1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/arraycopynode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/locknode.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/macro.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/narrowptrnode.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subnode.hpp"
  47 #include "opto/type.hpp"
  48 #include "opto/valuetypenode.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 
  51 
  52 //
  53 // Replace any references to "oldref" in inputs to "use" with "newref".
  54 // Returns the number of replacements made.
  55 //
  56 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  57   int nreplacements = 0;
  58   uint req = use->req();
  59   for (uint j = 0; j < use->len(); j++) {
  60     Node *uin = use->in(j);
  61     if (uin == oldref) {
  62       if (j < req)
  63         use->set_req(j, newref);
  64       else
  65         use->set_prec(j, newref);
  66       nreplacements++;
  67     } else if (j >= req && uin == NULL) {
  68       break;
  69     }
  70   }
  71   return nreplacements;
  72 }
  73 
  74 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  75   // Copy debug information and adjust JVMState information
  76   uint old_dbg_start = oldcall->tf()->domain_sig()->cnt();
  77   uint new_dbg_start = newcall->tf()->domain_sig()->cnt();
  78   int jvms_adj  = new_dbg_start - old_dbg_start;
  79   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  80 
  81   // SafePointScalarObject node could be referenced several times in debug info.
  82   // Use Dict to record cloned nodes.
  83   Dict* sosn_map = new Dict(cmpkey,hashkey);
  84   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  85     Node* old_in = oldcall->in(i);
  86     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  87     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  88       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  89       uint old_unique = C->unique();
  90       Node* new_in = old_sosn->clone(sosn_map);
  91       if (old_unique != C->unique()) { // New node?
  92         new_in->set_req(0, C->root()); // reset control edge
  93         new_in = transform_later(new_in); // Register new node.
  94       }
  95       old_in = new_in;
  96     }
  97     newcall->add_req(old_in);
  98   }
  99 
 100   // JVMS may be shared so clone it before we modify it
 101   newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
 102   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
 103     jvms->set_map(newcall);
 104     jvms->set_locoff(jvms->locoff()+jvms_adj);
 105     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
 106     jvms->set_monoff(jvms->monoff()+jvms_adj);
 107     jvms->set_scloff(jvms->scloff()+jvms_adj);
 108     jvms->set_endoff(jvms->endoff()+jvms_adj);
 109   }
 110 }
 111 
 112 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 113   Node* cmp;
 114   if (mask != 0) {
 115     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 116     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 117   } else {
 118     cmp = word;
 119   }
 120   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 121   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 122   transform_later(iff);
 123 
 124   // Fast path taken.
 125   Node *fast_taken = transform_later(new IfFalseNode(iff));
 126 
 127   // Fast path not-taken, i.e. slow path
 128   Node *slow_taken = transform_later(new IfTrueNode(iff));
 129 
 130   if (return_fast_path) {
 131     region->init_req(edge, slow_taken); // Capture slow-control
 132     return fast_taken;
 133   } else {
 134     region->init_req(edge, fast_taken); // Capture fast-control
 135     return slow_taken;
 136   }
 137 }
 138 
 139 //--------------------copy_predefined_input_for_runtime_call--------------------
 140 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 141   // Set fixed predefined input arguments
 142   call->init_req( TypeFunc::Control, ctrl );
 143   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 144   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 145   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 146   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 147 }
 148 
 149 //------------------------------make_slow_call---------------------------------
 150 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 151                                            address slow_call, const char* leaf_name, Node* slow_path,
 152                                            Node* parm0, Node* parm1, Node* parm2) {
 153 
 154   // Slow-path call
 155  CallNode *call = leaf_name
 156    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 157    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 158 
 159   // Slow path call has no side-effects, uses few values
 160   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 161   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 162   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 163   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
 164   copy_call_debug_info(oldcall, call);
 165   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 166   _igvn.replace_node(oldcall, call);
 167   transform_later(call);
 168 
 169   return call;
 170 }
 171 
 172 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 173   _fallthroughproj = NULL;
 174   _fallthroughcatchproj = NULL;
 175   _ioproj_fallthrough = NULL;
 176   _ioproj_catchall = NULL;
 177   _catchallcatchproj = NULL;
 178   _memproj_fallthrough = NULL;
 179   _memproj_catchall = NULL;
 180   _resproj = NULL;
 181   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 182     ProjNode *pn = call->fast_out(i)->as_Proj();
 183     switch (pn->_con) {
 184       case TypeFunc::Control:
 185       {
 186         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 187         _fallthroughproj = pn;
 188         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 189         const Node *cn = pn->fast_out(j);
 190         if (cn->is_Catch()) {
 191           ProjNode *cpn = NULL;
 192           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 193             cpn = cn->fast_out(k)->as_Proj();
 194             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 195             if (cpn->_con == CatchProjNode::fall_through_index)
 196               _fallthroughcatchproj = cpn;
 197             else {
 198               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 199               _catchallcatchproj = cpn;
 200             }
 201           }
 202         }
 203         break;
 204       }
 205       case TypeFunc::I_O:
 206         if (pn->_is_io_use)
 207           _ioproj_catchall = pn;
 208         else
 209           _ioproj_fallthrough = pn;
 210         break;
 211       case TypeFunc::Memory:
 212         if (pn->_is_io_use)
 213           _memproj_catchall = pn;
 214         else
 215           _memproj_fallthrough = pn;
 216         break;
 217       case TypeFunc::Parms:
 218         _resproj = pn;
 219         break;
 220       default:
 221         assert(false, "unexpected projection from allocation node.");
 222     }
 223   }
 224 
 225 }
 226 
 227 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 228 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 229   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 230   if (!UseG1GC) {
 231     // vanilla/CMS post barrier
 232     Node *shift = p2x->unique_out();
 233     Node *addp = shift->unique_out();
 234     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 235       Node *mem = addp->last_out(j);
 236       if (UseCondCardMark && mem->is_Load()) {
 237         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 238         // The load is checking if the card has been written so
 239         // replace it with zero to fold the test.
 240         _igvn.replace_node(mem, intcon(0));
 241         continue;
 242       }
 243       assert(mem->is_Store(), "store required");
 244       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 245     }
 246   } else {
 247     // G1 pre/post barriers
 248     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 249     // It could be only one user, URShift node, in Object.clone() intrinsic
 250     // but the new allocation is passed to arraycopy stub and it could not
 251     // be scalar replaced. So we don't check the case.
 252 
 253     // An other case of only one user (Xor) is when the value check for NULL
 254     // in G1 post barrier is folded after CCP so the code which used URShift
 255     // is removed.
 256 
 257     // Take Region node before eliminating post barrier since it also
 258     // eliminates CastP2X node when it has only one user.
 259     Node* this_region = p2x->in(0);
 260     assert(this_region != NULL, "");
 261 
 262     // Remove G1 post barrier.
 263 
 264     // Search for CastP2X->Xor->URShift->Cmp path which
 265     // checks if the store done to a different from the value's region.
 266     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 267     Node* xorx = p2x->find_out_with(Op_XorX);
 268     if (xorx != NULL) {
 269       Node* shift = xorx->unique_out();
 270       Node* cmpx = shift->unique_out();
 271       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 272       cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 273       "missing region check in G1 post barrier");
 274       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 275 
 276       // Remove G1 pre barrier.
 277 
 278       // Search "if (marking != 0)" check and set it to "false".
 279       // There is no G1 pre barrier if previous stored value is NULL
 280       // (for example, after initialization).
 281       if (this_region->is_Region() && this_region->req() == 3) {
 282         int ind = 1;
 283         if (!this_region->in(ind)->is_IfFalse()) {
 284           ind = 2;
 285         }
 286         if (this_region->in(ind)->is_IfFalse() &&
 287             this_region->in(ind)->in(0)->Opcode() == Op_If) {
 288           Node* bol = this_region->in(ind)->in(0)->in(1);
 289           assert(bol->is_Bool(), "");
 290           cmpx = bol->in(1);
 291           if (bol->as_Bool()->_test._test == BoolTest::ne &&
 292               cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 293               cmpx->in(1)->is_Load()) {
 294             Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 295             const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 296                                                 SATBMarkQueue::byte_offset_of_active());
 297             if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 298                 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 299                 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 300               _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 301             }
 302           }
 303         }
 304       }
 305     } else {
 306       assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
 307       // This is a G1 post barrier emitted by the Object.clone() intrinsic.
 308       // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
 309       // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
 310       Node* shift = p2x->find_out_with(Op_URShiftX);
 311       assert(shift != NULL, "missing G1 post barrier");
 312       Node* addp = shift->unique_out();
 313       Node* load = addp->find_out_with(Op_LoadB);
 314       assert(load != NULL, "missing G1 post barrier");
 315       Node* cmpx = load->unique_out();
 316       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 317              cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 318              "missing card value check in G1 post barrier");
 319       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 320       // There is no G1 pre barrier in this case
 321     }
 322     // Now CastP2X can be removed since it is used only on dead path
 323     // which currently still alive until igvn optimize it.
 324     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
 325     _igvn.replace_node(p2x, top());
 326   }
 327 }
 328 
 329 // Search for a memory operation for the specified memory slice.
 330 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 331   Node *orig_mem = mem;
 332   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 333   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 334   while (true) {
 335     if (mem == alloc_mem || mem == start_mem ) {
 336       return mem;  // hit one of our sentinels
 337     } else if (mem->is_MergeMem()) {
 338       mem = mem->as_MergeMem()->memory_at(alias_idx);
 339     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 340       Node *in = mem->in(0);
 341       // we can safely skip over safepoints, calls, locks and membars because we
 342       // already know that the object is safe to eliminate.
 343       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 344         return in;
 345       } else if (in->is_Call()) {
 346         CallNode *call = in->as_Call();
 347         if (call->may_modify(tinst, phase)) {
 348           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 349           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 350             return in;
 351           }
 352         }
 353         mem = in->in(TypeFunc::Memory);
 354       } else if (in->is_MemBar()) {
 355         ArrayCopyNode* ac = NULL;
 356         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 357           assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 358           return ac;
 359         }
 360         mem = in->in(TypeFunc::Memory);
 361       } else {
 362         assert(false, "unexpected projection");
 363       }
 364     } else if (mem->is_Store()) {
 365       const TypePtr* atype = mem->as_Store()->adr_type();
 366       int adr_idx = phase->C->get_alias_index(atype);
 367       if (adr_idx == alias_idx) {
 368         assert(atype->isa_oopptr(), "address type must be oopptr");
 369         int adr_offset = atype->flattened_offset();
 370         uint adr_iid = atype->is_oopptr()->instance_id();
 371         // Array elements references have the same alias_idx
 372         // but different offset and different instance_id.
 373         if (adr_offset == offset && adr_iid == alloc->_idx)
 374           return mem;
 375       } else {
 376         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 377       }
 378       mem = mem->in(MemNode::Memory);
 379     } else if (mem->is_ClearArray()) {
 380       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 381         // Can not bypass initialization of the instance
 382         // we are looking.
 383         debug_only(intptr_t offset;)
 384         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 385         InitializeNode* init = alloc->as_Allocate()->initialization();
 386         // We are looking for stored value, return Initialize node
 387         // or memory edge from Allocate node.
 388         if (init != NULL)
 389           return init;
 390         else
 391           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 392       }
 393       // Otherwise skip it (the call updated 'mem' value).
 394     } else if (mem->Opcode() == Op_SCMemProj) {
 395       mem = mem->in(0);
 396       Node* adr = NULL;
 397       if (mem->is_LoadStore()) {
 398         adr = mem->in(MemNode::Address);
 399       } else {
 400         assert(mem->Opcode() == Op_EncodeISOArray ||
 401                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 402         adr = mem->in(3); // Destination array
 403       }
 404       const TypePtr* atype = adr->bottom_type()->is_ptr();
 405       int adr_idx = phase->C->get_alias_index(atype);
 406       if (adr_idx == alias_idx) {
 407         DEBUG_ONLY(mem->dump();)
 408         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 409         return NULL;
 410       }
 411       mem = mem->in(MemNode::Memory);
 412     } else if (mem->Opcode() == Op_StrInflatedCopy) {
 413       Node* adr = mem->in(3); // Destination array
 414       const TypePtr* atype = adr->bottom_type()->is_ptr();
 415       int adr_idx = phase->C->get_alias_index(atype);
 416       if (adr_idx == alias_idx) {
 417         DEBUG_ONLY(mem->dump();)
 418         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 419         return NULL;
 420       }
 421       mem = mem->in(MemNode::Memory);
 422     } else {
 423       return mem;
 424     }
 425     assert(mem != orig_mem, "dead memory loop");
 426   }
 427 }
 428 
 429 // Generate loads from source of the arraycopy for fields of
 430 // destination needed at a deoptimization point
 431 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 432   BasicType bt = ft;
 433   const Type *type = ftype;
 434   if (ft == T_NARROWOOP) {
 435     bt = T_OBJECT;
 436     type = ftype->make_oopptr();
 437   }
 438   Node* res = NULL;
 439   if (ac->is_clonebasic()) {
 440     Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base);
 441     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
 442     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 443     res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 444   } else {
 445     if (ac->modifies(offset, offset, &_igvn, true)) {
 446       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 447       uint shift  = exact_log2(type2aelembytes(bt));
 448       Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 449 #ifdef _LP64
 450       diff = _igvn.transform(new ConvI2LNode(diff));
 451 #endif
 452       diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
 453 
 454       Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
 455       Node* base = ac->in(ArrayCopyNode::Src);
 456       Node* adr = _igvn.transform(new AddPNode(base, base, off));
 457       const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 458       res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 459     }
 460   }
 461   if (res != NULL) {
 462     res = _igvn.transform(res);
 463     if (ftype->isa_narrowoop()) {
 464       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 465       res = _igvn.transform(new EncodePNode(res, ftype));
 466     }
 467     return res;
 468   }
 469   return NULL;
 470 }
 471 
 472 //
 473 // Given a Memory Phi, compute a value Phi containing the values from stores
 474 // on the input paths.
 475 // Note: this function is recursive, its depth is limited by the "level" argument
 476 // Returns the computed Phi, or NULL if it cannot compute it.
 477 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 478   assert(mem->is_Phi(), "sanity");
 479   int alias_idx = C->get_alias_index(adr_t);
 480   int offset = adr_t->flattened_offset();
 481   int instance_id = adr_t->instance_id();
 482 
 483   // Check if an appropriate value phi already exists.
 484   Node* region = mem->in(0);
 485   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 486     Node* phi = region->fast_out(k);
 487     if (phi->is_Phi() && phi != mem &&
 488         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 489       return phi;
 490     }
 491   }
 492   // Check if an appropriate new value phi already exists.
 493   Node* new_phi = value_phis->find(mem->_idx);
 494   if (new_phi != NULL)
 495     return new_phi;
 496 
 497   if (level <= 0) {
 498     return NULL; // Give up: phi tree too deep
 499   }
 500   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 501   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 502 
 503   uint length = mem->req();
 504   GrowableArray <Node *> values(length, length, NULL, false);
 505 
 506   // create a new Phi for the value
 507   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
 508   transform_later(phi);
 509   value_phis->push(phi, mem->_idx);
 510 
 511   for (uint j = 1; j < length; j++) {
 512     Node *in = mem->in(j);
 513     if (in == NULL || in->is_top()) {
 514       values.at_put(j, in);
 515     } else  {
 516       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 517       if (val == start_mem || val == alloc_mem) {
 518         // hit a sentinel, return appropriate 0 value
 519         values.at_put(j, _igvn.zerocon(ft));
 520         continue;
 521       }
 522       if (val->is_Initialize()) {
 523         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 524       }
 525       if (val == NULL) {
 526         return NULL;  // can't find a value on this path
 527       }
 528       if (val == mem) {
 529         values.at_put(j, mem);
 530       } else if (val->is_Store()) {
 531         values.at_put(j, val->in(MemNode::ValueIn));
 532       } else if(val->is_Proj() && val->in(0) == alloc) {
 533         values.at_put(j, _igvn.zerocon(ft));
 534       } else if (val->is_Phi()) {
 535         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 536         if (val == NULL) {
 537           return NULL;
 538         }
 539         values.at_put(j, val);
 540       } else if (val->Opcode() == Op_SCMemProj) {
 541         assert(val->in(0)->is_LoadStore() ||
 542                val->in(0)->Opcode() == Op_EncodeISOArray ||
 543                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 544         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 545         return NULL;
 546       } else if (val->is_ArrayCopy()) {
 547         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 548         if (res == NULL) {
 549           return NULL;
 550         }
 551         values.at_put(j, res);
 552       } else {
 553 #ifdef ASSERT
 554         val->dump();
 555         assert(false, "unknown node on this path");
 556 #endif
 557         return NULL;  // unknown node on this path
 558       }
 559     }
 560   }
 561   // Set Phi's inputs
 562   for (uint j = 1; j < length; j++) {
 563     if (values.at(j) == mem) {
 564       phi->init_req(j, phi);
 565     } else {
 566       phi->init_req(j, values.at(j));
 567     }
 568   }
 569   return phi;
 570 }
 571 
 572 // Search the last value stored into the object's field.
 573 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 574   assert(adr_t->is_known_instance_field(), "instance required");
 575   int instance_id = adr_t->instance_id();
 576   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 577 
 578   int alias_idx = C->get_alias_index(adr_t);
 579   int offset = adr_t->flattened_offset();
 580   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 581   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 582   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 583   Arena *a = Thread::current()->resource_area();
 584   VectorSet visited(a);
 585 
 586   bool done = sfpt_mem == alloc_mem;
 587   Node *mem = sfpt_mem;
 588   while (!done) {
 589     if (visited.test_set(mem->_idx)) {
 590       return NULL;  // found a loop, give up
 591     }
 592     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 593     if (mem == start_mem || mem == alloc_mem) {
 594       done = true;  // hit a sentinel, return appropriate 0 value
 595     } else if (mem->is_Initialize()) {
 596       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 597       if (mem == NULL) {
 598         done = true; // Something went wrong.
 599       } else if (mem->is_Store()) {
 600         const TypePtr* atype = mem->as_Store()->adr_type();
 601         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 602         done = true;
 603       }
 604     } else if (mem->is_Store()) {
 605       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 606       assert(atype != NULL, "address type must be oopptr");
 607       assert(C->get_alias_index(atype) == alias_idx &&
 608              atype->is_known_instance_field() && atype->flattened_offset() == offset &&
 609              atype->instance_id() == instance_id, "store is correct memory slice");
 610       done = true;
 611     } else if (mem->is_Phi()) {
 612       // try to find a phi's unique input
 613       Node *unique_input = NULL;
 614       Node *top = C->top();
 615       for (uint i = 1; i < mem->req(); i++) {
 616         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 617         if (n == NULL || n == top || n == mem) {
 618           continue;
 619         } else if (unique_input == NULL) {
 620           unique_input = n;
 621         } else if (unique_input != n) {
 622           unique_input = top;
 623           break;
 624         }
 625       }
 626       if (unique_input != NULL && unique_input != top) {
 627         mem = unique_input;
 628       } else {
 629         done = true;
 630       }
 631     } else if (mem->is_ArrayCopy()) {
 632       done = true;
 633     } else {
 634       assert(false, "unexpected node");
 635     }
 636   }
 637   if (mem != NULL) {
 638     if (mem == start_mem || mem == alloc_mem) {
 639       // hit a sentinel, return appropriate 0 value
 640       return _igvn.zerocon(ft);
 641     } else if (mem->is_Store()) {
 642       return mem->in(MemNode::ValueIn);
 643     } else if (mem->is_Phi()) {
 644       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 645       Node_Stack value_phis(a, 8);
 646       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 647       if (phi != NULL) {
 648         return phi;
 649       } else {
 650         // Kill all new Phis
 651         while(value_phis.is_nonempty()) {
 652           Node* n = value_phis.node();
 653           _igvn.replace_node(n, C->top());
 654           value_phis.pop();
 655         }
 656       }
 657     } else if (mem->is_ArrayCopy()) {
 658       Node* ctl = mem->in(0);
 659       Node* m = mem->in(TypeFunc::Memory);
 660       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
 661         // pin the loads in the uncommon trap path
 662         ctl = sfpt_ctl;
 663         m = sfpt_mem;
 664       }
 665       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 666     }
 667   }
 668   // Something went wrong.
 669   return NULL;
 670 }
 671 
 672 // Search the last value stored into the value type's fields.
 673 Node* PhaseMacroExpand::value_type_from_mem(Node* mem, Node* ctl, ciValueKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) {
 674   // Subtract the offset of the first field to account for the missing oop header
 675   offset -= vk->first_field_offset();
 676   // Create a new ValueTypeNode and retrieve the field values from memory
 677   ValueTypeNode* vt = ValueTypeNode::make_uninitialized(_igvn, vk)->as_ValueType();
 678   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) {
 679     ciType* field_type = vt->field_type(i);
 680     int field_offset = offset + vt->field_offset(i);
 681     // Each value type field has its own memory slice
 682     adr_type = adr_type->with_field_offset(field_offset);
 683     Node* value = NULL;
 684     if (vt->field_is_flattened(i)) {
 685       value = value_type_from_mem(mem, ctl, field_type->as_value_klass(), adr_type, field_offset, alloc);
 686     } else {
 687       const Type* ft = Type::get_const_type(field_type);
 688       BasicType bt = field_type->basic_type();
 689       if (UseCompressedOops && !is_java_primitive(bt)) {
 690         ft = ft->make_narrowoop();
 691         bt = T_NARROWOOP;
 692       }
 693       value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc);
 694       if (value != NULL && ft->isa_narrowoop()) {
 695         assert(UseCompressedOops, "unexpected narrow oop");
 696         value = transform_later(new DecodeNNode(value, value->get_ptr_type()));
 697       }
 698     }
 699     if (value != NULL) {
 700       vt->set_field_value(i, value);
 701     } else {
 702       // We might have reached the TrackedInitializationLimit
 703       return NULL;
 704     }
 705   }
 706   return vt;
 707 }
 708 
 709 // Check the possibility of scalar replacement.
 710 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 711   //  Scan the uses of the allocation to check for anything that would
 712   //  prevent us from eliminating it.
 713   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 714   DEBUG_ONLY( Node* disq_node = NULL; )
 715   bool  can_eliminate = true;
 716 
 717   Node* res = alloc->result_cast();
 718   const TypeOopPtr* res_type = NULL;
 719   if (res == NULL) {
 720     // All users were eliminated.
 721   } else if (!res->is_CheckCastPP()) {
 722     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 723     can_eliminate = false;
 724   } else {
 725     res_type = _igvn.type(res)->isa_oopptr();
 726     if (res_type == NULL) {
 727       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 728       can_eliminate = false;
 729     } else if (res_type->isa_aryptr()) {
 730       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 731       if (length < 0) {
 732         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 733         can_eliminate = false;
 734       }
 735     }
 736   }
 737 
 738   if (can_eliminate && res != NULL) {
 739     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 740                                j < jmax && can_eliminate; j++) {
 741       Node* use = res->fast_out(j);
 742 
 743       if (use->is_AddP()) {
 744         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 745         int offset = addp_type->offset();
 746 
 747         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 748           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 749           can_eliminate = false;
 750           break;
 751         }
 752         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 753                                    k < kmax && can_eliminate; k++) {
 754           Node* n = use->fast_out(k);
 755           if (!n->is_Store() && n->Opcode() != Op_CastP2X &&
 756               !(n->is_ArrayCopy() &&
 757                 n->as_ArrayCopy()->is_clonebasic() &&
 758                 n->in(ArrayCopyNode::Dest) == use)) {
 759             DEBUG_ONLY(disq_node = n;)
 760             if (n->is_Load() || n->is_LoadStore()) {
 761               NOT_PRODUCT(fail_eliminate = "Field load";)
 762             } else {
 763               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 764             }
 765             can_eliminate = false;
 766           }
 767         }
 768       } else if (use->is_ArrayCopy() &&
 769                  (use->as_ArrayCopy()->is_arraycopy_validated() ||
 770                   use->as_ArrayCopy()->is_copyof_validated() ||
 771                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 772                  use->in(ArrayCopyNode::Dest) == res) {
 773         // ok to eliminate
 774       } else if (use->is_SafePoint()) {
 775         SafePointNode* sfpt = use->as_SafePoint();
 776         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 777           // Object is passed as argument.
 778           DEBUG_ONLY(disq_node = use;)
 779           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 780           can_eliminate = false;
 781         }
 782         Node* sfptMem = sfpt->memory();
 783         if (sfptMem == NULL || sfptMem->is_top()) {
 784           DEBUG_ONLY(disq_node = use;)
 785           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 786           can_eliminate = false;
 787         } else {
 788           safepoints.append_if_missing(sfpt);
 789         }
 790       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 791         if (use->is_Phi()) {
 792           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 793             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 794           } else {
 795             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 796           }
 797           DEBUG_ONLY(disq_node = use;)
 798         } else {
 799           if (use->Opcode() == Op_Return) {
 800             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 801           } else {
 802             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 803           }
 804           DEBUG_ONLY(disq_node = use;)
 805         }
 806         can_eliminate = false;
 807       }
 808     }
 809   }
 810 
 811 #ifndef PRODUCT
 812   if (PrintEliminateAllocations) {
 813     if (can_eliminate) {
 814       tty->print("Scalar ");
 815       if (res == NULL)
 816         alloc->dump();
 817       else
 818         res->dump();
 819     } else if (alloc->_is_scalar_replaceable) {
 820       tty->print("NotScalar (%s)", fail_eliminate);
 821       if (res == NULL)
 822         alloc->dump();
 823       else
 824         res->dump();
 825 #ifdef ASSERT
 826       if (disq_node != NULL) {
 827           tty->print("  >>>> ");
 828           disq_node->dump();
 829       }
 830 #endif /*ASSERT*/
 831     }
 832   }
 833 #endif
 834   return can_eliminate;
 835 }
 836 
 837 // Do scalar replacement.
 838 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 839   GrowableArray <SafePointNode *> safepoints_done;
 840 
 841   ciKlass* klass = NULL;
 842   ciInstanceKlass* iklass = NULL;
 843   int nfields = 0;
 844   int array_base = 0;
 845   int element_size = 0;
 846   BasicType basic_elem_type = T_ILLEGAL;
 847   ciType* elem_type = NULL;
 848 
 849   Node* res = alloc->result_cast();
 850   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
 851   const TypeOopPtr* res_type = NULL;
 852   if (res != NULL) { // Could be NULL when there are no users
 853     res_type = _igvn.type(res)->isa_oopptr();
 854   }
 855 
 856   if (res != NULL) {
 857     klass = res_type->klass();
 858     // Value types are only allocated on demand
 859     if (res_type->isa_instptr() || res_type->isa_valuetypeptr()) {
 860       // find the fields of the class which will be needed for safepoint debug information
 861       assert(klass->is_instance_klass(), "must be an instance klass.");
 862       iklass = klass->as_instance_klass();
 863       nfields = iklass->nof_nonstatic_fields();
 864     } else {
 865       // find the array's elements which will be needed for safepoint debug information
 866       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 867       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 868       elem_type = klass->as_array_klass()->element_type();
 869       basic_elem_type = elem_type->basic_type();
 870       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 871       element_size = type2aelembytes(basic_elem_type);
 872       if (klass->is_value_array_klass()) {
 873         // Flattened value type array
 874         element_size = klass->as_value_array_klass()->element_byte_size();
 875       }
 876     }
 877   }
 878   //
 879   // Process the safepoint uses
 880   //
 881   Unique_Node_List value_worklist;
 882   while (safepoints.length() > 0) {
 883     SafePointNode* sfpt = safepoints.pop();
 884     Node* mem = sfpt->memory();
 885     Node* ctl = sfpt->control();
 886     assert(sfpt->jvms() != NULL, "missed JVMS");
 887     // Fields of scalar objs are referenced only at the end
 888     // of regular debuginfo at the last (youngest) JVMS.
 889     // Record relative start index.
 890     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
 891     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 892 #ifdef ASSERT
 893                                                  alloc,
 894 #endif
 895                                                  first_ind, nfields);
 896     sobj->init_req(0, C->root());
 897     transform_later(sobj);
 898 
 899     // Scan object's fields adding an input to the safepoint for each field.
 900     for (int j = 0; j < nfields; j++) {
 901       intptr_t offset;
 902       ciField* field = NULL;
 903       if (iklass != NULL) {
 904         field = iklass->nonstatic_field_at(j);
 905         offset = field->offset();
 906         elem_type = field->type();
 907         basic_elem_type = field->layout_type();
 908         assert(!field->is_flattened(), "flattened value type fields should not have safepoint uses");
 909       } else {
 910         offset = array_base + j * (intptr_t)element_size;
 911       }
 912 
 913       const Type *field_type;
 914       // The next code is taken from Parse::do_get_xxx().
 915       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 916         if (!elem_type->is_loaded()) {
 917           field_type = TypeInstPtr::BOTTOM;
 918         } else if (field != NULL && field->is_static_constant()) {
 919           // This can happen if the constant oop is non-perm.
 920           ciObject* con = field->constant_value().as_object();
 921           // Do not "join" in the previous type; it doesn't add value,
 922           // and may yield a vacuous result if the field is of interface type.
 923           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 924           assert(field_type != NULL, "field singleton type must be consistent");
 925         } else {
 926           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 927         }
 928         if (UseCompressedOops) {
 929           field_type = field_type->make_narrowoop();
 930           basic_elem_type = T_NARROWOOP;
 931         }
 932       } else {
 933         field_type = Type::get_const_basic_type(basic_elem_type);
 934       }
 935 
 936       Node* field_val = NULL;
 937       const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 938       if (klass->is_value_array_klass()) {
 939         ciValueKlass* vk = elem_type->as_value_klass();
 940         assert(vk->flatten_array(), "must be flattened");
 941         field_val = value_type_from_mem(mem, ctl, vk, field_addr_type->isa_aryptr(), 0, alloc);
 942       } else {
 943         field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
 944       }
 945       if (field_val == NULL) {
 946         // We weren't able to find a value for this field,
 947         // give up on eliminating this allocation.
 948 
 949         // Remove any extra entries we added to the safepoint.
 950         uint last = sfpt->req() - 1;
 951         for (int k = 0;  k < j; k++) {
 952           sfpt->del_req(last--);
 953         }
 954         _igvn._worklist.push(sfpt);
 955         // rollback processed safepoints
 956         while (safepoints_done.length() > 0) {
 957           SafePointNode* sfpt_done = safepoints_done.pop();
 958           // remove any extra entries we added to the safepoint
 959           last = sfpt_done->req() - 1;
 960           for (int k = 0;  k < nfields; k++) {
 961             sfpt_done->del_req(last--);
 962           }
 963           JVMState *jvms = sfpt_done->jvms();
 964           jvms->set_endoff(sfpt_done->req());
 965           // Now make a pass over the debug information replacing any references
 966           // to SafePointScalarObjectNode with the allocated object.
 967           int start = jvms->debug_start();
 968           int end   = jvms->debug_end();
 969           for (int i = start; i < end; i++) {
 970             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 971               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 972               if (scobj->first_index(jvms) == sfpt_done->req() &&
 973                   scobj->n_fields() == (uint)nfields) {
 974                 assert(scobj->alloc() == alloc, "sanity");
 975                 sfpt_done->set_req(i, res);
 976               }
 977             }
 978           }
 979           _igvn._worklist.push(sfpt_done);
 980         }
 981 #ifndef PRODUCT
 982         if (PrintEliminateAllocations) {
 983           if (field != NULL) {
 984             tty->print("=== At SafePoint node %d can't find value of Field: ",
 985                        sfpt->_idx);
 986             field->print();
 987             int field_idx = C->get_alias_index(field_addr_type);
 988             tty->print(" (alias_idx=%d)", field_idx);
 989           } else { // Array's element
 990             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 991                        sfpt->_idx, j);
 992           }
 993           tty->print(", which prevents elimination of: ");
 994           if (res == NULL)
 995             alloc->dump();
 996           else
 997             res->dump();
 998         }
 999 #endif
1000         return false;
1001       }
1002       if (UseCompressedOops && field_type->isa_narrowoop()) {
1003         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
1004         // to be able scalar replace the allocation.
1005         if (field_val->is_EncodeP()) {
1006           field_val = field_val->in(1);
1007         } else {
1008           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
1009         }
1010       } else if (field_val->is_ValueType()) {
1011         // Keep track of value types to scalarize them later
1012         value_worklist.push(field_val);
1013       }
1014       sfpt->add_req(field_val);
1015     }
1016     JVMState *jvms = sfpt->jvms();
1017     jvms->set_endoff(sfpt->req());
1018     // Now make a pass over the debug information replacing any references
1019     // to the allocated object with "sobj"
1020     int start = jvms->debug_start();
1021     int end   = jvms->debug_end();
1022     sfpt->replace_edges_in_range(res, sobj, start, end);
1023     _igvn._worklist.push(sfpt);
1024     safepoints_done.append_if_missing(sfpt); // keep it for rollback
1025   }
1026   // Scalarize value types that were added to the safepoint
1027   for (uint i = 0; i < value_worklist.size(); ++i) {
1028     Node* vt = value_worklist.at(i);
1029     vt->as_ValueType()->make_scalar_in_safepoints(C->root(), &_igvn);
1030   }
1031   return true;
1032 }
1033 
1034 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
1035   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
1036   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
1037   if (ctl_proj != NULL) {
1038     igvn.replace_node(ctl_proj, n->in(0));
1039   }
1040   if (mem_proj != NULL) {
1041     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
1042   }
1043 }
1044 
1045 // Process users of eliminated allocation.
1046 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
1047   Node* res = alloc->result_cast();
1048   if (res != NULL) {
1049     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
1050       Node *use = res->last_out(j);
1051       uint oc1 = res->outcnt();
1052 
1053       if (use->is_AddP()) {
1054         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
1055           Node *n = use->last_out(k);
1056           uint oc2 = use->outcnt();
1057           if (n->is_Store()) {
1058 #ifdef ASSERT
1059             // Verify that there is no dependent MemBarVolatile nodes,
1060             // they should be removed during IGVN, see MemBarNode::Ideal().
1061             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
1062                                        p < pmax; p++) {
1063               Node* mb = n->fast_out(p);
1064               assert(mb->is_Initialize() || !mb->is_MemBar() ||
1065                      mb->req() <= MemBarNode::Precedent ||
1066                      mb->in(MemBarNode::Precedent) != n,
1067                      "MemBarVolatile should be eliminated for non-escaping object");
1068             }
1069 #endif
1070             _igvn.replace_node(n, n->in(MemNode::Memory));
1071           } else if (n->is_ArrayCopy()) {
1072             // Disconnect ArrayCopy node
1073             ArrayCopyNode* ac = n->as_ArrayCopy();
1074             assert(ac->is_clonebasic(), "unexpected array copy kind");
1075             Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1076             disconnect_projections(ac, _igvn);
1077             assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1078             Node* membar_before = alloc->in(0)->in(0);
1079             disconnect_projections(membar_before->as_MemBar(), _igvn);
1080             if (membar_after->is_MemBar()) {
1081               disconnect_projections(membar_after->as_MemBar(), _igvn);
1082             }
1083           } else {
1084             eliminate_card_mark(n);
1085           }
1086           k -= (oc2 - use->outcnt());
1087         }
1088       } else if (use->is_ArrayCopy()) {
1089         // Disconnect ArrayCopy node
1090         ArrayCopyNode* ac = use->as_ArrayCopy();
1091         assert(ac->is_arraycopy_validated() ||
1092                ac->is_copyof_validated() ||
1093                ac->is_copyofrange_validated(), "unsupported");
1094         CallProjections* callprojs = ac->extract_projections(true);
1095 
1096         _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O));
1097         _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory));
1098         _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control));
1099 
1100         // Set control to top. IGVN will remove the remaining projections
1101         ac->set_req(0, top());
1102         ac->replace_edge(res, top());
1103 
1104         // Disconnect src right away: it can help find new
1105         // opportunities for allocation elimination
1106         Node* src = ac->in(ArrayCopyNode::Src);
1107         ac->replace_edge(src, top());
1108         // src can be top at this point if src and dest of the
1109         // arraycopy were the same
1110         if (src->outcnt() == 0 && !src->is_top()) {
1111           _igvn.remove_dead_node(src);
1112         }
1113 
1114         _igvn._worklist.push(ac);
1115       } else {
1116         eliminate_card_mark(use);
1117       }
1118       j -= (oc1 - res->outcnt());
1119     }
1120     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1121     _igvn.remove_dead_node(res);
1122   }
1123 
1124   //
1125   // Process other users of allocation's projections
1126   //
1127   if (_resproj != NULL && _resproj->outcnt() != 0) {
1128     // First disconnect stores captured by Initialize node.
1129     // If Initialize node is eliminated first in the following code,
1130     // it will kill such stores and DUIterator_Last will assert.
1131     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
1132       Node *use = _resproj->fast_out(j);
1133       if (use->is_AddP()) {
1134         // raw memory addresses used only by the initialization
1135         _igvn.replace_node(use, C->top());
1136         --j; --jmax;
1137       }
1138     }
1139     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1140       Node *use = _resproj->last_out(j);
1141       uint oc1 = _resproj->outcnt();
1142       if (use->is_Initialize()) {
1143         // Eliminate Initialize node.
1144         InitializeNode *init = use->as_Initialize();
1145         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1146         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1147         if (ctrl_proj != NULL) {
1148            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
1149           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
1150         }
1151         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1152         if (mem_proj != NULL) {
1153           Node *mem = init->in(TypeFunc::Memory);
1154 #ifdef ASSERT
1155           if (mem->is_MergeMem()) {
1156             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1157           } else {
1158             assert(mem == _memproj_fallthrough, "allocation memory projection");
1159           }
1160 #endif
1161           _igvn.replace_node(mem_proj, mem);
1162         }
1163       } else  {
1164         assert(false, "only Initialize or AddP expected");
1165       }
1166       j -= (oc1 - _resproj->outcnt());
1167     }
1168   }
1169   if (_fallthroughcatchproj != NULL) {
1170     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1171   }
1172   if (_memproj_fallthrough != NULL) {
1173     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1174   }
1175   if (_memproj_catchall != NULL) {
1176     _igvn.replace_node(_memproj_catchall, C->top());
1177   }
1178   if (_ioproj_fallthrough != NULL) {
1179     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1180   }
1181   if (_ioproj_catchall != NULL) {
1182     _igvn.replace_node(_ioproj_catchall, C->top());
1183   }
1184   if (_catchallcatchproj != NULL) {
1185     _igvn.replace_node(_catchallcatchproj, C->top());
1186   }
1187 }
1188 
1189 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1190   // Don't do scalar replacement if the frame can be popped by JVMTI:
1191   // if reallocation fails during deoptimization we'll pop all
1192   // interpreter frames for this compiled frame and that won't play
1193   // nice with JVMTI popframe.
1194   if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
1195     return false;
1196   }
1197   Node* klass = alloc->in(AllocateNode::KlassNode);
1198   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1199   Node* res = alloc->result_cast();
1200   // Eliminate boxing allocations which are not used
1201   // regardless scalar replacable status.
1202   bool boxing_alloc = C->eliminate_boxing() &&
1203                       tklass->klass()->is_instance_klass()  &&
1204                       tklass->klass()->as_instance_klass()->is_box_klass();
1205   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1206     return false;
1207   }
1208 
1209   extract_call_projections(alloc);
1210 
1211   GrowableArray <SafePointNode *> safepoints;
1212   if (!can_eliminate_allocation(alloc, safepoints)) {
1213     return false;
1214   }
1215 
1216   if (!alloc->_is_scalar_replaceable) {
1217     assert(res == NULL, "sanity");
1218     // We can only eliminate allocation if all debug info references
1219     // are already replaced with SafePointScalarObject because
1220     // we can't search for a fields value without instance_id.
1221     if (safepoints.length() > 0) {
1222       return false;
1223     }
1224   }
1225 
1226   if (!scalar_replacement(alloc, safepoints)) {
1227     return false;
1228   }
1229 
1230   CompileLog* log = C->log();
1231   if (log != NULL) {
1232     log->head("eliminate_allocation type='%d'",
1233               log->identify(tklass->klass()));
1234     JVMState* p = alloc->jvms();
1235     while (p != NULL) {
1236       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1237       p = p->caller();
1238     }
1239     log->tail("eliminate_allocation");
1240   }
1241 
1242   process_users_of_allocation(alloc);
1243 
1244 #ifndef PRODUCT
1245   if (PrintEliminateAllocations) {
1246     if (alloc->is_AllocateArray())
1247       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1248     else
1249       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1250   }
1251 #endif
1252 
1253   return true;
1254 }
1255 
1256 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1257   // EA should remove all uses of non-escaping boxing node.
1258   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
1259     return false;
1260   }
1261 
1262   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1263 
1264   extract_call_projections(boxing);
1265 
1266   const TypeTuple* r = boxing->tf()->range_sig();
1267   assert(r->cnt() > TypeFunc::Parms, "sanity");
1268   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1269   assert(t != NULL, "sanity");
1270 
1271   CompileLog* log = C->log();
1272   if (log != NULL) {
1273     log->head("eliminate_boxing type='%d'",
1274               log->identify(t->klass()));
1275     JVMState* p = boxing->jvms();
1276     while (p != NULL) {
1277       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1278       p = p->caller();
1279     }
1280     log->tail("eliminate_boxing");
1281   }
1282 
1283   process_users_of_allocation(boxing);
1284 
1285 #ifndef PRODUCT
1286   if (PrintEliminateAllocations) {
1287     tty->print("++++ Eliminated: %d ", boxing->_idx);
1288     boxing->method()->print_short_name(tty);
1289     tty->cr();
1290   }
1291 #endif
1292 
1293   return true;
1294 }
1295 
1296 //---------------------------set_eden_pointers-------------------------
1297 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1298   if (UseTLAB) {                // Private allocation: load from TLS
1299     Node* thread = transform_later(new ThreadLocalNode());
1300     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1301     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1302     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1303     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1304   } else {                      // Shared allocation: load from globals
1305     CollectedHeap* ch = Universe::heap();
1306     address top_adr = (address)ch->top_addr();
1307     address end_adr = (address)ch->end_addr();
1308     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1309     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1310   }
1311 }
1312 
1313 
1314 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1315   Node* adr = basic_plus_adr(base, offset);
1316   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1317   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1318   transform_later(value);
1319   return value;
1320 }
1321 
1322 
1323 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1324   Node* adr = basic_plus_adr(base, offset);
1325   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1326   transform_later(mem);
1327   return mem;
1328 }
1329 
1330 //=============================================================================
1331 //
1332 //                              A L L O C A T I O N
1333 //
1334 // Allocation attempts to be fast in the case of frequent small objects.
1335 // It breaks down like this:
1336 //
1337 // 1) Size in doublewords is computed.  This is a constant for objects and
1338 // variable for most arrays.  Doubleword units are used to avoid size
1339 // overflow of huge doubleword arrays.  We need doublewords in the end for
1340 // rounding.
1341 //
1342 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1343 // the slow path into the VM.  The slow path can throw any required
1344 // exceptions, and does all the special checks for very large arrays.  The
1345 // size test can constant-fold away for objects.  For objects with
1346 // finalizers it constant-folds the otherway: you always go slow with
1347 // finalizers.
1348 //
1349 // 3) If NOT using TLABs, this is the contended loop-back point.
1350 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1351 //
1352 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1353 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1354 // "size*8" we always enter the VM, where "largish" is a constant picked small
1355 // enough that there's always space between the eden max and 4Gig (old space is
1356 // there so it's quite large) and large enough that the cost of entering the VM
1357 // is dwarfed by the cost to initialize the space.
1358 //
1359 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1360 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1361 // adjusted heap top back down; there is no contention.
1362 //
1363 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1364 // fields.
1365 //
1366 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1367 // oop flavor.
1368 //
1369 //=============================================================================
1370 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1371 // Allocations bigger than this always go the slow route.
1372 // This value must be small enough that allocation attempts that need to
1373 // trigger exceptions go the slow route.  Also, it must be small enough so
1374 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1375 //=============================================================================j//
1376 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1377 // The allocator will coalesce int->oop copies away.  See comment in
1378 // coalesce.cpp about how this works.  It depends critically on the exact
1379 // code shape produced here, so if you are changing this code shape
1380 // make sure the GC info for the heap-top is correct in and around the
1381 // slow-path call.
1382 //
1383 
1384 void PhaseMacroExpand::expand_allocate_common(
1385             AllocateNode* alloc, // allocation node to be expanded
1386             Node* length,  // array length for an array allocation
1387             const TypeFunc* slow_call_type, // Type of slow call
1388             address slow_call_address  // Address of slow call
1389     )
1390 {
1391 
1392   Node* ctrl = alloc->in(TypeFunc::Control);
1393   Node* mem  = alloc->in(TypeFunc::Memory);
1394   Node* i_o  = alloc->in(TypeFunc::I_O);
1395   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1396   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1397   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1398 
1399   assert(ctrl != NULL, "must have control");
1400   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1401   // they will not be used if "always_slow" is set
1402   enum { slow_result_path = 1, fast_result_path = 2 };
1403   Node *result_region = NULL;
1404   Node *result_phi_rawmem = NULL;
1405   Node *result_phi_rawoop = NULL;
1406   Node *result_phi_i_o = NULL;
1407 
1408   // The initial slow comparison is a size check, the comparison
1409   // we want to do is a BoolTest::gt
1410   bool always_slow = false;
1411   int tv = _igvn.find_int_con(initial_slow_test, -1);
1412   if (tv >= 0) {
1413     always_slow = (tv == 1);
1414     initial_slow_test = NULL;
1415   } else {
1416     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1417   }
1418 
1419   if (C->env()->dtrace_alloc_probes() ||
1420       (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1421     // Force slow-path allocation
1422     always_slow = true;
1423     initial_slow_test = NULL;
1424   }
1425 
1426 
1427   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1428   Node *slow_region = NULL;
1429   Node *toobig_false = ctrl;
1430 
1431   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1432   // generate the initial test if necessary
1433   if (initial_slow_test != NULL ) {
1434     slow_region = new RegionNode(3);
1435 
1436     // Now make the initial failure test.  Usually a too-big test but
1437     // might be a TRUE for finalizers or a fancy class check for
1438     // newInstance0.
1439     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1440     transform_later(toobig_iff);
1441     // Plug the failing-too-big test into the slow-path region
1442     Node *toobig_true = new IfTrueNode( toobig_iff );
1443     transform_later(toobig_true);
1444     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1445     toobig_false = new IfFalseNode( toobig_iff );
1446     transform_later(toobig_false);
1447   } else {         // No initial test, just fall into next case
1448     toobig_false = ctrl;
1449     debug_only(slow_region = NodeSentinel);
1450   }
1451 
1452   Node *slow_mem = mem;  // save the current memory state for slow path
1453   // generate the fast allocation code unless we know that the initial test will always go slow
1454   if (!always_slow) {
1455     // Fast path modifies only raw memory.
1456     if (mem->is_MergeMem()) {
1457       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1458     }
1459 
1460     Node* eden_top_adr;
1461     Node* eden_end_adr;
1462 
1463     set_eden_pointers(eden_top_adr, eden_end_adr);
1464 
1465     // Load Eden::end.  Loop invariant and hoisted.
1466     //
1467     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1468     //       a TLAB to work around a bug where these values were being moved across
1469     //       a safepoint.  These are not oops, so they cannot be include in the oop
1470     //       map, but they can be changed by a GC.   The proper way to fix this would
1471     //       be to set the raw memory state when generating a  SafepointNode.  However
1472     //       this will require extensive changes to the loop optimization in order to
1473     //       prevent a degradation of the optimization.
1474     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1475     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1476 
1477     // allocate the Region and Phi nodes for the result
1478     result_region = new RegionNode(3);
1479     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1480     result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1481     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1482 
1483     // We need a Region for the loop-back contended case.
1484     enum { fall_in_path = 1, contended_loopback_path = 2 };
1485     Node *contended_region;
1486     Node *contended_phi_rawmem;
1487     if (UseTLAB) {
1488       contended_region = toobig_false;
1489       contended_phi_rawmem = mem;
1490     } else {
1491       contended_region = new RegionNode(3);
1492       contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1493       // Now handle the passing-too-big test.  We fall into the contended
1494       // loop-back merge point.
1495       contended_region    ->init_req(fall_in_path, toobig_false);
1496       contended_phi_rawmem->init_req(fall_in_path, mem);
1497       transform_later(contended_region);
1498       transform_later(contended_phi_rawmem);
1499     }
1500 
1501     // Load(-locked) the heap top.
1502     // See note above concerning the control input when using a TLAB
1503     Node *old_eden_top = UseTLAB
1504       ? new LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
1505       : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
1506 
1507     transform_later(old_eden_top);
1508     // Add to heap top to get a new heap top
1509     Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes);
1510     transform_later(new_eden_top);
1511     // Check for needing a GC; compare against heap end
1512     Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
1513     transform_later(needgc_cmp);
1514     Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
1515     transform_later(needgc_bol);
1516     IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1517     transform_later(needgc_iff);
1518 
1519     // Plug the failing-heap-space-need-gc test into the slow-path region
1520     Node *needgc_true = new IfTrueNode(needgc_iff);
1521     transform_later(needgc_true);
1522     if (initial_slow_test) {
1523       slow_region->init_req(need_gc_path, needgc_true);
1524       // This completes all paths into the slow merge point
1525       transform_later(slow_region);
1526     } else {                      // No initial slow path needed!
1527       // Just fall from the need-GC path straight into the VM call.
1528       slow_region = needgc_true;
1529     }
1530     // No need for a GC.  Setup for the Store-Conditional
1531     Node *needgc_false = new IfFalseNode(needgc_iff);
1532     transform_later(needgc_false);
1533 
1534     // Grab regular I/O before optional prefetch may change it.
1535     // Slow-path does no I/O so just set it to the original I/O.
1536     result_phi_i_o->init_req(slow_result_path, i_o);
1537 
1538     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1539                               old_eden_top, new_eden_top, length);
1540 
1541     // Name successful fast-path variables
1542     Node* fast_oop = old_eden_top;
1543     Node* fast_oop_ctrl;
1544     Node* fast_oop_rawmem;
1545 
1546     // Store (-conditional) the modified eden top back down.
1547     // StorePConditional produces flags for a test PLUS a modified raw
1548     // memory state.
1549     if (UseTLAB) {
1550       Node* store_eden_top =
1551         new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1552                               TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
1553       transform_later(store_eden_top);
1554       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1555       fast_oop_rawmem = store_eden_top;
1556     } else {
1557       Node* store_eden_top =
1558         new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1559                                          new_eden_top, fast_oop/*old_eden_top*/);
1560       transform_later(store_eden_top);
1561       Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
1562       transform_later(contention_check);
1563       store_eden_top = new SCMemProjNode(store_eden_top);
1564       transform_later(store_eden_top);
1565 
1566       // If not using TLABs, check to see if there was contention.
1567       IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1568       transform_later(contention_iff);
1569       Node *contention_true = new IfTrueNode(contention_iff);
1570       transform_later(contention_true);
1571       // If contention, loopback and try again.
1572       contended_region->init_req(contended_loopback_path, contention_true);
1573       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1574 
1575       // Fast-path succeeded with no contention!
1576       Node *contention_false = new IfFalseNode(contention_iff);
1577       transform_later(contention_false);
1578       fast_oop_ctrl = contention_false;
1579 
1580       // Bump total allocated bytes for this thread
1581       Node* thread = new ThreadLocalNode();
1582       transform_later(thread);
1583       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1584                                              in_bytes(JavaThread::allocated_bytes_offset()));
1585       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1586                                     0, TypeLong::LONG, T_LONG);
1587 #ifdef _LP64
1588       Node* alloc_size = size_in_bytes;
1589 #else
1590       Node* alloc_size = new ConvI2LNode(size_in_bytes);
1591       transform_later(alloc_size);
1592 #endif
1593       Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
1594       transform_later(new_alloc_bytes);
1595       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1596                                    0, new_alloc_bytes, T_LONG);
1597     }
1598 
1599     InitializeNode* init = alloc->initialization();
1600     fast_oop_rawmem = initialize_object(alloc,
1601                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1602                                         klass_node, length, size_in_bytes);
1603 
1604     // If initialization is performed by an array copy, any required
1605     // MemBarStoreStore was already added. If the object does not
1606     // escape no need for a MemBarStoreStore. If the object does not
1607     // escape in its initializer and memory barrier (MemBarStoreStore or
1608     // stronger) is already added at exit of initializer, also no need
1609     // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1610     // so that stores that initialize this object can't be reordered
1611     // with a subsequent store that makes this object accessible by
1612     // other threads.
1613     // Other threads include java threads and JVM internal threads
1614     // (for example concurrent GC threads). Current concurrent GC
1615     // implementation: CMS and G1 will not scan newly created object,
1616     // so it's safe to skip storestore barrier when allocation does
1617     // not escape.
1618     if (!alloc->does_not_escape_thread() &&
1619         !alloc->is_allocation_MemBar_redundant() &&
1620         (init == NULL || !init->is_complete_with_arraycopy())) {
1621       if (init == NULL || init->req() < InitializeNode::RawStores) {
1622         // No InitializeNode or no stores captured by zeroing
1623         // elimination. Simply add the MemBarStoreStore after object
1624         // initialization.
1625         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1626         transform_later(mb);
1627 
1628         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1629         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1630         fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
1631         transform_later(fast_oop_ctrl);
1632         fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
1633         transform_later(fast_oop_rawmem);
1634       } else {
1635         // Add the MemBarStoreStore after the InitializeNode so that
1636         // all stores performing the initialization that were moved
1637         // before the InitializeNode happen before the storestore
1638         // barrier.
1639 
1640         Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1641         Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1642 
1643         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1644         transform_later(mb);
1645 
1646         Node* ctrl = new ProjNode(init,TypeFunc::Control);
1647         transform_later(ctrl);
1648         Node* mem = new ProjNode(init,TypeFunc::Memory);
1649         transform_later(mem);
1650 
1651         // The MemBarStoreStore depends on control and memory coming
1652         // from the InitializeNode
1653         mb->init_req(TypeFunc::Memory, mem);
1654         mb->init_req(TypeFunc::Control, ctrl);
1655 
1656         ctrl = new ProjNode(mb,TypeFunc::Control);
1657         transform_later(ctrl);
1658         mem = new ProjNode(mb,TypeFunc::Memory);
1659         transform_later(mem);
1660 
1661         // All nodes that depended on the InitializeNode for control
1662         // and memory must now depend on the MemBarNode that itself
1663         // depends on the InitializeNode
1664         if (init_ctrl != NULL) {
1665           _igvn.replace_node(init_ctrl, ctrl);
1666         }
1667         if (init_mem != NULL) {
1668           _igvn.replace_node(init_mem, mem);
1669         }
1670       }
1671     }
1672 
1673     if (C->env()->dtrace_extended_probes()) {
1674       // Slow-path call
1675       int size = TypeFunc::Parms + 2;
1676       CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1677                                             CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1678                                             "dtrace_object_alloc",
1679                                             TypeRawPtr::BOTTOM);
1680 
1681       // Get base of thread-local storage area
1682       Node* thread = new ThreadLocalNode();
1683       transform_later(thread);
1684 
1685       call->init_req(TypeFunc::Parms+0, thread);
1686       call->init_req(TypeFunc::Parms+1, fast_oop);
1687       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1688       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1689       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1690       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1691       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1692       transform_later(call);
1693       fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
1694       transform_later(fast_oop_ctrl);
1695       fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
1696       transform_later(fast_oop_rawmem);
1697     }
1698 
1699     // Plug in the successful fast-path into the result merge point
1700     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1701     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1702     result_phi_i_o   ->init_req(fast_result_path, i_o);
1703     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1704   } else {
1705     slow_region = ctrl;
1706     result_phi_i_o = i_o; // Rename it to use in the following code.
1707   }
1708 
1709   // Generate slow-path call
1710   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1711                                OptoRuntime::stub_name(slow_call_address),
1712                                alloc->jvms()->bci(),
1713                                TypePtr::BOTTOM);
1714   call->init_req( TypeFunc::Control, slow_region );
1715   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1716   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1717   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1718   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1719 
1720   call->init_req(TypeFunc::Parms+0, klass_node);
1721   if (length != NULL) {
1722     call->init_req(TypeFunc::Parms+1, length);
1723   }
1724 
1725   // Copy debug information and adjust JVMState information, then replace
1726   // allocate node with the call
1727   copy_call_debug_info((CallNode *) alloc,  call);
1728   if (!always_slow) {
1729     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1730   } else {
1731     // Hook i_o projection to avoid its elimination during allocation
1732     // replacement (when only a slow call is generated).
1733     call->set_req(TypeFunc::I_O, result_phi_i_o);
1734   }
1735   _igvn.replace_node(alloc, call);
1736   transform_later(call);
1737 
1738   // Identify the output projections from the allocate node and
1739   // adjust any references to them.
1740   // The control and io projections look like:
1741   //
1742   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1743   //  Allocate                   Catch
1744   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1745   //
1746   //  We are interested in the CatchProj nodes.
1747   //
1748   extract_call_projections(call);
1749 
1750   // An allocate node has separate memory projections for the uses on
1751   // the control and i_o paths. Replace the control memory projection with
1752   // result_phi_rawmem (unless we are only generating a slow call when
1753   // both memory projections are combined)
1754   if (!always_slow && _memproj_fallthrough != NULL) {
1755     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1756       Node *use = _memproj_fallthrough->fast_out(i);
1757       _igvn.rehash_node_delayed(use);
1758       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1759       // back up iterator
1760       --i;
1761     }
1762   }
1763   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1764   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1765   if (_memproj_catchall != NULL ) {
1766     if (_memproj_fallthrough == NULL) {
1767       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1768       transform_later(_memproj_fallthrough);
1769     }
1770     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1771       Node *use = _memproj_catchall->fast_out(i);
1772       _igvn.rehash_node_delayed(use);
1773       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1774       // back up iterator
1775       --i;
1776     }
1777     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1778     _igvn.remove_dead_node(_memproj_catchall);
1779   }
1780 
1781   // An allocate node has separate i_o projections for the uses on the control
1782   // and i_o paths. Always replace the control i_o projection with result i_o
1783   // otherwise incoming i_o become dead when only a slow call is generated
1784   // (it is different from memory projections where both projections are
1785   // combined in such case).
1786   if (_ioproj_fallthrough != NULL) {
1787     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1788       Node *use = _ioproj_fallthrough->fast_out(i);
1789       _igvn.rehash_node_delayed(use);
1790       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1791       // back up iterator
1792       --i;
1793     }
1794   }
1795   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1796   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1797   if (_ioproj_catchall != NULL ) {
1798     if (_ioproj_fallthrough == NULL) {
1799       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1800       transform_later(_ioproj_fallthrough);
1801     }
1802     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1803       Node *use = _ioproj_catchall->fast_out(i);
1804       _igvn.rehash_node_delayed(use);
1805       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1806       // back up iterator
1807       --i;
1808     }
1809     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1810     _igvn.remove_dead_node(_ioproj_catchall);
1811   }
1812 
1813   // if we generated only a slow call, we are done
1814   if (always_slow) {
1815     // Now we can unhook i_o.
1816     if (result_phi_i_o->outcnt() > 1) {
1817       call->set_req(TypeFunc::I_O, top());
1818     } else {
1819       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1820       // Case of new array with negative size known during compilation.
1821       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1822       // following code since call to runtime will throw exception.
1823       // As result there will be no users of i_o after the call.
1824       // Leave i_o attached to this call to avoid problems in preceding graph.
1825     }
1826     return;
1827   }
1828 
1829 
1830   if (_fallthroughcatchproj != NULL) {
1831     ctrl = _fallthroughcatchproj->clone();
1832     transform_later(ctrl);
1833     _igvn.replace_node(_fallthroughcatchproj, result_region);
1834   } else {
1835     ctrl = top();
1836   }
1837   Node *slow_result;
1838   if (_resproj == NULL) {
1839     // no uses of the allocation result
1840     slow_result = top();
1841   } else {
1842     slow_result = _resproj->clone();
1843     transform_later(slow_result);
1844     _igvn.replace_node(_resproj, result_phi_rawoop);
1845   }
1846 
1847   // Plug slow-path into result merge point
1848   result_region    ->init_req( slow_result_path, ctrl );
1849   result_phi_rawoop->init_req( slow_result_path, slow_result);
1850   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1851   transform_later(result_region);
1852   transform_later(result_phi_rawoop);
1853   transform_later(result_phi_rawmem);
1854   transform_later(result_phi_i_o);
1855   // This completes all paths into the result merge point
1856 }
1857 
1858 
1859 // Helper for PhaseMacroExpand::expand_allocate_common.
1860 // Initializes the newly-allocated storage.
1861 Node*
1862 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1863                                     Node* control, Node* rawmem, Node* object,
1864                                     Node* klass_node, Node* length,
1865                                     Node* size_in_bytes) {
1866   InitializeNode* init = alloc->initialization();
1867   // Store the klass & mark bits
1868   Node* mark_node = NULL;
1869   // For now only enable fast locking for non-array types
1870   if (UseBiasedLocking && (length == NULL)) {
1871     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1872   } else {
1873     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1874   }
1875   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1876 
1877   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1878   int header_size = alloc->minimum_header_size();  // conservatively small
1879 
1880   // Array length
1881   if (length != NULL) {         // Arrays need length field
1882     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1883     // conservatively small header size:
1884     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1885     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1886     if (k->is_array_klass())    // we know the exact header size in most cases:
1887       header_size = Klass::layout_helper_header_size(k->layout_helper());
1888   }
1889 
1890   // Clear the object body, if necessary.
1891   if (init == NULL) {
1892     // The init has somehow disappeared; be cautious and clear everything.
1893     //
1894     // This can happen if a node is allocated but an uncommon trap occurs
1895     // immediately.  In this case, the Initialize gets associated with the
1896     // trap, and may be placed in a different (outer) loop, if the Allocate
1897     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1898     // there can be two Allocates to one Initialize.  The answer in all these
1899     // edge cases is safety first.  It is always safe to clear immediately
1900     // within an Allocate, and then (maybe or maybe not) clear some more later.
1901     if (!(UseTLAB && ZeroTLAB)) {
1902       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1903                                             header_size, size_in_bytes,
1904                                             &_igvn);
1905     }
1906   } else {
1907     if (!init->is_complete()) {
1908       // Try to win by zeroing only what the init does not store.
1909       // We can also try to do some peephole optimizations,
1910       // such as combining some adjacent subword stores.
1911       rawmem = init->complete_stores(control, rawmem, object,
1912                                      header_size, size_in_bytes, &_igvn);
1913     }
1914     // We have no more use for this link, since the AllocateNode goes away:
1915     init->set_req(InitializeNode::RawAddress, top());
1916     // (If we keep the link, it just confuses the register allocator,
1917     // who thinks he sees a real use of the address by the membar.)
1918   }
1919 
1920   return rawmem;
1921 }
1922 
1923 // Generate prefetch instructions for next allocations.
1924 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1925                                         Node*& contended_phi_rawmem,
1926                                         Node* old_eden_top, Node* new_eden_top,
1927                                         Node* length) {
1928    enum { fall_in_path = 1, pf_path = 2 };
1929    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1930       // Generate prefetch allocation with watermark check.
1931       // As an allocation hits the watermark, we will prefetch starting
1932       // at a "distance" away from watermark.
1933 
1934       Node *pf_region = new RegionNode(3);
1935       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1936                                                 TypeRawPtr::BOTTOM );
1937       // I/O is used for Prefetch
1938       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1939 
1940       Node *thread = new ThreadLocalNode();
1941       transform_later(thread);
1942 
1943       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1944                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1945       transform_later(eden_pf_adr);
1946 
1947       Node *old_pf_wm = new LoadPNode(needgc_false,
1948                                    contended_phi_rawmem, eden_pf_adr,
1949                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1950                                    MemNode::unordered);
1951       transform_later(old_pf_wm);
1952 
1953       // check against new_eden_top
1954       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1955       transform_later(need_pf_cmp);
1956       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1957       transform_later(need_pf_bol);
1958       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1959                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1960       transform_later(need_pf_iff);
1961 
1962       // true node, add prefetchdistance
1963       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1964       transform_later(need_pf_true);
1965 
1966       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1967       transform_later(need_pf_false);
1968 
1969       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1970                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1971       transform_later(new_pf_wmt );
1972       new_pf_wmt->set_req(0, need_pf_true);
1973 
1974       Node *store_new_wmt = new StorePNode(need_pf_true,
1975                                        contended_phi_rawmem, eden_pf_adr,
1976                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1977                                        MemNode::unordered);
1978       transform_later(store_new_wmt);
1979 
1980       // adding prefetches
1981       pf_phi_abio->init_req( fall_in_path, i_o );
1982 
1983       Node *prefetch_adr;
1984       Node *prefetch;
1985       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1986       uint step_size = AllocatePrefetchStepSize;
1987       uint distance = 0;
1988 
1989       for ( uint i = 0; i < lines; i++ ) {
1990         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1991                                             _igvn.MakeConX(distance) );
1992         transform_later(prefetch_adr);
1993         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1994         transform_later(prefetch);
1995         distance += step_size;
1996         i_o = prefetch;
1997       }
1998       pf_phi_abio->set_req( pf_path, i_o );
1999 
2000       pf_region->init_req( fall_in_path, need_pf_false );
2001       pf_region->init_req( pf_path, need_pf_true );
2002 
2003       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
2004       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
2005 
2006       transform_later(pf_region);
2007       transform_later(pf_phi_rawmem);
2008       transform_later(pf_phi_abio);
2009 
2010       needgc_false = pf_region;
2011       contended_phi_rawmem = pf_phi_rawmem;
2012       i_o = pf_phi_abio;
2013    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
2014       // Insert a prefetch instruction for each allocation.
2015       // This code is used to generate 1 prefetch instruction per cache line.
2016 
2017       // Generate several prefetch instructions.
2018       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2019       uint step_size = AllocatePrefetchStepSize;
2020       uint distance = AllocatePrefetchDistance;
2021 
2022       // Next cache address.
2023       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
2024                                      _igvn.MakeConX(step_size + distance));
2025       transform_later(cache_adr);
2026       cache_adr = new CastP2XNode(needgc_false, cache_adr);
2027       transform_later(cache_adr);
2028       // Address is aligned to execute prefetch to the beginning of cache line size
2029       // (it is important when BIS instruction is used on SPARC as prefetch).
2030       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
2031       cache_adr = new AndXNode(cache_adr, mask);
2032       transform_later(cache_adr);
2033       cache_adr = new CastX2PNode(cache_adr);
2034       transform_later(cache_adr);
2035 
2036       // Prefetch
2037       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
2038       prefetch->set_req(0, needgc_false);
2039       transform_later(prefetch);
2040       contended_phi_rawmem = prefetch;
2041       Node *prefetch_adr;
2042       distance = step_size;
2043       for ( uint i = 1; i < lines; i++ ) {
2044         prefetch_adr = new AddPNode( cache_adr, cache_adr,
2045                                             _igvn.MakeConX(distance) );
2046         transform_later(prefetch_adr);
2047         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
2048         transform_later(prefetch);
2049         distance += step_size;
2050         contended_phi_rawmem = prefetch;
2051       }
2052    } else if( AllocatePrefetchStyle > 0 ) {
2053       // Insert a prefetch for each allocation only on the fast-path
2054       Node *prefetch_adr;
2055       Node *prefetch;
2056       // Generate several prefetch instructions.
2057       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2058       uint step_size = AllocatePrefetchStepSize;
2059       uint distance = AllocatePrefetchDistance;
2060       for ( uint i = 0; i < lines; i++ ) {
2061         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
2062                                             _igvn.MakeConX(distance) );
2063         transform_later(prefetch_adr);
2064         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2065         // Do not let it float too high, since if eden_top == eden_end,
2066         // both might be null.
2067         if( i == 0 ) { // Set control for first prefetch, next follows it
2068           prefetch->init_req(0, needgc_false);
2069         }
2070         transform_later(prefetch);
2071         distance += step_size;
2072         i_o = prefetch;
2073       }
2074    }
2075    return i_o;
2076 }
2077 
2078 
2079 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
2080   expand_allocate_common(alloc, NULL,
2081                          OptoRuntime::new_instance_Type(),
2082                          OptoRuntime::new_instance_Java());
2083 }
2084 
2085 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
2086   Node* length = alloc->in(AllocateNode::ALength);
2087   InitializeNode* init = alloc->initialization();
2088   Node* klass_node = alloc->in(AllocateNode::KlassNode);
2089   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
2090   address slow_call_address;  // Address of slow call
2091   if (init != NULL && init->is_complete_with_arraycopy() &&
2092       k->is_type_array_klass()) {
2093     // Don't zero type array during slow allocation in VM since
2094     // it will be initialized later by arraycopy in compiled code.
2095     slow_call_address = OptoRuntime::new_array_nozero_Java();
2096   } else {
2097     slow_call_address = OptoRuntime::new_array_Java();
2098   }
2099   expand_allocate_common(alloc, length,
2100                          OptoRuntime::new_array_Type(),
2101                          slow_call_address);
2102 }
2103 
2104 //-------------------mark_eliminated_box----------------------------------
2105 //
2106 // During EA obj may point to several objects but after few ideal graph
2107 // transformations (CCP) it may point to only one non escaping object
2108 // (but still using phi), corresponding locks and unlocks will be marked
2109 // for elimination. Later obj could be replaced with a new node (new phi)
2110 // and which does not have escape information. And later after some graph
2111 // reshape other locks and unlocks (which were not marked for elimination
2112 // before) are connected to this new obj (phi) but they still will not be
2113 // marked for elimination since new obj has no escape information.
2114 // Mark all associated (same box and obj) lock and unlock nodes for
2115 // elimination if some of them marked already.
2116 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
2117   if (oldbox->as_BoxLock()->is_eliminated())
2118     return; // This BoxLock node was processed already.
2119 
2120   // New implementation (EliminateNestedLocks) has separate BoxLock
2121   // node for each locked region so mark all associated locks/unlocks as
2122   // eliminated even if different objects are referenced in one locked region
2123   // (for example, OSR compilation of nested loop inside locked scope).
2124   if (EliminateNestedLocks ||
2125       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
2126     // Box is used only in one lock region. Mark this box as eliminated.
2127     _igvn.hash_delete(oldbox);
2128     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
2129      _igvn.hash_insert(oldbox);
2130 
2131     for (uint i = 0; i < oldbox->outcnt(); i++) {
2132       Node* u = oldbox->raw_out(i);
2133       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2134         AbstractLockNode* alock = u->as_AbstractLock();
2135         // Check lock's box since box could be referenced by Lock's debug info.
2136         if (alock->box_node() == oldbox) {
2137           // Mark eliminated all related locks and unlocks.
2138 #ifdef ASSERT
2139           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2140 #endif
2141           alock->set_non_esc_obj();
2142         }
2143       }
2144     }
2145     return;
2146   }
2147 
2148   // Create new "eliminated" BoxLock node and use it in monitor debug info
2149   // instead of oldbox for the same object.
2150   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2151 
2152   // Note: BoxLock node is marked eliminated only here and it is used
2153   // to indicate that all associated lock and unlock nodes are marked
2154   // for elimination.
2155   newbox->set_eliminated();
2156   transform_later(newbox);
2157 
2158   // Replace old box node with new box for all users of the same object.
2159   for (uint i = 0; i < oldbox->outcnt();) {
2160     bool next_edge = true;
2161 
2162     Node* u = oldbox->raw_out(i);
2163     if (u->is_AbstractLock()) {
2164       AbstractLockNode* alock = u->as_AbstractLock();
2165       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2166         // Replace Box and mark eliminated all related locks and unlocks.
2167 #ifdef ASSERT
2168         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2169 #endif
2170         alock->set_non_esc_obj();
2171         _igvn.rehash_node_delayed(alock);
2172         alock->set_box_node(newbox);
2173         next_edge = false;
2174       }
2175     }
2176     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2177       FastLockNode* flock = u->as_FastLock();
2178       assert(flock->box_node() == oldbox, "sanity");
2179       _igvn.rehash_node_delayed(flock);
2180       flock->set_box_node(newbox);
2181       next_edge = false;
2182     }
2183 
2184     // Replace old box in monitor debug info.
2185     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2186       SafePointNode* sfn = u->as_SafePoint();
2187       JVMState* youngest_jvms = sfn->jvms();
2188       int max_depth = youngest_jvms->depth();
2189       for (int depth = 1; depth <= max_depth; depth++) {
2190         JVMState* jvms = youngest_jvms->of_depth(depth);
2191         int num_mon  = jvms->nof_monitors();
2192         // Loop over monitors
2193         for (int idx = 0; idx < num_mon; idx++) {
2194           Node* obj_node = sfn->monitor_obj(jvms, idx);
2195           Node* box_node = sfn->monitor_box(jvms, idx);
2196           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2197             int j = jvms->monitor_box_offset(idx);
2198             _igvn.replace_input_of(u, j, newbox);
2199             next_edge = false;
2200           }
2201         }
2202       }
2203     }
2204     if (next_edge) i++;
2205   }
2206 }
2207 
2208 //-----------------------mark_eliminated_locking_nodes-----------------------
2209 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2210   if (EliminateNestedLocks) {
2211     if (alock->is_nested()) {
2212        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2213        return;
2214     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2215       // Only Lock node has JVMState needed here.
2216       // Not that preceding claim is documented anywhere else.
2217       if (alock->jvms() != NULL) {
2218         if (alock->as_Lock()->is_nested_lock_region()) {
2219           // Mark eliminated related nested locks and unlocks.
2220           Node* obj = alock->obj_node();
2221           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2222           assert(!box_node->is_eliminated(), "should not be marked yet");
2223           // Note: BoxLock node is marked eliminated only here
2224           // and it is used to indicate that all associated lock
2225           // and unlock nodes are marked for elimination.
2226           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2227           for (uint i = 0; i < box_node->outcnt(); i++) {
2228             Node* u = box_node->raw_out(i);
2229             if (u->is_AbstractLock()) {
2230               alock = u->as_AbstractLock();
2231               if (alock->box_node() == box_node) {
2232                 // Verify that this Box is referenced only by related locks.
2233                 assert(alock->obj_node()->eqv_uncast(obj), "");
2234                 // Mark all related locks and unlocks.
2235 #ifdef ASSERT
2236                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2237 #endif
2238                 alock->set_nested();
2239               }
2240             }
2241           }
2242         } else {
2243 #ifdef ASSERT
2244           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2245           if (C->log() != NULL)
2246             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2247 #endif
2248         }
2249       }
2250       return;
2251     }
2252     // Process locks for non escaping object
2253     assert(alock->is_non_esc_obj(), "");
2254   } // EliminateNestedLocks
2255 
2256   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2257     // Look for all locks of this object and mark them and
2258     // corresponding BoxLock nodes as eliminated.
2259     Node* obj = alock->obj_node();
2260     for (uint j = 0; j < obj->outcnt(); j++) {
2261       Node* o = obj->raw_out(j);
2262       if (o->is_AbstractLock() &&
2263           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2264         alock = o->as_AbstractLock();
2265         Node* box = alock->box_node();
2266         // Replace old box node with new eliminated box for all users
2267         // of the same object and mark related locks as eliminated.
2268         mark_eliminated_box(box, obj);
2269       }
2270     }
2271   }
2272 }
2273 
2274 // we have determined that this lock/unlock can be eliminated, we simply
2275 // eliminate the node without expanding it.
2276 //
2277 // Note:  The membar's associated with the lock/unlock are currently not
2278 //        eliminated.  This should be investigated as a future enhancement.
2279 //
2280 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2281 
2282   if (!alock->is_eliminated()) {
2283     return false;
2284   }
2285 #ifdef ASSERT
2286   if (!alock->is_coarsened()) {
2287     // Check that new "eliminated" BoxLock node is created.
2288     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2289     assert(oldbox->is_eliminated(), "should be done already");
2290   }
2291 #endif
2292 
2293   alock->log_lock_optimization(C, "eliminate_lock");
2294 
2295 #ifndef PRODUCT
2296   if (PrintEliminateLocks) {
2297     if (alock->is_Lock()) {
2298       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2299     } else {
2300       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2301     }
2302   }
2303 #endif
2304 
2305   Node* mem  = alock->in(TypeFunc::Memory);
2306   Node* ctrl = alock->in(TypeFunc::Control);
2307 
2308   extract_call_projections(alock);
2309   // There are 2 projections from the lock.  The lock node will
2310   // be deleted when its last use is subsumed below.
2311   assert(alock->outcnt() == 2 &&
2312          _fallthroughproj != NULL &&
2313          _memproj_fallthrough != NULL,
2314          "Unexpected projections from Lock/Unlock");
2315 
2316   Node* fallthroughproj = _fallthroughproj;
2317   Node* memproj_fallthrough = _memproj_fallthrough;
2318 
2319   // The memory projection from a lock/unlock is RawMem
2320   // The input to a Lock is merged memory, so extract its RawMem input
2321   // (unless the MergeMem has been optimized away.)
2322   if (alock->is_Lock()) {
2323     // Seach for MemBarAcquireLock node and delete it also.
2324     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2325     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2326     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2327     Node* memproj = membar->proj_out(TypeFunc::Memory);
2328     _igvn.replace_node(ctrlproj, fallthroughproj);
2329     _igvn.replace_node(memproj, memproj_fallthrough);
2330 
2331     // Delete FastLock node also if this Lock node is unique user
2332     // (a loop peeling may clone a Lock node).
2333     Node* flock = alock->as_Lock()->fastlock_node();
2334     if (flock->outcnt() == 1) {
2335       assert(flock->unique_out() == alock, "sanity");
2336       _igvn.replace_node(flock, top());
2337     }
2338   }
2339 
2340   // Seach for MemBarReleaseLock node and delete it also.
2341   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2342       ctrl->in(0)->is_MemBar()) {
2343     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2344     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2345            mem->is_Proj() && membar == mem->in(0), "");
2346     _igvn.replace_node(fallthroughproj, ctrl);
2347     _igvn.replace_node(memproj_fallthrough, mem);
2348     fallthroughproj = ctrl;
2349     memproj_fallthrough = mem;
2350     ctrl = membar->in(TypeFunc::Control);
2351     mem  = membar->in(TypeFunc::Memory);
2352   }
2353 
2354   _igvn.replace_node(fallthroughproj, ctrl);
2355   _igvn.replace_node(memproj_fallthrough, mem);
2356   return true;
2357 }
2358 
2359 
2360 //------------------------------expand_lock_node----------------------
2361 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2362 
2363   Node* ctrl = lock->in(TypeFunc::Control);
2364   Node* mem = lock->in(TypeFunc::Memory);
2365   Node* obj = lock->obj_node();
2366   Node* box = lock->box_node();
2367   Node* flock = lock->fastlock_node();
2368 
2369   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2370 
2371   // Make the merge point
2372   Node *region;
2373   Node *mem_phi;
2374   Node *slow_path;
2375 
2376   if (UseOptoBiasInlining) {
2377     /*
2378      *  See the full description in MacroAssembler::biased_locking_enter().
2379      *
2380      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2381      *    // The object is biased.
2382      *    proto_node = klass->prototype_header;
2383      *    o_node = thread | proto_node;
2384      *    x_node = o_node ^ mark_word;
2385      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2386      *      // Done.
2387      *    } else {
2388      *      if( (x_node & biased_lock_mask) != 0 ) {
2389      *        // The klass's prototype header is no longer biased.
2390      *        cas(&mark_word, mark_word, proto_node)
2391      *        goto cas_lock;
2392      *      } else {
2393      *        // The klass's prototype header is still biased.
2394      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2395      *          old = mark_word;
2396      *          new = o_node;
2397      *        } else {
2398      *          // Different thread or anonymous biased.
2399      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2400      *          new = thread | old;
2401      *        }
2402      *        // Try to rebias.
2403      *        if( cas(&mark_word, old, new) == 0 ) {
2404      *          // Done.
2405      *        } else {
2406      *          goto slow_path; // Failed.
2407      *        }
2408      *      }
2409      *    }
2410      *  } else {
2411      *    // The object is not biased.
2412      *    cas_lock:
2413      *    if( FastLock(obj) == 0 ) {
2414      *      // Done.
2415      *    } else {
2416      *      slow_path:
2417      *      OptoRuntime::complete_monitor_locking_Java(obj);
2418      *    }
2419      *  }
2420      */
2421 
2422     region  = new RegionNode(5);
2423     // create a Phi for the memory state
2424     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2425 
2426     Node* fast_lock_region  = new RegionNode(3);
2427     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2428 
2429     // First, check mark word for the biased lock pattern.
2430     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2431 
2432     // Get fast path - mark word has the biased lock pattern.
2433     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2434                          markOopDesc::biased_lock_mask_in_place,
2435                          markOopDesc::biased_lock_pattern, true);
2436     // fast_lock_region->in(1) is set to slow path.
2437     fast_lock_mem_phi->init_req(1, mem);
2438 
2439     // Now check that the lock is biased to the current thread and has
2440     // the same epoch and bias as Klass::_prototype_header.
2441 
2442     // Special-case a fresh allocation to avoid building nodes:
2443     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2444     if (klass_node == NULL) {
2445       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2446       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2447 #ifdef _LP64
2448       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2449         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2450         klass_node->in(1)->init_req(0, ctrl);
2451       } else
2452 #endif
2453       klass_node->init_req(0, ctrl);
2454     }
2455     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2456 
2457     Node* thread = transform_later(new ThreadLocalNode());
2458     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2459     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2460     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2461 
2462     // Get slow path - mark word does NOT match the value.
2463     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2464                                       (~markOopDesc::age_mask_in_place), 0);
2465     // region->in(3) is set to fast path - the object is biased to the current thread.
2466     mem_phi->init_req(3, mem);
2467 
2468 
2469     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2470 
2471 
2472     // First, check biased pattern.
2473     // Get fast path - _prototype_header has the same biased lock pattern.
2474     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2475                           markOopDesc::biased_lock_mask_in_place, 0, true);
2476 
2477     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2478     // fast_lock_region->in(2) - the prototype header is no longer biased
2479     // and we have to revoke the bias on this object.
2480     // We are going to try to reset the mark of this object to the prototype
2481     // value and fall through to the CAS-based locking scheme.
2482     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2483     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2484                                           proto_node, mark_node);
2485     transform_later(cas);
2486     Node* proj = transform_later(new SCMemProjNode(cas));
2487     fast_lock_mem_phi->init_req(2, proj);
2488 
2489 
2490     // Second, check epoch bits.
2491     Node* rebiased_region  = new RegionNode(3);
2492     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2493     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2494 
2495     // Get slow path - mark word does NOT match epoch bits.
2496     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2497                                       markOopDesc::epoch_mask_in_place, 0);
2498     // The epoch of the current bias is not valid, attempt to rebias the object
2499     // toward the current thread.
2500     rebiased_region->init_req(2, epoch_ctrl);
2501     old_phi->init_req(2, mark_node);
2502     new_phi->init_req(2, o_node);
2503 
2504     // rebiased_region->in(1) is set to fast path.
2505     // The epoch of the current bias is still valid but we know
2506     // nothing about the owner; it might be set or it might be clear.
2507     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2508                              markOopDesc::age_mask_in_place |
2509                              markOopDesc::epoch_mask_in_place);
2510     Node* old = transform_later(new AndXNode(mark_node, cmask));
2511     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2512     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2513     old_phi->init_req(1, old);
2514     new_phi->init_req(1, new_mark);
2515 
2516     transform_later(rebiased_region);
2517     transform_later(old_phi);
2518     transform_later(new_phi);
2519 
2520     // Try to acquire the bias of the object using an atomic operation.
2521     // If this fails we will go in to the runtime to revoke the object's bias.
2522     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2523     transform_later(cas);
2524     proj = transform_later(new SCMemProjNode(cas));
2525 
2526     // Get slow path - Failed to CAS.
2527     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2528     mem_phi->init_req(4, proj);
2529     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2530 
2531     // Failed to CAS.
2532     slow_path  = new RegionNode(3);
2533     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2534 
2535     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2536     slow_mem->init_req(1, proj);
2537 
2538     // Call CAS-based locking scheme (FastLock node).
2539 
2540     transform_later(fast_lock_region);
2541     transform_later(fast_lock_mem_phi);
2542 
2543     // Get slow path - FastLock failed to lock the object.
2544     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2545     mem_phi->init_req(2, fast_lock_mem_phi);
2546     // region->in(2) is set to fast path - the object is locked to the current thread.
2547 
2548     slow_path->init_req(2, ctrl); // Capture slow-control
2549     slow_mem->init_req(2, fast_lock_mem_phi);
2550 
2551     transform_later(slow_path);
2552     transform_later(slow_mem);
2553     // Reset lock's memory edge.
2554     lock->set_req(TypeFunc::Memory, slow_mem);
2555 
2556   } else {
2557     region  = new RegionNode(3);
2558     // create a Phi for the memory state
2559     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2560 
2561     // Optimize test; set region slot 2
2562     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2563     mem_phi->init_req(2, mem);
2564   }
2565 
2566   // Make slow path call
2567   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2568                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2569                                   obj, box, NULL);
2570 
2571   extract_call_projections(call);
2572 
2573   // Slow path can only throw asynchronous exceptions, which are always
2574   // de-opted.  So the compiler thinks the slow-call can never throw an
2575   // exception.  If it DOES throw an exception we would need the debug
2576   // info removed first (since if it throws there is no monitor).
2577   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2578            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2579 
2580   // Capture slow path
2581   // disconnect fall-through projection from call and create a new one
2582   // hook up users of fall-through projection to region
2583   Node *slow_ctrl = _fallthroughproj->clone();
2584   transform_later(slow_ctrl);
2585   _igvn.hash_delete(_fallthroughproj);
2586   _fallthroughproj->disconnect_inputs(NULL, C);
2587   region->init_req(1, slow_ctrl);
2588   // region inputs are now complete
2589   transform_later(region);
2590   _igvn.replace_node(_fallthroughproj, region);
2591 
2592   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2593   mem_phi->init_req(1, memproj );
2594   transform_later(mem_phi);
2595   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2596 }
2597 
2598 //------------------------------expand_unlock_node----------------------
2599 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2600 
2601   Node* ctrl = unlock->in(TypeFunc::Control);
2602   Node* mem = unlock->in(TypeFunc::Memory);
2603   Node* obj = unlock->obj_node();
2604   Node* box = unlock->box_node();
2605 
2606   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2607 
2608   // No need for a null check on unlock
2609 
2610   // Make the merge point
2611   Node *region;
2612   Node *mem_phi;
2613 
2614   if (UseOptoBiasInlining) {
2615     // Check for biased locking unlock case, which is a no-op.
2616     // See the full description in MacroAssembler::biased_locking_exit().
2617     region  = new RegionNode(4);
2618     // create a Phi for the memory state
2619     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2620     mem_phi->init_req(3, mem);
2621 
2622     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2623     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2624                          markOopDesc::biased_lock_mask_in_place,
2625                          markOopDesc::biased_lock_pattern);
2626   } else {
2627     region  = new RegionNode(3);
2628     // create a Phi for the memory state
2629     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2630   }
2631 
2632   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2633   funlock = transform_later( funlock )->as_FastUnlock();
2634   // Optimize test; set region slot 2
2635   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2636   Node *thread = transform_later(new ThreadLocalNode());
2637 
2638   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2639                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2640                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2641 
2642   extract_call_projections(call);
2643 
2644   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2645            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2646 
2647   // No exceptions for unlocking
2648   // Capture slow path
2649   // disconnect fall-through projection from call and create a new one
2650   // hook up users of fall-through projection to region
2651   Node *slow_ctrl = _fallthroughproj->clone();
2652   transform_later(slow_ctrl);
2653   _igvn.hash_delete(_fallthroughproj);
2654   _fallthroughproj->disconnect_inputs(NULL, C);
2655   region->init_req(1, slow_ctrl);
2656   // region inputs are now complete
2657   transform_later(region);
2658   _igvn.replace_node(_fallthroughproj, region);
2659 
2660   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2661   mem_phi->init_req(1, memproj );
2662   mem_phi->init_req(2, mem);
2663   transform_later(mem_phi);
2664   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2665 }
2666 
2667 // A value type is returned from the call but we don't know its
2668 // type. Either we get a buffered value (and nothing needs to be done)
2669 // or one of the values being returned is the klass of the value type
2670 // and we need to allocate a value type instance of that type and
2671 // initialize it with other values being returned. In that case, we
2672 // first try a fast path allocation and initialize the value with the
2673 // value klass's pack handler or we fall back to a runtime call.
2674 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) {
2675   Node* ret = call->proj_out(TypeFunc::Parms);
2676   if (ret == NULL) {
2677     return;
2678   }
2679   assert(ret->bottom_type()->is_valuetypeptr()->is__Value(), "unexpected return type from MH intrinsic");
2680   const TypeFunc* tf = call->_tf;
2681   const TypeTuple* domain = OptoRuntime::store_value_type_fields_Type()->domain_cc();
2682   const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2683   call->_tf = new_tf;
2684   // Make sure the change of type is applied before projections are
2685   // processed by igvn
2686   _igvn.set_type(call, call->Value(&_igvn));
2687   _igvn.set_type(ret, ret->Value(&_igvn));
2688 
2689   // Before any new projection is added:
2690   CallProjections* projs = call->extract_projections(true, true);
2691 
2692   Node* ctl = new Node(1);
2693   Node* mem = new Node(1);
2694   Node* io = new Node(1);
2695   Node* ex_ctl = new Node(1);
2696   Node* ex_mem = new Node(1);
2697   Node* ex_io = new Node(1);
2698   Node* res = new Node(1);
2699 
2700   Node* cast = transform_later(new CastP2XNode(ctl, res));
2701   Node* mask = MakeConX(0x1);
2702   Node* masked = transform_later(new AndXNode(cast, mask));
2703   Node* cmp = transform_later(new CmpXNode(masked, mask));
2704   Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2705   IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN);
2706   transform_later(allocation_iff);
2707   Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff));
2708   Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff));
2709 
2710   Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeValueTypePtr::NOTNULL));
2711 
2712   Node* mask2 = MakeConX(-2);
2713   Node* masked2 = transform_later(new AndXNode(cast, mask2));
2714   Node* rawklassptr = transform_later(new CastX2PNode(masked2));
2715   Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeKlassPtr::OBJECT_OR_NULL));
2716 
2717   Node* slowpath_bol = NULL;
2718   Node* top_adr = NULL;
2719   Node* old_top = NULL;
2720   Node* new_top = NULL;
2721   if (UseTLAB) {
2722     Node* end_adr = NULL;
2723     set_eden_pointers(top_adr, end_adr);
2724     Node* end = make_load(ctl, mem, end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
2725     old_top = new LoadPNode(ctl, mem, top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered);
2726     transform_later(old_top);
2727     Node* layout_val = make_load(NULL, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT);
2728     Node* size_in_bytes = ConvI2X(layout_val);
2729     new_top = new AddPNode(top(), old_top, size_in_bytes);
2730     transform_later(new_top);
2731     Node* slowpath_cmp = new CmpPNode(new_top, end);
2732     transform_later(slowpath_cmp);
2733     slowpath_bol = new BoolNode(slowpath_cmp, BoolTest::ge);
2734     transform_later(slowpath_bol);
2735   } else {
2736     slowpath_bol = intcon(1);
2737     top_adr = top();
2738     old_top = top();
2739     new_top = top();
2740   }
2741   IfNode* slowpath_iff = new IfNode(allocation_ctl, slowpath_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
2742   transform_later(slowpath_iff);
2743 
2744   Node* slowpath_true = new IfTrueNode(slowpath_iff);
2745   transform_later(slowpath_true);
2746 
2747   CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_value_type_fields_Type(),
2748                                                          StubRoutines::store_value_type_fields_to_buf(),
2749                                                          "store_value_type_fields",
2750                                                          call->jvms()->bci(),
2751                                                          TypePtr::BOTTOM);
2752   slow_call->init_req(TypeFunc::Control, slowpath_true);
2753   slow_call->init_req(TypeFunc::Memory, mem);
2754   slow_call->init_req(TypeFunc::I_O, io);
2755   slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2756   slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
2757   slow_call->init_req(TypeFunc::Parms, res);
2758 
2759   Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control));
2760   Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory));
2761   Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O));
2762   Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms));
2763   Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2));
2764   Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci));
2765   Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci));
2766 
2767   Node* ex_r = new RegionNode(3);
2768   Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM);
2769   Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO);
2770   ex_r->init_req(1, slow_excp);
2771   ex_mem_phi->init_req(1, slow_mem);
2772   ex_io_phi->init_req(1, slow_io);
2773   ex_r->init_req(2, ex_ctl);
2774   ex_mem_phi->init_req(2, ex_mem);
2775   ex_io_phi->init_req(2, ex_io);
2776 
2777   transform_later(ex_r);
2778   transform_later(ex_mem_phi);
2779   transform_later(ex_io_phi);
2780 
2781   Node* slowpath_false = new IfFalseNode(slowpath_iff);
2782   transform_later(slowpath_false);
2783   Node* rawmem = new StorePNode(slowpath_false, mem, top_adr, TypeRawPtr::BOTTOM, new_top, MemNode::unordered);
2784   transform_later(rawmem);
2785   Node* mark_node = NULL;
2786   // For now only enable fast locking for non-array types
2787   if (UseBiasedLocking) {
2788     mark_node = make_load(slowpath_false, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2789   } else {
2790     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
2791   }
2792   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
2793   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
2794   if (UseCompressedClassPointers) {
2795     rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT);
2796   }
2797   Node* pack_handler = make_load(slowpath_false, rawmem, klass_node, in_bytes(ValueKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2798 
2799   CallLeafNoFPNode* handler_call = new CallLeafNoFPNode(OptoRuntime::pack_value_type_Type(),
2800                                                         NULL,
2801                                                         "pack handler",
2802                                                         TypeRawPtr::BOTTOM);
2803   handler_call->init_req(TypeFunc::Control, slowpath_false);
2804   handler_call->init_req(TypeFunc::Memory, rawmem);
2805   handler_call->init_req(TypeFunc::I_O, top());
2806   handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2807   handler_call->init_req(TypeFunc::ReturnAdr, top());
2808   handler_call->init_req(TypeFunc::Parms, pack_handler);
2809   handler_call->init_req(TypeFunc::Parms+1, old_top);
2810 
2811   // We don't know how many values are returned. This assumes the
2812   // worst case, that all available registers are used.
2813   for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2814     if (domain->field_at(i) == Type::HALF) {
2815       slow_call->init_req(i, top());
2816       handler_call->init_req(i+1, top());
2817       continue;
2818     }
2819     Node* proj = transform_later(new ProjNode(call, i));
2820     slow_call->init_req(i, proj);
2821     handler_call->init_req(i+1, proj);
2822   }
2823 
2824   // We can safepoint at that new call
2825   copy_call_debug_info(call, slow_call);
2826   transform_later(slow_call);
2827   transform_later(handler_call);
2828 
2829   Node* handler_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control));
2830   rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory));
2831   Node* slowpath_false_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms));
2832 
2833   MergeMemNode* slowpath_false_mem = MergeMemNode::make(mem);
2834   slowpath_false_mem->set_memory_at(Compile::AliasIdxRaw, rawmem);
2835   transform_later(slowpath_false_mem);
2836 
2837   Node* r = new RegionNode(4);
2838   Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2839   Node* io_phi = new PhiNode(r, Type::ABIO);
2840   Node* res_phi = new PhiNode(r, ret->bottom_type());
2841 
2842   r->init_req(1, no_allocation_ctl);
2843   mem_phi->init_req(1, mem);
2844   io_phi->init_req(1, io);
2845   res_phi->init_req(1, no_allocation_res);
2846   r->init_req(2, slow_norm);
2847   mem_phi->init_req(2, slow_mem);
2848   io_phi->init_req(2, slow_io);
2849   res_phi->init_req(2, slow_res);
2850   r->init_req(3, handler_ctl);
2851   mem_phi->init_req(3, slowpath_false_mem);
2852   io_phi->init_req(3, io);
2853   res_phi->init_req(3, slowpath_false_res);
2854 
2855   transform_later(r);
2856   transform_later(mem_phi);
2857   transform_later(io_phi);
2858   transform_later(res_phi);
2859 
2860   assert(projs->nb_resproj == 1, "unexpected number of results");
2861   _igvn.replace_in_uses(projs->fallthrough_catchproj, r);
2862   _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi);
2863   _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi);
2864   _igvn.replace_in_uses(projs->resproj[0], res_phi);
2865   _igvn.replace_in_uses(projs->catchall_catchproj, ex_r);
2866   _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi);
2867   _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi);
2868 
2869   _igvn.replace_node(ctl, projs->fallthrough_catchproj);
2870   _igvn.replace_node(mem, projs->fallthrough_memproj);
2871   _igvn.replace_node(io, projs->fallthrough_ioproj);
2872   _igvn.replace_node(res, projs->resproj[0]);
2873   _igvn.replace_node(ex_ctl, projs->catchall_catchproj);
2874   _igvn.replace_node(ex_mem, projs->catchall_memproj);
2875   _igvn.replace_node(ex_io, projs->catchall_ioproj);
2876  }
2877 
2878 //---------------------------eliminate_macro_nodes----------------------
2879 // Eliminate scalar replaced allocations and associated locks.
2880 void PhaseMacroExpand::eliminate_macro_nodes() {
2881   if (C->macro_count() == 0)
2882     return;
2883 
2884   // First, attempt to eliminate locks
2885   int cnt = C->macro_count();
2886   for (int i=0; i < cnt; i++) {
2887     Node *n = C->macro_node(i);
2888     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2889       // Before elimination mark all associated (same box and obj)
2890       // lock and unlock nodes.
2891       mark_eliminated_locking_nodes(n->as_AbstractLock());
2892     }
2893   }
2894   bool progress = true;
2895   while (progress) {
2896     progress = false;
2897     for (int i = C->macro_count(); i > 0; i--) {
2898       Node * n = C->macro_node(i-1);
2899       bool success = false;
2900       debug_only(int old_macro_count = C->macro_count(););
2901       if (n->is_AbstractLock()) {
2902         success = eliminate_locking_node(n->as_AbstractLock());
2903       }
2904       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2905       progress = progress || success;
2906     }
2907   }
2908   // Next, attempt to eliminate allocations
2909   _has_locks = false;
2910   progress = true;
2911   while (progress) {
2912     progress = false;
2913     for (int i = C->macro_count(); i > 0; i--) {
2914       Node * n = C->macro_node(i-1);
2915       bool success = false;
2916       debug_only(int old_macro_count = C->macro_count(););
2917       switch (n->class_id()) {
2918       case Node::Class_Allocate:
2919       case Node::Class_AllocateArray:
2920         success = eliminate_allocate_node(n->as_Allocate());
2921         break;
2922       case Node::Class_CallStaticJava: {
2923         CallStaticJavaNode* call = n->as_CallStaticJava();
2924         if (!call->method()->is_method_handle_intrinsic()) {
2925           success = eliminate_boxing_node(n->as_CallStaticJava());
2926         }
2927         break;
2928       }
2929       case Node::Class_Lock:
2930       case Node::Class_Unlock:
2931         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2932         _has_locks = true;
2933         break;
2934       case Node::Class_ArrayCopy:
2935         break;
2936       case Node::Class_OuterStripMinedLoop:
2937         break;
2938       default:
2939         assert(n->Opcode() == Op_LoopLimit ||
2940                n->Opcode() == Op_Opaque1   ||
2941                n->Opcode() == Op_Opaque2   ||
2942                n->Opcode() == Op_Opaque3   ||
2943                n->Opcode() == Op_Opaque4, "unknown node type in macro list");
2944       }
2945       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2946       progress = progress || success;
2947     }
2948   }
2949 }
2950 
2951 //------------------------------expand_macro_nodes----------------------
2952 //  Returns true if a failure occurred.
2953 bool PhaseMacroExpand::expand_macro_nodes() {
2954   // Last attempt to eliminate macro nodes.
2955   eliminate_macro_nodes();
2956 
2957   // Make sure expansion will not cause node limit to be exceeded.
2958   // Worst case is a macro node gets expanded into about 200 nodes.
2959   // Allow 50% more for optimization.
2960   if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) )
2961     return true;
2962 
2963   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2964   bool progress = true;
2965   while (progress) {
2966     progress = false;
2967     for (int i = C->macro_count(); i > 0; i--) {
2968       Node * n = C->macro_node(i-1);
2969       bool success = false;
2970       debug_only(int old_macro_count = C->macro_count(););
2971       if (n->Opcode() == Op_LoopLimit) {
2972         // Remove it from macro list and put on IGVN worklist to optimize.
2973         C->remove_macro_node(n);
2974         _igvn._worklist.push(n);
2975         success = true;
2976       } else if (n->Opcode() == Op_CallStaticJava) {
2977         CallStaticJavaNode* call = n->as_CallStaticJava();
2978         if (!call->method()->is_method_handle_intrinsic()) {
2979           // Remove it from macro list and put on IGVN worklist to optimize.
2980           C->remove_macro_node(n);
2981           _igvn._worklist.push(n);
2982           success = true;
2983         }
2984       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2985         _igvn.replace_node(n, n->in(1));
2986         success = true;
2987 #if INCLUDE_RTM_OPT
2988       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2989         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2990         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2991         Node* cmp = n->unique_out();
2992 #ifdef ASSERT
2993         // Validate graph.
2994         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2995         BoolNode* bol = cmp->unique_out()->as_Bool();
2996         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2997                (bol->_test._test == BoolTest::ne), "");
2998         IfNode* ifn = bol->unique_out()->as_If();
2999         assert((ifn->outcnt() == 2) &&
3000                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
3001 #endif
3002         Node* repl = n->in(1);
3003         if (!_has_locks) {
3004           // Remove RTM state check if there are no locks in the code.
3005           // Replace input to compare the same value.
3006           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
3007         }
3008         _igvn.replace_node(n, repl);
3009         success = true;
3010 #endif
3011       } else if (n->Opcode() == Op_Opaque4) {
3012         _igvn.replace_node(n, n->in(2));
3013         success = true;
3014       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
3015         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
3016         C->remove_macro_node(n);
3017         success = true;
3018       }
3019       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
3020       progress = progress || success;
3021     }
3022   }
3023 
3024   // expand arraycopy "macro" nodes first
3025   // For ReduceBulkZeroing, we must first process all arraycopy nodes
3026   // before the allocate nodes are expanded.
3027   int macro_idx = C->macro_count() - 1;
3028   while (macro_idx >= 0) {
3029     Node * n = C->macro_node(macro_idx);
3030     assert(n->is_macro(), "only macro nodes expected here");
3031     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
3032       // node is unreachable, so don't try to expand it
3033       C->remove_macro_node(n);
3034     } else if (n->is_ArrayCopy()){
3035       int macro_count = C->macro_count();
3036       expand_arraycopy_node(n->as_ArrayCopy());
3037       assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3038     }
3039     if (C->failing())  return true;
3040     macro_idx --;
3041   }
3042 
3043   // expand "macro" nodes
3044   // nodes are removed from the macro list as they are processed
3045   while (C->macro_count() > 0) {
3046     int macro_count = C->macro_count();
3047     Node * n = C->macro_node(macro_count-1);
3048     assert(n->is_macro(), "only macro nodes expected here");
3049     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
3050       // node is unreachable, so don't try to expand it
3051       C->remove_macro_node(n);
3052       continue;
3053     }
3054     switch (n->class_id()) {
3055     case Node::Class_Allocate:
3056       expand_allocate(n->as_Allocate());
3057       break;
3058     case Node::Class_AllocateArray:
3059       expand_allocate_array(n->as_AllocateArray());
3060       break;
3061     case Node::Class_Lock:
3062       expand_lock_node(n->as_Lock());
3063       break;
3064     case Node::Class_Unlock:
3065       expand_unlock_node(n->as_Unlock());
3066       break;
3067     case Node::Class_CallStaticJava:
3068       expand_mh_intrinsic_return(n->as_CallStaticJava());
3069       C->remove_macro_node(n);
3070       break;
3071     default:
3072       assert(false, "unknown node type in macro list");
3073     }
3074     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3075     if (C->failing())  return true;
3076   }
3077 
3078   _igvn.set_delay_transform(false);
3079   _igvn.optimize();
3080   if (C->failing())  return true;
3081   return false;
3082 }