 }
2216 
2217 bool TypeTuple::empty(void) const {
2218   for( uint i=0; i<_cnt; i++ ) {
2219     if (_fields[i]->empty())  return true;
2220   }
2221   return false;
2222 }
2223 
2224 //=============================================================================
2225 // Convenience common pre-built types.
2226 
2227 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2228   // Certain normalizations keep us sane when comparing types.
2229   // We do not want arrayOop variables to differ only by the wideness
2230   // of their index types.  Pick minimum wideness, since that is the
2231   // forced wideness of small ranges anyway.
2232   if (size->_widen != Type::WidenMin)
2233     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2234   else
2235     return size;
2236 }
2237 
2238 //------------------------------make-------------------------------------------
2239 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2240   if (elem->isa_valuetypeptr()) {
2241     // Value type array elements cannot be NULL
2242     elem = elem->join_speculative(TypePtr::NOTNULL)->is_oopptr();
2243   }
2244   if (UseCompressedOops && elem->isa_oopptr()) {
2245     elem = elem->make_narrowoop();
2246   }
2247   size = normalize_array_size(size);
2248   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2249 }
2250 
2251 //------------------------------meet-------------------------------------------
2252 // Compute the MEET of two types.  It returns a new Type object.
2253 const Type *TypeAry::xmeet( const Type *t ) const {
2254   // Perform a fast test for common case; meeting the same types together.
2255   if( this == t ) return this;  // Meeting same type-rep?
2256 
2257   // Current "this->_base" is Ary
2258   switch (t->base()) {          // switch on original type
2259 
2260   case Bottom:                  // Ye Olde Default
2261     return t;
2262 
2263   default:                      // All else is a mistake
2264     typerr(t);
2265 
2266   case Array: {                 // Meeting 2 arrays?
2267     const TypeAry *a = t->is_ary();
2268     return TypeAry::make(_elem->meet_speculative(a->_elem),
2269                          _size->xmeet(a->_size)->is_int(),
2270                          _stable & a->_stable);
2271   }
2272   case Top:
2273     break;
2274   }
2275   return this;                  // Return the double constant
2276 }
2277 
2278 //------------------------------xdual------------------------------------------
2279 // Dual: compute field-by-field dual
2280 const Type *TypeAry::xdual() const {
2281   const TypeInt* size_dual = _size->dual()->is_int();
2282   size_dual = normalize_array_size(size_dual);
2283   return new TypeAry(_elem->dual(), size_dual, !_stable);
2284 }
2285 
2286 //------------------------------eq---------------------------------------------
2287 // Structural equality check for Type representations
2288 bool TypeAry::eq( const Type *t ) const {
2289   const TypeAry *a = (const TypeAry*)t;
2290   return _elem == a->_elem &&
2291     _stable == a->_stable &&
2292     _size == a->_size;
2293 }
2294 
2295 //------------------------------hash-------------------------------------------
2296 // Type-specific hashing function.
2297 int TypeAry::hash(void) const {
2298   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2299 }
2300 
2301 /**
2302  * Return same type without a speculative part in the element
2303  */
2304 const Type* TypeAry::remove_speculative() const {
2305   return make(_elem->remove_speculative(), _size, _stable);
2306 }
2307 
2308 /**
2309  * Return same type with cleaned up speculative part of element
2310  */
2311 const Type* TypeAry::cleanup_speculative() const {
2312   return make(_elem->cleanup_speculative(), _size, _stable);
2313 }
2314 
2315 /**
2316  * Return same type but with a different inline depth (used for speculation)
2317  *
2318  * @param depth  depth to meet with
2319  */
2320 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2321   if (!UseInlineDepthForSpeculativeTypes) {
2322     return this;
2323   }
2324   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2325 }
2326 
2327 //----------------------interface_vs_oop---------------------------------------
2328 #ifdef ASSERT
2329 bool TypeAry::interface_vs_oop(const Type *t) const {
2330   const TypeAry* t_ary = t->is_ary();
2331   if (t_ary) {
2332     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2333     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2334     if(this_ptr != NULL && t_ptr != NULL) {
2335       return this_ptr->interface_vs_oop(t_ptr);
2336     }
2337   }
2338   return false;
2339 }
2340 #endif
2341 
2342 //------------------------------dump2------------------------------------------
2343 #ifndef PRODUCT
2344 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2345   if (_stable)  st->print("stable:");
2346   _elem->dump2(d, depth, st);
2347   st->print("[");
2348   _size->dump2(d, depth, st);
2349   st->print("]");
2350 }
2351 #endif
2352 
2353 //------------------------------singleton--------------------------------------
2354 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2355 // constants (Ldi nodes).  Singletons are integer, float or double constants
2356 // or a single symbol.
2357 bool TypeAry::singleton(void) const {
2358   return false;                 // Never a singleton
2359 }
2360 
2361 bool TypeAry::empty(void) const {
2362   return _elem->empty() || _size->empty();
2363 }
2364 
2365 //--------------------------ary_must_be_exact----------------------------------
2366 bool TypeAry::ary_must_be_exact() const {
2367   if (!UseExactTypes)       return false;
2368   // This logic looks at the element type of an array, and returns true
2369   // if the element type is either a primitive or a final instance class.
2370   // In such cases, an array built on this ary must have no subclasses.
2371   if (_elem == BOTTOM)      return false;  // general array not exact
2372   if (_elem == TOP   )      return false;  // inverted general array not exact
2373   const TypeOopPtr*  toop = NULL;
2374   if (UseCompressedOops && _elem->isa_narrowoop()) {
2375     toop = _elem->make_ptr()->isa_oopptr();
2376   } else {
2377     toop = _elem->isa_oopptr();
2378   }
2379   if (!toop)                return true;   // a primitive type, like int
2380   ciKlass* tklass = toop->klass();
2381   if (tklass == NULL)       return false;  // unloaded class
2382   if (!tklass->is_loaded()) return false;  // unloaded class
2383   const TypeInstPtr* tinst;
2384   if (_elem->isa_narrowoop())
2385     tinst = _elem->make_ptr()->isa_instptr();
2386   else
2387     tinst = _elem->isa_instptr();
2388   if (tinst)
2389     return tklass->as_instance_klass()->is_final();
2390   const TypeAryPtr*  tap;
2391   if (_elem->isa_narrowoop())
2392     tap = _elem->make_ptr()->isa_aryptr();
2393   else
2394     tap = _elem->isa_aryptr();
2395   if (tap)
2396     return tap->ary()->ary_must_be_exact();
2397   return false;
2398 }
2399 
2400 //==============================TypeValueType=======================================
2401 
2402 //------------------------------make-------------------------------------------
2403 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2404   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2405 }
2406 
2407 //------------------------------meet-------------------------------------------
2408 // Compute the MEET of two types.  It returns a new Type object.
2409 const Type* TypeValueType::xmeet(const Type* t) const {
2410   // Perform a fast test for common case; meeting the same types together.
2411   if(this == t) return this;  // Meeting same type-rep?
2412 
2413   // Current "this->_base" is ValueType
2414   switch (t->base()) {          // switch on original type
2415 
2416   case Int:
2417   case Long:
2418   case FloatTop:
2419   case FloatCon:
2420   case FloatBot:
2421   case DoubleTop:
2422   case DoubleCon:
2423   case DoubleBot:
2424   case NarrowKlass:
2425   case Bottom:
2426     return Type::BOTTOM;
2427 
2428   case OopPtr:
2429   case MetadataPtr:
2430   case KlassPtr:
2431   case RawPtr:
2432     return TypePtr::BOTTOM;
2433 
2434   case Top:
2435     return this;
2436 
2437   case NarrowOop: {
2438     return t->make_ptr()->xmeet(this)->make_narrowoop();
2439   }
2440 
2441   case AryPtr:
2442   case InstPtr:
2443   case ValueTypePtr: {
2444     return t->xmeet(this);
2445   }
2446 
2447   case ValueType: {
2448     // All value types inherit from Object
2449     return TypeInstPtr::NOTNULL;
2450   }
2451 
2452   default:                      // All else is a mistake
2453     typerr(t);
2454 
2455   }
2456   return this;
2457 }
2458 
2459 //------------------------------xdual------------------------------------------
2460 const Type* TypeValueType::xdual() const {
2461   return this;
2462 }
2463 
2464 //------------------------------eq---------------------------------------------
2465 // Structural equality check for Type representations
2466 bool TypeValueType::eq(const Type* t) const {
2467   const TypeValueType* vt = t->is_valuetype();
2468   return (_vk == vt->value_klass());
2469 }
2470 
2471 //------------------------------hash-------------------------------------------
2472 // Type-specific hashing function.
2473 int TypeValueType::hash(void) const {
2474   return (intptr_t)_vk;
2475 }
2476 
2477 //------------------------------singleton--------------------------------------
2478 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2479 bool TypeValueType::singleton(void) const {
2480   return false;
2481 }
2482 
2483 //------------------------------empty------------------------------------------
2484 // TRUE if Type is a type with no values, FALSE otherwise.
2485 bool TypeValueType::empty(void) const {
2486   return false;
2487 }
2488 
2489 //------------------------------dump2------------------------------------------
2490 #ifndef PRODUCT
2491 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2492   int count = _vk->nof_declared_nonstatic_fields();
2493   st->print("valuetype[%d]:{", count);
2494   st->print("%s", count != 0 ? _vk->declared_nonstatic_field_at(0)->type()->name() : "empty");
2495   for (int i = 1; i < count; ++i) {
2496     st->print(", %s", _vk->declared_nonstatic_field_at(i)->type()->name());
2497   }
2498   st->print("}");
2499 }
2500 #endif
2501 
2502 //==============================TypeVect=======================================
2503 // Convenience common pre-built types.
2504 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2505 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2506 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2507 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2508 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2509 
2510 //------------------------------make-------------------------------------------
2511 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2512   BasicType elem_bt = elem->array_element_basic_type();
2513   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2514   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2515   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2516   int size = length * type2aelembytes(elem_bt);
2517   switch (Matcher::vector_ideal_reg(size)) {
2518   case Op_VecS:
2519     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2520   case Op_RegL:
2521   case Op_VecD:
2522   case Op_RegD:
2523     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2524   case Op_VecX:
2525     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2526   case Op_VecY:
2527     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2528   case Op_VecZ:
2529     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2530   }
2531  ShouldNotReachHere();
2532   return NULL;
2533 }
2534 
2535 //------------------------------meet-------------------------------------------
2536 // Compute the MEET of two types.  It returns a new Type object.
2537 const Type *TypeVect::xmeet( const Type *t ) const {
2538   // Perform a fast test for common case; meeting the same types together.
2539   if( this == t ) return this;  // Meeting same type-rep?
2540 
2541   // Current "this->_base" is Vector
2542   switch (t->base()) {          // switch on original type
2543 
2544   case Bottom:                  // Ye Olde Default
2545     return t;
2546 
2547   default:                      // All else is a mistake
2548     typerr(t);
2549 
2550   case VectorS:
2551   case VectorD:
2552   case VectorX:
2553   case VectorY:
2554   case VectorZ: {                // Meeting 2 vectors?
2555     const TypeVect* v = t->is_vect();
2556     assert(  base() == v->base(), "");
2557     assert(length() == v->length(), "");
2558     assert(element_basic_type() == v->element_basic_type(), "");
2559     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2560   }
2561   case Top:
2562     break;
2563   }
2564   return this;
2565 }
2566 
2567 //------------------------------xdual------------------------------------------
2568 // Dual: compute field-by-field dual
2569 const Type *TypeVect::xdual() const {
2570   return new TypeVect(base(), _elem->dual(), _length);
2571 }
2572 
2573 //------------------------------eq---------------------------------------------
2574 // Structural equality check for Type representations
2575 bool TypeVect::eq(const Type *t) const {
2576   const TypeVect *v = t->is_vect();
2577   return (_elem == v->_elem) && (_length == v->_length);
2578 }
2579 
2580 //------------------------------hash-------------------------------------------
2581 // Type-specific hashing function.
2582 int TypeVect::hash(void) const {
2583   return (intptr_t)_elem + (intptr_t)_length;
2584 }
2585 
2586 //------------------------------singleton--------------------------------------
2587 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2588 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2589 // constant value (when vector is created with Replicate code).
2590 bool TypeVect::singleton(void) const {
2591 // There is no Con node for vectors yet.
2592 //  return _elem->singleton();
2593   return false;
2594 }
2595 
2596 bool TypeVect::empty(void) const {
2597   return _elem->empty();
2598 }
2599 
2600 //------------------------------dump2------------------------------------------
2601 #ifndef PRODUCT
2602 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2603   switch (base()) {
2604   case VectorS:
2605     st->print("vectors["); break;
2606   case VectorD:
2607     st->print("vectord["); break;
2608   case VectorX:
2609     st->print("vectorx["); break;
2610   case VectorY:
2611     st->print("vectory["); break;
2612   case VectorZ:
2613     st->print("vectorz["); break;
2614   default:
2615     ShouldNotReachHere();
2616   }
2617   st->print("%d]:{", _length);
2618   _elem->dump2(d, depth, st);
2619   st->print("}");
2620 }
2621 #endif
2622 
2623 
2624 //=============================================================================
2625 // Convenience common pre-built types.
2626 const TypePtr *TypePtr::NULL_PTR;
2627 const TypePtr *TypePtr::NOTNULL;
2628 const TypePtr *TypePtr::BOTTOM;
2629 
2630 //------------------------------meet-------------------------------------------
2631 // Meet over the PTR enum
2632 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2633   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2634   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2635   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2636   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2637   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2638   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2639   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2640 };
2641 
2642 //------------------------------make-------------------------------------------
2643 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2644   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2645 }
2646 
2647 //------------------------------cast_to_ptr_type-------------------------------
2648 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2649   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2650   if( ptr == _ptr ) return this;
2651   return make(_base, ptr, _offset, _speculative, _inline_depth);
2652 }
2653 
2654 //------------------------------get_con----------------------------------------
2655 intptr_t TypePtr::get_con() const {
2656   assert( _ptr == Null, "" );
2657   return offset();
2658 }
2659 
2660 //------------------------------meet-------------------------------------------
2661 // Compute the MEET of two types.  It returns a new Type object.
2662 const Type *TypePtr::xmeet(const Type *t) const {
2663   const Type* res = xmeet_helper(t);
2664   if (res->isa_ptr() == NULL) {
2665     return res;
2666   }
2667 
2668   const TypePtr* res_ptr = res->is_ptr();
2669   if (res_ptr->speculative() != NULL) {
2670     // type->speculative() == NULL means that speculation is no better
2671     // than type, i.e. type->speculative() == type. So there are 2
2672     // ways to represent the fact that we have no useful speculative
2673     // data and we should use a single one to be able to test for
2674     // equality between types. Check whether type->speculative() ==
2675     // type and set speculative to NULL if it is the case.
2676     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2677       return res_ptr->remove_speculative();
2678     }
2679   }
2680 
2681   return res;
2682 }
2683 
2684 const Type *TypePtr::xmeet_helper(const Type *t) const {
2685   // Perform a fast test for common case; meeting the same types together.
2686   if( this == t ) return this;  // Meeting same type-rep?
2687 
2688   // Current "this->_base" is AnyPtr
2689   switch (t->base()) {          // switch on original type
2690   case Int:                     // Mixing ints & oops happens when javac
2691   case Long:                    // reuses local variables
2692   case FloatTop:
2693   case FloatCon:
2694   case FloatBot:
2695   case DoubleTop:
2696   case DoubleCon:
2697   case DoubleBot:
2698   case NarrowOop:
2699   case NarrowKlass:
2700   case Bottom:                  // Ye Olde Default
2701     return Type::BOTTOM;
2702   case Top:
2703     return this;
2704 
2705   case AnyPtr: {                // Meeting to AnyPtrs
2706     const TypePtr *tp = t->is_ptr();
2707     const TypePtr* speculative = xmeet_speculative(tp);
2708     int depth = meet_inline_depth(tp->inline_depth());
2709     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2710   }
2711   case RawPtr:                  // For these, flip the call around to cut down
2712   case OopPtr:
2713   case InstPtr:                 // on the cases I have to handle.
2714   case ValueTypePtr:
2715   case AryPtr:
2716   case MetadataPtr:
2717   case KlassPtr:
2718     return t->xmeet(this);      // Call in reverse direction
2719   default:                      // All else is a mistake
2720     typerr(t);
2721 
2722   }
2723   return this;
2724 }
2725 
2726 //------------------------------meet_offset------------------------------------
2727 Type::Offset TypePtr::meet_offset(int offset) const {
2728   return _offset.meet(Offset(offset));
2729 }
2730 
2731 //------------------------------dual_offset------------------------------------
2732 Type::Offset TypePtr::dual_offset() const {
2733   return _offset.dual();
2734 }
2735 
2736 //------------------------------xdual------------------------------------------
2737 // Dual: compute field-by-field dual
2738 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2739   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2740 };
2741 const Type *TypePtr::xdual() const {
2742   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2743 }
2744 
2745 //------------------------------xadd_offset------------------------------------
2746 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2747   return _offset.add(offset);
2748 }
2749 
2750 //------------------------------add_offset-------------------------------------
2751 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2752   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2753 }
2754 
2755 //------------------------------eq---------------------------------------------
2756 // Structural equality check for Type representations
2757 bool TypePtr::eq( const Type *t ) const {
2758   const TypePtr *a = (const TypePtr*)t;
2759   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2760 }
2761 
2762 //------------------------------hash-------------------------------------------
2763 // Type-specific hashing function.
2764 int TypePtr::hash(void) const {
2765   return java_add(java_add((jint)_ptr, (jint)offset()), java_add((jint)hash_speculative(), (jint)_inline_depth));
2766 ;
2767 }
2768 
2769 /**
2770  * Return same type without a speculative part
2771  */
2772 const Type* TypePtr::remove_speculative() const {
2773   if (_speculative == NULL) {
2774     return this;
2775   }
2776   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2777   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2778 }
2779 
2780 /**
2781  * Return same type but drop speculative part if we know we won't use
2782  * it
2783  */
2784 const Type* TypePtr::cleanup_speculative() const {
2785   if (speculative() == NULL) {
2786     return this;
2787   }
2788   const Type* no_spec = remove_speculative();
2789   // If this is NULL_PTR then we don't need the speculative type
2790   // (with_inline_depth in case the current type inline depth is
2791   // InlineDepthTop)
2792   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2793     return no_spec;
2794   }
2795   if (above_centerline(speculative()->ptr())) {
2796     return no_spec;
2797   }
2798   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2799   // If the speculative may be null and is an inexact klass then it
2800   // doesn't help
2801   if (speculative() != TypePtr::NULL_PTR && speculative()->maybe_null() &&
2802       (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2803     return no_spec;
2804   }
2805   return this;
2806 }
2807 
2808 /**
2809  * dual of the speculative part of the type
2810  */
2811 const TypePtr* TypePtr::dual_speculative() const {
2812   if (_speculative == NULL) {
2813     return NULL;
2814   }
2815   return _speculative->dual()->is_ptr();
2816 }
2817 
2818 /**
2819  * meet of the speculative parts of 2 types
2820  *
2821  * @param other  type to meet with
2822  */
2823 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2824   bool this_has_spec = (_speculative != NULL);
2825   bool other_has_spec = (other->speculative() != NULL);
2826 
2827   if (!this_has_spec && !other_has_spec) {
2828     return NULL;
2829   }
2830 
2831   // If we are at a point where control flow meets and one branch has
2832   // a speculative type and the other has not, we meet the speculative
2833   // type of one branch with the actual type of the other. If the
2834   // actual type is exact and the speculative is as well, then the
2835   // result is a speculative type which is exact and we can continue
2836   // speculation further.
2837   const TypePtr* this_spec = _speculative;
2838   const TypePtr* other_spec = other->speculative();
2839 
2840   if (!this_has_spec) {
2841     this_spec = this;
2842   }
2843 
2844   if (!other_has_spec) {
2845     other_spec = other;
2846   }
2847 
2848   return this_spec->meet(other_spec)->is_ptr();
2849 }
2850 
2851 /**
2852  * dual of the inline depth for this type (used for speculation)
2853  */
2854 int TypePtr::dual_inline_depth() const {
2855   return -inline_depth();
2856 }
2857 
2858 /**
2859  * meet of 2 inline depths (used for speculation)
2860  *
2861  * @param depth  depth to meet with
2862  */
2863 int TypePtr::meet_inline_depth(int depth) const {
2864   return MAX2(inline_depth(), depth);
2865 }
2866 
2867 /**
2868  * Are the speculative parts of 2 types equal?
2869  *
2870  * @param other  type to compare this one to
2871  */
2872 bool TypePtr::eq_speculative(const TypePtr* other) const {
2873   if (_speculative == NULL || other->speculative() == NULL) {
2874     return _speculative == other->speculative();
2875   }
2876 
2877   if (_speculative->base() != other->speculative()->base()) {
2878     return false;
2879   }
2880 
2881   return _speculative->eq(other->speculative());
2882 }
2883 
2884 /**
2885  * Hash of the speculative part of the type
2886  */
2887 int TypePtr::hash_speculative() const {
2888   if (_speculative == NULL) {
2889     return 0;
2890   }
2891 
2892   return _speculative->hash();
2893 }
2894 
2895 /**
2896  * add offset to the speculative part of the type
2897  *
2898  * @param offset  offset to add
2899  */
2900 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2901   if (_speculative == NULL) {
2902     return NULL;
2903   }
2904   return _speculative->add_offset(offset)->is_ptr();
2905 }
2906 
2907 /**
2908  * return exact klass from the speculative type if there's one
2909  */
2910 ciKlass* TypePtr::speculative_type() const {
2911   if (_speculative != NULL && _speculative->isa_oopptr()) {
2912     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2913     if (speculative->klass_is_exact()) {
2914       return speculative->klass();
2915     }
2916   }
2917   return NULL;
2918 }
2919 
2920 /**
2921  * return true if speculative type may be null
2922  */
2923 bool TypePtr::speculative_maybe_null() const {
2924   if (_speculative != NULL) {
2925     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2926     return speculative->maybe_null();
2927   }
2928   return true;
2929 }
2930 
2931 bool TypePtr::speculative_always_null() const {
2932   if (_speculative != NULL) {
2933     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2934     return speculative == TypePtr::NULL_PTR;
2935   }
2936   return false;
2937 }
2938 
2939 /**
2940  * Same as TypePtr::speculative_type() but return the klass only if
2941  * the speculative tells us is not null
2942  */
2943 ciKlass* TypePtr::speculative_type_not_null() const {
2944   if (speculative_maybe_null()) {
2945     return NULL;
2946   }
2947   return speculative_type();
2948 }
2949 
2950 /**
2951  * Check whether new profiling would improve speculative type
2952  *
2953  * @param   exact_kls    class from profiling
2954  * @param   inline_depth inlining depth of profile point
2955  *
2956  * @return  true if type profile is valuable
2957  */
2958 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2959   // no profiling?
2960   if (exact_kls == NULL) {
2961     return false;
2962   }
2963   if (speculative() == TypePtr::NULL_PTR) {
2964     return false;
2965   }
2966   // no speculative type or non exact speculative type?
2967   if (speculative_type() == NULL) {
2968     return true;
2969   }
2970   // If the node already has an exact speculative type keep it,
2971   // unless it was provided by profiling that is at a deeper
2972   // inlining level. Profiling at a higher inlining depth is
2973   // expected to be less accurate.
2974   if (_speculative->inline_depth() == InlineDepthBottom) {
2975     return false;
2976   }
2977   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2978   return inline_depth < _speculative->inline_depth();
2979 }
2980 
2981 /**
2982  * Check whether new profiling would improve ptr (= tells us it is non
2983  * null)
2984  *
2985  * @param   ptr_kind always null or not null?
2986  *
2987  * @return  true if ptr profile is valuable
2988  */
2989 bool TypePtr::would_improve_ptr(ProfilePtrKind ptr_kind) const {
2990   // profiling doesn't tell us anything useful
2991   if (ptr_kind != ProfileAlwaysNull && ptr_kind != ProfileNeverNull) {
2992     return false;
2993   }
2994   // We already know this is not null
2995   if (!this->maybe_null()) {
2996     return false;
2997   }
2998   // We already know the speculative type cannot be null
2999   if (!speculative_maybe_null()) {
3000     return false;
3001   }
3002   // We already know this is always null
3003   if (this == TypePtr::NULL_PTR) {
3004     return false;
3005   }
3006   // We already know the speculative type is always null
3007   if (speculative_always_null()) {
3008     return false;
3009   }
3010   if (ptr_kind == ProfileAlwaysNull && speculative() != NULL && speculative()->isa_oopptr()) {
3011     return false;
3012   }
3013   return true;
3014 }
3015 
3016 //------------------------------dump2------------------------------------------
3017 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
3018   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
3019 };
3020 
3021 #ifndef PRODUCT
3022 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3023   if( _ptr == Null ) st->print("NULL");
3024   else st->print("%s *", ptr_msg[_ptr]);
3025   _offset.dump2(st);
3026   dump_inline_depth(st);
3027   dump_speculative(st);
3028 }
3029 
3030 /**
3031  *dump the speculative part of the type
3032  */
3033 void TypePtr::dump_speculative(outputStream *st) const {
3034   if (_speculative != NULL) {
3035     st->print(" (speculative=");
3036     _speculative->dump_on(st);
3037     st->print(")");
3038   }
3039 }
3040 
3041 /**
3042  *dump the inline depth of the type
3043  */
3044 void TypePtr::dump_inline_depth(outputStream *st) const {
3045   if (_inline_depth != InlineDepthBottom) {
3046     if (_inline_depth == InlineDepthTop) {
3047       st->print(" (inline_depth=InlineDepthTop)");
3048     } else {
3049       st->print(" (inline_depth=%d)", _inline_depth);
3050     }
3051   }
3052 }
3053 #endif
3054 
3055 //------------------------------singleton--------------------------------------
3056 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3057 // constants
3058 bool TypePtr::singleton(void) const {
3059   // TopPTR, Null, AnyNull, Constant are all singletons
3060   return (_offset != Offset::bottom) && !below_centerline(_ptr);
3061 }
3062 
3063 bool TypePtr::empty(void) const {
3064   return (_offset == Offset::top) || above_centerline(_ptr);
3065 }
3066 
3067 //=============================================================================
3068 // Convenience common pre-built types.
3069 const TypeRawPtr *TypeRawPtr::BOTTOM;
3070 const TypeRawPtr *TypeRawPtr::NOTNULL;
3071 
3072 //------------------------------make-------------------------------------------
3073 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
3074   assert( ptr != Constant, "what is the constant?" );
3075   assert( ptr != Null, "Use TypePtr for NULL" );
3076   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
3077 }
3078 
3079 const TypeRawPtr *TypeRawPtr::make( address bits ) {
3080   assert( bits, "Use TypePtr for NULL" );
3081   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
3082 }
3083 
3084 //------------------------------cast_to_ptr_type-------------------------------
3085 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
3086   assert( ptr != Constant, "what is the constant?" );
3087   assert( ptr != Null, "Use TypePtr for NULL" );
3088   assert( _bits==0, "Why cast a constant address?");
3089   if( ptr == _ptr ) return this;
3090   return make(ptr);
3091 }
3092 
3093 //------------------------------get_con----------------------------------------
3094 intptr_t TypeRawPtr::get_con() const {
3095   assert( _ptr == Null || _ptr == Constant, "" );
3096   return (intptr_t)_bits;
3097 }
3098 
3099 //------------------------------meet-------------------------------------------
3100 // Compute the MEET of two types.  It returns a new Type object.
3101 const Type *TypeRawPtr::xmeet( const Type *t ) const {
3102   // Perform a fast test for common case; meeting the same types together.
3103   if( this == t ) return this;  // Meeting same type-rep?
3104 
3105   // Current "this->_base" is RawPtr
3106   switch( t->base() ) {         // switch on original type
3107   case Bottom:                  // Ye Olde Default
3108     return t;
3109   case Top:
3110     return this;
3111   case AnyPtr:                  // Meeting to AnyPtrs
3112     break;
3113   case RawPtr: {                // might be top, bot, any/not or constant
3114     enum PTR tptr = t->is_ptr()->ptr();
3115     enum PTR ptr = meet_ptr( tptr );
3116     if( ptr == Constant ) {     // Cannot be equal constants, so...
3117       if( tptr == Constant && _ptr != Constant)  return t;
3118       if( _ptr == Constant && tptr != Constant)  return this;
3119       ptr = NotNull;            // Fall down in lattice
3120     }
3121     return make( ptr );
3122   }
3123 
3124   case OopPtr:
3125   case InstPtr:
3126   case ValueTypePtr:
3127   case AryPtr:
3128   case MetadataPtr:
3129   case KlassPtr:
3130     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3131   default:                      // All else is a mistake
3132     typerr(t);
3133   }
3134 
3135   // Found an AnyPtr type vs self-RawPtr type
3136   const TypePtr *tp = t->is_ptr();
3137   switch (tp->ptr()) {
3138   case TypePtr::TopPTR:  return this;
3139   case TypePtr::BotPTR:  return t;
3140   case TypePtr::Null:
3141     if( _ptr == TypePtr::TopPTR ) return t;
3142     return TypeRawPtr::BOTTOM;
3143   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
3144   case TypePtr::AnyNull:
3145     if( _ptr == TypePtr::Constant) return this;
3146     return make( meet_ptr(TypePtr::AnyNull) );
3147   default: ShouldNotReachHere();
3148   }
3149   return this;
3150 }
3151 
3152 //------------------------------xdual------------------------------------------
3153 // Dual: compute field-by-field dual
3154 const Type *TypeRawPtr::xdual() const {
3155   return new TypeRawPtr( dual_ptr(), _bits );
3156 }
3157 
3158 //------------------------------add_offset-------------------------------------
3159 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
3160   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
3161   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
3162   if( offset == 0 ) return this; // No change
3163   switch (_ptr) {
3164   case TypePtr::TopPTR:
3165   case TypePtr::BotPTR:
3166   case TypePtr::NotNull:
3167     return this;
3168   case TypePtr::Null:
3169   case TypePtr::Constant: {
3170     address bits = _bits+offset;
3171     if ( bits == 0 ) return TypePtr::NULL_PTR;
3172     return make( bits );
3173   }
3174   default:  ShouldNotReachHere();
3175   }
3176   return NULL;                  // Lint noise
3177 }
3178 
3179 //------------------------------eq---------------------------------------------
3180 // Structural equality check for Type representations
3181 bool TypeRawPtr::eq( const Type *t ) const {
3182   const TypeRawPtr *a = (const TypeRawPtr*)t;
3183   return _bits == a->_bits && TypePtr::eq(t);
3184 }
3185 
3186 //------------------------------hash-------------------------------------------
3187 // Type-specific hashing function.
3188 int TypeRawPtr::hash(void) const {
3189   return (intptr_t)_bits + TypePtr::hash();
3190 }
3191 
3192 //------------------------------dump2------------------------------------------
3193 #ifndef PRODUCT
3194 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3195   if( _ptr == Constant )
3196     st->print(INTPTR_FORMAT, p2i(_bits));
3197   else
3198     st->print("rawptr:%s", ptr_msg[_ptr]);
3199 }
3200 #endif
3201 
3202 //=============================================================================
3203 // Convenience common pre-built type.
3204 const TypeOopPtr *TypeOopPtr::BOTTOM;
3205 
3206 //------------------------------TypeOopPtr-------------------------------------
3207 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset, Offset field_offset,
3208                        int instance_id, const TypePtr* speculative, int inline_depth)
3209   : TypePtr(t, ptr, offset, speculative, inline_depth),
3210     _const_oop(o), _klass(k),
3211     _klass_is_exact(xk),
3212     _is_ptr_to_narrowoop(false),
3213     _is_ptr_to_narrowklass(false),
3214     _is_ptr_to_boxed_value(false),
3215     _instance_id(instance_id) {
3216   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3217       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3218     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3219   }
3220 #ifdef _LP64
3221   if (this->offset() != 0) {
3222     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3223       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3224     } else if (klass() == NULL) {
3225       // Array with unknown body type
3226       assert(this->isa_aryptr(), "only arrays without klass");
3227       _is_ptr_to_narrowoop = UseCompressedOops;
3228     } else if (UseCompressedOops && this->isa_aryptr() && this->offset() != arrayOopDesc::length_offset_in_bytes()) {
3229       if (klass()->is_obj_array_klass()) {
3230         _is_ptr_to_narrowoop = true;
3231       } else if (klass()->is_value_array_klass() && field_offset != Offset::top && field_offset != Offset::bottom) {
3232         // Check if the field of the value type array element contains oops
3233         ciValueKlass* vk = klass()->as_value_array_klass()->element_klass()->as_value_klass();
3234         int foffset = field_offset.get() + vk->first_field_offset();
3235         ciField* field = vk->get_field_by_offset(foffset, false);
3236         assert(field != NULL, "missing field");
3237         BasicType bt = field->layout_type();
3238         assert(bt != T_VALUETYPEPTR, "unexpected type");
3239         _is_ptr_to_narrowoop = (bt == T_OBJECT || bt == T_ARRAY || T_VALUETYPE);
3240       }
3241     } else if (klass()->is_instance_klass()) {
3242       if (this->isa_klassptr()) {
3243         // Perm objects don't use compressed references
3244       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3245         // unsafe access
3246         _is_ptr_to_narrowoop = UseCompressedOops;
3247       } else { // exclude unsafe ops
3248         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3249         if (klass() == ciEnv::current()->Class_klass() &&
3250             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3251              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3252           // Special hidden fields from the Class.
3253           assert(this->isa_instptr(), "must be an instance ptr.");
3254           _is_ptr_to_narrowoop = false;
3255         } else if (klass() == ciEnv::current()->Class_klass() &&
3256                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3257           // Static fields
3258           assert(o != NULL, "must be constant");
3259           ciInstanceKlass* ik = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3260           BasicType basic_elem_type;
3261           if (ik->is_valuetype() && this->offset() == ik->as_value_klass()->default_value_offset()) {
3262             // Special hidden field that contains the oop of the default value type
3263             basic_elem_type = T_VALUETYPE;
3264           } else {
3265             ciField* field = ik->get_field_by_offset(this->offset(), true);
3266             assert(field != NULL, "missing field");
3267             basic_elem_type = field->layout_type();
3268           }
3269           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3270                                                        basic_elem_type == T_VALUETYPE ||
3271                                                        basic_elem_type == T_ARRAY);
3272         } else {
3273           // Instance fields which contains a compressed oop references.
3274           ciInstanceKlass* ik = klass()->as_instance_klass();
3275           ciField* field = ik->get_field_by_offset(this->offset(), false);
3276           if (field != NULL) {
3277             BasicType basic_elem_type = field->layout_type();
3278             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3279                                                          basic_elem_type == T_VALUETYPE ||
3280                                                          basic_elem_type == T_ARRAY);
3281             assert(basic_elem_type != T_VALUETYPEPTR, "unexpected type");
3282           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3283             // Compile::find_alias_type() cast exactness on all types to verify
3284             // that it does not affect alias type.
3285             _is_ptr_to_narrowoop = UseCompressedOops;
3286           } else {
3287             // Type for the copy start in LibraryCallKit::inline_native_clone().
3288             _is_ptr_to_narrowoop = UseCompressedOops;
3289           }
3290         }
3291       }
3292     }
3293   }
3294 #endif
3295 }
3296 
3297 //------------------------------make-------------------------------------------
3298 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3299                                    const TypePtr* speculative, int inline_depth) {
3300   assert(ptr != Constant, "no constant generic pointers");
3301   ciKlass*  k = Compile::current()->env()->Object_klass();
3302   bool      xk = false;
3303   ciObject* o = NULL;
3304   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, Offset::bottom, instance_id, speculative, inline_depth))->hashcons();
3305 }
3306 
3307 
3308 //------------------------------cast_to_ptr_type-------------------------------
3309 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3310   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3311   if( ptr == _ptr ) return this;
3312   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3313 }
3314 
3315 //-----------------------------cast_to_instance_id----------------------------
3316 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3317   // There are no instances of a general oop.
3318   // Return self unchanged.
3319   return this;
3320 }
3321 
3322 //-----------------------------cast_to_exactness-------------------------------
3323 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3324   // There is no such thing as an exact general oop.
3325   // Return self unchanged.
3326   return this;
3327 }
3328 
3329 
3330 //------------------------------as_klass_type----------------------------------
3331 // Return the klass type corresponding to this instance or array type.
3332 // It is the type that is loaded from an object of this type.
3333 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3334   ciKlass* k = klass();
3335   bool    xk = klass_is_exact();
3336   if (k == NULL)
3337     return TypeKlassPtr::OBJECT;
3338   else
3339     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3340 }
3341 
3342 //------------------------------meet-------------------------------------------
3343 // Compute the MEET of two types.  It returns a new Type object.
3344 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3345   // Perform a fast test for common case; meeting the same types together.
3346   if( this == t ) return this;  // Meeting same type-rep?
3347 
3348   // Current "this->_base" is OopPtr
3349   switch (t->base()) {          // switch on original type
3350 
3351   case Int:                     // Mixing ints & oops happens when javac
3352   case Long:                    // reuses local variables
3353   case FloatTop:
3354   case FloatCon:
3355   case FloatBot:
3356   case DoubleTop:
3357   case DoubleCon:
3358   case DoubleBot:
3359   case NarrowOop:
3360   case NarrowKlass:
3361   case Bottom:                  // Ye Olde Default
3362     return Type::BOTTOM;
3363   case Top:
3364     return this;
3365 
3366   default:                      // All else is a mistake
3367     typerr(t);
3368 
3369   case RawPtr:
3370   case MetadataPtr:
3371   case KlassPtr:
3372     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3373 
3374   case AnyPtr: {
3375     // Found an AnyPtr type vs self-OopPtr type
3376     const TypePtr *tp = t->is_ptr();
3377     Offset offset = meet_offset(tp->offset());
3378     PTR ptr = meet_ptr(tp->ptr());
3379     const TypePtr* speculative = xmeet_speculative(tp);
3380     int depth = meet_inline_depth(tp->inline_depth());
3381     switch (tp->ptr()) {
3382     case Null:
3383       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3384       // else fall through:
3385     case TopPTR:
3386     case AnyNull: {
3387       int instance_id = meet_instance_id(InstanceTop);
3388       return make(ptr, offset, instance_id, speculative, depth);
3389     }
3390     case BotPTR:
3391     case NotNull:
3392       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3393     default: typerr(t);
3394     }
3395   }
3396 
3397   case OopPtr: {                 // Meeting to other OopPtrs
3398     const TypeOopPtr *tp = t->is_oopptr();
3399     int instance_id = meet_instance_id(tp->instance_id());
3400     const TypePtr* speculative = xmeet_speculative(tp);
3401     int depth = meet_inline_depth(tp->inline_depth());
3402     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3403   }
3404 
3405   case InstPtr:                  // For these, flip the call around to cut down
3406   case ValueTypePtr:
3407   case AryPtr:
3408     return t->xmeet(this);      // Call in reverse direction
3409 
3410   } // End of switch
3411   return this;                  // Return the double constant
3412 }
3413 
3414 
3415 //------------------------------xdual------------------------------------------
3416 // Dual of a pure heap pointer.  No relevant klass or oop information.
3417 const Type *TypeOopPtr::xdual() const {
3418   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3419   assert(const_oop() == NULL,             "no constants here");
3420   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), Offset::bottom, dual_instance_id(), dual_speculative(), dual_inline_depth());
3421 }
3422 
3423 //--------------------------make_from_klass_common-----------------------------
3424 // Computes the element-type given a klass.
3425 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3426   if (klass->is_valuetype()) {
3427     return TypeValueTypePtr::make(TypePtr::BotPTR, klass->as_value_klass());
3428   } else if (klass->is_instance_klass()) {
3429     Compile* C = Compile::current();
3430     Dependencies* deps = C->dependencies();
3431     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3432     // Element is an instance
3433     bool klass_is_exact = false;
3434     if (klass->is_loaded()) {
3435       // Try to set klass_is_exact.
3436       ciInstanceKlass* ik = klass->as_instance_klass();
3437       klass_is_exact = ik->is_final();
3438       if (!klass_is_exact && klass_change
3439           && deps != NULL && UseUniqueSubclasses) {
3440         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3441         if (sub != NULL) {
3442           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3443           klass = ik = sub;
3444           klass_is_exact = sub->is_final();
3445         }
3446       }
3447       if (!klass_is_exact && try_for_exact
3448           && deps != NULL && UseExactTypes) {
3449         if (!ik->is_interface() && !ik->has_subklass()) {
3450           // Add a dependence; if concrete subclass added we need to recompile
3451           deps->assert_leaf_type(ik);
3452           klass_is_exact = true;
3453         }
3454       }
3455     }
3456     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3457   } else if (klass->is_obj_array_klass()) {
3458     // Element is an object or value array. Recursively call ourself.
3459     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3460     bool xk = etype->klass_is_exact();
3461     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3462     // We used to pass NotNull in here, asserting that the sub-arrays
3463     // are all not-null.  This is not true in generally, as code can
3464     // slam NULLs down in the subarrays.
3465     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3466     return arr;
3467   } else if (klass->is_type_array_klass()) {
3468     // Element is an typeArray
3469     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3470     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3471     // We used to pass NotNull in here, asserting that the array pointer
3472     // is not-null. That was not true in general.
3473     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3474     return arr;
3475   } else if (klass->is_value_array_klass()) {
3476     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3477     const TypeAry* arr0 = TypeAry::make(TypeValueType::make(vk), TypeInt::POS);
3478     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3479     return arr;
3480   } else {
3481     ShouldNotReachHere();
3482     return NULL;
3483   }
3484 }
3485 
3486 //------------------------------make_from_constant-----------------------------
3487 // Make a java pointer from an oop constant
3488 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3489   assert(!o->is_null_object(), "null object not yet handled here.");
3490   ciKlass* klass = o->klass();
3491   if (klass->is_valuetype()) {
3492     // Element is a value type
3493     if (require_constant) {
3494       if (!o->can_be_constant())  return NULL;
3495     } else if (!o->should_be_constant()) {
3496       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3497     }
3498     return TypeValueTypePtr::make(o);
3499   } else if (klass->is_instance_klass()) {
3500     // Element is an instance
3501     if (require_constant) {
3502       if (!o->can_be_constant())  return NULL;
3503     } else if (!o->should_be_constant()) {
3504       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3505     }
3506     return TypeInstPtr::make(o);
3507   } else if (klass->is_obj_array_klass() || klass->is_value_array_klass()) {
3508     // Element is an object array. Recursively call ourself.
3509     const TypeOopPtr *etype =
3510       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3511     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3512     // We used to pass NotNull in here, asserting that the sub-arrays
3513     // are all not-null.  This is not true in generally, as code can
3514     // slam NULLs down in the subarrays.
3515     if (require_constant) {
3516       if (!o->can_be_constant())  return NULL;
3517     } else if (!o->should_be_constant()) {
3518       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3519     }
3520     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3521     return arr;
3522   } else if (klass->is_type_array_klass()) {
3523     // Element is an typeArray
3524     const Type* etype =
3525       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3526     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3527     // We used to pass NotNull in here, asserting that the array pointer
3528     // is not-null. That was not true in general.
3529     if (require_constant) {
3530       if (!o->can_be_constant())  return NULL;
3531     } else if (!o->should_be_constant()) {
3532       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3533     }
3534     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3535     return arr;
3536   }
3537 
3538   fatal("unhandled object type");
3539   return NULL;
3540 }
3541 
3542 //------------------------------get_con----------------------------------------
3543 intptr_t TypeOopPtr::get_con() const {
3544   assert( _ptr == Null || _ptr == Constant, "" );
3545   assert(offset() >= 0, "");
3546 
3547   if (offset() != 0) {
3548     // After being ported to the compiler interface, the compiler no longer
3549     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3550     // to a handle at compile time.  This handle is embedded in the generated
3551     // code and dereferenced at the time the nmethod is made.  Until that time,
3552     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3553     // have access to the addresses!).  This does not seem to currently happen,
3554     // but this assertion here is to help prevent its occurence.
3555     tty->print_cr("Found oop constant with non-zero offset");
3556     ShouldNotReachHere();
3557   }
3558 
3559   return (intptr_t)const_oop()->constant_encoding();
3560 }
3561 
3562 
3563 //-----------------------------filter------------------------------------------
3564 // Do not allow interface-vs.-noninterface joins to collapse to top.
3565 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3566 
3567   const Type* ft = join_helper(kills, include_speculative);
3568   const TypeInstPtr* ftip = ft->isa_instptr();
3569   const TypeInstPtr* ktip = kills->isa_instptr();
3570 
3571   if (ft->empty()) {
3572     // Check for evil case of 'this' being a class and 'kills' expecting an
3573     // interface.  This can happen because the bytecodes do not contain
3574     // enough type info to distinguish a Java-level interface variable
3575     // from a Java-level object variable.  If we meet 2 classes which
3576     // both implement interface I, but their meet is at 'j/l/O' which
3577     // doesn't implement I, we have no way to tell if the result should
3578     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3579     // into a Phi which "knows" it's an Interface type we'll have to
3580     // uplift the type.
3581     if (!empty()) {
3582       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3583         return kills;           // Uplift to interface
3584       }
3585       // Also check for evil cases of 'this' being a class array
3586       // and 'kills' expecting an array of interfaces.
3587       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3588       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3589         return kills;           // Uplift to array of interface
3590       }
3591     }
3592 
3593     return Type::TOP;           // Canonical empty value
3594   }
3595 
3596   // If we have an interface-typed Phi or cast and we narrow to a class type,
3597   // the join should report back the class.  However, if we have a J/L/Object
3598   // class-typed Phi and an interface flows in, it's possible that the meet &
3599   // join report an interface back out.  This isn't possible but happens
3600   // because the type system doesn't interact well with interfaces.
3601   if (ftip != NULL && ktip != NULL &&
3602       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3603       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3604     assert(!ftip->klass_is_exact(), "interface could not be exact");
3605     return ktip->cast_to_ptr_type(ftip->ptr());
3606   }
3607 
3608   return ft;
3609 }
3610 
3611 //------------------------------eq---------------------------------------------
3612 // Structural equality check for Type representations
3613 bool TypeOopPtr::eq( const Type *t ) const {
3614   const TypeOopPtr *a = (const TypeOopPtr*)t;
3615   if (_klass_is_exact != a->_klass_is_exact ||
3616       _instance_id != a->_instance_id)  return false;
3617   ciObject* one = const_oop();
3618   ciObject* two = a->const_oop();
3619   if (one == NULL || two == NULL) {
3620     return (one == two) && TypePtr::eq(t);
3621   } else {
3622     return one->equals(two) && TypePtr::eq(t);
3623   }
3624 }
3625 
3626 //------------------------------hash-------------------------------------------
3627 // Type-specific hashing function.
3628 int TypeOopPtr::hash(void) const {
3629   return
3630     java_add(java_add((jint)(const_oop() ? const_oop()->hash() : 0), (jint)_klass_is_exact),
3631              java_add((jint)_instance_id, (jint)TypePtr::hash()));
3632 }
3633 
3634 //------------------------------dump2------------------------------------------
3635 #ifndef PRODUCT
3636 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3637   st->print("oopptr:%s", ptr_msg[_ptr]);
3638   if( _klass_is_exact ) st->print(":exact");
3639   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3640   _offset.dump2(st);
3641   if (_instance_id == InstanceTop)
3642     st->print(",iid=top");
3643   else if (_instance_id != InstanceBot)
3644     st->print(",iid=%d",_instance_id);
3645 
3646   dump_inline_depth(st);
3647   dump_speculative(st);
3648 }
3649 #endif
3650 
3651 //------------------------------singleton--------------------------------------
3652 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3653 // constants
3654 bool TypeOopPtr::singleton(void) const {
3655   // detune optimizer to not generate constant oop + constant offset as a constant!
3656   // TopPTR, Null, AnyNull, Constant are all singletons
3657   return (offset() == 0) && !below_centerline(_ptr);
3658 }
3659 
3660 //------------------------------add_offset-------------------------------------
3661 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3662   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3663 }
3664 
3665 /**
3666  * Return same type without a speculative part
3667  */
3668 const Type* TypeOopPtr::remove_speculative() const {
3669   if (_speculative == NULL) {
3670     return this;
3671   }
3672   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3673   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3674 }
3675 
3676 /**
3677  * Return same type but drop speculative part if we know we won't use
3678  * it
3679  */
3680 const Type* TypeOopPtr::cleanup_speculative() const {
3681   // If the klass is exact and the ptr is not null then there's
3682   // nothing that the speculative type can help us with
3683   if (klass_is_exact() && !maybe_null()) {
3684     return remove_speculative();
3685   }
3686   return TypePtr::cleanup_speculative();
3687 }
3688 
3689 /**
3690  * Return same type but with a different inline depth (used for speculation)
3691  *
3692  * @param depth  depth to meet with
3693  */
3694 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3695   if (!UseInlineDepthForSpeculativeTypes) {
3696     return this;
3697   }
3698   return make(_ptr, _offset, _instance_id, _speculative, depth);
3699 }
3700 
3701 //------------------------------meet_instance_id--------------------------------
3702 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3703   // Either is 'TOP' instance?  Return the other instance!
3704   if( _instance_id == InstanceTop ) return  instance_id;
3705   if(  instance_id == InstanceTop ) return _instance_id;
3706   // If either is different, return 'BOTTOM' instance
3707   if( _instance_id != instance_id ) return InstanceBot;
3708   return _instance_id;
3709 }
3710 
3711 //------------------------------dual_instance_id--------------------------------
3712 int TypeOopPtr::dual_instance_id( ) const {
3713   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3714   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3715   return _instance_id;              // Map everything else into self
3716 }
3717 
3718 /**
3719  * Check whether new profiling would improve speculative type
3720  *
3721  * @param   exact_kls    class from profiling
3722  * @param   inline_depth inlining depth of profile point
3723  *
3724  * @return  true if type profile is valuable
3725  */
3726 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3727   // no way to improve an already exact type
3728   if (klass_is_exact()) {
3729     return false;
3730   }
3731   return TypePtr::would_improve_type(exact_kls, inline_depth);
3732 }
3733 
3734 //=============================================================================
3735 // Convenience common pre-built types.
3736 const TypeInstPtr *TypeInstPtr::NOTNULL;
3737 const TypeInstPtr *TypeInstPtr::BOTTOM;
3738 const TypeInstPtr *TypeInstPtr::MIRROR;
3739 const TypeInstPtr *TypeInstPtr::MARK;
3740 const TypeInstPtr *TypeInstPtr::KLASS;
3741 
3742 //------------------------------TypeInstPtr-------------------------------------
3743 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3744                          int instance_id, const TypePtr* speculative, int inline_depth)
3745   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, Offset::bottom, instance_id, speculative, inline_depth),
3746     _name(k->name()) {
3747    assert(k != NULL &&
3748           (k->is_loaded() || o == NULL),
3749           "cannot have constants with non-loaded klass");
3750 };
3751 
3752 //------------------------------make-------------------------------------------
3753 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3754                                      ciKlass* k,
3755                                      bool xk,
3756                                      ciObject* o,
3757                                      Offset offset,
3758                                      int instance_id,
3759                                      const TypePtr* speculative,
3760                                      int inline_depth) {
3761   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3762   // Either const_oop() is NULL or else ptr is Constant
3763   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3764           "constant pointers must have a value supplied" );
3765   // Ptr is never Null
3766   assert( ptr != Null, "NULL pointers are not typed" );
3767 
3768   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3769   if (!UseExactTypes)  xk = false;
3770   if (ptr == Constant) {
3771     // Note:  This case includes meta-object constants, such as methods.
3772     xk = true;
3773   } else if (k->is_loaded()) {
3774     ciInstanceKlass* ik = k->as_instance_klass();
3775     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3776     if (xk && ik->is_interface())  xk = false;  // no exact interface
3777   }
3778 
3779   // Now hash this baby
3780   TypeInstPtr *result =
3781     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3782 
3783   return result;
3784 }
3785 
3786 /**
3787  *  Create constant type for a constant boxed value
3788  */
3789 const Type* TypeInstPtr::get_const_boxed_value() const {
3790   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3791   assert((const_oop() != NULL), "should be called only for constant object");
3792   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3793   BasicType bt = constant.basic_type();
3794   switch (bt) {
3795     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3796     case T_INT:      return TypeInt::make(constant.as_int());
3797     case T_CHAR:     return TypeInt::make(constant.as_char());
3798     case T_BYTE:     return TypeInt::make(constant.as_byte());
3799     case T_SHORT:    return TypeInt::make(constant.as_short());
3800     case T_FLOAT:    return TypeF::make(constant.as_float());
3801     case T_DOUBLE:   return TypeD::make(constant.as_double());
3802     case T_LONG:     return TypeLong::make(constant.as_long());
3803     default:         break;
3804   }
3805   fatal("Invalid boxed value type '%s'", type2name(bt));
3806   return NULL;
3807 }
3808 
3809 //------------------------------cast_to_ptr_type-------------------------------
3810 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3811   if( ptr == _ptr ) return this;
3812   // Reconstruct _sig info here since not a problem with later lazy
3813   // construction, _sig will show up on demand.
3814   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3815 }
3816 
3817 
3818 //-----------------------------cast_to_exactness-------------------------------
3819 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3820   if( klass_is_exact == _klass_is_exact ) return this;
3821   if (!UseExactTypes)  return this;
3822   if (!_klass->is_loaded())  return this;
3823   ciInstanceKlass* ik = _klass->as_instance_klass();
3824   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3825   if( ik->is_interface() )              return this;  // cannot set xk
3826   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3827 }
3828 
3829 //-----------------------------cast_to_instance_id----------------------------
3830 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3831   if( instance_id == _instance_id ) return this;
3832   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3833 }
3834 
3835 //------------------------------xmeet_unloaded---------------------------------
3836 // Compute the MEET of two InstPtrs when at least one is unloaded.
3837 // Assume classes are different since called after check for same name/class-loader
3838 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3839     Offset off = meet_offset(tinst->offset());
3840     PTR ptr = meet_ptr(tinst->ptr());
3841     int instance_id = meet_instance_id(tinst->instance_id());
3842     const TypePtr* speculative = xmeet_speculative(tinst);
3843     int depth = meet_inline_depth(tinst->inline_depth());
3844 
3845     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3846     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3847     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3848       //
3849       // Meet unloaded class with java/lang/Object
3850       //
3851       // Meet
3852       //          |                     Unloaded Class
3853       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3854       //  ===================================================================
3855       //   TOP    | ..........................Unloaded......................|
3856       //  AnyNull |  U-AN    |................Unloaded......................|
3857       // Constant | ... O-NN .................................. |   O-BOT   |
3858       //  NotNull | ... O-NN .................................. |   O-BOT   |
3859       //  BOTTOM  | ........................Object-BOTTOM ..................|
3860       //
3861       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3862       //
3863       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3864       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3865       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3866       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3867         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3868         else                                      { return TypeInstPtr::NOTNULL; }
3869       }
3870       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3871 
3872       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3873     }
3874 
3875     // Both are unloaded, not the same class, not Object
3876     // Or meet unloaded with a different loaded class, not java/lang/Object
3877     if( ptr != TypePtr::BotPTR ) {
3878       return TypeInstPtr::NOTNULL;
3879     }
3880     return TypeInstPtr::BOTTOM;
3881 }
3882 
3883 
3884 //------------------------------meet-------------------------------------------
3885 // Compute the MEET of two types.  It returns a new Type object.
3886 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3887   // Perform a fast test for common case; meeting the same types together.
3888   if( this == t ) return this;  // Meeting same type-rep?
3889 
3890   // Current "this->_base" is Pointer
3891   switch (t->base()) {          // switch on original type
3892 
3893   case Int:                     // Mixing ints & oops happens when javac
3894   case Long:                    // reuses local variables
3895   case FloatTop:
3896   case FloatCon:
3897   case FloatBot:
3898   case DoubleTop:
3899   case DoubleCon:
3900   case DoubleBot:
3901   case NarrowOop:
3902   case NarrowKlass:
3903   case Bottom:                  // Ye Olde Default
3904     return Type::BOTTOM;
3905   case Top:
3906     return this;
3907 
3908   default:                      // All else is a mistake
3909     typerr(t);
3910 
3911   case MetadataPtr:
3912   case KlassPtr:
3913   case RawPtr: return TypePtr::BOTTOM;
3914 
3915   case AryPtr: {                // All arrays inherit from Object class
3916     const TypeAryPtr *tp = t->is_aryptr();
3917     Offset offset = meet_offset(tp->offset());
3918     PTR ptr = meet_ptr(tp->ptr());
3919     int instance_id = meet_instance_id(tp->instance_id());
3920     const TypePtr* speculative = xmeet_speculative(tp);
3921     int depth = meet_inline_depth(tp->inline_depth());
3922     switch (ptr) {
3923     case TopPTR:
3924     case AnyNull:                // Fall 'down' to dual of object klass
3925       // For instances when a subclass meets a superclass we fall
3926       // below the centerline when the superclass is exact. We need to
3927       // do the same here.
3928       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3929         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3930       } else {
3931         // cannot subclass, so the meet has to fall badly below the centerline
3932         ptr = NotNull;
3933         instance_id = InstanceBot;
3934         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3935       }
3936     case Constant:
3937     case NotNull:
3938     case BotPTR:                // Fall down to object klass
3939       // LCA is object_klass, but if we subclass from the top we can do better
3940       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3941         // If 'this' (InstPtr) is above the centerline and it is Object class
3942         // then we can subclass in the Java class hierarchy.
3943         // For instances when a subclass meets a superclass we fall
3944         // below the centerline when the superclass is exact. We need
3945         // to do the same here.
3946         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3947           // that is, tp's array type is a subtype of my klass
3948           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3949                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->field_offset(), instance_id, speculative, depth);
3950         }
3951       }
3952       // The other case cannot happen, since I cannot be a subtype of an array.
3953       // The meet falls down to Object class below centerline.
3954       if( ptr == Constant )
3955          ptr = NotNull;
3956       instance_id = InstanceBot;
3957       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3958     default: typerr(t);
3959     }
3960   }
3961 
3962   case OopPtr: {                // Meeting to OopPtrs
3963     // Found a OopPtr type vs self-InstPtr type
3964     const TypeOopPtr *tp = t->is_oopptr();
3965     Offset offset = meet_offset(tp->offset());
3966     PTR ptr = meet_ptr(tp->ptr());
3967     switch (tp->ptr()) {
3968     case TopPTR:
3969     case AnyNull: {
3970       int instance_id = meet_instance_id(InstanceTop);
3971       const TypePtr* speculative = xmeet_speculative(tp);
3972       int depth = meet_inline_depth(tp->inline_depth());
3973       return make(ptr, klass(), klass_is_exact(),
3974                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3975     }
3976     case NotNull:
3977     case BotPTR: {
3978       int instance_id = meet_instance_id(tp->instance_id());
3979       const TypePtr* speculative = xmeet_speculative(tp);
3980       int depth = meet_inline_depth(tp->inline_depth());
3981       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3982     }
3983     default: typerr(t);
3984     }
3985   }
3986 
3987   case AnyPtr: {                // Meeting to AnyPtrs
3988     // Found an AnyPtr type vs self-InstPtr type
3989     const TypePtr *tp = t->is_ptr();
3990     Offset offset = meet_offset(tp->offset());
3991     PTR ptr = meet_ptr(tp->ptr());
3992     int instance_id = meet_instance_id(InstanceTop);
3993     const TypePtr* speculative = xmeet_speculative(tp);
3994     int depth = meet_inline_depth(tp->inline_depth());
3995     switch (tp->ptr()) {
3996     case Null:
3997       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3998       // else fall through to AnyNull
3999     case TopPTR:
4000     case AnyNull: {
4001       return make(ptr, klass(), klass_is_exact(),
4002                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
4003     }
4004     case NotNull:
4005     case BotPTR:
4006       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
4007     default: typerr(t);
4008     }
4009   }
4010 
4011   /*
4012                  A-top         }
4013                /   |   \       }  Tops
4014            B-top A-any C-top   }
4015               | /  |  \ |      }  Any-nulls
4016            B-any   |   C-any   }
4017               |    |    |
4018            B-con A-con C-con   } constants; not comparable across classes
4019               |    |    |
4020            B-not   |   C-not   }
4021               | \  |  / |      }  not-nulls
4022            B-bot A-not C-bot   }
4023                \   |   /       }  Bottoms
4024                  A-bot         }
4025   */
4026 
4027   case InstPtr: {                // Meeting 2 Oops?
4028     // Found an InstPtr sub-type vs self-InstPtr type
4029     const TypeInstPtr *tinst = t->is_instptr();
4030     Offset off = meet_offset( tinst->offset() );
4031     PTR ptr = meet_ptr( tinst->ptr() );
4032     int instance_id = meet_instance_id(tinst->instance_id());
4033     const TypePtr* speculative = xmeet_speculative(tinst);
4034     int depth = meet_inline_depth(tinst->inline_depth());
4035 
4036     // Check for easy case; klasses are equal (and perhaps not loaded!)
4037     // If we have constants, then we created oops so classes are loaded
4038     // and we can handle the constants further down.  This case handles
4039     // both-not-loaded or both-loaded classes
4040     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
4041       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
4042     }
4043 
4044     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
4045     ciKlass* tinst_klass = tinst->klass();
4046     ciKlass* this_klass  = this->klass();
4047     bool tinst_xk = tinst->klass_is_exact();
4048     bool this_xk  = this->klass_is_exact();
4049     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
4050       // One of these classes has not been loaded
4051       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
4052 #ifndef PRODUCT
4053       if( PrintOpto && Verbose ) {
4054         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
4055         tty->print("  this == "); this->dump(); tty->cr();
4056         tty->print(" tinst == "); tinst->dump(); tty->cr();
4057       }
4058 #endif
4059       return unloaded_meet;
4060     }
4061 
4062     // Handle mixing oops and interfaces first.
4063     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
4064                                         tinst_klass == ciEnv::current()->Object_klass())) {
4065       ciKlass *tmp = tinst_klass; // Swap interface around
4066       tinst_klass = this_klass;
4067       this_klass = tmp;
4068       bool tmp2 = tinst_xk;
4069       tinst_xk = this_xk;
4070       this_xk = tmp2;
4071     }
4072     if (tinst_klass->is_interface() &&
4073         !(this_klass->is_interface() ||
4074           // Treat java/lang/Object as an honorary interface,
4075           // because we need a bottom for the interface hierarchy.
4076           this_klass == ciEnv::current()->Object_klass())) {
4077       // Oop meets interface!
4078 
4079       // See if the oop subtypes (implements) interface.
4080       ciKlass *k;
4081       bool xk;
4082       if( this_klass->is_subtype_of( tinst_klass ) ) {
4083         // Oop indeed subtypes.  Now keep oop or interface depending
4084         // on whether we are both above the centerline or either is
4085         // below the centerline.  If we are on the centerline
4086         // (e.g., Constant vs. AnyNull interface), use the constant.
4087         k  = below_centerline(ptr) ? tinst_klass : this_klass;
4088         // If we are keeping this_klass, keep its exactness too.
4089         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
4090       } else {                  // Does not implement, fall to Object
4091         // Oop does not implement interface, so mixing falls to Object
4092         // just like the verifier does (if both are above the
4093         // centerline fall to interface)
4094         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
4095         xk = above_centerline(ptr) ? tinst_xk : false;
4096         // Watch out for Constant vs. AnyNull interface.
4097         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
4098         instance_id = InstanceBot;
4099       }
4100       ciObject* o = NULL;  // the Constant value, if any
4101       if (ptr == Constant) {
4102         // Find out which constant.
4103         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
4104       }
4105       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
4106     }
4107 
4108     // Either oop vs oop or interface vs interface or interface vs Object
4109 
4110     // !!! Here's how the symmetry requirement breaks down into invariants:
4111     // If we split one up & one down AND they subtype, take the down man.
4112     // If we split one up & one down AND they do NOT subtype, "fall hard".
4113     // If both are up and they subtype, take the subtype class.
4114     // If both are up and they do NOT subtype, "fall hard".
4115     // If both are down and they subtype, take the supertype class.
4116     // If both are down and they do NOT subtype, "fall hard".
4117     // Constants treated as down.
4118 
4119     // Now, reorder the above list; observe that both-down+subtype is also
4120     // "fall hard"; "fall hard" becomes the default case:
4121     // If we split one up & one down AND they subtype, take the down man.
4122     // If both are up and they subtype, take the subtype class.
4123 
4124     // If both are down and they subtype, "fall hard".
4125     // If both are down and they do NOT subtype, "fall hard".
4126     // If both are up and they do NOT subtype, "fall hard".
4127     // If we split one up & one down AND they do NOT subtype, "fall hard".
4128 
4129     // If a proper subtype is exact, and we return it, we return it exactly.
4130     // If a proper supertype is exact, there can be no subtyping relationship!
4131     // If both types are equal to the subtype, exactness is and-ed below the
4132     // centerline and or-ed above it.  (N.B. Constants are always exact.)
4133 
4134     // Check for subtyping:
4135     ciKlass *subtype = NULL;
4136     bool subtype_exact = false;
4137     if( tinst_klass->equals(this_klass) ) {
4138       subtype = this_klass;
4139       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
4140     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
4141       subtype = this_klass;     // Pick subtyping class
4142       subtype_exact = this_xk;
4143     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
4144       subtype = tinst_klass;    // Pick subtyping class
4145       subtype_exact = tinst_xk;
4146     }
4147 
4148     if( subtype ) {
4149       if( above_centerline(ptr) ) { // both are up?
4150         this_klass = tinst_klass = subtype;
4151         this_xk = tinst_xk = subtype_exact;
4152       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
4153         this_klass = tinst_klass; // tinst is down; keep down man
4154         this_xk = tinst_xk;
4155       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
4156         tinst_klass = this_klass; // this is down; keep down man
4157         tinst_xk = this_xk;
4158       } else {
4159         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
4160       }
4161     }
4162 
4163     // Check for classes now being equal
4164     if (tinst_klass->equals(this_klass)) {
4165       // If the klasses are equal, the constants may still differ.  Fall to
4166       // NotNull if they do (neither constant is NULL; that is a special case
4167       // handled elsewhere).
4168       ciObject* o = NULL;             // Assume not constant when done
4169       ciObject* this_oop  = const_oop();
4170       ciObject* tinst_oop = tinst->const_oop();
4171       if( ptr == Constant ) {
4172         if (this_oop != NULL && tinst_oop != NULL &&
4173             this_oop->equals(tinst_oop) )
4174           o = this_oop;
4175         else if (above_centerline(this ->_ptr))
4176           o = tinst_oop;
4177         else if (above_centerline(tinst ->_ptr))
4178           o = this_oop;
4179         else
4180           ptr = NotNull;
4181       }
4182       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
4183     } // Else classes are not equal
4184 
4185     // Since klasses are different, we require a LCA in the Java
4186     // class hierarchy - which means we have to fall to at least NotNull.
4187     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
4188       ptr = NotNull;
4189 
4190     instance_id = InstanceBot;
4191 
4192     // Now we find the LCA of Java classes
4193     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
4194     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
4195   } // End of case InstPtr
4196 
4197   case ValueTypePtr: {
4198     // All value types inherit from Object
4199     const TypeValueTypePtr* tp = t->is_valuetypeptr();
4200     Offset offset = meet_offset(tp->offset());
4201     PTR ptr = meet_ptr(tp->ptr());
4202     int instance_id = meet_instance_id(tp->instance_id());
4203     const TypePtr* speculative = xmeet_speculative(tp);
4204     int depth = meet_inline_depth(tp->inline_depth());
4205     switch (ptr) {
4206     case TopPTR:
4207     case AnyNull:                // Fall 'down' to dual of object klass
4208       // For instances when a subclass meets a superclass we fall
4209       // below the centerline when the superclass is exact. We need to
4210       // do the same here.
4211       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
4212         return TypeValueTypePtr::make(ptr, tp->value_klass(), NULL, offset, instance_id, speculative, depth);
4213       } else {
4214         // cannot subclass, so the meet has to fall badly below the centerline
4215         ptr = NotNull;
4216         instance_id = InstanceBot;
4217         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4218       }
4219     case Constant:
4220     case NotNull:
4221     case BotPTR:                // Fall down to object klass
4222       // LCA is object_klass, but if we subclass from the top we can do better
4223       if (above_centerline(_ptr)) { // if( _ptr == TopPTR || _ptr == AnyNull )
4224         // If 'this' (InstPtr) is above the centerline and it is Object class
4225         // then we can subclass in the Java class hierarchy.
4226         // For instances when a subclass meets a superclass we fall
4227         // below the centerline when the superclass is exact. We need
4228         // to do the same here.
4229         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
4230           // that is, tp's value type is a subtype of my klass
4231           return TypeValueTypePtr::make(ptr, tp->value_klass(), (ptr == Constant ? tp->const_oop() : NULL), offset, instance_id, speculative, depth);
4232         }
4233       }
4234       // The other case cannot happen, since I cannot be a subtype of a value type.
4235       // The meet falls down to Object class below centerline.
4236       if (ptr == Constant) {
4237          ptr = NotNull;
4238       }
4239       instance_id = InstanceBot;
4240       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4241     default: typerr(t);
4242     }
4243   }
4244 
4245   case ValueType: {
4246     // All value types inherit from Object
4247     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4248   }
4249 
4250   } // End of switch
4251   return this;                  // Return the double constant
4252 }
4253 
4254 
4255 //------------------------java_mirror_type--------------------------------------
4256 ciType* TypeInstPtr::java_mirror_type() const {
4257   // must be a singleton type
4258   if( const_oop() == NULL )  return NULL;
4259 
4260   // must be of type java.lang.Class
4261   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
4262 
4263   return const_oop()->as_instance()->java_mirror_type();
4264 }
4265 
4266 
4267 //------------------------------xdual------------------------------------------
4268 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
4269 // inheritance mechanism.
4270 const Type *TypeInstPtr::xdual() const {
4271   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4272 }
4273 
4274 //------------------------------eq---------------------------------------------
4275 // Structural equality check for Type representations
4276 bool TypeInstPtr::eq( const Type *t ) const {
4277   const TypeInstPtr *p = t->is_instptr();
4278   return
4279     klass()->equals(p->klass()) &&
4280     TypeOopPtr::eq(p);          // Check sub-type stuff
4281 }
4282 
4283 //------------------------------hash-------------------------------------------
4284 // Type-specific hashing function.
4285 int TypeInstPtr::hash(void) const {
4286   int hash = java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
4287   return hash;
4288 }
4289 
4290 //------------------------------dump2------------------------------------------
4291 // Dump oop Type
4292 #ifndef PRODUCT
4293 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4294   // Print the name of the klass.
4295   klass()->print_name_on(st);
4296 
4297   switch( _ptr ) {
4298   case Constant:
4299     // TO DO: Make CI print the hex address of the underlying oop.
4300     if (WizardMode || Verbose) {
4301       const_oop()->print_oop(st);
4302     }
4303   case BotPTR:
4304     if (!WizardMode && !Verbose) {
4305       if( _klass_is_exact ) st->print(":exact");
4306       break;
4307     }
4308   case TopPTR:
4309   case AnyNull:
4310   case NotNull:
4311     st->print(":%s", ptr_msg[_ptr]);
4312     if( _klass_is_exact ) st->print(":exact");
4313     break;
4314   default:
4315     break;
4316   }
4317 
4318   _offset.dump2(st);
4319 
4320   st->print(" *");
4321   if (_instance_id == InstanceTop)
4322     st->print(",iid=top");
4323   else if (_instance_id != InstanceBot)
4324     st->print(",iid=%d",_instance_id);
4325 
4326   dump_inline_depth(st);
4327   dump_speculative(st);
4328 }
4329 #endif
4330 
4331 //------------------------------add_offset-------------------------------------
4332 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4333   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4334               _instance_id, add_offset_speculative(offset), _inline_depth);
4335 }
4336 
4337 const Type *TypeInstPtr::remove_speculative() const {
4338   if (_speculative == NULL) {
4339     return this;
4340   }
4341   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4342   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4343               _instance_id, NULL, _inline_depth);
4344 }
4345 
4346 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4347   if (!UseInlineDepthForSpeculativeTypes) {
4348     return this;
4349   }
4350   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4351 }
4352 
4353 //=============================================================================
4354 // Convenience common pre-built types.
4355 const TypeAryPtr *TypeAryPtr::RANGE;
4356 const TypeAryPtr *TypeAryPtr::OOPS;
4357 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4358 const TypeAryPtr *TypeAryPtr::BYTES;
4359 const TypeAryPtr *TypeAryPtr::SHORTS;
4360 const TypeAryPtr *TypeAryPtr::CHARS;
4361 const TypeAryPtr *TypeAryPtr::INTS;
4362 const TypeAryPtr *TypeAryPtr::LONGS;
4363 const TypeAryPtr *TypeAryPtr::FLOATS;
4364 const TypeAryPtr *TypeAryPtr::DOUBLES;
4365 
4366 //------------------------------make-------------------------------------------
4367 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4368                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4369   assert(!(k == NULL && ary->_elem->isa_int()),
4370          "integral arrays must be pre-equipped with a class");
4371   if (!xk)  xk = ary->ary_must_be_exact();
4372   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4373   if (!UseExactTypes)  xk = (ptr == Constant);
4374   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4375 }
4376 
4377 //------------------------------make-------------------------------------------
4378 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4379                                    int instance_id, const TypePtr* speculative, int inline_depth,
4380                                    bool is_autobox_cache) {
4381   assert(!(k == NULL && ary->_elem->isa_int()),
4382          "integral arrays must be pre-equipped with a class");
4383   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4384   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4385   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4386   if (!UseExactTypes)  xk = (ptr == Constant);
4387   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4388 }
4389 
4390 //------------------------------cast_to_ptr_type-------------------------------
4391 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4392   if( ptr == _ptr ) return this;
4393   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4394 }
4395 
4396 
4397 //-----------------------------cast_to_exactness-------------------------------
4398 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4399   if( klass_is_exact == _klass_is_exact ) return this;
4400   if (!UseExactTypes)  return this;
4401   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4402   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4403 }
4404 
4405 //-----------------------------cast_to_instance_id----------------------------
4406 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4407   if( instance_id == _instance_id ) return this;
4408   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4409 }
4410 
4411 //-----------------------------narrow_size_type-------------------------------
4412 // Local cache for arrayOopDesc::max_array_length(etype),
4413 // which is kind of slow (and cached elsewhere by other users).
4414 static jint max_array_length_cache[T_CONFLICT+1];
4415 static jint max_array_length(BasicType etype) {
4416   jint& cache = max_array_length_cache[etype];
4417   jint res = cache;
4418   if (res == 0) {
4419     switch (etype) {
4420     case T_NARROWOOP:
4421       etype = T_OBJECT;
4422       break;
4423     case T_NARROWKLASS:
4424     case T_CONFLICT:
4425     case T_ILLEGAL:
4426     case T_VOID:
4427       etype = T_BYTE;           // will produce conservatively high value
4428       break;
4429     default:
4430       break;
4431     }
4432     cache = res = arrayOopDesc::max_array_length(etype);
4433   }
4434   return res;
4435 }
4436 
4437 // Narrow the given size type to the index range for the given array base type.
4438 // Return NULL if the resulting int type becomes empty.
4439 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4440   jint hi = size->_hi;
4441   jint lo = size->_lo;
4442   jint min_lo = 0;
4443   jint max_hi = max_array_length(elem()->basic_type());
4444   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4445   bool chg = false;
4446   if (lo < min_lo) {
4447     lo = min_lo;
4448     if (size->is_con()) {
4449       hi = lo;
4450     }
4451     chg = true;
4452   }
4453   if (hi > max_hi) {
4454     hi = max_hi;
4455     if (size->is_con()) {
4456       lo = hi;
4457     }
4458     chg = true;
4459   }
4460   // Negative length arrays will produce weird intermediate dead fast-path code
4461   if (lo > hi)
4462     return TypeInt::ZERO;
4463   if (!chg)
4464     return size;
4465   return TypeInt::make(lo, hi, Type::WidenMin);
4466 }
4467 
4468 //-------------------------------cast_to_size----------------------------------
4469 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4470   assert(new_size != NULL, "");
4471   new_size = narrow_size_type(new_size);
4472   if (new_size == size())  return this;
4473   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4474   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4475 }
4476 
4477 //------------------------------cast_to_stable---------------------------------
4478 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4479   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4480     return this;
4481 
4482   const Type* elem = this->elem();
4483   const TypePtr* elem_ptr = elem->make_ptr();
4484 
4485   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4486     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4487     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4488   }
4489 
4490   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4491 
4492   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4493 }
4494 
4495 //-----------------------------stable_dimension--------------------------------
4496 int TypeAryPtr::stable_dimension() const {
4497   if (!is_stable())  return 0;
4498   int dim = 1;
4499   const TypePtr* elem_ptr = elem()->make_ptr();
4500   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4501     dim += elem_ptr->is_aryptr()->stable_dimension();
4502   return dim;
4503 }
4504 
4505 //----------------------cast_to_autobox_cache-----------------------------------
4506 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4507   if (is_autobox_cache() == cache)  return this;
4508   const TypeOopPtr* etype = elem()->make_oopptr();
4509   if (etype == NULL)  return this;
4510   // The pointers in the autobox arrays are always non-null.
4511   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4512   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4513   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4514   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4515 }
4516 
4517 //------------------------------eq---------------------------------------------
4518 // Structural equality check for Type representations
4519 bool TypeAryPtr::eq( const Type *t ) const {
4520   const TypeAryPtr *p = t->is_aryptr();
4521   return
4522     _ary == p->_ary &&  // Check array
4523     TypeOopPtr::eq(p) &&// Check sub-parts
4524     _field_offset == p->_field_offset;
4525 }
4526 
4527 //------------------------------hash-------------------------------------------
4528 // Type-specific hashing function.
4529 int TypeAryPtr::hash(void) const {
4530   return (intptr_t)_ary + TypeOopPtr::hash() + _field_offset.get();
4531 }
4532 
4533 //------------------------------meet-------------------------------------------
4534 // Compute the MEET of two types.  It returns a new Type object.
4535 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4536   // Perform a fast test for common case; meeting the same types together.
4537   if( this == t ) return this;  // Meeting same type-rep?
4538   // Current "this->_base" is Pointer
4539   switch (t->base()) {          // switch on original type
4540 
4541   // Mixing ints & oops happens when javac reuses local variables
4542   case Int:
4543   case Long:
4544   case FloatTop:
4545   case FloatCon:
4546   case FloatBot:
4547   case DoubleTop:
4548   case DoubleCon:
4549   case DoubleBot:
4550   case NarrowOop:
4551   case NarrowKlass:
4552   case Bottom:                  // Ye Olde Default
4553     return Type::BOTTOM;
4554   case Top:
4555     return this;
4556 
4557   default:                      // All else is a mistake
4558     typerr(t);
4559 
4560   case OopPtr: {                // Meeting to OopPtrs
4561     // Found a OopPtr type vs self-AryPtr type
4562     const TypeOopPtr *tp = t->is_oopptr();
4563     Offset offset = meet_offset(tp->offset());
4564     PTR ptr = meet_ptr(tp->ptr());
4565     int depth = meet_inline_depth(tp->inline_depth());
4566     const TypePtr* speculative = xmeet_speculative(tp);
4567     switch (tp->ptr()) {
4568     case TopPTR:
4569     case AnyNull: {
4570       int instance_id = meet_instance_id(InstanceTop);
4571       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4572                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4573     }
4574     case BotPTR:
4575     case NotNull: {
4576       int instance_id = meet_instance_id(tp->instance_id());
4577       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4578     }
4579     default: ShouldNotReachHere();
4580     }
4581   }
4582 
4583   case AnyPtr: {                // Meeting two AnyPtrs
4584     // Found an AnyPtr type vs self-AryPtr type
4585     const TypePtr *tp = t->is_ptr();
4586     Offset offset = meet_offset(tp->offset());
4587     PTR ptr = meet_ptr(tp->ptr());
4588     const TypePtr* speculative = xmeet_speculative(tp);
4589     int depth = meet_inline_depth(tp->inline_depth());
4590     switch (tp->ptr()) {
4591     case TopPTR:
4592       return this;
4593     case BotPTR:
4594     case NotNull:
4595       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4596     case Null:
4597       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4598       // else fall through to AnyNull
4599     case AnyNull: {
4600       int instance_id = meet_instance_id(InstanceTop);
4601       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4602                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4603     }
4604     default: ShouldNotReachHere();
4605     }
4606   }
4607 
4608   case MetadataPtr:
4609   case KlassPtr:
4610   case RawPtr: return TypePtr::BOTTOM;
4611 
4612   case AryPtr: {                // Meeting 2 references?
4613     const TypeAryPtr *tap = t->is_aryptr();
4614     Offset off = meet_offset(tap->offset());
4615     Offset field_off = meet_field_offset(tap->field_offset());
4616     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4617     PTR ptr = meet_ptr(tap->ptr());
4618     int instance_id = meet_instance_id(tap->instance_id());
4619     const TypePtr* speculative = xmeet_speculative(tap);
4620     int depth = meet_inline_depth(tap->inline_depth());
4621     ciKlass* lazy_klass = NULL;
4622     if (tary->_elem->isa_int()) {
4623       // Integral array element types have irrelevant lattice relations.
4624       // It is the klass that determines array layout, not the element type.
4625       if (_klass == NULL)
4626         lazy_klass = tap->_klass;
4627       else if (tap->_klass == NULL || tap->_klass == _klass) {
4628         lazy_klass = _klass;
4629       } else {
4630         // Something like byte[int+] meets char[int+].
4631         // This must fall to bottom, not (int[-128..65535])[int+].
4632         instance_id = InstanceBot;
4633         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4634       }
4635     } else // Non integral arrays.
4636       // Must fall to bottom if exact klasses in upper lattice
4637       // are not equal or super klass is exact.
4638       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4639           // meet with top[] and bottom[] are processed further down:
4640           tap->_klass != NULL  && this->_klass != NULL   &&
4641           // both are exact and not equal:
4642           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4643            // 'tap'  is exact and super or unrelated:
4644            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4645            // 'this' is exact and super or unrelated:
4646            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4647       if (above_centerline(ptr)) {
4648         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4649       }
4650       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4651     }
4652 
4653     bool xk = false;
4654     switch (tap->ptr()) {
4655     case AnyNull:
4656     case TopPTR:
4657       // Compute new klass on demand, do not use tap->_klass
4658       if (below_centerline(this->_ptr)) {
4659         xk = this->_klass_is_exact;
4660       } else {
4661         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4662       }
4663       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4664     case Constant: {
4665       ciObject* o = const_oop();
4666       if( _ptr == Constant ) {
4667         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4668           xk = (klass() == tap->klass());
4669           ptr = NotNull;
4670           o = NULL;
4671           instance_id = InstanceBot;
4672         } else {
4673           xk = true;
4674         }
4675       } else if(above_centerline(_ptr)) {
4676         o = tap->const_oop();
4677         xk = true;
4678       } else {
4679         // Only precise for identical arrays
4680         xk = this->_klass_is_exact && (klass() == tap->klass());
4681       }
4682       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4683     }
4684     case NotNull:
4685     case BotPTR:
4686       // Compute new klass on demand, do not use tap->_klass
4687       if (above_centerline(this->_ptr))
4688             xk = tap->_klass_is_exact;
4689       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4690               (klass() == tap->klass()); // Only precise for identical arrays
4691       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4692     default: ShouldNotReachHere();
4693     }
4694   }
4695 
4696   // All arrays inherit from Object class
4697   case InstPtr: {
4698     const TypeInstPtr *tp = t->is_instptr();
4699     Offset offset = meet_offset(tp->offset());
4700     PTR ptr = meet_ptr(tp->ptr());
4701     int instance_id = meet_instance_id(tp->instance_id());
4702     const TypePtr* speculative = xmeet_speculative(tp);
4703     int depth = meet_inline_depth(tp->inline_depth());
4704     switch (ptr) {
4705     case TopPTR:
4706     case AnyNull:                // Fall 'down' to dual of object klass
4707       // For instances when a subclass meets a superclass we fall
4708       // below the centerline when the superclass is exact. We need to
4709       // do the same here.
4710       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4711         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4712       } else {
4713         // cannot subclass, so the meet has to fall badly below the centerline
4714         ptr = NotNull;
4715         instance_id = InstanceBot;
4716         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4717       }
4718     case Constant:
4719     case NotNull:
4720     case BotPTR:                // Fall down to object klass
4721       // LCA is object_klass, but if we subclass from the top we can do better
4722       if (above_centerline(tp->ptr())) {
4723         // If 'tp'  is above the centerline and it is Object class
4724         // then we can subclass in the Java class hierarchy.
4725         // For instances when a subclass meets a superclass we fall
4726         // below the centerline when the superclass is exact. We need
4727         // to do the same here.
4728         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4729           // that is, my array type is a subtype of 'tp' klass
4730           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4731                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4732         }
4733       }
4734       // The other case cannot happen, since t cannot be a subtype of an array.
4735       // The meet falls down to Object class below centerline.
4736       if( ptr == Constant )
4737          ptr = NotNull;
4738       instance_id = InstanceBot;
4739       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4740     default: typerr(t);
4741     }
4742   }
4743 
4744   case ValueType: {
4745     // All value types inherit from Object
4746     return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
4747   }
4748 
4749   case ValueTypePtr: {
4750     const TypeValueTypePtr* tp = t->is_valuetypeptr();
4751     Offset offset = meet_offset(tp->offset());
4752     PTR ptr = meet_ptr(tp->ptr());
4753     int instance_id = meet_instance_id(tp->instance_id());
4754     const TypePtr* speculative = xmeet_speculative(tp);
4755     int depth = meet_inline_depth(tp->inline_depth());
4756     return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
4757   }
4758 
4759   }
4760   return this;                  // Lint noise
4761 }
4762 
4763 //------------------------------xdual------------------------------------------
4764 // Dual: compute field-by-field dual
4765 const Type *TypeAryPtr::xdual() const {
4766   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(), _klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4767 }
4768 
4769 Type::Offset TypeAryPtr::meet_field_offset(const Type::Offset offset) const {
4770   return _field_offset.meet(offset);
4771 }
4772 
4773 //------------------------------dual_offset------------------------------------
4774 Type::Offset TypeAryPtr::dual_field_offset() const {
4775   return _field_offset.dual();
4776 }
4777 
4778 //----------------------interface_vs_oop---------------------------------------
4779 #ifdef ASSERT
4780 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4781   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4782   if (t_aryptr) {
4783     return _ary->interface_vs_oop(t_aryptr->_ary);
4784   }
4785   return false;
4786 }
4787 #endif
4788 
4789 //------------------------------dump2------------------------------------------
4790 #ifndef PRODUCT
4791 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4792   _ary->dump2(d,depth,st);
4793   switch( _ptr ) {
4794   case Constant:
4795     const_oop()->print(st);
4796     break;
4797   case BotPTR:
4798     if (!WizardMode && !Verbose) {
4799       if( _klass_is_exact ) st->print(":exact");
4800       break;
4801     }
4802   case TopPTR:
4803   case AnyNull:
4804   case NotNull:
4805     st->print(":%s", ptr_msg[_ptr]);
4806     if( _klass_is_exact ) st->print(":exact");
4807     break;
4808   default:
4809     break;
4810   }
4811 
4812   if (elem()->isa_valuetype()) {
4813     st->print("(");
4814     _field_offset.dump2(st);
4815     st->print(")");
4816   }
4817   if (offset() != 0) {
4818     int header_size = objArrayOopDesc::header_size() * wordSize;
4819     if( _offset == Offset::top )       st->print("+undefined");
4820     else if( _offset == Offset::bottom )  st->print("+any");
4821     else if( offset() < header_size ) st->print("+%d", offset());
4822     else {
4823       BasicType basic_elem_type = elem()->basic_type();
4824       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4825       int elem_size = type2aelembytes(basic_elem_type);
4826       st->print("[%d]", (offset() - array_base)/elem_size);
4827     }
4828   }
4829   st->print(" *");
4830   if (_instance_id == InstanceTop)
4831     st->print(",iid=top");
4832   else if (_instance_id != InstanceBot)
4833     st->print(",iid=%d",_instance_id);
4834 
4835   dump_inline_depth(st);
4836   dump_speculative(st);
4837 }
4838 #endif
4839 
4840 bool TypeAryPtr::empty(void) const {
4841   if (_ary->empty())       return true;
4842   return TypeOopPtr::empty();
4843 }
4844 
4845 //------------------------------add_offset-------------------------------------
4846 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4847   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4848 }
4849 
4850 const Type *TypeAryPtr::remove_speculative() const {
4851   if (_speculative == NULL) {
4852     return this;
4853   }
4854   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4855   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4856 }
4857 
4858 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4859   if (!UseInlineDepthForSpeculativeTypes) {
4860     return this;
4861   }
4862   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4863 }
4864 
4865 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4866   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4867 }
4868 
4869 const TypePtr* TypeAryPtr::add_field_offset_and_offset(intptr_t offset) const {
4870   int adj = 0;
4871   if (offset != Type::OffsetBot && offset != Type::OffsetTop) {
4872     const Type* elemtype = elem();
4873     if (elemtype->isa_valuetype()) {
4874       if (_offset.get() != OffsetBot && _offset.get() != OffsetTop) {
4875         adj = _offset.get();
4876         offset += _offset.get();
4877       }
4878       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4879       if (_field_offset.get() != OffsetBot && _field_offset.get() != OffsetTop) {
4880         offset += _field_offset.get();
4881         if (_offset.get() == OffsetBot || _offset.get() == OffsetTop) {
4882           offset += header;
4883         }
4884       }
4885       if (offset >= (intptr_t)header || offset < 0) {
4886         // Try to get the field of the value type array element we are pointing to
4887         ciKlass* arytype_klass = klass();
4888         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4889         ciValueKlass* vk = vak->element_klass()->as_value_klass();
4890         int shift = vak->log2_element_size();
4891         int mask = (1 << shift) - 1;
4892         intptr_t field_offset = ((offset - header) & mask);
4893         ciField* field = vk->get_field_by_offset(field_offset + vk->first_field_offset(), false);
4894         if (field == NULL) {
4895           // This may happen with nested AddP(base, AddP(base, base, offset), longcon(16))
4896           return add_offset(offset);
4897         } else {
4898           return with_field_offset(field_offset)->add_offset(offset - field_offset - adj);
4899         }
4900       }
4901     }
4902   }
4903   return add_offset(offset - adj);
4904 }
4905 
4906 // Return offset incremented by field_offset for flattened value type arrays
4907 const int TypeAryPtr::flattened_offset() const {
4908   int offset = _offset.get();
4909   if (offset != Type::OffsetBot && offset != Type::OffsetTop &&
4910       _field_offset != Offset::bottom && _field_offset != Offset::top) {
4911     offset += _field_offset.get();
4912   }
4913   return offset;
4914 }
4915 
4916 //=============================================================================
4917 
4918 
4919 //=============================================================================
4920 
4921 const TypeValueTypePtr* TypeValueTypePtr::NOTNULL;
4922 //------------------------------make-------------------------------------------
4923 const TypeValueTypePtr* TypeValueTypePtr::make(PTR ptr, ciValueKlass* vk, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth) {
4924   return (TypeValueTypePtr*)(new TypeValueTypePtr(ptr, vk, o, offset, instance_id, speculative, inline_depth))->hashcons();
4925 }
4926 
4927 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4928   return make(_ptr, value_klass(), _const_oop, Offset(offset), _instance_id, _speculative, _inline_depth);
4929 }
4930 
4931 //------------------------------cast_to_ptr_type-------------------------------
4932 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4933   if (ptr == _ptr) return this;
4934   return make(ptr, value_klass(), _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4935 }
4936 
4937 //-----------------------------cast_to_instance_id----------------------------
4938 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4939   if (instance_id == _instance_id) return this;
4940   return make(_ptr, value_klass(), _const_oop, _offset, instance_id, _speculative, _inline_depth);
4941 }
4942 
4943 //------------------------------meet-------------------------------------------
4944 // Compute the MEET of two types.  It returns a new Type object.
4945 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4946   // Perform a fast test for common case; meeting the same types together.
4947   if (this == t) return this;  // Meeting same type-rep?
4948 
4949   switch (t->base()) {          // switch on original type
4950     case Int:                     // Mixing ints & oops happens when javac
4951     case Long:                    // reuses local variables
4952     case FloatTop:
4953     case FloatCon:
4954     case FloatBot:
4955     case DoubleTop:
4956     case DoubleCon:
4957     case DoubleBot:
4958     case NarrowOop:
4959     case NarrowKlass:
4960     case Bottom:                  // Ye Olde Default
4961       return Type::BOTTOM;
4962 
4963     case MetadataPtr:
4964     case KlassPtr:
4965     case RawPtr:
4966       return TypePtr::BOTTOM;
4967 
4968     case Top:
4969       return this;
4970 
4971     default:                      // All else is a mistake
4972       typerr(t);
4973 
4974     case OopPtr: {
4975       // Found a OopPtr type vs self-ValueTypePtr type
4976       const TypeOopPtr* tp = t->is_oopptr();
4977       Offset offset = meet_offset(tp->offset());
4978       PTR ptr = meet_ptr(tp->ptr());
4979       int instance_id = meet_instance_id(tp->instance_id());
4980       const TypePtr* speculative = xmeet_speculative(tp);
4981       int depth = meet_inline_depth(tp->inline_depth());
4982       switch (tp->ptr()) {
4983       case TopPTR:
4984       case AnyNull: {
4985         return make(ptr, value_klass(), NULL, offset, instance_id, speculative, depth);
4986       }
4987       case NotNull:
4988       case BotPTR: {
4989         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4990       }
4991       default: typerr(t);
4992       }
4993     }
4994 
4995     case AnyPtr: {
4996       // Found an AnyPtr type vs self-ValueTypePtr type
4997       const TypePtr* tp = t->is_ptr();
4998       Offset offset = meet_offset(tp->offset());
4999       PTR ptr = meet_ptr(tp->ptr());
5000       int instance_id = meet_instance_id(InstanceTop);
5001       const TypePtr* speculative = xmeet_speculative(tp);
5002       int depth = meet_inline_depth(tp->inline_depth());
5003       switch (tp->ptr()) {
5004       case Null:
5005         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5006         // else fall through to AnyNull
5007       case TopPTR:
5008       case AnyNull: {
5009         return make(ptr, value_klass(), NULL, offset, instance_id, speculative, depth);
5010       }
5011       case NotNull:
5012       case BotPTR:
5013         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
5014       default: typerr(t);
5015       }
5016     }
5017 
5018     case ValueTypePtr: {
5019       // Found an ValueTypePtr type vs self-ValueTypePtr type
5020       const TypeValueTypePtr* tp = t->is_valuetypeptr();
5021       Offset offset = meet_offset(tp->offset());
5022       PTR ptr = meet_ptr(tp->ptr());
5023       int instance_id = meet_instance_id(InstanceTop);
5024       const TypePtr* speculative = xmeet_speculative(tp);
5025       int depth = meet_inline_depth(tp->inline_depth());
5026       // Compute constant oop
5027       ciObject* o = NULL;
5028       ciObject* this_oop = const_oop();
5029       ciObject* tp_oop = tp->const_oop();
5030       ciKlass* klass = NULL;
5031       if (_klass != tp->_klass) {
5032         // All value types inherit from Object
5033         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, o, offset, instance_id, speculative, depth);
5034       } else {
5035         klass = _klass;
5036       }
5037       if (ptr == Constant) {
5038         if (this_oop != NULL && tp_oop != NULL &&
5039             this_oop->equals(tp_oop) ) {
5040           o = this_oop;
5041         } else if (above_centerline(this ->_ptr)) {
5042           o = tp_oop;
5043         } else if (above_centerline(tp ->_ptr)) {
5044           o = this_oop;
5045         } else {
5046           ptr = NotNull;
5047         }
5048       }
5049       return make(ptr, klass->as_value_klass(), o, offset, instance_id, speculative, depth);
5050     }
5051 
5052     case InstPtr: {
5053       // All value types inherit from Object
5054       const TypeInstPtr* tp = t->is_instptr();
5055       Offset offset = meet_offset(tp->offset());
5056       PTR ptr = meet_ptr(tp->ptr());
5057       int instance_id = meet_instance_id(tp->instance_id());
5058       const TypePtr* speculative = xmeet_speculative(tp);
5059       int depth = meet_inline_depth(tp->inline_depth());
5060       switch (ptr) {
5061       case TopPTR:
5062       case AnyNull:                // Fall 'down' to dual of object klass
5063         // For instances when a subclass meets a superclass we fall
5064         // below the centerline when the superclass is exact. We need to
5065         // do the same here.
5066         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
5067           return make(ptr, _klass->as_value_klass(), NULL, offset, instance_id, speculative, depth);
5068         } else {
5069           // cannot subclass, so the meet has to fall badly below the centerline
5070           ptr = NotNull;
5071           instance_id = InstanceBot;
5072           return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
5073         }
5074       case Constant:
5075       case NotNull:
5076       case BotPTR:                // Fall down to object klass
5077         // LCA is object_klass, but if we subclass from the top we can do better
5078         if (above_centerline(tp->ptr())) {
5079           // If 'tp' is above the centerline and it is Object class
5080           // then we can subclass in the Java class hierarchy.
5081           // For instances when a subclass meets a superclass we fall
5082           // below the centerline when the superclass is exact. We need
5083           // to do the same here.
5084           if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
5085             // that is, my value type is a subtype of 'tp' klass
5086             return make(ptr, _klass->as_value_klass(), (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
5087           }
5088         }
5089         // The other case cannot happen, since t cannot be a subtype of a value type.
5090         // The meet falls down to Object class below centerline.
5091         if (ptr == Constant) {
5092           ptr = NotNull;
5093         }
5094         instance_id = InstanceBot;
5095         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
5096       default: typerr(t);
5097       }
5098     }
5099 
5100     case ValueType: {
5101       // All value types inherit from Object
5102       return TypeInstPtr::make(ptr(), ciEnv::current()->Object_klass());
5103     }
5104 
5105     case AryPtr: {
5106       const TypeAryPtr* tp = t->is_aryptr();
5107       Offset offset = meet_offset(tp->offset());
5108       PTR ptr = meet_ptr(tp->ptr());
5109       int instance_id = meet_instance_id(tp->instance_id());
5110       const TypePtr* speculative = xmeet_speculative(tp);
5111       int depth = meet_inline_depth(tp->inline_depth());
5112       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
5113     }
5114 
5115     }
5116   return this;
5117 }
5118 
5119 // Dual: compute field-by-field dual
5120 const Type* TypeValueTypePtr::xdual() const {
5121   return new TypeValueTypePtr(dual_ptr(), value_klass(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
5122 }
5123 
5124 //------------------------------eq---------------------------------------------
5125 // Structural equality check for Type representations
5126 bool TypeValueTypePtr::eq(const Type* t) const {
5127   const TypeValueTypePtr* p = t->is_valuetypeptr();
5128   return klass()->equals(p->klass()) && TypeOopPtr::eq(p);
5129 }
5130 
5131 //------------------------------hash-------------------------------------------
5132 // Type-specific hashing function.
5133 int TypeValueTypePtr::hash(void) const {
5134   return java_add((jint)klass()->hash(), (jint)TypeOopPtr::hash());
5135 }
5136 
5137 //------------------------------is__Value--------------------------------------
5138 bool TypeValueTypePtr::is__Value() const {
5139   // FIXME
5140   return false;
5141 }
5142 
5143 //------------------------------dump2------------------------------------------
5144 #ifndef PRODUCT
5145 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
5146   st->print("valuetype* ");
5147   klass()->print_name_on(st);
5148   st->print(":%s", ptr_msg[_ptr]);
5149   _offset.dump2(st);
5150 }
5151 #endif
5152 
5153 //=============================================================================
5154 
5155 //------------------------------hash-------------------------------------------
5156 // Type-specific hashing function.
5157 int TypeNarrowPtr::hash(void) const {
5158   return _ptrtype->hash() + 7;
5159 }
5160 
5161 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
5162   return _ptrtype->singleton();
5163 }
5164 
5165 bool TypeNarrowPtr::empty(void) const {
5166   return _ptrtype->empty();
5167 }
5168 
5169 intptr_t TypeNarrowPtr::get_con() const {
5170   return _ptrtype->get_con();
5171 }
5172 
5173 bool TypeNarrowPtr::eq( const Type *t ) const {
5174   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
5175   if (tc != NULL) {
5176     if (_ptrtype->base() != tc->_ptrtype->base()) {
5177       return false;
5178     }
5179     return tc->_ptrtype->eq(_ptrtype);
5180   }
5181   return false;
5182 }
5183 
5184 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
5185   const TypePtr* odual = _ptrtype->dual()->is_ptr();
5186   return make_same_narrowptr(odual);
5187 }
5188 
5189 
5190 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
5191   if (isa_same_narrowptr(kills)) {
5192     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
5193     if (ft->empty())
5194       return Type::TOP;           // Canonical empty value
5195     if (ft->isa_ptr()) {
5196       return make_hash_same_narrowptr(ft->isa_ptr());
5197     }
5198     return ft;
5199   } else if (kills->isa_ptr()) {
5200     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
5201     if (ft->empty())
5202       return Type::TOP;           // Canonical empty value
5203     return ft;
5204   } else {
5205     return Type::TOP;
5206   }
5207 }
5208 
5209 //------------------------------xmeet------------------------------------------
5210 // Compute the MEET of two types.  It returns a new Type object.
5211 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
5212   // Perform a fast test for common case; meeting the same types together.
5213   if( this == t ) return this;  // Meeting same type-rep?
5214 
5215   if (t->base() == base()) {
5216     const Type* result = _ptrtype->xmeet(t->make_ptr());
5217     if (result->isa_ptr()) {
5218       return make_hash_same_narrowptr(result->is_ptr());
5219     }
5220     return result;
5221   }
5222 
5223   // Current "this->_base" is NarrowKlass or NarrowOop
5224   switch (t->base()) {          // switch on original type
5225 
5226   case Int:                     // Mixing ints & oops happens when javac
5227   case Long:                    // reuses local variables
5228   case FloatTop:
5229   case FloatCon:
5230   case FloatBot:
5231   case DoubleTop:
5232   case DoubleCon:
5233   case DoubleBot:
5234   case AnyPtr:
5235   case RawPtr:
5236   case OopPtr:
5237   case InstPtr:
5238   case ValueTypePtr:
5239   case AryPtr:
5240   case MetadataPtr:
5241   case KlassPtr:
5242   case NarrowOop:
5243   case NarrowKlass:
5244   case Bottom:                  // Ye Olde Default
5245     return Type::BOTTOM;
5246   case Top:
5247     return this;
5248 
5249   case ValueType:
5250     return t->xmeet(this);
5251 
5252   default:                      // All else is a mistake
5253     typerr(t);
5254 
5255   } // End of switch
5256 
5257   return this;
5258 }
5259 
5260 #ifndef PRODUCT
5261 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5262   _ptrtype->dump2(d, depth, st);
5263 }
5264 #endif
5265 
5266 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
5267 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
5268 
5269 
5270 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
5271   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
5272 }
5273 
5274 const Type* TypeNarrowOop::remove_speculative() const {
5275   return make(_ptrtype->remove_speculative()->is_ptr());
5276 }
5277 
5278 const Type* TypeNarrowOop::cleanup_speculative() const {
5279   return make(_ptrtype->cleanup_speculative()->is_ptr());
5280 }
5281 
5282 #ifndef PRODUCT
5283 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
5284   st->print("narrowoop: ");
5285   TypeNarrowPtr::dump2(d, depth, st);
5286 }
5287 #endif
5288 
5289 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
5290 
5291 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
5292   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
5293 }
5294 
5295 #ifndef PRODUCT
5296 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
5297   st->print("narrowklass: ");
5298   TypeNarrowPtr::dump2(d, depth, st);
5299 }
5300 #endif
5301 
5302 
5303 //------------------------------eq---------------------------------------------
5304 // Structural equality check for Type representations
5305 bool TypeMetadataPtr::eq( const Type *t ) const {
5306   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
5307   ciMetadata* one = metadata();
5308   ciMetadata* two = a->metadata();
5309   if (one == NULL || two == NULL) {
5310     return (one == two) && TypePtr::eq(t);
5311   } else {
5312     return one->equals(two) && TypePtr::eq(t);
5313   }
5314 }
5315 
5316 //------------------------------hash-------------------------------------------
5317 // Type-specific hashing function.
5318 int TypeMetadataPtr::hash(void) const {
5319   return
5320     (metadata() ? metadata()->hash() : 0) +
5321     TypePtr::hash();
5322 }
5323 
5324 //------------------------------singleton--------------------------------------
5325 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5326 // constants
5327 bool TypeMetadataPtr::singleton(void) const {
5328   // detune optimizer to not generate constant metadata + constant offset as a constant!
5329   // TopPTR, Null, AnyNull, Constant are all singletons
5330   return (offset() == 0) && !below_centerline(_ptr);
5331 }
5332 
5333 //------------------------------add_offset-------------------------------------
5334 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
5335   return make( _ptr, _metadata, xadd_offset(offset));
5336 }
5337 
5338 //-----------------------------filter------------------------------------------
5339 // Do not allow interface-vs.-noninterface joins to collapse to top.
5340 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
5341   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
5342   if (ft == NULL || ft->empty())
5343     return Type::TOP;           // Canonical empty value
5344   return ft;
5345 }
5346 
5347  //------------------------------get_con----------------------------------------
5348 intptr_t TypeMetadataPtr::get_con() const {
5349   assert( _ptr == Null || _ptr == Constant, "" );
5350   assert(offset() >= 0, "");
5351 
5352   if (offset() != 0) {
5353     // After being ported to the compiler interface, the compiler no longer
5354     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5355     // to a handle at compile time.  This handle is embedded in the generated
5356     // code and dereferenced at the time the nmethod is made.  Until that time,
5357     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5358     // have access to the addresses!).  This does not seem to currently happen,
5359     // but this assertion here is to help prevent its occurence.
5360     tty->print_cr("Found oop constant with non-zero offset");
5361     ShouldNotReachHere();
5362   }
5363 
5364   return (intptr_t)metadata()->constant_encoding();
5365 }
5366 
5367 //------------------------------cast_to_ptr_type-------------------------------
5368 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
5369   if( ptr == _ptr ) return this;
5370   return make(ptr, metadata(), _offset);
5371 }
5372 
5373 //------------------------------meet-------------------------------------------
5374 // Compute the MEET of two types.  It returns a new Type object.
5375 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
5376   // Perform a fast test for common case; meeting the same types together.
5377   if( this == t ) return this;  // Meeting same type-rep?
5378 
5379   // Current "this->_base" is OopPtr
5380   switch (t->base()) {          // switch on original type
5381 
5382   case Int:                     // Mixing ints & oops happens when javac
5383   case Long:                    // reuses local variables
5384   case FloatTop:
5385   case FloatCon:
5386   case FloatBot:
5387   case DoubleTop:
5388   case DoubleCon:
5389   case DoubleBot:
5390   case NarrowOop:
5391   case NarrowKlass:
5392   case Bottom:                  // Ye Olde Default
5393     return Type::BOTTOM;
5394   case Top:
5395     return this;
5396 
5397   default:                      // All else is a mistake
5398     typerr(t);
5399 
5400   case AnyPtr: {
5401     // Found an AnyPtr type vs self-OopPtr type
5402     const TypePtr *tp = t->is_ptr();
5403     Offset offset = meet_offset(tp->offset());
5404     PTR ptr = meet_ptr(tp->ptr());
5405     switch (tp->ptr()) {
5406     case Null:
5407       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5408       // else fall through:
5409     case TopPTR:
5410     case AnyNull: {
5411       return make(ptr, _metadata, offset);
5412     }
5413     case BotPTR:
5414     case NotNull:
5415       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5416     default: typerr(t);
5417     }
5418   }
5419 
5420   case RawPtr:
5421   case KlassPtr:
5422   case OopPtr:
5423   case InstPtr:
5424   case ValueTypePtr:
5425   case AryPtr:
5426     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5427 
5428   case MetadataPtr: {
5429     const TypeMetadataPtr *tp = t->is_metadataptr();
5430     Offset offset = meet_offset(tp->offset());
5431     PTR tptr = tp->ptr();
5432     PTR ptr = meet_ptr(tptr);
5433     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5434     if (tptr == TopPTR || _ptr == TopPTR ||
5435         metadata()->equals(tp->metadata())) {
5436       return make(ptr, md, offset);
5437     }
5438     // metadata is different
5439     if( ptr == Constant ) {  // Cannot be equal constants, so...
5440       if( tptr == Constant && _ptr != Constant)  return t;
5441       if( _ptr == Constant && tptr != Constant)  return this;
5442       ptr = NotNull;            // Fall down in lattice
5443     }
5444     return make(ptr, NULL, offset);
5445     break;
5446   }
5447   } // End of switch
5448   return this;                  // Return the double constant
5449 }
5450 
5451 
5452 //------------------------------xdual------------------------------------------
5453 // Dual of a pure metadata pointer.
5454 const Type *TypeMetadataPtr::xdual() const {
5455   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5456 }
5457 
5458 //------------------------------dump2------------------------------------------
5459 #ifndef PRODUCT
5460 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5461   st->print("metadataptr:%s", ptr_msg[_ptr]);
5462   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5463   switch (offset()) {
5464   case OffsetTop: st->print("+top"); break;
5465   case OffsetBot: st->print("+any"); break;
5466   case         0: break;
5467   default:        st->print("+%d",offset()); break;
5468   }
5469 }
5470 #endif
5471 
5472 
5473 //=============================================================================
5474 // Convenience common pre-built type.
5475 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5476 
5477 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5478   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5479 }
5480 
5481 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5482   return make(Constant, m, Offset(0));
5483 }
5484 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5485   return make(Constant, m, Offset(0));
5486 }
5487 
5488 //------------------------------make-------------------------------------------
5489 // Create a meta data constant
5490 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5491   assert(m == NULL || !m->is_klass(), "wrong type");
5492   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5493 }
5494 
5495 
5496 //=============================================================================
5497 // Convenience common pre-built types.
5498 
5499 // Not-null object klass or below
5500 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5501 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5502 const TypeKlassPtr* TypeKlassPtr::BOTTOM;
5503 
5504 //------------------------------TypeKlassPtr-----------------------------------
5505 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5506   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5507 }
5508 
5509 //------------------------------make-------------------------------------------
5510 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5511 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5512   assert(k == NULL || k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5513   return (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5514 }
5515 
5516 //------------------------------eq---------------------------------------------
5517 // Structural equality check for Type representations
5518 bool TypeKlassPtr::eq( const Type *t ) const {
5519   const TypeKlassPtr *p = t->is_klassptr();
5520   return klass() == p->klass() && TypePtr::eq(p);
5521 }
5522 
5523 //------------------------------hash-------------------------------------------
5524 // Type-specific hashing function.
5525 int TypeKlassPtr::hash(void) const {
5526   return java_add(klass() != NULL ? klass()->hash() : (jint)0, (jint)TypePtr::hash());
5527 }
5528 
5529 //------------------------------singleton--------------------------------------
5530 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5531 // constants
5532 bool TypeKlassPtr::singleton(void) const {
5533   // detune optimizer to not generate constant klass + constant offset as a constant!
5534   // TopPTR, Null, AnyNull, Constant are all singletons
5535   return (offset() == 0) && !below_centerline(_ptr);
5536 }
5537 
5538 // Do not allow interface-vs.-noninterface joins to collapse to top.
5539 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5540   // logic here mirrors the one from TypeOopPtr::filter. See comments
5541   // there.
5542   const Type* ft = join_helper(kills, include_speculative);
5543   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5544   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5545 
5546   if (ft->empty()) {
5547     if (!empty() && ktkp != NULL && ktkp->is_loaded() && ktkp->klass()->is_interface())
5548       return kills;             // Uplift to interface
5549 
5550     return Type::TOP;           // Canonical empty value
5551   }
5552 
5553   // Interface klass type could be exact in opposite to interface type,
5554   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5555   if (ftkp != NULL && ktkp != NULL &&
5556       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5557       !ftkp->klass_is_exact() && // Keep exact interface klass
5558       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5559     return ktkp->cast_to_ptr_type(ftkp->ptr());
5560   }
5561 
5562   return ft;
5563 }
5564 
5565 //----------------------compute_klass------------------------------------------
5566 // Compute the defining klass for this class
5567 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5568   // Compute _klass based on element type.
5569   ciKlass* k_ary = NULL;
5570   const TypeAryPtr *tary;
5571   const Type* el = elem();
5572   if (el->isa_narrowoop()) {
5573     el = el->make_ptr();
5574   }
5575 
5576   // Get element klass
5577   if (el->isa_instptr() || el->isa_valuetypeptr()) {
5578     // Compute object array klass from element klass
5579     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5580   } else if (el->isa_valuetype()) {
5581     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5582   } else if ((tary = el->isa_aryptr()) != NULL) {
5583     // Compute array klass from element klass
5584     ciKlass* k_elem = tary->klass();
5585     // If element type is something like bottom[], k_elem will be null.
5586     if (k_elem != NULL)
5587       k_ary = ciObjArrayKlass::make(k_elem);
5588   } else if ((el->base() == Type::Top) ||
5589              (el->base() == Type::Bottom)) {
5590     // element type of Bottom occurs from meet of basic type
5591     // and object; Top occurs when doing join on Bottom.
5592     // Leave k_ary at NULL.
5593   } else {
5594     // Cannot compute array klass directly from basic type,
5595     // since subtypes of TypeInt all have basic type T_INT.
5596 #ifdef ASSERT
5597     if (verify && el->isa_int()) {
5598       // Check simple cases when verifying klass.
5599       BasicType bt = T_ILLEGAL;
5600       if (el == TypeInt::BYTE) {
5601         bt = T_BYTE;
5602       } else if (el == TypeInt::SHORT) {
5603         bt = T_SHORT;
5604       } else if (el == TypeInt::CHAR) {
5605         bt = T_CHAR;
5606       } else if (el == TypeInt::INT) {
5607         bt = T_INT;
5608       } else {
5609         return _klass; // just return specified klass
5610       }
5611       return ciTypeArrayKlass::make(bt);
5612     }
5613 #endif
5614     assert(!el->isa_int(),
5615            "integral arrays must be pre-equipped with a class");
5616     // Compute array klass directly from basic type
5617     k_ary = ciTypeArrayKlass::make(el->basic_type());
5618   }
5619   return k_ary;
5620 }
5621 
5622 //------------------------------klass------------------------------------------
5623 // Return the defining klass for this class
5624 ciKlass* TypeAryPtr::klass() const {
5625   if( _klass ) return _klass;   // Return cached value, if possible
5626 
5627   // Oops, need to compute _klass and cache it
5628   ciKlass* k_ary = compute_klass();
5629 
5630   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5631     // The _klass field acts as a cache of the underlying
5632     // ciKlass for this array type.  In order to set the field,
5633     // we need to cast away const-ness.
5634     //
5635     // IMPORTANT NOTE: we *never* set the _klass field for the
5636     // type TypeAryPtr::OOPS.  This Type is shared between all
5637     // active compilations.  However, the ciKlass which represents
5638     // this Type is *not* shared between compilations, so caching
5639     // this value would result in fetching a dangling pointer.
5640     //
5641     // Recomputing the underlying ciKlass for each request is
5642     // a bit less efficient than caching, but calls to
5643     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5644     ((TypeAryPtr*)this)->_klass = k_ary;
5645     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5646         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5647       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5648     }
5649   }
5650   return k_ary;
5651 }
5652 
5653 
5654 //------------------------------add_offset-------------------------------------
5655 // Access internals of klass object
5656 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5657   return make( _ptr, klass(), xadd_offset(offset) );
5658 }
5659 
5660 //------------------------------cast_to_ptr_type-------------------------------
5661 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5662   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5663   if( ptr == _ptr ) return this;
5664   return make(ptr, _klass, _offset);
5665 }
5666 
5667 
5668 //-----------------------------cast_to_exactness-------------------------------
5669 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5670   if( klass_is_exact == _klass_is_exact ) return this;
5671   if (!UseExactTypes)  return this;
5672   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5673 }
5674 
5675 
5676 //-----------------------------as_instance_type--------------------------------
5677 // Corresponding type for an instance of the given class.
5678 // It will be NotNull, and exact if and only if the klass type is exact.
5679 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5680   ciKlass* k = klass();
5681   assert(k != NULL, "klass should not be NULL");
5682   bool    xk = klass_is_exact();
5683   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5684   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5685   guarantee(toop != NULL, "need type for given klass");
5686   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5687   return toop->cast_to_exactness(xk)->is_oopptr();
5688 }
5689 
5690 
5691 //------------------------------xmeet------------------------------------------
5692 // Compute the MEET of two types, return a new Type object.
5693 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5694   // Perform a fast test for common case; meeting the same types together.
5695   if( this == t ) return this;  // Meeting same type-rep?
5696 
5697   // Current "this->_base" is Pointer
5698   switch (t->base()) {          // switch on original type
5699 
5700   case Int:                     // Mixing ints & oops happens when javac
5701   case Long:                    // reuses local variables
5702   case FloatTop:
5703   case FloatCon:
5704   case FloatBot:
5705   case DoubleTop:
5706   case DoubleCon:
5707   case DoubleBot:
5708   case NarrowOop:
5709   case NarrowKlass:
5710   case Bottom:                  // Ye Olde Default
5711     return Type::BOTTOM;
5712   case Top:
5713     return this;
5714 
5715   default:                      // All else is a mistake
5716     typerr(t);
5717 
5718   case AnyPtr: {                // Meeting to AnyPtrs
5719     // Found an AnyPtr type vs self-KlassPtr type
5720     const TypePtr *tp = t->is_ptr();
5721     Offset offset = meet_offset(tp->offset());
5722     PTR ptr = meet_ptr(tp->ptr());
5723     switch (tp->ptr()) {
5724     case TopPTR:
5725       return this;
5726     case Null:
5727       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5728     case AnyNull:
5729       return make( ptr, klass(), offset );
5730     case BotPTR:
5731     case NotNull:
5732       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5733     default: typerr(t);
5734     }
5735   }
5736 
5737   case RawPtr:
5738   case MetadataPtr:
5739   case OopPtr:
5740   case AryPtr:                  // Meet with AryPtr
5741   case InstPtr:                 // Meet with InstPtr
5742   case ValueTypePtr:
5743     return TypePtr::BOTTOM;
5744 
5745   //
5746   //             A-top         }
5747   //           /   |   \       }  Tops
5748   //       B-top A-any C-top   }
5749   //          | /  |  \ |      }  Any-nulls
5750   //       B-any   |   C-any   }
5751   //          |    |    |
5752   //       B-con A-con C-con   } constants; not comparable across classes
5753   //          |    |    |
5754   //       B-not   |   C-not   }
5755   //          | \  |  / |      }  not-nulls
5756   //       B-bot A-not C-bot   }
5757   //           \   |   /       }  Bottoms
5758   //             A-bot         }
5759   //
5760 
5761   case KlassPtr: {  // Meet two KlassPtr types
5762     const TypeKlassPtr *tkls = t->is_klassptr();
5763     Offset  off  = meet_offset(tkls->offset());
5764     PTR  ptr     = meet_ptr(tkls->ptr());
5765 
5766     if (klass() == NULL || tkls->klass() == NULL) {
5767       ciKlass* k = NULL;
5768       if (ptr == Constant) {
5769         k = (klass() == NULL) ? tkls->klass() : klass();
5770       }
5771       return make(ptr, k, off);
5772     }
5773 
5774     // Check for easy case; klasses are equal (and perhaps not loaded!)
5775     // If we have constants, then we created oops so classes are loaded
5776     // and we can handle the constants further down.  This case handles
5777     // not-loaded classes
5778     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5779       return make( ptr, klass(), off );
5780     }
5781 
5782     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5783     ciKlass* tkls_klass = tkls->klass();
5784     ciKlass* this_klass = this->klass();
5785     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5786     assert( this_klass->is_loaded(), "This class should have been loaded.");
5787 
5788     // If 'this' type is above the centerline and is a superclass of the
5789     // other, we can treat 'this' as having the same type as the other.
5790     if ((above_centerline(this->ptr())) &&
5791         tkls_klass->is_subtype_of(this_klass)) {
5792       this_klass = tkls_klass;
5793     }
5794     // If 'tinst' type is above the centerline and is a superclass of the
5795     // other, we can treat 'tinst' as having the same type as the other.
5796     if ((above_centerline(tkls->ptr())) &&
5797         this_klass->is_subtype_of(tkls_klass)) {
5798       tkls_klass = this_klass;
5799     }
5800 
5801     // Check for classes now being equal
5802     if (tkls_klass->equals(this_klass)) {
5803       // If the klasses are equal, the constants may still differ.  Fall to
5804       // NotNull if they do (neither constant is NULL; that is a special case
5805       // handled elsewhere).
5806       if( ptr == Constant ) {
5807         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5808             this->klass()->equals(tkls->klass()));
5809         else if (above_centerline(this->ptr()));
5810         else if (above_centerline(tkls->ptr()));
5811         else
5812           ptr = NotNull;
5813       }
5814       return make( ptr, this_klass, off );
5815     } // Else classes are not equal
5816 
5817     // Since klasses are different, we require the LCA in the Java
5818     // class hierarchy - which means we have to fall to at least NotNull.
5819     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5820       ptr = NotNull;
5821     // Now we find the LCA of Java classes
5822     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5823     return   make( ptr, k, off );
5824   } // End of case KlassPtr
5825 
5826   } // End of switch
5827   return this;                  // Return the double constant
5828 }
5829 
5830 //------------------------------xdual------------------------------------------
5831 // Dual: compute field-by-field dual
5832 const Type    *TypeKlassPtr::xdual() const {
5833   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5834 }
5835 
5836 //------------------------------get_con----------------------------------------
5837 intptr_t TypeKlassPtr::get_con() const {
5838   assert( _ptr == Null || _ptr == Constant, "" );
5839   assert(offset() >= 0, "");
5840 
5841   if (offset() != 0) {
5842     // After being ported to the compiler interface, the compiler no longer
5843     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5844     // to a handle at compile time.  This handle is embedded in the generated
5845     // code and dereferenced at the time the nmethod is made.  Until that time,
5846     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5847     // have access to the addresses!).  This does not seem to currently happen,
5848     // but this assertion here is to help prevent its occurence.
5849     tty->print_cr("Found oop constant with non-zero offset");
5850     ShouldNotReachHere();
5851   }
5852 
5853   return (intptr_t)klass()->constant_encoding();
5854 }
5855 //------------------------------dump2------------------------------------------
5856 // Dump Klass Type
5857 #ifndef PRODUCT
5858 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5859   switch( _ptr ) {
5860   case Constant:
5861     st->print("precise ");
5862   case NotNull:
5863     {
5864       if (klass() != NULL) {
5865         const char* name = klass()->name()->as_utf8();
5866         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5867       } else {
5868         st->print("klass BOTTOM");
5869       }
5870     }
5871   case BotPTR:
5872     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5873   case TopPTR:
5874   case AnyNull:
5875     st->print(":%s", ptr_msg[_ptr]);
5876     if( _klass_is_exact ) st->print(":exact");
5877     break;
5878   default:
5879     break;
5880   }
5881 
5882   _offset.dump2(st);
5883 
5884   st->print(" *");
5885 }
5886 #endif
5887 
5888 
5889 
5890 //=============================================================================
5891 // Convenience common pre-built types.
5892 
5893 //------------------------------make-------------------------------------------
5894 const TypeFunc *TypeFunc::make(const TypeTuple *domain_sig, const TypeTuple* domain_cc,
5895                                const TypeTuple *range_sig, const TypeTuple *range_cc) {
5896   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range_sig, range_cc))->hashcons();
5897 }
5898 
5899 const TypeFunc *TypeFunc::make(const TypeTuple *domain, const TypeTuple *range) {
5900   return make(domain, domain, range, range);
5901 }
5902 
5903 //------------------------------make-------------------------------------------
5904 const TypeFunc *TypeFunc::make(ciMethod* method) {
5905   Compile* C = Compile::current();
5906   const TypeFunc* tf = C->last_tf(method); // check cache
5907   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5908   const TypeTuple *domain_sig, *domain_cc;
5909   // Value type arguments are not passed by reference, instead each
5910   // field of the value type is passed as an argument. We maintain 2
5911   // views of the argument list here: one based on the signature (with
5912   // a value type argument as a single slot), one based on the actual
5913   // calling convention (with a value type argument as a list of its
5914   // fields).
5915   if (method->is_static()) {
5916     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5917     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5918   } else {
5919     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5920     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5921   }
5922   const TypeTuple *range_sig = TypeTuple::make_range(method->signature(), false);
5923   const TypeTuple *range_cc = TypeTuple::make_range(method->signature(), ValueTypeReturnedAsFields);
5924   tf = TypeFunc::make(domain_sig, domain_cc, range_sig, range_cc);
5925   C->set_last_tf(method, tf);  // fill cache
5926   return tf;
5927 }
5928 
5929 //------------------------------meet-------------------------------------------
5930 // Compute the MEET of two types.  It returns a new Type object.
5931 const Type *TypeFunc::xmeet( const Type *t ) const {
5932   // Perform a fast test for common case; meeting the same types together.
5933   if( this == t ) return this;  // Meeting same type-rep?
5934 
5935   // Current "this->_base" is Func
5936   switch (t->base()) {          // switch on original type
5937 
5938   case Bottom:                  // Ye Olde Default
5939     return t;
5940 
5941   default:                      // All else is a mistake
5942     typerr(t);
5943 
5944   case Top:
5945     break;
5946   }
5947   return this;                  // Return the double constant
5948 }
5949 
5950 //------------------------------xdual------------------------------------------
5951 // Dual: compute field-by-field dual
5952 const Type *TypeFunc::xdual() const {
5953   return this;
5954 }
5955 
5956 //------------------------------eq---------------------------------------------
5957 // Structural equality check for Type representations
5958 bool TypeFunc::eq( const Type *t ) const {
5959   const TypeFunc *a = (const TypeFunc*)t;
5960   return _domain_sig == a->_domain_sig &&
5961     _domain_cc == a->_domain_cc &&
5962     _range_sig == a->_range_sig &&
5963     _range_cc == a->_range_cc;
5964 }
5965 
5966 //------------------------------hash-------------------------------------------
5967 // Type-specific hashing function.
5968 int TypeFunc::hash(void) const {
5969   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range_sig + (intptr_t)_range_cc;
5970 }
5971 
5972 //------------------------------dump2------------------------------------------
5973 // Dump Function Type
5974 #ifndef PRODUCT
5975 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5976   if( _range_sig->cnt() <= Parms )
5977     st->print("void");
5978   else {
5979     uint i;
5980     for (i = Parms; i < _range_sig->cnt()-1; i++) {
5981       _range_sig->field_at(i)->dump2(d,depth,st);
5982       st->print("/");
5983     }
5984     _range_sig->field_at(i)->dump2(d,depth,st);
5985   }
5986   st->print(" ");
5987   st->print("( ");
5988   if( !depth || d[this] ) {     // Check for recursive dump
5989     st->print("...)");
5990     return;
5991   }
5992   d.Insert((void*)this,(void*)this);    // Stop recursion
5993   if (Parms < _domain_sig->cnt())
5994     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5995   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5996     st->print(", ");
5997     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5998   }
5999   st->print(" )");
6000 }
6001 #endif
6002 
6003 //------------------------------singleton--------------------------------------
6004 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
6005 // constants (Ldi nodes).  Singletons are integer, float or double constants
6006 // or a single symbol.
6007 bool TypeFunc::singleton(void) const {
6008   return false;                 // Never a singleton
6009 }
6010 
6011 bool TypeFunc::empty(void) const {
6012   return false;                 // Never empty
6013 }
6014 
6015 
6016 BasicType TypeFunc::return_type() const{
6017   if (range_sig()->cnt() == TypeFunc::Parms) {
6018     return T_VOID;
6019   }
6020   return range_sig()->field_at(TypeFunc::Parms)->basic_type();
6021 }