1 /*
   2  * Copyright (c) 1997, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "code/codeCache.hpp"
  28 #include "code/debugInfoRec.hpp"
  29 #include "code/nmethod.hpp"
  30 #include "code/pcDesc.hpp"
  31 #include "code/scopeDesc.hpp"
  32 #include "interpreter/bytecode.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "interpreter/oopMapCache.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/oopFactory.hpp"
  37 #include "memory/resourceArea.hpp"
  38 #include "oops/method.hpp"
  39 #include "oops/objArrayOop.inline.hpp"
  40 #include "oops/oop.inline.hpp"
  41 #include "oops/fieldStreams.hpp"
  42 #include "oops/verifyOopClosure.hpp"
  43 #include "prims/jvmtiThreadState.hpp"
  44 #include "runtime/biasedLocking.hpp"
  45 #include "runtime/compilationPolicy.hpp"
  46 #include "runtime/deoptimization.hpp"
  47 #include "runtime/interfaceSupport.hpp"
  48 #include "runtime/sharedRuntime.hpp"
  49 #include "runtime/signature.hpp"
  50 #include "runtime/stubRoutines.hpp"
  51 #include "runtime/thread.hpp"
  52 #include "runtime/vframe.hpp"
  53 #include "runtime/vframeArray.hpp"
  54 #include "runtime/vframe_hp.hpp"
  55 #include "utilities/events.hpp"
  56 #include "utilities/xmlstream.hpp"
  57 
  58 #if INCLUDE_JVMCI
  59 #include "jvmci/jvmciRuntime.hpp"
  60 #include "jvmci/jvmciJavaClasses.hpp"
  61 #endif
  62 
  63 
  64 bool DeoptimizationMarker::_is_active = false;
  65 
  66 Deoptimization::UnrollBlock::UnrollBlock(int  size_of_deoptimized_frame,
  67                                          int  caller_adjustment,
  68                                          int  caller_actual_parameters,
  69                                          int  number_of_frames,
  70                                          intptr_t* frame_sizes,
  71                                          address* frame_pcs,
  72                                          BasicType return_type,
  73                                          int exec_mode) {
  74   _size_of_deoptimized_frame = size_of_deoptimized_frame;
  75   _caller_adjustment         = caller_adjustment;
  76   _caller_actual_parameters  = caller_actual_parameters;
  77   _number_of_frames          = number_of_frames;
  78   _frame_sizes               = frame_sizes;
  79   _frame_pcs                 = frame_pcs;
  80   _register_block            = NEW_C_HEAP_ARRAY(intptr_t, RegisterMap::reg_count * 2, mtCompiler);
  81   _return_type               = return_type;
  82   _initial_info              = 0;
  83   // PD (x86 only)
  84   _counter_temp              = 0;
  85   _unpack_kind               = exec_mode;
  86   _sender_sp_temp            = 0;
  87 
  88   _total_frame_sizes         = size_of_frames();
  89   assert(exec_mode >= 0 && exec_mode < Unpack_LIMIT, "Unexpected exec_mode");
  90 }
  91 
  92 
  93 Deoptimization::UnrollBlock::~UnrollBlock() {
  94   FREE_C_HEAP_ARRAY(intptr_t, _frame_sizes);
  95   FREE_C_HEAP_ARRAY(intptr_t, _frame_pcs);
  96   FREE_C_HEAP_ARRAY(intptr_t, _register_block);
  97 }
  98 
  99 
 100 intptr_t* Deoptimization::UnrollBlock::value_addr_at(int register_number) const {
 101   assert(register_number < RegisterMap::reg_count, "checking register number");
 102   return &_register_block[register_number * 2];
 103 }
 104 
 105 
 106 
 107 int Deoptimization::UnrollBlock::size_of_frames() const {
 108   // Acount first for the adjustment of the initial frame
 109   int result = _caller_adjustment;
 110   for (int index = 0; index < number_of_frames(); index++) {
 111     result += frame_sizes()[index];
 112   }
 113   return result;
 114 }
 115 
 116 
 117 void Deoptimization::UnrollBlock::print() {
 118   ttyLocker ttyl;
 119   tty->print_cr("UnrollBlock");
 120   tty->print_cr("  size_of_deoptimized_frame = %d", _size_of_deoptimized_frame);
 121   tty->print(   "  frame_sizes: ");
 122   for (int index = 0; index < number_of_frames(); index++) {
 123     tty->print(INTX_FORMAT " ", frame_sizes()[index]);
 124   }
 125   tty->cr();
 126 }
 127 
 128 
 129 // In order to make fetch_unroll_info work properly with escape
 130 // analysis, The method was changed from JRT_LEAF to JRT_BLOCK_ENTRY and
 131 // ResetNoHandleMark and HandleMark were removed from it. The actual reallocation
 132 // of previously eliminated objects occurs in realloc_objects, which is
 133 // called from the method fetch_unroll_info_helper below.
 134 JRT_BLOCK_ENTRY(Deoptimization::UnrollBlock*, Deoptimization::fetch_unroll_info(JavaThread* thread, int exec_mode))
 135   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 136   // but makes the entry a little slower. There is however a little dance we have to
 137   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 138 
 139   // fetch_unroll_info() is called at the beginning of the deoptimization
 140   // handler. Note this fact before we start generating temporary frames
 141   // that can confuse an asynchronous stack walker. This counter is
 142   // decremented at the end of unpack_frames().
 143   if (TraceDeoptimization) {
 144     tty->print_cr("Deoptimizing thread " INTPTR_FORMAT, p2i(thread));
 145   }
 146   thread->inc_in_deopt_handler();
 147 
 148   return fetch_unroll_info_helper(thread, exec_mode);
 149 JRT_END
 150 
 151 
 152 // This is factored, since it is both called from a JRT_LEAF (deoptimization) and a JRT_ENTRY (uncommon_trap)
 153 Deoptimization::UnrollBlock* Deoptimization::fetch_unroll_info_helper(JavaThread* thread, int exec_mode) {
 154 
 155   // Note: there is a safepoint safety issue here. No matter whether we enter
 156   // via vanilla deopt or uncommon trap we MUST NOT stop at a safepoint once
 157   // the vframeArray is created.
 158   //
 159 
 160   // Allocate our special deoptimization ResourceMark
 161   DeoptResourceMark* dmark = new DeoptResourceMark(thread);
 162   assert(thread->deopt_mark() == NULL, "Pending deopt!");
 163   thread->set_deopt_mark(dmark);
 164 
 165   frame stub_frame = thread->last_frame(); // Makes stack walkable as side effect
 166   RegisterMap map(thread, true);
 167   RegisterMap dummy_map(thread, false);
 168   // Now get the deoptee with a valid map
 169   frame deoptee = stub_frame.sender(&map);
 170   // Set the deoptee nmethod
 171   assert(thread->deopt_nmethod() == NULL, "Pending deopt!");
 172   thread->set_deopt_nmethod(deoptee.cb()->as_nmethod_or_null());
 173   bool skip_internal = thread->deopt_nmethod() != NULL && !thread->deopt_nmethod()->compiler()->is_jvmci();
 174 
 175   if (VerifyStack) {
 176     thread->validate_frame_layout();
 177   }
 178 
 179   // Create a growable array of VFrames where each VFrame represents an inlined
 180   // Java frame.  This storage is allocated with the usual system arena.
 181   assert(deoptee.is_compiled_frame(), "Wrong frame type");
 182   GrowableArray<compiledVFrame*>* chunk = new GrowableArray<compiledVFrame*>(10);
 183   vframe* vf = vframe::new_vframe(&deoptee, &map, thread);
 184   while (!vf->is_top()) {
 185     assert(vf->is_compiled_frame(), "Wrong frame type");
 186     chunk->push(compiledVFrame::cast(vf));
 187     vf = vf->sender();
 188   }
 189   assert(vf->is_compiled_frame(), "Wrong frame type");
 190   chunk->push(compiledVFrame::cast(vf));
 191 
 192   ScopeDesc* trap_scope = chunk->at(0)->scope();
 193   Handle exceptionObject;
 194   if (trap_scope->rethrow_exception()) {
 195     if (PrintDeoptimizationDetails) {
 196       tty->print_cr("Exception to be rethrown in the interpreter for method %s::%s at bci %d", trap_scope->method()->method_holder()->name()->as_C_string(), trap_scope->method()->name()->as_C_string(), trap_scope->bci());
 197     }
 198     GrowableArray<ScopeValue*>* expressions = trap_scope->expressions();
 199     guarantee(expressions != NULL && expressions->length() > 0, "must have exception to throw");
 200     ScopeValue* topOfStack = expressions->top();
 201     exceptionObject = StackValue::create_stack_value(&deoptee, &map, topOfStack)->get_obj();
 202     assert(exceptionObject() != NULL, "exception oop can not be null");
 203   }
 204 
 205   bool realloc_failures = false;
 206 
 207 #if defined(COMPILER2) || INCLUDE_JVMCI
 208   // Reallocate the non-escaping objects and restore their fields. Then
 209   // relock objects if synchronization on them was eliminated.
 210 #ifndef INCLUDE_JVMCI
 211   if (DoEscapeAnalysis || EliminateNestedLocks) {
 212     if (EliminateAllocations) {
 213 #endif // INCLUDE_JVMCI
 214       assert (chunk->at(0)->scope() != NULL,"expect only compiled java frames");
 215       GrowableArray<ScopeValue*>* objects = chunk->at(0)->scope()->objects();
 216 
 217       // The flag return_oop() indicates call sites which return oop
 218       // in compiled code. Such sites include java method calls,
 219       // runtime calls (for example, used to allocate new objects/arrays
 220       // on slow code path) and any other calls generated in compiled code.
 221       // It is not guaranteed that we can get such information here only
 222       // by analyzing bytecode in deoptimized frames. This is why this flag
 223       // is set during method compilation (see Compile::Process_OopMap_Node()).
 224       // If the previous frame was popped, we don't have a result.
 225       bool save_oop_result = chunk->at(0)->scope()->return_oop() && !thread->popframe_forcing_deopt_reexecution();
 226       Handle return_value;
 227       if (save_oop_result) {
 228         // Reallocation may trigger GC. If deoptimization happened on return from
 229         // call which returns oop we need to save it since it is not in oopmap.
 230         oop result = deoptee.saved_oop_result(&map);
 231         assert(result == NULL || result->is_oop(), "must be oop");
 232         return_value = Handle(thread, result);
 233         assert(Universe::heap()->is_in_or_null(result), "must be heap pointer");
 234         if (TraceDeoptimization) {
 235           ttyLocker ttyl;
 236           tty->print_cr("SAVED OOP RESULT " INTPTR_FORMAT " in thread " INTPTR_FORMAT, p2i(result), p2i(thread));
 237         }
 238       }
 239       if (objects != NULL) {
 240         JRT_BLOCK
 241           realloc_failures = realloc_objects(thread, &deoptee, objects, THREAD);
 242         JRT_END
 243         reassign_fields(&deoptee, &map, objects, realloc_failures, skip_internal);
 244 #ifndef PRODUCT
 245         if (TraceDeoptimization) {
 246           ttyLocker ttyl;
 247           tty->print_cr("REALLOC OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 248           print_objects(objects, realloc_failures);
 249         }
 250 #endif
 251       }
 252       if (save_oop_result) {
 253         // Restore result.
 254         deoptee.set_saved_oop_result(&map, return_value());
 255       }
 256 #ifndef INCLUDE_JVMCI
 257     }
 258     if (EliminateLocks) {
 259 #endif // INCLUDE_JVMCI
 260 #ifndef PRODUCT
 261       bool first = true;
 262 #endif
 263       for (int i = 0; i < chunk->length(); i++) {
 264         compiledVFrame* cvf = chunk->at(i);
 265         assert (cvf->scope() != NULL,"expect only compiled java frames");
 266         GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
 267         if (monitors->is_nonempty()) {
 268           relock_objects(monitors, thread, realloc_failures);
 269 #ifndef PRODUCT
 270           if (PrintDeoptimizationDetails) {
 271             ttyLocker ttyl;
 272             for (int j = 0; j < monitors->length(); j++) {
 273               MonitorInfo* mi = monitors->at(j);
 274               if (mi->eliminated()) {
 275                 if (first) {
 276                   first = false;
 277                   tty->print_cr("RELOCK OBJECTS in thread " INTPTR_FORMAT, p2i(thread));
 278                 }
 279                 if (mi->owner_is_scalar_replaced()) {
 280                   Klass* k = java_lang_Class::as_Klass(mi->owner_klass());
 281                   tty->print_cr("     failed reallocation for klass %s", k->external_name());
 282                 } else {
 283                   tty->print_cr("     object <" INTPTR_FORMAT "> locked", p2i(mi->owner()));
 284                 }
 285               }
 286             }
 287           }
 288 #endif // !PRODUCT
 289         }
 290       }
 291 #ifndef INCLUDE_JVMCI
 292     }
 293   }
 294 #endif // INCLUDE_JVMCI
 295 #endif // COMPILER2 || INCLUDE_JVMCI
 296 
 297   // Ensure that no safepoint is taken after pointers have been stored
 298   // in fields of rematerialized objects.  If a safepoint occurs from here on
 299   // out the java state residing in the vframeArray will be missed.
 300   NoSafepointVerifier no_safepoint;
 301 
 302   vframeArray* array = create_vframeArray(thread, deoptee, &map, chunk, realloc_failures);
 303 #if defined(COMPILER2) || INCLUDE_JVMCI
 304   if (realloc_failures) {
 305     pop_frames_failed_reallocs(thread, array);
 306   }
 307 #endif
 308 
 309   assert(thread->vframe_array_head() == NULL, "Pending deopt!");
 310   thread->set_vframe_array_head(array);
 311 
 312   // Now that the vframeArray has been created if we have any deferred local writes
 313   // added by jvmti then we can free up that structure as the data is now in the
 314   // vframeArray
 315 
 316   if (thread->deferred_locals() != NULL) {
 317     GrowableArray<jvmtiDeferredLocalVariableSet*>* list = thread->deferred_locals();
 318     int i = 0;
 319     do {
 320       // Because of inlining we could have multiple vframes for a single frame
 321       // and several of the vframes could have deferred writes. Find them all.
 322       if (list->at(i)->id() == array->original().id()) {
 323         jvmtiDeferredLocalVariableSet* dlv = list->at(i);
 324         list->remove_at(i);
 325         // individual jvmtiDeferredLocalVariableSet are CHeapObj's
 326         delete dlv;
 327       } else {
 328         i++;
 329       }
 330     } while ( i < list->length() );
 331     if (list->length() == 0) {
 332       thread->set_deferred_locals(NULL);
 333       // free the list and elements back to C heap.
 334       delete list;
 335     }
 336 
 337   }
 338 
 339 #ifndef SHARK
 340   // Compute the caller frame based on the sender sp of stub_frame and stored frame sizes info.
 341   CodeBlob* cb = stub_frame.cb();
 342   // Verify we have the right vframeArray
 343   assert(cb->frame_size() >= 0, "Unexpected frame size");
 344   intptr_t* unpack_sp = stub_frame.sp() + cb->frame_size();
 345 
 346   // If the deopt call site is a MethodHandle invoke call site we have
 347   // to adjust the unpack_sp.
 348   nmethod* deoptee_nm = deoptee.cb()->as_nmethod_or_null();
 349   if (deoptee_nm != NULL && deoptee_nm->is_method_handle_return(deoptee.pc()))
 350     unpack_sp = deoptee.unextended_sp();
 351 
 352 #ifdef ASSERT
 353   assert(cb->is_deoptimization_stub() ||
 354          cb->is_uncommon_trap_stub() ||
 355          strcmp("Stub<DeoptimizationStub.deoptimizationHandler>", cb->name()) == 0 ||
 356          strcmp("Stub<UncommonTrapStub.uncommonTrapHandler>", cb->name()) == 0,
 357          "unexpected code blob: %s", cb->name());
 358 #endif
 359 #else
 360   intptr_t* unpack_sp = stub_frame.sender(&dummy_map).unextended_sp();
 361 #endif // !SHARK
 362 
 363   // This is a guarantee instead of an assert because if vframe doesn't match
 364   // we will unpack the wrong deoptimized frame and wind up in strange places
 365   // where it will be very difficult to figure out what went wrong. Better
 366   // to die an early death here than some very obscure death later when the
 367   // trail is cold.
 368   // Note: on ia64 this guarantee can be fooled by frames with no memory stack
 369   // in that it will fail to detect a problem when there is one. This needs
 370   // more work in tiger timeframe.
 371   guarantee(array->unextended_sp() == unpack_sp, "vframe_array_head must contain the vframeArray to unpack");
 372 
 373   int number_of_frames = array->frames();
 374 
 375   // Compute the vframes' sizes.  Note that frame_sizes[] entries are ordered from outermost to innermost
 376   // virtual activation, which is the reverse of the elements in the vframes array.
 377   intptr_t* frame_sizes = NEW_C_HEAP_ARRAY(intptr_t, number_of_frames, mtCompiler);
 378   // +1 because we always have an interpreter return address for the final slot.
 379   address* frame_pcs = NEW_C_HEAP_ARRAY(address, number_of_frames + 1, mtCompiler);
 380   int popframe_extra_args = 0;
 381   // Create an interpreter return address for the stub to use as its return
 382   // address so the skeletal frames are perfectly walkable
 383   frame_pcs[number_of_frames] = Interpreter::deopt_entry(vtos, 0);
 384 
 385   // PopFrame requires that the preserved incoming arguments from the recently-popped topmost
 386   // activation be put back on the expression stack of the caller for reexecution
 387   if (JvmtiExport::can_pop_frame() && thread->popframe_forcing_deopt_reexecution()) {
 388     popframe_extra_args = in_words(thread->popframe_preserved_args_size_in_words());
 389   }
 390 
 391   // Find the current pc for sender of the deoptee. Since the sender may have been deoptimized
 392   // itself since the deoptee vframeArray was created we must get a fresh value of the pc rather
 393   // than simply use array->sender.pc(). This requires us to walk the current set of frames
 394   //
 395   frame deopt_sender = stub_frame.sender(&dummy_map); // First is the deoptee frame
 396   deopt_sender = deopt_sender.sender(&dummy_map);     // Now deoptee caller
 397 
 398   // It's possible that the number of parameters at the call site is
 399   // different than number of arguments in the callee when method
 400   // handles are used.  If the caller is interpreted get the real
 401   // value so that the proper amount of space can be added to it's
 402   // frame.
 403   bool caller_was_method_handle = false;
 404   if (deopt_sender.is_interpreted_frame()) {
 405     methodHandle method = deopt_sender.interpreter_frame_method();
 406     Bytecode_invoke cur = Bytecode_invoke_check(method, deopt_sender.interpreter_frame_bci());
 407     if (cur.is_invokedynamic() || cur.is_invokehandle()) {
 408       // Method handle invokes may involve fairly arbitrary chains of
 409       // calls so it's impossible to know how much actual space the
 410       // caller has for locals.
 411       caller_was_method_handle = true;
 412     }
 413   }
 414 
 415   //
 416   // frame_sizes/frame_pcs[0] oldest frame (int or c2i)
 417   // frame_sizes/frame_pcs[1] next oldest frame (int)
 418   // frame_sizes/frame_pcs[n] youngest frame (int)
 419   //
 420   // Now a pc in frame_pcs is actually the return address to the frame's caller (a frame
 421   // owns the space for the return address to it's caller).  Confusing ain't it.
 422   //
 423   // The vframe array can address vframes with indices running from
 424   // 0.._frames-1. Index  0 is the youngest frame and _frame - 1 is the oldest (root) frame.
 425   // When we create the skeletal frames we need the oldest frame to be in the zero slot
 426   // in the frame_sizes/frame_pcs so the assembly code can do a trivial walk.
 427   // so things look a little strange in this loop.
 428   //
 429   int callee_parameters = 0;
 430   int callee_locals = 0;
 431   for (int index = 0; index < array->frames(); index++ ) {
 432     // frame[number_of_frames - 1 ] = on_stack_size(youngest)
 433     // frame[number_of_frames - 2 ] = on_stack_size(sender(youngest))
 434     // frame[number_of_frames - 3 ] = on_stack_size(sender(sender(youngest)))
 435     frame_sizes[number_of_frames - 1 - index] = BytesPerWord * array->element(index)->on_stack_size(callee_parameters,
 436                                                                                                     callee_locals,
 437                                                                                                     index == 0,
 438                                                                                                     popframe_extra_args);
 439     // This pc doesn't have to be perfect just good enough to identify the frame
 440     // as interpreted so the skeleton frame will be walkable
 441     // The correct pc will be set when the skeleton frame is completely filled out
 442     // The final pc we store in the loop is wrong and will be overwritten below
 443     frame_pcs[number_of_frames - 1 - index ] = Interpreter::deopt_entry(vtos, 0) - frame::pc_return_offset;
 444 
 445     callee_parameters = array->element(index)->method()->size_of_parameters();
 446     callee_locals = array->element(index)->method()->max_locals();
 447     popframe_extra_args = 0;
 448   }
 449 
 450   // Compute whether the root vframe returns a float or double value.
 451   BasicType return_type;
 452   {
 453     HandleMark hm;
 454     methodHandle method(thread, array->element(0)->method());
 455     Bytecode_invoke invoke = Bytecode_invoke_check(method, array->element(0)->bci());
 456     return_type = invoke.is_valid() ? invoke.result_type() : T_ILLEGAL;
 457   }
 458 
 459   // Compute information for handling adapters and adjusting the frame size of the caller.
 460   int caller_adjustment = 0;
 461 
 462   // Compute the amount the oldest interpreter frame will have to adjust
 463   // its caller's stack by. If the caller is a compiled frame then
 464   // we pretend that the callee has no parameters so that the
 465   // extension counts for the full amount of locals and not just
 466   // locals-parms. This is because without a c2i adapter the parm
 467   // area as created by the compiled frame will not be usable by
 468   // the interpreter. (Depending on the calling convention there
 469   // may not even be enough space).
 470 
 471   // QQQ I'd rather see this pushed down into last_frame_adjust
 472   // and have it take the sender (aka caller).
 473 
 474   if (deopt_sender.is_compiled_frame() || caller_was_method_handle) {
 475     caller_adjustment = last_frame_adjust(0, callee_locals);
 476   } else if (callee_locals > callee_parameters) {
 477     // The caller frame may need extending to accommodate
 478     // non-parameter locals of the first unpacked interpreted frame.
 479     // Compute that adjustment.
 480     caller_adjustment = last_frame_adjust(callee_parameters, callee_locals);
 481   }
 482 
 483   // If the sender is deoptimized the we must retrieve the address of the handler
 484   // since the frame will "magically" show the original pc before the deopt
 485   // and we'd undo the deopt.
 486 
 487   frame_pcs[0] = deopt_sender.raw_pc();
 488 
 489 #ifndef SHARK
 490   assert(CodeCache::find_blob_unsafe(frame_pcs[0]) != NULL, "bad pc");
 491 #endif // SHARK
 492 
 493 #ifdef INCLUDE_JVMCI
 494   if (exceptionObject() != NULL) {
 495     thread->set_exception_oop(exceptionObject());
 496     exec_mode = Unpack_exception;
 497   }
 498 #endif
 499 
 500   UnrollBlock* info = new UnrollBlock(array->frame_size() * BytesPerWord,
 501                                       caller_adjustment * BytesPerWord,
 502                                       caller_was_method_handle ? 0 : callee_parameters,
 503                                       number_of_frames,
 504                                       frame_sizes,
 505                                       frame_pcs,
 506                                       return_type,
 507                                       exec_mode);
 508   // On some platforms, we need a way to pass some platform dependent
 509   // information to the unpacking code so the skeletal frames come out
 510   // correct (initial fp value, unextended sp, ...)
 511   info->set_initial_info((intptr_t) array->sender().initial_deoptimization_info());
 512 
 513   if (array->frames() > 1) {
 514     if (VerifyStack && TraceDeoptimization) {
 515       ttyLocker ttyl;
 516       tty->print_cr("Deoptimizing method containing inlining");
 517     }
 518   }
 519 
 520   array->set_unroll_block(info);
 521   return info;
 522 }
 523 
 524 // Called to cleanup deoptimization data structures in normal case
 525 // after unpacking to stack and when stack overflow error occurs
 526 void Deoptimization::cleanup_deopt_info(JavaThread *thread,
 527                                         vframeArray *array) {
 528 
 529   // Get array if coming from exception
 530   if (array == NULL) {
 531     array = thread->vframe_array_head();
 532   }
 533   thread->set_vframe_array_head(NULL);
 534 
 535   // Free the previous UnrollBlock
 536   vframeArray* old_array = thread->vframe_array_last();
 537   thread->set_vframe_array_last(array);
 538 
 539   if (old_array != NULL) {
 540     UnrollBlock* old_info = old_array->unroll_block();
 541     old_array->set_unroll_block(NULL);
 542     delete old_info;
 543     delete old_array;
 544   }
 545 
 546   // Deallocate any resource creating in this routine and any ResourceObjs allocated
 547   // inside the vframeArray (StackValueCollections)
 548 
 549   delete thread->deopt_mark();
 550   thread->set_deopt_mark(NULL);
 551   thread->set_deopt_nmethod(NULL);
 552 
 553 
 554   if (JvmtiExport::can_pop_frame()) {
 555 #ifndef CC_INTERP
 556     // Regardless of whether we entered this routine with the pending
 557     // popframe condition bit set, we should always clear it now
 558     thread->clear_popframe_condition();
 559 #else
 560     // C++ interpreter will clear has_pending_popframe when it enters
 561     // with method_resume. For deopt_resume2 we clear it now.
 562     if (thread->popframe_forcing_deopt_reexecution())
 563         thread->clear_popframe_condition();
 564 #endif /* CC_INTERP */
 565   }
 566 
 567   // unpack_frames() is called at the end of the deoptimization handler
 568   // and (in C2) at the end of the uncommon trap handler. Note this fact
 569   // so that an asynchronous stack walker can work again. This counter is
 570   // incremented at the beginning of fetch_unroll_info() and (in C2) at
 571   // the beginning of uncommon_trap().
 572   thread->dec_in_deopt_handler();
 573 }
 574 
 575 // Moved from cpu directories because none of the cpus has callee save values.
 576 // If a cpu implements callee save values, move this to deoptimization_<cpu>.cpp.
 577 void Deoptimization::unwind_callee_save_values(frame* f, vframeArray* vframe_array) {
 578 
 579   // This code is sort of the equivalent of C2IAdapter::setup_stack_frame back in
 580   // the days we had adapter frames. When we deoptimize a situation where a
 581   // compiled caller calls a compiled caller will have registers it expects
 582   // to survive the call to the callee. If we deoptimize the callee the only
 583   // way we can restore these registers is to have the oldest interpreter
 584   // frame that we create restore these values. That is what this routine
 585   // will accomplish.
 586 
 587   // At the moment we have modified c2 to not have any callee save registers
 588   // so this problem does not exist and this routine is just a place holder.
 589 
 590   assert(f->is_interpreted_frame(), "must be interpreted");
 591 }
 592 
 593 // Return BasicType of value being returned
 594 JRT_LEAF(BasicType, Deoptimization::unpack_frames(JavaThread* thread, int exec_mode))
 595 
 596   // We are already active int he special DeoptResourceMark any ResourceObj's we
 597   // allocate will be freed at the end of the routine.
 598 
 599   // It is actually ok to allocate handles in a leaf method. It causes no safepoints,
 600   // but makes the entry a little slower. There is however a little dance we have to
 601   // do in debug mode to get around the NoHandleMark code in the JRT_LEAF macro
 602   ResetNoHandleMark rnhm; // No-op in release/product versions
 603   HandleMark hm;
 604 
 605   frame stub_frame = thread->last_frame();
 606 
 607   // Since the frame to unpack is the top frame of this thread, the vframe_array_head
 608   // must point to the vframeArray for the unpack frame.
 609   vframeArray* array = thread->vframe_array_head();
 610 
 611 #ifndef PRODUCT
 612   if (TraceDeoptimization) {
 613     ttyLocker ttyl;
 614     tty->print_cr("DEOPT UNPACKING thread " INTPTR_FORMAT " vframeArray " INTPTR_FORMAT " mode %d",
 615                   p2i(thread), p2i(array), exec_mode);
 616   }
 617 #endif
 618   Events::log(thread, "DEOPT UNPACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT " mode %d",
 619               p2i(stub_frame.pc()), p2i(stub_frame.sp()), exec_mode);
 620 
 621   UnrollBlock* info = array->unroll_block();
 622 
 623   // Unpack the interpreter frames and any adapter frame (c2 only) we might create.
 624   array->unpack_to_stack(stub_frame, exec_mode, info->caller_actual_parameters());
 625 
 626   BasicType bt = info->return_type();
 627 
 628   // If we have an exception pending, claim that the return type is an oop
 629   // so the deopt_blob does not overwrite the exception_oop.
 630 
 631   if (exec_mode == Unpack_exception)
 632     bt = T_OBJECT;
 633 
 634   // Cleanup thread deopt data
 635   cleanup_deopt_info(thread, array);
 636 
 637 #ifndef PRODUCT
 638   if (VerifyStack) {
 639     ResourceMark res_mark;
 640 
 641     thread->validate_frame_layout();
 642 
 643     // Verify that the just-unpacked frames match the interpreter's
 644     // notions of expression stack and locals
 645     vframeArray* cur_array = thread->vframe_array_last();
 646     RegisterMap rm(thread, false);
 647     rm.set_include_argument_oops(false);
 648     bool is_top_frame = true;
 649     int callee_size_of_parameters = 0;
 650     int callee_max_locals = 0;
 651     for (int i = 0; i < cur_array->frames(); i++) {
 652       vframeArrayElement* el = cur_array->element(i);
 653       frame* iframe = el->iframe();
 654       guarantee(iframe->is_interpreted_frame(), "Wrong frame type");
 655 
 656       // Get the oop map for this bci
 657       InterpreterOopMap mask;
 658       int cur_invoke_parameter_size = 0;
 659       bool try_next_mask = false;
 660       int next_mask_expression_stack_size = -1;
 661       int top_frame_expression_stack_adjustment = 0;
 662       methodHandle mh(thread, iframe->interpreter_frame_method());
 663       OopMapCache::compute_one_oop_map(mh, iframe->interpreter_frame_bci(), &mask);
 664       BytecodeStream str(mh);
 665       str.set_start(iframe->interpreter_frame_bci());
 666       int max_bci = mh->code_size();
 667       // Get to the next bytecode if possible
 668       assert(str.bci() < max_bci, "bci in interpreter frame out of bounds");
 669       // Check to see if we can grab the number of outgoing arguments
 670       // at an uncommon trap for an invoke (where the compiler
 671       // generates debug info before the invoke has executed)
 672       Bytecodes::Code cur_code = str.next();
 673       if (cur_code == Bytecodes::_invokevirtual   ||
 674           cur_code == Bytecodes::_invokedirect    ||
 675           cur_code == Bytecodes::_invokespecial   ||
 676           cur_code == Bytecodes::_invokestatic    ||
 677           cur_code == Bytecodes::_invokeinterface ||
 678           cur_code == Bytecodes::_invokedynamic) {
 679         Bytecode_invoke invoke(mh, iframe->interpreter_frame_bci());
 680         Symbol* signature = invoke.signature();
 681         ArgumentSizeComputer asc(signature);
 682         cur_invoke_parameter_size = asc.size();
 683         if (invoke.has_receiver()) {
 684           // Add in receiver
 685           ++cur_invoke_parameter_size;
 686         }
 687         if (i != 0 && !invoke.is_invokedynamic() && MethodHandles::has_member_arg(invoke.klass(), invoke.name())) {
 688           callee_size_of_parameters++;
 689         }
 690       }
 691       if (str.bci() < max_bci) {
 692         Bytecodes::Code bc = str.next();
 693         if (bc >= 0) {
 694           // The interpreter oop map generator reports results before
 695           // the current bytecode has executed except in the case of
 696           // calls. It seems to be hard to tell whether the compiler
 697           // has emitted debug information matching the "state before"
 698           // a given bytecode or the state after, so we try both
 699           switch (cur_code) {
 700             case Bytecodes::_invokevirtual:
 701             case Bytecodes::_invokedirect:
 702             case Bytecodes::_invokespecial:
 703             case Bytecodes::_invokestatic:
 704             case Bytecodes::_invokeinterface:
 705             case Bytecodes::_invokedynamic:
 706             case Bytecodes::_athrow:
 707               break;
 708             default: {
 709               InterpreterOopMap next_mask;
 710               OopMapCache::compute_one_oop_map(mh, str.bci(), &next_mask);
 711               next_mask_expression_stack_size = next_mask.expression_stack_size();
 712               // Need to subtract off the size of the result type of
 713               // the bytecode because this is not described in the
 714               // debug info but returned to the interpreter in the TOS
 715               // caching register
 716               BasicType bytecode_result_type = Bytecodes::result_type(cur_code);
 717               if (bytecode_result_type != T_ILLEGAL) {
 718                 top_frame_expression_stack_adjustment = type2size[bytecode_result_type];
 719               }
 720               assert(top_frame_expression_stack_adjustment >= 0, "");
 721               try_next_mask = true;
 722               break;
 723             }
 724           }
 725         }
 726       }
 727 
 728       // Verify stack depth and oops in frame
 729       // This assertion may be dependent on the platform we're running on and may need modification (tested on x86 and sparc)
 730       if (!(
 731             /* SPARC */
 732             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_size_of_parameters) ||
 733             /* x86 */
 734             (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + callee_max_locals) ||
 735             (try_next_mask &&
 736              (iframe->interpreter_frame_expression_stack_size() == (next_mask_expression_stack_size -
 737                                                                     top_frame_expression_stack_adjustment))) ||
 738             (is_top_frame && (exec_mode == Unpack_exception) && iframe->interpreter_frame_expression_stack_size() == 0) ||
 739             (is_top_frame && (exec_mode == Unpack_uncommon_trap || exec_mode == Unpack_reexecute || el->should_reexecute()) &&
 740              (iframe->interpreter_frame_expression_stack_size() == mask.expression_stack_size() + cur_invoke_parameter_size))
 741             )) {
 742         ttyLocker ttyl;
 743 
 744         // Print out some information that will help us debug the problem
 745         tty->print_cr("Wrong number of expression stack elements during deoptimization");
 746         tty->print_cr("  Error occurred while verifying frame %d (0..%d, 0 is topmost)", i, cur_array->frames() - 1);
 747         tty->print_cr("  Fabricated interpreter frame had %d expression stack elements",
 748                       iframe->interpreter_frame_expression_stack_size());
 749         tty->print_cr("  Interpreter oop map had %d expression stack elements", mask.expression_stack_size());
 750         tty->print_cr("  try_next_mask = %d", try_next_mask);
 751         tty->print_cr("  next_mask_expression_stack_size = %d", next_mask_expression_stack_size);
 752         tty->print_cr("  callee_size_of_parameters = %d", callee_size_of_parameters);
 753         tty->print_cr("  callee_max_locals = %d", callee_max_locals);
 754         tty->print_cr("  top_frame_expression_stack_adjustment = %d", top_frame_expression_stack_adjustment);
 755         tty->print_cr("  exec_mode = %d", exec_mode);
 756         tty->print_cr("  cur_invoke_parameter_size = %d", cur_invoke_parameter_size);
 757         tty->print_cr("  Thread = " INTPTR_FORMAT ", thread ID = %d", p2i(thread), thread->osthread()->thread_id());
 758         tty->print_cr("  Interpreted frames:");
 759         for (int k = 0; k < cur_array->frames(); k++) {
 760           vframeArrayElement* el = cur_array->element(k);
 761           tty->print_cr("    %s (bci %d)", el->method()->name_and_sig_as_C_string(), el->bci());
 762         }
 763         cur_array->print_on_2(tty);
 764         guarantee(false, "wrong number of expression stack elements during deopt");
 765       }
 766       VerifyOopClosure verify;
 767       iframe->oops_interpreted_do(&verify, NULL, &rm, false);
 768       callee_size_of_parameters = mh->size_of_parameters();
 769       callee_max_locals = mh->max_locals();
 770       is_top_frame = false;
 771     }
 772   }
 773 #endif /* !PRODUCT */
 774 
 775 
 776   return bt;
 777 JRT_END
 778 
 779 
 780 int Deoptimization::deoptimize_dependents() {
 781   Threads::deoptimized_wrt_marked_nmethods();
 782   return 0;
 783 }
 784 
 785 Deoptimization::DeoptAction Deoptimization::_unloaded_action
 786   = Deoptimization::Action_reinterpret;
 787 
 788 #if defined(COMPILER2) || INCLUDE_JVMCI
 789 bool Deoptimization::realloc_objects(JavaThread* thread, frame* fr, GrowableArray<ScopeValue*>* objects, TRAPS) {
 790   Handle pending_exception(thread->pending_exception());
 791   const char* exception_file = thread->exception_file();
 792   int exception_line = thread->exception_line();
 793   thread->clear_pending_exception();
 794 
 795   bool failures = false;
 796 
 797   for (int i = 0; i < objects->length(); i++) {
 798     assert(objects->at(i)->is_object(), "invalid debug information");
 799     ObjectValue* sv = (ObjectValue*) objects->at(i);
 800 
 801     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
 802     oop obj = NULL;
 803 
 804     if (k->is_instance_klass()) {
 805       InstanceKlass* ik = InstanceKlass::cast(k());
 806       obj = ik->allocate_instance(THREAD);
 807     } else if (k->is_typeArray_klass()) {
 808       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
 809       assert(sv->field_size() % type2size[ak->element_type()] == 0, "non-integral array length");
 810       int len = sv->field_size() / type2size[ak->element_type()];
 811       obj = ak->allocate(len, THREAD);
 812     } else if (k->is_objArray_klass()) {
 813       ObjArrayKlass* ak = ObjArrayKlass::cast(k());
 814       obj = ak->allocate(sv->field_size(), THREAD);
 815     }
 816 
 817     if (obj == NULL) {
 818       failures = true;
 819     }
 820 
 821     assert(sv->value().is_null(), "redundant reallocation");
 822     assert(obj != NULL || HAS_PENDING_EXCEPTION, "allocation should succeed or we should get an exception");
 823     CLEAR_PENDING_EXCEPTION;
 824     sv->set_value(obj);
 825   }
 826 
 827   if (failures) {
 828     THROW_OOP_(Universe::out_of_memory_error_realloc_objects(), failures);
 829   } else if (pending_exception.not_null()) {
 830     thread->set_pending_exception(pending_exception(), exception_file, exception_line);
 831   }
 832 
 833   return failures;
 834 }
 835 
 836 // restore elements of an eliminated type array
 837 void Deoptimization::reassign_type_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, typeArrayOop obj, BasicType type) {
 838   int index = 0;
 839   intptr_t val;
 840 
 841   for (int i = 0; i < sv->field_size(); i++) {
 842     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 843     switch(type) {
 844     case T_LONG: case T_DOUBLE: {
 845       assert(value->type() == T_INT, "Agreement.");
 846       StackValue* low =
 847         StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 848 #ifdef _LP64
 849       jlong res = (jlong)low->get_int();
 850 #else
 851 #ifdef SPARC
 852       // For SPARC we have to swap high and low words.
 853       jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 854 #else
 855       jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 856 #endif //SPARC
 857 #endif
 858       obj->long_at_put(index, res);
 859       break;
 860     }
 861 
 862     // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 863     case T_INT: case T_FLOAT: { // 4 bytes.
 864       assert(value->type() == T_INT, "Agreement.");
 865       bool big_value = false;
 866       if (i + 1 < sv->field_size() && type == T_INT) {
 867         if (sv->field_at(i)->is_location()) {
 868           Location::Type type = ((LocationValue*) sv->field_at(i))->location().type();
 869           if (type == Location::dbl || type == Location::lng) {
 870             big_value = true;
 871           }
 872         } else if (sv->field_at(i)->is_constant_int()) {
 873           ScopeValue* next_scope_field = sv->field_at(i + 1);
 874           if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 875             big_value = true;
 876           }
 877         }
 878       }
 879 
 880       if (big_value) {
 881         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++i));
 882   #ifdef _LP64
 883         jlong res = (jlong)low->get_int();
 884   #else
 885   #ifdef SPARC
 886         // For SPARC we have to swap high and low words.
 887         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
 888   #else
 889         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
 890   #endif //SPARC
 891   #endif
 892         obj->int_at_put(index, (jint)*((jint*)&res));
 893         obj->int_at_put(++index, (jint)*(((jint*)&res) + 1));
 894       } else {
 895         val = value->get_int();
 896         obj->int_at_put(index, (jint)*((jint*)&val));
 897       }
 898       break;
 899     }
 900 
 901     case T_SHORT: case T_CHAR: // 2 bytes
 902       assert(value->type() == T_INT, "Agreement.");
 903       val = value->get_int();
 904       obj->short_at_put(index, (jshort)*((jint*)&val));
 905       break;
 906 
 907     case T_BOOLEAN: case T_BYTE: // 1 byte
 908       assert(value->type() == T_INT, "Agreement.");
 909       val = value->get_int();
 910       obj->bool_at_put(index, (jboolean)*((jint*)&val));
 911       break;
 912 
 913       default:
 914         ShouldNotReachHere();
 915     }
 916     index++;
 917   }
 918 }
 919 
 920 
 921 // restore fields of an eliminated object array
 922 void Deoptimization::reassign_object_array_elements(frame* fr, RegisterMap* reg_map, ObjectValue* sv, objArrayOop obj) {
 923   for (int i = 0; i < sv->field_size(); i++) {
 924     StackValue* value = StackValue::create_stack_value(fr, reg_map, sv->field_at(i));
 925     assert(value->type() == T_OBJECT, "object element expected");
 926     obj->obj_at_put(i, value->get_obj()());
 927   }
 928 }
 929 
 930 class ReassignedField {
 931 public:
 932   int _offset;
 933   BasicType _type;
 934 public:
 935   ReassignedField() {
 936     _offset = 0;
 937     _type = T_ILLEGAL;
 938   }
 939 };
 940 
 941 int compare(ReassignedField* left, ReassignedField* right) {
 942   return left->_offset - right->_offset;
 943 }
 944 
 945 // Restore fields of an eliminated instance object using the same field order
 946 // returned by HotSpotResolvedObjectTypeImpl.getInstanceFields(true)
 947 static int reassign_fields_by_klass(InstanceKlass* klass, frame* fr, RegisterMap* reg_map, ObjectValue* sv, int svIndex, oop obj, bool skip_internal) {
 948   if (klass->superklass() != NULL) {
 949     svIndex = reassign_fields_by_klass(klass->superklass(), fr, reg_map, sv, svIndex, obj, skip_internal);
 950   }
 951 
 952   GrowableArray<ReassignedField>* fields = new GrowableArray<ReassignedField>();
 953   for (AllFieldStream fs(klass); !fs.done(); fs.next()) {
 954     if (!fs.access_flags().is_static() && (!skip_internal || !fs.access_flags().is_internal())) {
 955       ReassignedField field;
 956       field._offset = fs.offset();
 957       field._type = FieldType::basic_type(fs.signature());
 958       fields->append(field);
 959     }
 960   }
 961   fields->sort(compare);
 962   for (int i = 0; i < fields->length(); i++) {
 963     intptr_t val;
 964     ScopeValue* scope_field = sv->field_at(svIndex);
 965     StackValue* value = StackValue::create_stack_value(fr, reg_map, scope_field);
 966     int offset = fields->at(i)._offset;
 967     BasicType type = fields->at(i)._type;
 968     switch (type) {
 969       case T_OBJECT: case T_ARRAY:
 970         assert(value->type() == T_OBJECT, "Agreement.");
 971         obj->obj_field_put(offset, value->get_obj()());
 972         break;
 973 
 974       // Have to cast to INT (32 bits) pointer to avoid little/big-endian problem.
 975       case T_INT: case T_FLOAT: { // 4 bytes.
 976         assert(value->type() == T_INT, "Agreement.");
 977         bool big_value = false;
 978         if (i+1 < fields->length() && fields->at(i+1)._type == T_INT) {
 979           if (scope_field->is_location()) {
 980             Location::Type type = ((LocationValue*) scope_field)->location().type();
 981             if (type == Location::dbl || type == Location::lng) {
 982               big_value = true;
 983             }
 984           }
 985           if (scope_field->is_constant_int()) {
 986             ScopeValue* next_scope_field = sv->field_at(svIndex + 1);
 987             if (next_scope_field->is_constant_long() || next_scope_field->is_constant_double()) {
 988               big_value = true;
 989             }
 990           }
 991         }
 992 
 993         if (big_value) {
 994           i++;
 995           assert(i < fields->length(), "second T_INT field needed");
 996           assert(fields->at(i)._type == T_INT, "T_INT field needed");
 997         } else {
 998           val = value->get_int();
 999           obj->int_field_put(offset, (jint)*((jint*)&val));
1000           break;
1001         }
1002       }
1003         /* no break */
1004 
1005       case T_LONG: case T_DOUBLE: {
1006         assert(value->type() == T_INT, "Agreement.");
1007         StackValue* low = StackValue::create_stack_value(fr, reg_map, sv->field_at(++svIndex));
1008 #ifdef _LP64
1009         jlong res = (jlong)low->get_int();
1010 #else
1011 #ifdef SPARC
1012         // For SPARC we have to swap high and low words.
1013         jlong res = jlong_from((jint)low->get_int(), (jint)value->get_int());
1014 #else
1015         jlong res = jlong_from((jint)value->get_int(), (jint)low->get_int());
1016 #endif //SPARC
1017 #endif
1018         obj->long_field_put(offset, res);
1019         break;
1020       }
1021 
1022       case T_SHORT: case T_CHAR: // 2 bytes
1023         assert(value->type() == T_INT, "Agreement.");
1024         val = value->get_int();
1025         obj->short_field_put(offset, (jshort)*((jint*)&val));
1026         break;
1027 
1028       case T_BOOLEAN: case T_BYTE: // 1 byte
1029         assert(value->type() == T_INT, "Agreement.");
1030         val = value->get_int();
1031         obj->bool_field_put(offset, (jboolean)*((jint*)&val));
1032         break;
1033 
1034       default:
1035         ShouldNotReachHere();
1036     }
1037     svIndex++;
1038   }
1039   return svIndex;
1040 }
1041 
1042 // restore fields of all eliminated objects and arrays
1043 void Deoptimization::reassign_fields(frame* fr, RegisterMap* reg_map, GrowableArray<ScopeValue*>* objects, bool realloc_failures, bool skip_internal) {
1044   for (int i = 0; i < objects->length(); i++) {
1045     ObjectValue* sv = (ObjectValue*) objects->at(i);
1046     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1047     Handle obj = sv->value();
1048     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1049     if (PrintDeoptimizationDetails) {
1050       tty->print_cr("reassign fields for object of type %s!", k->name()->as_C_string());
1051     }
1052     if (obj.is_null()) {
1053       continue;
1054     }
1055 
1056     if (k->is_instance_klass()) {
1057       InstanceKlass* ik = InstanceKlass::cast(k());
1058       reassign_fields_by_klass(ik, fr, reg_map, sv, 0, obj(), skip_internal);
1059     } else if (k->is_typeArray_klass()) {
1060       TypeArrayKlass* ak = TypeArrayKlass::cast(k());
1061       reassign_type_array_elements(fr, reg_map, sv, (typeArrayOop) obj(), ak->element_type());
1062     } else if (k->is_objArray_klass()) {
1063       reassign_object_array_elements(fr, reg_map, sv, (objArrayOop) obj());
1064     }
1065   }
1066 }
1067 
1068 
1069 // relock objects for which synchronization was eliminated
1070 void Deoptimization::relock_objects(GrowableArray<MonitorInfo*>* monitors, JavaThread* thread, bool realloc_failures) {
1071   for (int i = 0; i < monitors->length(); i++) {
1072     MonitorInfo* mon_info = monitors->at(i);
1073     if (mon_info->eliminated()) {
1074       assert(!mon_info->owner_is_scalar_replaced() || realloc_failures, "reallocation was missed");
1075       if (!mon_info->owner_is_scalar_replaced()) {
1076         Handle obj = Handle(mon_info->owner());
1077         markOop mark = obj->mark();
1078         if (UseBiasedLocking && mark->has_bias_pattern()) {
1079           // New allocated objects may have the mark set to anonymously biased.
1080           // Also the deoptimized method may called methods with synchronization
1081           // where the thread-local object is bias locked to the current thread.
1082           assert(mark->is_biased_anonymously() ||
1083                  mark->biased_locker() == thread, "should be locked to current thread");
1084           // Reset mark word to unbiased prototype.
1085           markOop unbiased_prototype = markOopDesc::prototype()->set_age(mark->age());
1086           obj->set_mark(unbiased_prototype);
1087         }
1088         BasicLock* lock = mon_info->lock();
1089         ObjectSynchronizer::slow_enter(obj, lock, thread);
1090         assert(mon_info->owner()->is_locked(), "object must be locked now");
1091       }
1092     }
1093   }
1094 }
1095 
1096 
1097 #ifndef PRODUCT
1098 // print information about reallocated objects
1099 void Deoptimization::print_objects(GrowableArray<ScopeValue*>* objects, bool realloc_failures) {
1100   fieldDescriptor fd;
1101 
1102   for (int i = 0; i < objects->length(); i++) {
1103     ObjectValue* sv = (ObjectValue*) objects->at(i);
1104     KlassHandle k(java_lang_Class::as_Klass(sv->klass()->as_ConstantOopReadValue()->value()()));
1105     Handle obj = sv->value();
1106 
1107     tty->print("     object <" INTPTR_FORMAT "> of type ", p2i(sv->value()()));
1108     k->print_value();
1109     assert(obj.not_null() || realloc_failures, "reallocation was missed");
1110     if (obj.is_null()) {
1111       tty->print(" allocation failed");
1112     } else {
1113       tty->print(" allocated (%d bytes)", obj->size() * HeapWordSize);
1114     }
1115     tty->cr();
1116 
1117     if (Verbose && !obj.is_null()) {
1118       k->oop_print_on(obj(), tty);
1119     }
1120   }
1121 }
1122 #endif
1123 #endif // COMPILER2 || INCLUDE_JVMCI
1124 
1125 vframeArray* Deoptimization::create_vframeArray(JavaThread* thread, frame fr, RegisterMap *reg_map, GrowableArray<compiledVFrame*>* chunk, bool realloc_failures) {
1126   Events::log(thread, "DEOPT PACKING pc=" INTPTR_FORMAT " sp=" INTPTR_FORMAT, p2i(fr.pc()), p2i(fr.sp()));
1127 
1128 #ifndef PRODUCT
1129   if (PrintDeoptimizationDetails) {
1130     ttyLocker ttyl;
1131     tty->print("DEOPT PACKING thread " INTPTR_FORMAT " ", p2i(thread));
1132     fr.print_on(tty);
1133     tty->print_cr("     Virtual frames (innermost first):");
1134     for (int index = 0; index < chunk->length(); index++) {
1135       compiledVFrame* vf = chunk->at(index);
1136       tty->print("       %2d - ", index);
1137       vf->print_value();
1138       int bci = chunk->at(index)->raw_bci();
1139       const char* code_name;
1140       if (bci == SynchronizationEntryBCI) {
1141         code_name = "sync entry";
1142       } else {
1143         Bytecodes::Code code = vf->method()->code_at(bci);
1144         code_name = Bytecodes::name(code);
1145       }
1146       tty->print(" - %s", code_name);
1147       tty->print_cr(" @ bci %d ", bci);
1148       if (Verbose) {
1149         vf->print();
1150         tty->cr();
1151       }
1152     }
1153   }
1154 #endif
1155 
1156   // Register map for next frame (used for stack crawl).  We capture
1157   // the state of the deopt'ing frame's caller.  Thus if we need to
1158   // stuff a C2I adapter we can properly fill in the callee-save
1159   // register locations.
1160   frame caller = fr.sender(reg_map);
1161   int frame_size = caller.sp() - fr.sp();
1162 
1163   frame sender = caller;
1164 
1165   // Since the Java thread being deoptimized will eventually adjust it's own stack,
1166   // the vframeArray containing the unpacking information is allocated in the C heap.
1167   // For Compiler1, the caller of the deoptimized frame is saved for use by unpack_frames().
1168   vframeArray* array = vframeArray::allocate(thread, frame_size, chunk, reg_map, sender, caller, fr, realloc_failures);
1169 
1170   // Compare the vframeArray to the collected vframes
1171   assert(array->structural_compare(thread, chunk), "just checking");
1172 
1173 #ifndef PRODUCT
1174   if (PrintDeoptimizationDetails) {
1175     ttyLocker ttyl;
1176     tty->print_cr("     Created vframeArray " INTPTR_FORMAT, p2i(array));
1177   }
1178 #endif // PRODUCT
1179 
1180   return array;
1181 }
1182 
1183 #if defined(COMPILER2) || INCLUDE_JVMCI
1184 void Deoptimization::pop_frames_failed_reallocs(JavaThread* thread, vframeArray* array) {
1185   // Reallocation of some scalar replaced objects failed. Record
1186   // that we need to pop all the interpreter frames for the
1187   // deoptimized compiled frame.
1188   assert(thread->frames_to_pop_failed_realloc() == 0, "missed frames to pop?");
1189   thread->set_frames_to_pop_failed_realloc(array->frames());
1190   // Unlock all monitors here otherwise the interpreter will see a
1191   // mix of locked and unlocked monitors (because of failed
1192   // reallocations of synchronized objects) and be confused.
1193   for (int i = 0; i < array->frames(); i++) {
1194     MonitorChunk* monitors = array->element(i)->monitors();
1195     if (monitors != NULL) {
1196       for (int j = 0; j < monitors->number_of_monitors(); j++) {
1197         BasicObjectLock* src = monitors->at(j);
1198         if (src->obj() != NULL) {
1199           ObjectSynchronizer::fast_exit(src->obj(), src->lock(), thread);
1200         }
1201       }
1202       array->element(i)->free_monitors(thread);
1203 #ifdef ASSERT
1204       array->element(i)->set_removed_monitors();
1205 #endif
1206     }
1207   }
1208 }
1209 #endif
1210 
1211 static void collect_monitors(compiledVFrame* cvf, GrowableArray<Handle>* objects_to_revoke) {
1212   GrowableArray<MonitorInfo*>* monitors = cvf->monitors();
1213   for (int i = 0; i < monitors->length(); i++) {
1214     MonitorInfo* mon_info = monitors->at(i);
1215     if (!mon_info->eliminated() && mon_info->owner() != NULL) {
1216       objects_to_revoke->append(Handle(mon_info->owner()));
1217     }
1218   }
1219 }
1220 
1221 
1222 void Deoptimization::revoke_biases_of_monitors(JavaThread* thread, frame fr, RegisterMap* map) {
1223   if (!UseBiasedLocking) {
1224     return;
1225   }
1226 
1227   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1228 
1229   // Unfortunately we don't have a RegisterMap available in most of
1230   // the places we want to call this routine so we need to walk the
1231   // stack again to update the register map.
1232   if (map == NULL || !map->update_map()) {
1233     StackFrameStream sfs(thread, true);
1234     bool found = false;
1235     while (!found && !sfs.is_done()) {
1236       frame* cur = sfs.current();
1237       sfs.next();
1238       found = cur->id() == fr.id();
1239     }
1240     assert(found, "frame to be deoptimized not found on target thread's stack");
1241     map = sfs.register_map();
1242   }
1243 
1244   vframe* vf = vframe::new_vframe(&fr, map, thread);
1245   compiledVFrame* cvf = compiledVFrame::cast(vf);
1246   // Revoke monitors' biases in all scopes
1247   while (!cvf->is_top()) {
1248     collect_monitors(cvf, objects_to_revoke);
1249     cvf = compiledVFrame::cast(cvf->sender());
1250   }
1251   collect_monitors(cvf, objects_to_revoke);
1252 
1253   if (SafepointSynchronize::is_at_safepoint()) {
1254     BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1255   } else {
1256     BiasedLocking::revoke(objects_to_revoke);
1257   }
1258 }
1259 
1260 
1261 void Deoptimization::revoke_biases_of_monitors(CodeBlob* cb) {
1262   if (!UseBiasedLocking) {
1263     return;
1264   }
1265 
1266   assert(SafepointSynchronize::is_at_safepoint(), "must only be called from safepoint");
1267   GrowableArray<Handle>* objects_to_revoke = new GrowableArray<Handle>();
1268   for (JavaThread* jt = Threads::first(); jt != NULL ; jt = jt->next()) {
1269     if (jt->has_last_Java_frame()) {
1270       StackFrameStream sfs(jt, true);
1271       while (!sfs.is_done()) {
1272         frame* cur = sfs.current();
1273         if (cb->contains(cur->pc())) {
1274           vframe* vf = vframe::new_vframe(cur, sfs.register_map(), jt);
1275           compiledVFrame* cvf = compiledVFrame::cast(vf);
1276           // Revoke monitors' biases in all scopes
1277           while (!cvf->is_top()) {
1278             collect_monitors(cvf, objects_to_revoke);
1279             cvf = compiledVFrame::cast(cvf->sender());
1280           }
1281           collect_monitors(cvf, objects_to_revoke);
1282         }
1283         sfs.next();
1284       }
1285     }
1286   }
1287   BiasedLocking::revoke_at_safepoint(objects_to_revoke);
1288 }
1289 
1290 
1291 void Deoptimization::deoptimize_single_frame(JavaThread* thread, frame fr, Deoptimization::DeoptReason reason) {
1292   assert(fr.can_be_deoptimized(), "checking frame type");
1293 
1294   gather_statistics(reason, Action_none, Bytecodes::_illegal);
1295 
1296   if (LogCompilation && xtty != NULL) {
1297     nmethod* nm = fr.cb()->as_nmethod_or_null();
1298     assert(nm != NULL, "only compiled methods can deopt");
1299 
1300     ttyLocker ttyl;
1301     xtty->begin_head("deoptimized thread='" UINTX_FORMAT "'", (uintx)thread->osthread()->thread_id());
1302     nm->log_identity(xtty);
1303     xtty->end_head();
1304     for (ScopeDesc* sd = nm->scope_desc_at(fr.pc()); ; sd = sd->sender()) {
1305       xtty->begin_elem("jvms bci='%d'", sd->bci());
1306       xtty->method(sd->method());
1307       xtty->end_elem();
1308       if (sd->is_top())  break;
1309     }
1310     xtty->tail("deoptimized");
1311   }
1312 
1313   // Patch the compiled method so that when execution returns to it we will
1314   // deopt the execution state and return to the interpreter.
1315   fr.deoptimize(thread);
1316 }
1317 
1318 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map) {
1319   deoptimize(thread, fr, map, Reason_constraint);
1320 }
1321 
1322 void Deoptimization::deoptimize(JavaThread* thread, frame fr, RegisterMap *map, DeoptReason reason) {
1323   // Deoptimize only if the frame comes from compile code.
1324   // Do not deoptimize the frame which is already patched
1325   // during the execution of the loops below.
1326   if (!fr.is_compiled_frame() || fr.is_deoptimized_frame()) {
1327     return;
1328   }
1329   ResourceMark rm;
1330   DeoptimizationMarker dm;
1331   if (UseBiasedLocking) {
1332     revoke_biases_of_monitors(thread, fr, map);
1333   }
1334   deoptimize_single_frame(thread, fr, reason);
1335 
1336 }
1337 
1338 
1339 void Deoptimization::deoptimize_frame_internal(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1340   assert(thread == Thread::current() || SafepointSynchronize::is_at_safepoint(),
1341          "can only deoptimize other thread at a safepoint");
1342   // Compute frame and register map based on thread and sp.
1343   RegisterMap reg_map(thread, UseBiasedLocking);
1344   frame fr = thread->last_frame();
1345   while (fr.id() != id) {
1346     fr = fr.sender(&reg_map);
1347   }
1348   deoptimize(thread, fr, &reg_map, reason);
1349 }
1350 
1351 
1352 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id, DeoptReason reason) {
1353   if (thread == Thread::current()) {
1354     Deoptimization::deoptimize_frame_internal(thread, id, reason);
1355   } else {
1356     VM_DeoptimizeFrame deopt(thread, id, reason);
1357     VMThread::execute(&deopt);
1358   }
1359 }
1360 
1361 void Deoptimization::deoptimize_frame(JavaThread* thread, intptr_t* id) {
1362   deoptimize_frame(thread, id, Reason_constraint);
1363 }
1364 
1365 // JVMTI PopFrame support
1366 JRT_LEAF(void, Deoptimization::popframe_preserve_args(JavaThread* thread, int bytes_to_save, void* start_address))
1367 {
1368   thread->popframe_preserve_args(in_ByteSize(bytes_to_save), start_address);
1369 }
1370 JRT_END
1371 
1372 MethodData*
1373 Deoptimization::get_method_data(JavaThread* thread, methodHandle m,
1374                                 bool create_if_missing) {
1375   Thread* THREAD = thread;
1376   MethodData* mdo = m()->method_data();
1377   if (mdo == NULL && create_if_missing && !HAS_PENDING_EXCEPTION) {
1378     // Build an MDO.  Ignore errors like OutOfMemory;
1379     // that simply means we won't have an MDO to update.
1380     Method::build_interpreter_method_data(m, THREAD);
1381     if (HAS_PENDING_EXCEPTION) {
1382       assert((PENDING_EXCEPTION->is_a(SystemDictionary::OutOfMemoryError_klass())), "we expect only an OOM error here");
1383       CLEAR_PENDING_EXCEPTION;
1384     }
1385     mdo = m()->method_data();
1386   }
1387   return mdo;
1388 }
1389 
1390 #if defined(COMPILER2) || defined(SHARK) || INCLUDE_JVMCI
1391 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index, TRAPS) {
1392   // in case of an unresolved klass entry, load the class.
1393   if (constant_pool->tag_at(index).is_unresolved_klass()) {
1394     Klass* tk = constant_pool->klass_at_ignore_error(index, CHECK);
1395     return;
1396   }
1397 
1398   if (!constant_pool->tag_at(index).is_symbol()) return;
1399 
1400   Handle class_loader (THREAD, constant_pool->pool_holder()->class_loader());
1401   Symbol*  symbol  = constant_pool->symbol_at(index);
1402 
1403   // class name?
1404   if (symbol->byte_at(0) != '(') {
1405     Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1406     SystemDictionary::resolve_or_null(symbol, class_loader, protection_domain, CHECK);
1407     return;
1408   }
1409 
1410   // then it must be a signature!
1411   ResourceMark rm(THREAD);
1412   for (SignatureStream ss(symbol); !ss.is_done(); ss.next()) {
1413     if (ss.is_object()) {
1414       Symbol* class_name = ss.as_symbol(CHECK);
1415       Handle protection_domain (THREAD, constant_pool->pool_holder()->protection_domain());
1416       SystemDictionary::resolve_or_null(class_name, class_loader, protection_domain, CHECK);
1417     }
1418   }
1419 }
1420 
1421 
1422 void Deoptimization::load_class_by_index(const constantPoolHandle& constant_pool, int index) {
1423   EXCEPTION_MARK;
1424   load_class_by_index(constant_pool, index, THREAD);
1425   if (HAS_PENDING_EXCEPTION) {
1426     // Exception happened during classloading. We ignore the exception here, since it
1427     // is going to be rethrown since the current activation is going to be deoptimized and
1428     // the interpreter will re-execute the bytecode.
1429     CLEAR_PENDING_EXCEPTION;
1430     // Class loading called java code which may have caused a stack
1431     // overflow. If the exception was thrown right before the return
1432     // to the runtime the stack is no longer guarded. Reguard the
1433     // stack otherwise if we return to the uncommon trap blob and the
1434     // stack bang causes a stack overflow we crash.
1435     assert(THREAD->is_Java_thread(), "only a java thread can be here");
1436     JavaThread* thread = (JavaThread*)THREAD;
1437     bool guard_pages_enabled = thread->stack_guards_enabled();
1438     if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
1439     assert(guard_pages_enabled, "stack banging in uncommon trap blob may cause crash");
1440   }
1441 }
1442 
1443 JRT_ENTRY(void, Deoptimization::uncommon_trap_inner(JavaThread* thread, jint trap_request)) {
1444   HandleMark hm;
1445 
1446   // uncommon_trap() is called at the beginning of the uncommon trap
1447   // handler. Note this fact before we start generating temporary frames
1448   // that can confuse an asynchronous stack walker. This counter is
1449   // decremented at the end of unpack_frames().
1450   thread->inc_in_deopt_handler();
1451 
1452   // We need to update the map if we have biased locking.
1453 #if INCLUDE_JVMCI
1454   // JVMCI might need to get an exception from the stack, which in turn requires the register map to be valid
1455   RegisterMap reg_map(thread, true);
1456 #else
1457   RegisterMap reg_map(thread, UseBiasedLocking);
1458 #endif
1459   frame stub_frame = thread->last_frame();
1460   frame fr = stub_frame.sender(&reg_map);
1461   // Make sure the calling nmethod is not getting deoptimized and removed
1462   // before we are done with it.
1463   nmethodLocker nl(fr.pc());
1464 
1465   // Log a message
1466   Events::log(thread, "Uncommon trap: trap_request=" PTR32_FORMAT " fr.pc=" INTPTR_FORMAT " relative=" INTPTR_FORMAT,
1467               trap_request, p2i(fr.pc()), fr.pc() - fr.cb()->code_begin());
1468 
1469   {
1470     ResourceMark rm;
1471 
1472     // Revoke biases of any monitors in the frame to ensure we can migrate them
1473     revoke_biases_of_monitors(thread, fr, &reg_map);
1474 
1475     DeoptReason reason = trap_request_reason(trap_request);
1476     DeoptAction action = trap_request_action(trap_request);
1477 #if INCLUDE_JVMCI
1478     int debug_id = trap_request_debug_id(trap_request);
1479 #endif
1480     jint unloaded_class_index = trap_request_index(trap_request); // CP idx or -1
1481 
1482     vframe*  vf  = vframe::new_vframe(&fr, &reg_map, thread);
1483     compiledVFrame* cvf = compiledVFrame::cast(vf);
1484 
1485     nmethod* nm = cvf->code();
1486 
1487     ScopeDesc*      trap_scope  = cvf->scope();
1488 
1489     if (TraceDeoptimization) {
1490       ttyLocker ttyl;
1491       tty->print_cr("  bci=%d pc=" INTPTR_FORMAT ", relative_pc=" INTPTR_FORMAT ", method=%s" JVMCI_ONLY(", debug_id=%d"), trap_scope->bci(), p2i(fr.pc()), fr.pc() - nm->code_begin(), trap_scope->method()->name_and_sig_as_C_string()
1492 #if INCLUDE_JVMCI
1493           , debug_id
1494 #endif
1495           );
1496     }
1497 
1498     methodHandle    trap_method = trap_scope->method();
1499     int             trap_bci    = trap_scope->bci();
1500 #if INCLUDE_JVMCI
1501     oop speculation = thread->pending_failed_speculation();
1502     if (nm->is_compiled_by_jvmci()) {
1503       if (speculation != NULL) {
1504         oop speculation_log = nm->speculation_log();
1505         if (speculation_log != NULL) {
1506           if (TraceDeoptimization || TraceUncollectedSpeculations) {
1507             if (HotSpotSpeculationLog::lastFailed(speculation_log) != NULL) {
1508               tty->print_cr("A speculation that was not collected by the compiler is being overwritten");
1509             }
1510           }
1511           if (TraceDeoptimization) {
1512             tty->print_cr("Saving speculation to speculation log");
1513           }
1514           HotSpotSpeculationLog::set_lastFailed(speculation_log, speculation);
1515         } else {
1516           if (TraceDeoptimization) {
1517             tty->print_cr("Speculation present but no speculation log");
1518           }
1519         }
1520         thread->set_pending_failed_speculation(NULL);
1521       } else {
1522         if (TraceDeoptimization) {
1523           tty->print_cr("No speculation");
1524         }
1525       }
1526     } else {
1527       assert(speculation == NULL, "There should not be a speculation for method compiled by non-JVMCI compilers");
1528     }
1529 
1530     if (trap_bci == SynchronizationEntryBCI) {
1531       trap_bci = 0;
1532       thread->set_pending_monitorenter(true);
1533     }
1534 
1535     if (reason == Deoptimization::Reason_transfer_to_interpreter) {
1536       thread->set_pending_transfer_to_interpreter(true);
1537     }
1538 #endif
1539 
1540     Bytecodes::Code trap_bc     = trap_method->java_code_at(trap_bci);
1541     // Record this event in the histogram.
1542     gather_statistics(reason, action, trap_bc);
1543 
1544     // Ensure that we can record deopt. history:
1545     // Need MDO to record RTM code generation state.
1546     bool create_if_missing = ProfileTraps || UseCodeAging RTM_OPT_ONLY( || UseRTMLocking );
1547 
1548     methodHandle profiled_method;
1549 #if INCLUDE_JVMCI
1550     if (nm->is_compiled_by_jvmci()) {
1551       profiled_method = nm->method();
1552     } else {
1553       profiled_method = trap_method;
1554     }
1555 #else
1556     profiled_method = trap_method;
1557 #endif
1558 
1559     MethodData* trap_mdo =
1560       get_method_data(thread, profiled_method, create_if_missing);
1561 
1562     // Log a message
1563     Events::log_deopt_message(thread, "Uncommon trap: reason=%s action=%s pc=" INTPTR_FORMAT " method=%s @ %d",
1564                               trap_reason_name(reason), trap_action_name(action), p2i(fr.pc()),
1565                               trap_method->name_and_sig_as_C_string(), trap_bci);
1566 
1567     // Print a bunch of diagnostics, if requested.
1568     if (TraceDeoptimization || LogCompilation) {
1569       ResourceMark rm;
1570       ttyLocker ttyl;
1571       char buf[100];
1572       if (xtty != NULL) {
1573         xtty->begin_head("uncommon_trap thread='" UINTX_FORMAT "' %s",
1574                          os::current_thread_id(),
1575                          format_trap_request(buf, sizeof(buf), trap_request));
1576         nm->log_identity(xtty);
1577       }
1578       Symbol* class_name = NULL;
1579       bool unresolved = false;
1580       if (unloaded_class_index >= 0) {
1581         constantPoolHandle constants (THREAD, trap_method->constants());
1582         if (constants->tag_at(unloaded_class_index).is_unresolved_klass()) {
1583           class_name = constants->klass_name_at(unloaded_class_index);
1584           unresolved = true;
1585           if (xtty != NULL)
1586             xtty->print(" unresolved='1'");
1587         } else if (constants->tag_at(unloaded_class_index).is_symbol()) {
1588           class_name = constants->symbol_at(unloaded_class_index);
1589         }
1590         if (xtty != NULL)
1591           xtty->name(class_name);
1592       }
1593       if (xtty != NULL && trap_mdo != NULL && (int)reason < (int)MethodData::_trap_hist_limit) {
1594         // Dump the relevant MDO state.
1595         // This is the deopt count for the current reason, any previous
1596         // reasons or recompiles seen at this point.
1597         int dcnt = trap_mdo->trap_count(reason);
1598         if (dcnt != 0)
1599           xtty->print(" count='%d'", dcnt);
1600         ProfileData* pdata = trap_mdo->bci_to_data(trap_bci);
1601         int dos = (pdata == NULL)? 0: pdata->trap_state();
1602         if (dos != 0) {
1603           xtty->print(" state='%s'", format_trap_state(buf, sizeof(buf), dos));
1604           if (trap_state_is_recompiled(dos)) {
1605             int recnt2 = trap_mdo->overflow_recompile_count();
1606             if (recnt2 != 0)
1607               xtty->print(" recompiles2='%d'", recnt2);
1608           }
1609         }
1610       }
1611       if (xtty != NULL) {
1612         xtty->stamp();
1613         xtty->end_head();
1614       }
1615       if (TraceDeoptimization) {  // make noise on the tty
1616         tty->print("Uncommon trap occurred in");
1617         nm->method()->print_short_name(tty);
1618         tty->print(" compiler=%s compile_id=%d", nm->compiler() == NULL ? "" : nm->compiler()->name(), nm->compile_id());
1619 #if INCLUDE_JVMCI
1620         oop installedCode = nm->jvmci_installed_code();
1621         if (installedCode != NULL) {
1622           oop installedCodeName = NULL;
1623           if (installedCode->is_a(InstalledCode::klass())) {
1624             installedCodeName = InstalledCode::name(installedCode);
1625           }
1626           if (installedCodeName != NULL) {
1627             tty->print(" (JVMCI: installedCodeName=%s) ", java_lang_String::as_utf8_string(installedCodeName));
1628           } else {
1629             tty->print(" (JVMCI: installed code has no name) ");
1630           }
1631         } else if (nm->is_compiled_by_jvmci()) {
1632           tty->print(" (JVMCI: no installed code) ");
1633         }
1634 #endif
1635         tty->print(" (@" INTPTR_FORMAT ") thread=" UINTX_FORMAT " reason=%s action=%s unloaded_class_index=%d" JVMCI_ONLY(" debug_id=%d"),
1636                    p2i(fr.pc()),
1637                    os::current_thread_id(),
1638                    trap_reason_name(reason),
1639                    trap_action_name(action),
1640                    unloaded_class_index
1641 #if INCLUDE_JVMCI
1642                    , debug_id
1643 #endif
1644                    );
1645         if (class_name != NULL) {
1646           tty->print(unresolved ? " unresolved class: " : " symbol: ");
1647           class_name->print_symbol_on(tty);
1648         }
1649         tty->cr();
1650       }
1651       if (xtty != NULL) {
1652         // Log the precise location of the trap.
1653         for (ScopeDesc* sd = trap_scope; ; sd = sd->sender()) {
1654           xtty->begin_elem("jvms bci='%d'", sd->bci());
1655           xtty->method(sd->method());
1656           xtty->end_elem();
1657           if (sd->is_top())  break;
1658         }
1659         xtty->tail("uncommon_trap");
1660       }
1661     }
1662     // (End diagnostic printout.)
1663 
1664     // Load class if necessary
1665     if (unloaded_class_index >= 0) {
1666       constantPoolHandle constants(THREAD, trap_method->constants());
1667       load_class_by_index(constants, unloaded_class_index);
1668     }
1669 
1670     // Flush the nmethod if necessary and desirable.
1671     //
1672     // We need to avoid situations where we are re-flushing the nmethod
1673     // because of a hot deoptimization site.  Repeated flushes at the same
1674     // point need to be detected by the compiler and avoided.  If the compiler
1675     // cannot avoid them (or has a bug and "refuses" to avoid them), this
1676     // module must take measures to avoid an infinite cycle of recompilation
1677     // and deoptimization.  There are several such measures:
1678     //
1679     //   1. If a recompilation is ordered a second time at some site X
1680     //   and for the same reason R, the action is adjusted to 'reinterpret',
1681     //   to give the interpreter time to exercise the method more thoroughly.
1682     //   If this happens, the method's overflow_recompile_count is incremented.
1683     //
1684     //   2. If the compiler fails to reduce the deoptimization rate, then
1685     //   the method's overflow_recompile_count will begin to exceed the set
1686     //   limit PerBytecodeRecompilationCutoff.  If this happens, the action
1687     //   is adjusted to 'make_not_compilable', and the method is abandoned
1688     //   to the interpreter.  This is a performance hit for hot methods,
1689     //   but is better than a disastrous infinite cycle of recompilations.
1690     //   (Actually, only the method containing the site X is abandoned.)
1691     //
1692     //   3. In parallel with the previous measures, if the total number of
1693     //   recompilations of a method exceeds the much larger set limit
1694     //   PerMethodRecompilationCutoff, the method is abandoned.
1695     //   This should only happen if the method is very large and has
1696     //   many "lukewarm" deoptimizations.  The code which enforces this
1697     //   limit is elsewhere (class nmethod, class Method).
1698     //
1699     // Note that the per-BCI 'is_recompiled' bit gives the compiler one chance
1700     // to recompile at each bytecode independently of the per-BCI cutoff.
1701     //
1702     // The decision to update code is up to the compiler, and is encoded
1703     // in the Action_xxx code.  If the compiler requests Action_none
1704     // no trap state is changed, no compiled code is changed, and the
1705     // computation suffers along in the interpreter.
1706     //
1707     // The other action codes specify various tactics for decompilation
1708     // and recompilation.  Action_maybe_recompile is the loosest, and
1709     // allows the compiled code to stay around until enough traps are seen,
1710     // and until the compiler gets around to recompiling the trapping method.
1711     //
1712     // The other actions cause immediate removal of the present code.
1713 
1714     // Traps caused by injected profile shouldn't pollute trap counts.
1715     bool injected_profile_trap = trap_method->has_injected_profile() &&
1716                                  (reason == Reason_intrinsic || reason == Reason_unreached);
1717 
1718     bool update_trap_state = (reason != Reason_tenured) && !injected_profile_trap;
1719     bool make_not_entrant = false;
1720     bool make_not_compilable = false;
1721     bool reprofile = false;
1722     switch (action) {
1723     case Action_none:
1724       // Keep the old code.
1725       update_trap_state = false;
1726       break;
1727     case Action_maybe_recompile:
1728       // Do not need to invalidate the present code, but we can
1729       // initiate another
1730       // Start compiler without (necessarily) invalidating the nmethod.
1731       // The system will tolerate the old code, but new code should be
1732       // generated when possible.
1733       break;
1734     case Action_reinterpret:
1735       // Go back into the interpreter for a while, and then consider
1736       // recompiling form scratch.
1737       make_not_entrant = true;
1738       // Reset invocation counter for outer most method.
1739       // This will allow the interpreter to exercise the bytecodes
1740       // for a while before recompiling.
1741       // By contrast, Action_make_not_entrant is immediate.
1742       //
1743       // Note that the compiler will track null_check, null_assert,
1744       // range_check, and class_check events and log them as if they
1745       // had been traps taken from compiled code.  This will update
1746       // the MDO trap history so that the next compilation will
1747       // properly detect hot trap sites.
1748       reprofile = true;
1749       break;
1750     case Action_make_not_entrant:
1751       // Request immediate recompilation, and get rid of the old code.
1752       // Make them not entrant, so next time they are called they get
1753       // recompiled.  Unloaded classes are loaded now so recompile before next
1754       // time they are called.  Same for uninitialized.  The interpreter will
1755       // link the missing class, if any.
1756       make_not_entrant = true;
1757       break;
1758     case Action_make_not_compilable:
1759       // Give up on compiling this method at all.
1760       make_not_entrant = true;
1761       make_not_compilable = true;
1762       break;
1763     default:
1764       ShouldNotReachHere();
1765     }
1766 
1767     // Setting +ProfileTraps fixes the following, on all platforms:
1768     // 4852688: ProfileInterpreter is off by default for ia64.  The result is
1769     // infinite heroic-opt-uncommon-trap/deopt/recompile cycles, since the
1770     // recompile relies on a MethodData* to record heroic opt failures.
1771 
1772     // Whether the interpreter is producing MDO data or not, we also need
1773     // to use the MDO to detect hot deoptimization points and control
1774     // aggressive optimization.
1775     bool inc_recompile_count = false;
1776     ProfileData* pdata = NULL;
1777     if (ProfileTraps && update_trap_state && trap_mdo != NULL) {
1778       assert(trap_mdo == get_method_data(thread, profiled_method, false), "sanity");
1779       uint this_trap_count = 0;
1780       bool maybe_prior_trap = false;
1781       bool maybe_prior_recompile = false;
1782       pdata = query_update_method_data(trap_mdo, trap_bci, reason, true,
1783 #if INCLUDE_JVMCI
1784                                    nm->is_compiled_by_jvmci() && nm->is_osr_method(),
1785 #endif
1786                                    nm->method(),
1787                                    //outputs:
1788                                    this_trap_count,
1789                                    maybe_prior_trap,
1790                                    maybe_prior_recompile);
1791       // Because the interpreter also counts null, div0, range, and class
1792       // checks, these traps from compiled code are double-counted.
1793       // This is harmless; it just means that the PerXTrapLimit values
1794       // are in effect a little smaller than they look.
1795 
1796       DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1797       if (per_bc_reason != Reason_none) {
1798         // Now take action based on the partially known per-BCI history.
1799         if (maybe_prior_trap
1800             && this_trap_count >= (uint)PerBytecodeTrapLimit) {
1801           // If there are too many traps at this BCI, force a recompile.
1802           // This will allow the compiler to see the limit overflow, and
1803           // take corrective action, if possible.  The compiler generally
1804           // does not use the exact PerBytecodeTrapLimit value, but instead
1805           // changes its tactics if it sees any traps at all.  This provides
1806           // a little hysteresis, delaying a recompile until a trap happens
1807           // several times.
1808           //
1809           // Actually, since there is only one bit of counter per BCI,
1810           // the possible per-BCI counts are {0,1,(per-method count)}.
1811           // This produces accurate results if in fact there is only
1812           // one hot trap site, but begins to get fuzzy if there are
1813           // many sites.  For example, if there are ten sites each
1814           // trapping two or more times, they each get the blame for
1815           // all of their traps.
1816           make_not_entrant = true;
1817         }
1818 
1819         // Detect repeated recompilation at the same BCI, and enforce a limit.
1820         if (make_not_entrant && maybe_prior_recompile) {
1821           // More than one recompile at this point.
1822           inc_recompile_count = maybe_prior_trap;
1823         }
1824       } else {
1825         // For reasons which are not recorded per-bytecode, we simply
1826         // force recompiles unconditionally.
1827         // (Note that PerMethodRecompilationCutoff is enforced elsewhere.)
1828         make_not_entrant = true;
1829       }
1830 
1831       // Go back to the compiler if there are too many traps in this method.
1832       if (this_trap_count >= per_method_trap_limit(reason)) {
1833         // If there are too many traps in this method, force a recompile.
1834         // This will allow the compiler to see the limit overflow, and
1835         // take corrective action, if possible.
1836         // (This condition is an unlikely backstop only, because the
1837         // PerBytecodeTrapLimit is more likely to take effect first,
1838         // if it is applicable.)
1839         make_not_entrant = true;
1840       }
1841 
1842       // Here's more hysteresis:  If there has been a recompile at
1843       // this trap point already, run the method in the interpreter
1844       // for a while to exercise it more thoroughly.
1845       if (make_not_entrant && maybe_prior_recompile && maybe_prior_trap) {
1846         reprofile = true;
1847       }
1848     }
1849 
1850     // Take requested actions on the method:
1851 
1852     // Recompile
1853     if (make_not_entrant) {
1854       if (!nm->make_not_entrant()) {
1855         return; // the call did not change nmethod's state
1856       }
1857 
1858       if (pdata != NULL) {
1859         // Record the recompilation event, if any.
1860         int tstate0 = pdata->trap_state();
1861         int tstate1 = trap_state_set_recompiled(tstate0, true);
1862         if (tstate1 != tstate0)
1863           pdata->set_trap_state(tstate1);
1864       }
1865 
1866 #if INCLUDE_RTM_OPT
1867       // Restart collecting RTM locking abort statistic if the method
1868       // is recompiled for a reason other than RTM state change.
1869       // Assume that in new recompiled code the statistic could be different,
1870       // for example, due to different inlining.
1871       if ((reason != Reason_rtm_state_change) && (trap_mdo != NULL) &&
1872           UseRTMDeopt && (nm->rtm_state() != ProfileRTM)) {
1873         trap_mdo->atomic_set_rtm_state(ProfileRTM);
1874       }
1875 #endif
1876       // For code aging we count traps separately here, using make_not_entrant()
1877       // as a guard against simultaneous deopts in multiple threads.
1878       if (reason == Reason_tenured && trap_mdo != NULL) {
1879         trap_mdo->inc_tenure_traps();
1880       }
1881     }
1882 
1883     if (inc_recompile_count) {
1884       trap_mdo->inc_overflow_recompile_count();
1885       if ((uint)trap_mdo->overflow_recompile_count() >
1886           (uint)PerBytecodeRecompilationCutoff) {
1887         // Give up on the method containing the bad BCI.
1888         if (trap_method() == nm->method()) {
1889           make_not_compilable = true;
1890         } else {
1891           trap_method->set_not_compilable(CompLevel_full_optimization, true, "overflow_recompile_count > PerBytecodeRecompilationCutoff");
1892           // But give grace to the enclosing nm->method().
1893         }
1894       }
1895     }
1896 
1897     // Reprofile
1898     if (reprofile) {
1899       CompilationPolicy::policy()->reprofile(trap_scope, nm->is_osr_method());
1900     }
1901 
1902     // Give up compiling
1903     if (make_not_compilable && !nm->method()->is_not_compilable(CompLevel_full_optimization)) {
1904       assert(make_not_entrant, "consistent");
1905       nm->method()->set_not_compilable(CompLevel_full_optimization);
1906     }
1907 
1908   } // Free marked resources
1909 
1910 }
1911 JRT_END
1912 
1913 ProfileData*
1914 Deoptimization::query_update_method_data(MethodData* trap_mdo,
1915                                          int trap_bci,
1916                                          Deoptimization::DeoptReason reason,
1917                                          bool update_total_trap_count,
1918 #if INCLUDE_JVMCI
1919                                          bool is_osr,
1920 #endif
1921                                          Method* compiled_method,
1922                                          //outputs:
1923                                          uint& ret_this_trap_count,
1924                                          bool& ret_maybe_prior_trap,
1925                                          bool& ret_maybe_prior_recompile) {
1926   bool maybe_prior_trap = false;
1927   bool maybe_prior_recompile = false;
1928   uint this_trap_count = 0;
1929   if (update_total_trap_count) {
1930     uint idx = reason;
1931 #if INCLUDE_JVMCI
1932     if (is_osr) {
1933       idx += Reason_LIMIT;
1934     }
1935 #endif
1936     uint prior_trap_count = trap_mdo->trap_count(idx);
1937     this_trap_count  = trap_mdo->inc_trap_count(idx);
1938 
1939     // If the runtime cannot find a place to store trap history,
1940     // it is estimated based on the general condition of the method.
1941     // If the method has ever been recompiled, or has ever incurred
1942     // a trap with the present reason , then this BCI is assumed
1943     // (pessimistically) to be the culprit.
1944     maybe_prior_trap      = (prior_trap_count != 0);
1945     maybe_prior_recompile = (trap_mdo->decompile_count() != 0);
1946   }
1947   ProfileData* pdata = NULL;
1948 
1949 
1950   // For reasons which are recorded per bytecode, we check per-BCI data.
1951   DeoptReason per_bc_reason = reason_recorded_per_bytecode_if_any(reason);
1952   assert(per_bc_reason != Reason_none || update_total_trap_count, "must be");
1953   if (per_bc_reason != Reason_none) {
1954     // Find the profile data for this BCI.  If there isn't one,
1955     // try to allocate one from the MDO's set of spares.
1956     // This will let us detect a repeated trap at this point.
1957     pdata = trap_mdo->allocate_bci_to_data(trap_bci, reason_is_speculate(reason) ? compiled_method : NULL);
1958 
1959     if (pdata != NULL) {
1960       if (reason_is_speculate(reason) && !pdata->is_SpeculativeTrapData()) {
1961         if (LogCompilation && xtty != NULL) {
1962           ttyLocker ttyl;
1963           // no more room for speculative traps in this MDO
1964           xtty->elem("speculative_traps_oom");
1965         }
1966       }
1967       // Query the trap state of this profile datum.
1968       int tstate0 = pdata->trap_state();
1969       if (!trap_state_has_reason(tstate0, per_bc_reason))
1970         maybe_prior_trap = false;
1971       if (!trap_state_is_recompiled(tstate0))
1972         maybe_prior_recompile = false;
1973 
1974       // Update the trap state of this profile datum.
1975       int tstate1 = tstate0;
1976       // Record the reason.
1977       tstate1 = trap_state_add_reason(tstate1, per_bc_reason);
1978       // Store the updated state on the MDO, for next time.
1979       if (tstate1 != tstate0)
1980         pdata->set_trap_state(tstate1);
1981     } else {
1982       if (LogCompilation && xtty != NULL) {
1983         ttyLocker ttyl;
1984         // Missing MDP?  Leave a small complaint in the log.
1985         xtty->elem("missing_mdp bci='%d'", trap_bci);
1986       }
1987     }
1988   }
1989 
1990   // Return results:
1991   ret_this_trap_count = this_trap_count;
1992   ret_maybe_prior_trap = maybe_prior_trap;
1993   ret_maybe_prior_recompile = maybe_prior_recompile;
1994   return pdata;
1995 }
1996 
1997 void
1998 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
1999   ResourceMark rm;
2000   // Ignored outputs:
2001   uint ignore_this_trap_count;
2002   bool ignore_maybe_prior_trap;
2003   bool ignore_maybe_prior_recompile;
2004   assert(!reason_is_speculate(reason), "reason speculate only used by compiler");
2005   // JVMCI uses the total counts to determine if deoptimizations are happening too frequently -> do not adjust total counts
2006   bool update_total_counts = JVMCI_ONLY(false) NOT_JVMCI(true);
2007   query_update_method_data(trap_mdo, trap_bci,
2008                            (DeoptReason)reason,
2009                            update_total_counts,
2010 #if INCLUDE_JVMCI
2011                            false,
2012 #endif
2013                            NULL,
2014                            ignore_this_trap_count,
2015                            ignore_maybe_prior_trap,
2016                            ignore_maybe_prior_recompile);
2017 }
2018 
2019 Deoptimization::UnrollBlock* Deoptimization::uncommon_trap(JavaThread* thread, jint trap_request, jint exec_mode) {
2020   if (TraceDeoptimization) {
2021     tty->print("Uncommon trap ");
2022   }
2023   // Still in Java no safepoints
2024   {
2025     // This enters VM and may safepoint
2026     uncommon_trap_inner(thread, trap_request);
2027   }
2028   return fetch_unroll_info_helper(thread, exec_mode);
2029 }
2030 
2031 // Local derived constants.
2032 // Further breakdown of DataLayout::trap_state, as promised by DataLayout.
2033 const int DS_REASON_MASK   = DataLayout::trap_mask >> 1;
2034 const int DS_RECOMPILE_BIT = DataLayout::trap_mask - DS_REASON_MASK;
2035 
2036 //---------------------------trap_state_reason---------------------------------
2037 Deoptimization::DeoptReason
2038 Deoptimization::trap_state_reason(int trap_state) {
2039   // This assert provides the link between the width of DataLayout::trap_bits
2040   // and the encoding of "recorded" reasons.  It ensures there are enough
2041   // bits to store all needed reasons in the per-BCI MDO profile.
2042   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2043   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2044   trap_state -= recompile_bit;
2045   if (trap_state == DS_REASON_MASK) {
2046     return Reason_many;
2047   } else {
2048     assert((int)Reason_none == 0, "state=0 => Reason_none");
2049     return (DeoptReason)trap_state;
2050   }
2051 }
2052 //-------------------------trap_state_has_reason-------------------------------
2053 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2054   assert(reason_is_recorded_per_bytecode((DeoptReason)reason), "valid reason");
2055   assert(DS_REASON_MASK >= Reason_RECORDED_LIMIT, "enough bits");
2056   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2057   trap_state -= recompile_bit;
2058   if (trap_state == DS_REASON_MASK) {
2059     return -1;  // true, unspecifically (bottom of state lattice)
2060   } else if (trap_state == reason) {
2061     return 1;   // true, definitely
2062   } else if (trap_state == 0) {
2063     return 0;   // false, definitely (top of state lattice)
2064   } else {
2065     return 0;   // false, definitely
2066   }
2067 }
2068 //-------------------------trap_state_add_reason-------------------------------
2069 int Deoptimization::trap_state_add_reason(int trap_state, int reason) {
2070   assert(reason_is_recorded_per_bytecode((DeoptReason)reason) || reason == Reason_many, "valid reason");
2071   int recompile_bit = (trap_state & DS_RECOMPILE_BIT);
2072   trap_state -= recompile_bit;
2073   if (trap_state == DS_REASON_MASK) {
2074     return trap_state + recompile_bit;     // already at state lattice bottom
2075   } else if (trap_state == reason) {
2076     return trap_state + recompile_bit;     // the condition is already true
2077   } else if (trap_state == 0) {
2078     return reason + recompile_bit;          // no condition has yet been true
2079   } else {
2080     return DS_REASON_MASK + recompile_bit;  // fall to state lattice bottom
2081   }
2082 }
2083 //-----------------------trap_state_is_recompiled------------------------------
2084 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2085   return (trap_state & DS_RECOMPILE_BIT) != 0;
2086 }
2087 //-----------------------trap_state_set_recompiled-----------------------------
2088 int Deoptimization::trap_state_set_recompiled(int trap_state, bool z) {
2089   if (z)  return trap_state |  DS_RECOMPILE_BIT;
2090   else    return trap_state & ~DS_RECOMPILE_BIT;
2091 }
2092 //---------------------------format_trap_state---------------------------------
2093 // This is used for debugging and diagnostics, including LogFile output.
2094 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2095                                               int trap_state) {
2096   assert(buflen > 0, "sanity");
2097   DeoptReason reason      = trap_state_reason(trap_state);
2098   bool        recomp_flag = trap_state_is_recompiled(trap_state);
2099   // Re-encode the state from its decoded components.
2100   int decoded_state = 0;
2101   if (reason_is_recorded_per_bytecode(reason) || reason == Reason_many)
2102     decoded_state = trap_state_add_reason(decoded_state, reason);
2103   if (recomp_flag)
2104     decoded_state = trap_state_set_recompiled(decoded_state, recomp_flag);
2105   // If the state re-encodes properly, format it symbolically.
2106   // Because this routine is used for debugging and diagnostics,
2107   // be robust even if the state is a strange value.
2108   size_t len;
2109   if (decoded_state != trap_state) {
2110     // Random buggy state that doesn't decode??
2111     len = jio_snprintf(buf, buflen, "#%d", trap_state);
2112   } else {
2113     len = jio_snprintf(buf, buflen, "%s%s",
2114                        trap_reason_name(reason),
2115                        recomp_flag ? " recompiled" : "");
2116   }
2117   return buf;
2118 }
2119 
2120 
2121 //--------------------------------statics--------------------------------------
2122 const char* Deoptimization::_trap_reason_name[] = {
2123   // Note:  Keep this in sync. with enum DeoptReason.
2124   "none",
2125   "null_check",
2126   "null_assert" JVMCI_ONLY("_or_unreached0"),
2127   "range_check",
2128   "class_check",
2129   "array_check",
2130   "intrinsic" JVMCI_ONLY("_or_type_checked_inlining"),
2131   "bimorphic" JVMCI_ONLY("_or_optimized_type_check"),
2132   "unloaded",
2133   "uninitialized",
2134   "unreached",
2135   "unhandled",
2136   "constraint",
2137   "div0_check",
2138   "age",
2139   "predicate",
2140   "loop_limit_check",
2141   "speculate_class_check",
2142   "speculate_null_check",
2143   "rtm_state_change",
2144   "unstable_if",
2145   "unstable_fused_if",
2146 #if INCLUDE_JVMCI
2147   "aliasing",
2148   "transfer_to_interpreter",
2149   "not_compiled_exception_handler",
2150   "unresolved",
2151   "jsr_mismatch",
2152 #endif
2153   "tenured"
2154 };
2155 const char* Deoptimization::_trap_action_name[] = {
2156   // Note:  Keep this in sync. with enum DeoptAction.
2157   "none",
2158   "maybe_recompile",
2159   "reinterpret",
2160   "make_not_entrant",
2161   "make_not_compilable"
2162 };
2163 
2164 const char* Deoptimization::trap_reason_name(int reason) {
2165   // Check that every reason has a name
2166   STATIC_ASSERT(sizeof(_trap_reason_name)/sizeof(const char*) == Reason_LIMIT);
2167 
2168   if (reason == Reason_many)  return "many";
2169   if ((uint)reason < Reason_LIMIT)
2170     return _trap_reason_name[reason];
2171   static char buf[20];
2172   sprintf(buf, "reason%d", reason);
2173   return buf;
2174 }
2175 const char* Deoptimization::trap_action_name(int action) {
2176   // Check that every action has a name
2177   STATIC_ASSERT(sizeof(_trap_action_name)/sizeof(const char*) == Action_LIMIT);
2178 
2179   if ((uint)action < Action_LIMIT)
2180     return _trap_action_name[action];
2181   static char buf[20];
2182   sprintf(buf, "action%d", action);
2183   return buf;
2184 }
2185 
2186 // This is used for debugging and diagnostics, including LogFile output.
2187 const char* Deoptimization::format_trap_request(char* buf, size_t buflen,
2188                                                 int trap_request) {
2189   jint unloaded_class_index = trap_request_index(trap_request);
2190   const char* reason = trap_reason_name(trap_request_reason(trap_request));
2191   const char* action = trap_action_name(trap_request_action(trap_request));
2192 #if INCLUDE_JVMCI
2193   int debug_id = trap_request_debug_id(trap_request);
2194 #endif
2195   size_t len;
2196   if (unloaded_class_index < 0) {
2197     len = jio_snprintf(buf, buflen, "reason='%s' action='%s'" JVMCI_ONLY(" debug_id='%d'"),
2198                        reason, action
2199 #if INCLUDE_JVMCI
2200                        ,debug_id
2201 #endif
2202                        );
2203   } else {
2204     len = jio_snprintf(buf, buflen, "reason='%s' action='%s' index='%d'" JVMCI_ONLY(" debug_id='%d'"),
2205                        reason, action, unloaded_class_index
2206 #if INCLUDE_JVMCI
2207                        ,debug_id
2208 #endif
2209                        );
2210   }
2211   return buf;
2212 }
2213 
2214 juint Deoptimization::_deoptimization_hist
2215         [Deoptimization::Reason_LIMIT]
2216     [1 + Deoptimization::Action_LIMIT]
2217         [Deoptimization::BC_CASE_LIMIT]
2218   = {0};
2219 
2220 enum {
2221   LSB_BITS = 8,
2222   LSB_MASK = right_n_bits(LSB_BITS)
2223 };
2224 
2225 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2226                                        Bytecodes::Code bc) {
2227   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2228   assert(action >= 0 && action < Action_LIMIT, "oob");
2229   _deoptimization_hist[Reason_none][0][0] += 1;  // total
2230   _deoptimization_hist[reason][0][0]      += 1;  // per-reason total
2231   juint* cases = _deoptimization_hist[reason][1+action];
2232   juint* bc_counter_addr = NULL;
2233   juint  bc_counter      = 0;
2234   // Look for an unused counter, or an exact match to this BC.
2235   if (bc != Bytecodes::_illegal) {
2236     for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2237       juint* counter_addr = &cases[bc_case];
2238       juint  counter = *counter_addr;
2239       if ((counter == 0 && bc_counter_addr == NULL)
2240           || (Bytecodes::Code)(counter & LSB_MASK) == bc) {
2241         // this counter is either free or is already devoted to this BC
2242         bc_counter_addr = counter_addr;
2243         bc_counter = counter | bc;
2244       }
2245     }
2246   }
2247   if (bc_counter_addr == NULL) {
2248     // Overflow, or no given bytecode.
2249     bc_counter_addr = &cases[BC_CASE_LIMIT-1];
2250     bc_counter = (*bc_counter_addr & ~LSB_MASK);  // clear LSB
2251   }
2252   *bc_counter_addr = bc_counter + (1 << LSB_BITS);
2253 }
2254 
2255 jint Deoptimization::total_deoptimization_count() {
2256   return _deoptimization_hist[Reason_none][0][0];
2257 }
2258 
2259 jint Deoptimization::deoptimization_count(DeoptReason reason) {
2260   assert(reason >= 0 && reason < Reason_LIMIT, "oob");
2261   return _deoptimization_hist[reason][0][0];
2262 }
2263 
2264 void Deoptimization::print_statistics() {
2265   juint total = total_deoptimization_count();
2266   juint account = total;
2267   if (total != 0) {
2268     ttyLocker ttyl;
2269     if (xtty != NULL)  xtty->head("statistics type='deoptimization'");
2270     tty->print_cr("Deoptimization traps recorded:");
2271     #define PRINT_STAT_LINE(name, r) \
2272       tty->print_cr("  %4d (%4.1f%%) %s", (int)(r), ((r) * 100.0) / total, name);
2273     PRINT_STAT_LINE("total", total);
2274     // For each non-zero entry in the histogram, print the reason,
2275     // the action, and (if specifically known) the type of bytecode.
2276     for (int reason = 0; reason < Reason_LIMIT; reason++) {
2277       for (int action = 0; action < Action_LIMIT; action++) {
2278         juint* cases = _deoptimization_hist[reason][1+action];
2279         for (int bc_case = 0; bc_case < BC_CASE_LIMIT; bc_case++) {
2280           juint counter = cases[bc_case];
2281           if (counter != 0) {
2282             char name[1*K];
2283             Bytecodes::Code bc = (Bytecodes::Code)(counter & LSB_MASK);
2284             if (bc_case == BC_CASE_LIMIT && (int)bc == 0)
2285               bc = Bytecodes::_illegal;
2286             sprintf(name, "%s/%s/%s",
2287                     trap_reason_name(reason),
2288                     trap_action_name(action),
2289                     Bytecodes::is_defined(bc)? Bytecodes::name(bc): "other");
2290             juint r = counter >> LSB_BITS;
2291             tty->print_cr("  %40s: " UINT32_FORMAT " (%.1f%%)", name, r, (r * 100.0) / total);
2292             account -= r;
2293           }
2294         }
2295       }
2296     }
2297     if (account != 0) {
2298       PRINT_STAT_LINE("unaccounted", account);
2299     }
2300     #undef PRINT_STAT_LINE
2301     if (xtty != NULL)  xtty->tail("statistics");
2302   }
2303 }
2304 #else // COMPILER2 || SHARK || INCLUDE_JVMCI
2305 
2306 
2307 // Stubs for C1 only system.
2308 bool Deoptimization::trap_state_is_recompiled(int trap_state) {
2309   return false;
2310 }
2311 
2312 const char* Deoptimization::trap_reason_name(int reason) {
2313   return "unknown";
2314 }
2315 
2316 void Deoptimization::print_statistics() {
2317   // no output
2318 }
2319 
2320 void
2321 Deoptimization::update_method_data_from_interpreter(MethodData* trap_mdo, int trap_bci, int reason) {
2322   // no udpate
2323 }
2324 
2325 int Deoptimization::trap_state_has_reason(int trap_state, int reason) {
2326   return 0;
2327 }
2328 
2329 void Deoptimization::gather_statistics(DeoptReason reason, DeoptAction action,
2330                                        Bytecodes::Code bc) {
2331   // no update
2332 }
2333 
2334 const char* Deoptimization::format_trap_state(char* buf, size_t buflen,
2335                                               int trap_state) {
2336   jio_snprintf(buf, buflen, "#%d", trap_state);
2337   return buf;
2338 }
2339 
2340 #endif // COMPILER2 || SHARK || INCLUDE_JVMCI