1 /*
   2  * Copyright (c) 1998, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/systemDictionary.hpp"
  27 #include "classfile/vmSymbols.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/compiledIC.hpp"
  30 #include "code/icBuffer.hpp"
  31 #include "code/nmethod.hpp"
  32 #include "code/pcDesc.hpp"
  33 #include "code/scopeDesc.hpp"
  34 #include "code/vtableStubs.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/oopMap.hpp"
  37 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  38 #include "gc/g1/heapRegion.hpp"
  39 #include "gc/shared/barrierSet.hpp"
  40 #include "gc/shared/collectedHeap.hpp"
  41 #include "gc/shared/gcLocker.inline.hpp"
  42 #include "interpreter/bytecode.hpp"
  43 #include "interpreter/interpreter.hpp"
  44 #include "interpreter/linkResolver.hpp"
  45 #include "logging/log.hpp"
  46 #include "memory/oopFactory.hpp"
  47 #include "oops/objArrayKlass.hpp"
  48 #include "oops/oop.inline.hpp"
  49 #include "oops/typeArrayOop.inline.hpp"
  50 #include "oops/valueArrayKlass.hpp"
  51 #include "opto/ad.hpp"
  52 #include "opto/addnode.hpp"
  53 #include "opto/callnode.hpp"
  54 #include "opto/cfgnode.hpp"
  55 #include "opto/graphKit.hpp"
  56 #include "opto/machnode.hpp"
  57 #include "opto/matcher.hpp"
  58 #include "opto/memnode.hpp"
  59 #include "opto/mulnode.hpp"
  60 #include "opto/runtime.hpp"
  61 #include "opto/subnode.hpp"
  62 #include "runtime/atomic.inline.hpp"
  63 #include "runtime/fprofiler.hpp"
  64 #include "runtime/handles.inline.hpp"
  65 #include "runtime/interfaceSupport.hpp"
  66 #include "runtime/javaCalls.hpp"
  67 #include "runtime/sharedRuntime.hpp"
  68 #include "runtime/signature.hpp"
  69 #include "runtime/threadCritical.hpp"
  70 #include "runtime/vframe.hpp"
  71 #include "runtime/vframeArray.hpp"
  72 #include "runtime/vframe_hp.hpp"
  73 #include "utilities/copy.hpp"
  74 #include "utilities/preserveException.hpp"
  75 
  76 
  77 // For debugging purposes:
  78 //  To force FullGCALot inside a runtime function, add the following two lines
  79 //
  80 //  Universe::release_fullgc_alot_dummy();
  81 //  MarkSweep::invoke(0, "Debugging");
  82 //
  83 // At command line specify the parameters: -XX:+FullGCALot -XX:FullGCALotStart=100000000
  84 
  85 
  86 
  87 
  88 // Compiled code entry points
  89 address OptoRuntime::_new_instance_Java                           = NULL;
  90 address OptoRuntime::_new_array_Java                              = NULL;
  91 address OptoRuntime::_new_array_nozero_Java                       = NULL;
  92 address OptoRuntime::_multianewarray2_Java                        = NULL;
  93 address OptoRuntime::_multianewarray3_Java                        = NULL;
  94 address OptoRuntime::_multianewarray4_Java                        = NULL;
  95 address OptoRuntime::_multianewarray5_Java                        = NULL;
  96 address OptoRuntime::_multianewarrayN_Java                        = NULL;
  97 address OptoRuntime::_g1_wb_pre_Java                              = NULL;
  98 address OptoRuntime::_g1_wb_post_Java                             = NULL;
  99 address OptoRuntime::_vtable_must_compile_Java                    = NULL;
 100 address OptoRuntime::_complete_monitor_locking_Java               = NULL;
 101 address OptoRuntime::_monitor_notify_Java                         = NULL;
 102 address OptoRuntime::_monitor_notifyAll_Java                      = NULL;
 103 address OptoRuntime::_rethrow_Java                                = NULL;
 104 
 105 address OptoRuntime::_slow_arraycopy_Java                         = NULL;
 106 address OptoRuntime::_register_finalizer_Java                     = NULL;
 107 
 108 ExceptionBlob* OptoRuntime::_exception_blob;
 109 
 110 // This should be called in an assertion at the start of OptoRuntime routines
 111 // which are entered from compiled code (all of them)
 112 #ifdef ASSERT
 113 static bool check_compiled_frame(JavaThread* thread) {
 114   assert(thread->last_frame().is_runtime_frame(), "cannot call runtime directly from compiled code");
 115   RegisterMap map(thread, false);
 116   frame caller = thread->last_frame().sender(&map);
 117   assert(caller.is_compiled_frame(), "not being called from compiled like code");
 118   return true;
 119 }
 120 #endif // ASSERT
 121 
 122 
 123 #define gen(env, var, type_func_gen, c_func, fancy_jump, pass_tls, save_arg_regs, return_pc) \
 124   var = generate_stub(env, type_func_gen, CAST_FROM_FN_PTR(address, c_func), #var, fancy_jump, pass_tls, save_arg_regs, return_pc); \
 125   if (var == NULL) { return false; }
 126 
 127 bool OptoRuntime::generate(ciEnv* env) {
 128 
 129   generate_exception_blob();
 130 
 131   // Note: tls: Means fetching the return oop out of the thread-local storage
 132   //
 133   //   variable/name                       type-function-gen              , runtime method                  ,fncy_jp, tls,save_args,retpc
 134   // -------------------------------------------------------------------------------------------------------------------------------
 135   gen(env, _new_instance_Java              , new_instance_Type            , new_instance_C                  ,    0 , true , false, false);
 136   gen(env, _new_array_Java                 , new_array_Type               , new_array_C                     ,    0 , true , false, false);
 137   gen(env, _new_array_nozero_Java          , new_array_Type               , new_array_nozero_C              ,    0 , true , false, false);
 138   gen(env, _multianewarray2_Java           , multianewarray2_Type         , multianewarray2_C               ,    0 , true , false, false);
 139   gen(env, _multianewarray3_Java           , multianewarray3_Type         , multianewarray3_C               ,    0 , true , false, false);
 140   gen(env, _multianewarray4_Java           , multianewarray4_Type         , multianewarray4_C               ,    0 , true , false, false);
 141   gen(env, _multianewarray5_Java           , multianewarray5_Type         , multianewarray5_C               ,    0 , true , false, false);
 142   gen(env, _multianewarrayN_Java           , multianewarrayN_Type         , multianewarrayN_C               ,    0 , true , false, false);
 143   gen(env, _g1_wb_pre_Java                 , g1_wb_pre_Type               , SharedRuntime::g1_wb_pre        ,    0 , false, false, false);
 144   gen(env, _g1_wb_post_Java                , g1_wb_post_Type              , SharedRuntime::g1_wb_post       ,    0 , false, false, false);
 145   gen(env, _complete_monitor_locking_Java  , complete_monitor_enter_Type  , SharedRuntime::complete_monitor_locking_C, 0, false, false, false);
 146   gen(env, _monitor_notify_Java            , monitor_notify_Type          , monitor_notify_C                ,    0 , false, false, false);
 147   gen(env, _monitor_notifyAll_Java         , monitor_notify_Type          , monitor_notifyAll_C             ,    0 , false, false, false);
 148   gen(env, _rethrow_Java                   , rethrow_Type                 , rethrow_C                       ,    2 , true , false, true );
 149 
 150   gen(env, _slow_arraycopy_Java            , slow_arraycopy_Type          , SharedRuntime::slow_arraycopy_C ,    0 , false, false, false);
 151   gen(env, _register_finalizer_Java        , register_finalizer_Type      , register_finalizer              ,    0 , false, false, false);
 152 
 153   return true;
 154 }
 155 
 156 #undef gen
 157 
 158 
 159 // Helper method to do generation of RunTimeStub's
 160 address OptoRuntime::generate_stub( ciEnv* env,
 161                                     TypeFunc_generator gen, address C_function,
 162                                     const char *name, int is_fancy_jump,
 163                                     bool pass_tls,
 164                                     bool save_argument_registers,
 165                                     bool return_pc) {
 166 
 167   // Matching the default directive, we currently have no method to match.
 168   DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_full_optimization));
 169   ResourceMark rm;
 170   Compile C( env, gen, C_function, name, is_fancy_jump, pass_tls, save_argument_registers, return_pc, directive);
 171   DirectivesStack::release(directive);
 172   return  C.stub_entry_point();
 173 }
 174 
 175 const char* OptoRuntime::stub_name(address entry) {
 176 #ifndef PRODUCT
 177   CodeBlob* cb = CodeCache::find_blob(entry);
 178   RuntimeStub* rs =(RuntimeStub *)cb;
 179   assert(rs != NULL && rs->is_runtime_stub(), "not a runtime stub");
 180   return rs->name();
 181 #else
 182   // Fast implementation for product mode (maybe it should be inlined too)
 183   return "runtime stub";
 184 #endif
 185 }
 186 
 187 
 188 //=============================================================================
 189 // Opto compiler runtime routines
 190 //=============================================================================
 191 
 192 
 193 //=============================allocation======================================
 194 // We failed the fast-path allocation.  Now we need to do a scavenge or GC
 195 // and try allocation again.
 196 
 197 void OptoRuntime::new_store_pre_barrier(JavaThread* thread) {
 198   // After any safepoint, just before going back to compiled code,
 199   // we inform the GC that we will be doing initializing writes to
 200   // this object in the future without emitting card-marks, so
 201   // GC may take any compensating steps.
 202   // NOTE: Keep this code consistent with GraphKit::store_barrier.
 203 
 204   oop new_obj = thread->vm_result();
 205   if (new_obj == NULL)  return;
 206 
 207   assert(Universe::heap()->can_elide_tlab_store_barriers(),
 208          "compiler must check this first");
 209   // GC may decide to give back a safer copy of new_obj.
 210   new_obj = Universe::heap()->new_store_pre_barrier(thread, new_obj);
 211   thread->set_vm_result(new_obj);
 212 }
 213 
 214 // object allocation
 215 JRT_BLOCK_ENTRY(void, OptoRuntime::new_instance_C(Klass* klass, JavaThread* thread))
 216   JRT_BLOCK;
 217 #ifndef PRODUCT
 218   SharedRuntime::_new_instance_ctr++;         // new instance requires GC
 219 #endif
 220   assert(check_compiled_frame(thread), "incorrect caller");
 221 
 222   // These checks are cheap to make and support reflective allocation.
 223   int lh = klass->layout_helper();
 224   if (Klass::layout_helper_needs_slow_path(lh)
 225       || !InstanceKlass::cast(klass)->is_initialized()) {
 226     KlassHandle kh(THREAD, klass);
 227     kh->check_valid_for_instantiation(false, THREAD);
 228     if (!HAS_PENDING_EXCEPTION) {
 229       InstanceKlass::cast(kh())->initialize(THREAD);
 230     }
 231     if (!HAS_PENDING_EXCEPTION) {
 232       klass = kh();
 233     } else {
 234       klass = NULL;
 235     }
 236   }
 237 
 238   if (klass != NULL) {
 239     // Scavenge and allocate an instance.
 240     oop result = InstanceKlass::cast(klass)->allocate_instance(THREAD);
 241     thread->set_vm_result(result);
 242 
 243     // Pass oops back through thread local storage.  Our apparent type to Java
 244     // is that we return an oop, but we can block on exit from this routine and
 245     // a GC can trash the oop in C's return register.  The generated stub will
 246     // fetch the oop from TLS after any possible GC.
 247   }
 248 
 249   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 250   JRT_BLOCK_END;
 251 
 252   if (GraphKit::use_ReduceInitialCardMarks()) {
 253     // inform GC that we won't do card marks for initializing writes.
 254     new_store_pre_barrier(thread);
 255   }
 256 JRT_END
 257 
 258 
 259 // array allocation
 260 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_C(Klass* array_type, int len, JavaThread *thread))
 261   JRT_BLOCK;
 262 #ifndef PRODUCT
 263   SharedRuntime::_new_array_ctr++;            // new array requires GC
 264 #endif
 265   assert(check_compiled_frame(thread), "incorrect caller");
 266 
 267   // Scavenge and allocate an instance.
 268   oop result;
 269 
 270   if (array_type->is_valueArray_klass()) {
 271     // TODO refactor all these checks, is_typeArray_klass should not be true for a value type array
 272     // TODO use oopFactory::new_array
 273     Klass* elem_type = ValueArrayKlass::cast(array_type)->element_klass();
 274     result = oopFactory::new_valueArray(elem_type, len, THREAD);
 275   } else if (array_type->is_typeArray_klass()) {
 276     // The oopFactory likes to work with the element type.
 277     // (We could bypass the oopFactory, since it doesn't add much value.)
 278     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 279     result = oopFactory::new_typeArray(elem_type, len, THREAD);
 280   } else {
 281     // Although the oopFactory likes to work with the elem_type,
 282     // the compiler prefers the array_type, since it must already have
 283     // that latter value in hand for the fast path.
 284     Klass* elem_type = ObjArrayKlass::cast(array_type)->element_klass();
 285     result = oopFactory::new_objArray(elem_type, len, THREAD);
 286   }
 287 
 288   // Pass oops back through thread local storage.  Our apparent type to Java
 289   // is that we return an oop, but we can block on exit from this routine and
 290   // a GC can trash the oop in C's return register.  The generated stub will
 291   // fetch the oop from TLS after any possible GC.
 292   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 293   thread->set_vm_result(result);
 294   JRT_BLOCK_END;
 295 
 296   if (GraphKit::use_ReduceInitialCardMarks()) {
 297     // inform GC that we won't do card marks for initializing writes.
 298     new_store_pre_barrier(thread);
 299   }
 300 JRT_END
 301 
 302 // array allocation without zeroing
 303 JRT_BLOCK_ENTRY(void, OptoRuntime::new_array_nozero_C(Klass* array_type, int len, JavaThread *thread))
 304   JRT_BLOCK;
 305 #ifndef PRODUCT
 306   SharedRuntime::_new_array_ctr++;            // new array requires GC
 307 #endif
 308   assert(check_compiled_frame(thread), "incorrect caller");
 309 
 310   // Scavenge and allocate an instance.
 311   oop result;
 312 
 313   assert(array_type->is_typeArray_klass(), "should be called only for type array");
 314   // The oopFactory likes to work with the element type.
 315   BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 316   result = oopFactory::new_typeArray_nozero(elem_type, len, THREAD);
 317 
 318   // Pass oops back through thread local storage.  Our apparent type to Java
 319   // is that we return an oop, but we can block on exit from this routine and
 320   // a GC can trash the oop in C's return register.  The generated stub will
 321   // fetch the oop from TLS after any possible GC.
 322   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 323   thread->set_vm_result(result);
 324   JRT_BLOCK_END;
 325 
 326   if (GraphKit::use_ReduceInitialCardMarks()) {
 327     // inform GC that we won't do card marks for initializing writes.
 328     new_store_pre_barrier(thread);
 329   }
 330 
 331   oop result = thread->vm_result();
 332   if ((len > 0) && (result != NULL) &&
 333       is_deoptimized_caller_frame(thread)) {
 334     // Zero array here if the caller is deoptimized.
 335     int size = ((typeArrayOop)result)->object_size();
 336     BasicType elem_type = TypeArrayKlass::cast(array_type)->element_type();
 337     const size_t hs = arrayOopDesc::header_size(elem_type);
 338     // Align to next 8 bytes to avoid trashing arrays's length.
 339     const size_t aligned_hs = align_object_offset(hs);
 340     HeapWord* obj = (HeapWord*)result;
 341     if (aligned_hs > hs) {
 342       Copy::zero_to_words(obj+hs, aligned_hs-hs);
 343     }
 344     // Optimized zeroing.
 345     Copy::fill_to_aligned_words(obj+aligned_hs, size-aligned_hs);
 346   }
 347 
 348 JRT_END
 349 
 350 // Note: multianewarray for one dimension is handled inline by GraphKit::new_array.
 351 
 352 // multianewarray for 2 dimensions
 353 JRT_ENTRY(void, OptoRuntime::multianewarray2_C(Klass* elem_type, int len1, int len2, JavaThread *thread))
 354 #ifndef PRODUCT
 355   SharedRuntime::_multi2_ctr++;                // multianewarray for 1 dimension
 356 #endif
 357   assert(check_compiled_frame(thread), "incorrect caller");
 358   assert(elem_type->is_klass(), "not a class");
 359   jint dims[2];
 360   dims[0] = len1;
 361   dims[1] = len2;
 362   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(2, dims, THREAD);
 363   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 364   thread->set_vm_result(obj);
 365 JRT_END
 366 
 367 // multianewarray for 3 dimensions
 368 JRT_ENTRY(void, OptoRuntime::multianewarray3_C(Klass* elem_type, int len1, int len2, int len3, JavaThread *thread))
 369 #ifndef PRODUCT
 370   SharedRuntime::_multi3_ctr++;                // multianewarray for 1 dimension
 371 #endif
 372   assert(check_compiled_frame(thread), "incorrect caller");
 373   assert(elem_type->is_klass(), "not a class");
 374   jint dims[3];
 375   dims[0] = len1;
 376   dims[1] = len2;
 377   dims[2] = len3;
 378   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(3, dims, THREAD);
 379   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 380   thread->set_vm_result(obj);
 381 JRT_END
 382 
 383 // multianewarray for 4 dimensions
 384 JRT_ENTRY(void, OptoRuntime::multianewarray4_C(Klass* elem_type, int len1, int len2, int len3, int len4, JavaThread *thread))
 385 #ifndef PRODUCT
 386   SharedRuntime::_multi4_ctr++;                // multianewarray for 1 dimension
 387 #endif
 388   assert(check_compiled_frame(thread), "incorrect caller");
 389   assert(elem_type->is_klass(), "not a class");
 390   jint dims[4];
 391   dims[0] = len1;
 392   dims[1] = len2;
 393   dims[2] = len3;
 394   dims[3] = len4;
 395   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(4, dims, THREAD);
 396   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 397   thread->set_vm_result(obj);
 398 JRT_END
 399 
 400 // multianewarray for 5 dimensions
 401 JRT_ENTRY(void, OptoRuntime::multianewarray5_C(Klass* elem_type, int len1, int len2, int len3, int len4, int len5, JavaThread *thread))
 402 #ifndef PRODUCT
 403   SharedRuntime::_multi5_ctr++;                // multianewarray for 1 dimension
 404 #endif
 405   assert(check_compiled_frame(thread), "incorrect caller");
 406   assert(elem_type->is_klass(), "not a class");
 407   jint dims[5];
 408   dims[0] = len1;
 409   dims[1] = len2;
 410   dims[2] = len3;
 411   dims[3] = len4;
 412   dims[4] = len5;
 413   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(5, dims, THREAD);
 414   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 415   thread->set_vm_result(obj);
 416 JRT_END
 417 
 418 JRT_ENTRY(void, OptoRuntime::multianewarrayN_C(Klass* elem_type, arrayOopDesc* dims, JavaThread *thread))
 419   assert(check_compiled_frame(thread), "incorrect caller");
 420   assert(elem_type->is_klass(), "not a class");
 421   assert(oop(dims)->is_typeArray(), "not an array");
 422 
 423   ResourceMark rm;
 424   jint len = dims->length();
 425   assert(len > 0, "Dimensions array should contain data");
 426   jint *j_dims = typeArrayOop(dims)->int_at_addr(0);
 427   jint *c_dims = NEW_RESOURCE_ARRAY(jint, len);
 428   Copy::conjoint_jints_atomic(j_dims, c_dims, len);
 429 
 430   oop obj = ArrayKlass::cast(elem_type)->multi_allocate(len, c_dims, THREAD);
 431   deoptimize_caller_frame(thread, HAS_PENDING_EXCEPTION);
 432   thread->set_vm_result(obj);
 433 JRT_END
 434 
 435 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notify_C(oopDesc* obj, JavaThread *thread))
 436 
 437   // Very few notify/notifyAll operations find any threads on the waitset, so
 438   // the dominant fast-path is to simply return.
 439   // Relatedly, it's critical that notify/notifyAll be fast in order to
 440   // reduce lock hold times.
 441   if (!SafepointSynchronize::is_synchronizing()) {
 442     if (ObjectSynchronizer::quick_notify(obj, thread, false)) {
 443       return;
 444     }
 445   }
 446 
 447   // This is the case the fast-path above isn't provisioned to handle.
 448   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 449   // (The fast-path is just a degenerate variant of the slow-path).
 450   // Perform the dreaded state transition and pass control into the slow-path.
 451   JRT_BLOCK;
 452   Handle h_obj(THREAD, obj);
 453   ObjectSynchronizer::notify(h_obj, CHECK);
 454   JRT_BLOCK_END;
 455 JRT_END
 456 
 457 JRT_BLOCK_ENTRY(void, OptoRuntime::monitor_notifyAll_C(oopDesc* obj, JavaThread *thread))
 458 
 459   if (!SafepointSynchronize::is_synchronizing() ) {
 460     if (ObjectSynchronizer::quick_notify(obj, thread, true)) {
 461       return;
 462     }
 463   }
 464 
 465   // This is the case the fast-path above isn't provisioned to handle.
 466   // The fast-path is designed to handle frequently arising cases in an efficient manner.
 467   // (The fast-path is just a degenerate variant of the slow-path).
 468   // Perform the dreaded state transition and pass control into the slow-path.
 469   JRT_BLOCK;
 470   Handle h_obj(THREAD, obj);
 471   ObjectSynchronizer::notifyall(h_obj, CHECK);
 472   JRT_BLOCK_END;
 473 JRT_END
 474 
 475 const TypeFunc *OptoRuntime::new_instance_Type() {
 476   // create input type (domain)
 477   const Type **fields = TypeTuple::fields(1);
 478   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 479   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 480 
 481   // create result type (range)
 482   fields = TypeTuple::fields(1);
 483   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 484 
 485   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 486 
 487   return TypeFunc::make(domain, range);
 488 }
 489 
 490 
 491 const TypeFunc *OptoRuntime::athrow_Type() {
 492   // create input type (domain)
 493   const Type **fields = TypeTuple::fields(1);
 494   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Klass to be allocated
 495   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 496 
 497   // create result type (range)
 498   fields = TypeTuple::fields(0);
 499 
 500   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 501 
 502   return TypeFunc::make(domain, range);
 503 }
 504 
 505 
 506 const TypeFunc *OptoRuntime::new_array_Type() {
 507   // create input type (domain)
 508   const Type **fields = TypeTuple::fields(2);
 509   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 510   fields[TypeFunc::Parms+1] = TypeInt::INT;       // array size
 511   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 512 
 513   // create result type (range)
 514   fields = TypeTuple::fields(1);
 515   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 516 
 517   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 518 
 519   return TypeFunc::make(domain, range);
 520 }
 521 
 522 const TypeFunc *OptoRuntime::multianewarray_Type(int ndim) {
 523   // create input type (domain)
 524   const int nargs = ndim + 1;
 525   const Type **fields = TypeTuple::fields(nargs);
 526   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 527   for( int i = 1; i < nargs; i++ )
 528     fields[TypeFunc::Parms + i] = TypeInt::INT;       // array size
 529   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+nargs, fields);
 530 
 531   // create result type (range)
 532   fields = TypeTuple::fields(1);
 533   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 534   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 535 
 536   return TypeFunc::make(domain, range);
 537 }
 538 
 539 const TypeFunc *OptoRuntime::multianewarray2_Type() {
 540   return multianewarray_Type(2);
 541 }
 542 
 543 const TypeFunc *OptoRuntime::multianewarray3_Type() {
 544   return multianewarray_Type(3);
 545 }
 546 
 547 const TypeFunc *OptoRuntime::multianewarray4_Type() {
 548   return multianewarray_Type(4);
 549 }
 550 
 551 const TypeFunc *OptoRuntime::multianewarray5_Type() {
 552   return multianewarray_Type(5);
 553 }
 554 
 555 const TypeFunc *OptoRuntime::multianewarrayN_Type() {
 556   // create input type (domain)
 557   const Type **fields = TypeTuple::fields(2);
 558   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;   // element klass
 559   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;   // array of dim sizes
 560   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 561 
 562   // create result type (range)
 563   fields = TypeTuple::fields(1);
 564   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL; // Returned oop
 565   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 566 
 567   return TypeFunc::make(domain, range);
 568 }
 569 
 570 const TypeFunc *OptoRuntime::g1_wb_pre_Type() {
 571   const Type **fields = TypeTuple::fields(2);
 572   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // original field value
 573   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL; // thread
 574   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 575 
 576   // create result type (range)
 577   fields = TypeTuple::fields(0);
 578   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 579 
 580   return TypeFunc::make(domain, range);
 581 }
 582 
 583 const TypeFunc *OptoRuntime::g1_wb_post_Type() {
 584 
 585   const Type **fields = TypeTuple::fields(2);
 586   fields[TypeFunc::Parms+0] = TypeRawPtr::NOTNULL;  // Card addr
 587   fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // thread
 588   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 589 
 590   // create result type (range)
 591   fields = TypeTuple::fields(0);
 592   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 593 
 594   return TypeFunc::make(domain, range);
 595 }
 596 
 597 const TypeFunc *OptoRuntime::uncommon_trap_Type() {
 598   // create input type (domain)
 599   const Type **fields = TypeTuple::fields(1);
 600   fields[TypeFunc::Parms+0] = TypeInt::INT; // trap_reason (deopt reason and action)
 601   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 602 
 603   // create result type (range)
 604   fields = TypeTuple::fields(0);
 605   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 606 
 607   return TypeFunc::make(domain, range);
 608 }
 609 
 610 //-----------------------------------------------------------------------------
 611 // Monitor Handling
 612 const TypeFunc *OptoRuntime::complete_monitor_enter_Type() {
 613   // create input type (domain)
 614   const Type **fields = TypeTuple::fields(2);
 615   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 616   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;   // Address of stack location for lock
 617   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
 618 
 619   // create result type (range)
 620   fields = TypeTuple::fields(0);
 621 
 622   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
 623 
 624   return TypeFunc::make(domain, range);
 625 }
 626 
 627 
 628 //-----------------------------------------------------------------------------
 629 const TypeFunc *OptoRuntime::complete_monitor_exit_Type() {
 630   // create input type (domain)
 631   const Type **fields = TypeTuple::fields(3);
 632   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 633   fields[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM;    // Address of stack location for lock - BasicLock
 634   fields[TypeFunc::Parms+2] = TypeRawPtr::BOTTOM;    // Thread pointer (Self)
 635   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+3, fields);
 636 
 637   // create result type (range)
 638   fields = TypeTuple::fields(0);
 639 
 640   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 641 
 642   return TypeFunc::make(domain, range);
 643 }
 644 
 645 const TypeFunc *OptoRuntime::monitor_notify_Type() {
 646   // create input type (domain)
 647   const Type **fields = TypeTuple::fields(1);
 648   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // Object to be Locked
 649   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
 650 
 651   // create result type (range)
 652   fields = TypeTuple::fields(0);
 653   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0, fields);
 654   return TypeFunc::make(domain, range);
 655 }
 656 
 657 const TypeFunc* OptoRuntime::flush_windows_Type() {
 658   // create input type (domain)
 659   const Type** fields = TypeTuple::fields(1);
 660   fields[TypeFunc::Parms+0] = NULL; // void
 661   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms, fields);
 662 
 663   // create result type
 664   fields = TypeTuple::fields(1);
 665   fields[TypeFunc::Parms+0] = NULL; // void
 666   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 667 
 668   return TypeFunc::make(domain, range);
 669 }
 670 
 671 const TypeFunc* OptoRuntime::l2f_Type() {
 672   // create input type (domain)
 673   const Type **fields = TypeTuple::fields(2);
 674   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 675   fields[TypeFunc::Parms+1] = Type::HALF;
 676   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 677 
 678   // create result type (range)
 679   fields = TypeTuple::fields(1);
 680   fields[TypeFunc::Parms+0] = Type::FLOAT;
 681   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 682 
 683   return TypeFunc::make(domain, range);
 684 }
 685 
 686 const TypeFunc* OptoRuntime::modf_Type() {
 687   const Type **fields = TypeTuple::fields(2);
 688   fields[TypeFunc::Parms+0] = Type::FLOAT;
 689   fields[TypeFunc::Parms+1] = Type::FLOAT;
 690   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 691 
 692   // create result type (range)
 693   fields = TypeTuple::fields(1);
 694   fields[TypeFunc::Parms+0] = Type::FLOAT;
 695 
 696   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
 697 
 698   return TypeFunc::make(domain, range);
 699 }
 700 
 701 const TypeFunc *OptoRuntime::Math_D_D_Type() {
 702   // create input type (domain)
 703   const Type **fields = TypeTuple::fields(2);
 704   // Symbol* name of class to be loaded
 705   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 706   fields[TypeFunc::Parms+1] = Type::HALF;
 707   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
 708 
 709   // create result type (range)
 710   fields = TypeTuple::fields(2);
 711   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 712   fields[TypeFunc::Parms+1] = Type::HALF;
 713   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 714 
 715   return TypeFunc::make(domain, range);
 716 }
 717 
 718 const TypeFunc* OptoRuntime::Math_DD_D_Type() {
 719   const Type **fields = TypeTuple::fields(4);
 720   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 721   fields[TypeFunc::Parms+1] = Type::HALF;
 722   fields[TypeFunc::Parms+2] = Type::DOUBLE;
 723   fields[TypeFunc::Parms+3] = Type::HALF;
 724   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+4, fields);
 725 
 726   // create result type (range)
 727   fields = TypeTuple::fields(2);
 728   fields[TypeFunc::Parms+0] = Type::DOUBLE;
 729   fields[TypeFunc::Parms+1] = Type::HALF;
 730   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 731 
 732   return TypeFunc::make(domain, range);
 733 }
 734 
 735 //-------------- currentTimeMillis, currentTimeNanos, etc
 736 
 737 const TypeFunc* OptoRuntime::void_long_Type() {
 738   // create input type (domain)
 739   const Type **fields = TypeTuple::fields(0);
 740   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+0, fields);
 741 
 742   // create result type (range)
 743   fields = TypeTuple::fields(2);
 744   fields[TypeFunc::Parms+0] = TypeLong::LONG;
 745   fields[TypeFunc::Parms+1] = Type::HALF;
 746   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+2, fields);
 747 
 748   return TypeFunc::make(domain, range);
 749 }
 750 
 751 // arraycopy stub variations:
 752 enum ArrayCopyType {
 753   ac_fast,                      // void(ptr, ptr, size_t)
 754   ac_checkcast,                 //  int(ptr, ptr, size_t, size_t, ptr)
 755   ac_slow,                      // void(ptr, int, ptr, int, int)
 756   ac_generic                    //  int(ptr, int, ptr, int, int)
 757 };
 758 
 759 static const TypeFunc* make_arraycopy_Type(ArrayCopyType act) {
 760   // create input type (domain)
 761   int num_args      = (act == ac_fast ? 3 : 5);
 762   int num_size_args = (act == ac_fast ? 1 : act == ac_checkcast ? 2 : 0);
 763   int argcnt = num_args;
 764   LP64_ONLY(argcnt += num_size_args); // halfwords for lengths
 765   const Type** fields = TypeTuple::fields(argcnt);
 766   int argp = TypeFunc::Parms;
 767   fields[argp++] = TypePtr::NOTNULL;    // src
 768   if (num_size_args == 0) {
 769     fields[argp++] = TypeInt::INT;      // src_pos
 770   }
 771   fields[argp++] = TypePtr::NOTNULL;    // dest
 772   if (num_size_args == 0) {
 773     fields[argp++] = TypeInt::INT;      // dest_pos
 774     fields[argp++] = TypeInt::INT;      // length
 775   }
 776   while (num_size_args-- > 0) {
 777     fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 778     LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 779   }
 780   if (act == ac_checkcast) {
 781     fields[argp++] = TypePtr::NOTNULL;  // super_klass
 782   }
 783   assert(argp == TypeFunc::Parms+argcnt, "correct decoding of act");
 784   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 785 
 786   // create result type if needed
 787   int retcnt = (act == ac_checkcast || act == ac_generic ? 1 : 0);
 788   fields = TypeTuple::fields(1);
 789   if (retcnt == 0)
 790     fields[TypeFunc::Parms+0] = NULL; // void
 791   else
 792     fields[TypeFunc::Parms+0] = TypeInt::INT; // status result, if needed
 793   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+retcnt, fields);
 794   return TypeFunc::make(domain, range);
 795 }
 796 
 797 const TypeFunc* OptoRuntime::fast_arraycopy_Type() {
 798   // This signature is simple:  Two base pointers and a size_t.
 799   return make_arraycopy_Type(ac_fast);
 800 }
 801 
 802 const TypeFunc* OptoRuntime::checkcast_arraycopy_Type() {
 803   // An extension of fast_arraycopy_Type which adds type checking.
 804   return make_arraycopy_Type(ac_checkcast);
 805 }
 806 
 807 const TypeFunc* OptoRuntime::slow_arraycopy_Type() {
 808   // This signature is exactly the same as System.arraycopy.
 809   // There are no intptr_t (int/long) arguments.
 810   return make_arraycopy_Type(ac_slow);
 811 }
 812 
 813 const TypeFunc* OptoRuntime::generic_arraycopy_Type() {
 814   // This signature is like System.arraycopy, except that it returns status.
 815   return make_arraycopy_Type(ac_generic);
 816 }
 817 
 818 
 819 const TypeFunc* OptoRuntime::array_fill_Type() {
 820   const Type** fields;
 821   int argp = TypeFunc::Parms;
 822   // create input type (domain): pointer, int, size_t
 823   fields = TypeTuple::fields(3 LP64_ONLY( + 1));
 824   fields[argp++] = TypePtr::NOTNULL;
 825   fields[argp++] = TypeInt::INT;
 826   fields[argp++] = TypeX_X;               // size in whatevers (size_t)
 827   LP64_ONLY(fields[argp++] = Type::HALF); // other half of long length
 828   const TypeTuple *domain = TypeTuple::make(argp, fields);
 829 
 830   // create result type
 831   fields = TypeTuple::fields(1);
 832   fields[TypeFunc::Parms+0] = NULL; // void
 833   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
 834 
 835   return TypeFunc::make(domain, range);
 836 }
 837 
 838 // for aescrypt encrypt/decrypt operations, just three pointers returning void (length is constant)
 839 const TypeFunc* OptoRuntime::aescrypt_block_Type() {
 840   // create input type (domain)
 841   int num_args      = 3;
 842   if (Matcher::pass_original_key_for_aes()) {
 843     num_args = 4;
 844   }
 845   int argcnt = num_args;
 846   const Type** fields = TypeTuple::fields(argcnt);
 847   int argp = TypeFunc::Parms;
 848   fields[argp++] = TypePtr::NOTNULL;    // src
 849   fields[argp++] = TypePtr::NOTNULL;    // dest
 850   fields[argp++] = TypePtr::NOTNULL;    // k array
 851   if (Matcher::pass_original_key_for_aes()) {
 852     fields[argp++] = TypePtr::NOTNULL;    // original k array
 853   }
 854   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 855   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 856 
 857   // no result type needed
 858   fields = TypeTuple::fields(1);
 859   fields[TypeFunc::Parms+0] = NULL; // void
 860   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
 861   return TypeFunc::make(domain, range);
 862 }
 863 
 864 /**
 865  * int updateBytesCRC32(int crc, byte* b, int len)
 866  */
 867 const TypeFunc* OptoRuntime::updateBytesCRC32_Type() {
 868   // create input type (domain)
 869   int num_args      = 3;
 870   int argcnt = num_args;
 871   const Type** fields = TypeTuple::fields(argcnt);
 872   int argp = TypeFunc::Parms;
 873   fields[argp++] = TypeInt::INT;        // crc
 874   fields[argp++] = TypePtr::NOTNULL;    // src
 875   fields[argp++] = TypeInt::INT;        // len
 876   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 877   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 878 
 879   // result type needed
 880   fields = TypeTuple::fields(1);
 881   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 882   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 883   return TypeFunc::make(domain, range);
 884 }
 885 
 886 /**
 887  * int updateBytesCRC32C(int crc, byte* buf, int len, int* table)
 888  */
 889 const TypeFunc* OptoRuntime::updateBytesCRC32C_Type() {
 890   // create input type (domain)
 891   int num_args      = 4;
 892   int argcnt = num_args;
 893   const Type** fields = TypeTuple::fields(argcnt);
 894   int argp = TypeFunc::Parms;
 895   fields[argp++] = TypeInt::INT;        // crc
 896   fields[argp++] = TypePtr::NOTNULL;    // buf
 897   fields[argp++] = TypeInt::INT;        // len
 898   fields[argp++] = TypePtr::NOTNULL;    // table
 899   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 900   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 901 
 902   // result type needed
 903   fields = TypeTuple::fields(1);
 904   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 905   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 906   return TypeFunc::make(domain, range);
 907 }
 908 
 909 /**
 910 *  int updateBytesAdler32(int adler, bytes* b, int off, int len)
 911 */
 912 const TypeFunc* OptoRuntime::updateBytesAdler32_Type() {
 913   // create input type (domain)
 914   int num_args      = 3;
 915   int argcnt = num_args;
 916   const Type** fields = TypeTuple::fields(argcnt);
 917   int argp = TypeFunc::Parms;
 918   fields[argp++] = TypeInt::INT;        // crc
 919   fields[argp++] = TypePtr::NOTNULL;    // src + offset
 920   fields[argp++] = TypeInt::INT;        // len
 921   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 922   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 923 
 924   // result type needed
 925   fields = TypeTuple::fields(1);
 926   fields[TypeFunc::Parms+0] = TypeInt::INT; // crc result
 927   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 928   return TypeFunc::make(domain, range);
 929 }
 930 
 931 // for cipherBlockChaining calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 932 const TypeFunc* OptoRuntime::cipherBlockChaining_aescrypt_Type() {
 933   // create input type (domain)
 934   int num_args      = 5;
 935   if (Matcher::pass_original_key_for_aes()) {
 936     num_args = 6;
 937   }
 938   int argcnt = num_args;
 939   const Type** fields = TypeTuple::fields(argcnt);
 940   int argp = TypeFunc::Parms;
 941   fields[argp++] = TypePtr::NOTNULL;    // src
 942   fields[argp++] = TypePtr::NOTNULL;    // dest
 943   fields[argp++] = TypePtr::NOTNULL;    // k array
 944   fields[argp++] = TypePtr::NOTNULL;    // r array
 945   fields[argp++] = TypeInt::INT;        // src len
 946   if (Matcher::pass_original_key_for_aes()) {
 947     fields[argp++] = TypePtr::NOTNULL;    // original k array
 948   }
 949   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
 950   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
 951 
 952   // returning cipher len (int)
 953   fields = TypeTuple::fields(1);
 954   fields[TypeFunc::Parms+0] = TypeInt::INT;
 955   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
 956   return TypeFunc::make(domain, range);
 957 }
 958 
 959 //for counterMode calls of aescrypt encrypt/decrypt, four pointers and a length, returning int
 960 const TypeFunc* OptoRuntime::counterMode_aescrypt_Type() {
 961   // create input type (domain)
 962   int num_args = 7;
 963   if (Matcher::pass_original_key_for_aes()) {
 964     num_args = 8;
 965   }
 966   int argcnt = num_args;
 967   const Type** fields = TypeTuple::fields(argcnt);
 968   int argp = TypeFunc::Parms;
 969   fields[argp++] = TypePtr::NOTNULL; // src
 970   fields[argp++] = TypePtr::NOTNULL; // dest
 971   fields[argp++] = TypePtr::NOTNULL; // k array
 972   fields[argp++] = TypePtr::NOTNULL; // counter array
 973   fields[argp++] = TypeInt::INT; // src len
 974   fields[argp++] = TypePtr::NOTNULL; // saved_encCounter
 975   fields[argp++] = TypePtr::NOTNULL; // saved used addr
 976   if (Matcher::pass_original_key_for_aes()) {
 977     fields[argp++] = TypePtr::NOTNULL; // original k array
 978   }
 979   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
 980   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
 981   // returning cipher len (int)
 982   fields = TypeTuple::fields(1);
 983   fields[TypeFunc::Parms + 0] = TypeInt::INT;
 984   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
 985   return TypeFunc::make(domain, range);
 986 }
 987 
 988 /*
 989  * void implCompress(byte[] buf, int ofs)
 990  */
 991 const TypeFunc* OptoRuntime::sha_implCompress_Type() {
 992   // create input type (domain)
 993   int num_args = 2;
 994   int argcnt = num_args;
 995   const Type** fields = TypeTuple::fields(argcnt);
 996   int argp = TypeFunc::Parms;
 997   fields[argp++] = TypePtr::NOTNULL; // buf
 998   fields[argp++] = TypePtr::NOTNULL; // state
 999   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1000   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1001 
1002   // no result type needed
1003   fields = TypeTuple::fields(1);
1004   fields[TypeFunc::Parms+0] = NULL; // void
1005   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1006   return TypeFunc::make(domain, range);
1007 }
1008 
1009 /*
1010  * int implCompressMultiBlock(byte[] b, int ofs, int limit)
1011  */
1012 const TypeFunc* OptoRuntime::digestBase_implCompressMB_Type() {
1013   // create input type (domain)
1014   int num_args = 4;
1015   int argcnt = num_args;
1016   const Type** fields = TypeTuple::fields(argcnt);
1017   int argp = TypeFunc::Parms;
1018   fields[argp++] = TypePtr::NOTNULL; // buf
1019   fields[argp++] = TypePtr::NOTNULL; // state
1020   fields[argp++] = TypeInt::INT;     // ofs
1021   fields[argp++] = TypeInt::INT;     // limit
1022   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1023   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1024 
1025   // returning ofs (int)
1026   fields = TypeTuple::fields(1);
1027   fields[TypeFunc::Parms+0] = TypeInt::INT; // ofs
1028   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1029   return TypeFunc::make(domain, range);
1030 }
1031 
1032 const TypeFunc* OptoRuntime::multiplyToLen_Type() {
1033   // create input type (domain)
1034   int num_args      = 6;
1035   int argcnt = num_args;
1036   const Type** fields = TypeTuple::fields(argcnt);
1037   int argp = TypeFunc::Parms;
1038   fields[argp++] = TypePtr::NOTNULL;    // x
1039   fields[argp++] = TypeInt::INT;        // xlen
1040   fields[argp++] = TypePtr::NOTNULL;    // y
1041   fields[argp++] = TypeInt::INT;        // ylen
1042   fields[argp++] = TypePtr::NOTNULL;    // z
1043   fields[argp++] = TypeInt::INT;        // zlen
1044   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1045   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1046 
1047   // no result type needed
1048   fields = TypeTuple::fields(1);
1049   fields[TypeFunc::Parms+0] = NULL;
1050   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1051   return TypeFunc::make(domain, range);
1052 }
1053 
1054 const TypeFunc* OptoRuntime::squareToLen_Type() {
1055   // create input type (domain)
1056   int num_args      = 4;
1057   int argcnt = num_args;
1058   const Type** fields = TypeTuple::fields(argcnt);
1059   int argp = TypeFunc::Parms;
1060   fields[argp++] = TypePtr::NOTNULL;    // x
1061   fields[argp++] = TypeInt::INT;        // len
1062   fields[argp++] = TypePtr::NOTNULL;    // z
1063   fields[argp++] = TypeInt::INT;        // zlen
1064   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1065   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1066 
1067   // no result type needed
1068   fields = TypeTuple::fields(1);
1069   fields[TypeFunc::Parms+0] = NULL;
1070   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1071   return TypeFunc::make(domain, range);
1072 }
1073 
1074 // for mulAdd calls, 2 pointers and 3 ints, returning int
1075 const TypeFunc* OptoRuntime::mulAdd_Type() {
1076   // create input type (domain)
1077   int num_args      = 5;
1078   int argcnt = num_args;
1079   const Type** fields = TypeTuple::fields(argcnt);
1080   int argp = TypeFunc::Parms;
1081   fields[argp++] = TypePtr::NOTNULL;    // out
1082   fields[argp++] = TypePtr::NOTNULL;    // in
1083   fields[argp++] = TypeInt::INT;        // offset
1084   fields[argp++] = TypeInt::INT;        // len
1085   fields[argp++] = TypeInt::INT;        // k
1086   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1087   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1088 
1089   // returning carry (int)
1090   fields = TypeTuple::fields(1);
1091   fields[TypeFunc::Parms+0] = TypeInt::INT;
1092   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms+1, fields);
1093   return TypeFunc::make(domain, range);
1094 }
1095 
1096 const TypeFunc* OptoRuntime::montgomeryMultiply_Type() {
1097   // create input type (domain)
1098   int num_args      = 7;
1099   int argcnt = num_args;
1100   const Type** fields = TypeTuple::fields(argcnt);
1101   int argp = TypeFunc::Parms;
1102   fields[argp++] = TypePtr::NOTNULL;    // a
1103   fields[argp++] = TypePtr::NOTNULL;    // b
1104   fields[argp++] = TypePtr::NOTNULL;    // n
1105   fields[argp++] = TypeInt::INT;        // len
1106   fields[argp++] = TypeLong::LONG;      // inv
1107   fields[argp++] = Type::HALF;
1108   fields[argp++] = TypePtr::NOTNULL;    // result
1109   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1110   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1111 
1112   // result type needed
1113   fields = TypeTuple::fields(1);
1114   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1115 
1116   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1117   return TypeFunc::make(domain, range);
1118 }
1119 
1120 const TypeFunc* OptoRuntime::montgomerySquare_Type() {
1121   // create input type (domain)
1122   int num_args      = 6;
1123   int argcnt = num_args;
1124   const Type** fields = TypeTuple::fields(argcnt);
1125   int argp = TypeFunc::Parms;
1126   fields[argp++] = TypePtr::NOTNULL;    // a
1127   fields[argp++] = TypePtr::NOTNULL;    // n
1128   fields[argp++] = TypeInt::INT;        // len
1129   fields[argp++] = TypeLong::LONG;      // inv
1130   fields[argp++] = Type::HALF;
1131   fields[argp++] = TypePtr::NOTNULL;    // result
1132   assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1133   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1134 
1135   // result type needed
1136   fields = TypeTuple::fields(1);
1137   fields[TypeFunc::Parms+0] = TypePtr::NOTNULL;
1138 
1139   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1140   return TypeFunc::make(domain, range);
1141 }
1142 
1143 const TypeFunc* OptoRuntime::vectorizedMismatch_Type() {
1144   // create input type (domain)
1145   int num_args = 4;
1146   int argcnt = num_args;
1147   const Type** fields = TypeTuple::fields(argcnt);
1148   int argp = TypeFunc::Parms;
1149   fields[argp++] = TypePtr::NOTNULL;    // obja
1150   fields[argp++] = TypePtr::NOTNULL;    // objb
1151   fields[argp++] = TypeInt::INT;        // length, number of elements
1152   fields[argp++] = TypeInt::INT;        // log2scale, element size
1153   assert(argp == TypeFunc::Parms + argcnt, "correct decoding");
1154   const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms + argcnt, fields);
1155 
1156   //return mismatch index (int)
1157   fields = TypeTuple::fields(1);
1158   fields[TypeFunc::Parms + 0] = TypeInt::INT;
1159   const TypeTuple* range = TypeTuple::make(TypeFunc::Parms + 1, fields);
1160   return TypeFunc::make(domain, range);
1161 }
1162 
1163 // GHASH block processing
1164 const TypeFunc* OptoRuntime::ghash_processBlocks_Type() {
1165     int argcnt = 4;
1166 
1167     const Type** fields = TypeTuple::fields(argcnt);
1168     int argp = TypeFunc::Parms;
1169     fields[argp++] = TypePtr::NOTNULL;    // state
1170     fields[argp++] = TypePtr::NOTNULL;    // subkeyH
1171     fields[argp++] = TypePtr::NOTNULL;    // data
1172     fields[argp++] = TypeInt::INT;        // blocks
1173     assert(argp == TypeFunc::Parms+argcnt, "correct decoding");
1174     const TypeTuple* domain = TypeTuple::make(TypeFunc::Parms+argcnt, fields);
1175 
1176     // result type needed
1177     fields = TypeTuple::fields(1);
1178     fields[TypeFunc::Parms+0] = NULL; // void
1179     const TypeTuple* range = TypeTuple::make(TypeFunc::Parms, fields);
1180     return TypeFunc::make(domain, range);
1181 }
1182 
1183 //------------- Interpreter state access for on stack replacement
1184 const TypeFunc* OptoRuntime::osr_end_Type() {
1185   // create input type (domain)
1186   const Type **fields = TypeTuple::fields(1);
1187   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // OSR temp buf
1188   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1, fields);
1189 
1190   // create result type
1191   fields = TypeTuple::fields(1);
1192   // fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // locked oop
1193   fields[TypeFunc::Parms+0] = NULL; // void
1194   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1195   return TypeFunc::make(domain, range);
1196 }
1197 
1198 //-------------- methodData update helpers
1199 
1200 const TypeFunc* OptoRuntime::profile_receiver_type_Type() {
1201   // create input type (domain)
1202   const Type **fields = TypeTuple::fields(2);
1203   fields[TypeFunc::Parms+0] = TypeAryPtr::NOTNULL;    // methodData pointer
1204   fields[TypeFunc::Parms+1] = TypeInstPtr::BOTTOM;    // receiver oop
1205   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2, fields);
1206 
1207   // create result type
1208   fields = TypeTuple::fields(1);
1209   fields[TypeFunc::Parms+0] = NULL; // void
1210   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms, fields);
1211   return TypeFunc::make(domain, range);
1212 }
1213 
1214 JRT_LEAF(void, OptoRuntime::profile_receiver_type_C(DataLayout* data, oopDesc* receiver))
1215   if (receiver == NULL) return;
1216   Klass* receiver_klass = receiver->klass();
1217 
1218   intptr_t* mdp = ((intptr_t*)(data)) + DataLayout::header_size_in_cells();
1219   int empty_row = -1;           // free row, if any is encountered
1220 
1221   // ReceiverTypeData* vc = new ReceiverTypeData(mdp);
1222   for (uint row = 0; row < ReceiverTypeData::row_limit(); row++) {
1223     // if (vc->receiver(row) == receiver_klass)
1224     int receiver_off = ReceiverTypeData::receiver_cell_index(row);
1225     intptr_t row_recv = *(mdp + receiver_off);
1226     if (row_recv == (intptr_t) receiver_klass) {
1227       // vc->set_receiver_count(row, vc->receiver_count(row) + DataLayout::counter_increment);
1228       int count_off = ReceiverTypeData::receiver_count_cell_index(row);
1229       *(mdp + count_off) += DataLayout::counter_increment;
1230       return;
1231     } else if (row_recv == 0) {
1232       // else if (vc->receiver(row) == NULL)
1233       empty_row = (int) row;
1234     }
1235   }
1236 
1237   if (empty_row != -1) {
1238     int receiver_off = ReceiverTypeData::receiver_cell_index(empty_row);
1239     // vc->set_receiver(empty_row, receiver_klass);
1240     *(mdp + receiver_off) = (intptr_t) receiver_klass;
1241     // vc->set_receiver_count(empty_row, DataLayout::counter_increment);
1242     int count_off = ReceiverTypeData::receiver_count_cell_index(empty_row);
1243     *(mdp + count_off) = DataLayout::counter_increment;
1244   } else {
1245     // Receiver did not match any saved receiver and there is no empty row for it.
1246     // Increment total counter to indicate polymorphic case.
1247     intptr_t* count_p = (intptr_t*)(((uint8_t*)(data)) + in_bytes(CounterData::count_offset()));
1248     *count_p += DataLayout::counter_increment;
1249   }
1250 JRT_END
1251 
1252 //-------------------------------------------------------------------------------------
1253 // register policy
1254 
1255 bool OptoRuntime::is_callee_saved_register(MachRegisterNumbers reg) {
1256   assert(reg >= 0 && reg < _last_Mach_Reg, "must be a machine register");
1257   switch (register_save_policy[reg]) {
1258     case 'C': return false; //SOC
1259     case 'E': return true ; //SOE
1260     case 'N': return false; //NS
1261     case 'A': return false; //AS
1262   }
1263   ShouldNotReachHere();
1264   return false;
1265 }
1266 
1267 //-----------------------------------------------------------------------
1268 // Exceptions
1269 //
1270 
1271 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg);
1272 
1273 // The method is an entry that is always called by a C++ method not
1274 // directly from compiled code. Compiled code will call the C++ method following.
1275 // We can't allow async exception to be installed during  exception processing.
1276 JRT_ENTRY_NO_ASYNC(address, OptoRuntime::handle_exception_C_helper(JavaThread* thread, nmethod* &nm))
1277 
1278   // Do not confuse exception_oop with pending_exception. The exception_oop
1279   // is only used to pass arguments into the method. Not for general
1280   // exception handling.  DO NOT CHANGE IT to use pending_exception, since
1281   // the runtime stubs checks this on exit.
1282   assert(thread->exception_oop() != NULL, "exception oop is found");
1283   address handler_address = NULL;
1284 
1285   Handle exception(thread, thread->exception_oop());
1286   address pc = thread->exception_pc();
1287 
1288   // Clear out the exception oop and pc since looking up an
1289   // exception handler can cause class loading, which might throw an
1290   // exception and those fields are expected to be clear during
1291   // normal bytecode execution.
1292   thread->clear_exception_oop_and_pc();
1293 
1294   if (log_is_enabled(Info, exceptions)) {
1295     ResourceMark rm;
1296     trace_exception(LogHandle(exceptions)::info_stream(), exception(), pc, "");
1297   }
1298 
1299   // for AbortVMOnException flag
1300   Exceptions::debug_check_abort(exception);
1301 
1302 #ifdef ASSERT
1303   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1304     // should throw an exception here
1305     ShouldNotReachHere();
1306   }
1307 #endif
1308 
1309   // new exception handling: this method is entered only from adapters
1310   // exceptions from compiled java methods are handled in compiled code
1311   // using rethrow node
1312 
1313   nm = CodeCache::find_nmethod(pc);
1314   assert(nm != NULL, "No NMethod found");
1315   if (nm->is_native_method()) {
1316     fatal("Native method should not have path to exception handling");
1317   } else {
1318     // we are switching to old paradigm: search for exception handler in caller_frame
1319     // instead in exception handler of caller_frame.sender()
1320 
1321     if (JvmtiExport::can_post_on_exceptions()) {
1322       // "Full-speed catching" is not necessary here,
1323       // since we're notifying the VM on every catch.
1324       // Force deoptimization and the rest of the lookup
1325       // will be fine.
1326       deoptimize_caller_frame(thread);
1327     }
1328 
1329     // Check the stack guard pages.  If enabled, look for handler in this frame;
1330     // otherwise, forcibly unwind the frame.
1331     //
1332     // 4826555: use default current sp for reguard_stack instead of &nm: it's more accurate.
1333     bool force_unwind = !thread->reguard_stack();
1334     bool deopting = false;
1335     if (nm->is_deopt_pc(pc)) {
1336       deopting = true;
1337       RegisterMap map(thread, false);
1338       frame deoptee = thread->last_frame().sender(&map);
1339       assert(deoptee.is_deoptimized_frame(), "must be deopted");
1340       // Adjust the pc back to the original throwing pc
1341       pc = deoptee.pc();
1342     }
1343 
1344     // If we are forcing an unwind because of stack overflow then deopt is
1345     // irrelevant since we are throwing the frame away anyway.
1346 
1347     if (deopting && !force_unwind) {
1348       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1349     } else {
1350 
1351       handler_address =
1352         force_unwind ? NULL : nm->handler_for_exception_and_pc(exception, pc);
1353 
1354       if (handler_address == NULL) {
1355         Handle original_exception(thread, exception());
1356         handler_address = SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true);
1357         assert (handler_address != NULL, "must have compiled handler");
1358         // Update the exception cache only when the unwind was not forced
1359         // and there didn't happen another exception during the computation of the
1360         // compiled exception handler.
1361         if (!force_unwind && original_exception() == exception()) {
1362           nm->add_handler_for_exception_and_pc(exception,pc,handler_address);
1363         }
1364       } else {
1365         assert(handler_address == SharedRuntime::compute_compiled_exc_handler(nm, pc, exception, force_unwind, true), "Must be the same");
1366       }
1367     }
1368 
1369     thread->set_exception_pc(pc);
1370     thread->set_exception_handler_pc(handler_address);
1371 
1372     // Check if the exception PC is a MethodHandle call site.
1373     thread->set_is_method_handle_return(nm->is_method_handle_return(pc));
1374   }
1375 
1376   // Restore correct return pc.  Was saved above.
1377   thread->set_exception_oop(exception());
1378   return handler_address;
1379 
1380 JRT_END
1381 
1382 // We are entering here from exception_blob
1383 // If there is a compiled exception handler in this method, we will continue there;
1384 // otherwise we will unwind the stack and continue at the caller of top frame method
1385 // Note we enter without the usual JRT wrapper. We will call a helper routine that
1386 // will do the normal VM entry. We do it this way so that we can see if the nmethod
1387 // we looked up the handler for has been deoptimized in the meantime. If it has been
1388 // we must not use the handler and instead return the deopt blob.
1389 address OptoRuntime::handle_exception_C(JavaThread* thread) {
1390 //
1391 // We are in Java not VM and in debug mode we have a NoHandleMark
1392 //
1393 #ifndef PRODUCT
1394   SharedRuntime::_find_handler_ctr++;          // find exception handler
1395 #endif
1396   debug_only(NoHandleMark __hm;)
1397   nmethod* nm = NULL;
1398   address handler_address = NULL;
1399   {
1400     // Enter the VM
1401 
1402     ResetNoHandleMark rnhm;
1403     handler_address = handle_exception_C_helper(thread, nm);
1404   }
1405 
1406   // Back in java: Use no oops, DON'T safepoint
1407 
1408   // Now check to see if the handler we are returning is in a now
1409   // deoptimized frame
1410 
1411   if (nm != NULL) {
1412     RegisterMap map(thread, false);
1413     frame caller = thread->last_frame().sender(&map);
1414 #ifdef ASSERT
1415     assert(caller.is_compiled_frame(), "must be");
1416 #endif // ASSERT
1417     if (caller.is_deoptimized_frame()) {
1418       handler_address = SharedRuntime::deopt_blob()->unpack_with_exception();
1419     }
1420   }
1421   return handler_address;
1422 }
1423 
1424 //------------------------------rethrow----------------------------------------
1425 // We get here after compiled code has executed a 'RethrowNode'.  The callee
1426 // is either throwing or rethrowing an exception.  The callee-save registers
1427 // have been restored, synchronized objects have been unlocked and the callee
1428 // stack frame has been removed.  The return address was passed in.
1429 // Exception oop is passed as the 1st argument.  This routine is then called
1430 // from the stub.  On exit, we know where to jump in the caller's code.
1431 // After this C code exits, the stub will pop his frame and end in a jump
1432 // (instead of a return).  We enter the caller's default handler.
1433 //
1434 // This must be JRT_LEAF:
1435 //     - caller will not change its state as we cannot block on exit,
1436 //       therefore raw_exception_handler_for_return_address is all it takes
1437 //       to handle deoptimized blobs
1438 //
1439 // However, there needs to be a safepoint check in the middle!  So compiled
1440 // safepoints are completely watertight.
1441 //
1442 // Thus, it cannot be a leaf since it contains the NoGCVerifier.
1443 //
1444 // *THIS IS NOT RECOMMENDED PROGRAMMING STYLE*
1445 //
1446 address OptoRuntime::rethrow_C(oopDesc* exception, JavaThread* thread, address ret_pc) {
1447 #ifndef PRODUCT
1448   SharedRuntime::_rethrow_ctr++;               // count rethrows
1449 #endif
1450   assert (exception != NULL, "should have thrown a NULLPointerException");
1451 #ifdef ASSERT
1452   if (!(exception->is_a(SystemDictionary::Throwable_klass()))) {
1453     // should throw an exception here
1454     ShouldNotReachHere();
1455   }
1456 #endif
1457 
1458   thread->set_vm_result(exception);
1459   // Frame not compiled (handles deoptimization blob)
1460   return SharedRuntime::raw_exception_handler_for_return_address(thread, ret_pc);
1461 }
1462 
1463 
1464 const TypeFunc *OptoRuntime::rethrow_Type() {
1465   // create input type (domain)
1466   const Type **fields = TypeTuple::fields(1);
1467   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1468   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1469 
1470   // create result type (range)
1471   fields = TypeTuple::fields(1);
1472   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL; // Exception oop
1473   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+1, fields);
1474 
1475   return TypeFunc::make(domain, range);
1476 }
1477 
1478 
1479 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread, bool doit) {
1480   // Deoptimize the caller before continuing, as the compiled
1481   // exception handler table may not be valid.
1482   if (!StressCompiledExceptionHandlers && doit) {
1483     deoptimize_caller_frame(thread);
1484   }
1485 }
1486 
1487 void OptoRuntime::deoptimize_caller_frame(JavaThread *thread) {
1488   // Called from within the owner thread, so no need for safepoint
1489   RegisterMap reg_map(thread);
1490   frame stub_frame = thread->last_frame();
1491   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1492   frame caller_frame = stub_frame.sender(&reg_map);
1493 
1494   // Deoptimize the caller frame.
1495   Deoptimization::deoptimize_frame(thread, caller_frame.id());
1496 }
1497 
1498 
1499 bool OptoRuntime::is_deoptimized_caller_frame(JavaThread *thread) {
1500   // Called from within the owner thread, so no need for safepoint
1501   RegisterMap reg_map(thread);
1502   frame stub_frame = thread->last_frame();
1503   assert(stub_frame.is_runtime_frame() || exception_blob()->contains(stub_frame.pc()), "sanity check");
1504   frame caller_frame = stub_frame.sender(&reg_map);
1505   return caller_frame.is_deoptimized_frame();
1506 }
1507 
1508 
1509 const TypeFunc *OptoRuntime::register_finalizer_Type() {
1510   // create input type (domain)
1511   const Type **fields = TypeTuple::fields(1);
1512   fields[TypeFunc::Parms+0] = TypeInstPtr::NOTNULL;  // oop;          Receiver
1513   // // The JavaThread* is passed to each routine as the last argument
1514   // fields[TypeFunc::Parms+1] = TypeRawPtr::NOTNULL;  // JavaThread *; Executing thread
1515   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+1,fields);
1516 
1517   // create result type (range)
1518   fields = TypeTuple::fields(0);
1519 
1520   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1521 
1522   return TypeFunc::make(domain, range);
1523 }
1524 
1525 
1526 //-----------------------------------------------------------------------------
1527 // Dtrace support.  entry and exit probes have the same signature
1528 const TypeFunc *OptoRuntime::dtrace_method_entry_exit_Type() {
1529   // create input type (domain)
1530   const Type **fields = TypeTuple::fields(2);
1531   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1532   fields[TypeFunc::Parms+1] = TypeMetadataPtr::BOTTOM;  // Method*;    Method we are entering
1533   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1534 
1535   // create result type (range)
1536   fields = TypeTuple::fields(0);
1537 
1538   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1539 
1540   return TypeFunc::make(domain, range);
1541 }
1542 
1543 const TypeFunc *OptoRuntime::dtrace_object_alloc_Type() {
1544   // create input type (domain)
1545   const Type **fields = TypeTuple::fields(2);
1546   fields[TypeFunc::Parms+0] = TypeRawPtr::BOTTOM; // Thread-local storage
1547   fields[TypeFunc::Parms+1] = TypeInstPtr::NOTNULL;  // oop;    newly allocated object
1548 
1549   const TypeTuple *domain = TypeTuple::make(TypeFunc::Parms+2,fields);
1550 
1551   // create result type (range)
1552   fields = TypeTuple::fields(0);
1553 
1554   const TypeTuple *range = TypeTuple::make(TypeFunc::Parms+0,fields);
1555 
1556   return TypeFunc::make(domain, range);
1557 }
1558 
1559 
1560 JRT_ENTRY_NO_ASYNC(void, OptoRuntime::register_finalizer(oopDesc* obj, JavaThread* thread))
1561   assert(obj->is_oop(), "must be a valid oop");
1562   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1563   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1564 JRT_END
1565 
1566 //-----------------------------------------------------------------------------
1567 
1568 NamedCounter * volatile OptoRuntime::_named_counters = NULL;
1569 
1570 //
1571 // dump the collected NamedCounters.
1572 //
1573 void OptoRuntime::print_named_counters() {
1574   int total_lock_count = 0;
1575   int eliminated_lock_count = 0;
1576 
1577   NamedCounter* c = _named_counters;
1578   while (c) {
1579     if (c->tag() == NamedCounter::LockCounter || c->tag() == NamedCounter::EliminatedLockCounter) {
1580       int count = c->count();
1581       if (count > 0) {
1582         bool eliminated = c->tag() == NamedCounter::EliminatedLockCounter;
1583         if (Verbose) {
1584           tty->print_cr("%d %s%s", count, c->name(), eliminated ? " (eliminated)" : "");
1585         }
1586         total_lock_count += count;
1587         if (eliminated) {
1588           eliminated_lock_count += count;
1589         }
1590       }
1591     } else if (c->tag() == NamedCounter::BiasedLockingCounter) {
1592       BiasedLockingCounters* blc = ((BiasedLockingNamedCounter*)c)->counters();
1593       if (blc->nonzero()) {
1594         tty->print_cr("%s", c->name());
1595         blc->print_on(tty);
1596       }
1597 #if INCLUDE_RTM_OPT
1598     } else if (c->tag() == NamedCounter::RTMLockingCounter) {
1599       RTMLockingCounters* rlc = ((RTMLockingNamedCounter*)c)->counters();
1600       if (rlc->nonzero()) {
1601         tty->print_cr("%s", c->name());
1602         rlc->print_on(tty);
1603       }
1604 #endif
1605     }
1606     c = c->next();
1607   }
1608   if (total_lock_count > 0) {
1609     tty->print_cr("dynamic locks: %d", total_lock_count);
1610     if (eliminated_lock_count) {
1611       tty->print_cr("eliminated locks: %d (%d%%)", eliminated_lock_count,
1612                     (int)(eliminated_lock_count * 100.0 / total_lock_count));
1613     }
1614   }
1615 }
1616 
1617 //
1618 //  Allocate a new NamedCounter.  The JVMState is used to generate the
1619 //  name which consists of method@line for the inlining tree.
1620 //
1621 
1622 NamedCounter* OptoRuntime::new_named_counter(JVMState* youngest_jvms, NamedCounter::CounterTag tag) {
1623   int max_depth = youngest_jvms->depth();
1624 
1625   // Visit scopes from youngest to oldest.
1626   bool first = true;
1627   stringStream st;
1628   for (int depth = max_depth; depth >= 1; depth--) {
1629     JVMState* jvms = youngest_jvms->of_depth(depth);
1630     ciMethod* m = jvms->has_method() ? jvms->method() : NULL;
1631     if (!first) {
1632       st.print(" ");
1633     } else {
1634       first = false;
1635     }
1636     int bci = jvms->bci();
1637     if (bci < 0) bci = 0;
1638     st.print("%s.%s@%d", m->holder()->name()->as_utf8(), m->name()->as_utf8(), bci);
1639     // To print linenumbers instead of bci use: m->line_number_from_bci(bci)
1640   }
1641   NamedCounter* c;
1642   if (tag == NamedCounter::BiasedLockingCounter) {
1643     c = new BiasedLockingNamedCounter(st.as_string());
1644   } else if (tag == NamedCounter::RTMLockingCounter) {
1645     c = new RTMLockingNamedCounter(st.as_string());
1646   } else {
1647     c = new NamedCounter(st.as_string(), tag);
1648   }
1649 
1650   // atomically add the new counter to the head of the list.  We only
1651   // add counters so this is safe.
1652   NamedCounter* head;
1653   do {
1654     c->set_next(NULL);
1655     head = _named_counters;
1656     c->set_next(head);
1657   } while (Atomic::cmpxchg_ptr(c, &_named_counters, head) != head);
1658   return c;
1659 }
1660 
1661 int trace_exception_counter = 0;
1662 static void trace_exception(outputStream* st, oop exception_oop, address exception_pc, const char* msg) {
1663   trace_exception_counter++;
1664   stringStream tempst;
1665 
1666   tempst.print("%d [Exception (%s): ", trace_exception_counter, msg);
1667   exception_oop->print_value_on(&tempst);
1668   tempst.print(" in ");
1669   CodeBlob* blob = CodeCache::find_blob(exception_pc);
1670   if (blob->is_nmethod()) {
1671     nmethod* nm = blob->as_nmethod_or_null();
1672     nm->method()->print_value_on(&tempst);
1673   } else if (blob->is_runtime_stub()) {
1674     tempst.print("<runtime-stub>");
1675   } else {
1676     tempst.print("<unknown>");
1677   }
1678   tempst.print(" at " INTPTR_FORMAT,  p2i(exception_pc));
1679   tempst.print("]");
1680 
1681   st->print_raw_cr(tempst.as_string());
1682 }