1 /*
   2  * Copyright (c) 2005, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "libadt/vectset.hpp"
  28 #include "opto/addnode.hpp"
  29 #include "opto/arraycopynode.hpp"
  30 #include "opto/callnode.hpp"
  31 #include "opto/castnode.hpp"
  32 #include "opto/cfgnode.hpp"
  33 #include "opto/compile.hpp"
  34 #include "opto/convertnode.hpp"
  35 #include "opto/graphKit.hpp"
  36 #include "opto/locknode.hpp"
  37 #include "opto/loopnode.hpp"
  38 #include "opto/macro.hpp"
  39 #include "opto/memnode.hpp"
  40 #include "opto/narrowptrnode.hpp"
  41 #include "opto/node.hpp"
  42 #include "opto/opaquenode.hpp"
  43 #include "opto/phaseX.hpp"
  44 #include "opto/rootnode.hpp"
  45 #include "opto/runtime.hpp"
  46 #include "opto/subnode.hpp"
  47 #include "opto/type.hpp"
  48 #include "opto/valuetypenode.hpp"
  49 #include "runtime/sharedRuntime.hpp"
  50 
  51 
  52 //
  53 // Replace any references to "oldref" in inputs to "use" with "newref".
  54 // Returns the number of replacements made.
  55 //
  56 int PhaseMacroExpand::replace_input(Node *use, Node *oldref, Node *newref) {
  57   int nreplacements = 0;
  58   uint req = use->req();
  59   for (uint j = 0; j < use->len(); j++) {
  60     Node *uin = use->in(j);
  61     if (uin == oldref) {
  62       if (j < req)
  63         use->set_req(j, newref);
  64       else
  65         use->set_prec(j, newref);
  66       nreplacements++;
  67     } else if (j >= req && uin == NULL) {
  68       break;
  69     }
  70   }
  71   return nreplacements;
  72 }
  73 
  74 void PhaseMacroExpand::copy_call_debug_info(CallNode *oldcall, CallNode * newcall) {
  75   // Copy debug information and adjust JVMState information
  76   uint old_dbg_start = oldcall->tf()->domain_sig()->cnt();
  77   uint new_dbg_start = newcall->tf()->domain_sig()->cnt();
  78   int jvms_adj  = new_dbg_start - old_dbg_start;
  79   assert (new_dbg_start == newcall->req(), "argument count mismatch");
  80 
  81   // SafePointScalarObject node could be referenced several times in debug info.
  82   // Use Dict to record cloned nodes.
  83   Dict* sosn_map = new Dict(cmpkey,hashkey);
  84   for (uint i = old_dbg_start; i < oldcall->req(); i++) {
  85     Node* old_in = oldcall->in(i);
  86     // Clone old SafePointScalarObjectNodes, adjusting their field contents.
  87     if (old_in != NULL && old_in->is_SafePointScalarObject()) {
  88       SafePointScalarObjectNode* old_sosn = old_in->as_SafePointScalarObject();
  89       uint old_unique = C->unique();
  90       Node* new_in = old_sosn->clone(sosn_map);
  91       if (old_unique != C->unique()) { // New node?
  92         new_in->set_req(0, C->root()); // reset control edge
  93         new_in = transform_later(new_in); // Register new node.
  94       }
  95       old_in = new_in;
  96     }
  97     newcall->add_req(old_in);
  98   }
  99 
 100   // JVMS may be shared so clone it before we modify it
 101   newcall->set_jvms(oldcall->jvms() != NULL ? oldcall->jvms()->clone_deep(C) : NULL);
 102   for (JVMState *jvms = newcall->jvms(); jvms != NULL; jvms = jvms->caller()) {
 103     jvms->set_map(newcall);
 104     jvms->set_locoff(jvms->locoff()+jvms_adj);
 105     jvms->set_stkoff(jvms->stkoff()+jvms_adj);
 106     jvms->set_monoff(jvms->monoff()+jvms_adj);
 107     jvms->set_scloff(jvms->scloff()+jvms_adj);
 108     jvms->set_endoff(jvms->endoff()+jvms_adj);
 109   }
 110 }
 111 
 112 Node* PhaseMacroExpand::opt_bits_test(Node* ctrl, Node* region, int edge, Node* word, int mask, int bits, bool return_fast_path) {
 113   Node* cmp;
 114   if (mask != 0) {
 115     Node* and_node = transform_later(new AndXNode(word, MakeConX(mask)));
 116     cmp = transform_later(new CmpXNode(and_node, MakeConX(bits)));
 117   } else {
 118     cmp = word;
 119   }
 120   Node* bol = transform_later(new BoolNode(cmp, BoolTest::ne));
 121   IfNode* iff = new IfNode( ctrl, bol, PROB_MIN, COUNT_UNKNOWN );
 122   transform_later(iff);
 123 
 124   // Fast path taken.
 125   Node *fast_taken = transform_later(new IfFalseNode(iff));
 126 
 127   // Fast path not-taken, i.e. slow path
 128   Node *slow_taken = transform_later(new IfTrueNode(iff));
 129 
 130   if (return_fast_path) {
 131     region->init_req(edge, slow_taken); // Capture slow-control
 132     return fast_taken;
 133   } else {
 134     region->init_req(edge, fast_taken); // Capture fast-control
 135     return slow_taken;
 136   }
 137 }
 138 
 139 //--------------------copy_predefined_input_for_runtime_call--------------------
 140 void PhaseMacroExpand::copy_predefined_input_for_runtime_call(Node * ctrl, CallNode* oldcall, CallNode* call) {
 141   // Set fixed predefined input arguments
 142   call->init_req( TypeFunc::Control, ctrl );
 143   call->init_req( TypeFunc::I_O    , oldcall->in( TypeFunc::I_O) );
 144   call->init_req( TypeFunc::Memory , oldcall->in( TypeFunc::Memory ) ); // ?????
 145   call->init_req( TypeFunc::ReturnAdr, oldcall->in( TypeFunc::ReturnAdr ) );
 146   call->init_req( TypeFunc::FramePtr, oldcall->in( TypeFunc::FramePtr ) );
 147 }
 148 
 149 //------------------------------make_slow_call---------------------------------
 150 CallNode* PhaseMacroExpand::make_slow_call(CallNode *oldcall, const TypeFunc* slow_call_type,
 151                                            address slow_call, const char* leaf_name, Node* slow_path,
 152                                            Node* parm0, Node* parm1, Node* parm2) {
 153 
 154   // Slow-path call
 155  CallNode *call = leaf_name
 156    ? (CallNode*)new CallLeafNode      ( slow_call_type, slow_call, leaf_name, TypeRawPtr::BOTTOM )
 157    : (CallNode*)new CallStaticJavaNode( slow_call_type, slow_call, OptoRuntime::stub_name(slow_call), oldcall->jvms()->bci(), TypeRawPtr::BOTTOM );
 158 
 159   // Slow path call has no side-effects, uses few values
 160   copy_predefined_input_for_runtime_call(slow_path, oldcall, call );
 161   if (parm0 != NULL)  call->init_req(TypeFunc::Parms+0, parm0);
 162   if (parm1 != NULL)  call->init_req(TypeFunc::Parms+1, parm1);
 163   if (parm2 != NULL)  call->init_req(TypeFunc::Parms+2, parm2);
 164   copy_call_debug_info(oldcall, call);
 165   call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
 166   _igvn.replace_node(oldcall, call);
 167   transform_later(call);
 168 
 169   return call;
 170 }
 171 
 172 void PhaseMacroExpand::extract_call_projections(CallNode *call) {
 173   _fallthroughproj = NULL;
 174   _fallthroughcatchproj = NULL;
 175   _ioproj_fallthrough = NULL;
 176   _ioproj_catchall = NULL;
 177   _catchallcatchproj = NULL;
 178   _memproj_fallthrough = NULL;
 179   _memproj_catchall = NULL;
 180   _resproj = NULL;
 181   for (DUIterator_Fast imax, i = call->fast_outs(imax); i < imax; i++) {
 182     ProjNode *pn = call->fast_out(i)->as_Proj();
 183     switch (pn->_con) {
 184       case TypeFunc::Control:
 185       {
 186         // For Control (fallthrough) and I_O (catch_all_index) we have CatchProj -> Catch -> Proj
 187         _fallthroughproj = pn;
 188         DUIterator_Fast jmax, j = pn->fast_outs(jmax);
 189         const Node *cn = pn->fast_out(j);
 190         if (cn->is_Catch()) {
 191           ProjNode *cpn = NULL;
 192           for (DUIterator_Fast kmax, k = cn->fast_outs(kmax); k < kmax; k++) {
 193             cpn = cn->fast_out(k)->as_Proj();
 194             assert(cpn->is_CatchProj(), "must be a CatchProjNode");
 195             if (cpn->_con == CatchProjNode::fall_through_index)
 196               _fallthroughcatchproj = cpn;
 197             else {
 198               assert(cpn->_con == CatchProjNode::catch_all_index, "must be correct index.");
 199               _catchallcatchproj = cpn;
 200             }
 201           }
 202         }
 203         break;
 204       }
 205       case TypeFunc::I_O:
 206         if (pn->_is_io_use)
 207           _ioproj_catchall = pn;
 208         else
 209           _ioproj_fallthrough = pn;
 210         break;
 211       case TypeFunc::Memory:
 212         if (pn->_is_io_use)
 213           _memproj_catchall = pn;
 214         else
 215           _memproj_fallthrough = pn;
 216         break;
 217       case TypeFunc::Parms:
 218         _resproj = pn;
 219         break;
 220       default:
 221         assert(false, "unexpected projection from allocation node.");
 222     }
 223   }
 224 
 225 }
 226 
 227 // Eliminate a card mark sequence.  p2x is a ConvP2XNode
 228 void PhaseMacroExpand::eliminate_card_mark(Node* p2x) {
 229   assert(p2x->Opcode() == Op_CastP2X, "ConvP2XNode required");
 230   if (!UseG1GC) {
 231     // vanilla/CMS post barrier
 232     Node *shift = p2x->unique_out();
 233     Node *addp = shift->unique_out();
 234     for (DUIterator_Last jmin, j = addp->last_outs(jmin); j >= jmin; --j) {
 235       Node *mem = addp->last_out(j);
 236       if (UseCondCardMark && mem->is_Load()) {
 237         assert(mem->Opcode() == Op_LoadB, "unexpected code shape");
 238         // The load is checking if the card has been written so
 239         // replace it with zero to fold the test.
 240         _igvn.replace_node(mem, intcon(0));
 241         continue;
 242       }
 243       assert(mem->is_Store(), "store required");
 244       _igvn.replace_node(mem, mem->in(MemNode::Memory));
 245     }
 246   } else {
 247     // G1 pre/post barriers
 248     assert(p2x->outcnt() <= 2, "expects 1 or 2 users: Xor and URShift nodes");
 249     // It could be only one user, URShift node, in Object.clone() intrinsic
 250     // but the new allocation is passed to arraycopy stub and it could not
 251     // be scalar replaced. So we don't check the case.
 252 
 253     // An other case of only one user (Xor) is when the value check for NULL
 254     // in G1 post barrier is folded after CCP so the code which used URShift
 255     // is removed.
 256 
 257     // Take Region node before eliminating post barrier since it also
 258     // eliminates CastP2X node when it has only one user.
 259     Node* this_region = p2x->in(0);
 260     assert(this_region != NULL, "");
 261 
 262     // Remove G1 post barrier.
 263 
 264     // Search for CastP2X->Xor->URShift->Cmp path which
 265     // checks if the store done to a different from the value's region.
 266     // And replace Cmp with #0 (false) to collapse G1 post barrier.
 267     Node* xorx = p2x->find_out_with(Op_XorX);
 268     if (xorx != NULL) {
 269       Node* shift = xorx->unique_out();
 270       Node* cmpx = shift->unique_out();
 271       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 272       cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 273       "missing region check in G1 post barrier");
 274       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 275 
 276       // Remove G1 pre barrier.
 277 
 278       // Search "if (marking != 0)" check and set it to "false".
 279       // There is no G1 pre barrier if previous stored value is NULL
 280       // (for example, after initialization).
 281       if (this_region->is_Region() && this_region->req() == 3) {
 282         int ind = 1;
 283         if (!this_region->in(ind)->is_IfFalse()) {
 284           ind = 2;
 285         }
 286         if (this_region->in(ind)->is_IfFalse() &&
 287             this_region->in(ind)->in(0)->Opcode() == Op_If) {
 288           Node* bol = this_region->in(ind)->in(0)->in(1);
 289           assert(bol->is_Bool(), "");
 290           cmpx = bol->in(1);
 291           if (bol->as_Bool()->_test._test == BoolTest::ne &&
 292               cmpx->is_Cmp() && cmpx->in(2) == intcon(0) &&
 293               cmpx->in(1)->is_Load()) {
 294             Node* adr = cmpx->in(1)->as_Load()->in(MemNode::Address);
 295             const int marking_offset = in_bytes(JavaThread::satb_mark_queue_offset() +
 296                                                 SATBMarkQueue::byte_offset_of_active());
 297             if (adr->is_AddP() && adr->in(AddPNode::Base) == top() &&
 298                 adr->in(AddPNode::Address)->Opcode() == Op_ThreadLocal &&
 299                 adr->in(AddPNode::Offset) == MakeConX(marking_offset)) {
 300               _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 301             }
 302           }
 303         }
 304       }
 305     } else {
 306       assert(!GraphKit::use_ReduceInitialCardMarks(), "can only happen with card marking");
 307       // This is a G1 post barrier emitted by the Object.clone() intrinsic.
 308       // Search for the CastP2X->URShiftX->AddP->LoadB->Cmp path which checks if the card
 309       // is marked as young_gen and replace the Cmp with 0 (false) to collapse the barrier.
 310       Node* shift = p2x->find_out_with(Op_URShiftX);
 311       assert(shift != NULL, "missing G1 post barrier");
 312       Node* addp = shift->unique_out();
 313       Node* load = addp->find_out_with(Op_LoadB);
 314       assert(load != NULL, "missing G1 post barrier");
 315       Node* cmpx = load->unique_out();
 316       assert(cmpx->is_Cmp() && cmpx->unique_out()->is_Bool() &&
 317              cmpx->unique_out()->as_Bool()->_test._test == BoolTest::ne,
 318              "missing card value check in G1 post barrier");
 319       _igvn.replace_node(cmpx, makecon(TypeInt::CC_EQ));
 320       // There is no G1 pre barrier in this case
 321     }
 322     // Now CastP2X can be removed since it is used only on dead path
 323     // which currently still alive until igvn optimize it.
 324     assert(p2x->outcnt() == 0 || p2x->unique_out()->Opcode() == Op_URShiftX, "");
 325     _igvn.replace_node(p2x, top());
 326   }
 327 }
 328 
 329 // Search for a memory operation for the specified memory slice.
 330 static Node *scan_mem_chain(Node *mem, int alias_idx, int offset, Node *start_mem, Node *alloc, PhaseGVN *phase) {
 331   Node *orig_mem = mem;
 332   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 333   const TypeOopPtr *tinst = phase->C->get_adr_type(alias_idx)->isa_oopptr();
 334   while (true) {
 335     if (mem == alloc_mem || mem == start_mem ) {
 336       return mem;  // hit one of our sentinels
 337     } else if (mem->is_MergeMem()) {
 338       mem = mem->as_MergeMem()->memory_at(alias_idx);
 339     } else if (mem->is_Proj() && mem->as_Proj()->_con == TypeFunc::Memory) {
 340       Node *in = mem->in(0);
 341       // we can safely skip over safepoints, calls, locks and membars because we
 342       // already know that the object is safe to eliminate.
 343       if (in->is_Initialize() && in->as_Initialize()->allocation() == alloc) {
 344         return in;
 345       } else if (in->is_Call()) {
 346         CallNode *call = in->as_Call();
 347         if (call->may_modify(tinst, phase)) {
 348           assert(call->is_ArrayCopy(), "ArrayCopy is the only call node that doesn't make allocation escape");
 349           if (call->as_ArrayCopy()->modifies(offset, offset, phase, false)) {
 350             return in;
 351           }
 352         }
 353         mem = in->in(TypeFunc::Memory);
 354       } else if (in->is_MemBar()) {
 355         ArrayCopyNode* ac = NULL;
 356         if (ArrayCopyNode::may_modify(tinst, in->as_MemBar(), phase, ac)) {
 357           assert(ac != NULL && ac->is_clonebasic(), "Only basic clone is a non escaping clone");
 358           return ac;
 359         }
 360         mem = in->in(TypeFunc::Memory);
 361       } else {
 362         assert(false, "unexpected projection");
 363       }
 364     } else if (mem->is_Store()) {
 365       const TypePtr* atype = mem->as_Store()->adr_type();
 366       int adr_idx = phase->C->get_alias_index(atype);
 367       if (adr_idx == alias_idx) {
 368         assert(atype->isa_oopptr(), "address type must be oopptr");
 369         int adr_offset = atype->flattened_offset();
 370         uint adr_iid = atype->is_oopptr()->instance_id();
 371         // Array elements references have the same alias_idx
 372         // but different offset and different instance_id.
 373         if (adr_offset == offset && adr_iid == alloc->_idx)
 374           return mem;
 375       } else {
 376         assert(adr_idx == Compile::AliasIdxRaw, "address must match or be raw");
 377       }
 378       mem = mem->in(MemNode::Memory);
 379     } else if (mem->is_ClearArray()) {
 380       if (!ClearArrayNode::step_through(&mem, alloc->_idx, phase)) {
 381         // Can not bypass initialization of the instance
 382         // we are looking.
 383         debug_only(intptr_t offset;)
 384         assert(alloc == AllocateNode::Ideal_allocation(mem->in(3), phase, offset), "sanity");
 385         InitializeNode* init = alloc->as_Allocate()->initialization();
 386         // We are looking for stored value, return Initialize node
 387         // or memory edge from Allocate node.
 388         if (init != NULL)
 389           return init;
 390         else
 391           return alloc->in(TypeFunc::Memory); // It will produce zero value (see callers).
 392       }
 393       // Otherwise skip it (the call updated 'mem' value).
 394     } else if (mem->Opcode() == Op_SCMemProj) {
 395       mem = mem->in(0);
 396       Node* adr = NULL;
 397       if (mem->is_LoadStore()) {
 398         adr = mem->in(MemNode::Address);
 399       } else {
 400         assert(mem->Opcode() == Op_EncodeISOArray ||
 401                mem->Opcode() == Op_StrCompressedCopy, "sanity");
 402         adr = mem->in(3); // Destination array
 403       }
 404       const TypePtr* atype = adr->bottom_type()->is_ptr();
 405       int adr_idx = phase->C->get_alias_index(atype);
 406       if (adr_idx == alias_idx) {
 407         DEBUG_ONLY(mem->dump();)
 408         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 409         return NULL;
 410       }
 411       mem = mem->in(MemNode::Memory);
 412     } else if (mem->Opcode() == Op_StrInflatedCopy) {
 413       Node* adr = mem->in(3); // Destination array
 414       const TypePtr* atype = adr->bottom_type()->is_ptr();
 415       int adr_idx = phase->C->get_alias_index(atype);
 416       if (adr_idx == alias_idx) {
 417         DEBUG_ONLY(mem->dump();)
 418         assert(false, "Object is not scalar replaceable if a StrInflatedCopy node accesses its field");
 419         return NULL;
 420       }
 421       mem = mem->in(MemNode::Memory);
 422     } else {
 423       return mem;
 424     }
 425     assert(mem != orig_mem, "dead memory loop");
 426   }
 427 }
 428 
 429 // Generate loads from source of the arraycopy for fields of
 430 // destination needed at a deoptimization point
 431 Node* PhaseMacroExpand::make_arraycopy_load(ArrayCopyNode* ac, intptr_t offset, Node* ctl, Node* mem, BasicType ft, const Type *ftype, AllocateNode *alloc) {
 432   BasicType bt = ft;
 433   const Type *type = ftype;
 434   if (ft == T_NARROWOOP) {
 435     bt = T_OBJECT;
 436     type = ftype->make_oopptr();
 437   }
 438   Node* res = NULL;
 439   if (ac->is_clonebasic()) {
 440     Node* base = ac->in(ArrayCopyNode::Src)->in(AddPNode::Base);
 441     Node* adr = _igvn.transform(new AddPNode(base, base, MakeConX(offset)));
 442     const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 443     res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 444   } else {
 445     if (ac->modifies(offset, offset, &_igvn, true)) {
 446       assert(ac->in(ArrayCopyNode::Dest) == alloc->result_cast(), "arraycopy destination should be allocation's result");
 447       uint shift  = exact_log2(type2aelembytes(bt));
 448       Node* diff = _igvn.transform(new SubINode(ac->in(ArrayCopyNode::SrcPos), ac->in(ArrayCopyNode::DestPos)));
 449 #ifdef _LP64
 450       diff = _igvn.transform(new ConvI2LNode(diff));
 451 #endif
 452       diff = _igvn.transform(new LShiftXNode(diff, intcon(shift)));
 453 
 454       Node* off = _igvn.transform(new AddXNode(MakeConX(offset), diff));
 455       Node* base = ac->in(ArrayCopyNode::Src);
 456       Node* adr = _igvn.transform(new AddPNode(base, base, off));
 457       const TypePtr* adr_type = _igvn.type(base)->is_ptr()->add_offset(offset);
 458       res = LoadNode::make(_igvn, ctl, mem, adr, adr_type, type, bt, MemNode::unordered, LoadNode::Pinned);
 459     }
 460   }
 461   if (res != NULL) {
 462     res = _igvn.transform(res);
 463     if (ftype->isa_narrowoop()) {
 464       // PhaseMacroExpand::scalar_replacement adds DecodeN nodes
 465       res = _igvn.transform(new EncodePNode(res, ftype));
 466     }
 467     return res;
 468   }
 469   return NULL;
 470 }
 471 
 472 //
 473 // Given a Memory Phi, compute a value Phi containing the values from stores
 474 // on the input paths.
 475 // Note: this function is recursive, its depth is limited by the "level" argument
 476 // Returns the computed Phi, or NULL if it cannot compute it.
 477 Node *PhaseMacroExpand::value_from_mem_phi(Node *mem, BasicType ft, const Type *phi_type, const TypeOopPtr *adr_t, AllocateNode *alloc, Node_Stack *value_phis, int level) {
 478   assert(mem->is_Phi(), "sanity");
 479   int alias_idx = C->get_alias_index(adr_t);
 480   int offset = adr_t->flattened_offset();
 481   int instance_id = adr_t->instance_id();
 482 
 483   // Check if an appropriate value phi already exists.
 484   Node* region = mem->in(0);
 485   for (DUIterator_Fast kmax, k = region->fast_outs(kmax); k < kmax; k++) {
 486     Node* phi = region->fast_out(k);
 487     if (phi->is_Phi() && phi != mem &&
 488         phi->as_Phi()->is_same_inst_field(phi_type, (int)mem->_idx, instance_id, alias_idx, offset)) {
 489       return phi;
 490     }
 491   }
 492   // Check if an appropriate new value phi already exists.
 493   Node* new_phi = value_phis->find(mem->_idx);
 494   if (new_phi != NULL)
 495     return new_phi;
 496 
 497   if (level <= 0) {
 498     return NULL; // Give up: phi tree too deep
 499   }
 500   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 501   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 502 
 503   uint length = mem->req();
 504   GrowableArray <Node *> values(length, length, NULL, false);
 505 
 506   // create a new Phi for the value
 507   PhiNode *phi = new PhiNode(mem->in(0), phi_type, NULL, mem->_idx, instance_id, alias_idx, offset);
 508   transform_later(phi);
 509   value_phis->push(phi, mem->_idx);
 510 
 511   for (uint j = 1; j < length; j++) {
 512     Node *in = mem->in(j);
 513     if (in == NULL || in->is_top()) {
 514       values.at_put(j, in);
 515     } else  {
 516       Node *val = scan_mem_chain(in, alias_idx, offset, start_mem, alloc, &_igvn);
 517       if (val == start_mem || val == alloc_mem) {
 518         // hit a sentinel, return appropriate 0 value
 519         values.at_put(j, _igvn.zerocon(ft));
 520         continue;
 521       }
 522       if (val->is_Initialize()) {
 523         val = val->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 524       }
 525       if (val == NULL) {
 526         return NULL;  // can't find a value on this path
 527       }
 528       if (val == mem) {
 529         values.at_put(j, mem);
 530       } else if (val->is_Store()) {
 531         values.at_put(j, val->in(MemNode::ValueIn));
 532       } else if(val->is_Proj() && val->in(0) == alloc) {
 533         values.at_put(j, _igvn.zerocon(ft));
 534       } else if (val->is_Phi()) {
 535         val = value_from_mem_phi(val, ft, phi_type, adr_t, alloc, value_phis, level-1);
 536         if (val == NULL) {
 537           return NULL;
 538         }
 539         values.at_put(j, val);
 540       } else if (val->Opcode() == Op_SCMemProj) {
 541         assert(val->in(0)->is_LoadStore() ||
 542                val->in(0)->Opcode() == Op_EncodeISOArray ||
 543                val->in(0)->Opcode() == Op_StrCompressedCopy, "sanity");
 544         assert(false, "Object is not scalar replaceable if a LoadStore node accesses its field");
 545         return NULL;
 546       } else if (val->is_ArrayCopy()) {
 547         Node* res = make_arraycopy_load(val->as_ArrayCopy(), offset, val->in(0), val->in(TypeFunc::Memory), ft, phi_type, alloc);
 548         if (res == NULL) {
 549           return NULL;
 550         }
 551         values.at_put(j, res);
 552       } else {
 553 #ifdef ASSERT
 554         val->dump();
 555         assert(false, "unknown node on this path");
 556 #endif
 557         return NULL;  // unknown node on this path
 558       }
 559     }
 560   }
 561   // Set Phi's inputs
 562   for (uint j = 1; j < length; j++) {
 563     if (values.at(j) == mem) {
 564       phi->init_req(j, phi);
 565     } else {
 566       phi->init_req(j, values.at(j));
 567     }
 568   }
 569   return phi;
 570 }
 571 
 572 // Search the last value stored into the object's field.
 573 Node *PhaseMacroExpand::value_from_mem(Node *sfpt_mem, Node *sfpt_ctl, BasicType ft, const Type *ftype, const TypeOopPtr *adr_t, AllocateNode *alloc) {
 574   assert(adr_t->is_known_instance_field(), "instance required");
 575   int instance_id = adr_t->instance_id();
 576   assert((uint)instance_id == alloc->_idx, "wrong allocation");
 577 
 578   int alias_idx = C->get_alias_index(adr_t);
 579   int offset = adr_t->flattened_offset();
 580   Node *start_mem = C->start()->proj_out_or_null(TypeFunc::Memory);
 581   Node *alloc_ctrl = alloc->in(TypeFunc::Control);
 582   Node *alloc_mem = alloc->in(TypeFunc::Memory);
 583   Arena *a = Thread::current()->resource_area();
 584   VectorSet visited(a);
 585 
 586   bool done = sfpt_mem == alloc_mem;
 587   Node *mem = sfpt_mem;
 588   while (!done) {
 589     if (visited.test_set(mem->_idx)) {
 590       return NULL;  // found a loop, give up
 591     }
 592     mem = scan_mem_chain(mem, alias_idx, offset, start_mem, alloc, &_igvn);
 593     if (mem == start_mem || mem == alloc_mem) {
 594       done = true;  // hit a sentinel, return appropriate 0 value
 595     } else if (mem->is_Initialize()) {
 596       mem = mem->as_Initialize()->find_captured_store(offset, type2aelembytes(ft), &_igvn);
 597       if (mem == NULL) {
 598         done = true; // Something went wrong.
 599       } else if (mem->is_Store()) {
 600         const TypePtr* atype = mem->as_Store()->adr_type();
 601         assert(C->get_alias_index(atype) == Compile::AliasIdxRaw, "store is correct memory slice");
 602         done = true;
 603       }
 604     } else if (mem->is_Store()) {
 605       const TypeOopPtr* atype = mem->as_Store()->adr_type()->isa_oopptr();
 606       assert(atype != NULL, "address type must be oopptr");
 607       assert(C->get_alias_index(atype) == alias_idx &&
 608              atype->is_known_instance_field() && atype->flattened_offset() == offset &&
 609              atype->instance_id() == instance_id, "store is correct memory slice");
 610       done = true;
 611     } else if (mem->is_Phi()) {
 612       // try to find a phi's unique input
 613       Node *unique_input = NULL;
 614       Node *top = C->top();
 615       for (uint i = 1; i < mem->req(); i++) {
 616         Node *n = scan_mem_chain(mem->in(i), alias_idx, offset, start_mem, alloc, &_igvn);
 617         if (n == NULL || n == top || n == mem) {
 618           continue;
 619         } else if (unique_input == NULL) {
 620           unique_input = n;
 621         } else if (unique_input != n) {
 622           unique_input = top;
 623           break;
 624         }
 625       }
 626       if (unique_input != NULL && unique_input != top) {
 627         mem = unique_input;
 628       } else {
 629         done = true;
 630       }
 631     } else if (mem->is_ArrayCopy()) {
 632       done = true;
 633     } else {
 634       assert(false, "unexpected node");
 635     }
 636   }
 637   if (mem != NULL) {
 638     if (mem == start_mem || mem == alloc_mem) {
 639       // hit a sentinel, return appropriate 0 value
 640       return _igvn.zerocon(ft);
 641     } else if (mem->is_Store()) {
 642       return mem->in(MemNode::ValueIn);
 643     } else if (mem->is_Phi()) {
 644       // attempt to produce a Phi reflecting the values on the input paths of the Phi
 645       Node_Stack value_phis(a, 8);
 646       Node * phi = value_from_mem_phi(mem, ft, ftype, adr_t, alloc, &value_phis, ValueSearchLimit);
 647       if (phi != NULL) {
 648         return phi;
 649       } else {
 650         // Kill all new Phis
 651         while(value_phis.is_nonempty()) {
 652           Node* n = value_phis.node();
 653           _igvn.replace_node(n, C->top());
 654           value_phis.pop();
 655         }
 656       }
 657     } else if (mem->is_ArrayCopy()) {
 658       Node* ctl = mem->in(0);
 659       Node* m = mem->in(TypeFunc::Memory);
 660       if (sfpt_ctl->is_Proj() && sfpt_ctl->as_Proj()->is_uncommon_trap_proj(Deoptimization::Reason_none)) {
 661         // pin the loads in the uncommon trap path
 662         ctl = sfpt_ctl;
 663         m = sfpt_mem;
 664       }
 665       return make_arraycopy_load(mem->as_ArrayCopy(), offset, ctl, m, ft, ftype, alloc);
 666     }
 667   }
 668   // Something went wrong.
 669   return NULL;
 670 }
 671 
 672 // Search the last value stored into the value type's fields.
 673 Node* PhaseMacroExpand::value_type_from_mem(Node* mem, Node* ctl, ciValueKlass* vk, const TypeAryPtr* adr_type, int offset, AllocateNode* alloc) {
 674   // Subtract the offset of the first field to account for the missing oop header
 675   offset -= vk->first_field_offset();
 676   // Create a new ValueTypeNode and retrieve the field values from memory
 677   ValueTypeNode* vt = ValueTypeNode::make_uninitialized(_igvn, vk)->as_ValueType();
 678   for (int i = 0; i < vk->nof_declared_nonstatic_fields(); ++i) {
 679     ciType* field_type = vt->field_type(i);
 680     int field_offset = offset + vt->field_offset(i);
 681     // Each value type field has its own memory slice
 682     adr_type = adr_type->with_field_offset(field_offset);
 683     Node* value = NULL;
 684     if (vt->field_is_flattened(i)) {
 685       value = value_type_from_mem(mem, ctl, field_type->as_value_klass(), adr_type, field_offset, alloc);
 686     } else {
 687       const Type* ft = Type::get_const_type(field_type);
 688       BasicType bt = field_type->basic_type();
 689       if (UseCompressedOops && !is_java_primitive(bt)) {
 690         ft = ft->make_narrowoop();
 691         bt = T_NARROWOOP;
 692       }
 693       value = value_from_mem(mem, ctl, bt, ft, adr_type, alloc);
 694       assert(value != NULL, "field value should not be null");
 695       if (ft->isa_narrowoop()) {
 696         assert(UseCompressedOops, "unexpected narrow oop");
 697         value = transform_later(new DecodeNNode(value, value->get_ptr_type()));
 698       }
 699     }
 700     vt->set_field_value(i, value);
 701   }
 702   return vt;
 703 }
 704 
 705 // Check the possibility of scalar replacement.
 706 bool PhaseMacroExpand::can_eliminate_allocation(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 707   //  Scan the uses of the allocation to check for anything that would
 708   //  prevent us from eliminating it.
 709   NOT_PRODUCT( const char* fail_eliminate = NULL; )
 710   DEBUG_ONLY( Node* disq_node = NULL; )
 711   bool  can_eliminate = true;
 712 
 713   Node* res = alloc->result_cast();
 714   const TypeOopPtr* res_type = NULL;
 715   if (res == NULL) {
 716     // All users were eliminated.
 717   } else if (!res->is_CheckCastPP()) {
 718     NOT_PRODUCT(fail_eliminate = "Allocation does not have unique CheckCastPP";)
 719     can_eliminate = false;
 720   } else {
 721     res_type = _igvn.type(res)->isa_oopptr();
 722     if (res_type == NULL) {
 723       NOT_PRODUCT(fail_eliminate = "Neither instance or array allocation";)
 724       can_eliminate = false;
 725     } else if (res_type->isa_aryptr()) {
 726       int length = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 727       if (length < 0) {
 728         NOT_PRODUCT(fail_eliminate = "Array's size is not constant";)
 729         can_eliminate = false;
 730       }
 731     }
 732   }
 733 
 734   if (can_eliminate && res != NULL) {
 735     for (DUIterator_Fast jmax, j = res->fast_outs(jmax);
 736                                j < jmax && can_eliminate; j++) {
 737       Node* use = res->fast_out(j);
 738 
 739       if (use->is_AddP()) {
 740         const TypePtr* addp_type = _igvn.type(use)->is_ptr();
 741         int offset = addp_type->offset();
 742 
 743         if (offset == Type::OffsetTop || offset == Type::OffsetBot) {
 744           NOT_PRODUCT(fail_eliminate = "Undefined field referrence";)
 745           can_eliminate = false;
 746           break;
 747         }
 748         for (DUIterator_Fast kmax, k = use->fast_outs(kmax);
 749                                    k < kmax && can_eliminate; k++) {
 750           Node* n = use->fast_out(k);
 751           if (!n->is_Store() && n->Opcode() != Op_CastP2X &&
 752               !(n->is_ArrayCopy() &&
 753                 n->as_ArrayCopy()->is_clonebasic() &&
 754                 n->in(ArrayCopyNode::Dest) == use)) {
 755             DEBUG_ONLY(disq_node = n;)
 756             if (n->is_Load() || n->is_LoadStore()) {
 757               NOT_PRODUCT(fail_eliminate = "Field load";)
 758             } else {
 759               NOT_PRODUCT(fail_eliminate = "Not store field reference";)
 760             }
 761             can_eliminate = false;
 762           }
 763         }
 764       } else if (use->is_ArrayCopy() &&
 765                  (use->as_ArrayCopy()->is_arraycopy_validated() ||
 766                   use->as_ArrayCopy()->is_copyof_validated() ||
 767                   use->as_ArrayCopy()->is_copyofrange_validated()) &&
 768                  use->in(ArrayCopyNode::Dest) == res) {
 769         // ok to eliminate
 770       } else if (use->is_SafePoint()) {
 771         SafePointNode* sfpt = use->as_SafePoint();
 772         if (sfpt->is_Call() && sfpt->as_Call()->has_non_debug_use(res)) {
 773           // Object is passed as argument.
 774           DEBUG_ONLY(disq_node = use;)
 775           NOT_PRODUCT(fail_eliminate = "Object is passed as argument";)
 776           can_eliminate = false;
 777         }
 778         Node* sfptMem = sfpt->memory();
 779         if (sfptMem == NULL || sfptMem->is_top()) {
 780           DEBUG_ONLY(disq_node = use;)
 781           NOT_PRODUCT(fail_eliminate = "NULL or TOP memory";)
 782           can_eliminate = false;
 783         } else {
 784           safepoints.append_if_missing(sfpt);
 785         }
 786       } else if (use->Opcode() != Op_CastP2X) { // CastP2X is used by card mark
 787         if (use->is_Phi()) {
 788           if (use->outcnt() == 1 && use->unique_out()->Opcode() == Op_Return) {
 789             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 790           } else {
 791             NOT_PRODUCT(fail_eliminate = "Object is referenced by Phi";)
 792           }
 793           DEBUG_ONLY(disq_node = use;)
 794         } else {
 795           if (use->Opcode() == Op_Return) {
 796             NOT_PRODUCT(fail_eliminate = "Object is return value";)
 797           } else {
 798             NOT_PRODUCT(fail_eliminate = "Object is referenced by node";)
 799           }
 800           DEBUG_ONLY(disq_node = use;)
 801         }
 802         can_eliminate = false;
 803       }
 804     }
 805   }
 806 
 807 #ifndef PRODUCT
 808   if (PrintEliminateAllocations) {
 809     if (can_eliminate) {
 810       tty->print("Scalar ");
 811       if (res == NULL)
 812         alloc->dump();
 813       else
 814         res->dump();
 815     } else if (alloc->_is_scalar_replaceable) {
 816       tty->print("NotScalar (%s)", fail_eliminate);
 817       if (res == NULL)
 818         alloc->dump();
 819       else
 820         res->dump();
 821 #ifdef ASSERT
 822       if (disq_node != NULL) {
 823           tty->print("  >>>> ");
 824           disq_node->dump();
 825       }
 826 #endif /*ASSERT*/
 827     }
 828   }
 829 #endif
 830   return can_eliminate;
 831 }
 832 
 833 // Do scalar replacement.
 834 bool PhaseMacroExpand::scalar_replacement(AllocateNode *alloc, GrowableArray <SafePointNode *>& safepoints) {
 835   GrowableArray <SafePointNode *> safepoints_done;
 836 
 837   ciKlass* klass = NULL;
 838   ciInstanceKlass* iklass = NULL;
 839   int nfields = 0;
 840   int array_base = 0;
 841   int element_size = 0;
 842   BasicType basic_elem_type = T_ILLEGAL;
 843   ciType* elem_type = NULL;
 844 
 845   Node* res = alloc->result_cast();
 846   assert(res == NULL || res->is_CheckCastPP(), "unexpected AllocateNode result");
 847   const TypeOopPtr* res_type = NULL;
 848   if (res != NULL) { // Could be NULL when there are no users
 849     res_type = _igvn.type(res)->isa_oopptr();
 850   }
 851 
 852   if (res != NULL) {
 853     klass = res_type->klass();
 854     // Value types are only allocated on demand
 855     if (res_type->isa_instptr() || res_type->isa_valuetypeptr()) {
 856       // find the fields of the class which will be needed for safepoint debug information
 857       assert(klass->is_instance_klass(), "must be an instance klass.");
 858       iklass = klass->as_instance_klass();
 859       nfields = iklass->nof_nonstatic_fields();
 860     } else {
 861       // find the array's elements which will be needed for safepoint debug information
 862       nfields = alloc->in(AllocateNode::ALength)->find_int_con(-1);
 863       assert(klass->is_array_klass() && nfields >= 0, "must be an array klass.");
 864       elem_type = klass->as_array_klass()->element_type();
 865       basic_elem_type = elem_type->basic_type();
 866       array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
 867       element_size = type2aelembytes(basic_elem_type);
 868       if (klass->is_value_array_klass()) {
 869         // Flattened value type array
 870         element_size = klass->as_value_array_klass()->element_byte_size();
 871       }
 872     }
 873   }
 874   //
 875   // Process the safepoint uses
 876   //
 877   Unique_Node_List value_worklist;
 878   while (safepoints.length() > 0) {
 879     SafePointNode* sfpt = safepoints.pop();
 880     Node* mem = sfpt->memory();
 881     Node* ctl = sfpt->control();
 882     assert(sfpt->jvms() != NULL, "missed JVMS");
 883     // Fields of scalar objs are referenced only at the end
 884     // of regular debuginfo at the last (youngest) JVMS.
 885     // Record relative start index.
 886     uint first_ind = (sfpt->req() - sfpt->jvms()->scloff());
 887     SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 888 #ifdef ASSERT
 889                                                  alloc,
 890 #endif
 891                                                  first_ind, nfields);
 892     sobj->init_req(0, C->root());
 893     transform_later(sobj);
 894 
 895     // Scan object's fields adding an input to the safepoint for each field.
 896     for (int j = 0; j < nfields; j++) {
 897       intptr_t offset;
 898       ciField* field = NULL;
 899       if (iklass != NULL) {
 900         field = iklass->nonstatic_field_at(j);
 901         offset = field->offset();
 902         elem_type = field->type();
 903         basic_elem_type = field->layout_type();
 904         assert(!field->is_flattened(), "flattened value type fields should not have safepoint uses");
 905       } else {
 906         offset = array_base + j * (intptr_t)element_size;
 907       }
 908 
 909       const Type *field_type;
 910       // The next code is taken from Parse::do_get_xxx().
 911       if (basic_elem_type == T_OBJECT || basic_elem_type == T_ARRAY) {
 912         if (!elem_type->is_loaded()) {
 913           field_type = TypeInstPtr::BOTTOM;
 914         } else if (field != NULL && field->is_static_constant()) {
 915           // This can happen if the constant oop is non-perm.
 916           ciObject* con = field->constant_value().as_object();
 917           // Do not "join" in the previous type; it doesn't add value,
 918           // and may yield a vacuous result if the field is of interface type.
 919           field_type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 920           assert(field_type != NULL, "field singleton type must be consistent");
 921         } else {
 922           field_type = TypeOopPtr::make_from_klass(elem_type->as_klass());
 923         }
 924         if (UseCompressedOops) {
 925           field_type = field_type->make_narrowoop();
 926           basic_elem_type = T_NARROWOOP;
 927         }
 928       } else {
 929         field_type = Type::get_const_basic_type(basic_elem_type);
 930       }
 931 
 932       Node* field_val = NULL;
 933       const TypeOopPtr* field_addr_type = res_type->add_offset(offset)->isa_oopptr();
 934       if (klass->is_value_array_klass()) {
 935         ciValueKlass* vk = elem_type->as_value_klass();
 936         assert(vk->flatten_array(), "must be flattened");
 937         field_val = value_type_from_mem(mem, ctl, vk, field_addr_type->isa_aryptr(), 0, alloc);
 938       } else {
 939         field_val = value_from_mem(mem, ctl, basic_elem_type, field_type, field_addr_type, alloc);
 940       }
 941       if (field_val == NULL) {
 942         // We weren't able to find a value for this field,
 943         // give up on eliminating this allocation.
 944 
 945         // Remove any extra entries we added to the safepoint.
 946         uint last = sfpt->req() - 1;
 947         for (int k = 0;  k < j; k++) {
 948           sfpt->del_req(last--);
 949         }
 950         _igvn._worklist.push(sfpt);
 951         // rollback processed safepoints
 952         while (safepoints_done.length() > 0) {
 953           SafePointNode* sfpt_done = safepoints_done.pop();
 954           // remove any extra entries we added to the safepoint
 955           last = sfpt_done->req() - 1;
 956           for (int k = 0;  k < nfields; k++) {
 957             sfpt_done->del_req(last--);
 958           }
 959           JVMState *jvms = sfpt_done->jvms();
 960           jvms->set_endoff(sfpt_done->req());
 961           // Now make a pass over the debug information replacing any references
 962           // to SafePointScalarObjectNode with the allocated object.
 963           int start = jvms->debug_start();
 964           int end   = jvms->debug_end();
 965           for (int i = start; i < end; i++) {
 966             if (sfpt_done->in(i)->is_SafePointScalarObject()) {
 967               SafePointScalarObjectNode* scobj = sfpt_done->in(i)->as_SafePointScalarObject();
 968               if (scobj->first_index(jvms) == sfpt_done->req() &&
 969                   scobj->n_fields() == (uint)nfields) {
 970                 assert(scobj->alloc() == alloc, "sanity");
 971                 sfpt_done->set_req(i, res);
 972               }
 973             }
 974           }
 975           _igvn._worklist.push(sfpt_done);
 976         }
 977 #ifndef PRODUCT
 978         if (PrintEliminateAllocations) {
 979           if (field != NULL) {
 980             tty->print("=== At SafePoint node %d can't find value of Field: ",
 981                        sfpt->_idx);
 982             field->print();
 983             int field_idx = C->get_alias_index(field_addr_type);
 984             tty->print(" (alias_idx=%d)", field_idx);
 985           } else { // Array's element
 986             tty->print("=== At SafePoint node %d can't find value of array element [%d]",
 987                        sfpt->_idx, j);
 988           }
 989           tty->print(", which prevents elimination of: ");
 990           if (res == NULL)
 991             alloc->dump();
 992           else
 993             res->dump();
 994         }
 995 #endif
 996         return false;
 997       }
 998       if (UseCompressedOops && field_type->isa_narrowoop()) {
 999         // Enable "DecodeN(EncodeP(Allocate)) --> Allocate" transformation
1000         // to be able scalar replace the allocation.
1001         if (field_val->is_EncodeP()) {
1002           field_val = field_val->in(1);
1003         } else {
1004           field_val = transform_later(new DecodeNNode(field_val, field_val->get_ptr_type()));
1005         }
1006       } else if (field_val->is_ValueType()) {
1007         // Keep track of value types to scalarize them later
1008         value_worklist.push(field_val);
1009       }
1010       sfpt->add_req(field_val);
1011     }
1012     JVMState *jvms = sfpt->jvms();
1013     jvms->set_endoff(sfpt->req());
1014     // Now make a pass over the debug information replacing any references
1015     // to the allocated object with "sobj"
1016     int start = jvms->debug_start();
1017     int end   = jvms->debug_end();
1018     sfpt->replace_edges_in_range(res, sobj, start, end);
1019     _igvn._worklist.push(sfpt);
1020     safepoints_done.append_if_missing(sfpt); // keep it for rollback
1021   }
1022   // Scalarize value types that were added to the safepoint
1023   for (uint i = 0; i < value_worklist.size(); ++i) {
1024     Node* vt = value_worklist.at(i);
1025     vt->as_ValueType()->make_scalar_in_safepoints(C->root(), &_igvn);
1026   }
1027   return true;
1028 }
1029 
1030 static void disconnect_projections(MultiNode* n, PhaseIterGVN& igvn) {
1031   Node* ctl_proj = n->proj_out_or_null(TypeFunc::Control);
1032   Node* mem_proj = n->proj_out_or_null(TypeFunc::Memory);
1033   if (ctl_proj != NULL) {
1034     igvn.replace_node(ctl_proj, n->in(0));
1035   }
1036   if (mem_proj != NULL) {
1037     igvn.replace_node(mem_proj, n->in(TypeFunc::Memory));
1038   }
1039 }
1040 
1041 // Process users of eliminated allocation.
1042 void PhaseMacroExpand::process_users_of_allocation(CallNode *alloc) {
1043   Node* res = alloc->result_cast();
1044   if (res != NULL) {
1045     for (DUIterator_Last jmin, j = res->last_outs(jmin); j >= jmin; ) {
1046       Node *use = res->last_out(j);
1047       uint oc1 = res->outcnt();
1048 
1049       if (use->is_AddP()) {
1050         for (DUIterator_Last kmin, k = use->last_outs(kmin); k >= kmin; ) {
1051           Node *n = use->last_out(k);
1052           uint oc2 = use->outcnt();
1053           if (n->is_Store()) {
1054 #ifdef ASSERT
1055             // Verify that there is no dependent MemBarVolatile nodes,
1056             // they should be removed during IGVN, see MemBarNode::Ideal().
1057             for (DUIterator_Fast pmax, p = n->fast_outs(pmax);
1058                                        p < pmax; p++) {
1059               Node* mb = n->fast_out(p);
1060               assert(mb->is_Initialize() || !mb->is_MemBar() ||
1061                      mb->req() <= MemBarNode::Precedent ||
1062                      mb->in(MemBarNode::Precedent) != n,
1063                      "MemBarVolatile should be eliminated for non-escaping object");
1064             }
1065 #endif
1066             _igvn.replace_node(n, n->in(MemNode::Memory));
1067           } else if (n->is_ArrayCopy()) {
1068             // Disconnect ArrayCopy node
1069             ArrayCopyNode* ac = n->as_ArrayCopy();
1070             assert(ac->is_clonebasic(), "unexpected array copy kind");
1071             Node* membar_after = ac->proj_out(TypeFunc::Control)->unique_ctrl_out();
1072             disconnect_projections(ac, _igvn);
1073             assert(alloc->in(0)->is_Proj() && alloc->in(0)->in(0)->Opcode() == Op_MemBarCPUOrder, "mem barrier expected before allocation");
1074             Node* membar_before = alloc->in(0)->in(0);
1075             disconnect_projections(membar_before->as_MemBar(), _igvn);
1076             if (membar_after->is_MemBar()) {
1077               disconnect_projections(membar_after->as_MemBar(), _igvn);
1078             }
1079           } else {
1080             eliminate_card_mark(n);
1081           }
1082           k -= (oc2 - use->outcnt());
1083         }
1084       } else if (use->is_ArrayCopy()) {
1085         // Disconnect ArrayCopy node
1086         ArrayCopyNode* ac = use->as_ArrayCopy();
1087         assert(ac->is_arraycopy_validated() ||
1088                ac->is_copyof_validated() ||
1089                ac->is_copyofrange_validated(), "unsupported");
1090         CallProjections* callprojs = ac->extract_projections(true);
1091 
1092         _igvn.replace_node(callprojs->fallthrough_ioproj, ac->in(TypeFunc::I_O));
1093         _igvn.replace_node(callprojs->fallthrough_memproj, ac->in(TypeFunc::Memory));
1094         _igvn.replace_node(callprojs->fallthrough_catchproj, ac->in(TypeFunc::Control));
1095 
1096         // Set control to top. IGVN will remove the remaining projections
1097         ac->set_req(0, top());
1098         ac->replace_edge(res, top());
1099 
1100         // Disconnect src right away: it can help find new
1101         // opportunities for allocation elimination
1102         Node* src = ac->in(ArrayCopyNode::Src);
1103         ac->replace_edge(src, top());
1104         // src can be top at this point if src and dest of the
1105         // arraycopy were the same
1106         if (src->outcnt() == 0 && !src->is_top()) {
1107           _igvn.remove_dead_node(src);
1108         }
1109 
1110         _igvn._worklist.push(ac);
1111       } else {
1112         eliminate_card_mark(use);
1113       }
1114       j -= (oc1 - res->outcnt());
1115     }
1116     assert(res->outcnt() == 0, "all uses of allocated objects must be deleted");
1117     _igvn.remove_dead_node(res);
1118   }
1119 
1120   //
1121   // Process other users of allocation's projections
1122   //
1123   if (_resproj != NULL && _resproj->outcnt() != 0) {
1124     // First disconnect stores captured by Initialize node.
1125     // If Initialize node is eliminated first in the following code,
1126     // it will kill such stores and DUIterator_Last will assert.
1127     for (DUIterator_Fast jmax, j = _resproj->fast_outs(jmax);  j < jmax; j++) {
1128       Node *use = _resproj->fast_out(j);
1129       if (use->is_AddP()) {
1130         // raw memory addresses used only by the initialization
1131         _igvn.replace_node(use, C->top());
1132         --j; --jmax;
1133       }
1134     }
1135     for (DUIterator_Last jmin, j = _resproj->last_outs(jmin); j >= jmin; ) {
1136       Node *use = _resproj->last_out(j);
1137       uint oc1 = _resproj->outcnt();
1138       if (use->is_Initialize()) {
1139         // Eliminate Initialize node.
1140         InitializeNode *init = use->as_Initialize();
1141         assert(init->outcnt() <= 2, "only a control and memory projection expected");
1142         Node *ctrl_proj = init->proj_out_or_null(TypeFunc::Control);
1143         if (ctrl_proj != NULL) {
1144            assert(init->in(TypeFunc::Control) == _fallthroughcatchproj, "allocation control projection");
1145           _igvn.replace_node(ctrl_proj, _fallthroughcatchproj);
1146         }
1147         Node *mem_proj = init->proj_out_or_null(TypeFunc::Memory);
1148         if (mem_proj != NULL) {
1149           Node *mem = init->in(TypeFunc::Memory);
1150 #ifdef ASSERT
1151           if (mem->is_MergeMem()) {
1152             assert(mem->in(TypeFunc::Memory) == _memproj_fallthrough, "allocation memory projection");
1153           } else {
1154             assert(mem == _memproj_fallthrough, "allocation memory projection");
1155           }
1156 #endif
1157           _igvn.replace_node(mem_proj, mem);
1158         }
1159       } else  {
1160         assert(false, "only Initialize or AddP expected");
1161       }
1162       j -= (oc1 - _resproj->outcnt());
1163     }
1164   }
1165   if (_fallthroughcatchproj != NULL) {
1166     _igvn.replace_node(_fallthroughcatchproj, alloc->in(TypeFunc::Control));
1167   }
1168   if (_memproj_fallthrough != NULL) {
1169     _igvn.replace_node(_memproj_fallthrough, alloc->in(TypeFunc::Memory));
1170   }
1171   if (_memproj_catchall != NULL) {
1172     _igvn.replace_node(_memproj_catchall, C->top());
1173   }
1174   if (_ioproj_fallthrough != NULL) {
1175     _igvn.replace_node(_ioproj_fallthrough, alloc->in(TypeFunc::I_O));
1176   }
1177   if (_ioproj_catchall != NULL) {
1178     _igvn.replace_node(_ioproj_catchall, C->top());
1179   }
1180   if (_catchallcatchproj != NULL) {
1181     _igvn.replace_node(_catchallcatchproj, C->top());
1182   }
1183 }
1184 
1185 bool PhaseMacroExpand::eliminate_allocate_node(AllocateNode *alloc) {
1186   // Don't do scalar replacement if the frame can be popped by JVMTI:
1187   // if reallocation fails during deoptimization we'll pop all
1188   // interpreter frames for this compiled frame and that won't play
1189   // nice with JVMTI popframe.
1190   if (!EliminateAllocations || JvmtiExport::can_pop_frame() || !alloc->_is_non_escaping) {
1191     return false;
1192   }
1193   Node* klass = alloc->in(AllocateNode::KlassNode);
1194   const TypeKlassPtr* tklass = _igvn.type(klass)->is_klassptr();
1195   Node* res = alloc->result_cast();
1196   // Eliminate boxing allocations which are not used
1197   // regardless scalar replacable status.
1198   bool boxing_alloc = C->eliminate_boxing() &&
1199                       tklass->klass()->is_instance_klass()  &&
1200                       tklass->klass()->as_instance_klass()->is_box_klass();
1201   if (!alloc->_is_scalar_replaceable && (!boxing_alloc || (res != NULL))) {
1202     return false;
1203   }
1204 
1205   extract_call_projections(alloc);
1206 
1207   GrowableArray <SafePointNode *> safepoints;
1208   if (!can_eliminate_allocation(alloc, safepoints)) {
1209     return false;
1210   }
1211 
1212   if (!alloc->_is_scalar_replaceable) {
1213     assert(res == NULL, "sanity");
1214     // We can only eliminate allocation if all debug info references
1215     // are already replaced with SafePointScalarObject because
1216     // we can't search for a fields value without instance_id.
1217     if (safepoints.length() > 0) {
1218       return false;
1219     }
1220   }
1221 
1222   if (!scalar_replacement(alloc, safepoints)) {
1223     return false;
1224   }
1225 
1226   CompileLog* log = C->log();
1227   if (log != NULL) {
1228     log->head("eliminate_allocation type='%d'",
1229               log->identify(tklass->klass()));
1230     JVMState* p = alloc->jvms();
1231     while (p != NULL) {
1232       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1233       p = p->caller();
1234     }
1235     log->tail("eliminate_allocation");
1236   }
1237 
1238   process_users_of_allocation(alloc);
1239 
1240 #ifndef PRODUCT
1241   if (PrintEliminateAllocations) {
1242     if (alloc->is_AllocateArray())
1243       tty->print_cr("++++ Eliminated: %d AllocateArray", alloc->_idx);
1244     else
1245       tty->print_cr("++++ Eliminated: %d Allocate", alloc->_idx);
1246   }
1247 #endif
1248 
1249   return true;
1250 }
1251 
1252 bool PhaseMacroExpand::eliminate_boxing_node(CallStaticJavaNode *boxing) {
1253   // EA should remove all uses of non-escaping boxing node.
1254   if (!C->eliminate_boxing() || boxing->proj_out_or_null(TypeFunc::Parms) != NULL) {
1255     return false;
1256   }
1257 
1258   assert(boxing->result_cast() == NULL, "unexpected boxing node result");
1259 
1260   extract_call_projections(boxing);
1261 
1262   const TypeTuple* r = boxing->tf()->range_sig();
1263   assert(r->cnt() > TypeFunc::Parms, "sanity");
1264   const TypeInstPtr* t = r->field_at(TypeFunc::Parms)->isa_instptr();
1265   assert(t != NULL, "sanity");
1266 
1267   CompileLog* log = C->log();
1268   if (log != NULL) {
1269     log->head("eliminate_boxing type='%d'",
1270               log->identify(t->klass()));
1271     JVMState* p = boxing->jvms();
1272     while (p != NULL) {
1273       log->elem("jvms bci='%d' method='%d'", p->bci(), log->identify(p->method()));
1274       p = p->caller();
1275     }
1276     log->tail("eliminate_boxing");
1277   }
1278 
1279   process_users_of_allocation(boxing);
1280 
1281 #ifndef PRODUCT
1282   if (PrintEliminateAllocations) {
1283     tty->print("++++ Eliminated: %d ", boxing->_idx);
1284     boxing->method()->print_short_name(tty);
1285     tty->cr();
1286   }
1287 #endif
1288 
1289   return true;
1290 }
1291 
1292 //---------------------------set_eden_pointers-------------------------
1293 void PhaseMacroExpand::set_eden_pointers(Node* &eden_top_adr, Node* &eden_end_adr) {
1294   if (UseTLAB) {                // Private allocation: load from TLS
1295     Node* thread = transform_later(new ThreadLocalNode());
1296     int tlab_top_offset = in_bytes(JavaThread::tlab_top_offset());
1297     int tlab_end_offset = in_bytes(JavaThread::tlab_end_offset());
1298     eden_top_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_top_offset);
1299     eden_end_adr = basic_plus_adr(top()/*not oop*/, thread, tlab_end_offset);
1300   } else {                      // Shared allocation: load from globals
1301     CollectedHeap* ch = Universe::heap();
1302     address top_adr = (address)ch->top_addr();
1303     address end_adr = (address)ch->end_addr();
1304     eden_top_adr = makecon(TypeRawPtr::make(top_adr));
1305     eden_end_adr = basic_plus_adr(eden_top_adr, end_adr - top_adr);
1306   }
1307 }
1308 
1309 
1310 Node* PhaseMacroExpand::make_load(Node* ctl, Node* mem, Node* base, int offset, const Type* value_type, BasicType bt) {
1311   Node* adr = basic_plus_adr(base, offset);
1312   const TypePtr* adr_type = adr->bottom_type()->is_ptr();
1313   Node* value = LoadNode::make(_igvn, ctl, mem, adr, adr_type, value_type, bt, MemNode::unordered);
1314   transform_later(value);
1315   return value;
1316 }
1317 
1318 
1319 Node* PhaseMacroExpand::make_store(Node* ctl, Node* mem, Node* base, int offset, Node* value, BasicType bt) {
1320   Node* adr = basic_plus_adr(base, offset);
1321   mem = StoreNode::make(_igvn, ctl, mem, adr, NULL, value, bt, MemNode::unordered);
1322   transform_later(mem);
1323   return mem;
1324 }
1325 
1326 //=============================================================================
1327 //
1328 //                              A L L O C A T I O N
1329 //
1330 // Allocation attempts to be fast in the case of frequent small objects.
1331 // It breaks down like this:
1332 //
1333 // 1) Size in doublewords is computed.  This is a constant for objects and
1334 // variable for most arrays.  Doubleword units are used to avoid size
1335 // overflow of huge doubleword arrays.  We need doublewords in the end for
1336 // rounding.
1337 //
1338 // 2) Size is checked for being 'too large'.  Too-large allocations will go
1339 // the slow path into the VM.  The slow path can throw any required
1340 // exceptions, and does all the special checks for very large arrays.  The
1341 // size test can constant-fold away for objects.  For objects with
1342 // finalizers it constant-folds the otherway: you always go slow with
1343 // finalizers.
1344 //
1345 // 3) If NOT using TLABs, this is the contended loop-back point.
1346 // Load-Locked the heap top.  If using TLABs normal-load the heap top.
1347 //
1348 // 4) Check that heap top + size*8 < max.  If we fail go the slow ` route.
1349 // NOTE: "top+size*8" cannot wrap the 4Gig line!  Here's why: for largish
1350 // "size*8" we always enter the VM, where "largish" is a constant picked small
1351 // enough that there's always space between the eden max and 4Gig (old space is
1352 // there so it's quite large) and large enough that the cost of entering the VM
1353 // is dwarfed by the cost to initialize the space.
1354 //
1355 // 5) If NOT using TLABs, Store-Conditional the adjusted heap top back
1356 // down.  If contended, repeat at step 3.  If using TLABs normal-store
1357 // adjusted heap top back down; there is no contention.
1358 //
1359 // 6) If !ZeroTLAB then Bulk-clear the object/array.  Fill in klass & mark
1360 // fields.
1361 //
1362 // 7) Merge with the slow-path; cast the raw memory pointer to the correct
1363 // oop flavor.
1364 //
1365 //=============================================================================
1366 // FastAllocateSizeLimit value is in DOUBLEWORDS.
1367 // Allocations bigger than this always go the slow route.
1368 // This value must be small enough that allocation attempts that need to
1369 // trigger exceptions go the slow route.  Also, it must be small enough so
1370 // that heap_top + size_in_bytes does not wrap around the 4Gig limit.
1371 //=============================================================================j//
1372 // %%% Here is an old comment from parseHelper.cpp; is it outdated?
1373 // The allocator will coalesce int->oop copies away.  See comment in
1374 // coalesce.cpp about how this works.  It depends critically on the exact
1375 // code shape produced here, so if you are changing this code shape
1376 // make sure the GC info for the heap-top is correct in and around the
1377 // slow-path call.
1378 //
1379 
1380 void PhaseMacroExpand::expand_allocate_common(
1381             AllocateNode* alloc, // allocation node to be expanded
1382             Node* length,  // array length for an array allocation
1383             const TypeFunc* slow_call_type, // Type of slow call
1384             address slow_call_address  // Address of slow call
1385     )
1386 {
1387 
1388   Node* ctrl = alloc->in(TypeFunc::Control);
1389   Node* mem  = alloc->in(TypeFunc::Memory);
1390   Node* i_o  = alloc->in(TypeFunc::I_O);
1391   Node* size_in_bytes     = alloc->in(AllocateNode::AllocSize);
1392   Node* klass_node        = alloc->in(AllocateNode::KlassNode);
1393   Node* initial_slow_test = alloc->in(AllocateNode::InitialTest);
1394 
1395   assert(ctrl != NULL, "must have control");
1396   // We need a Region and corresponding Phi's to merge the slow-path and fast-path results.
1397   // they will not be used if "always_slow" is set
1398   enum { slow_result_path = 1, fast_result_path = 2 };
1399   Node *result_region = NULL;
1400   Node *result_phi_rawmem = NULL;
1401   Node *result_phi_rawoop = NULL;
1402   Node *result_phi_i_o = NULL;
1403 
1404   // The initial slow comparison is a size check, the comparison
1405   // we want to do is a BoolTest::gt
1406   bool always_slow = false;
1407   int tv = _igvn.find_int_con(initial_slow_test, -1);
1408   if (tv >= 0) {
1409     always_slow = (tv == 1);
1410     initial_slow_test = NULL;
1411   } else {
1412     initial_slow_test = BoolNode::make_predicate(initial_slow_test, &_igvn);
1413   }
1414 
1415   if (C->env()->dtrace_alloc_probes() ||
1416       (!UseTLAB && !Universe::heap()->supports_inline_contig_alloc())) {
1417     // Force slow-path allocation
1418     always_slow = true;
1419     initial_slow_test = NULL;
1420   }
1421 
1422 
1423   enum { too_big_or_final_path = 1, need_gc_path = 2 };
1424   Node *slow_region = NULL;
1425   Node *toobig_false = ctrl;
1426 
1427   assert (initial_slow_test == NULL || !always_slow, "arguments must be consistent");
1428   // generate the initial test if necessary
1429   if (initial_slow_test != NULL ) {
1430     slow_region = new RegionNode(3);
1431 
1432     // Now make the initial failure test.  Usually a too-big test but
1433     // might be a TRUE for finalizers or a fancy class check for
1434     // newInstance0.
1435     IfNode *toobig_iff = new IfNode(ctrl, initial_slow_test, PROB_MIN, COUNT_UNKNOWN);
1436     transform_later(toobig_iff);
1437     // Plug the failing-too-big test into the slow-path region
1438     Node *toobig_true = new IfTrueNode( toobig_iff );
1439     transform_later(toobig_true);
1440     slow_region    ->init_req( too_big_or_final_path, toobig_true );
1441     toobig_false = new IfFalseNode( toobig_iff );
1442     transform_later(toobig_false);
1443   } else {         // No initial test, just fall into next case
1444     toobig_false = ctrl;
1445     debug_only(slow_region = NodeSentinel);
1446   }
1447 
1448   Node *slow_mem = mem;  // save the current memory state for slow path
1449   // generate the fast allocation code unless we know that the initial test will always go slow
1450   if (!always_slow) {
1451     // Fast path modifies only raw memory.
1452     if (mem->is_MergeMem()) {
1453       mem = mem->as_MergeMem()->memory_at(Compile::AliasIdxRaw);
1454     }
1455 
1456     Node* eden_top_adr;
1457     Node* eden_end_adr;
1458 
1459     set_eden_pointers(eden_top_adr, eden_end_adr);
1460 
1461     // Load Eden::end.  Loop invariant and hoisted.
1462     //
1463     // Note: We set the control input on "eden_end" and "old_eden_top" when using
1464     //       a TLAB to work around a bug where these values were being moved across
1465     //       a safepoint.  These are not oops, so they cannot be include in the oop
1466     //       map, but they can be changed by a GC.   The proper way to fix this would
1467     //       be to set the raw memory state when generating a  SafepointNode.  However
1468     //       this will require extensive changes to the loop optimization in order to
1469     //       prevent a degradation of the optimization.
1470     //       See comment in memnode.hpp, around line 227 in class LoadPNode.
1471     Node *eden_end = make_load(ctrl, mem, eden_end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
1472 
1473     // allocate the Region and Phi nodes for the result
1474     result_region = new RegionNode(3);
1475     result_phi_rawmem = new PhiNode(result_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1476     result_phi_rawoop = new PhiNode(result_region, TypeRawPtr::BOTTOM);
1477     result_phi_i_o    = new PhiNode(result_region, Type::ABIO); // I/O is used for Prefetch
1478 
1479     // We need a Region for the loop-back contended case.
1480     enum { fall_in_path = 1, contended_loopback_path = 2 };
1481     Node *contended_region;
1482     Node *contended_phi_rawmem;
1483     if (UseTLAB) {
1484       contended_region = toobig_false;
1485       contended_phi_rawmem = mem;
1486     } else {
1487       contended_region = new RegionNode(3);
1488       contended_phi_rawmem = new PhiNode(contended_region, Type::MEMORY, TypeRawPtr::BOTTOM);
1489       // Now handle the passing-too-big test.  We fall into the contended
1490       // loop-back merge point.
1491       contended_region    ->init_req(fall_in_path, toobig_false);
1492       contended_phi_rawmem->init_req(fall_in_path, mem);
1493       transform_later(contended_region);
1494       transform_later(contended_phi_rawmem);
1495     }
1496 
1497     // Load(-locked) the heap top.
1498     // See note above concerning the control input when using a TLAB
1499     Node *old_eden_top = UseTLAB
1500       ? new LoadPNode      (ctrl, contended_phi_rawmem, eden_top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered)
1501       : new LoadPLockedNode(contended_region, contended_phi_rawmem, eden_top_adr, MemNode::acquire);
1502 
1503     transform_later(old_eden_top);
1504     // Add to heap top to get a new heap top
1505     Node *new_eden_top = new AddPNode(top(), old_eden_top, size_in_bytes);
1506     transform_later(new_eden_top);
1507     // Check for needing a GC; compare against heap end
1508     Node *needgc_cmp = new CmpPNode(new_eden_top, eden_end);
1509     transform_later(needgc_cmp);
1510     Node *needgc_bol = new BoolNode(needgc_cmp, BoolTest::ge);
1511     transform_later(needgc_bol);
1512     IfNode *needgc_iff = new IfNode(contended_region, needgc_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
1513     transform_later(needgc_iff);
1514 
1515     // Plug the failing-heap-space-need-gc test into the slow-path region
1516     Node *needgc_true = new IfTrueNode(needgc_iff);
1517     transform_later(needgc_true);
1518     if (initial_slow_test) {
1519       slow_region->init_req(need_gc_path, needgc_true);
1520       // This completes all paths into the slow merge point
1521       transform_later(slow_region);
1522     } else {                      // No initial slow path needed!
1523       // Just fall from the need-GC path straight into the VM call.
1524       slow_region = needgc_true;
1525     }
1526     // No need for a GC.  Setup for the Store-Conditional
1527     Node *needgc_false = new IfFalseNode(needgc_iff);
1528     transform_later(needgc_false);
1529 
1530     // Grab regular I/O before optional prefetch may change it.
1531     // Slow-path does no I/O so just set it to the original I/O.
1532     result_phi_i_o->init_req(slow_result_path, i_o);
1533 
1534     i_o = prefetch_allocation(i_o, needgc_false, contended_phi_rawmem,
1535                               old_eden_top, new_eden_top, length);
1536 
1537     // Name successful fast-path variables
1538     Node* fast_oop = old_eden_top;
1539     Node* fast_oop_ctrl;
1540     Node* fast_oop_rawmem;
1541 
1542     // Store (-conditional) the modified eden top back down.
1543     // StorePConditional produces flags for a test PLUS a modified raw
1544     // memory state.
1545     if (UseTLAB) {
1546       Node* store_eden_top =
1547         new StorePNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1548                               TypeRawPtr::BOTTOM, new_eden_top, MemNode::unordered);
1549       transform_later(store_eden_top);
1550       fast_oop_ctrl = needgc_false; // No contention, so this is the fast path
1551       fast_oop_rawmem = store_eden_top;
1552     } else {
1553       Node* store_eden_top =
1554         new StorePConditionalNode(needgc_false, contended_phi_rawmem, eden_top_adr,
1555                                          new_eden_top, fast_oop/*old_eden_top*/);
1556       transform_later(store_eden_top);
1557       Node *contention_check = new BoolNode(store_eden_top, BoolTest::ne);
1558       transform_later(contention_check);
1559       store_eden_top = new SCMemProjNode(store_eden_top);
1560       transform_later(store_eden_top);
1561 
1562       // If not using TLABs, check to see if there was contention.
1563       IfNode *contention_iff = new IfNode (needgc_false, contention_check, PROB_MIN, COUNT_UNKNOWN);
1564       transform_later(contention_iff);
1565       Node *contention_true = new IfTrueNode(contention_iff);
1566       transform_later(contention_true);
1567       // If contention, loopback and try again.
1568       contended_region->init_req(contended_loopback_path, contention_true);
1569       contended_phi_rawmem->init_req(contended_loopback_path, store_eden_top);
1570 
1571       // Fast-path succeeded with no contention!
1572       Node *contention_false = new IfFalseNode(contention_iff);
1573       transform_later(contention_false);
1574       fast_oop_ctrl = contention_false;
1575 
1576       // Bump total allocated bytes for this thread
1577       Node* thread = new ThreadLocalNode();
1578       transform_later(thread);
1579       Node* alloc_bytes_adr = basic_plus_adr(top()/*not oop*/, thread,
1580                                              in_bytes(JavaThread::allocated_bytes_offset()));
1581       Node* alloc_bytes = make_load(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1582                                     0, TypeLong::LONG, T_LONG);
1583 #ifdef _LP64
1584       Node* alloc_size = size_in_bytes;
1585 #else
1586       Node* alloc_size = new ConvI2LNode(size_in_bytes);
1587       transform_later(alloc_size);
1588 #endif
1589       Node* new_alloc_bytes = new AddLNode(alloc_bytes, alloc_size);
1590       transform_later(new_alloc_bytes);
1591       fast_oop_rawmem = make_store(fast_oop_ctrl, store_eden_top, alloc_bytes_adr,
1592                                    0, new_alloc_bytes, T_LONG);
1593     }
1594 
1595     InitializeNode* init = alloc->initialization();
1596     fast_oop_rawmem = initialize_object(alloc,
1597                                         fast_oop_ctrl, fast_oop_rawmem, fast_oop,
1598                                         klass_node, length, size_in_bytes);
1599 
1600     // If initialization is performed by an array copy, any required
1601     // MemBarStoreStore was already added. If the object does not
1602     // escape no need for a MemBarStoreStore. If the object does not
1603     // escape in its initializer and memory barrier (MemBarStoreStore or
1604     // stronger) is already added at exit of initializer, also no need
1605     // for a MemBarStoreStore. Otherwise we need a MemBarStoreStore
1606     // so that stores that initialize this object can't be reordered
1607     // with a subsequent store that makes this object accessible by
1608     // other threads.
1609     // Other threads include java threads and JVM internal threads
1610     // (for example concurrent GC threads). Current concurrent GC
1611     // implementation: CMS and G1 will not scan newly created object,
1612     // so it's safe to skip storestore barrier when allocation does
1613     // not escape.
1614     if (!alloc->does_not_escape_thread() &&
1615         !alloc->is_allocation_MemBar_redundant() &&
1616         (init == NULL || !init->is_complete_with_arraycopy())) {
1617       if (init == NULL || init->req() < InitializeNode::RawStores) {
1618         // No InitializeNode or no stores captured by zeroing
1619         // elimination. Simply add the MemBarStoreStore after object
1620         // initialization.
1621         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1622         transform_later(mb);
1623 
1624         mb->init_req(TypeFunc::Memory, fast_oop_rawmem);
1625         mb->init_req(TypeFunc::Control, fast_oop_ctrl);
1626         fast_oop_ctrl = new ProjNode(mb,TypeFunc::Control);
1627         transform_later(fast_oop_ctrl);
1628         fast_oop_rawmem = new ProjNode(mb,TypeFunc::Memory);
1629         transform_later(fast_oop_rawmem);
1630       } else {
1631         // Add the MemBarStoreStore after the InitializeNode so that
1632         // all stores performing the initialization that were moved
1633         // before the InitializeNode happen before the storestore
1634         // barrier.
1635 
1636         Node* init_ctrl = init->proj_out_or_null(TypeFunc::Control);
1637         Node* init_mem = init->proj_out_or_null(TypeFunc::Memory);
1638 
1639         MemBarNode* mb = MemBarNode::make(C, Op_MemBarStoreStore, Compile::AliasIdxBot);
1640         transform_later(mb);
1641 
1642         Node* ctrl = new ProjNode(init,TypeFunc::Control);
1643         transform_later(ctrl);
1644         Node* mem = new ProjNode(init,TypeFunc::Memory);
1645         transform_later(mem);
1646 
1647         // The MemBarStoreStore depends on control and memory coming
1648         // from the InitializeNode
1649         mb->init_req(TypeFunc::Memory, mem);
1650         mb->init_req(TypeFunc::Control, ctrl);
1651 
1652         ctrl = new ProjNode(mb,TypeFunc::Control);
1653         transform_later(ctrl);
1654         mem = new ProjNode(mb,TypeFunc::Memory);
1655         transform_later(mem);
1656 
1657         // All nodes that depended on the InitializeNode for control
1658         // and memory must now depend on the MemBarNode that itself
1659         // depends on the InitializeNode
1660         if (init_ctrl != NULL) {
1661           _igvn.replace_node(init_ctrl, ctrl);
1662         }
1663         if (init_mem != NULL) {
1664           _igvn.replace_node(init_mem, mem);
1665         }
1666       }
1667     }
1668 
1669     if (C->env()->dtrace_extended_probes()) {
1670       // Slow-path call
1671       int size = TypeFunc::Parms + 2;
1672       CallLeafNode *call = new CallLeafNode(OptoRuntime::dtrace_object_alloc_Type(),
1673                                             CAST_FROM_FN_PTR(address, SharedRuntime::dtrace_object_alloc_base),
1674                                             "dtrace_object_alloc",
1675                                             TypeRawPtr::BOTTOM);
1676 
1677       // Get base of thread-local storage area
1678       Node* thread = new ThreadLocalNode();
1679       transform_later(thread);
1680 
1681       call->init_req(TypeFunc::Parms+0, thread);
1682       call->init_req(TypeFunc::Parms+1, fast_oop);
1683       call->init_req(TypeFunc::Control, fast_oop_ctrl);
1684       call->init_req(TypeFunc::I_O    , top()); // does no i/o
1685       call->init_req(TypeFunc::Memory , fast_oop_rawmem);
1686       call->init_req(TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr));
1687       call->init_req(TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr));
1688       transform_later(call);
1689       fast_oop_ctrl = new ProjNode(call,TypeFunc::Control);
1690       transform_later(fast_oop_ctrl);
1691       fast_oop_rawmem = new ProjNode(call,TypeFunc::Memory);
1692       transform_later(fast_oop_rawmem);
1693     }
1694 
1695     // Plug in the successful fast-path into the result merge point
1696     result_region    ->init_req(fast_result_path, fast_oop_ctrl);
1697     result_phi_rawoop->init_req(fast_result_path, fast_oop);
1698     result_phi_i_o   ->init_req(fast_result_path, i_o);
1699     result_phi_rawmem->init_req(fast_result_path, fast_oop_rawmem);
1700   } else {
1701     slow_region = ctrl;
1702     result_phi_i_o = i_o; // Rename it to use in the following code.
1703   }
1704 
1705   // Generate slow-path call
1706   CallNode *call = new CallStaticJavaNode(slow_call_type, slow_call_address,
1707                                OptoRuntime::stub_name(slow_call_address),
1708                                alloc->jvms()->bci(),
1709                                TypePtr::BOTTOM);
1710   call->init_req( TypeFunc::Control, slow_region );
1711   call->init_req( TypeFunc::I_O    , top() )     ;   // does no i/o
1712   call->init_req( TypeFunc::Memory , slow_mem ); // may gc ptrs
1713   call->init_req( TypeFunc::ReturnAdr, alloc->in(TypeFunc::ReturnAdr) );
1714   call->init_req( TypeFunc::FramePtr, alloc->in(TypeFunc::FramePtr) );
1715 
1716   call->init_req(TypeFunc::Parms+0, klass_node);
1717   if (length != NULL) {
1718     call->init_req(TypeFunc::Parms+1, length);
1719   }
1720 
1721   // Copy debug information and adjust JVMState information, then replace
1722   // allocate node with the call
1723   copy_call_debug_info((CallNode *) alloc,  call);
1724   if (!always_slow) {
1725     call->set_cnt(PROB_UNLIKELY_MAG(4));  // Same effect as RC_UNCOMMON.
1726   } else {
1727     // Hook i_o projection to avoid its elimination during allocation
1728     // replacement (when only a slow call is generated).
1729     call->set_req(TypeFunc::I_O, result_phi_i_o);
1730   }
1731   _igvn.replace_node(alloc, call);
1732   transform_later(call);
1733 
1734   // Identify the output projections from the allocate node and
1735   // adjust any references to them.
1736   // The control and io projections look like:
1737   //
1738   //        v---Proj(ctrl) <-----+   v---CatchProj(ctrl)
1739   //  Allocate                   Catch
1740   //        ^---Proj(io) <-------+   ^---CatchProj(io)
1741   //
1742   //  We are interested in the CatchProj nodes.
1743   //
1744   extract_call_projections(call);
1745 
1746   // An allocate node has separate memory projections for the uses on
1747   // the control and i_o paths. Replace the control memory projection with
1748   // result_phi_rawmem (unless we are only generating a slow call when
1749   // both memory projections are combined)
1750   if (!always_slow && _memproj_fallthrough != NULL) {
1751     for (DUIterator_Fast imax, i = _memproj_fallthrough->fast_outs(imax); i < imax; i++) {
1752       Node *use = _memproj_fallthrough->fast_out(i);
1753       _igvn.rehash_node_delayed(use);
1754       imax -= replace_input(use, _memproj_fallthrough, result_phi_rawmem);
1755       // back up iterator
1756       --i;
1757     }
1758   }
1759   // Now change uses of _memproj_catchall to use _memproj_fallthrough and delete
1760   // _memproj_catchall so we end up with a call that has only 1 memory projection.
1761   if (_memproj_catchall != NULL ) {
1762     if (_memproj_fallthrough == NULL) {
1763       _memproj_fallthrough = new ProjNode(call, TypeFunc::Memory);
1764       transform_later(_memproj_fallthrough);
1765     }
1766     for (DUIterator_Fast imax, i = _memproj_catchall->fast_outs(imax); i < imax; i++) {
1767       Node *use = _memproj_catchall->fast_out(i);
1768       _igvn.rehash_node_delayed(use);
1769       imax -= replace_input(use, _memproj_catchall, _memproj_fallthrough);
1770       // back up iterator
1771       --i;
1772     }
1773     assert(_memproj_catchall->outcnt() == 0, "all uses must be deleted");
1774     _igvn.remove_dead_node(_memproj_catchall);
1775   }
1776 
1777   // An allocate node has separate i_o projections for the uses on the control
1778   // and i_o paths. Always replace the control i_o projection with result i_o
1779   // otherwise incoming i_o become dead when only a slow call is generated
1780   // (it is different from memory projections where both projections are
1781   // combined in such case).
1782   if (_ioproj_fallthrough != NULL) {
1783     for (DUIterator_Fast imax, i = _ioproj_fallthrough->fast_outs(imax); i < imax; i++) {
1784       Node *use = _ioproj_fallthrough->fast_out(i);
1785       _igvn.rehash_node_delayed(use);
1786       imax -= replace_input(use, _ioproj_fallthrough, result_phi_i_o);
1787       // back up iterator
1788       --i;
1789     }
1790   }
1791   // Now change uses of _ioproj_catchall to use _ioproj_fallthrough and delete
1792   // _ioproj_catchall so we end up with a call that has only 1 i_o projection.
1793   if (_ioproj_catchall != NULL ) {
1794     if (_ioproj_fallthrough == NULL) {
1795       _ioproj_fallthrough = new ProjNode(call, TypeFunc::I_O);
1796       transform_later(_ioproj_fallthrough);
1797     }
1798     for (DUIterator_Fast imax, i = _ioproj_catchall->fast_outs(imax); i < imax; i++) {
1799       Node *use = _ioproj_catchall->fast_out(i);
1800       _igvn.rehash_node_delayed(use);
1801       imax -= replace_input(use, _ioproj_catchall, _ioproj_fallthrough);
1802       // back up iterator
1803       --i;
1804     }
1805     assert(_ioproj_catchall->outcnt() == 0, "all uses must be deleted");
1806     _igvn.remove_dead_node(_ioproj_catchall);
1807   }
1808 
1809   // if we generated only a slow call, we are done
1810   if (always_slow) {
1811     // Now we can unhook i_o.
1812     if (result_phi_i_o->outcnt() > 1) {
1813       call->set_req(TypeFunc::I_O, top());
1814     } else {
1815       assert(result_phi_i_o->unique_ctrl_out() == call, "");
1816       // Case of new array with negative size known during compilation.
1817       // AllocateArrayNode::Ideal() optimization disconnect unreachable
1818       // following code since call to runtime will throw exception.
1819       // As result there will be no users of i_o after the call.
1820       // Leave i_o attached to this call to avoid problems in preceding graph.
1821     }
1822     return;
1823   }
1824 
1825 
1826   if (_fallthroughcatchproj != NULL) {
1827     ctrl = _fallthroughcatchproj->clone();
1828     transform_later(ctrl);
1829     _igvn.replace_node(_fallthroughcatchproj, result_region);
1830   } else {
1831     ctrl = top();
1832   }
1833   Node *slow_result;
1834   if (_resproj == NULL) {
1835     // no uses of the allocation result
1836     slow_result = top();
1837   } else {
1838     slow_result = _resproj->clone();
1839     transform_later(slow_result);
1840     _igvn.replace_node(_resproj, result_phi_rawoop);
1841   }
1842 
1843   // Plug slow-path into result merge point
1844   result_region    ->init_req( slow_result_path, ctrl );
1845   result_phi_rawoop->init_req( slow_result_path, slow_result);
1846   result_phi_rawmem->init_req( slow_result_path, _memproj_fallthrough );
1847   transform_later(result_region);
1848   transform_later(result_phi_rawoop);
1849   transform_later(result_phi_rawmem);
1850   transform_later(result_phi_i_o);
1851   // This completes all paths into the result merge point
1852 }
1853 
1854 
1855 // Helper for PhaseMacroExpand::expand_allocate_common.
1856 // Initializes the newly-allocated storage.
1857 Node*
1858 PhaseMacroExpand::initialize_object(AllocateNode* alloc,
1859                                     Node* control, Node* rawmem, Node* object,
1860                                     Node* klass_node, Node* length,
1861                                     Node* size_in_bytes) {
1862   InitializeNode* init = alloc->initialization();
1863   // Store the klass & mark bits
1864   Node* mark_node = NULL;
1865   // For now only enable fast locking for non-array types
1866   if (UseBiasedLocking && (length == NULL)) {
1867     mark_node = make_load(control, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
1868   } else {
1869     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
1870   }
1871   rawmem = make_store(control, rawmem, object, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
1872 
1873   rawmem = make_store(control, rawmem, object, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
1874   int header_size = alloc->minimum_header_size();  // conservatively small
1875 
1876   // Array length
1877   if (length != NULL) {         // Arrays need length field
1878     rawmem = make_store(control, rawmem, object, arrayOopDesc::length_offset_in_bytes(), length, T_INT);
1879     // conservatively small header size:
1880     header_size = arrayOopDesc::base_offset_in_bytes(T_BYTE);
1881     ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
1882     if (k->is_array_klass())    // we know the exact header size in most cases:
1883       header_size = Klass::layout_helper_header_size(k->layout_helper());
1884   }
1885 
1886   // Clear the object body, if necessary.
1887   if (init == NULL) {
1888     // The init has somehow disappeared; be cautious and clear everything.
1889     //
1890     // This can happen if a node is allocated but an uncommon trap occurs
1891     // immediately.  In this case, the Initialize gets associated with the
1892     // trap, and may be placed in a different (outer) loop, if the Allocate
1893     // is in a loop.  If (this is rare) the inner loop gets unrolled, then
1894     // there can be two Allocates to one Initialize.  The answer in all these
1895     // edge cases is safety first.  It is always safe to clear immediately
1896     // within an Allocate, and then (maybe or maybe not) clear some more later.
1897     if (!(UseTLAB && ZeroTLAB)) {
1898       rawmem = ClearArrayNode::clear_memory(control, rawmem, object,
1899                                             header_size, size_in_bytes,
1900                                             &_igvn);
1901     }
1902   } else {
1903     if (!init->is_complete()) {
1904       // Try to win by zeroing only what the init does not store.
1905       // We can also try to do some peephole optimizations,
1906       // such as combining some adjacent subword stores.
1907       rawmem = init->complete_stores(control, rawmem, object,
1908                                      header_size, size_in_bytes, &_igvn);
1909     }
1910     // We have no more use for this link, since the AllocateNode goes away:
1911     init->set_req(InitializeNode::RawAddress, top());
1912     // (If we keep the link, it just confuses the register allocator,
1913     // who thinks he sees a real use of the address by the membar.)
1914   }
1915 
1916   return rawmem;
1917 }
1918 
1919 // Generate prefetch instructions for next allocations.
1920 Node* PhaseMacroExpand::prefetch_allocation(Node* i_o, Node*& needgc_false,
1921                                         Node*& contended_phi_rawmem,
1922                                         Node* old_eden_top, Node* new_eden_top,
1923                                         Node* length) {
1924    enum { fall_in_path = 1, pf_path = 2 };
1925    if( UseTLAB && AllocatePrefetchStyle == 2 ) {
1926       // Generate prefetch allocation with watermark check.
1927       // As an allocation hits the watermark, we will prefetch starting
1928       // at a "distance" away from watermark.
1929 
1930       Node *pf_region = new RegionNode(3);
1931       Node *pf_phi_rawmem = new PhiNode( pf_region, Type::MEMORY,
1932                                                 TypeRawPtr::BOTTOM );
1933       // I/O is used for Prefetch
1934       Node *pf_phi_abio = new PhiNode( pf_region, Type::ABIO );
1935 
1936       Node *thread = new ThreadLocalNode();
1937       transform_later(thread);
1938 
1939       Node *eden_pf_adr = new AddPNode( top()/*not oop*/, thread,
1940                    _igvn.MakeConX(in_bytes(JavaThread::tlab_pf_top_offset())) );
1941       transform_later(eden_pf_adr);
1942 
1943       Node *old_pf_wm = new LoadPNode(needgc_false,
1944                                    contended_phi_rawmem, eden_pf_adr,
1945                                    TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM,
1946                                    MemNode::unordered);
1947       transform_later(old_pf_wm);
1948 
1949       // check against new_eden_top
1950       Node *need_pf_cmp = new CmpPNode( new_eden_top, old_pf_wm );
1951       transform_later(need_pf_cmp);
1952       Node *need_pf_bol = new BoolNode( need_pf_cmp, BoolTest::ge );
1953       transform_later(need_pf_bol);
1954       IfNode *need_pf_iff = new IfNode( needgc_false, need_pf_bol,
1955                                        PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN );
1956       transform_later(need_pf_iff);
1957 
1958       // true node, add prefetchdistance
1959       Node *need_pf_true = new IfTrueNode( need_pf_iff );
1960       transform_later(need_pf_true);
1961 
1962       Node *need_pf_false = new IfFalseNode( need_pf_iff );
1963       transform_later(need_pf_false);
1964 
1965       Node *new_pf_wmt = new AddPNode( top(), old_pf_wm,
1966                                     _igvn.MakeConX(AllocatePrefetchDistance) );
1967       transform_later(new_pf_wmt );
1968       new_pf_wmt->set_req(0, need_pf_true);
1969 
1970       Node *store_new_wmt = new StorePNode(need_pf_true,
1971                                        contended_phi_rawmem, eden_pf_adr,
1972                                        TypeRawPtr::BOTTOM, new_pf_wmt,
1973                                        MemNode::unordered);
1974       transform_later(store_new_wmt);
1975 
1976       // adding prefetches
1977       pf_phi_abio->init_req( fall_in_path, i_o );
1978 
1979       Node *prefetch_adr;
1980       Node *prefetch;
1981       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
1982       uint step_size = AllocatePrefetchStepSize;
1983       uint distance = 0;
1984 
1985       for ( uint i = 0; i < lines; i++ ) {
1986         prefetch_adr = new AddPNode( old_pf_wm, new_pf_wmt,
1987                                             _igvn.MakeConX(distance) );
1988         transform_later(prefetch_adr);
1989         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
1990         transform_later(prefetch);
1991         distance += step_size;
1992         i_o = prefetch;
1993       }
1994       pf_phi_abio->set_req( pf_path, i_o );
1995 
1996       pf_region->init_req( fall_in_path, need_pf_false );
1997       pf_region->init_req( pf_path, need_pf_true );
1998 
1999       pf_phi_rawmem->init_req( fall_in_path, contended_phi_rawmem );
2000       pf_phi_rawmem->init_req( pf_path, store_new_wmt );
2001 
2002       transform_later(pf_region);
2003       transform_later(pf_phi_rawmem);
2004       transform_later(pf_phi_abio);
2005 
2006       needgc_false = pf_region;
2007       contended_phi_rawmem = pf_phi_rawmem;
2008       i_o = pf_phi_abio;
2009    } else if( UseTLAB && AllocatePrefetchStyle == 3 ) {
2010       // Insert a prefetch instruction for each allocation.
2011       // This code is used to generate 1 prefetch instruction per cache line.
2012 
2013       // Generate several prefetch instructions.
2014       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2015       uint step_size = AllocatePrefetchStepSize;
2016       uint distance = AllocatePrefetchDistance;
2017 
2018       // Next cache address.
2019       Node *cache_adr = new AddPNode(old_eden_top, old_eden_top,
2020                                      _igvn.MakeConX(step_size + distance));
2021       transform_later(cache_adr);
2022       cache_adr = new CastP2XNode(needgc_false, cache_adr);
2023       transform_later(cache_adr);
2024       // Address is aligned to execute prefetch to the beginning of cache line size
2025       // (it is important when BIS instruction is used on SPARC as prefetch).
2026       Node* mask = _igvn.MakeConX(~(intptr_t)(step_size-1));
2027       cache_adr = new AndXNode(cache_adr, mask);
2028       transform_later(cache_adr);
2029       cache_adr = new CastX2PNode(cache_adr);
2030       transform_later(cache_adr);
2031 
2032       // Prefetch
2033       Node *prefetch = new PrefetchAllocationNode( contended_phi_rawmem, cache_adr );
2034       prefetch->set_req(0, needgc_false);
2035       transform_later(prefetch);
2036       contended_phi_rawmem = prefetch;
2037       Node *prefetch_adr;
2038       distance = step_size;
2039       for ( uint i = 1; i < lines; i++ ) {
2040         prefetch_adr = new AddPNode( cache_adr, cache_adr,
2041                                             _igvn.MakeConX(distance) );
2042         transform_later(prefetch_adr);
2043         prefetch = new PrefetchAllocationNode( contended_phi_rawmem, prefetch_adr );
2044         transform_later(prefetch);
2045         distance += step_size;
2046         contended_phi_rawmem = prefetch;
2047       }
2048    } else if( AllocatePrefetchStyle > 0 ) {
2049       // Insert a prefetch for each allocation only on the fast-path
2050       Node *prefetch_adr;
2051       Node *prefetch;
2052       // Generate several prefetch instructions.
2053       uint lines = (length != NULL) ? AllocatePrefetchLines : AllocateInstancePrefetchLines;
2054       uint step_size = AllocatePrefetchStepSize;
2055       uint distance = AllocatePrefetchDistance;
2056       for ( uint i = 0; i < lines; i++ ) {
2057         prefetch_adr = new AddPNode( old_eden_top, new_eden_top,
2058                                             _igvn.MakeConX(distance) );
2059         transform_later(prefetch_adr);
2060         prefetch = new PrefetchAllocationNode( i_o, prefetch_adr );
2061         // Do not let it float too high, since if eden_top == eden_end,
2062         // both might be null.
2063         if( i == 0 ) { // Set control for first prefetch, next follows it
2064           prefetch->init_req(0, needgc_false);
2065         }
2066         transform_later(prefetch);
2067         distance += step_size;
2068         i_o = prefetch;
2069       }
2070    }
2071    return i_o;
2072 }
2073 
2074 
2075 void PhaseMacroExpand::expand_allocate(AllocateNode *alloc) {
2076   expand_allocate_common(alloc, NULL,
2077                          OptoRuntime::new_instance_Type(),
2078                          OptoRuntime::new_instance_Java());
2079 }
2080 
2081 void PhaseMacroExpand::expand_allocate_array(AllocateArrayNode *alloc) {
2082   Node* length = alloc->in(AllocateNode::ALength);
2083   InitializeNode* init = alloc->initialization();
2084   Node* klass_node = alloc->in(AllocateNode::KlassNode);
2085   ciKlass* k = _igvn.type(klass_node)->is_klassptr()->klass();
2086   address slow_call_address;  // Address of slow call
2087   if (init != NULL && init->is_complete_with_arraycopy() &&
2088       k->is_type_array_klass()) {
2089     // Don't zero type array during slow allocation in VM since
2090     // it will be initialized later by arraycopy in compiled code.
2091     slow_call_address = OptoRuntime::new_array_nozero_Java();
2092   } else {
2093     slow_call_address = OptoRuntime::new_array_Java();
2094   }
2095   expand_allocate_common(alloc, length,
2096                          OptoRuntime::new_array_Type(),
2097                          slow_call_address);
2098 }
2099 
2100 //-------------------mark_eliminated_box----------------------------------
2101 //
2102 // During EA obj may point to several objects but after few ideal graph
2103 // transformations (CCP) it may point to only one non escaping object
2104 // (but still using phi), corresponding locks and unlocks will be marked
2105 // for elimination. Later obj could be replaced with a new node (new phi)
2106 // and which does not have escape information. And later after some graph
2107 // reshape other locks and unlocks (which were not marked for elimination
2108 // before) are connected to this new obj (phi) but they still will not be
2109 // marked for elimination since new obj has no escape information.
2110 // Mark all associated (same box and obj) lock and unlock nodes for
2111 // elimination if some of them marked already.
2112 void PhaseMacroExpand::mark_eliminated_box(Node* oldbox, Node* obj) {
2113   if (oldbox->as_BoxLock()->is_eliminated())
2114     return; // This BoxLock node was processed already.
2115 
2116   // New implementation (EliminateNestedLocks) has separate BoxLock
2117   // node for each locked region so mark all associated locks/unlocks as
2118   // eliminated even if different objects are referenced in one locked region
2119   // (for example, OSR compilation of nested loop inside locked scope).
2120   if (EliminateNestedLocks ||
2121       oldbox->as_BoxLock()->is_simple_lock_region(NULL, obj)) {
2122     // Box is used only in one lock region. Mark this box as eliminated.
2123     _igvn.hash_delete(oldbox);
2124     oldbox->as_BoxLock()->set_eliminated(); // This changes box's hash value
2125      _igvn.hash_insert(oldbox);
2126 
2127     for (uint i = 0; i < oldbox->outcnt(); i++) {
2128       Node* u = oldbox->raw_out(i);
2129       if (u->is_AbstractLock() && !u->as_AbstractLock()->is_non_esc_obj()) {
2130         AbstractLockNode* alock = u->as_AbstractLock();
2131         // Check lock's box since box could be referenced by Lock's debug info.
2132         if (alock->box_node() == oldbox) {
2133           // Mark eliminated all related locks and unlocks.
2134 #ifdef ASSERT
2135           alock->log_lock_optimization(C, "eliminate_lock_set_non_esc4");
2136 #endif
2137           alock->set_non_esc_obj();
2138         }
2139       }
2140     }
2141     return;
2142   }
2143 
2144   // Create new "eliminated" BoxLock node and use it in monitor debug info
2145   // instead of oldbox for the same object.
2146   BoxLockNode* newbox = oldbox->clone()->as_BoxLock();
2147 
2148   // Note: BoxLock node is marked eliminated only here and it is used
2149   // to indicate that all associated lock and unlock nodes are marked
2150   // for elimination.
2151   newbox->set_eliminated();
2152   transform_later(newbox);
2153 
2154   // Replace old box node with new box for all users of the same object.
2155   for (uint i = 0; i < oldbox->outcnt();) {
2156     bool next_edge = true;
2157 
2158     Node* u = oldbox->raw_out(i);
2159     if (u->is_AbstractLock()) {
2160       AbstractLockNode* alock = u->as_AbstractLock();
2161       if (alock->box_node() == oldbox && alock->obj_node()->eqv_uncast(obj)) {
2162         // Replace Box and mark eliminated all related locks and unlocks.
2163 #ifdef ASSERT
2164         alock->log_lock_optimization(C, "eliminate_lock_set_non_esc5");
2165 #endif
2166         alock->set_non_esc_obj();
2167         _igvn.rehash_node_delayed(alock);
2168         alock->set_box_node(newbox);
2169         next_edge = false;
2170       }
2171     }
2172     if (u->is_FastLock() && u->as_FastLock()->obj_node()->eqv_uncast(obj)) {
2173       FastLockNode* flock = u->as_FastLock();
2174       assert(flock->box_node() == oldbox, "sanity");
2175       _igvn.rehash_node_delayed(flock);
2176       flock->set_box_node(newbox);
2177       next_edge = false;
2178     }
2179 
2180     // Replace old box in monitor debug info.
2181     if (u->is_SafePoint() && u->as_SafePoint()->jvms()) {
2182       SafePointNode* sfn = u->as_SafePoint();
2183       JVMState* youngest_jvms = sfn->jvms();
2184       int max_depth = youngest_jvms->depth();
2185       for (int depth = 1; depth <= max_depth; depth++) {
2186         JVMState* jvms = youngest_jvms->of_depth(depth);
2187         int num_mon  = jvms->nof_monitors();
2188         // Loop over monitors
2189         for (int idx = 0; idx < num_mon; idx++) {
2190           Node* obj_node = sfn->monitor_obj(jvms, idx);
2191           Node* box_node = sfn->monitor_box(jvms, idx);
2192           if (box_node == oldbox && obj_node->eqv_uncast(obj)) {
2193             int j = jvms->monitor_box_offset(idx);
2194             _igvn.replace_input_of(u, j, newbox);
2195             next_edge = false;
2196           }
2197         }
2198       }
2199     }
2200     if (next_edge) i++;
2201   }
2202 }
2203 
2204 //-----------------------mark_eliminated_locking_nodes-----------------------
2205 void PhaseMacroExpand::mark_eliminated_locking_nodes(AbstractLockNode *alock) {
2206   if (EliminateNestedLocks) {
2207     if (alock->is_nested()) {
2208        assert(alock->box_node()->as_BoxLock()->is_eliminated(), "sanity");
2209        return;
2210     } else if (!alock->is_non_esc_obj()) { // Not eliminated or coarsened
2211       // Only Lock node has JVMState needed here.
2212       // Not that preceding claim is documented anywhere else.
2213       if (alock->jvms() != NULL) {
2214         if (alock->as_Lock()->is_nested_lock_region()) {
2215           // Mark eliminated related nested locks and unlocks.
2216           Node* obj = alock->obj_node();
2217           BoxLockNode* box_node = alock->box_node()->as_BoxLock();
2218           assert(!box_node->is_eliminated(), "should not be marked yet");
2219           // Note: BoxLock node is marked eliminated only here
2220           // and it is used to indicate that all associated lock
2221           // and unlock nodes are marked for elimination.
2222           box_node->set_eliminated(); // Box's hash is always NO_HASH here
2223           for (uint i = 0; i < box_node->outcnt(); i++) {
2224             Node* u = box_node->raw_out(i);
2225             if (u->is_AbstractLock()) {
2226               alock = u->as_AbstractLock();
2227               if (alock->box_node() == box_node) {
2228                 // Verify that this Box is referenced only by related locks.
2229                 assert(alock->obj_node()->eqv_uncast(obj), "");
2230                 // Mark all related locks and unlocks.
2231 #ifdef ASSERT
2232                 alock->log_lock_optimization(C, "eliminate_lock_set_nested");
2233 #endif
2234                 alock->set_nested();
2235               }
2236             }
2237           }
2238         } else {
2239 #ifdef ASSERT
2240           alock->log_lock_optimization(C, "eliminate_lock_NOT_nested_lock_region");
2241           if (C->log() != NULL)
2242             alock->as_Lock()->is_nested_lock_region(C); // rerun for debugging output
2243 #endif
2244         }
2245       }
2246       return;
2247     }
2248     // Process locks for non escaping object
2249     assert(alock->is_non_esc_obj(), "");
2250   } // EliminateNestedLocks
2251 
2252   if (alock->is_non_esc_obj()) { // Lock is used for non escaping object
2253     // Look for all locks of this object and mark them and
2254     // corresponding BoxLock nodes as eliminated.
2255     Node* obj = alock->obj_node();
2256     for (uint j = 0; j < obj->outcnt(); j++) {
2257       Node* o = obj->raw_out(j);
2258       if (o->is_AbstractLock() &&
2259           o->as_AbstractLock()->obj_node()->eqv_uncast(obj)) {
2260         alock = o->as_AbstractLock();
2261         Node* box = alock->box_node();
2262         // Replace old box node with new eliminated box for all users
2263         // of the same object and mark related locks as eliminated.
2264         mark_eliminated_box(box, obj);
2265       }
2266     }
2267   }
2268 }
2269 
2270 // we have determined that this lock/unlock can be eliminated, we simply
2271 // eliminate the node without expanding it.
2272 //
2273 // Note:  The membar's associated with the lock/unlock are currently not
2274 //        eliminated.  This should be investigated as a future enhancement.
2275 //
2276 bool PhaseMacroExpand::eliminate_locking_node(AbstractLockNode *alock) {
2277 
2278   if (!alock->is_eliminated()) {
2279     return false;
2280   }
2281 #ifdef ASSERT
2282   if (!alock->is_coarsened()) {
2283     // Check that new "eliminated" BoxLock node is created.
2284     BoxLockNode* oldbox = alock->box_node()->as_BoxLock();
2285     assert(oldbox->is_eliminated(), "should be done already");
2286   }
2287 #endif
2288 
2289   alock->log_lock_optimization(C, "eliminate_lock");
2290 
2291 #ifndef PRODUCT
2292   if (PrintEliminateLocks) {
2293     if (alock->is_Lock()) {
2294       tty->print_cr("++++ Eliminated: %d Lock", alock->_idx);
2295     } else {
2296       tty->print_cr("++++ Eliminated: %d Unlock", alock->_idx);
2297     }
2298   }
2299 #endif
2300 
2301   Node* mem  = alock->in(TypeFunc::Memory);
2302   Node* ctrl = alock->in(TypeFunc::Control);
2303 
2304   extract_call_projections(alock);
2305   // There are 2 projections from the lock.  The lock node will
2306   // be deleted when its last use is subsumed below.
2307   assert(alock->outcnt() == 2 &&
2308          _fallthroughproj != NULL &&
2309          _memproj_fallthrough != NULL,
2310          "Unexpected projections from Lock/Unlock");
2311 
2312   Node* fallthroughproj = _fallthroughproj;
2313   Node* memproj_fallthrough = _memproj_fallthrough;
2314 
2315   // The memory projection from a lock/unlock is RawMem
2316   // The input to a Lock is merged memory, so extract its RawMem input
2317   // (unless the MergeMem has been optimized away.)
2318   if (alock->is_Lock()) {
2319     // Seach for MemBarAcquireLock node and delete it also.
2320     MemBarNode* membar = fallthroughproj->unique_ctrl_out()->as_MemBar();
2321     assert(membar != NULL && membar->Opcode() == Op_MemBarAcquireLock, "");
2322     Node* ctrlproj = membar->proj_out(TypeFunc::Control);
2323     Node* memproj = membar->proj_out(TypeFunc::Memory);
2324     _igvn.replace_node(ctrlproj, fallthroughproj);
2325     _igvn.replace_node(memproj, memproj_fallthrough);
2326 
2327     // Delete FastLock node also if this Lock node is unique user
2328     // (a loop peeling may clone a Lock node).
2329     Node* flock = alock->as_Lock()->fastlock_node();
2330     if (flock->outcnt() == 1) {
2331       assert(flock->unique_out() == alock, "sanity");
2332       _igvn.replace_node(flock, top());
2333     }
2334   }
2335 
2336   // Seach for MemBarReleaseLock node and delete it also.
2337   if (alock->is_Unlock() && ctrl != NULL && ctrl->is_Proj() &&
2338       ctrl->in(0)->is_MemBar()) {
2339     MemBarNode* membar = ctrl->in(0)->as_MemBar();
2340     assert(membar->Opcode() == Op_MemBarReleaseLock &&
2341            mem->is_Proj() && membar == mem->in(0), "");
2342     _igvn.replace_node(fallthroughproj, ctrl);
2343     _igvn.replace_node(memproj_fallthrough, mem);
2344     fallthroughproj = ctrl;
2345     memproj_fallthrough = mem;
2346     ctrl = membar->in(TypeFunc::Control);
2347     mem  = membar->in(TypeFunc::Memory);
2348   }
2349 
2350   _igvn.replace_node(fallthroughproj, ctrl);
2351   _igvn.replace_node(memproj_fallthrough, mem);
2352   return true;
2353 }
2354 
2355 
2356 //------------------------------expand_lock_node----------------------
2357 void PhaseMacroExpand::expand_lock_node(LockNode *lock) {
2358 
2359   Node* ctrl = lock->in(TypeFunc::Control);
2360   Node* mem = lock->in(TypeFunc::Memory);
2361   Node* obj = lock->obj_node();
2362   Node* box = lock->box_node();
2363   Node* flock = lock->fastlock_node();
2364 
2365   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2366 
2367   // Make the merge point
2368   Node *region;
2369   Node *mem_phi;
2370   Node *slow_path;
2371 
2372   if (UseOptoBiasInlining) {
2373     /*
2374      *  See the full description in MacroAssembler::biased_locking_enter().
2375      *
2376      *  if( (mark_word & biased_lock_mask) == biased_lock_pattern ) {
2377      *    // The object is biased.
2378      *    proto_node = klass->prototype_header;
2379      *    o_node = thread | proto_node;
2380      *    x_node = o_node ^ mark_word;
2381      *    if( (x_node & ~age_mask) == 0 ) { // Biased to the current thread ?
2382      *      // Done.
2383      *    } else {
2384      *      if( (x_node & biased_lock_mask) != 0 ) {
2385      *        // The klass's prototype header is no longer biased.
2386      *        cas(&mark_word, mark_word, proto_node)
2387      *        goto cas_lock;
2388      *      } else {
2389      *        // The klass's prototype header is still biased.
2390      *        if( (x_node & epoch_mask) != 0 ) { // Expired epoch?
2391      *          old = mark_word;
2392      *          new = o_node;
2393      *        } else {
2394      *          // Different thread or anonymous biased.
2395      *          old = mark_word & (epoch_mask | age_mask | biased_lock_mask);
2396      *          new = thread | old;
2397      *        }
2398      *        // Try to rebias.
2399      *        if( cas(&mark_word, old, new) == 0 ) {
2400      *          // Done.
2401      *        } else {
2402      *          goto slow_path; // Failed.
2403      *        }
2404      *      }
2405      *    }
2406      *  } else {
2407      *    // The object is not biased.
2408      *    cas_lock:
2409      *    if( FastLock(obj) == 0 ) {
2410      *      // Done.
2411      *    } else {
2412      *      slow_path:
2413      *      OptoRuntime::complete_monitor_locking_Java(obj);
2414      *    }
2415      *  }
2416      */
2417 
2418     region  = new RegionNode(5);
2419     // create a Phi for the memory state
2420     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2421 
2422     Node* fast_lock_region  = new RegionNode(3);
2423     Node* fast_lock_mem_phi = new PhiNode( fast_lock_region, Type::MEMORY, TypeRawPtr::BOTTOM);
2424 
2425     // First, check mark word for the biased lock pattern.
2426     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2427 
2428     // Get fast path - mark word has the biased lock pattern.
2429     ctrl = opt_bits_test(ctrl, fast_lock_region, 1, mark_node,
2430                          markOopDesc::biased_lock_mask_in_place,
2431                          markOopDesc::biased_lock_pattern, true);
2432     // fast_lock_region->in(1) is set to slow path.
2433     fast_lock_mem_phi->init_req(1, mem);
2434 
2435     // Now check that the lock is biased to the current thread and has
2436     // the same epoch and bias as Klass::_prototype_header.
2437 
2438     // Special-case a fresh allocation to avoid building nodes:
2439     Node* klass_node = AllocateNode::Ideal_klass(obj, &_igvn);
2440     if (klass_node == NULL) {
2441       Node* k_adr = basic_plus_adr(obj, oopDesc::klass_offset_in_bytes());
2442       klass_node = transform_later(LoadKlassNode::make(_igvn, NULL, mem, k_adr, _igvn.type(k_adr)->is_ptr()));
2443 #ifdef _LP64
2444       if (UseCompressedClassPointers && klass_node->is_DecodeNKlass()) {
2445         assert(klass_node->in(1)->Opcode() == Op_LoadNKlass, "sanity");
2446         klass_node->in(1)->init_req(0, ctrl);
2447       } else
2448 #endif
2449       klass_node->init_req(0, ctrl);
2450     }
2451     Node *proto_node = make_load(ctrl, mem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeX_X, TypeX_X->basic_type());
2452 
2453     Node* thread = transform_later(new ThreadLocalNode());
2454     Node* cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2455     Node* o_node = transform_later(new OrXNode(cast_thread, proto_node));
2456     Node* x_node = transform_later(new XorXNode(o_node, mark_node));
2457 
2458     // Get slow path - mark word does NOT match the value.
2459     Node* not_biased_ctrl =  opt_bits_test(ctrl, region, 3, x_node,
2460                                       (~markOopDesc::age_mask_in_place), 0);
2461     // region->in(3) is set to fast path - the object is biased to the current thread.
2462     mem_phi->init_req(3, mem);
2463 
2464 
2465     // Mark word does NOT match the value (thread | Klass::_prototype_header).
2466 
2467 
2468     // First, check biased pattern.
2469     // Get fast path - _prototype_header has the same biased lock pattern.
2470     ctrl =  opt_bits_test(not_biased_ctrl, fast_lock_region, 2, x_node,
2471                           markOopDesc::biased_lock_mask_in_place, 0, true);
2472 
2473     not_biased_ctrl = fast_lock_region->in(2); // Slow path
2474     // fast_lock_region->in(2) - the prototype header is no longer biased
2475     // and we have to revoke the bias on this object.
2476     // We are going to try to reset the mark of this object to the prototype
2477     // value and fall through to the CAS-based locking scheme.
2478     Node* adr = basic_plus_adr(obj, oopDesc::mark_offset_in_bytes());
2479     Node* cas = new StoreXConditionalNode(not_biased_ctrl, mem, adr,
2480                                           proto_node, mark_node);
2481     transform_later(cas);
2482     Node* proj = transform_later(new SCMemProjNode(cas));
2483     fast_lock_mem_phi->init_req(2, proj);
2484 
2485 
2486     // Second, check epoch bits.
2487     Node* rebiased_region  = new RegionNode(3);
2488     Node* old_phi = new PhiNode( rebiased_region, TypeX_X);
2489     Node* new_phi = new PhiNode( rebiased_region, TypeX_X);
2490 
2491     // Get slow path - mark word does NOT match epoch bits.
2492     Node* epoch_ctrl =  opt_bits_test(ctrl, rebiased_region, 1, x_node,
2493                                       markOopDesc::epoch_mask_in_place, 0);
2494     // The epoch of the current bias is not valid, attempt to rebias the object
2495     // toward the current thread.
2496     rebiased_region->init_req(2, epoch_ctrl);
2497     old_phi->init_req(2, mark_node);
2498     new_phi->init_req(2, o_node);
2499 
2500     // rebiased_region->in(1) is set to fast path.
2501     // The epoch of the current bias is still valid but we know
2502     // nothing about the owner; it might be set or it might be clear.
2503     Node* cmask   = MakeConX(markOopDesc::biased_lock_mask_in_place |
2504                              markOopDesc::age_mask_in_place |
2505                              markOopDesc::epoch_mask_in_place);
2506     Node* old = transform_later(new AndXNode(mark_node, cmask));
2507     cast_thread = transform_later(new CastP2XNode(ctrl, thread));
2508     Node* new_mark = transform_later(new OrXNode(cast_thread, old));
2509     old_phi->init_req(1, old);
2510     new_phi->init_req(1, new_mark);
2511 
2512     transform_later(rebiased_region);
2513     transform_later(old_phi);
2514     transform_later(new_phi);
2515 
2516     // Try to acquire the bias of the object using an atomic operation.
2517     // If this fails we will go in to the runtime to revoke the object's bias.
2518     cas = new StoreXConditionalNode(rebiased_region, mem, adr, new_phi, old_phi);
2519     transform_later(cas);
2520     proj = transform_later(new SCMemProjNode(cas));
2521 
2522     // Get slow path - Failed to CAS.
2523     not_biased_ctrl = opt_bits_test(rebiased_region, region, 4, cas, 0, 0);
2524     mem_phi->init_req(4, proj);
2525     // region->in(4) is set to fast path - the object is rebiased to the current thread.
2526 
2527     // Failed to CAS.
2528     slow_path  = new RegionNode(3);
2529     Node *slow_mem = new PhiNode( slow_path, Type::MEMORY, TypeRawPtr::BOTTOM);
2530 
2531     slow_path->init_req(1, not_biased_ctrl); // Capture slow-control
2532     slow_mem->init_req(1, proj);
2533 
2534     // Call CAS-based locking scheme (FastLock node).
2535 
2536     transform_later(fast_lock_region);
2537     transform_later(fast_lock_mem_phi);
2538 
2539     // Get slow path - FastLock failed to lock the object.
2540     ctrl = opt_bits_test(fast_lock_region, region, 2, flock, 0, 0);
2541     mem_phi->init_req(2, fast_lock_mem_phi);
2542     // region->in(2) is set to fast path - the object is locked to the current thread.
2543 
2544     slow_path->init_req(2, ctrl); // Capture slow-control
2545     slow_mem->init_req(2, fast_lock_mem_phi);
2546 
2547     transform_later(slow_path);
2548     transform_later(slow_mem);
2549     // Reset lock's memory edge.
2550     lock->set_req(TypeFunc::Memory, slow_mem);
2551 
2552   } else {
2553     region  = new RegionNode(3);
2554     // create a Phi for the memory state
2555     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2556 
2557     // Optimize test; set region slot 2
2558     slow_path = opt_bits_test(ctrl, region, 2, flock, 0, 0);
2559     mem_phi->init_req(2, mem);
2560   }
2561 
2562   // Make slow path call
2563   CallNode *call = make_slow_call((CallNode *) lock, OptoRuntime::complete_monitor_enter_Type(),
2564                                   OptoRuntime::complete_monitor_locking_Java(), NULL, slow_path,
2565                                   obj, box, NULL);
2566 
2567   extract_call_projections(call);
2568 
2569   // Slow path can only throw asynchronous exceptions, which are always
2570   // de-opted.  So the compiler thinks the slow-call can never throw an
2571   // exception.  If it DOES throw an exception we would need the debug
2572   // info removed first (since if it throws there is no monitor).
2573   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2574            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2575 
2576   // Capture slow path
2577   // disconnect fall-through projection from call and create a new one
2578   // hook up users of fall-through projection to region
2579   Node *slow_ctrl = _fallthroughproj->clone();
2580   transform_later(slow_ctrl);
2581   _igvn.hash_delete(_fallthroughproj);
2582   _fallthroughproj->disconnect_inputs(NULL, C);
2583   region->init_req(1, slow_ctrl);
2584   // region inputs are now complete
2585   transform_later(region);
2586   _igvn.replace_node(_fallthroughproj, region);
2587 
2588   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory));
2589   mem_phi->init_req(1, memproj );
2590   transform_later(mem_phi);
2591   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2592 }
2593 
2594 //------------------------------expand_unlock_node----------------------
2595 void PhaseMacroExpand::expand_unlock_node(UnlockNode *unlock) {
2596 
2597   Node* ctrl = unlock->in(TypeFunc::Control);
2598   Node* mem = unlock->in(TypeFunc::Memory);
2599   Node* obj = unlock->obj_node();
2600   Node* box = unlock->box_node();
2601 
2602   assert(!box->as_BoxLock()->is_eliminated(), "sanity");
2603 
2604   // No need for a null check on unlock
2605 
2606   // Make the merge point
2607   Node *region;
2608   Node *mem_phi;
2609 
2610   if (UseOptoBiasInlining) {
2611     // Check for biased locking unlock case, which is a no-op.
2612     // See the full description in MacroAssembler::biased_locking_exit().
2613     region  = new RegionNode(4);
2614     // create a Phi for the memory state
2615     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2616     mem_phi->init_req(3, mem);
2617 
2618     Node* mark_node = make_load(ctrl, mem, obj, oopDesc::mark_offset_in_bytes(), TypeX_X, TypeX_X->basic_type());
2619     ctrl = opt_bits_test(ctrl, region, 3, mark_node,
2620                          markOopDesc::biased_lock_mask_in_place,
2621                          markOopDesc::biased_lock_pattern);
2622   } else {
2623     region  = new RegionNode(3);
2624     // create a Phi for the memory state
2625     mem_phi = new PhiNode( region, Type::MEMORY, TypeRawPtr::BOTTOM);
2626   }
2627 
2628   FastUnlockNode *funlock = new FastUnlockNode( ctrl, obj, box );
2629   funlock = transform_later( funlock )->as_FastUnlock();
2630   // Optimize test; set region slot 2
2631   Node *slow_path = opt_bits_test(ctrl, region, 2, funlock, 0, 0);
2632   Node *thread = transform_later(new ThreadLocalNode());
2633 
2634   CallNode *call = make_slow_call((CallNode *) unlock, OptoRuntime::complete_monitor_exit_Type(),
2635                                   CAST_FROM_FN_PTR(address, SharedRuntime::complete_monitor_unlocking_C),
2636                                   "complete_monitor_unlocking_C", slow_path, obj, box, thread);
2637 
2638   extract_call_projections(call);
2639 
2640   assert ( _ioproj_fallthrough == NULL && _ioproj_catchall == NULL &&
2641            _memproj_catchall == NULL && _catchallcatchproj == NULL, "Unexpected projection from Lock");
2642 
2643   // No exceptions for unlocking
2644   // Capture slow path
2645   // disconnect fall-through projection from call and create a new one
2646   // hook up users of fall-through projection to region
2647   Node *slow_ctrl = _fallthroughproj->clone();
2648   transform_later(slow_ctrl);
2649   _igvn.hash_delete(_fallthroughproj);
2650   _fallthroughproj->disconnect_inputs(NULL, C);
2651   region->init_req(1, slow_ctrl);
2652   // region inputs are now complete
2653   transform_later(region);
2654   _igvn.replace_node(_fallthroughproj, region);
2655 
2656   Node *memproj = transform_later(new ProjNode(call, TypeFunc::Memory) );
2657   mem_phi->init_req(1, memproj );
2658   mem_phi->init_req(2, mem);
2659   transform_later(mem_phi);
2660   _igvn.replace_node(_memproj_fallthrough, mem_phi);
2661 }
2662 
2663 // A value type is returned from the call but we don't know its
2664 // type. Either we get a buffered value (and nothing needs to be done)
2665 // or one of the values being returned is the klass of the value type
2666 // and we need to allocate a value type instance of that type and
2667 // initialize it with other values being returned. In that case, we
2668 // first try a fast path allocation and initialize the value with the
2669 // value klass's pack handler or we fall back to a runtime call.
2670 void PhaseMacroExpand::expand_mh_intrinsic_return(CallStaticJavaNode* call) {
2671   Node* ret = call->proj_out(TypeFunc::Parms);
2672   if (ret == NULL) {
2673     return;
2674   }
2675   assert(ret->bottom_type()->is_valuetypeptr()->is__Value(), "unexpected return type from MH intrinsic");
2676   const TypeFunc* tf = call->_tf;
2677   const TypeTuple* domain = OptoRuntime::store_value_type_fields_Type()->domain_cc();
2678   const TypeFunc* new_tf = TypeFunc::make(tf->domain_sig(), tf->domain_cc(), tf->range_sig(), domain);
2679   call->_tf = new_tf;
2680   // Make sure the change of type is applied before projections are
2681   // processed by igvn
2682   _igvn.set_type(call, call->Value(&_igvn));
2683   _igvn.set_type(ret, ret->Value(&_igvn));
2684 
2685   // Before any new projection is added:
2686   CallProjections* projs = call->extract_projections(true, true);
2687 
2688   Node* ctl = new Node(1);
2689   Node* mem = new Node(1);
2690   Node* io = new Node(1);
2691   Node* ex_ctl = new Node(1);
2692   Node* ex_mem = new Node(1);
2693   Node* ex_io = new Node(1);
2694   Node* res = new Node(1);
2695 
2696   Node* cast = transform_later(new CastP2XNode(ctl, res));
2697   Node* mask = MakeConX(0x1);
2698   Node* masked = transform_later(new AndXNode(cast, mask));
2699   Node* cmp = transform_later(new CmpXNode(masked, mask));
2700   Node* bol = transform_later(new BoolNode(cmp, BoolTest::eq));
2701   IfNode* allocation_iff = new IfNode(ctl, bol, PROB_MAX, COUNT_UNKNOWN);
2702   transform_later(allocation_iff);
2703   Node* allocation_ctl = transform_later(new IfTrueNode(allocation_iff));
2704   Node* no_allocation_ctl = transform_later(new IfFalseNode(allocation_iff));
2705 
2706   Node* no_allocation_res = transform_later(new CheckCastPPNode(no_allocation_ctl, res, TypeValueTypePtr::NOTNULL));
2707 
2708   Node* mask2 = MakeConX(-2);
2709   Node* masked2 = transform_later(new AndXNode(cast, mask2));
2710   Node* rawklassptr = transform_later(new CastX2PNode(masked2));
2711   Node* klass_node = transform_later(new CheckCastPPNode(allocation_ctl, rawklassptr, TypeKlassPtr::OBJECT_OR_NULL));
2712 
2713   Node* slowpath_bol = NULL;
2714   Node* top_adr = NULL;
2715   Node* old_top = NULL;
2716   Node* new_top = NULL;
2717   if (UseTLAB) {
2718     Node* end_adr = NULL;
2719     set_eden_pointers(top_adr, end_adr);
2720     Node* end = make_load(ctl, mem, end_adr, 0, TypeRawPtr::BOTTOM, T_ADDRESS);
2721     old_top = new LoadPNode(ctl, mem, top_adr, TypeRawPtr::BOTTOM, TypeRawPtr::BOTTOM, MemNode::unordered);
2722     transform_later(old_top);
2723     Node* layout_val = make_load(NULL, mem, klass_node, in_bytes(Klass::layout_helper_offset()), TypeInt::INT, T_INT);
2724     Node* size_in_bytes = ConvI2X(layout_val);
2725     new_top = new AddPNode(top(), old_top, size_in_bytes);
2726     transform_later(new_top);
2727     Node* slowpath_cmp = new CmpPNode(new_top, end);
2728     transform_later(slowpath_cmp);
2729     slowpath_bol = new BoolNode(slowpath_cmp, BoolTest::ge);
2730     transform_later(slowpath_bol);
2731   } else {
2732     slowpath_bol = intcon(1);
2733     top_adr = top();
2734     old_top = top();
2735     new_top = top();
2736   }
2737   IfNode* slowpath_iff = new IfNode(allocation_ctl, slowpath_bol, PROB_UNLIKELY_MAG(4), COUNT_UNKNOWN);
2738   transform_later(slowpath_iff);
2739 
2740   Node* slowpath_true = new IfTrueNode(slowpath_iff);
2741   transform_later(slowpath_true);
2742 
2743   CallStaticJavaNode* slow_call = new CallStaticJavaNode(OptoRuntime::store_value_type_fields_Type(),
2744                                                          StubRoutines::store_value_type_fields_to_buf(),
2745                                                          "store_value_type_fields",
2746                                                          call->jvms()->bci(),
2747                                                          TypePtr::BOTTOM);
2748   slow_call->init_req(TypeFunc::Control, slowpath_true);
2749   slow_call->init_req(TypeFunc::Memory, mem);
2750   slow_call->init_req(TypeFunc::I_O, io);
2751   slow_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2752   slow_call->init_req(TypeFunc::ReturnAdr, call->in(TypeFunc::ReturnAdr));
2753   slow_call->init_req(TypeFunc::Parms, res);
2754 
2755   Node* slow_ctl = transform_later(new ProjNode(slow_call, TypeFunc::Control));
2756   Node* slow_mem = transform_later(new ProjNode(slow_call, TypeFunc::Memory));
2757   Node* slow_io = transform_later(new ProjNode(slow_call, TypeFunc::I_O));
2758   Node* slow_res = transform_later(new ProjNode(slow_call, TypeFunc::Parms));
2759   Node* slow_catc = transform_later(new CatchNode(slow_ctl, slow_io, 2));
2760   Node* slow_norm = transform_later(new CatchProjNode(slow_catc, CatchProjNode::fall_through_index, CatchProjNode::no_handler_bci));
2761   Node* slow_excp = transform_later(new CatchProjNode(slow_catc, CatchProjNode::catch_all_index,    CatchProjNode::no_handler_bci));
2762 
2763   Node* ex_r = new RegionNode(3);
2764   Node* ex_mem_phi = new PhiNode(ex_r, Type::MEMORY, TypePtr::BOTTOM);
2765   Node* ex_io_phi = new PhiNode(ex_r, Type::ABIO);
2766   ex_r->init_req(1, slow_excp);
2767   ex_mem_phi->init_req(1, slow_mem);
2768   ex_io_phi->init_req(1, slow_io);
2769   ex_r->init_req(2, ex_ctl);
2770   ex_mem_phi->init_req(2, ex_mem);
2771   ex_io_phi->init_req(2, ex_io);
2772 
2773   transform_later(ex_r);
2774   transform_later(ex_mem_phi);
2775   transform_later(ex_io_phi);
2776 
2777   Node* slowpath_false = new IfFalseNode(slowpath_iff);
2778   transform_later(slowpath_false);
2779   Node* rawmem = new StorePNode(slowpath_false, mem, top_adr, TypeRawPtr::BOTTOM, new_top, MemNode::unordered);
2780   transform_later(rawmem);
2781   Node* mark_node = NULL;
2782   // For now only enable fast locking for non-array types
2783   if (UseBiasedLocking) {
2784     mark_node = make_load(slowpath_false, rawmem, klass_node, in_bytes(Klass::prototype_header_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2785   } else {
2786     mark_node = makecon(TypeRawPtr::make((address)markOopDesc::prototype()));
2787   }
2788   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::mark_offset_in_bytes(), mark_node, T_ADDRESS);
2789   rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_offset_in_bytes(), klass_node, T_METADATA);
2790   if (UseCompressedClassPointers) {
2791     rawmem = make_store(slowpath_false, rawmem, old_top, oopDesc::klass_gap_offset_in_bytes(), intcon(0), T_INT);
2792   }
2793   Node* pack_handler = make_load(slowpath_false, rawmem, klass_node, in_bytes(ValueKlass::pack_handler_offset()), TypeRawPtr::BOTTOM, T_ADDRESS);
2794 
2795   CallLeafNoFPNode* handler_call = new CallLeafNoFPNode(OptoRuntime::pack_value_type_Type(),
2796                                                         NULL,
2797                                                         "pack handler",
2798                                                         TypeRawPtr::BOTTOM);
2799   handler_call->init_req(TypeFunc::Control, slowpath_false);
2800   handler_call->init_req(TypeFunc::Memory, rawmem);
2801   handler_call->init_req(TypeFunc::I_O, top());
2802   handler_call->init_req(TypeFunc::FramePtr, call->in(TypeFunc::FramePtr));
2803   handler_call->init_req(TypeFunc::ReturnAdr, top());
2804   handler_call->init_req(TypeFunc::Parms, pack_handler);
2805   handler_call->init_req(TypeFunc::Parms+1, old_top);
2806 
2807   // We don't know how many values are returned. This assumes the
2808   // worst case, that all available registers are used.
2809   for (uint i = TypeFunc::Parms+1; i < domain->cnt(); i++) {
2810     if (domain->field_at(i) == Type::HALF) {
2811       slow_call->init_req(i, top());
2812       handler_call->init_req(i+1, top());
2813       continue;
2814     }
2815     Node* proj = transform_later(new ProjNode(call, i));
2816     slow_call->init_req(i, proj);
2817     handler_call->init_req(i+1, proj);
2818   }
2819 
2820   // We can safepoint at that new call
2821   copy_call_debug_info(call, slow_call);
2822   transform_later(slow_call);
2823   transform_later(handler_call);
2824 
2825   Node* handler_ctl = transform_later(new ProjNode(handler_call, TypeFunc::Control));
2826   rawmem = transform_later(new ProjNode(handler_call, TypeFunc::Memory));
2827   Node* slowpath_false_res = transform_later(new ProjNode(handler_call, TypeFunc::Parms));
2828 
2829   MergeMemNode* slowpath_false_mem = MergeMemNode::make(mem);
2830   slowpath_false_mem->set_memory_at(Compile::AliasIdxRaw, rawmem);
2831   transform_later(slowpath_false_mem);
2832 
2833   Node* r = new RegionNode(4);
2834   Node* mem_phi = new PhiNode(r, Type::MEMORY, TypePtr::BOTTOM);
2835   Node* io_phi = new PhiNode(r, Type::ABIO);
2836   Node* res_phi = new PhiNode(r, ret->bottom_type());
2837 
2838   r->init_req(1, no_allocation_ctl);
2839   mem_phi->init_req(1, mem);
2840   io_phi->init_req(1, io);
2841   res_phi->init_req(1, no_allocation_res);
2842   r->init_req(2, slow_norm);
2843   mem_phi->init_req(2, slow_mem);
2844   io_phi->init_req(2, slow_io);
2845   res_phi->init_req(2, slow_res);
2846   r->init_req(3, handler_ctl);
2847   mem_phi->init_req(3, slowpath_false_mem);
2848   io_phi->init_req(3, io);
2849   res_phi->init_req(3, slowpath_false_res);
2850 
2851   transform_later(r);
2852   transform_later(mem_phi);
2853   transform_later(io_phi);
2854   transform_later(res_phi);
2855 
2856   assert(projs->nb_resproj == 1, "unexpected number of results");
2857   _igvn.replace_in_uses(projs->fallthrough_catchproj, r);
2858   _igvn.replace_in_uses(projs->fallthrough_memproj, mem_phi);
2859   _igvn.replace_in_uses(projs->fallthrough_ioproj, io_phi);
2860   _igvn.replace_in_uses(projs->resproj[0], res_phi);
2861   _igvn.replace_in_uses(projs->catchall_catchproj, ex_r);
2862   _igvn.replace_in_uses(projs->catchall_memproj, ex_mem_phi);
2863   _igvn.replace_in_uses(projs->catchall_ioproj, ex_io_phi);
2864 
2865   _igvn.replace_node(ctl, projs->fallthrough_catchproj);
2866   _igvn.replace_node(mem, projs->fallthrough_memproj);
2867   _igvn.replace_node(io, projs->fallthrough_ioproj);
2868   _igvn.replace_node(res, projs->resproj[0]);
2869   _igvn.replace_node(ex_ctl, projs->catchall_catchproj);
2870   _igvn.replace_node(ex_mem, projs->catchall_memproj);
2871   _igvn.replace_node(ex_io, projs->catchall_ioproj);
2872  }
2873 
2874 //---------------------------eliminate_macro_nodes----------------------
2875 // Eliminate scalar replaced allocations and associated locks.
2876 void PhaseMacroExpand::eliminate_macro_nodes() {
2877   if (C->macro_count() == 0)
2878     return;
2879 
2880   // First, attempt to eliminate locks
2881   int cnt = C->macro_count();
2882   for (int i=0; i < cnt; i++) {
2883     Node *n = C->macro_node(i);
2884     if (n->is_AbstractLock()) { // Lock and Unlock nodes
2885       // Before elimination mark all associated (same box and obj)
2886       // lock and unlock nodes.
2887       mark_eliminated_locking_nodes(n->as_AbstractLock());
2888     }
2889   }
2890   bool progress = true;
2891   while (progress) {
2892     progress = false;
2893     for (int i = C->macro_count(); i > 0; i--) {
2894       Node * n = C->macro_node(i-1);
2895       bool success = false;
2896       debug_only(int old_macro_count = C->macro_count(););
2897       if (n->is_AbstractLock()) {
2898         success = eliminate_locking_node(n->as_AbstractLock());
2899       }
2900       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2901       progress = progress || success;
2902     }
2903   }
2904   // Next, attempt to eliminate allocations
2905   _has_locks = false;
2906   progress = true;
2907   while (progress) {
2908     progress = false;
2909     for (int i = C->macro_count(); i > 0; i--) {
2910       Node * n = C->macro_node(i-1);
2911       bool success = false;
2912       debug_only(int old_macro_count = C->macro_count(););
2913       switch (n->class_id()) {
2914       case Node::Class_Allocate:
2915       case Node::Class_AllocateArray:
2916         success = eliminate_allocate_node(n->as_Allocate());
2917         break;
2918       case Node::Class_CallStaticJava: {
2919         CallStaticJavaNode* call = n->as_CallStaticJava();
2920         if (!call->method()->is_method_handle_intrinsic()) {
2921           success = eliminate_boxing_node(n->as_CallStaticJava());
2922         }
2923         break;
2924       }
2925       case Node::Class_Lock:
2926       case Node::Class_Unlock:
2927         assert(!n->as_AbstractLock()->is_eliminated(), "sanity");
2928         _has_locks = true;
2929         break;
2930       case Node::Class_ArrayCopy:
2931         break;
2932       case Node::Class_OuterStripMinedLoop:
2933         break;
2934       default:
2935         assert(n->Opcode() == Op_LoopLimit ||
2936                n->Opcode() == Op_Opaque1   ||
2937                n->Opcode() == Op_Opaque2   ||
2938                n->Opcode() == Op_Opaque3   ||
2939                n->Opcode() == Op_Opaque4, "unknown node type in macro list");
2940       }
2941       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
2942       progress = progress || success;
2943     }
2944   }
2945 }
2946 
2947 //------------------------------expand_macro_nodes----------------------
2948 //  Returns true if a failure occurred.
2949 bool PhaseMacroExpand::expand_macro_nodes() {
2950   // Last attempt to eliminate macro nodes.
2951   eliminate_macro_nodes();
2952 
2953   // Make sure expansion will not cause node limit to be exceeded.
2954   // Worst case is a macro node gets expanded into about 200 nodes.
2955   // Allow 50% more for optimization.
2956   if (C->check_node_count(C->macro_count() * 300, "out of nodes before macro expansion" ) )
2957     return true;
2958 
2959   // Eliminate Opaque and LoopLimit nodes. Do it after all loop optimizations.
2960   bool progress = true;
2961   while (progress) {
2962     progress = false;
2963     for (int i = C->macro_count(); i > 0; i--) {
2964       Node * n = C->macro_node(i-1);
2965       bool success = false;
2966       debug_only(int old_macro_count = C->macro_count(););
2967       if (n->Opcode() == Op_LoopLimit) {
2968         // Remove it from macro list and put on IGVN worklist to optimize.
2969         C->remove_macro_node(n);
2970         _igvn._worklist.push(n);
2971         success = true;
2972       } else if (n->Opcode() == Op_CallStaticJava) {
2973         CallStaticJavaNode* call = n->as_CallStaticJava();
2974         if (!call->method()->is_method_handle_intrinsic()) {
2975           // Remove it from macro list and put on IGVN worklist to optimize.
2976           C->remove_macro_node(n);
2977           _igvn._worklist.push(n);
2978           success = true;
2979         }
2980       } else if (n->Opcode() == Op_Opaque1 || n->Opcode() == Op_Opaque2) {
2981         _igvn.replace_node(n, n->in(1));
2982         success = true;
2983 #if INCLUDE_RTM_OPT
2984       } else if ((n->Opcode() == Op_Opaque3) && ((Opaque3Node*)n)->rtm_opt()) {
2985         assert(C->profile_rtm(), "should be used only in rtm deoptimization code");
2986         assert((n->outcnt() == 1) && n->unique_out()->is_Cmp(), "");
2987         Node* cmp = n->unique_out();
2988 #ifdef ASSERT
2989         // Validate graph.
2990         assert((cmp->outcnt() == 1) && cmp->unique_out()->is_Bool(), "");
2991         BoolNode* bol = cmp->unique_out()->as_Bool();
2992         assert((bol->outcnt() == 1) && bol->unique_out()->is_If() &&
2993                (bol->_test._test == BoolTest::ne), "");
2994         IfNode* ifn = bol->unique_out()->as_If();
2995         assert((ifn->outcnt() == 2) &&
2996                ifn->proj_out(1)->is_uncommon_trap_proj(Deoptimization::Reason_rtm_state_change) != NULL, "");
2997 #endif
2998         Node* repl = n->in(1);
2999         if (!_has_locks) {
3000           // Remove RTM state check if there are no locks in the code.
3001           // Replace input to compare the same value.
3002           repl = (cmp->in(1) == n) ? cmp->in(2) : cmp->in(1);
3003         }
3004         _igvn.replace_node(n, repl);
3005         success = true;
3006 #endif
3007       } else if (n->Opcode() == Op_Opaque4) {
3008         _igvn.replace_node(n, n->in(2));
3009         success = true;
3010       } else if (n->Opcode() == Op_OuterStripMinedLoop) {
3011         n->as_OuterStripMinedLoop()->adjust_strip_mined_loop(&_igvn);
3012         C->remove_macro_node(n);
3013         success = true;
3014       }
3015       assert(success == (C->macro_count() < old_macro_count), "elimination reduces macro count");
3016       progress = progress || success;
3017     }
3018   }
3019 
3020   // expand arraycopy "macro" nodes first
3021   // For ReduceBulkZeroing, we must first process all arraycopy nodes
3022   // before the allocate nodes are expanded.
3023   int macro_idx = C->macro_count() - 1;
3024   while (macro_idx >= 0) {
3025     Node * n = C->macro_node(macro_idx);
3026     assert(n->is_macro(), "only macro nodes expected here");
3027     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
3028       // node is unreachable, so don't try to expand it
3029       C->remove_macro_node(n);
3030     } else if (n->is_ArrayCopy()){
3031       int macro_count = C->macro_count();
3032       expand_arraycopy_node(n->as_ArrayCopy());
3033       assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3034     }
3035     if (C->failing())  return true;
3036     macro_idx --;
3037   }
3038 
3039   // expand "macro" nodes
3040   // nodes are removed from the macro list as they are processed
3041   while (C->macro_count() > 0) {
3042     int macro_count = C->macro_count();
3043     Node * n = C->macro_node(macro_count-1);
3044     assert(n->is_macro(), "only macro nodes expected here");
3045     if (_igvn.type(n) == Type::TOP || n->in(0)->is_top() ) {
3046       // node is unreachable, so don't try to expand it
3047       C->remove_macro_node(n);
3048       continue;
3049     }
3050     switch (n->class_id()) {
3051     case Node::Class_Allocate:
3052       expand_allocate(n->as_Allocate());
3053       break;
3054     case Node::Class_AllocateArray:
3055       expand_allocate_array(n->as_AllocateArray());
3056       break;
3057     case Node::Class_Lock:
3058       expand_lock_node(n->as_Lock());
3059       break;
3060     case Node::Class_Unlock:
3061       expand_unlock_node(n->as_Unlock());
3062       break;
3063     case Node::Class_CallStaticJava:
3064       expand_mh_intrinsic_return(n->as_CallStaticJava());
3065       C->remove_macro_node(n);
3066       break;
3067     default:
3068       assert(false, "unknown node type in macro list");
3069     }
3070     assert(C->macro_count() < macro_count, "must have deleted a node from macro list");
3071     if (C->failing())  return true;
3072   }
3073 
3074   _igvn.set_delay_transform(false);
3075   _igvn.optimize();
3076   if (C->failing())  return true;
3077   return false;
3078 }