1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "ci/ciField.hpp"
  27 #include "ci/ciMethodData.hpp"
  28 #include "ci/ciTypeFlow.hpp"
  29 #include "ci/ciValueKlass.hpp"
  30 #include "classfile/symbolTable.hpp"
  31 #include "classfile/systemDictionary.hpp"
  32 #include "compiler/compileLog.hpp"
  33 #include "gc/shared/gcLocker.hpp"
  34 #include "libadt/dict.hpp"
  35 #include "memory/oopFactory.hpp"
  36 #include "memory/resourceArea.hpp"
  37 #include "oops/instanceKlass.hpp"
  38 #include "oops/instanceMirrorKlass.hpp"
  39 #include "oops/objArrayKlass.hpp"
  40 #include "oops/typeArrayKlass.hpp"
  41 #include "opto/matcher.hpp"
  42 #include "opto/node.hpp"
  43 #include "opto/opcodes.hpp"
  44 #include "opto/type.hpp"
  45 
  46 // Portions of code courtesy of Clifford Click
  47 
  48 // Optimization - Graph Style
  49 
  50 // Dictionary of types shared among compilations.
  51 Dict* Type::_shared_type_dict = NULL;
  52 const Type::Offset Type::Offset::top(Type::OffsetTop);
  53 const Type::Offset Type::Offset::bottom(Type::OffsetBot);
  54 
  55 const Type::Offset Type::Offset::meet(const Type::Offset other) const {
  56   // Either is 'TOP' offset?  Return the other offset!
  57   int offset = other._offset;
  58   if (_offset == OffsetTop) return Offset(offset);
  59   if (offset == OffsetTop) return Offset(_offset);
  60   // If either is different, return 'BOTTOM' offset
  61   if (_offset != offset) return bottom;
  62   return Offset(_offset);
  63 }
  64 
  65 const Type::Offset Type::Offset::dual() const {
  66   if (_offset == OffsetTop) return bottom;// Map 'TOP' into 'BOTTOM'
  67   if (_offset == OffsetBot) return top;// Map 'BOTTOM' into 'TOP'
  68   return Offset(_offset);               // Map everything else into self
  69 }
  70 
  71 const Type::Offset Type::Offset::add(intptr_t offset) const {
  72   // Adding to 'TOP' offset?  Return 'TOP'!
  73   if (_offset == OffsetTop || offset == OffsetTop) return top;
  74   // Adding to 'BOTTOM' offset?  Return 'BOTTOM'!
  75   if (_offset == OffsetBot || offset == OffsetBot) return bottom;
  76   // Addition overflows or "accidentally" equals to OffsetTop? Return 'BOTTOM'!
  77   offset += (intptr_t)_offset;
  78   if (offset != (int)offset || offset == OffsetTop) return bottom;
  79 
  80   // assert( _offset >= 0 && _offset+offset >= 0, "" );
  81   // It is possible to construct a negative offset during PhaseCCP
  82 
  83   return Offset((int)offset);        // Sum valid offsets
  84 }
  85 
  86 void Type::Offset::dump2(outputStream *st) const {
  87   if (_offset == 0) {
  88     return;
  89   } else if (_offset == OffsetTop) {
  90     st->print("+top");
  91   }
  92   else if (_offset == OffsetBot) {
  93     st->print("+bot");
  94   } else if (_offset) {
  95     st->print("+%d", _offset);
  96   }
  97 }
  98 
  99 // Array which maps compiler types to Basic Types
 100 Type::TypeInfo Type::_type_info[Type::lastype] = {
 101   { Bad,             T_ILLEGAL,    "bad",           false, Node::NotAMachineReg, relocInfo::none          },  // Bad
 102   { Control,         T_ILLEGAL,    "control",       false, 0,                    relocInfo::none          },  // Control
 103   { Bottom,          T_VOID,       "top",           false, 0,                    relocInfo::none          },  // Top
 104   { Bad,             T_INT,        "int:",          false, Op_RegI,              relocInfo::none          },  // Int
 105   { Bad,             T_LONG,       "long:",         false, Op_RegL,              relocInfo::none          },  // Long
 106   { Half,            T_VOID,       "half",          false, 0,                    relocInfo::none          },  // Half
 107   { Bad,             T_NARROWOOP,  "narrowoop:",    false, Op_RegN,              relocInfo::none          },  // NarrowOop
 108   { Bad,             T_NARROWKLASS,"narrowklass:",  false, Op_RegN,              relocInfo::none          },  // NarrowKlass
 109   { Bad,             T_ILLEGAL,    "tuple:",        false, Node::NotAMachineReg, relocInfo::none          },  // Tuple
 110   { Bad,             T_ARRAY,      "array:",        false, Node::NotAMachineReg, relocInfo::none          },  // Array
 111 
 112 #ifdef SPARC
 113   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 114   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegD,              relocInfo::none          },  // VectorD
 115   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 116   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 117   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 118 #elif defined(PPC64)
 119   { Bad,             T_ILLEGAL,    "vectors:",      false, 0,                    relocInfo::none          },  // VectorS
 120   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_RegL,              relocInfo::none          },  // VectorD
 121   { Bad,             T_ILLEGAL,    "vectorx:",      false, 0,                    relocInfo::none          },  // VectorX
 122   { Bad,             T_ILLEGAL,    "vectory:",      false, 0,                    relocInfo::none          },  // VectorY
 123   { Bad,             T_ILLEGAL,    "vectorz:",      false, 0,                    relocInfo::none          },  // VectorZ
 124 #else // all other
 125   { Bad,             T_ILLEGAL,    "vectors:",      false, Op_VecS,              relocInfo::none          },  // VectorS
 126   { Bad,             T_ILLEGAL,    "vectord:",      false, Op_VecD,              relocInfo::none          },  // VectorD
 127   { Bad,             T_ILLEGAL,    "vectorx:",      false, Op_VecX,              relocInfo::none          },  // VectorX
 128   { Bad,             T_ILLEGAL,    "vectory:",      false, Op_VecY,              relocInfo::none          },  // VectorY
 129   { Bad,             T_ILLEGAL,    "vectorz:",      false, Op_VecZ,              relocInfo::none          },  // VectorZ
 130 #endif
 131   { Bad,             T_VALUETYPE,  "value:",        false, Node::NotAMachineReg, relocInfo::none          },  // ValueType
 132   { Bad,             T_ADDRESS,    "anyptr:",       false, Op_RegP,              relocInfo::none          },  // AnyPtr
 133   { Bad,             T_ADDRESS,    "rawptr:",       false, Op_RegP,              relocInfo::none          },  // RawPtr
 134   { Bad,             T_OBJECT,     "oop:",          true,  Op_RegP,              relocInfo::oop_type      },  // OopPtr
 135   { Bad,             T_OBJECT,     "inst:",         true,  Op_RegP,              relocInfo::oop_type      },  // InstPtr
 136   { Bad,             T_OBJECT,     "valueptr:",     true,  Op_RegP,              relocInfo::oop_type      },  // ValueTypePtr
 137   { Bad,             T_OBJECT,     "ary:",          true,  Op_RegP,              relocInfo::oop_type      },  // AryPtr
 138   { Bad,             T_METADATA,   "metadata:",     false, Op_RegP,              relocInfo::metadata_type },  // MetadataPtr
 139   { Bad,             T_METADATA,   "klass:",        false, Op_RegP,              relocInfo::metadata_type },  // KlassPtr
 140   { Bad,             T_OBJECT,     "func",          false, 0,                    relocInfo::none          },  // Function
 141   { Abio,            T_ILLEGAL,    "abIO",          false, 0,                    relocInfo::none          },  // Abio
 142   { Return_Address,  T_ADDRESS,    "return_address",false, Op_RegP,              relocInfo::none          },  // Return_Address
 143   { Memory,          T_ILLEGAL,    "memory",        false, 0,                    relocInfo::none          },  // Memory
 144   { FloatBot,        T_FLOAT,      "float_top",     false, Op_RegF,              relocInfo::none          },  // FloatTop
 145   { FloatCon,        T_FLOAT,      "ftcon:",        false, Op_RegF,              relocInfo::none          },  // FloatCon
 146   { FloatTop,        T_FLOAT,      "float",         false, Op_RegF,              relocInfo::none          },  // FloatBot
 147   { DoubleBot,       T_DOUBLE,     "double_top",    false, Op_RegD,              relocInfo::none          },  // DoubleTop
 148   { DoubleCon,       T_DOUBLE,     "dblcon:",       false, Op_RegD,              relocInfo::none          },  // DoubleCon
 149   { DoubleTop,       T_DOUBLE,     "double",        false, Op_RegD,              relocInfo::none          },  // DoubleBot
 150   { Top,             T_ILLEGAL,    "bottom",        false, 0,                    relocInfo::none          }   // Bottom
 151 };
 152 
 153 // Map ideal registers (machine types) to ideal types
 154 const Type *Type::mreg2type[_last_machine_leaf];
 155 
 156 // Map basic types to canonical Type* pointers.
 157 const Type* Type::     _const_basic_type[T_CONFLICT+1];
 158 
 159 // Map basic types to constant-zero Types.
 160 const Type* Type::            _zero_type[T_CONFLICT+1];
 161 
 162 // Map basic types to array-body alias types.
 163 const TypeAryPtr* TypeAryPtr::_array_body_type[T_CONFLICT+1];
 164 
 165 //=============================================================================
 166 // Convenience common pre-built types.
 167 const Type *Type::ABIO;         // State-of-machine only
 168 const Type *Type::BOTTOM;       // All values
 169 const Type *Type::CONTROL;      // Control only
 170 const Type *Type::DOUBLE;       // All doubles
 171 const Type *Type::FLOAT;        // All floats
 172 const Type *Type::HALF;         // Placeholder half of doublewide type
 173 const Type *Type::MEMORY;       // Abstract store only
 174 const Type *Type::RETURN_ADDRESS;
 175 const Type *Type::TOP;          // No values in set
 176 
 177 //------------------------------get_const_type---------------------------
 178 const Type* Type::get_const_type(ciType* type) {
 179   if (type == NULL) {
 180     return NULL;
 181   } else if (type->is_primitive_type()) {
 182     return get_const_basic_type(type->basic_type());
 183   } else {
 184     return TypeOopPtr::make_from_klass(type->as_klass());
 185   }
 186 }
 187 
 188 //---------------------------array_element_basic_type---------------------------------
 189 // Mapping to the array element's basic type.
 190 BasicType Type::array_element_basic_type() const {
 191   BasicType bt = basic_type();
 192   if (bt == T_INT) {
 193     if (this == TypeInt::INT)   return T_INT;
 194     if (this == TypeInt::CHAR)  return T_CHAR;
 195     if (this == TypeInt::BYTE)  return T_BYTE;
 196     if (this == TypeInt::BOOL)  return T_BOOLEAN;
 197     if (this == TypeInt::SHORT) return T_SHORT;
 198     return T_VOID;
 199   }
 200   return bt;
 201 }
 202 
 203 // For two instance arrays of same dimension, return the base element types.
 204 // Otherwise or if the arrays have different dimensions, return NULL.
 205 void Type::get_arrays_base_elements(const Type *a1, const Type *a2,
 206                                     const TypeInstPtr **e1, const TypeInstPtr **e2) {
 207 
 208   if (e1) *e1 = NULL;
 209   if (e2) *e2 = NULL;
 210   const TypeAryPtr* a1tap = (a1 == NULL) ? NULL : a1->isa_aryptr();
 211   const TypeAryPtr* a2tap = (a2 == NULL) ? NULL : a2->isa_aryptr();
 212 
 213   if (a1tap != NULL && a2tap != NULL) {
 214     // Handle multidimensional arrays
 215     const TypePtr* a1tp = a1tap->elem()->make_ptr();
 216     const TypePtr* a2tp = a2tap->elem()->make_ptr();
 217     while (a1tp && a1tp->isa_aryptr() && a2tp && a2tp->isa_aryptr()) {
 218       a1tap = a1tp->is_aryptr();
 219       a2tap = a2tp->is_aryptr();
 220       a1tp = a1tap->elem()->make_ptr();
 221       a2tp = a2tap->elem()->make_ptr();
 222     }
 223     if (a1tp && a1tp->isa_instptr() && a2tp && a2tp->isa_instptr()) {
 224       if (e1) *e1 = a1tp->is_instptr();
 225       if (e2) *e2 = a2tp->is_instptr();
 226     }
 227   }
 228 }
 229 
 230 //---------------------------get_typeflow_type---------------------------------
 231 // Import a type produced by ciTypeFlow.
 232 const Type* Type::get_typeflow_type(ciType* type) {
 233   switch (type->basic_type()) {
 234 
 235   case ciTypeFlow::StateVector::T_BOTTOM:
 236     assert(type == ciTypeFlow::StateVector::bottom_type(), "");
 237     return Type::BOTTOM;
 238 
 239   case ciTypeFlow::StateVector::T_TOP:
 240     assert(type == ciTypeFlow::StateVector::top_type(), "");
 241     return Type::TOP;
 242 
 243   case ciTypeFlow::StateVector::T_NULL:
 244     assert(type == ciTypeFlow::StateVector::null_type(), "");
 245     return TypePtr::NULL_PTR;
 246 
 247   case ciTypeFlow::StateVector::T_LONG2:
 248     // The ciTypeFlow pass pushes a long, then the half.
 249     // We do the same.
 250     assert(type == ciTypeFlow::StateVector::long2_type(), "");
 251     return TypeInt::TOP;
 252 
 253   case ciTypeFlow::StateVector::T_DOUBLE2:
 254     // The ciTypeFlow pass pushes double, then the half.
 255     // Our convention is the same.
 256     assert(type == ciTypeFlow::StateVector::double2_type(), "");
 257     return Type::TOP;
 258 
 259   case T_ADDRESS:
 260     assert(type->is_return_address(), "");
 261     return TypeRawPtr::make((address)(intptr_t)type->as_return_address()->bci());
 262 
 263   case T_VALUETYPE:
 264     return TypeValueType::make(type->as_value_klass());
 265 
 266   default:
 267     // make sure we did not mix up the cases:
 268     assert(type != ciTypeFlow::StateVector::bottom_type(), "");
 269     assert(type != ciTypeFlow::StateVector::top_type(), "");
 270     assert(type != ciTypeFlow::StateVector::null_type(), "");
 271     assert(type != ciTypeFlow::StateVector::long2_type(), "");
 272     assert(type != ciTypeFlow::StateVector::double2_type(), "");
 273     assert(!type->is_return_address(), "");
 274 
 275     return Type::get_const_type(type);
 276   }
 277 }
 278 
 279 
 280 //-----------------------make_from_constant------------------------------------
 281 const Type* Type::make_from_constant(ciConstant constant, bool require_constant) {
 282   switch (constant.basic_type()) {
 283   case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
 284   case T_CHAR:     return TypeInt::make(constant.as_char());
 285   case T_BYTE:     return TypeInt::make(constant.as_byte());
 286   case T_SHORT:    return TypeInt::make(constant.as_short());
 287   case T_INT:      return TypeInt::make(constant.as_int());
 288   case T_LONG:     return TypeLong::make(constant.as_long());
 289   case T_FLOAT:    return TypeF::make(constant.as_float());
 290   case T_DOUBLE:   return TypeD::make(constant.as_double());
 291   case T_ARRAY:
 292   case T_VALUETYPE:
 293   case T_OBJECT:
 294     {
 295       // cases:
 296       //   can_be_constant    = (oop not scavengable || ScavengeRootsInCode != 0)
 297       //   should_be_constant = (oop not scavengable || ScavengeRootsInCode >= 2)
 298       // An oop is not scavengable if it is in the perm gen.
 299       ciObject* oop_constant = constant.as_object();
 300       if (oop_constant->is_null_object()) {
 301         return Type::get_zero_type(T_OBJECT);
 302       } else if (require_constant || oop_constant->should_be_constant()) {
 303         return TypeOopPtr::make_from_constant(oop_constant, require_constant);
 304       }
 305     }
 306   case T_ILLEGAL:
 307     // Invalid ciConstant returned due to OutOfMemoryError in the CI
 308     assert(Compile::current()->env()->failing(), "otherwise should not see this");
 309     return NULL;
 310   }
 311   // Fall through to failure
 312   return NULL;
 313 }
 314 
 315 
 316 const Type* Type::make_constant(ciField* field, Node* obj) {
 317   if (!field->is_constant())  return NULL;
 318 
 319   const Type* con_type = NULL;
 320   if (field->is_static()) {
 321     // final static field
 322     con_type = Type::make_from_constant(field->constant_value(), /*require_const=*/true);
 323     if (Compile::current()->eliminate_boxing() && field->is_autobox_cache() && con_type != NULL) {
 324       con_type = con_type->is_aryptr()->cast_to_autobox_cache(true);
 325     }
 326   } else {
 327     // final or stable non-static field
 328     // Treat final non-static fields of trusted classes (classes in
 329     // java.lang.invoke and sun.invoke packages and subpackages) as
 330     // compile time constants.
 331     if (obj->is_Con()) {
 332       const TypeOopPtr* oop_ptr = obj->bottom_type()->isa_oopptr();
 333       ciObject* constant_oop = oop_ptr->const_oop();
 334       ciConstant constant = field->constant_value_of(constant_oop);
 335       con_type = Type::make_from_constant(constant, /*require_const=*/true);
 336     }
 337   }
 338   if (FoldStableValues && field->is_stable() && con_type != NULL) {
 339     if (con_type->is_zero_type()) {
 340       return NULL; // the field hasn't been initialized yet
 341     } else if (con_type->isa_oopptr()) {
 342       const Type* stable_type = Type::get_const_type(field->type());
 343       if (field->type()->is_array_klass()) {
 344         int stable_dimension = field->type()->as_array_klass()->dimension();
 345         stable_type = stable_type->is_aryptr()->cast_to_stable(true, stable_dimension);
 346       }
 347       if (stable_type != NULL) {
 348         con_type = con_type->join_speculative(stable_type);
 349       }
 350     }
 351   }
 352   return con_type;
 353 }
 354 
 355 //------------------------------make-------------------------------------------
 356 // Create a simple Type, with default empty symbol sets.  Then hashcons it
 357 // and look for an existing copy in the type dictionary.
 358 const Type *Type::make( enum TYPES t ) {
 359   return (new Type(t))->hashcons();
 360 }
 361 
 362 //------------------------------cmp--------------------------------------------
 363 int Type::cmp( const Type *const t1, const Type *const t2 ) {
 364   if( t1->_base != t2->_base )
 365     return 1;                   // Missed badly
 366   assert(t1 != t2 || t1->eq(t2), "eq must be reflexive");
 367   return !t1->eq(t2);           // Return ZERO if equal
 368 }
 369 
 370 const Type* Type::maybe_remove_speculative(bool include_speculative) const {
 371   if (!include_speculative) {
 372     return remove_speculative();
 373   }
 374   return this;
 375 }
 376 
 377 //------------------------------hash-------------------------------------------
 378 int Type::uhash( const Type *const t ) {
 379   return t->hash();
 380 }
 381 
 382 #define SMALLINT ((juint)3)  // a value too insignificant to consider widening
 383 
 384 //--------------------------Initialize_shared----------------------------------
 385 void Type::Initialize_shared(Compile* current) {
 386   // This method does not need to be locked because the first system
 387   // compilations (stub compilations) occur serially.  If they are
 388   // changed to proceed in parallel, then this section will need
 389   // locking.
 390 
 391   Arena* save = current->type_arena();
 392   Arena* shared_type_arena = new (mtCompiler)Arena(mtCompiler);
 393 
 394   current->set_type_arena(shared_type_arena);
 395   _shared_type_dict =
 396     new (shared_type_arena) Dict( (CmpKey)Type::cmp, (Hash)Type::uhash,
 397                                   shared_type_arena, 128 );
 398   current->set_type_dict(_shared_type_dict);
 399 
 400   // Make shared pre-built types.
 401   CONTROL = make(Control);      // Control only
 402   TOP     = make(Top);          // No values in set
 403   MEMORY  = make(Memory);       // Abstract store only
 404   ABIO    = make(Abio);         // State-of-machine only
 405   RETURN_ADDRESS=make(Return_Address);
 406   FLOAT   = make(FloatBot);     // All floats
 407   DOUBLE  = make(DoubleBot);    // All doubles
 408   BOTTOM  = make(Bottom);       // Everything
 409   HALF    = make(Half);         // Placeholder half of doublewide type
 410 
 411   TypeF::ZERO = TypeF::make(0.0); // Float 0 (positive zero)
 412   TypeF::ONE  = TypeF::make(1.0); // Float 1
 413 
 414   TypeD::ZERO = TypeD::make(0.0); // Double 0 (positive zero)
 415   TypeD::ONE  = TypeD::make(1.0); // Double 1
 416 
 417   TypeInt::MINUS_1 = TypeInt::make(-1);  // -1
 418   TypeInt::ZERO    = TypeInt::make( 0);  //  0
 419   TypeInt::ONE     = TypeInt::make( 1);  //  1
 420   TypeInt::BOOL    = TypeInt::make(0,1,   WidenMin);  // 0 or 1, FALSE or TRUE.
 421   TypeInt::CC      = TypeInt::make(-1, 1, WidenMin);  // -1, 0 or 1, condition codes
 422   TypeInt::CC_LT   = TypeInt::make(-1,-1, WidenMin);  // == TypeInt::MINUS_1
 423   TypeInt::CC_GT   = TypeInt::make( 1, 1, WidenMin);  // == TypeInt::ONE
 424   TypeInt::CC_EQ   = TypeInt::make( 0, 0, WidenMin);  // == TypeInt::ZERO
 425   TypeInt::CC_LE   = TypeInt::make(-1, 0, WidenMin);
 426   TypeInt::CC_GE   = TypeInt::make( 0, 1, WidenMin);  // == TypeInt::BOOL
 427   TypeInt::BYTE    = TypeInt::make(-128,127,     WidenMin); // Bytes
 428   TypeInt::UBYTE   = TypeInt::make(0, 255,       WidenMin); // Unsigned Bytes
 429   TypeInt::CHAR    = TypeInt::make(0,65535,      WidenMin); // Java chars
 430   TypeInt::SHORT   = TypeInt::make(-32768,32767, WidenMin); // Java shorts
 431   TypeInt::POS     = TypeInt::make(0,max_jint,   WidenMin); // Non-neg values
 432   TypeInt::POS1    = TypeInt::make(1,max_jint,   WidenMin); // Positive values
 433   TypeInt::INT     = TypeInt::make(min_jint,max_jint, WidenMax); // 32-bit integers
 434   TypeInt::SYMINT  = TypeInt::make(-max_jint,max_jint,WidenMin); // symmetric range
 435   TypeInt::TYPE_DOMAIN  = TypeInt::INT;
 436   // CmpL is overloaded both as the bytecode computation returning
 437   // a trinary (-1,0,+1) integer result AND as an efficient long
 438   // compare returning optimizer ideal-type flags.
 439   assert( TypeInt::CC_LT == TypeInt::MINUS_1, "types must match for CmpL to work" );
 440   assert( TypeInt::CC_GT == TypeInt::ONE,     "types must match for CmpL to work" );
 441   assert( TypeInt::CC_EQ == TypeInt::ZERO,    "types must match for CmpL to work" );
 442   assert( TypeInt::CC_GE == TypeInt::BOOL,    "types must match for CmpL to work" );
 443   assert( (juint)(TypeInt::CC->_hi - TypeInt::CC->_lo) <= SMALLINT, "CC is truly small");
 444 
 445   TypeLong::MINUS_1 = TypeLong::make(-1);        // -1
 446   TypeLong::ZERO    = TypeLong::make( 0);        //  0
 447   TypeLong::ONE     = TypeLong::make( 1);        //  1
 448   TypeLong::POS     = TypeLong::make(0,max_jlong, WidenMin); // Non-neg values
 449   TypeLong::LONG    = TypeLong::make(min_jlong,max_jlong,WidenMax); // 64-bit integers
 450   TypeLong::INT     = TypeLong::make((jlong)min_jint,(jlong)max_jint,WidenMin);
 451   TypeLong::UINT    = TypeLong::make(0,(jlong)max_juint,WidenMin);
 452   TypeLong::TYPE_DOMAIN  = TypeLong::LONG;
 453 
 454   const Type **fboth =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 455   fboth[0] = Type::CONTROL;
 456   fboth[1] = Type::CONTROL;
 457   TypeTuple::IFBOTH = TypeTuple::make( 2, fboth );
 458 
 459   const Type **ffalse =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 460   ffalse[0] = Type::CONTROL;
 461   ffalse[1] = Type::TOP;
 462   TypeTuple::IFFALSE = TypeTuple::make( 2, ffalse );
 463 
 464   const Type **fneither =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 465   fneither[0] = Type::TOP;
 466   fneither[1] = Type::TOP;
 467   TypeTuple::IFNEITHER = TypeTuple::make( 2, fneither );
 468 
 469   const Type **ftrue =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 470   ftrue[0] = Type::TOP;
 471   ftrue[1] = Type::CONTROL;
 472   TypeTuple::IFTRUE = TypeTuple::make( 2, ftrue );
 473 
 474   const Type **floop =(const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 475   floop[0] = Type::CONTROL;
 476   floop[1] = TypeInt::INT;
 477   TypeTuple::LOOPBODY = TypeTuple::make( 2, floop );
 478 
 479   TypePtr::NULL_PTR= TypePtr::make(AnyPtr, TypePtr::Null, Offset(0));
 480   TypePtr::NOTNULL = TypePtr::make(AnyPtr, TypePtr::NotNull, Offset::bottom);
 481   TypePtr::BOTTOM  = TypePtr::make(AnyPtr, TypePtr::BotPTR, Offset::bottom);
 482 
 483   TypeRawPtr::BOTTOM = TypeRawPtr::make( TypePtr::BotPTR );
 484   TypeRawPtr::NOTNULL= TypeRawPtr::make( TypePtr::NotNull );
 485 
 486   const Type **fmembar = TypeTuple::fields(0);
 487   TypeTuple::MEMBAR = TypeTuple::make(TypeFunc::Parms+0, fmembar);
 488 
 489   const Type **fsc = (const Type**)shared_type_arena->Amalloc_4(2*sizeof(Type*));
 490   fsc[0] = TypeInt::CC;
 491   fsc[1] = Type::MEMORY;
 492   TypeTuple::STORECONDITIONAL = TypeTuple::make(2, fsc);
 493 
 494   TypeInstPtr::NOTNULL = TypeInstPtr::make(TypePtr::NotNull, current->env()->Object_klass());
 495   TypeInstPtr::BOTTOM  = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass());
 496   TypeInstPtr::MIRROR  = TypeInstPtr::make(TypePtr::NotNull, current->env()->Class_klass());
 497   TypeInstPtr::MARK    = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 498                                            false, 0, Offset(oopDesc::mark_offset_in_bytes()));
 499   TypeInstPtr::KLASS   = TypeInstPtr::make(TypePtr::BotPTR,  current->env()->Object_klass(),
 500                                            false, 0, Offset(oopDesc::klass_offset_in_bytes()));
 501   TypeOopPtr::BOTTOM  = TypeOopPtr::make(TypePtr::BotPTR, Offset::bottom, TypeOopPtr::InstanceBot);
 502 
 503   TypeMetadataPtr::BOTTOM = TypeMetadataPtr::make(TypePtr::BotPTR, NULL, Offset::bottom);
 504 
 505   TypeNarrowOop::NULL_PTR = TypeNarrowOop::make( TypePtr::NULL_PTR );
 506   TypeNarrowOop::BOTTOM   = TypeNarrowOop::make( TypeInstPtr::BOTTOM );
 507 
 508   TypeNarrowKlass::NULL_PTR = TypeNarrowKlass::make( TypePtr::NULL_PTR );
 509 
 510   mreg2type[Op_Node] = Type::BOTTOM;
 511   mreg2type[Op_Set ] = 0;
 512   mreg2type[Op_RegN] = TypeNarrowOop::BOTTOM;
 513   mreg2type[Op_RegI] = TypeInt::INT;
 514   mreg2type[Op_RegP] = TypePtr::BOTTOM;
 515   mreg2type[Op_RegF] = Type::FLOAT;
 516   mreg2type[Op_RegD] = Type::DOUBLE;
 517   mreg2type[Op_RegL] = TypeLong::LONG;
 518   mreg2type[Op_RegFlags] = TypeInt::CC;
 519 
 520   TypeAryPtr::RANGE   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::BOTTOM,TypeInt::POS), NULL /* current->env()->Object_klass() */, false, Offset(arrayOopDesc::length_offset_in_bytes()));
 521 
 522   TypeAryPtr::NARROWOOPS = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeNarrowOop::BOTTOM, TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 523 
 524 #ifdef _LP64
 525   if (UseCompressedOops) {
 526     assert(TypeAryPtr::NARROWOOPS->is_ptr_to_narrowoop(), "array of narrow oops must be ptr to narrow oop");
 527     TypeAryPtr::OOPS  = TypeAryPtr::NARROWOOPS;
 528   } else
 529 #endif
 530   {
 531     // There is no shared klass for Object[].  See note in TypeAryPtr::klass().
 532     TypeAryPtr::OOPS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInstPtr::BOTTOM,TypeInt::POS), NULL /*ciArrayKlass::make(o)*/,  false,  Offset::bottom);
 533   }
 534   TypeAryPtr::BYTES   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::BYTE      ,TypeInt::POS), ciTypeArrayKlass::make(T_BYTE),   true,  Offset::bottom);
 535   TypeAryPtr::SHORTS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::SHORT     ,TypeInt::POS), ciTypeArrayKlass::make(T_SHORT),  true,  Offset::bottom);
 536   TypeAryPtr::CHARS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::CHAR      ,TypeInt::POS), ciTypeArrayKlass::make(T_CHAR),   true,  Offset::bottom);
 537   TypeAryPtr::INTS    = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeInt::INT       ,TypeInt::POS), ciTypeArrayKlass::make(T_INT),    true,  Offset::bottom);
 538   TypeAryPtr::LONGS   = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(TypeLong::LONG     ,TypeInt::POS), ciTypeArrayKlass::make(T_LONG),   true,  Offset::bottom);
 539   TypeAryPtr::FLOATS  = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::FLOAT        ,TypeInt::POS), ciTypeArrayKlass::make(T_FLOAT),  true,  Offset::bottom);
 540   TypeAryPtr::DOUBLES = TypeAryPtr::make(TypePtr::BotPTR, TypeAry::make(Type::DOUBLE       ,TypeInt::POS), ciTypeArrayKlass::make(T_DOUBLE), true,  Offset::bottom);
 541 
 542   // Nobody should ask _array_body_type[T_NARROWOOP]. Use NULL as assert.
 543   TypeAryPtr::_array_body_type[T_NARROWOOP] = NULL;
 544   TypeAryPtr::_array_body_type[T_OBJECT]  = TypeAryPtr::OOPS;
 545   TypeAryPtr::_array_body_type[T_ARRAY]   = TypeAryPtr::OOPS; // arrays are stored in oop arrays
 546   TypeAryPtr::_array_body_type[T_VALUETYPE] = TypeAryPtr::OOPS;
 547   TypeAryPtr::_array_body_type[T_BYTE]    = TypeAryPtr::BYTES;
 548   TypeAryPtr::_array_body_type[T_BOOLEAN] = TypeAryPtr::BYTES;  // boolean[] is a byte array
 549   TypeAryPtr::_array_body_type[T_SHORT]   = TypeAryPtr::SHORTS;
 550   TypeAryPtr::_array_body_type[T_CHAR]    = TypeAryPtr::CHARS;
 551   TypeAryPtr::_array_body_type[T_INT]     = TypeAryPtr::INTS;
 552   TypeAryPtr::_array_body_type[T_LONG]    = TypeAryPtr::LONGS;
 553   TypeAryPtr::_array_body_type[T_FLOAT]   = TypeAryPtr::FLOATS;
 554   TypeAryPtr::_array_body_type[T_DOUBLE]  = TypeAryPtr::DOUBLES;
 555 
 556   TypeKlassPtr::OBJECT = TypeKlassPtr::make(TypePtr::NotNull, current->env()->Object_klass(), Offset(0) );
 557   TypeKlassPtr::OBJECT_OR_NULL = TypeKlassPtr::make(TypePtr::BotPTR, current->env()->Object_klass(), Offset(0) );
 558 
 559   const Type **fi2c = TypeTuple::fields(2);
 560   fi2c[TypeFunc::Parms+0] = TypeInstPtr::BOTTOM; // Method*
 561   fi2c[TypeFunc::Parms+1] = TypeRawPtr::BOTTOM; // argument pointer
 562   TypeTuple::START_I2C = TypeTuple::make(TypeFunc::Parms+2, fi2c);
 563 
 564   const Type **intpair = TypeTuple::fields(2);
 565   intpair[0] = TypeInt::INT;
 566   intpair[1] = TypeInt::INT;
 567   TypeTuple::INT_PAIR = TypeTuple::make(2, intpair);
 568 
 569   const Type **longpair = TypeTuple::fields(2);
 570   longpair[0] = TypeLong::LONG;
 571   longpair[1] = TypeLong::LONG;
 572   TypeTuple::LONG_PAIR = TypeTuple::make(2, longpair);
 573 
 574   const Type **intccpair = TypeTuple::fields(2);
 575   intccpair[0] = TypeInt::INT;
 576   intccpair[1] = TypeInt::CC;
 577   TypeTuple::INT_CC_PAIR = TypeTuple::make(2, intccpair);
 578 
 579   const Type **longccpair = TypeTuple::fields(2);
 580   longccpair[0] = TypeLong::LONG;
 581   longccpair[1] = TypeInt::CC;
 582   TypeTuple::LONG_CC_PAIR = TypeTuple::make(2, longccpair);
 583 
 584   _const_basic_type[T_NARROWOOP]   = TypeNarrowOop::BOTTOM;
 585   _const_basic_type[T_NARROWKLASS] = Type::BOTTOM;
 586   _const_basic_type[T_BOOLEAN]     = TypeInt::BOOL;
 587   _const_basic_type[T_CHAR]        = TypeInt::CHAR;
 588   _const_basic_type[T_BYTE]        = TypeInt::BYTE;
 589   _const_basic_type[T_SHORT]       = TypeInt::SHORT;
 590   _const_basic_type[T_INT]         = TypeInt::INT;
 591   _const_basic_type[T_LONG]        = TypeLong::LONG;
 592   _const_basic_type[T_FLOAT]       = Type::FLOAT;
 593   _const_basic_type[T_DOUBLE]      = Type::DOUBLE;
 594   _const_basic_type[T_OBJECT]      = TypeInstPtr::BOTTOM;
 595   _const_basic_type[T_ARRAY]       = TypeInstPtr::BOTTOM; // there is no separate bottom for arrays
 596   _const_basic_type[T_VALUETYPE]   = TypeInstPtr::BOTTOM;
 597   _const_basic_type[T_VOID]        = TypePtr::NULL_PTR;   // reflection represents void this way
 598   _const_basic_type[T_ADDRESS]     = TypeRawPtr::BOTTOM;  // both interpreter return addresses & random raw ptrs
 599   _const_basic_type[T_CONFLICT]    = Type::BOTTOM;        // why not?
 600 
 601   _zero_type[T_NARROWOOP]   = TypeNarrowOop::NULL_PTR;
 602   _zero_type[T_NARROWKLASS] = TypeNarrowKlass::NULL_PTR;
 603   _zero_type[T_BOOLEAN]     = TypeInt::ZERO;     // false == 0
 604   _zero_type[T_CHAR]        = TypeInt::ZERO;     // '\0' == 0
 605   _zero_type[T_BYTE]        = TypeInt::ZERO;     // 0x00 == 0
 606   _zero_type[T_SHORT]       = TypeInt::ZERO;     // 0x0000 == 0
 607   _zero_type[T_INT]         = TypeInt::ZERO;
 608   _zero_type[T_LONG]        = TypeLong::ZERO;
 609   _zero_type[T_FLOAT]       = TypeF::ZERO;
 610   _zero_type[T_DOUBLE]      = TypeD::ZERO;
 611   _zero_type[T_OBJECT]      = TypePtr::NULL_PTR;
 612   _zero_type[T_ARRAY]       = TypePtr::NULL_PTR; // null array is null oop
 613   _zero_type[T_VALUETYPE]   = TypePtr::NULL_PTR;
 614   _zero_type[T_ADDRESS]     = TypePtr::NULL_PTR; // raw pointers use the same null
 615   _zero_type[T_VOID]        = Type::TOP;         // the only void value is no value at all
 616 
 617   // get_zero_type() should not happen for T_CONFLICT
 618   _zero_type[T_CONFLICT]= NULL;
 619 
 620   // Vector predefined types, it needs initialized _const_basic_type[].
 621   if (Matcher::vector_size_supported(T_BYTE,4)) {
 622     TypeVect::VECTS = TypeVect::make(T_BYTE,4);
 623   }
 624   if (Matcher::vector_size_supported(T_FLOAT,2)) {
 625     TypeVect::VECTD = TypeVect::make(T_FLOAT,2);
 626   }
 627   if (Matcher::vector_size_supported(T_FLOAT,4)) {
 628     TypeVect::VECTX = TypeVect::make(T_FLOAT,4);
 629   }
 630   if (Matcher::vector_size_supported(T_FLOAT,8)) {
 631     TypeVect::VECTY = TypeVect::make(T_FLOAT,8);
 632   }
 633   if (Matcher::vector_size_supported(T_FLOAT,16)) {
 634     TypeVect::VECTZ = TypeVect::make(T_FLOAT,16);
 635   }
 636   mreg2type[Op_VecS] = TypeVect::VECTS;
 637   mreg2type[Op_VecD] = TypeVect::VECTD;
 638   mreg2type[Op_VecX] = TypeVect::VECTX;
 639   mreg2type[Op_VecY] = TypeVect::VECTY;
 640   mreg2type[Op_VecZ] = TypeVect::VECTZ;
 641 
 642   // Restore working type arena.
 643   current->set_type_arena(save);
 644   current->set_type_dict(NULL);
 645 }
 646 
 647 //------------------------------Initialize-------------------------------------
 648 void Type::Initialize(Compile* current) {
 649   assert(current->type_arena() != NULL, "must have created type arena");
 650 
 651   if (_shared_type_dict == NULL) {
 652     Initialize_shared(current);
 653   }
 654 
 655   Arena* type_arena = current->type_arena();
 656 
 657   // Create the hash-cons'ing dictionary with top-level storage allocation
 658   Dict *tdic = new (type_arena) Dict( (CmpKey)Type::cmp,(Hash)Type::uhash, type_arena, 128 );
 659   current->set_type_dict(tdic);
 660 
 661   // Transfer the shared types.
 662   DictI i(_shared_type_dict);
 663   for( ; i.test(); ++i ) {
 664     Type* t = (Type*)i._value;
 665     tdic->Insert(t,t);  // New Type, insert into Type table
 666   }
 667 }
 668 
 669 //------------------------------hashcons---------------------------------------
 670 // Do the hash-cons trick.  If the Type already exists in the type table,
 671 // delete the current Type and return the existing Type.  Otherwise stick the
 672 // current Type in the Type table.
 673 const Type *Type::hashcons(void) {
 674   debug_only(base());           // Check the assertion in Type::base().
 675   // Look up the Type in the Type dictionary
 676   Dict *tdic = type_dict();
 677   Type* old = (Type*)(tdic->Insert(this, this, false));
 678   if( old ) {                   // Pre-existing Type?
 679     if( old != this )           // Yes, this guy is not the pre-existing?
 680       delete this;              // Yes, Nuke this guy
 681     assert( old->_dual, "" );
 682     return old;                 // Return pre-existing
 683   }
 684 
 685   // Every type has a dual (to make my lattice symmetric).
 686   // Since we just discovered a new Type, compute its dual right now.
 687   assert( !_dual, "" );         // No dual yet
 688   _dual = xdual();              // Compute the dual
 689   if( cmp(this,_dual)==0 ) {    // Handle self-symmetric
 690     _dual = this;
 691     return this;
 692   }
 693   assert( !_dual->_dual, "" );  // No reverse dual yet
 694   assert( !(*tdic)[_dual], "" ); // Dual not in type system either
 695   // New Type, insert into Type table
 696   tdic->Insert((void*)_dual,(void*)_dual);
 697   ((Type*)_dual)->_dual = this; // Finish up being symmetric
 698 #ifdef ASSERT
 699   Type *dual_dual = (Type*)_dual->xdual();
 700   assert( eq(dual_dual), "xdual(xdual()) should be identity" );
 701   delete dual_dual;
 702 #endif
 703   return this;                  // Return new Type
 704 }
 705 
 706 //------------------------------eq---------------------------------------------
 707 // Structural equality check for Type representations
 708 bool Type::eq( const Type * ) const {
 709   return true;                  // Nothing else can go wrong
 710 }
 711 
 712 //------------------------------hash-------------------------------------------
 713 // Type-specific hashing function.
 714 int Type::hash(void) const {
 715   return _base;
 716 }
 717 
 718 //------------------------------is_finite--------------------------------------
 719 // Has a finite value
 720 bool Type::is_finite() const {
 721   return false;
 722 }
 723 
 724 //------------------------------is_nan-----------------------------------------
 725 // Is not a number (NaN)
 726 bool Type::is_nan()    const {
 727   return false;
 728 }
 729 
 730 //----------------------interface_vs_oop---------------------------------------
 731 #ifdef ASSERT
 732 bool Type::interface_vs_oop_helper(const Type *t) const {
 733   bool result = false;
 734 
 735   const TypePtr* this_ptr = this->make_ptr(); // In case it is narrow_oop
 736   const TypePtr*    t_ptr =    t->make_ptr();
 737   if( this_ptr == NULL || t_ptr == NULL )
 738     return result;
 739 
 740   const TypeInstPtr* this_inst = this_ptr->isa_instptr();
 741   const TypeInstPtr*    t_inst =    t_ptr->isa_instptr();
 742   if( this_inst && this_inst->is_loaded() && t_inst && t_inst->is_loaded() ) {
 743     bool this_interface = this_inst->klass()->is_interface();
 744     bool    t_interface =    t_inst->klass()->is_interface();
 745     result = this_interface ^ t_interface;
 746   }
 747 
 748   return result;
 749 }
 750 
 751 bool Type::interface_vs_oop(const Type *t) const {
 752   if (interface_vs_oop_helper(t)) {
 753     return true;
 754   }
 755   // Now check the speculative parts as well
 756   const TypePtr* this_spec = isa_ptr() != NULL ? is_ptr()->speculative() : NULL;
 757   const TypePtr* t_spec = t->isa_ptr() != NULL ? t->is_ptr()->speculative() : NULL;
 758   if (this_spec != NULL && t_spec != NULL) {
 759     if (this_spec->interface_vs_oop_helper(t_spec)) {
 760       return true;
 761     }
 762     return false;
 763   }
 764   if (this_spec != NULL && this_spec->interface_vs_oop_helper(t)) {
 765     return true;
 766   }
 767   if (t_spec != NULL && interface_vs_oop_helper(t_spec)) {
 768     return true;
 769   }
 770   return false;
 771 }
 772 
 773 #endif
 774 
 775 //------------------------------meet-------------------------------------------
 776 // Compute the MEET of two types.  NOT virtual.  It enforces that meet is
 777 // commutative and the lattice is symmetric.
 778 const Type *Type::meet_helper(const Type *t, bool include_speculative) const {
 779   if (isa_narrowoop() && t->isa_narrowoop()) {
 780     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 781     return result->make_narrowoop();
 782   }
 783   if (isa_narrowklass() && t->isa_narrowklass()) {
 784     const Type* result = make_ptr()->meet_helper(t->make_ptr(), include_speculative);
 785     return result->make_narrowklass();
 786   }
 787 
 788   const Type *this_t = maybe_remove_speculative(include_speculative);
 789   t = t->maybe_remove_speculative(include_speculative);
 790 
 791   const Type *mt = this_t->xmeet(t);
 792   if (isa_narrowoop() || t->isa_narrowoop()) return mt;
 793   if (isa_narrowklass() || t->isa_narrowklass()) return mt;
 794 #ifdef ASSERT
 795   assert(mt == t->xmeet(this_t), "meet not commutative");
 796   const Type* dual_join = mt->_dual;
 797   const Type *t2t    = dual_join->xmeet(t->_dual);
 798   const Type *t2this = dual_join->xmeet(this_t->_dual);
 799 
 800   // Interface meet Oop is Not Symmetric:
 801   // Interface:AnyNull meet Oop:AnyNull == Interface:AnyNull
 802   // Interface:NotNull meet Oop:NotNull == java/lang/Object:NotNull
 803 
 804   if( !interface_vs_oop(t) && (t2t != t->_dual || t2this != this_t->_dual) ) {
 805     tty->print_cr("=== Meet Not Symmetric ===");
 806     tty->print("t   =                   ");              t->dump(); tty->cr();
 807     tty->print("this=                   ");         this_t->dump(); tty->cr();
 808     tty->print("mt=(t meet this)=       ");             mt->dump(); tty->cr();
 809 
 810     tty->print("t_dual=                 ");       t->_dual->dump(); tty->cr();
 811     tty->print("this_dual=              ");  this_t->_dual->dump(); tty->cr();
 812     tty->print("mt_dual=                ");      mt->_dual->dump(); tty->cr();
 813 
 814     tty->print("mt_dual meet t_dual=    "); t2t           ->dump(); tty->cr();
 815     tty->print("mt_dual meet this_dual= "); t2this        ->dump(); tty->cr();
 816 
 817     fatal("meet not symmetric" );
 818   }
 819 #endif
 820   return mt;
 821 }
 822 
 823 //------------------------------xmeet------------------------------------------
 824 // Compute the MEET of two types.  It returns a new Type object.
 825 const Type *Type::xmeet( const Type *t ) const {
 826   // Perform a fast test for common case; meeting the same types together.
 827   if( this == t ) return this;  // Meeting same type-rep?
 828 
 829   // Meeting TOP with anything?
 830   if( _base == Top ) return t;
 831 
 832   // Meeting BOTTOM with anything?
 833   if( _base == Bottom ) return BOTTOM;
 834 
 835   // Current "this->_base" is one of: Bad, Multi, Control, Top,
 836   // Abio, Abstore, Floatxxx, Doublexxx, Bottom, lastype.
 837   switch (t->base()) {  // Switch on original type
 838 
 839   // Cut in half the number of cases I must handle.  Only need cases for when
 840   // the given enum "t->type" is less than or equal to the local enum "type".
 841   case FloatCon:
 842   case DoubleCon:
 843   case Int:
 844   case Long:
 845     return t->xmeet(this);
 846 
 847   case OopPtr:
 848     return t->xmeet(this);
 849 
 850   case InstPtr:
 851   case ValueTypePtr:
 852     return t->xmeet(this);
 853 
 854   case MetadataPtr:
 855   case KlassPtr:
 856     return t->xmeet(this);
 857 
 858   case AryPtr:
 859     return t->xmeet(this);
 860 
 861   case NarrowOop:
 862     return t->xmeet(this);
 863 
 864   case NarrowKlass:
 865     return t->xmeet(this);
 866 
 867   case ValueType:
 868     return t->xmeet(this);
 869 
 870   case Bad:                     // Type check
 871   default:                      // Bogus type not in lattice
 872     typerr(t);
 873     return Type::BOTTOM;
 874 
 875   case Bottom:                  // Ye Olde Default
 876     return t;
 877 
 878   case FloatTop:
 879     if( _base == FloatTop ) return this;
 880   case FloatBot:                // Float
 881     if( _base == FloatBot || _base == FloatTop ) return FLOAT;
 882     if( _base == DoubleTop || _base == DoubleBot ) return Type::BOTTOM;
 883     typerr(t);
 884     return Type::BOTTOM;
 885 
 886   case DoubleTop:
 887     if( _base == DoubleTop ) return this;
 888   case DoubleBot:               // Double
 889     if( _base == DoubleBot || _base == DoubleTop ) return DOUBLE;
 890     if( _base == FloatTop || _base == FloatBot ) return Type::BOTTOM;
 891     typerr(t);
 892     return Type::BOTTOM;
 893 
 894   // These next few cases must match exactly or it is a compile-time error.
 895   case Control:                 // Control of code
 896   case Abio:                    // State of world outside of program
 897   case Memory:
 898     if( _base == t->_base )  return this;
 899     typerr(t);
 900     return Type::BOTTOM;
 901 
 902   case Top:                     // Top of the lattice
 903     return this;
 904   }
 905 
 906   // The type is unchanged
 907   return this;
 908 }
 909 
 910 //-----------------------------filter------------------------------------------
 911 const Type *Type::filter_helper(const Type *kills, bool include_speculative) const {
 912   const Type* ft = join_helper(kills, include_speculative);
 913   if (ft->empty())
 914     return Type::TOP;           // Canonical empty value
 915   return ft;
 916 }
 917 
 918 //------------------------------xdual------------------------------------------
 919 // Compute dual right now.
 920 const Type::TYPES Type::dual_type[Type::lastype] = {
 921   Bad,          // Bad
 922   Control,      // Control
 923   Bottom,       // Top
 924   Bad,          // Int - handled in v-call
 925   Bad,          // Long - handled in v-call
 926   Half,         // Half
 927   Bad,          // NarrowOop - handled in v-call
 928   Bad,          // NarrowKlass - handled in v-call
 929 
 930   Bad,          // Tuple - handled in v-call
 931   Bad,          // Array - handled in v-call
 932   Bad,          // VectorS - handled in v-call
 933   Bad,          // VectorD - handled in v-call
 934   Bad,          // VectorX - handled in v-call
 935   Bad,          // VectorY - handled in v-call
 936   Bad,          // VectorZ - handled in v-call
 937   Bad,          // ValueType - handled in v-call
 938 
 939   Bad,          // AnyPtr - handled in v-call
 940   Bad,          // RawPtr - handled in v-call
 941   Bad,          // OopPtr - handled in v-call
 942   Bad,          // InstPtr - handled in v-call
 943   Bad,          // ValueTypePtr - handled in v-call
 944   Bad,          // AryPtr - handled in v-call
 945 
 946   Bad,          //  MetadataPtr - handled in v-call
 947   Bad,          // KlassPtr - handled in v-call
 948 
 949   Bad,          // Function - handled in v-call
 950   Abio,         // Abio
 951   Return_Address,// Return_Address
 952   Memory,       // Memory
 953   FloatBot,     // FloatTop
 954   FloatCon,     // FloatCon
 955   FloatTop,     // FloatBot
 956   DoubleBot,    // DoubleTop
 957   DoubleCon,    // DoubleCon
 958   DoubleTop,    // DoubleBot
 959   Top           // Bottom
 960 };
 961 
 962 const Type *Type::xdual() const {
 963   // Note: the base() accessor asserts the sanity of _base.
 964   assert(_type_info[base()].dual_type != Bad, "implement with v-call");
 965   return new Type(_type_info[_base].dual_type);
 966 }
 967 
 968 //------------------------------has_memory-------------------------------------
 969 bool Type::has_memory() const {
 970   Type::TYPES tx = base();
 971   if (tx == Memory) return true;
 972   if (tx == Tuple) {
 973     const TypeTuple *t = is_tuple();
 974     for (uint i=0; i < t->cnt(); i++) {
 975       tx = t->field_at(i)->base();
 976       if (tx == Memory)  return true;
 977     }
 978   }
 979   return false;
 980 }
 981 
 982 #ifndef PRODUCT
 983 //------------------------------dump2------------------------------------------
 984 void Type::dump2( Dict &d, uint depth, outputStream *st ) const {
 985   st->print("%s", _type_info[_base].msg);
 986 }
 987 
 988 //------------------------------dump-------------------------------------------
 989 void Type::dump_on(outputStream *st) const {
 990   ResourceMark rm;
 991   Dict d(cmpkey,hashkey);       // Stop recursive type dumping
 992   dump2(d,1, st);
 993   if (is_ptr_to_narrowoop()) {
 994     st->print(" [narrow]");
 995   } else if (is_ptr_to_narrowklass()) {
 996     st->print(" [narrowklass]");
 997   }
 998 }
 999 #endif
1000 
1001 //------------------------------singleton--------------------------------------
1002 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1003 // constants (Ldi nodes).  Singletons are integer, float or double constants.
1004 bool Type::singleton(void) const {
1005   return _base == Top || _base == Half;
1006 }
1007 
1008 //------------------------------empty------------------------------------------
1009 // TRUE if Type is a type with no values, FALSE otherwise.
1010 bool Type::empty(void) const {
1011   switch (_base) {
1012   case DoubleTop:
1013   case FloatTop:
1014   case Top:
1015     return true;
1016 
1017   case Half:
1018   case Abio:
1019   case Return_Address:
1020   case Memory:
1021   case Bottom:
1022   case FloatBot:
1023   case DoubleBot:
1024     return false;  // never a singleton, therefore never empty
1025   }
1026 
1027   ShouldNotReachHere();
1028   return false;
1029 }
1030 
1031 //------------------------------dump_stats-------------------------------------
1032 // Dump collected statistics to stderr
1033 #ifndef PRODUCT
1034 void Type::dump_stats() {
1035   tty->print("Types made: %d\n", type_dict()->Size());
1036 }
1037 #endif
1038 
1039 //------------------------------typerr-----------------------------------------
1040 void Type::typerr( const Type *t ) const {
1041 #ifndef PRODUCT
1042   tty->print("\nError mixing types: ");
1043   dump();
1044   tty->print(" and ");
1045   t->dump();
1046   tty->print("\n");
1047 #endif
1048   ShouldNotReachHere();
1049 }
1050 
1051 
1052 //=============================================================================
1053 // Convenience common pre-built types.
1054 const TypeF *TypeF::ZERO;       // Floating point zero
1055 const TypeF *TypeF::ONE;        // Floating point one
1056 
1057 //------------------------------make-------------------------------------------
1058 // Create a float constant
1059 const TypeF *TypeF::make(float f) {
1060   return (TypeF*)(new TypeF(f))->hashcons();
1061 }
1062 
1063 //------------------------------meet-------------------------------------------
1064 // Compute the MEET of two types.  It returns a new Type object.
1065 const Type *TypeF::xmeet( const Type *t ) const {
1066   // Perform a fast test for common case; meeting the same types together.
1067   if( this == t ) return this;  // Meeting same type-rep?
1068 
1069   // Current "this->_base" is FloatCon
1070   switch (t->base()) {          // Switch on original type
1071   case AnyPtr:                  // Mixing with oops happens when javac
1072   case RawPtr:                  // reuses local variables
1073   case OopPtr:
1074   case InstPtr:
1075   case ValueTypePtr:
1076   case AryPtr:
1077   case MetadataPtr:
1078   case KlassPtr:
1079   case NarrowOop:
1080   case NarrowKlass:
1081   case Int:
1082   case Long:
1083   case DoubleTop:
1084   case DoubleCon:
1085   case DoubleBot:
1086   case Bottom:                  // Ye Olde Default
1087     return Type::BOTTOM;
1088 
1089   case FloatBot:
1090     return t;
1091 
1092   default:                      // All else is a mistake
1093     typerr(t);
1094 
1095   case FloatCon:                // Float-constant vs Float-constant?
1096     if( jint_cast(_f) != jint_cast(t->getf()) )         // unequal constants?
1097                                 // must compare bitwise as positive zero, negative zero and NaN have
1098                                 // all the same representation in C++
1099       return FLOAT;             // Return generic float
1100                                 // Equal constants
1101   case Top:
1102   case FloatTop:
1103     break;                      // Return the float constant
1104   }
1105   return this;                  // Return the float constant
1106 }
1107 
1108 //------------------------------xdual------------------------------------------
1109 // Dual: symmetric
1110 const Type *TypeF::xdual() const {
1111   return this;
1112 }
1113 
1114 //------------------------------eq---------------------------------------------
1115 // Structural equality check for Type representations
1116 bool TypeF::eq(const Type *t) const {
1117   // Bitwise comparison to distinguish between +/-0. These values must be treated
1118   // as different to be consistent with C1 and the interpreter.
1119   return (jint_cast(_f) == jint_cast(t->getf()));
1120 }
1121 
1122 //------------------------------hash-------------------------------------------
1123 // Type-specific hashing function.
1124 int TypeF::hash(void) const {
1125   return *(int*)(&_f);
1126 }
1127 
1128 //------------------------------is_finite--------------------------------------
1129 // Has a finite value
1130 bool TypeF::is_finite() const {
1131   return g_isfinite(getf()) != 0;
1132 }
1133 
1134 //------------------------------is_nan-----------------------------------------
1135 // Is not a number (NaN)
1136 bool TypeF::is_nan()    const {
1137   return g_isnan(getf()) != 0;
1138 }
1139 
1140 //------------------------------dump2------------------------------------------
1141 // Dump float constant Type
1142 #ifndef PRODUCT
1143 void TypeF::dump2( Dict &d, uint depth, outputStream *st ) const {
1144   Type::dump2(d,depth, st);
1145   st->print("%f", _f);
1146 }
1147 #endif
1148 
1149 //------------------------------singleton--------------------------------------
1150 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1151 // constants (Ldi nodes).  Singletons are integer, float or double constants
1152 // or a single symbol.
1153 bool TypeF::singleton(void) const {
1154   return true;                  // Always a singleton
1155 }
1156 
1157 bool TypeF::empty(void) const {
1158   return false;                 // always exactly a singleton
1159 }
1160 
1161 //=============================================================================
1162 // Convenience common pre-built types.
1163 const TypeD *TypeD::ZERO;       // Floating point zero
1164 const TypeD *TypeD::ONE;        // Floating point one
1165 
1166 //------------------------------make-------------------------------------------
1167 const TypeD *TypeD::make(double d) {
1168   return (TypeD*)(new TypeD(d))->hashcons();
1169 }
1170 
1171 //------------------------------meet-------------------------------------------
1172 // Compute the MEET of two types.  It returns a new Type object.
1173 const Type *TypeD::xmeet( const Type *t ) const {
1174   // Perform a fast test for common case; meeting the same types together.
1175   if( this == t ) return this;  // Meeting same type-rep?
1176 
1177   // Current "this->_base" is DoubleCon
1178   switch (t->base()) {          // Switch on original type
1179   case AnyPtr:                  // Mixing with oops happens when javac
1180   case RawPtr:                  // reuses local variables
1181   case OopPtr:
1182   case InstPtr:
1183   case ValueTypePtr:
1184   case AryPtr:
1185   case MetadataPtr:
1186   case KlassPtr:
1187   case NarrowOop:
1188   case NarrowKlass:
1189   case Int:
1190   case Long:
1191   case FloatTop:
1192   case FloatCon:
1193   case FloatBot:
1194   case Bottom:                  // Ye Olde Default
1195     return Type::BOTTOM;
1196 
1197   case DoubleBot:
1198     return t;
1199 
1200   default:                      // All else is a mistake
1201     typerr(t);
1202 
1203   case DoubleCon:               // Double-constant vs Double-constant?
1204     if( jlong_cast(_d) != jlong_cast(t->getd()) )       // unequal constants? (see comment in TypeF::xmeet)
1205       return DOUBLE;            // Return generic double
1206   case Top:
1207   case DoubleTop:
1208     break;
1209   }
1210   return this;                  // Return the double constant
1211 }
1212 
1213 //------------------------------xdual------------------------------------------
1214 // Dual: symmetric
1215 const Type *TypeD::xdual() const {
1216   return this;
1217 }
1218 
1219 //------------------------------eq---------------------------------------------
1220 // Structural equality check for Type representations
1221 bool TypeD::eq(const Type *t) const {
1222   // Bitwise comparison to distinguish between +/-0. These values must be treated
1223   // as different to be consistent with C1 and the interpreter.
1224   return (jlong_cast(_d) == jlong_cast(t->getd()));
1225 }
1226 
1227 //------------------------------hash-------------------------------------------
1228 // Type-specific hashing function.
1229 int TypeD::hash(void) const {
1230   return *(int*)(&_d);
1231 }
1232 
1233 //------------------------------is_finite--------------------------------------
1234 // Has a finite value
1235 bool TypeD::is_finite() const {
1236   return g_isfinite(getd()) != 0;
1237 }
1238 
1239 //------------------------------is_nan-----------------------------------------
1240 // Is not a number (NaN)
1241 bool TypeD::is_nan()    const {
1242   return g_isnan(getd()) != 0;
1243 }
1244 
1245 //------------------------------dump2------------------------------------------
1246 // Dump double constant Type
1247 #ifndef PRODUCT
1248 void TypeD::dump2( Dict &d, uint depth, outputStream *st ) const {
1249   Type::dump2(d,depth,st);
1250   st->print("%f", _d);
1251 }
1252 #endif
1253 
1254 //------------------------------singleton--------------------------------------
1255 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1256 // constants (Ldi nodes).  Singletons are integer, float or double constants
1257 // or a single symbol.
1258 bool TypeD::singleton(void) const {
1259   return true;                  // Always a singleton
1260 }
1261 
1262 bool TypeD::empty(void) const {
1263   return false;                 // always exactly a singleton
1264 }
1265 
1266 //=============================================================================
1267 // Convience common pre-built types.
1268 const TypeInt *TypeInt::MINUS_1;// -1
1269 const TypeInt *TypeInt::ZERO;   // 0
1270 const TypeInt *TypeInt::ONE;    // 1
1271 const TypeInt *TypeInt::BOOL;   // 0 or 1, FALSE or TRUE.
1272 const TypeInt *TypeInt::CC;     // -1,0 or 1, condition codes
1273 const TypeInt *TypeInt::CC_LT;  // [-1]  == MINUS_1
1274 const TypeInt *TypeInt::CC_GT;  // [1]   == ONE
1275 const TypeInt *TypeInt::CC_EQ;  // [0]   == ZERO
1276 const TypeInt *TypeInt::CC_LE;  // [-1,0]
1277 const TypeInt *TypeInt::CC_GE;  // [0,1] == BOOL (!)
1278 const TypeInt *TypeInt::BYTE;   // Bytes, -128 to 127
1279 const TypeInt *TypeInt::UBYTE;  // Unsigned Bytes, 0 to 255
1280 const TypeInt *TypeInt::CHAR;   // Java chars, 0-65535
1281 const TypeInt *TypeInt::SHORT;  // Java shorts, -32768-32767
1282 const TypeInt *TypeInt::POS;    // Positive 32-bit integers or zero
1283 const TypeInt *TypeInt::POS1;   // Positive 32-bit integers
1284 const TypeInt *TypeInt::INT;    // 32-bit integers
1285 const TypeInt *TypeInt::SYMINT; // symmetric range [-max_jint..max_jint]
1286 const TypeInt *TypeInt::TYPE_DOMAIN; // alias for TypeInt::INT
1287 
1288 //------------------------------TypeInt----------------------------------------
1289 TypeInt::TypeInt( jint lo, jint hi, int w ) : Type(Int), _lo(lo), _hi(hi), _widen(w) {
1290 }
1291 
1292 //------------------------------make-------------------------------------------
1293 const TypeInt *TypeInt::make( jint lo ) {
1294   return (TypeInt*)(new TypeInt(lo,lo,WidenMin))->hashcons();
1295 }
1296 
1297 static int normalize_int_widen( jint lo, jint hi, int w ) {
1298   // Certain normalizations keep us sane when comparing types.
1299   // The 'SMALLINT' covers constants and also CC and its relatives.
1300   if (lo <= hi) {
1301     if (((juint)hi - lo) <= SMALLINT)  w = Type::WidenMin;
1302     if (((juint)hi - lo) >= max_juint) w = Type::WidenMax; // TypeInt::INT
1303   } else {
1304     if (((juint)lo - hi) <= SMALLINT)  w = Type::WidenMin;
1305     if (((juint)lo - hi) >= max_juint) w = Type::WidenMin; // dual TypeInt::INT
1306   }
1307   return w;
1308 }
1309 
1310 const TypeInt *TypeInt::make( jint lo, jint hi, int w ) {
1311   w = normalize_int_widen(lo, hi, w);
1312   return (TypeInt*)(new TypeInt(lo,hi,w))->hashcons();
1313 }
1314 
1315 //------------------------------meet-------------------------------------------
1316 // Compute the MEET of two types.  It returns a new Type representation object
1317 // with reference count equal to the number of Types pointing at it.
1318 // Caller should wrap a Types around it.
1319 const Type *TypeInt::xmeet( const Type *t ) const {
1320   // Perform a fast test for common case; meeting the same types together.
1321   if( this == t ) return this;  // Meeting same type?
1322 
1323   // Currently "this->_base" is a TypeInt
1324   switch (t->base()) {          // Switch on original type
1325   case AnyPtr:                  // Mixing with oops happens when javac
1326   case RawPtr:                  // reuses local variables
1327   case OopPtr:
1328   case InstPtr:
1329   case ValueTypePtr:
1330   case AryPtr:
1331   case MetadataPtr:
1332   case KlassPtr:
1333   case NarrowOop:
1334   case NarrowKlass:
1335   case Long:
1336   case FloatTop:
1337   case FloatCon:
1338   case FloatBot:
1339   case DoubleTop:
1340   case DoubleCon:
1341   case DoubleBot:
1342   case Bottom:                  // Ye Olde Default
1343     return Type::BOTTOM;
1344   default:                      // All else is a mistake
1345     typerr(t);
1346   case Top:                     // No change
1347     return this;
1348   case Int:                     // Int vs Int?
1349     break;
1350   }
1351 
1352   // Expand covered set
1353   const TypeInt *r = t->is_int();
1354   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1355 }
1356 
1357 //------------------------------xdual------------------------------------------
1358 // Dual: reverse hi & lo; flip widen
1359 const Type *TypeInt::xdual() const {
1360   int w = normalize_int_widen(_hi,_lo, WidenMax-_widen);
1361   return new TypeInt(_hi,_lo,w);
1362 }
1363 
1364 //------------------------------widen------------------------------------------
1365 // Only happens for optimistic top-down optimizations.
1366 const Type *TypeInt::widen( const Type *old, const Type* limit ) const {
1367   // Coming from TOP or such; no widening
1368   if( old->base() != Int ) return this;
1369   const TypeInt *ot = old->is_int();
1370 
1371   // If new guy is equal to old guy, no widening
1372   if( _lo == ot->_lo && _hi == ot->_hi )
1373     return old;
1374 
1375   // If new guy contains old, then we widened
1376   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1377     // New contains old
1378     // If new guy is already wider than old, no widening
1379     if( _widen > ot->_widen ) return this;
1380     // If old guy was a constant, do not bother
1381     if (ot->_lo == ot->_hi)  return this;
1382     // Now widen new guy.
1383     // Check for widening too far
1384     if (_widen == WidenMax) {
1385       int max = max_jint;
1386       int min = min_jint;
1387       if (limit->isa_int()) {
1388         max = limit->is_int()->_hi;
1389         min = limit->is_int()->_lo;
1390       }
1391       if (min < _lo && _hi < max) {
1392         // If neither endpoint is extremal yet, push out the endpoint
1393         // which is closer to its respective limit.
1394         if (_lo >= 0 ||                 // easy common case
1395             (juint)(_lo - min) >= (juint)(max - _hi)) {
1396           // Try to widen to an unsigned range type of 31 bits:
1397           return make(_lo, max, WidenMax);
1398         } else {
1399           return make(min, _hi, WidenMax);
1400         }
1401       }
1402       return TypeInt::INT;
1403     }
1404     // Returned widened new guy
1405     return make(_lo,_hi,_widen+1);
1406   }
1407 
1408   // If old guy contains new, then we probably widened too far & dropped to
1409   // bottom.  Return the wider fellow.
1410   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1411     return old;
1412 
1413   //fatal("Integer value range is not subset");
1414   //return this;
1415   return TypeInt::INT;
1416 }
1417 
1418 //------------------------------narrow---------------------------------------
1419 // Only happens for pessimistic optimizations.
1420 const Type *TypeInt::narrow( const Type *old ) const {
1421   if (_lo >= _hi)  return this;   // already narrow enough
1422   if (old == NULL)  return this;
1423   const TypeInt* ot = old->isa_int();
1424   if (ot == NULL)  return this;
1425   jint olo = ot->_lo;
1426   jint ohi = ot->_hi;
1427 
1428   // If new guy is equal to old guy, no narrowing
1429   if (_lo == olo && _hi == ohi)  return old;
1430 
1431   // If old guy was maximum range, allow the narrowing
1432   if (olo == min_jint && ohi == max_jint)  return this;
1433 
1434   if (_lo < olo || _hi > ohi)
1435     return this;                // doesn't narrow; pretty wierd
1436 
1437   // The new type narrows the old type, so look for a "death march".
1438   // See comments on PhaseTransform::saturate.
1439   juint nrange = (juint)_hi - _lo;
1440   juint orange = (juint)ohi - olo;
1441   if (nrange < max_juint - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1442     // Use the new type only if the range shrinks a lot.
1443     // We do not want the optimizer computing 2^31 point by point.
1444     return old;
1445   }
1446 
1447   return this;
1448 }
1449 
1450 //-----------------------------filter------------------------------------------
1451 const Type *TypeInt::filter_helper(const Type *kills, bool include_speculative) const {
1452   const TypeInt* ft = join_helper(kills, include_speculative)->isa_int();
1453   if (ft == NULL || ft->empty())
1454     return Type::TOP;           // Canonical empty value
1455   if (ft->_widen < this->_widen) {
1456     // Do not allow the value of kill->_widen to affect the outcome.
1457     // The widen bits must be allowed to run freely through the graph.
1458     ft = TypeInt::make(ft->_lo, ft->_hi, this->_widen);
1459   }
1460   return ft;
1461 }
1462 
1463 //------------------------------eq---------------------------------------------
1464 // Structural equality check for Type representations
1465 bool TypeInt::eq( const Type *t ) const {
1466   const TypeInt *r = t->is_int(); // Handy access
1467   return r->_lo == _lo && r->_hi == _hi && r->_widen == _widen;
1468 }
1469 
1470 //------------------------------hash-------------------------------------------
1471 // Type-specific hashing function.
1472 int TypeInt::hash(void) const {
1473   return java_add(java_add(_lo, _hi), java_add(_widen, (int)Type::Int));
1474 }
1475 
1476 //------------------------------is_finite--------------------------------------
1477 // Has a finite value
1478 bool TypeInt::is_finite() const {
1479   return true;
1480 }
1481 
1482 //------------------------------dump2------------------------------------------
1483 // Dump TypeInt
1484 #ifndef PRODUCT
1485 static const char* intname(char* buf, jint n) {
1486   if (n == min_jint)
1487     return "min";
1488   else if (n < min_jint + 10000)
1489     sprintf(buf, "min+" INT32_FORMAT, n - min_jint);
1490   else if (n == max_jint)
1491     return "max";
1492   else if (n > max_jint - 10000)
1493     sprintf(buf, "max-" INT32_FORMAT, max_jint - n);
1494   else
1495     sprintf(buf, INT32_FORMAT, n);
1496   return buf;
1497 }
1498 
1499 void TypeInt::dump2( Dict &d, uint depth, outputStream *st ) const {
1500   char buf[40], buf2[40];
1501   if (_lo == min_jint && _hi == max_jint)
1502     st->print("int");
1503   else if (is_con())
1504     st->print("int:%s", intname(buf, get_con()));
1505   else if (_lo == BOOL->_lo && _hi == BOOL->_hi)
1506     st->print("bool");
1507   else if (_lo == BYTE->_lo && _hi == BYTE->_hi)
1508     st->print("byte");
1509   else if (_lo == CHAR->_lo && _hi == CHAR->_hi)
1510     st->print("char");
1511   else if (_lo == SHORT->_lo && _hi == SHORT->_hi)
1512     st->print("short");
1513   else if (_hi == max_jint)
1514     st->print("int:>=%s", intname(buf, _lo));
1515   else if (_lo == min_jint)
1516     st->print("int:<=%s", intname(buf, _hi));
1517   else
1518     st->print("int:%s..%s", intname(buf, _lo), intname(buf2, _hi));
1519 
1520   if (_widen != 0 && this != TypeInt::INT)
1521     st->print(":%.*s", _widen, "wwww");
1522 }
1523 #endif
1524 
1525 //------------------------------singleton--------------------------------------
1526 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1527 // constants.
1528 bool TypeInt::singleton(void) const {
1529   return _lo >= _hi;
1530 }
1531 
1532 bool TypeInt::empty(void) const {
1533   return _lo > _hi;
1534 }
1535 
1536 //=============================================================================
1537 // Convenience common pre-built types.
1538 const TypeLong *TypeLong::MINUS_1;// -1
1539 const TypeLong *TypeLong::ZERO; // 0
1540 const TypeLong *TypeLong::ONE;  // 1
1541 const TypeLong *TypeLong::POS;  // >=0
1542 const TypeLong *TypeLong::LONG; // 64-bit integers
1543 const TypeLong *TypeLong::INT;  // 32-bit subrange
1544 const TypeLong *TypeLong::UINT; // 32-bit unsigned subrange
1545 const TypeLong *TypeLong::TYPE_DOMAIN; // alias for TypeLong::LONG
1546 
1547 //------------------------------TypeLong---------------------------------------
1548 TypeLong::TypeLong( jlong lo, jlong hi, int w ) : Type(Long), _lo(lo), _hi(hi), _widen(w) {
1549 }
1550 
1551 //------------------------------make-------------------------------------------
1552 const TypeLong *TypeLong::make( jlong lo ) {
1553   return (TypeLong*)(new TypeLong(lo,lo,WidenMin))->hashcons();
1554 }
1555 
1556 static int normalize_long_widen( jlong lo, jlong hi, int w ) {
1557   // Certain normalizations keep us sane when comparing types.
1558   // The 'SMALLINT' covers constants.
1559   if (lo <= hi) {
1560     if (((julong)hi - lo) <= SMALLINT)   w = Type::WidenMin;
1561     if (((julong)hi - lo) >= max_julong) w = Type::WidenMax; // TypeLong::LONG
1562   } else {
1563     if (((julong)lo - hi) <= SMALLINT)   w = Type::WidenMin;
1564     if (((julong)lo - hi) >= max_julong) w = Type::WidenMin; // dual TypeLong::LONG
1565   }
1566   return w;
1567 }
1568 
1569 const TypeLong *TypeLong::make( jlong lo, jlong hi, int w ) {
1570   w = normalize_long_widen(lo, hi, w);
1571   return (TypeLong*)(new TypeLong(lo,hi,w))->hashcons();
1572 }
1573 
1574 
1575 //------------------------------meet-------------------------------------------
1576 // Compute the MEET of two types.  It returns a new Type representation object
1577 // with reference count equal to the number of Types pointing at it.
1578 // Caller should wrap a Types around it.
1579 const Type *TypeLong::xmeet( const Type *t ) const {
1580   // Perform a fast test for common case; meeting the same types together.
1581   if( this == t ) return this;  // Meeting same type?
1582 
1583   // Currently "this->_base" is a TypeLong
1584   switch (t->base()) {          // Switch on original type
1585   case AnyPtr:                  // Mixing with oops happens when javac
1586   case RawPtr:                  // reuses local variables
1587   case OopPtr:
1588   case InstPtr:
1589   case ValueTypePtr:
1590   case AryPtr:
1591   case MetadataPtr:
1592   case KlassPtr:
1593   case NarrowOop:
1594   case NarrowKlass:
1595   case Int:
1596   case FloatTop:
1597   case FloatCon:
1598   case FloatBot:
1599   case DoubleTop:
1600   case DoubleCon:
1601   case DoubleBot:
1602   case Bottom:                  // Ye Olde Default
1603     return Type::BOTTOM;
1604   default:                      // All else is a mistake
1605     typerr(t);
1606   case Top:                     // No change
1607     return this;
1608   case Long:                    // Long vs Long?
1609     break;
1610   }
1611 
1612   // Expand covered set
1613   const TypeLong *r = t->is_long(); // Turn into a TypeLong
1614   return make( MIN2(_lo,r->_lo), MAX2(_hi,r->_hi), MAX2(_widen,r->_widen) );
1615 }
1616 
1617 //------------------------------xdual------------------------------------------
1618 // Dual: reverse hi & lo; flip widen
1619 const Type *TypeLong::xdual() const {
1620   int w = normalize_long_widen(_hi,_lo, WidenMax-_widen);
1621   return new TypeLong(_hi,_lo,w);
1622 }
1623 
1624 //------------------------------widen------------------------------------------
1625 // Only happens for optimistic top-down optimizations.
1626 const Type *TypeLong::widen( const Type *old, const Type* limit ) const {
1627   // Coming from TOP or such; no widening
1628   if( old->base() != Long ) return this;
1629   const TypeLong *ot = old->is_long();
1630 
1631   // If new guy is equal to old guy, no widening
1632   if( _lo == ot->_lo && _hi == ot->_hi )
1633     return old;
1634 
1635   // If new guy contains old, then we widened
1636   if( _lo <= ot->_lo && _hi >= ot->_hi ) {
1637     // New contains old
1638     // If new guy is already wider than old, no widening
1639     if( _widen > ot->_widen ) return this;
1640     // If old guy was a constant, do not bother
1641     if (ot->_lo == ot->_hi)  return this;
1642     // Now widen new guy.
1643     // Check for widening too far
1644     if (_widen == WidenMax) {
1645       jlong max = max_jlong;
1646       jlong min = min_jlong;
1647       if (limit->isa_long()) {
1648         max = limit->is_long()->_hi;
1649         min = limit->is_long()->_lo;
1650       }
1651       if (min < _lo && _hi < max) {
1652         // If neither endpoint is extremal yet, push out the endpoint
1653         // which is closer to its respective limit.
1654         if (_lo >= 0 ||                 // easy common case
1655             ((julong)_lo - min) >= ((julong)max - _hi)) {
1656           // Try to widen to an unsigned range type of 32/63 bits:
1657           if (max >= max_juint && _hi < max_juint)
1658             return make(_lo, max_juint, WidenMax);
1659           else
1660             return make(_lo, max, WidenMax);
1661         } else {
1662           return make(min, _hi, WidenMax);
1663         }
1664       }
1665       return TypeLong::LONG;
1666     }
1667     // Returned widened new guy
1668     return make(_lo,_hi,_widen+1);
1669   }
1670 
1671   // If old guy contains new, then we probably widened too far & dropped to
1672   // bottom.  Return the wider fellow.
1673   if ( ot->_lo <= _lo && ot->_hi >= _hi )
1674     return old;
1675 
1676   //  fatal("Long value range is not subset");
1677   // return this;
1678   return TypeLong::LONG;
1679 }
1680 
1681 //------------------------------narrow----------------------------------------
1682 // Only happens for pessimistic optimizations.
1683 const Type *TypeLong::narrow( const Type *old ) const {
1684   if (_lo >= _hi)  return this;   // already narrow enough
1685   if (old == NULL)  return this;
1686   const TypeLong* ot = old->isa_long();
1687   if (ot == NULL)  return this;
1688   jlong olo = ot->_lo;
1689   jlong ohi = ot->_hi;
1690 
1691   // If new guy is equal to old guy, no narrowing
1692   if (_lo == olo && _hi == ohi)  return old;
1693 
1694   // If old guy was maximum range, allow the narrowing
1695   if (olo == min_jlong && ohi == max_jlong)  return this;
1696 
1697   if (_lo < olo || _hi > ohi)
1698     return this;                // doesn't narrow; pretty wierd
1699 
1700   // The new type narrows the old type, so look for a "death march".
1701   // See comments on PhaseTransform::saturate.
1702   julong nrange = _hi - _lo;
1703   julong orange = ohi - olo;
1704   if (nrange < max_julong - 1 && nrange > (orange >> 1) + (SMALLINT*2)) {
1705     // Use the new type only if the range shrinks a lot.
1706     // We do not want the optimizer computing 2^31 point by point.
1707     return old;
1708   }
1709 
1710   return this;
1711 }
1712 
1713 //-----------------------------filter------------------------------------------
1714 const Type *TypeLong::filter_helper(const Type *kills, bool include_speculative) const {
1715   const TypeLong* ft = join_helper(kills, include_speculative)->isa_long();
1716   if (ft == NULL || ft->empty())
1717     return Type::TOP;           // Canonical empty value
1718   if (ft->_widen < this->_widen) {
1719     // Do not allow the value of kill->_widen to affect the outcome.
1720     // The widen bits must be allowed to run freely through the graph.
1721     ft = TypeLong::make(ft->_lo, ft->_hi, this->_widen);
1722   }
1723   return ft;
1724 }
1725 
1726 //------------------------------eq---------------------------------------------
1727 // Structural equality check for Type representations
1728 bool TypeLong::eq( const Type *t ) const {
1729   const TypeLong *r = t->is_long(); // Handy access
1730   return r->_lo == _lo &&  r->_hi == _hi  && r->_widen == _widen;
1731 }
1732 
1733 //------------------------------hash-------------------------------------------
1734 // Type-specific hashing function.
1735 int TypeLong::hash(void) const {
1736   return (int)(_lo+_hi+_widen+(int)Type::Long);
1737 }
1738 
1739 //------------------------------is_finite--------------------------------------
1740 // Has a finite value
1741 bool TypeLong::is_finite() const {
1742   return true;
1743 }
1744 
1745 //------------------------------dump2------------------------------------------
1746 // Dump TypeLong
1747 #ifndef PRODUCT
1748 static const char* longnamenear(jlong x, const char* xname, char* buf, jlong n) {
1749   if (n > x) {
1750     if (n >= x + 10000)  return NULL;
1751     sprintf(buf, "%s+" JLONG_FORMAT, xname, n - x);
1752   } else if (n < x) {
1753     if (n <= x - 10000)  return NULL;
1754     sprintf(buf, "%s-" JLONG_FORMAT, xname, x - n);
1755   } else {
1756     return xname;
1757   }
1758   return buf;
1759 }
1760 
1761 static const char* longname(char* buf, jlong n) {
1762   const char* str;
1763   if (n == min_jlong)
1764     return "min";
1765   else if (n < min_jlong + 10000)
1766     sprintf(buf, "min+" JLONG_FORMAT, n - min_jlong);
1767   else if (n == max_jlong)
1768     return "max";
1769   else if (n > max_jlong - 10000)
1770     sprintf(buf, "max-" JLONG_FORMAT, max_jlong - n);
1771   else if ((str = longnamenear(max_juint, "maxuint", buf, n)) != NULL)
1772     return str;
1773   else if ((str = longnamenear(max_jint, "maxint", buf, n)) != NULL)
1774     return str;
1775   else if ((str = longnamenear(min_jint, "minint", buf, n)) != NULL)
1776     return str;
1777   else
1778     sprintf(buf, JLONG_FORMAT, n);
1779   return buf;
1780 }
1781 
1782 void TypeLong::dump2( Dict &d, uint depth, outputStream *st ) const {
1783   char buf[80], buf2[80];
1784   if (_lo == min_jlong && _hi == max_jlong)
1785     st->print("long");
1786   else if (is_con())
1787     st->print("long:%s", longname(buf, get_con()));
1788   else if (_hi == max_jlong)
1789     st->print("long:>=%s", longname(buf, _lo));
1790   else if (_lo == min_jlong)
1791     st->print("long:<=%s", longname(buf, _hi));
1792   else
1793     st->print("long:%s..%s", longname(buf, _lo), longname(buf2, _hi));
1794 
1795   if (_widen != 0 && this != TypeLong::LONG)
1796     st->print(":%.*s", _widen, "wwww");
1797 }
1798 #endif
1799 
1800 //------------------------------singleton--------------------------------------
1801 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
1802 // constants
1803 bool TypeLong::singleton(void) const {
1804   return _lo >= _hi;
1805 }
1806 
1807 bool TypeLong::empty(void) const {
1808   return _lo > _hi;
1809 }
1810 
1811 //=============================================================================
1812 // Convenience common pre-built types.
1813 const TypeTuple *TypeTuple::IFBOTH;     // Return both arms of IF as reachable
1814 const TypeTuple *TypeTuple::IFFALSE;
1815 const TypeTuple *TypeTuple::IFTRUE;
1816 const TypeTuple *TypeTuple::IFNEITHER;
1817 const TypeTuple *TypeTuple::LOOPBODY;
1818 const TypeTuple *TypeTuple::MEMBAR;
1819 const TypeTuple *TypeTuple::STORECONDITIONAL;
1820 const TypeTuple *TypeTuple::START_I2C;
1821 const TypeTuple *TypeTuple::INT_PAIR;
1822 const TypeTuple *TypeTuple::LONG_PAIR;
1823 const TypeTuple *TypeTuple::INT_CC_PAIR;
1824 const TypeTuple *TypeTuple::LONG_CC_PAIR;
1825 
1826 
1827 //------------------------------make-------------------------------------------
1828 // Make a TypeTuple from the range of a method signature
1829 const TypeTuple *TypeTuple::make_range(ciSignature* sig) {
1830   ciType* return_type = sig->return_type();
1831   uint arg_cnt = return_type->size();
1832   const Type **field_array = fields(arg_cnt);
1833   switch (return_type->basic_type()) {
1834   case T_LONG:
1835     field_array[TypeFunc::Parms]   = TypeLong::LONG;
1836     field_array[TypeFunc::Parms+1] = Type::HALF;
1837     break;
1838   case T_DOUBLE:
1839     field_array[TypeFunc::Parms]   = Type::DOUBLE;
1840     field_array[TypeFunc::Parms+1] = Type::HALF;
1841     break;
1842   case T_OBJECT:
1843   case T_VALUETYPE:
1844   case T_ARRAY:
1845   case T_BOOLEAN:
1846   case T_CHAR:
1847   case T_FLOAT:
1848   case T_BYTE:
1849   case T_SHORT:
1850   case T_INT:
1851     field_array[TypeFunc::Parms] = get_const_type(return_type);
1852     break;
1853   case T_VOID:
1854     break;
1855   default:
1856     ShouldNotReachHere();
1857   }
1858   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt, field_array))->hashcons();
1859 }
1860 
1861 static void collect_value_fields(ciValueKlass* vk, const Type**& field_array, uint& pos) {
1862   for (int j = 0; j < vk->nof_nonstatic_fields(); j++) {
1863     ciField* f = vk->nonstatic_field_at(j);
1864     BasicType bt = f->type()->basic_type();
1865     assert(bt < T_VALUETYPE && bt >= T_BOOLEAN, "not yet supported");
1866     field_array[pos++] = Type::get_const_type(f->type());
1867     if (bt == T_LONG || bt == T_DOUBLE) {
1868       field_array[pos++] = Type::HALF;
1869     }
1870   }
1871 }
1872 
1873 // Make a TypeTuple from the domain of a method signature
1874 const TypeTuple *TypeTuple::make_domain(ciInstanceKlass* recv, ciSignature* sig, bool vt_fields_as_args) {
1875   uint arg_cnt = sig->size();
1876 
1877   int vt_extra = 0;
1878   if (vt_fields_as_args) {
1879     for (int i = 0; i < sig->count(); i++) {
1880       ciType* type = sig->type_at(i);
1881       if (type->basic_type() == T_VALUETYPE) {
1882         assert(type->is_valuetype(), "inconsistent type");
1883         ciValueKlass* vk = (ciValueKlass*)type;
1884         vt_extra += vk->value_arg_slots()-1;
1885       }
1886     }
1887     assert(((int)arg_cnt) + vt_extra >= 0, "negative number of actual arguments?");
1888   }
1889 
1890   uint pos = TypeFunc::Parms;
1891   const Type **field_array;
1892   if (recv != NULL) {
1893     arg_cnt++;
1894     if (vt_fields_as_args && recv->is_valuetype()) {
1895       ciValueKlass* vk = (ciValueKlass*)recv;
1896       vt_extra += vk->value_arg_slots()-1;
1897     }
1898     field_array = fields(arg_cnt + vt_extra);
1899     // Use get_const_type here because it respects UseUniqueSubclasses:
1900     if (vt_fields_as_args && recv->is_valuetype()) {
1901       ciValueKlass* vk = (ciValueKlass*)recv;
1902       collect_value_fields(vk, field_array, pos);
1903     } else {
1904       field_array[pos++] = get_const_type(recv)->join_speculative(TypePtr::NOTNULL);
1905     }
1906   } else {
1907     field_array = fields(arg_cnt + vt_extra);
1908   }
1909 
1910   int i = 0;
1911   while (pos < TypeFunc::Parms + arg_cnt + vt_extra) {
1912     ciType* type = sig->type_at(i);
1913 
1914     switch (type->basic_type()) {
1915     case T_LONG:
1916       field_array[pos++] = TypeLong::LONG;
1917       field_array[pos++] = Type::HALF;
1918       break;
1919     case T_DOUBLE:
1920       field_array[pos++] = Type::DOUBLE;
1921       field_array[pos++] = Type::HALF;
1922       break;
1923     case T_OBJECT:
1924     case T_ARRAY:
1925     case T_BOOLEAN:
1926     case T_CHAR:
1927     case T_FLOAT:
1928     case T_BYTE:
1929     case T_SHORT:
1930     case T_INT:
1931       field_array[pos++] = get_const_type(type);
1932       break;
1933     case T_VALUETYPE: {
1934       assert(type->is_valuetype(), "inconsistent type");
1935       if (vt_fields_as_args) {
1936         ciValueKlass* vk = (ciValueKlass*)type;
1937         collect_value_fields(vk, field_array, pos);
1938       } else {
1939         field_array[pos++] = get_const_type(type);
1940       }
1941       break;
1942     }
1943     default:
1944       ShouldNotReachHere();
1945     }
1946     i++;
1947   }
1948   assert(pos == TypeFunc::Parms + arg_cnt + vt_extra, "wrong number of arguments");
1949 
1950   return (TypeTuple*)(new TypeTuple(TypeFunc::Parms + arg_cnt + vt_extra, field_array))->hashcons();
1951 }
1952 
1953 const TypeTuple *TypeTuple::make( uint cnt, const Type **fields ) {
1954   return (TypeTuple*)(new TypeTuple(cnt,fields))->hashcons();
1955 }
1956 
1957 //------------------------------fields-----------------------------------------
1958 // Subroutine call type with space allocated for argument types
1959 // Memory for Control, I_O, Memory, FramePtr, and ReturnAdr is allocated implicitly
1960 const Type **TypeTuple::fields( uint arg_cnt ) {
1961   const Type **flds = (const Type **)(Compile::current()->type_arena()->Amalloc_4((TypeFunc::Parms+arg_cnt)*sizeof(Type*) ));
1962   flds[TypeFunc::Control  ] = Type::CONTROL;
1963   flds[TypeFunc::I_O      ] = Type::ABIO;
1964   flds[TypeFunc::Memory   ] = Type::MEMORY;
1965   flds[TypeFunc::FramePtr ] = TypeRawPtr::BOTTOM;
1966   flds[TypeFunc::ReturnAdr] = Type::RETURN_ADDRESS;
1967 
1968   return flds;
1969 }
1970 
1971 //------------------------------meet-------------------------------------------
1972 // Compute the MEET of two types.  It returns a new Type object.
1973 const Type *TypeTuple::xmeet( const Type *t ) const {
1974   // Perform a fast test for common case; meeting the same types together.
1975   if( this == t ) return this;  // Meeting same type-rep?
1976 
1977   // Current "this->_base" is Tuple
1978   switch (t->base()) {          // switch on original type
1979 
1980   case Bottom:                  // Ye Olde Default
1981     return t;
1982 
1983   default:                      // All else is a mistake
1984     typerr(t);
1985 
1986   case Tuple: {                 // Meeting 2 signatures?
1987     const TypeTuple *x = t->is_tuple();
1988     assert( _cnt == x->_cnt, "" );
1989     const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
1990     for( uint i=0; i<_cnt; i++ )
1991       fields[i] = field_at(i)->xmeet( x->field_at(i) );
1992     return TypeTuple::make(_cnt,fields);
1993   }
1994   case Top:
1995     break;
1996   }
1997   return this;                  // Return the double constant
1998 }
1999 
2000 //------------------------------xdual------------------------------------------
2001 // Dual: compute field-by-field dual
2002 const Type *TypeTuple::xdual() const {
2003   const Type **fields = (const Type **)(Compile::current()->type_arena()->Amalloc_4( _cnt*sizeof(Type*) ));
2004   for( uint i=0; i<_cnt; i++ )
2005     fields[i] = _fields[i]->dual();
2006   return new TypeTuple(_cnt,fields);
2007 }
2008 
2009 //------------------------------eq---------------------------------------------
2010 // Structural equality check for Type representations
2011 bool TypeTuple::eq( const Type *t ) const {
2012   const TypeTuple *s = (const TypeTuple *)t;
2013   if (_cnt != s->_cnt)  return false;  // Unequal field counts
2014   for (uint i = 0; i < _cnt; i++)
2015     if (field_at(i) != s->field_at(i)) // POINTER COMPARE!  NO RECURSION!
2016       return false;             // Missed
2017   return true;
2018 }
2019 
2020 //------------------------------hash-------------------------------------------
2021 // Type-specific hashing function.
2022 int TypeTuple::hash(void) const {
2023   intptr_t sum = _cnt;
2024   for( uint i=0; i<_cnt; i++ )
2025     sum += (intptr_t)_fields[i];     // Hash on pointers directly
2026   return sum;
2027 }
2028 
2029 //------------------------------dump2------------------------------------------
2030 // Dump signature Type
2031 #ifndef PRODUCT
2032 void TypeTuple::dump2( Dict &d, uint depth, outputStream *st ) const {
2033   st->print("{");
2034   if( !depth || d[this] ) {     // Check for recursive print
2035     st->print("...}");
2036     return;
2037   }
2038   d.Insert((void*)this, (void*)this);   // Stop recursion
2039   if( _cnt ) {
2040     uint i;
2041     for( i=0; i<_cnt-1; i++ ) {
2042       st->print("%d:", i);
2043       _fields[i]->dump2(d, depth-1, st);
2044       st->print(", ");
2045     }
2046     st->print("%d:", i);
2047     _fields[i]->dump2(d, depth-1, st);
2048   }
2049   st->print("}");
2050 }
2051 #endif
2052 
2053 //------------------------------singleton--------------------------------------
2054 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2055 // constants (Ldi nodes).  Singletons are integer, float or double constants
2056 // or a single symbol.
2057 bool TypeTuple::singleton(void) const {
2058   return false;                 // Never a singleton
2059 }
2060 
2061 bool TypeTuple::empty(void) const {
2062   for( uint i=0; i<_cnt; i++ ) {
2063     if (_fields[i]->empty())  return true;
2064   }
2065   return false;
2066 }
2067 
2068 //=============================================================================
2069 // Convenience common pre-built types.
2070 
2071 inline const TypeInt* normalize_array_size(const TypeInt* size) {
2072   // Certain normalizations keep us sane when comparing types.
2073   // We do not want arrayOop variables to differ only by the wideness
2074   // of their index types.  Pick minimum wideness, since that is the
2075   // forced wideness of small ranges anyway.
2076   if (size->_widen != Type::WidenMin)
2077     return TypeInt::make(size->_lo, size->_hi, Type::WidenMin);
2078   else
2079     return size;
2080 }
2081 
2082 //------------------------------make-------------------------------------------
2083 const TypeAry* TypeAry::make(const Type* elem, const TypeInt* size, bool stable) {
2084   if (UseCompressedOops && elem->isa_oopptr()) {
2085     elem = elem->make_narrowoop();
2086   }
2087   size = normalize_array_size(size);
2088   return (TypeAry*)(new TypeAry(elem,size,stable))->hashcons();
2089 }
2090 
2091 //------------------------------meet-------------------------------------------
2092 // Compute the MEET of two types.  It returns a new Type object.
2093 const Type *TypeAry::xmeet( const Type *t ) const {
2094   // Perform a fast test for common case; meeting the same types together.
2095   if( this == t ) return this;  // Meeting same type-rep?
2096 
2097   // Current "this->_base" is Ary
2098   switch (t->base()) {          // switch on original type
2099 
2100   case Bottom:                  // Ye Olde Default
2101     return t;
2102 
2103   default:                      // All else is a mistake
2104     typerr(t);
2105 
2106   case Array: {                 // Meeting 2 arrays?
2107     const TypeAry *a = t->is_ary();
2108     return TypeAry::make(_elem->meet_speculative(a->_elem),
2109                          _size->xmeet(a->_size)->is_int(),
2110                          _stable & a->_stable);
2111   }
2112   case Top:
2113     break;
2114   }
2115   return this;                  // Return the double constant
2116 }
2117 
2118 //------------------------------xdual------------------------------------------
2119 // Dual: compute field-by-field dual
2120 const Type *TypeAry::xdual() const {
2121   const TypeInt* size_dual = _size->dual()->is_int();
2122   size_dual = normalize_array_size(size_dual);
2123   return new TypeAry(_elem->dual(), size_dual, !_stable);
2124 }
2125 
2126 //------------------------------eq---------------------------------------------
2127 // Structural equality check for Type representations
2128 bool TypeAry::eq( const Type *t ) const {
2129   const TypeAry *a = (const TypeAry*)t;
2130   return _elem == a->_elem &&
2131     _stable == a->_stable &&
2132     _size == a->_size;
2133 }
2134 
2135 //------------------------------hash-------------------------------------------
2136 // Type-specific hashing function.
2137 int TypeAry::hash(void) const {
2138   return (intptr_t)_elem + (intptr_t)_size + (_stable ? 43 : 0);
2139 }
2140 
2141 /**
2142  * Return same type without a speculative part in the element
2143  */
2144 const Type* TypeAry::remove_speculative() const {
2145   return make(_elem->remove_speculative(), _size, _stable);
2146 }
2147 
2148 /**
2149  * Return same type with cleaned up speculative part of element
2150  */
2151 const Type* TypeAry::cleanup_speculative() const {
2152   return make(_elem->cleanup_speculative(), _size, _stable);
2153 }
2154 
2155 /**
2156  * Return same type but with a different inline depth (used for speculation)
2157  *
2158  * @param depth  depth to meet with
2159  */
2160 const TypePtr* TypePtr::with_inline_depth(int depth) const {
2161   if (!UseInlineDepthForSpeculativeTypes) {
2162     return this;
2163   }
2164   return make(AnyPtr, _ptr, _offset, _speculative, depth);
2165 }
2166 
2167 //----------------------interface_vs_oop---------------------------------------
2168 #ifdef ASSERT
2169 bool TypeAry::interface_vs_oop(const Type *t) const {
2170   const TypeAry* t_ary = t->is_ary();
2171   if (t_ary) {
2172     const TypePtr* this_ptr = _elem->make_ptr(); // In case we have narrow_oops
2173     const TypePtr*    t_ptr = t_ary->_elem->make_ptr();
2174     if(this_ptr != NULL && t_ptr != NULL) {
2175       return this_ptr->interface_vs_oop(t_ptr);
2176     }
2177   }
2178   return false;
2179 }
2180 #endif
2181 
2182 //------------------------------dump2------------------------------------------
2183 #ifndef PRODUCT
2184 void TypeAry::dump2( Dict &d, uint depth, outputStream *st ) const {
2185   if (_stable)  st->print("stable:");
2186   _elem->dump2(d, depth, st);
2187   st->print("[");
2188   _size->dump2(d, depth, st);
2189   st->print("]");
2190 }
2191 #endif
2192 
2193 //------------------------------singleton--------------------------------------
2194 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2195 // constants (Ldi nodes).  Singletons are integer, float or double constants
2196 // or a single symbol.
2197 bool TypeAry::singleton(void) const {
2198   return false;                 // Never a singleton
2199 }
2200 
2201 bool TypeAry::empty(void) const {
2202   return _elem->empty() || _size->empty();
2203 }
2204 
2205 //--------------------------ary_must_be_exact----------------------------------
2206 bool TypeAry::ary_must_be_exact() const {
2207   if (!UseExactTypes)       return false;
2208   // This logic looks at the element type of an array, and returns true
2209   // if the element type is either a primitive or a final instance class.
2210   // In such cases, an array built on this ary must have no subclasses.
2211   if (_elem == BOTTOM)      return false;  // general array not exact
2212   if (_elem == TOP   )      return false;  // inverted general array not exact
2213   const TypeOopPtr*  toop = NULL;
2214   if (UseCompressedOops && _elem->isa_narrowoop()) {
2215     toop = _elem->make_ptr()->isa_oopptr();
2216   } else {
2217     toop = _elem->isa_oopptr();
2218   }
2219   if (!toop)                return true;   // a primitive type, like int
2220   ciKlass* tklass = toop->klass();
2221   if (tklass == NULL)       return false;  // unloaded class
2222   if (!tklass->is_loaded()) return false;  // unloaded class
2223   const TypeInstPtr* tinst;
2224   if (_elem->isa_narrowoop())
2225     tinst = _elem->make_ptr()->isa_instptr();
2226   else
2227     tinst = _elem->isa_instptr();
2228   if (tinst)
2229     return tklass->as_instance_klass()->is_final();
2230   const TypeAryPtr*  tap;
2231   if (_elem->isa_narrowoop())
2232     tap = _elem->make_ptr()->isa_aryptr();
2233   else
2234     tap = _elem->isa_aryptr();
2235   if (tap)
2236     return tap->ary()->ary_must_be_exact();
2237   return false;
2238 }
2239 
2240 //==============================TypeValueType=======================================
2241 
2242 //------------------------------make-------------------------------------------
2243 const TypeValueType* TypeValueType::make(ciValueKlass* vk) {
2244   return (TypeValueType*)(new TypeValueType(vk))->hashcons();
2245 }
2246 
2247 //------------------------------meet-------------------------------------------
2248 // Compute the MEET of two types.  It returns a new Type object.
2249 const Type* TypeValueType::xmeet(const Type* t) const {
2250   // Perform a fast test for common case; meeting the same types together.
2251   if(this == t) return this;  // Meeting same type-rep?
2252 
2253   // Current "this->_base" is ValueType
2254   switch (t->base()) {          // switch on original type
2255 
2256   case Top:
2257     break;
2258 
2259   case Bottom:
2260     return t;
2261 
2262   default:                      // All else is a mistake
2263     typerr(t);
2264 
2265   }
2266   return this;
2267 }
2268 
2269 //------------------------------xdual------------------------------------------
2270 const Type* TypeValueType::xdual() const {
2271   // FIXME
2272   return new TypeValueType(_vk);
2273 }
2274 
2275 //------------------------------eq---------------------------------------------
2276 // Structural equality check for Type representations
2277 bool TypeValueType::eq(const Type* t) const {
2278   const TypeValueType* vt = t->is_valuetype();
2279   return (_vk == vt->value_klass());
2280 }
2281 
2282 //------------------------------hash-------------------------------------------
2283 // Type-specific hashing function.
2284 int TypeValueType::hash(void) const {
2285   return (intptr_t)_vk;
2286 }
2287 
2288 //------------------------------singleton--------------------------------------
2289 // TRUE if Type is a singleton type, FALSE otherwise. Singletons are simple constants.
2290 bool TypeValueType::singleton(void) const {
2291   // FIXME
2292   return false;
2293 }
2294 
2295 //------------------------------empty------------------------------------------
2296 // TRUE if Type is a type with no values, FALSE otherwise.
2297 bool TypeValueType::empty(void) const {
2298   // FIXME
2299   return false;
2300 }
2301 
2302 //------------------------------dump2------------------------------------------
2303 #ifndef PRODUCT
2304 void TypeValueType::dump2(Dict &d, uint depth, outputStream* st) const {
2305   st->print("valuetype[%d]:{", _vk->field_count());
2306   st->print("%s", _vk->field_type_by_index(0)->name());
2307   for (int i = 1; i < _vk->field_count(); ++i) {
2308     st->print(", %s", _vk->field_type_by_index(i)->name());
2309   }
2310   st->print("}");
2311 }
2312 #endif
2313 
2314 //==============================TypeVect=======================================
2315 // Convenience common pre-built types.
2316 const TypeVect *TypeVect::VECTS = NULL; //  32-bit vectors
2317 const TypeVect *TypeVect::VECTD = NULL; //  64-bit vectors
2318 const TypeVect *TypeVect::VECTX = NULL; // 128-bit vectors
2319 const TypeVect *TypeVect::VECTY = NULL; // 256-bit vectors
2320 const TypeVect *TypeVect::VECTZ = NULL; // 512-bit vectors
2321 
2322 //------------------------------make-------------------------------------------
2323 const TypeVect* TypeVect::make(const Type *elem, uint length) {
2324   BasicType elem_bt = elem->array_element_basic_type();
2325   assert(is_java_primitive(elem_bt), "only primitive types in vector");
2326   assert(length > 1 && is_power_of_2(length), "vector length is power of 2");
2327   assert(Matcher::vector_size_supported(elem_bt, length), "length in range");
2328   int size = length * type2aelembytes(elem_bt);
2329   switch (Matcher::vector_ideal_reg(size)) {
2330   case Op_VecS:
2331     return (TypeVect*)(new TypeVectS(elem, length))->hashcons();
2332   case Op_RegL:
2333   case Op_VecD:
2334   case Op_RegD:
2335     return (TypeVect*)(new TypeVectD(elem, length))->hashcons();
2336   case Op_VecX:
2337     return (TypeVect*)(new TypeVectX(elem, length))->hashcons();
2338   case Op_VecY:
2339     return (TypeVect*)(new TypeVectY(elem, length))->hashcons();
2340   case Op_VecZ:
2341     return (TypeVect*)(new TypeVectZ(elem, length))->hashcons();
2342   }
2343  ShouldNotReachHere();
2344   return NULL;
2345 }
2346 
2347 //------------------------------meet-------------------------------------------
2348 // Compute the MEET of two types.  It returns a new Type object.
2349 const Type *TypeVect::xmeet( const Type *t ) const {
2350   // Perform a fast test for common case; meeting the same types together.
2351   if( this == t ) return this;  // Meeting same type-rep?
2352 
2353   // Current "this->_base" is Vector
2354   switch (t->base()) {          // switch on original type
2355 
2356   case Bottom:                  // Ye Olde Default
2357     return t;
2358 
2359   default:                      // All else is a mistake
2360     typerr(t);
2361 
2362   case VectorS:
2363   case VectorD:
2364   case VectorX:
2365   case VectorY:
2366   case VectorZ: {                // Meeting 2 vectors?
2367     const TypeVect* v = t->is_vect();
2368     assert(  base() == v->base(), "");
2369     assert(length() == v->length(), "");
2370     assert(element_basic_type() == v->element_basic_type(), "");
2371     return TypeVect::make(_elem->xmeet(v->_elem), _length);
2372   }
2373   case Top:
2374     break;
2375   }
2376   return this;
2377 }
2378 
2379 //------------------------------xdual------------------------------------------
2380 // Dual: compute field-by-field dual
2381 const Type *TypeVect::xdual() const {
2382   return new TypeVect(base(), _elem->dual(), _length);
2383 }
2384 
2385 //------------------------------eq---------------------------------------------
2386 // Structural equality check for Type representations
2387 bool TypeVect::eq(const Type *t) const {
2388   const TypeVect *v = t->is_vect();
2389   return (_elem == v->_elem) && (_length == v->_length);
2390 }
2391 
2392 //------------------------------hash-------------------------------------------
2393 // Type-specific hashing function.
2394 int TypeVect::hash(void) const {
2395   return (intptr_t)_elem + (intptr_t)_length;
2396 }
2397 
2398 //------------------------------singleton--------------------------------------
2399 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2400 // constants (Ldi nodes).  Vector is singleton if all elements are the same
2401 // constant value (when vector is created with Replicate code).
2402 bool TypeVect::singleton(void) const {
2403 // There is no Con node for vectors yet.
2404 //  return _elem->singleton();
2405   return false;
2406 }
2407 
2408 bool TypeVect::empty(void) const {
2409   return _elem->empty();
2410 }
2411 
2412 //------------------------------dump2------------------------------------------
2413 #ifndef PRODUCT
2414 void TypeVect::dump2(Dict &d, uint depth, outputStream *st) const {
2415   switch (base()) {
2416   case VectorS:
2417     st->print("vectors["); break;
2418   case VectorD:
2419     st->print("vectord["); break;
2420   case VectorX:
2421     st->print("vectorx["); break;
2422   case VectorY:
2423     st->print("vectory["); break;
2424   case VectorZ:
2425     st->print("vectorz["); break;
2426   default:
2427     ShouldNotReachHere();
2428   }
2429   st->print("%d]:{", _length);
2430   _elem->dump2(d, depth, st);
2431   st->print("}");
2432 }
2433 #endif
2434 
2435 
2436 //=============================================================================
2437 // Convenience common pre-built types.
2438 const TypePtr *TypePtr::NULL_PTR;
2439 const TypePtr *TypePtr::NOTNULL;
2440 const TypePtr *TypePtr::BOTTOM;
2441 
2442 //------------------------------meet-------------------------------------------
2443 // Meet over the PTR enum
2444 const TypePtr::PTR TypePtr::ptr_meet[TypePtr::lastPTR][TypePtr::lastPTR] = {
2445   //              TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,
2446   { /* Top     */ TopPTR,    AnyNull,   Constant, Null,   NotNull, BotPTR,},
2447   { /* AnyNull */ AnyNull,   AnyNull,   Constant, BotPTR, NotNull, BotPTR,},
2448   { /* Constant*/ Constant,  Constant,  Constant, BotPTR, NotNull, BotPTR,},
2449   { /* Null    */ Null,      BotPTR,    BotPTR,   Null,   BotPTR,  BotPTR,},
2450   { /* NotNull */ NotNull,   NotNull,   NotNull,  BotPTR, NotNull, BotPTR,},
2451   { /* BotPTR  */ BotPTR,    BotPTR,    BotPTR,   BotPTR, BotPTR,  BotPTR,}
2452 };
2453 
2454 //------------------------------make-------------------------------------------
2455 const TypePtr* TypePtr::make(TYPES t, enum PTR ptr, Offset offset, const TypePtr* speculative, int inline_depth) {
2456   return (TypePtr*)(new TypePtr(t,ptr,offset, speculative, inline_depth))->hashcons();
2457 }
2458 
2459 //------------------------------cast_to_ptr_type-------------------------------
2460 const Type *TypePtr::cast_to_ptr_type(PTR ptr) const {
2461   assert(_base == AnyPtr, "subclass must override cast_to_ptr_type");
2462   if( ptr == _ptr ) return this;
2463   return make(_base, ptr, _offset, _speculative, _inline_depth);
2464 }
2465 
2466 //------------------------------get_con----------------------------------------
2467 intptr_t TypePtr::get_con() const {
2468   assert( _ptr == Null, "" );
2469   return offset();
2470 }
2471 
2472 //------------------------------meet-------------------------------------------
2473 // Compute the MEET of two types.  It returns a new Type object.
2474 const Type *TypePtr::xmeet(const Type *t) const {
2475   const Type* res = xmeet_helper(t);
2476   if (res->isa_ptr() == NULL) {
2477     return res;
2478   }
2479 
2480   const TypePtr* res_ptr = res->is_ptr();
2481   if (res_ptr->speculative() != NULL) {
2482     // type->speculative() == NULL means that speculation is no better
2483     // than type, i.e. type->speculative() == type. So there are 2
2484     // ways to represent the fact that we have no useful speculative
2485     // data and we should use a single one to be able to test for
2486     // equality between types. Check whether type->speculative() ==
2487     // type and set speculative to NULL if it is the case.
2488     if (res_ptr->remove_speculative() == res_ptr->speculative()) {
2489       return res_ptr->remove_speculative();
2490     }
2491   }
2492 
2493   return res;
2494 }
2495 
2496 const Type *TypePtr::xmeet_helper(const Type *t) const {
2497   // Perform a fast test for common case; meeting the same types together.
2498   if( this == t ) return this;  // Meeting same type-rep?
2499 
2500   // Current "this->_base" is AnyPtr
2501   switch (t->base()) {          // switch on original type
2502   case Int:                     // Mixing ints & oops happens when javac
2503   case Long:                    // reuses local variables
2504   case FloatTop:
2505   case FloatCon:
2506   case FloatBot:
2507   case DoubleTop:
2508   case DoubleCon:
2509   case DoubleBot:
2510   case NarrowOop:
2511   case NarrowKlass:
2512   case Bottom:                  // Ye Olde Default
2513     return Type::BOTTOM;
2514   case Top:
2515     return this;
2516 
2517   case AnyPtr: {                // Meeting to AnyPtrs
2518     const TypePtr *tp = t->is_ptr();
2519     const TypePtr* speculative = xmeet_speculative(tp);
2520     int depth = meet_inline_depth(tp->inline_depth());
2521     return make(AnyPtr, meet_ptr(tp->ptr()), meet_offset(tp->offset()), speculative, depth);
2522   }
2523   case RawPtr:                  // For these, flip the call around to cut down
2524   case OopPtr:
2525   case InstPtr:                 // on the cases I have to handle.
2526   case ValueTypePtr:
2527   case AryPtr:
2528   case MetadataPtr:
2529   case KlassPtr:
2530     return t->xmeet(this);      // Call in reverse direction
2531   default:                      // All else is a mistake
2532     typerr(t);
2533 
2534   }
2535   return this;
2536 }
2537 
2538 //------------------------------meet_offset------------------------------------
2539 Type::Offset TypePtr::meet_offset(int offset) const {
2540   return _offset.meet(Offset(offset));
2541 }
2542 
2543 //------------------------------dual_offset------------------------------------
2544 Type::Offset TypePtr::dual_offset() const {
2545   return _offset.dual();
2546 }
2547 
2548 //------------------------------xdual------------------------------------------
2549 // Dual: compute field-by-field dual
2550 const TypePtr::PTR TypePtr::ptr_dual[TypePtr::lastPTR] = {
2551   BotPTR, NotNull, Constant, Null, AnyNull, TopPTR
2552 };
2553 const Type *TypePtr::xdual() const {
2554   return new TypePtr(AnyPtr, dual_ptr(), dual_offset(), dual_speculative(), dual_inline_depth());
2555 }
2556 
2557 //------------------------------xadd_offset------------------------------------
2558 Type::Offset TypePtr::xadd_offset(intptr_t offset) const {
2559   return _offset.add(offset);
2560 }
2561 
2562 //------------------------------add_offset-------------------------------------
2563 const TypePtr *TypePtr::add_offset( intptr_t offset ) const {
2564   return make(AnyPtr, _ptr, xadd_offset(offset), _speculative, _inline_depth);
2565 }
2566 
2567 //------------------------------eq---------------------------------------------
2568 // Structural equality check for Type representations
2569 bool TypePtr::eq( const Type *t ) const {
2570   const TypePtr *a = (const TypePtr*)t;
2571   return _ptr == a->ptr() && _offset == a->_offset && eq_speculative(a) && _inline_depth == a->_inline_depth;
2572 }
2573 
2574 //------------------------------hash-------------------------------------------
2575 // Type-specific hashing function.
2576 int TypePtr::hash(void) const {
2577   return java_add(java_add(_ptr, offset()), java_add( hash_speculative(), _inline_depth));
2578 ;
2579 }
2580 
2581 /**
2582  * Return same type without a speculative part
2583  */
2584 const Type* TypePtr::remove_speculative() const {
2585   if (_speculative == NULL) {
2586     return this;
2587   }
2588   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
2589   return make(AnyPtr, _ptr, _offset, NULL, _inline_depth);
2590 }
2591 
2592 /**
2593  * Return same type but drop speculative part if we know we won't use
2594  * it
2595  */
2596 const Type* TypePtr::cleanup_speculative() const {
2597   if (speculative() == NULL) {
2598     return this;
2599   }
2600   const Type* no_spec = remove_speculative();
2601   // If this is NULL_PTR then we don't need the speculative type
2602   // (with_inline_depth in case the current type inline depth is
2603   // InlineDepthTop)
2604   if (no_spec == NULL_PTR->with_inline_depth(inline_depth())) {
2605     return no_spec;
2606   }
2607   if (above_centerline(speculative()->ptr())) {
2608     return no_spec;
2609   }
2610   const TypeOopPtr* spec_oopptr = speculative()->isa_oopptr();
2611   // If the speculative may be null and is an inexact klass then it
2612   // doesn't help
2613   if (speculative()->maybe_null() && (spec_oopptr == NULL || !spec_oopptr->klass_is_exact())) {
2614     return no_spec;
2615   }
2616   return this;
2617 }
2618 
2619 /**
2620  * dual of the speculative part of the type
2621  */
2622 const TypePtr* TypePtr::dual_speculative() const {
2623   if (_speculative == NULL) {
2624     return NULL;
2625   }
2626   return _speculative->dual()->is_ptr();
2627 }
2628 
2629 /**
2630  * meet of the speculative parts of 2 types
2631  *
2632  * @param other  type to meet with
2633  */
2634 const TypePtr* TypePtr::xmeet_speculative(const TypePtr* other) const {
2635   bool this_has_spec = (_speculative != NULL);
2636   bool other_has_spec = (other->speculative() != NULL);
2637 
2638   if (!this_has_spec && !other_has_spec) {
2639     return NULL;
2640   }
2641 
2642   // If we are at a point where control flow meets and one branch has
2643   // a speculative type and the other has not, we meet the speculative
2644   // type of one branch with the actual type of the other. If the
2645   // actual type is exact and the speculative is as well, then the
2646   // result is a speculative type which is exact and we can continue
2647   // speculation further.
2648   const TypePtr* this_spec = _speculative;
2649   const TypePtr* other_spec = other->speculative();
2650 
2651   if (!this_has_spec) {
2652     this_spec = this;
2653   }
2654 
2655   if (!other_has_spec) {
2656     other_spec = other;
2657   }
2658 
2659   return this_spec->meet(other_spec)->is_ptr();
2660 }
2661 
2662 /**
2663  * dual of the inline depth for this type (used for speculation)
2664  */
2665 int TypePtr::dual_inline_depth() const {
2666   return -inline_depth();
2667 }
2668 
2669 /**
2670  * meet of 2 inline depths (used for speculation)
2671  *
2672  * @param depth  depth to meet with
2673  */
2674 int TypePtr::meet_inline_depth(int depth) const {
2675   return MAX2(inline_depth(), depth);
2676 }
2677 
2678 /**
2679  * Are the speculative parts of 2 types equal?
2680  *
2681  * @param other  type to compare this one to
2682  */
2683 bool TypePtr::eq_speculative(const TypePtr* other) const {
2684   if (_speculative == NULL || other->speculative() == NULL) {
2685     return _speculative == other->speculative();
2686   }
2687 
2688   if (_speculative->base() != other->speculative()->base()) {
2689     return false;
2690   }
2691 
2692   return _speculative->eq(other->speculative());
2693 }
2694 
2695 /**
2696  * Hash of the speculative part of the type
2697  */
2698 int TypePtr::hash_speculative() const {
2699   if (_speculative == NULL) {
2700     return 0;
2701   }
2702 
2703   return _speculative->hash();
2704 }
2705 
2706 /**
2707  * add offset to the speculative part of the type
2708  *
2709  * @param offset  offset to add
2710  */
2711 const TypePtr* TypePtr::add_offset_speculative(intptr_t offset) const {
2712   if (_speculative == NULL) {
2713     return NULL;
2714   }
2715   return _speculative->add_offset(offset)->is_ptr();
2716 }
2717 
2718 /**
2719  * return exact klass from the speculative type if there's one
2720  */
2721 ciKlass* TypePtr::speculative_type() const {
2722   if (_speculative != NULL && _speculative->isa_oopptr()) {
2723     const TypeOopPtr* speculative = _speculative->join(this)->is_oopptr();
2724     if (speculative->klass_is_exact()) {
2725       return speculative->klass();
2726     }
2727   }
2728   return NULL;
2729 }
2730 
2731 /**
2732  * return true if speculative type may be null
2733  */
2734 bool TypePtr::speculative_maybe_null() const {
2735   if (_speculative != NULL) {
2736     const TypePtr* speculative = _speculative->join(this)->is_ptr();
2737     return speculative->maybe_null();
2738   }
2739   return true;
2740 }
2741 
2742 /**
2743  * Same as TypePtr::speculative_type() but return the klass only if
2744  * the speculative tells us is not null
2745  */
2746 ciKlass* TypePtr::speculative_type_not_null() const {
2747   if (speculative_maybe_null()) {
2748     return NULL;
2749   }
2750   return speculative_type();
2751 }
2752 
2753 /**
2754  * Check whether new profiling would improve speculative type
2755  *
2756  * @param   exact_kls    class from profiling
2757  * @param   inline_depth inlining depth of profile point
2758  *
2759  * @return  true if type profile is valuable
2760  */
2761 bool TypePtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
2762   // no profiling?
2763   if (exact_kls == NULL) {
2764     return false;
2765   }
2766   // no speculative type or non exact speculative type?
2767   if (speculative_type() == NULL) {
2768     return true;
2769   }
2770   // If the node already has an exact speculative type keep it,
2771   // unless it was provided by profiling that is at a deeper
2772   // inlining level. Profiling at a higher inlining depth is
2773   // expected to be less accurate.
2774   if (_speculative->inline_depth() == InlineDepthBottom) {
2775     return false;
2776   }
2777   assert(_speculative->inline_depth() != InlineDepthTop, "can't do the comparison");
2778   return inline_depth < _speculative->inline_depth();
2779 }
2780 
2781 /**
2782  * Check whether new profiling would improve ptr (= tells us it is non
2783  * null)
2784  *
2785  * @param   maybe_null true if profiling tells the ptr may be null
2786  *
2787  * @return  true if ptr profile is valuable
2788  */
2789 bool TypePtr::would_improve_ptr(bool maybe_null) const {
2790   // profiling doesn't tell us anything useful
2791   if (maybe_null) {
2792     return false;
2793   }
2794   // We already know this is not be null
2795   if (!this->maybe_null()) {
2796     return false;
2797   }
2798   // We already know the speculative type cannot be null
2799   if (!speculative_maybe_null()) {
2800     return false;
2801   }
2802   return true;
2803 }
2804 
2805 //------------------------------dump2------------------------------------------
2806 const char *const TypePtr::ptr_msg[TypePtr::lastPTR] = {
2807   "TopPTR","AnyNull","Constant","NULL","NotNull","BotPTR"
2808 };
2809 
2810 #ifndef PRODUCT
2811 void TypePtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2812   if( _ptr == Null ) st->print("NULL");
2813   else st->print("%s *", ptr_msg[_ptr]);
2814   _offset.dump2(st);
2815   dump_inline_depth(st);
2816   dump_speculative(st);
2817 }
2818 
2819 /**
2820  *dump the speculative part of the type
2821  */
2822 void TypePtr::dump_speculative(outputStream *st) const {
2823   if (_speculative != NULL) {
2824     st->print(" (speculative=");
2825     _speculative->dump_on(st);
2826     st->print(")");
2827   }
2828 }
2829 
2830 /**
2831  *dump the inline depth of the type
2832  */
2833 void TypePtr::dump_inline_depth(outputStream *st) const {
2834   if (_inline_depth != InlineDepthBottom) {
2835     if (_inline_depth == InlineDepthTop) {
2836       st->print(" (inline_depth=InlineDepthTop)");
2837     } else {
2838       st->print(" (inline_depth=%d)", _inline_depth);
2839     }
2840   }
2841 }
2842 #endif
2843 
2844 //------------------------------singleton--------------------------------------
2845 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
2846 // constants
2847 bool TypePtr::singleton(void) const {
2848   // TopPTR, Null, AnyNull, Constant are all singletons
2849   return (_offset != Offset::bottom) && !below_centerline(_ptr);
2850 }
2851 
2852 bool TypePtr::empty(void) const {
2853   return (_offset == Offset::top) || above_centerline(_ptr);
2854 }
2855 
2856 //=============================================================================
2857 // Convenience common pre-built types.
2858 const TypeRawPtr *TypeRawPtr::BOTTOM;
2859 const TypeRawPtr *TypeRawPtr::NOTNULL;
2860 
2861 //------------------------------make-------------------------------------------
2862 const TypeRawPtr *TypeRawPtr::make( enum PTR ptr ) {
2863   assert( ptr != Constant, "what is the constant?" );
2864   assert( ptr != Null, "Use TypePtr for NULL" );
2865   return (TypeRawPtr*)(new TypeRawPtr(ptr,0))->hashcons();
2866 }
2867 
2868 const TypeRawPtr *TypeRawPtr::make( address bits ) {
2869   assert( bits, "Use TypePtr for NULL" );
2870   return (TypeRawPtr*)(new TypeRawPtr(Constant,bits))->hashcons();
2871 }
2872 
2873 //------------------------------cast_to_ptr_type-------------------------------
2874 const Type *TypeRawPtr::cast_to_ptr_type(PTR ptr) const {
2875   assert( ptr != Constant, "what is the constant?" );
2876   assert( ptr != Null, "Use TypePtr for NULL" );
2877   assert( _bits==0, "Why cast a constant address?");
2878   if( ptr == _ptr ) return this;
2879   return make(ptr);
2880 }
2881 
2882 //------------------------------get_con----------------------------------------
2883 intptr_t TypeRawPtr::get_con() const {
2884   assert( _ptr == Null || _ptr == Constant, "" );
2885   return (intptr_t)_bits;
2886 }
2887 
2888 //------------------------------meet-------------------------------------------
2889 // Compute the MEET of two types.  It returns a new Type object.
2890 const Type *TypeRawPtr::xmeet( const Type *t ) const {
2891   // Perform a fast test for common case; meeting the same types together.
2892   if( this == t ) return this;  // Meeting same type-rep?
2893 
2894   // Current "this->_base" is RawPtr
2895   switch( t->base() ) {         // switch on original type
2896   case Bottom:                  // Ye Olde Default
2897     return t;
2898   case Top:
2899     return this;
2900   case AnyPtr:                  // Meeting to AnyPtrs
2901     break;
2902   case RawPtr: {                // might be top, bot, any/not or constant
2903     enum PTR tptr = t->is_ptr()->ptr();
2904     enum PTR ptr = meet_ptr( tptr );
2905     if( ptr == Constant ) {     // Cannot be equal constants, so...
2906       if( tptr == Constant && _ptr != Constant)  return t;
2907       if( _ptr == Constant && tptr != Constant)  return this;
2908       ptr = NotNull;            // Fall down in lattice
2909     }
2910     return make( ptr );
2911   }
2912 
2913   case OopPtr:
2914   case InstPtr:
2915   case ValueTypePtr:
2916   case AryPtr:
2917   case MetadataPtr:
2918   case KlassPtr:
2919     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
2920   default:                      // All else is a mistake
2921     typerr(t);
2922   }
2923 
2924   // Found an AnyPtr type vs self-RawPtr type
2925   const TypePtr *tp = t->is_ptr();
2926   switch (tp->ptr()) {
2927   case TypePtr::TopPTR:  return this;
2928   case TypePtr::BotPTR:  return t;
2929   case TypePtr::Null:
2930     if( _ptr == TypePtr::TopPTR ) return t;
2931     return TypeRawPtr::BOTTOM;
2932   case TypePtr::NotNull: return TypePtr::make(AnyPtr, meet_ptr(TypePtr::NotNull), tp->meet_offset(0), tp->speculative(), tp->inline_depth());
2933   case TypePtr::AnyNull:
2934     if( _ptr == TypePtr::Constant) return this;
2935     return make( meet_ptr(TypePtr::AnyNull) );
2936   default: ShouldNotReachHere();
2937   }
2938   return this;
2939 }
2940 
2941 //------------------------------xdual------------------------------------------
2942 // Dual: compute field-by-field dual
2943 const Type *TypeRawPtr::xdual() const {
2944   return new TypeRawPtr( dual_ptr(), _bits );
2945 }
2946 
2947 //------------------------------add_offset-------------------------------------
2948 const TypePtr *TypeRawPtr::add_offset( intptr_t offset ) const {
2949   if( offset == OffsetTop ) return BOTTOM; // Undefined offset-> undefined pointer
2950   if( offset == OffsetBot ) return BOTTOM; // Unknown offset-> unknown pointer
2951   if( offset == 0 ) return this; // No change
2952   switch (_ptr) {
2953   case TypePtr::TopPTR:
2954   case TypePtr::BotPTR:
2955   case TypePtr::NotNull:
2956     return this;
2957   case TypePtr::Null:
2958   case TypePtr::Constant: {
2959     address bits = _bits+offset;
2960     if ( bits == 0 ) return TypePtr::NULL_PTR;
2961     return make( bits );
2962   }
2963   default:  ShouldNotReachHere();
2964   }
2965   return NULL;                  // Lint noise
2966 }
2967 
2968 //------------------------------eq---------------------------------------------
2969 // Structural equality check for Type representations
2970 bool TypeRawPtr::eq( const Type *t ) const {
2971   const TypeRawPtr *a = (const TypeRawPtr*)t;
2972   return _bits == a->_bits && TypePtr::eq(t);
2973 }
2974 
2975 //------------------------------hash-------------------------------------------
2976 // Type-specific hashing function.
2977 int TypeRawPtr::hash(void) const {
2978   return (intptr_t)_bits + TypePtr::hash();
2979 }
2980 
2981 //------------------------------dump2------------------------------------------
2982 #ifndef PRODUCT
2983 void TypeRawPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
2984   if( _ptr == Constant )
2985     st->print(INTPTR_FORMAT, p2i(_bits));
2986   else
2987     st->print("rawptr:%s", ptr_msg[_ptr]);
2988 }
2989 #endif
2990 
2991 //=============================================================================
2992 // Convenience common pre-built type.
2993 const TypeOopPtr *TypeOopPtr::BOTTOM;
2994 
2995 //------------------------------TypeOopPtr-------------------------------------
2996 TypeOopPtr::TypeOopPtr(TYPES t, PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset offset,
2997                        int instance_id, const TypePtr* speculative, int inline_depth)
2998   : TypePtr(t, ptr, offset, speculative, inline_depth),
2999     _const_oop(o), _klass(k),
3000     _klass_is_exact(xk),
3001     _is_ptr_to_narrowoop(false),
3002     _is_ptr_to_narrowklass(false),
3003     _is_ptr_to_boxed_value(false),
3004     _instance_id(instance_id) {
3005   if (Compile::current()->eliminate_boxing() && (t == InstPtr) &&
3006       (offset.get() > 0) && xk && (k != 0) && k->is_instance_klass()) {
3007     _is_ptr_to_boxed_value = k->as_instance_klass()->is_boxed_value_offset(offset.get());
3008   }
3009 #ifdef _LP64
3010   if (this->offset() != 0) {
3011     if (this->offset() == oopDesc::klass_offset_in_bytes()) {
3012       _is_ptr_to_narrowklass = UseCompressedClassPointers;
3013     } else if (klass() == NULL) {
3014       // Array with unknown body type
3015       assert(this->isa_aryptr(), "only arrays without klass");
3016       _is_ptr_to_narrowoop = UseCompressedOops;
3017     } else if (this->isa_aryptr()) {
3018       _is_ptr_to_narrowoop = (UseCompressedOops && klass()->is_obj_array_klass() &&
3019                               this->offset() != arrayOopDesc::length_offset_in_bytes());
3020     } else if (klass()->is_instance_klass()) {
3021       ciInstanceKlass* ik = klass()->as_instance_klass();
3022       ciField* field = NULL;
3023       if (this->isa_klassptr()) {
3024         // Perm objects don't use compressed references
3025       } else if (_offset == Offset::bottom || _offset == Offset::top) {
3026         // unsafe access
3027         _is_ptr_to_narrowoop = UseCompressedOops;
3028       } else { // exclude unsafe ops
3029         assert(this->isa_instptr() || this->isa_valuetypeptr(), "must be an instance ptr.");
3030 
3031         if (klass() == ciEnv::current()->Class_klass() &&
3032             (this->offset() == java_lang_Class::klass_offset_in_bytes() ||
3033              this->offset() == java_lang_Class::array_klass_offset_in_bytes())) {
3034           // Special hidden fields from the Class.
3035           assert(this->isa_instptr(), "must be an instance ptr.");
3036           _is_ptr_to_narrowoop = false;
3037         } else if (klass() == ciEnv::current()->Class_klass() &&
3038                    this->offset() >= InstanceMirrorKlass::offset_of_static_fields()) {
3039           // Static fields
3040           assert(o != NULL, "must be constant");
3041           ciInstanceKlass* k = o->as_instance()->java_lang_Class_klass()->as_instance_klass();
3042           ciField* field = k->get_field_by_offset(this->offset(), true);
3043           assert(field != NULL, "missing field");
3044           BasicType basic_elem_type = field->layout_type();
3045           _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3046                                                        basic_elem_type == T_ARRAY);
3047         } else {
3048           // Instance fields which contains a compressed oop references.
3049           field = ik->get_field_by_offset(this->offset(), false);
3050           if (field != NULL) {
3051             BasicType basic_elem_type = field->layout_type();
3052             _is_ptr_to_narrowoop = UseCompressedOops && (basic_elem_type == T_OBJECT ||
3053                                                          basic_elem_type == T_ARRAY);
3054           } else if (klass()->equals(ciEnv::current()->Object_klass())) {
3055             // Compile::find_alias_type() cast exactness on all types to verify
3056             // that it does not affect alias type.
3057             _is_ptr_to_narrowoop = UseCompressedOops;
3058           } else {
3059             // Type for the copy start in LibraryCallKit::inline_native_clone().
3060             _is_ptr_to_narrowoop = UseCompressedOops;
3061           }
3062         }
3063       }
3064     }
3065   }
3066 #endif
3067 }
3068 
3069 //------------------------------make-------------------------------------------
3070 const TypeOopPtr *TypeOopPtr::make(PTR ptr, Offset offset, int instance_id,
3071                                    const TypePtr* speculative, int inline_depth) {
3072   assert(ptr != Constant, "no constant generic pointers");
3073   ciKlass*  k = Compile::current()->env()->Object_klass();
3074   bool      xk = false;
3075   ciObject* o = NULL;
3076   return (TypeOopPtr*)(new TypeOopPtr(OopPtr, ptr, k, xk, o, offset, instance_id, speculative, inline_depth))->hashcons();
3077 }
3078 
3079 
3080 //------------------------------cast_to_ptr_type-------------------------------
3081 const Type *TypeOopPtr::cast_to_ptr_type(PTR ptr) const {
3082   assert(_base == OopPtr, "subclass must override cast_to_ptr_type");
3083   if( ptr == _ptr ) return this;
3084   return make(ptr, _offset, _instance_id, _speculative, _inline_depth);
3085 }
3086 
3087 //-----------------------------cast_to_instance_id----------------------------
3088 const TypeOopPtr *TypeOopPtr::cast_to_instance_id(int instance_id) const {
3089   // There are no instances of a general oop.
3090   // Return self unchanged.
3091   return this;
3092 }
3093 
3094 //-----------------------------cast_to_exactness-------------------------------
3095 const Type *TypeOopPtr::cast_to_exactness(bool klass_is_exact) const {
3096   // There is no such thing as an exact general oop.
3097   // Return self unchanged.
3098   return this;
3099 }
3100 
3101 
3102 //------------------------------as_klass_type----------------------------------
3103 // Return the klass type corresponding to this instance or array type.
3104 // It is the type that is loaded from an object of this type.
3105 const TypeKlassPtr* TypeOopPtr::as_klass_type() const {
3106   ciKlass* k = klass();
3107   bool    xk = klass_is_exact();
3108   if (k == NULL)
3109     return TypeKlassPtr::OBJECT;
3110   else
3111     return TypeKlassPtr::make(xk? Constant: NotNull, k, Offset(0));
3112 }
3113 
3114 //------------------------------meet-------------------------------------------
3115 // Compute the MEET of two types.  It returns a new Type object.
3116 const Type *TypeOopPtr::xmeet_helper(const Type *t) const {
3117   // Perform a fast test for common case; meeting the same types together.
3118   if( this == t ) return this;  // Meeting same type-rep?
3119 
3120   // Current "this->_base" is OopPtr
3121   switch (t->base()) {          // switch on original type
3122 
3123   case Int:                     // Mixing ints & oops happens when javac
3124   case Long:                    // reuses local variables
3125   case FloatTop:
3126   case FloatCon:
3127   case FloatBot:
3128   case DoubleTop:
3129   case DoubleCon:
3130   case DoubleBot:
3131   case NarrowOop:
3132   case NarrowKlass:
3133   case Bottom:                  // Ye Olde Default
3134     return Type::BOTTOM;
3135   case Top:
3136     return this;
3137 
3138   default:                      // All else is a mistake
3139     typerr(t);
3140 
3141   case RawPtr:
3142   case MetadataPtr:
3143   case KlassPtr:
3144     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
3145 
3146   case AnyPtr: {
3147     // Found an AnyPtr type vs self-OopPtr type
3148     const TypePtr *tp = t->is_ptr();
3149     Offset offset = meet_offset(tp->offset());
3150     PTR ptr = meet_ptr(tp->ptr());
3151     const TypePtr* speculative = xmeet_speculative(tp);
3152     int depth = meet_inline_depth(tp->inline_depth());
3153     switch (tp->ptr()) {
3154     case Null:
3155       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3156       // else fall through:
3157     case TopPTR:
3158     case AnyNull: {
3159       int instance_id = meet_instance_id(InstanceTop);
3160       return make(ptr, offset, instance_id, speculative, depth);
3161     }
3162     case BotPTR:
3163     case NotNull:
3164       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3165     default: typerr(t);
3166     }
3167   }
3168 
3169   case OopPtr: {                 // Meeting to other OopPtrs
3170     const TypeOopPtr *tp = t->is_oopptr();
3171     int instance_id = meet_instance_id(tp->instance_id());
3172     const TypePtr* speculative = xmeet_speculative(tp);
3173     int depth = meet_inline_depth(tp->inline_depth());
3174     return make(meet_ptr(tp->ptr()), meet_offset(tp->offset()), instance_id, speculative, depth);
3175   }
3176 
3177   case InstPtr:                  // For these, flip the call around to cut down
3178   case ValueTypePtr:
3179   case AryPtr:
3180     return t->xmeet(this);      // Call in reverse direction
3181 
3182   } // End of switch
3183   return this;                  // Return the double constant
3184 }
3185 
3186 
3187 //------------------------------xdual------------------------------------------
3188 // Dual of a pure heap pointer.  No relevant klass or oop information.
3189 const Type *TypeOopPtr::xdual() const {
3190   assert(klass() == Compile::current()->env()->Object_klass(), "no klasses here");
3191   assert(const_oop() == NULL,             "no constants here");
3192   return new TypeOopPtr(_base, dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
3193 }
3194 
3195 //--------------------------make_from_klass_common-----------------------------
3196 // Computes the element-type given a klass.
3197 const TypeOopPtr* TypeOopPtr::make_from_klass_common(ciKlass *klass, bool klass_change, bool try_for_exact) {
3198   if (klass->is_valuetype()) {
3199     return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3200   } else if (klass->is_instance_klass()) {
3201     Compile* C = Compile::current();
3202     Dependencies* deps = C->dependencies();
3203     assert((deps != NULL) == (C->method() != NULL && C->method()->code_size() > 0), "sanity");
3204     // Element is an instance
3205     bool klass_is_exact = false;
3206     if (klass->is_loaded()) {
3207       // Try to set klass_is_exact.
3208       ciInstanceKlass* ik = klass->as_instance_klass();
3209       klass_is_exact = ik->is_final();
3210       if (!klass_is_exact && klass_change
3211           && deps != NULL && UseUniqueSubclasses) {
3212         ciInstanceKlass* sub = ik->unique_concrete_subklass();
3213         if (sub != NULL) {
3214           deps->assert_abstract_with_unique_concrete_subtype(ik, sub);
3215           klass = ik = sub;
3216           klass_is_exact = sub->is_final();
3217         }
3218       }
3219       if (!klass_is_exact && try_for_exact
3220           && deps != NULL && UseExactTypes) {
3221         if (!ik->is_interface() && !ik->has_subklass()) {
3222           // Add a dependence; if concrete subclass added we need to recompile
3223           deps->assert_leaf_type(ik);
3224           klass_is_exact = true;
3225         }
3226       }
3227     }
3228     return TypeInstPtr::make(TypePtr::BotPTR, klass, klass_is_exact, NULL, Offset(0));
3229   } else if (klass->is_obj_array_klass()) {
3230     // Element is an object or value array. Recursively call ourself.
3231     const TypeOopPtr* etype = TypeOopPtr::make_from_klass_common(klass->as_array_klass()->element_klass(), false, try_for_exact);
3232     bool xk = etype->klass_is_exact();
3233     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3234     // We used to pass NotNull in here, asserting that the sub-arrays
3235     // are all not-null.  This is not true in generally, as code can
3236     // slam NULLs down in the subarrays.
3237     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3238     return arr;
3239   } else if (klass->is_type_array_klass()) {
3240     // Element is an typeArray
3241     const Type* etype = get_const_basic_type(klass->as_type_array_klass()->element_type());
3242     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3243     // We used to pass NotNull in here, asserting that the array pointer
3244     // is not-null. That was not true in general.
3245     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, true, Offset(0));
3246     return arr;
3247   } else if (klass->is_value_array_klass()) {
3248     ciValueKlass* vk = klass->as_array_klass()->element_klass()->as_value_klass();
3249     const Type* etype = NULL;
3250     bool xk = false;
3251     if (vk->flatten_array()) {
3252       etype = TypeValueType::make(vk);
3253       xk = true;
3254     } else {
3255       const TypeOopPtr* etype_oop = TypeOopPtr::make_from_klass_common(vk, false, try_for_exact);
3256       xk = etype_oop->klass_is_exact();
3257       etype = etype_oop;
3258     }
3259     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::POS);
3260     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::BotPTR, arr0, klass, xk, Offset(0));
3261     return arr;
3262   } else {
3263     ShouldNotReachHere();
3264     return NULL;
3265   }
3266 }
3267 
3268 //------------------------------make_from_constant-----------------------------
3269 // Make a java pointer from an oop constant
3270 const TypeOopPtr* TypeOopPtr::make_from_constant(ciObject* o, bool require_constant) {
3271   assert(!o->is_null_object(), "null object not yet handled here.");
3272   ciKlass* klass = o->klass();
3273   if (klass->is_valuetype()) {
3274     // Element is a value type
3275     if (require_constant) {
3276       if (!o->can_be_constant())  return NULL;
3277     } else if (!o->should_be_constant()) {
3278       return TypeValueTypePtr::make(TypePtr::NotNull, klass->as_value_klass());
3279     }
3280     return TypeValueTypePtr::make(o);
3281   } else if (klass->is_instance_klass()) {
3282     // Element is an instance
3283     if (require_constant) {
3284       if (!o->can_be_constant())  return NULL;
3285     } else if (!o->should_be_constant()) {
3286       return TypeInstPtr::make(TypePtr::NotNull, klass, true, NULL, Offset(0));
3287     }
3288     return TypeInstPtr::make(o);
3289   } else if (klass->is_obj_array_klass() || klass->is_value_array_klass()) {
3290     // Element is an object array. Recursively call ourself.
3291     const TypeOopPtr *etype =
3292       TypeOopPtr::make_from_klass_raw(klass->as_array_klass()->element_klass());
3293     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3294     // We used to pass NotNull in here, asserting that the sub-arrays
3295     // are all not-null.  This is not true in generally, as code can
3296     // slam NULLs down in the subarrays.
3297     if (require_constant) {
3298       if (!o->can_be_constant())  return NULL;
3299     } else if (!o->should_be_constant()) {
3300       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3301     }
3302     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3303     return arr;
3304   } else if (klass->is_type_array_klass()) {
3305     // Element is an typeArray
3306     const Type* etype =
3307       (Type*)get_const_basic_type(klass->as_type_array_klass()->element_type());
3308     const TypeAry* arr0 = TypeAry::make(etype, TypeInt::make(o->as_array()->length()));
3309     // We used to pass NotNull in here, asserting that the array pointer
3310     // is not-null. That was not true in general.
3311     if (require_constant) {
3312       if (!o->can_be_constant())  return NULL;
3313     } else if (!o->should_be_constant()) {
3314       return TypeAryPtr::make(TypePtr::NotNull, arr0, klass, true, Offset(0));
3315     }
3316     const TypeAryPtr* arr = TypeAryPtr::make(TypePtr::Constant, o, arr0, klass, true, Offset(0));
3317     return arr;
3318   }
3319 
3320   fatal("unhandled object type");
3321   return NULL;
3322 }
3323 
3324 //------------------------------get_con----------------------------------------
3325 intptr_t TypeOopPtr::get_con() const {
3326   assert( _ptr == Null || _ptr == Constant, "" );
3327   assert(offset() >= 0, "");
3328 
3329   if (offset() != 0) {
3330     // After being ported to the compiler interface, the compiler no longer
3331     // directly manipulates the addresses of oops.  Rather, it only has a pointer
3332     // to a handle at compile time.  This handle is embedded in the generated
3333     // code and dereferenced at the time the nmethod is made.  Until that time,
3334     // it is not reasonable to do arithmetic with the addresses of oops (we don't
3335     // have access to the addresses!).  This does not seem to currently happen,
3336     // but this assertion here is to help prevent its occurence.
3337     tty->print_cr("Found oop constant with non-zero offset");
3338     ShouldNotReachHere();
3339   }
3340 
3341   return (intptr_t)const_oop()->constant_encoding();
3342 }
3343 
3344 
3345 //-----------------------------filter------------------------------------------
3346 // Do not allow interface-vs.-noninterface joins to collapse to top.
3347 const Type *TypeOopPtr::filter_helper(const Type *kills, bool include_speculative) const {
3348 
3349   const Type* ft = join_helper(kills, include_speculative);
3350   const TypeInstPtr* ftip = ft->isa_instptr();
3351   const TypeInstPtr* ktip = kills->isa_instptr();
3352 
3353   if (ft->empty()) {
3354     // Check for evil case of 'this' being a class and 'kills' expecting an
3355     // interface.  This can happen because the bytecodes do not contain
3356     // enough type info to distinguish a Java-level interface variable
3357     // from a Java-level object variable.  If we meet 2 classes which
3358     // both implement interface I, but their meet is at 'j/l/O' which
3359     // doesn't implement I, we have no way to tell if the result should
3360     // be 'I' or 'j/l/O'.  Thus we'll pick 'j/l/O'.  If this then flows
3361     // into a Phi which "knows" it's an Interface type we'll have to
3362     // uplift the type.
3363     if (!empty()) {
3364       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3365         return kills;           // Uplift to interface
3366       }
3367       // Also check for evil cases of 'this' being a class array
3368       // and 'kills' expecting an array of interfaces.
3369       Type::get_arrays_base_elements(ft, kills, NULL, &ktip);
3370       if (ktip != NULL && ktip->is_loaded() && ktip->klass()->is_interface()) {
3371         return kills;           // Uplift to array of interface
3372       }
3373     }
3374 
3375     return Type::TOP;           // Canonical empty value
3376   }
3377 
3378   // If we have an interface-typed Phi or cast and we narrow to a class type,
3379   // the join should report back the class.  However, if we have a J/L/Object
3380   // class-typed Phi and an interface flows in, it's possible that the meet &
3381   // join report an interface back out.  This isn't possible but happens
3382   // because the type system doesn't interact well with interfaces.
3383   if (ftip != NULL && ktip != NULL &&
3384       ftip->is_loaded() &&  ftip->klass()->is_interface() &&
3385       ktip->is_loaded() && !ktip->klass()->is_interface()) {
3386     assert(!ftip->klass_is_exact(), "interface could not be exact");
3387     return ktip->cast_to_ptr_type(ftip->ptr());
3388   }
3389 
3390   return ft;
3391 }
3392 
3393 //------------------------------eq---------------------------------------------
3394 // Structural equality check for Type representations
3395 bool TypeOopPtr::eq( const Type *t ) const {
3396   const TypeOopPtr *a = (const TypeOopPtr*)t;
3397   if (_klass_is_exact != a->_klass_is_exact ||
3398       _instance_id != a->_instance_id)  return false;
3399   ciObject* one = const_oop();
3400   ciObject* two = a->const_oop();
3401   if (one == NULL || two == NULL) {
3402     return (one == two) && TypePtr::eq(t);
3403   } else {
3404     return one->equals(two) && TypePtr::eq(t);
3405   }
3406 }
3407 
3408 //------------------------------hash-------------------------------------------
3409 // Type-specific hashing function.
3410 int TypeOopPtr::hash(void) const {
3411   return
3412     java_add(java_add(const_oop() ? const_oop()->hash() : 0, _klass_is_exact),
3413              java_add(_instance_id, TypePtr::hash()));
3414 }
3415 
3416 //------------------------------dump2------------------------------------------
3417 #ifndef PRODUCT
3418 void TypeOopPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
3419   st->print("oopptr:%s", ptr_msg[_ptr]);
3420   if( _klass_is_exact ) st->print(":exact");
3421   if( const_oop() ) st->print(INTPTR_FORMAT, p2i(const_oop()));
3422   _offset.dump2(st);
3423   if (_instance_id == InstanceTop)
3424     st->print(",iid=top");
3425   else if (_instance_id != InstanceBot)
3426     st->print(",iid=%d",_instance_id);
3427 
3428   dump_inline_depth(st);
3429   dump_speculative(st);
3430 }
3431 #endif
3432 
3433 //------------------------------singleton--------------------------------------
3434 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
3435 // constants
3436 bool TypeOopPtr::singleton(void) const {
3437   // detune optimizer to not generate constant oop + constant offset as a constant!
3438   // TopPTR, Null, AnyNull, Constant are all singletons
3439   return (offset() == 0) && !below_centerline(_ptr);
3440 }
3441 
3442 //------------------------------add_offset-------------------------------------
3443 const TypePtr *TypeOopPtr::add_offset(intptr_t offset) const {
3444   return make(_ptr, xadd_offset(offset), _instance_id, add_offset_speculative(offset), _inline_depth);
3445 }
3446 
3447 /**
3448  * Return same type without a speculative part
3449  */
3450 const Type* TypeOopPtr::remove_speculative() const {
3451   if (_speculative == NULL) {
3452     return this;
3453   }
3454   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
3455   return make(_ptr, _offset, _instance_id, NULL, _inline_depth);
3456 }
3457 
3458 /**
3459  * Return same type but drop speculative part if we know we won't use
3460  * it
3461  */
3462 const Type* TypeOopPtr::cleanup_speculative() const {
3463   // If the klass is exact and the ptr is not null then there's
3464   // nothing that the speculative type can help us with
3465   if (klass_is_exact() && !maybe_null()) {
3466     return remove_speculative();
3467   }
3468   return TypePtr::cleanup_speculative();
3469 }
3470 
3471 /**
3472  * Return same type but with a different inline depth (used for speculation)
3473  *
3474  * @param depth  depth to meet with
3475  */
3476 const TypePtr* TypeOopPtr::with_inline_depth(int depth) const {
3477   if (!UseInlineDepthForSpeculativeTypes) {
3478     return this;
3479   }
3480   return make(_ptr, _offset, _instance_id, _speculative, depth);
3481 }
3482 
3483 //------------------------------meet_instance_id--------------------------------
3484 int TypeOopPtr::meet_instance_id( int instance_id ) const {
3485   // Either is 'TOP' instance?  Return the other instance!
3486   if( _instance_id == InstanceTop ) return  instance_id;
3487   if(  instance_id == InstanceTop ) return _instance_id;
3488   // If either is different, return 'BOTTOM' instance
3489   if( _instance_id != instance_id ) return InstanceBot;
3490   return _instance_id;
3491 }
3492 
3493 //------------------------------dual_instance_id--------------------------------
3494 int TypeOopPtr::dual_instance_id( ) const {
3495   if( _instance_id == InstanceTop ) return InstanceBot; // Map TOP into BOTTOM
3496   if( _instance_id == InstanceBot ) return InstanceTop; // Map BOTTOM into TOP
3497   return _instance_id;              // Map everything else into self
3498 }
3499 
3500 /**
3501  * Check whether new profiling would improve speculative type
3502  *
3503  * @param   exact_kls    class from profiling
3504  * @param   inline_depth inlining depth of profile point
3505  *
3506  * @return  true if type profile is valuable
3507  */
3508 bool TypeOopPtr::would_improve_type(ciKlass* exact_kls, int inline_depth) const {
3509   // no way to improve an already exact type
3510   if (klass_is_exact()) {
3511     return false;
3512   }
3513   return TypePtr::would_improve_type(exact_kls, inline_depth);
3514 }
3515 
3516 //=============================================================================
3517 // Convenience common pre-built types.
3518 const TypeInstPtr *TypeInstPtr::NOTNULL;
3519 const TypeInstPtr *TypeInstPtr::BOTTOM;
3520 const TypeInstPtr *TypeInstPtr::MIRROR;
3521 const TypeInstPtr *TypeInstPtr::MARK;
3522 const TypeInstPtr *TypeInstPtr::KLASS;
3523 
3524 //------------------------------TypeInstPtr-------------------------------------
3525 TypeInstPtr::TypeInstPtr(PTR ptr, ciKlass* k, bool xk, ciObject* o, Offset off,
3526                          int instance_id, const TypePtr* speculative, int inline_depth)
3527   : TypeOopPtr(InstPtr, ptr, k, xk, o, off, instance_id, speculative, inline_depth),
3528     _name(k->name()) {
3529    assert(k != NULL &&
3530           (k->is_loaded() || o == NULL),
3531           "cannot have constants with non-loaded klass");
3532 };
3533 
3534 //------------------------------make-------------------------------------------
3535 const TypeInstPtr *TypeInstPtr::make(PTR ptr,
3536                                      ciKlass* k,
3537                                      bool xk,
3538                                      ciObject* o,
3539                                      Offset offset,
3540                                      int instance_id,
3541                                      const TypePtr* speculative,
3542                                      int inline_depth) {
3543   assert( !k->is_loaded() || k->is_instance_klass(), "Must be for instance");
3544   // Either const_oop() is NULL or else ptr is Constant
3545   assert( (!o && ptr != Constant) || (o && ptr == Constant),
3546           "constant pointers must have a value supplied" );
3547   // Ptr is never Null
3548   assert( ptr != Null, "NULL pointers are not typed" );
3549 
3550   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
3551   if (!UseExactTypes)  xk = false;
3552   if (ptr == Constant) {
3553     // Note:  This case includes meta-object constants, such as methods.
3554     xk = true;
3555   } else if (k->is_loaded()) {
3556     ciInstanceKlass* ik = k->as_instance_klass();
3557     if (!xk && ik->is_final())     xk = true;   // no inexact final klass
3558     if (xk && ik->is_interface())  xk = false;  // no exact interface
3559   }
3560 
3561   // Now hash this baby
3562   TypeInstPtr *result =
3563     (TypeInstPtr*)(new TypeInstPtr(ptr, k, xk, o ,offset, instance_id, speculative, inline_depth))->hashcons();
3564 
3565   return result;
3566 }
3567 
3568 /**
3569  *  Create constant type for a constant boxed value
3570  */
3571 const Type* TypeInstPtr::get_const_boxed_value() const {
3572   assert(is_ptr_to_boxed_value(), "should be called only for boxed value");
3573   assert((const_oop() != NULL), "should be called only for constant object");
3574   ciConstant constant = const_oop()->as_instance()->field_value_by_offset(offset());
3575   BasicType bt = constant.basic_type();
3576   switch (bt) {
3577     case T_BOOLEAN:  return TypeInt::make(constant.as_boolean());
3578     case T_INT:      return TypeInt::make(constant.as_int());
3579     case T_CHAR:     return TypeInt::make(constant.as_char());
3580     case T_BYTE:     return TypeInt::make(constant.as_byte());
3581     case T_SHORT:    return TypeInt::make(constant.as_short());
3582     case T_FLOAT:    return TypeF::make(constant.as_float());
3583     case T_DOUBLE:   return TypeD::make(constant.as_double());
3584     case T_LONG:     return TypeLong::make(constant.as_long());
3585     default:         break;
3586   }
3587   fatal("Invalid boxed value type '%s'", type2name(bt));
3588   return NULL;
3589 }
3590 
3591 //------------------------------cast_to_ptr_type-------------------------------
3592 const Type *TypeInstPtr::cast_to_ptr_type(PTR ptr) const {
3593   if( ptr == _ptr ) return this;
3594   // Reconstruct _sig info here since not a problem with later lazy
3595   // construction, _sig will show up on demand.
3596   return make(ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3597 }
3598 
3599 
3600 //-----------------------------cast_to_exactness-------------------------------
3601 const Type *TypeInstPtr::cast_to_exactness(bool klass_is_exact) const {
3602   if( klass_is_exact == _klass_is_exact ) return this;
3603   if (!UseExactTypes)  return this;
3604   if (!_klass->is_loaded())  return this;
3605   ciInstanceKlass* ik = _klass->as_instance_klass();
3606   if( (ik->is_final() || _const_oop) )  return this;  // cannot clear xk
3607   if( ik->is_interface() )              return this;  // cannot set xk
3608   return make(ptr(), klass(), klass_is_exact, const_oop(), _offset, _instance_id, _speculative, _inline_depth);
3609 }
3610 
3611 //-----------------------------cast_to_instance_id----------------------------
3612 const TypeOopPtr *TypeInstPtr::cast_to_instance_id(int instance_id) const {
3613   if( instance_id == _instance_id ) return this;
3614   return make(_ptr, klass(), _klass_is_exact, const_oop(), _offset, instance_id, _speculative, _inline_depth);
3615 }
3616 
3617 //------------------------------xmeet_unloaded---------------------------------
3618 // Compute the MEET of two InstPtrs when at least one is unloaded.
3619 // Assume classes are different since called after check for same name/class-loader
3620 const TypeInstPtr *TypeInstPtr::xmeet_unloaded(const TypeInstPtr *tinst) const {
3621     Offset off = meet_offset(tinst->offset());
3622     PTR ptr = meet_ptr(tinst->ptr());
3623     int instance_id = meet_instance_id(tinst->instance_id());
3624     const TypePtr* speculative = xmeet_speculative(tinst);
3625     int depth = meet_inline_depth(tinst->inline_depth());
3626 
3627     const TypeInstPtr *loaded    = is_loaded() ? this  : tinst;
3628     const TypeInstPtr *unloaded  = is_loaded() ? tinst : this;
3629     if( loaded->klass()->equals(ciEnv::current()->Object_klass()) ) {
3630       //
3631       // Meet unloaded class with java/lang/Object
3632       //
3633       // Meet
3634       //          |                     Unloaded Class
3635       //  Object  |   TOP    |   AnyNull | Constant |   NotNull |  BOTTOM   |
3636       //  ===================================================================
3637       //   TOP    | ..........................Unloaded......................|
3638       //  AnyNull |  U-AN    |................Unloaded......................|
3639       // Constant | ... O-NN .................................. |   O-BOT   |
3640       //  NotNull | ... O-NN .................................. |   O-BOT   |
3641       //  BOTTOM  | ........................Object-BOTTOM ..................|
3642       //
3643       assert(loaded->ptr() != TypePtr::Null, "insanity check");
3644       //
3645       if(      loaded->ptr() == TypePtr::TopPTR ) { return unloaded; }
3646       else if (loaded->ptr() == TypePtr::AnyNull) { return TypeInstPtr::make(ptr, unloaded->klass(), false, NULL, off, instance_id, speculative, depth); }
3647       else if (loaded->ptr() == TypePtr::BotPTR ) { return TypeInstPtr::BOTTOM; }
3648       else if (loaded->ptr() == TypePtr::Constant || loaded->ptr() == TypePtr::NotNull) {
3649         if (unloaded->ptr() == TypePtr::BotPTR  ) { return TypeInstPtr::BOTTOM;  }
3650         else                                      { return TypeInstPtr::NOTNULL; }
3651       }
3652       else if( unloaded->ptr() == TypePtr::TopPTR )  { return unloaded; }
3653 
3654       return unloaded->cast_to_ptr_type(TypePtr::AnyNull)->is_instptr();
3655     }
3656 
3657     // Both are unloaded, not the same class, not Object
3658     // Or meet unloaded with a different loaded class, not java/lang/Object
3659     if( ptr != TypePtr::BotPTR ) {
3660       return TypeInstPtr::NOTNULL;
3661     }
3662     return TypeInstPtr::BOTTOM;
3663 }
3664 
3665 
3666 //------------------------------meet-------------------------------------------
3667 // Compute the MEET of two types.  It returns a new Type object.
3668 const Type *TypeInstPtr::xmeet_helper(const Type *t) const {
3669   // Perform a fast test for common case; meeting the same types together.
3670   if( this == t ) return this;  // Meeting same type-rep?
3671 
3672   // Current "this->_base" is Pointer
3673   switch (t->base()) {          // switch on original type
3674 
3675   case Int:                     // Mixing ints & oops happens when javac
3676   case Long:                    // reuses local variables
3677   case FloatTop:
3678   case FloatCon:
3679   case FloatBot:
3680   case DoubleTop:
3681   case DoubleCon:
3682   case DoubleBot:
3683   case NarrowOop:
3684   case NarrowKlass:
3685   case Bottom:                  // Ye Olde Default
3686     return Type::BOTTOM;
3687   case Top:
3688     return this;
3689 
3690   default:                      // All else is a mistake
3691     typerr(t);
3692 
3693   case MetadataPtr:
3694   case KlassPtr:
3695   case RawPtr: return TypePtr::BOTTOM;
3696 
3697   case AryPtr: {                // All arrays inherit from Object class
3698     const TypeAryPtr *tp = t->is_aryptr();
3699     Offset offset = meet_offset(tp->offset());
3700     PTR ptr = meet_ptr(tp->ptr());
3701     int instance_id = meet_instance_id(tp->instance_id());
3702     const TypePtr* speculative = xmeet_speculative(tp);
3703     int depth = meet_inline_depth(tp->inline_depth());
3704     switch (ptr) {
3705     case TopPTR:
3706     case AnyNull:                // Fall 'down' to dual of object klass
3707       // For instances when a subclass meets a superclass we fall
3708       // below the centerline when the superclass is exact. We need to
3709       // do the same here.
3710       if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3711         return TypeAryPtr::make(ptr, tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->_field_offset, instance_id, speculative, depth);
3712       } else {
3713         // cannot subclass, so the meet has to fall badly below the centerline
3714         ptr = NotNull;
3715         instance_id = InstanceBot;
3716         return TypeInstPtr::make( ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3717       }
3718     case Constant:
3719     case NotNull:
3720     case BotPTR:                // Fall down to object klass
3721       // LCA is object_klass, but if we subclass from the top we can do better
3722       if( above_centerline(_ptr) ) { // if( _ptr == TopPTR || _ptr == AnyNull )
3723         // If 'this' (InstPtr) is above the centerline and it is Object class
3724         // then we can subclass in the Java class hierarchy.
3725         // For instances when a subclass meets a superclass we fall
3726         // below the centerline when the superclass is exact. We need
3727         // to do the same here.
3728         if (klass()->equals(ciEnv::current()->Object_klass()) && !klass_is_exact()) {
3729           // that is, tp's array type is a subtype of my klass
3730           return TypeAryPtr::make(ptr, (ptr == Constant ? tp->const_oop() : NULL),
3731                                   tp->ary(), tp->klass(), tp->klass_is_exact(), offset, tp->_field_offset, instance_id, speculative, depth);
3732         }
3733       }
3734       // The other case cannot happen, since I cannot be a subtype of an array.
3735       // The meet falls down to Object class below centerline.
3736       if( ptr == Constant )
3737          ptr = NotNull;
3738       instance_id = InstanceBot;
3739       return make(ptr, ciEnv::current()->Object_klass(), false, NULL, offset, instance_id, speculative, depth);
3740     default: typerr(t);
3741     }
3742   }
3743 
3744   case OopPtr: {                // Meeting to OopPtrs
3745     // Found a OopPtr type vs self-InstPtr type
3746     const TypeOopPtr *tp = t->is_oopptr();
3747     Offset offset = meet_offset(tp->offset());
3748     PTR ptr = meet_ptr(tp->ptr());
3749     switch (tp->ptr()) {
3750     case TopPTR:
3751     case AnyNull: {
3752       int instance_id = meet_instance_id(InstanceTop);
3753       const TypePtr* speculative = xmeet_speculative(tp);
3754       int depth = meet_inline_depth(tp->inline_depth());
3755       return make(ptr, klass(), klass_is_exact(),
3756                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3757     }
3758     case NotNull:
3759     case BotPTR: {
3760       int instance_id = meet_instance_id(tp->instance_id());
3761       const TypePtr* speculative = xmeet_speculative(tp);
3762       int depth = meet_inline_depth(tp->inline_depth());
3763       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
3764     }
3765     default: typerr(t);
3766     }
3767   }
3768 
3769   case AnyPtr: {                // Meeting to AnyPtrs
3770     // Found an AnyPtr type vs self-InstPtr type
3771     const TypePtr *tp = t->is_ptr();
3772     Offset offset = meet_offset(tp->offset());
3773     PTR ptr = meet_ptr(tp->ptr());
3774     int instance_id = meet_instance_id(InstanceTop);
3775     const TypePtr* speculative = xmeet_speculative(tp);
3776     int depth = meet_inline_depth(tp->inline_depth());
3777     switch (tp->ptr()) {
3778     case Null:
3779       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
3780       // else fall through to AnyNull
3781     case TopPTR:
3782     case AnyNull: {
3783       return make(ptr, klass(), klass_is_exact(),
3784                   (ptr == Constant ? const_oop() : NULL), offset, instance_id, speculative, depth);
3785     }
3786     case NotNull:
3787     case BotPTR:
3788       return TypePtr::make(AnyPtr, ptr, offset, speculative,depth);
3789     default: typerr(t);
3790     }
3791   }
3792 
3793   /*
3794                  A-top         }
3795                /   |   \       }  Tops
3796            B-top A-any C-top   }
3797               | /  |  \ |      }  Any-nulls
3798            B-any   |   C-any   }
3799               |    |    |
3800            B-con A-con C-con   } constants; not comparable across classes
3801               |    |    |
3802            B-not   |   C-not   }
3803               | \  |  / |      }  not-nulls
3804            B-bot A-not C-bot   }
3805                \   |   /       }  Bottoms
3806                  A-bot         }
3807   */
3808 
3809   case InstPtr: {                // Meeting 2 Oops?
3810     // Found an InstPtr sub-type vs self-InstPtr type
3811     const TypeInstPtr *tinst = t->is_instptr();
3812     Offset off = meet_offset( tinst->offset() );
3813     PTR ptr = meet_ptr( tinst->ptr() );
3814     int instance_id = meet_instance_id(tinst->instance_id());
3815     const TypePtr* speculative = xmeet_speculative(tinst);
3816     int depth = meet_inline_depth(tinst->inline_depth());
3817 
3818     // Check for easy case; klasses are equal (and perhaps not loaded!)
3819     // If we have constants, then we created oops so classes are loaded
3820     // and we can handle the constants further down.  This case handles
3821     // both-not-loaded or both-loaded classes
3822     if (ptr != Constant && klass()->equals(tinst->klass()) && klass_is_exact() == tinst->klass_is_exact()) {
3823       return make(ptr, klass(), klass_is_exact(), NULL, off, instance_id, speculative, depth);
3824     }
3825 
3826     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
3827     ciKlass* tinst_klass = tinst->klass();
3828     ciKlass* this_klass  = this->klass();
3829     bool tinst_xk = tinst->klass_is_exact();
3830     bool this_xk  = this->klass_is_exact();
3831     if (!tinst_klass->is_loaded() || !this_klass->is_loaded() ) {
3832       // One of these classes has not been loaded
3833       const TypeInstPtr *unloaded_meet = xmeet_unloaded(tinst);
3834 #ifndef PRODUCT
3835       if( PrintOpto && Verbose ) {
3836         tty->print("meet of unloaded classes resulted in: "); unloaded_meet->dump(); tty->cr();
3837         tty->print("  this == "); this->dump(); tty->cr();
3838         tty->print(" tinst == "); tinst->dump(); tty->cr();
3839       }
3840 #endif
3841       return unloaded_meet;
3842     }
3843 
3844     // Handle mixing oops and interfaces first.
3845     if( this_klass->is_interface() && !(tinst_klass->is_interface() ||
3846                                         tinst_klass == ciEnv::current()->Object_klass())) {
3847       ciKlass *tmp = tinst_klass; // Swap interface around
3848       tinst_klass = this_klass;
3849       this_klass = tmp;
3850       bool tmp2 = tinst_xk;
3851       tinst_xk = this_xk;
3852       this_xk = tmp2;
3853     }
3854     if (tinst_klass->is_interface() &&
3855         !(this_klass->is_interface() ||
3856           // Treat java/lang/Object as an honorary interface,
3857           // because we need a bottom for the interface hierarchy.
3858           this_klass == ciEnv::current()->Object_klass())) {
3859       // Oop meets interface!
3860 
3861       // See if the oop subtypes (implements) interface.
3862       ciKlass *k;
3863       bool xk;
3864       if( this_klass->is_subtype_of( tinst_klass ) ) {
3865         // Oop indeed subtypes.  Now keep oop or interface depending
3866         // on whether we are both above the centerline or either is
3867         // below the centerline.  If we are on the centerline
3868         // (e.g., Constant vs. AnyNull interface), use the constant.
3869         k  = below_centerline(ptr) ? tinst_klass : this_klass;
3870         // If we are keeping this_klass, keep its exactness too.
3871         xk = below_centerline(ptr) ? tinst_xk    : this_xk;
3872       } else {                  // Does not implement, fall to Object
3873         // Oop does not implement interface, so mixing falls to Object
3874         // just like the verifier does (if both are above the
3875         // centerline fall to interface)
3876         k = above_centerline(ptr) ? tinst_klass : ciEnv::current()->Object_klass();
3877         xk = above_centerline(ptr) ? tinst_xk : false;
3878         // Watch out for Constant vs. AnyNull interface.
3879         if (ptr == Constant)  ptr = NotNull;   // forget it was a constant
3880         instance_id = InstanceBot;
3881       }
3882       ciObject* o = NULL;  // the Constant value, if any
3883       if (ptr == Constant) {
3884         // Find out which constant.
3885         o = (this_klass == klass()) ? const_oop() : tinst->const_oop();
3886       }
3887       return make(ptr, k, xk, o, off, instance_id, speculative, depth);
3888     }
3889 
3890     // Either oop vs oop or interface vs interface or interface vs Object
3891 
3892     // !!! Here's how the symmetry requirement breaks down into invariants:
3893     // If we split one up & one down AND they subtype, take the down man.
3894     // If we split one up & one down AND they do NOT subtype, "fall hard".
3895     // If both are up and they subtype, take the subtype class.
3896     // If both are up and they do NOT subtype, "fall hard".
3897     // If both are down and they subtype, take the supertype class.
3898     // If both are down and they do NOT subtype, "fall hard".
3899     // Constants treated as down.
3900 
3901     // Now, reorder the above list; observe that both-down+subtype is also
3902     // "fall hard"; "fall hard" becomes the default case:
3903     // If we split one up & one down AND they subtype, take the down man.
3904     // If both are up and they subtype, take the subtype class.
3905 
3906     // If both are down and they subtype, "fall hard".
3907     // If both are down and they do NOT subtype, "fall hard".
3908     // If both are up and they do NOT subtype, "fall hard".
3909     // If we split one up & one down AND they do NOT subtype, "fall hard".
3910 
3911     // If a proper subtype is exact, and we return it, we return it exactly.
3912     // If a proper supertype is exact, there can be no subtyping relationship!
3913     // If both types are equal to the subtype, exactness is and-ed below the
3914     // centerline and or-ed above it.  (N.B. Constants are always exact.)
3915 
3916     // Check for subtyping:
3917     ciKlass *subtype = NULL;
3918     bool subtype_exact = false;
3919     if( tinst_klass->equals(this_klass) ) {
3920       subtype = this_klass;
3921       subtype_exact = below_centerline(ptr) ? (this_xk & tinst_xk) : (this_xk | tinst_xk);
3922     } else if( !tinst_xk && this_klass->is_subtype_of( tinst_klass ) ) {
3923       subtype = this_klass;     // Pick subtyping class
3924       subtype_exact = this_xk;
3925     } else if( !this_xk && tinst_klass->is_subtype_of( this_klass ) ) {
3926       subtype = tinst_klass;    // Pick subtyping class
3927       subtype_exact = tinst_xk;
3928     }
3929 
3930     if( subtype ) {
3931       if( above_centerline(ptr) ) { // both are up?
3932         this_klass = tinst_klass = subtype;
3933         this_xk = tinst_xk = subtype_exact;
3934       } else if( above_centerline(this ->_ptr) && !above_centerline(tinst->_ptr) ) {
3935         this_klass = tinst_klass; // tinst is down; keep down man
3936         this_xk = tinst_xk;
3937       } else if( above_centerline(tinst->_ptr) && !above_centerline(this ->_ptr) ) {
3938         tinst_klass = this_klass; // this is down; keep down man
3939         tinst_xk = this_xk;
3940       } else {
3941         this_xk = subtype_exact;  // either they are equal, or we'll do an LCA
3942       }
3943     }
3944 
3945     // Check for classes now being equal
3946     if (tinst_klass->equals(this_klass)) {
3947       // If the klasses are equal, the constants may still differ.  Fall to
3948       // NotNull if they do (neither constant is NULL; that is a special case
3949       // handled elsewhere).
3950       ciObject* o = NULL;             // Assume not constant when done
3951       ciObject* this_oop  = const_oop();
3952       ciObject* tinst_oop = tinst->const_oop();
3953       if( ptr == Constant ) {
3954         if (this_oop != NULL && tinst_oop != NULL &&
3955             this_oop->equals(tinst_oop) )
3956           o = this_oop;
3957         else if (above_centerline(this ->_ptr))
3958           o = tinst_oop;
3959         else if (above_centerline(tinst ->_ptr))
3960           o = this_oop;
3961         else
3962           ptr = NotNull;
3963       }
3964       return make(ptr, this_klass, this_xk, o, off, instance_id, speculative, depth);
3965     } // Else classes are not equal
3966 
3967     // Since klasses are different, we require a LCA in the Java
3968     // class hierarchy - which means we have to fall to at least NotNull.
3969     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
3970       ptr = NotNull;
3971 
3972     instance_id = InstanceBot;
3973 
3974     // Now we find the LCA of Java classes
3975     ciKlass* k = this_klass->least_common_ancestor(tinst_klass);
3976     return make(ptr, k, false, NULL, off, instance_id, speculative, depth);
3977   } // End of case InstPtr
3978 
3979   } // End of switch
3980   return this;                  // Return the double constant
3981 }
3982 
3983 
3984 //------------------------java_mirror_type--------------------------------------
3985 ciType* TypeInstPtr::java_mirror_type() const {
3986   // must be a singleton type
3987   if( const_oop() == NULL )  return NULL;
3988 
3989   // must be of type java.lang.Class
3990   if( klass() != ciEnv::current()->Class_klass() )  return NULL;
3991 
3992   return const_oop()->as_instance()->java_mirror_type();
3993 }
3994 
3995 
3996 //------------------------------xdual------------------------------------------
3997 // Dual: do NOT dual on klasses.  This means I do NOT understand the Java
3998 // inheritance mechanism.
3999 const Type *TypeInstPtr::xdual() const {
4000   return new TypeInstPtr(dual_ptr(), klass(), klass_is_exact(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4001 }
4002 
4003 //------------------------------eq---------------------------------------------
4004 // Structural equality check for Type representations
4005 bool TypeInstPtr::eq( const Type *t ) const {
4006   const TypeInstPtr *p = t->is_instptr();
4007   return
4008     klass()->equals(p->klass()) &&
4009     TypeOopPtr::eq(p);          // Check sub-type stuff
4010 }
4011 
4012 //------------------------------hash-------------------------------------------
4013 // Type-specific hashing function.
4014 int TypeInstPtr::hash(void) const {
4015   int hash = java_add(klass()->hash(), TypeOopPtr::hash());
4016   return hash;
4017 }
4018 
4019 //------------------------------dump2------------------------------------------
4020 // Dump oop Type
4021 #ifndef PRODUCT
4022 void TypeInstPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4023   // Print the name of the klass.
4024   klass()->print_name_on(st);
4025 
4026   switch( _ptr ) {
4027   case Constant:
4028     // TO DO: Make CI print the hex address of the underlying oop.
4029     if (WizardMode || Verbose) {
4030       const_oop()->print_oop(st);
4031     }
4032   case BotPTR:
4033     if (!WizardMode && !Verbose) {
4034       if( _klass_is_exact ) st->print(":exact");
4035       break;
4036     }
4037   case TopPTR:
4038   case AnyNull:
4039   case NotNull:
4040     st->print(":%s", ptr_msg[_ptr]);
4041     if( _klass_is_exact ) st->print(":exact");
4042     break;
4043   }
4044 
4045   _offset.dump2(st);
4046 
4047   st->print(" *");
4048   if (_instance_id == InstanceTop)
4049     st->print(",iid=top");
4050   else if (_instance_id != InstanceBot)
4051     st->print(",iid=%d",_instance_id);
4052 
4053   dump_inline_depth(st);
4054   dump_speculative(st);
4055 }
4056 #endif
4057 
4058 //------------------------------add_offset-------------------------------------
4059 const TypePtr *TypeInstPtr::add_offset(intptr_t offset) const {
4060   return make(_ptr, klass(), klass_is_exact(), const_oop(), xadd_offset(offset),
4061               _instance_id, add_offset_speculative(offset), _inline_depth);
4062 }
4063 
4064 const Type *TypeInstPtr::remove_speculative() const {
4065   if (_speculative == NULL) {
4066     return this;
4067   }
4068   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4069   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset,
4070               _instance_id, NULL, _inline_depth);
4071 }
4072 
4073 const TypePtr *TypeInstPtr::with_inline_depth(int depth) const {
4074   if (!UseInlineDepthForSpeculativeTypes) {
4075     return this;
4076   }
4077   return make(_ptr, klass(), klass_is_exact(), const_oop(), _offset, _instance_id, _speculative, depth);
4078 }
4079 
4080 //=============================================================================
4081 // Convenience common pre-built types.
4082 const TypeAryPtr *TypeAryPtr::RANGE;
4083 const TypeAryPtr *TypeAryPtr::OOPS;
4084 const TypeAryPtr *TypeAryPtr::NARROWOOPS;
4085 const TypeAryPtr *TypeAryPtr::BYTES;
4086 const TypeAryPtr *TypeAryPtr::SHORTS;
4087 const TypeAryPtr *TypeAryPtr::CHARS;
4088 const TypeAryPtr *TypeAryPtr::INTS;
4089 const TypeAryPtr *TypeAryPtr::LONGS;
4090 const TypeAryPtr *TypeAryPtr::FLOATS;
4091 const TypeAryPtr *TypeAryPtr::DOUBLES;
4092 
4093 //------------------------------make-------------------------------------------
4094 const TypeAryPtr* TypeAryPtr::make(PTR ptr, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4095                                    int instance_id, const TypePtr* speculative, int inline_depth) {
4096   assert(!(k == NULL && ary->_elem->isa_int()),
4097          "integral arrays must be pre-equipped with a class");
4098   if (!xk)  xk = ary->ary_must_be_exact();
4099   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4100   if (!UseExactTypes)  xk = (ptr == Constant);
4101   return (TypeAryPtr*)(new TypeAryPtr(ptr, NULL, ary, k, xk, offset, field_offset, instance_id, false, speculative, inline_depth))->hashcons();
4102 }
4103 
4104 //------------------------------make-------------------------------------------
4105 const TypeAryPtr* TypeAryPtr::make(PTR ptr, ciObject* o, const TypeAry *ary, ciKlass* k, bool xk, Offset offset, Offset field_offset,
4106                                    int instance_id, const TypePtr* speculative, int inline_depth,
4107                                    bool is_autobox_cache) {
4108   assert(!(k == NULL && ary->_elem->isa_int()),
4109          "integral arrays must be pre-equipped with a class");
4110   assert( (ptr==Constant && o) || (ptr!=Constant && !o), "" );
4111   if (!xk)  xk = (o != NULL) || ary->ary_must_be_exact();
4112   assert(instance_id <= 0 || xk || !UseExactTypes, "instances are always exactly typed");
4113   if (!UseExactTypes)  xk = (ptr == Constant);
4114   return (TypeAryPtr*)(new TypeAryPtr(ptr, o, ary, k, xk, offset, field_offset, instance_id, is_autobox_cache, speculative, inline_depth))->hashcons();
4115 }
4116 
4117 //------------------------------cast_to_ptr_type-------------------------------
4118 const Type *TypeAryPtr::cast_to_ptr_type(PTR ptr) const {
4119   if( ptr == _ptr ) return this;
4120   return make(ptr, const_oop(), _ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4121 }
4122 
4123 
4124 //-----------------------------cast_to_exactness-------------------------------
4125 const Type *TypeAryPtr::cast_to_exactness(bool klass_is_exact) const {
4126   if( klass_is_exact == _klass_is_exact ) return this;
4127   if (!UseExactTypes)  return this;
4128   if (_ary->ary_must_be_exact())  return this;  // cannot clear xk
4129   return make(ptr(), const_oop(), _ary, klass(), klass_is_exact, _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4130 }
4131 
4132 //-----------------------------cast_to_instance_id----------------------------
4133 const TypeOopPtr *TypeAryPtr::cast_to_instance_id(int instance_id) const {
4134   if( instance_id == _instance_id ) return this;
4135   return make(_ptr, const_oop(), _ary, klass(), _klass_is_exact, _offset, _field_offset, instance_id, _speculative, _inline_depth, _is_autobox_cache);
4136 }
4137 
4138 //-----------------------------narrow_size_type-------------------------------
4139 // Local cache for arrayOopDesc::max_array_length(etype),
4140 // which is kind of slow (and cached elsewhere by other users).
4141 static jint max_array_length_cache[T_CONFLICT+1];
4142 static jint max_array_length(BasicType etype) {
4143   jint& cache = max_array_length_cache[etype];
4144   jint res = cache;
4145   if (res == 0) {
4146     switch (etype) {
4147     case T_NARROWOOP:
4148       etype = T_OBJECT;
4149       break;
4150     case T_NARROWKLASS:
4151     case T_CONFLICT:
4152     case T_ILLEGAL:
4153     case T_VOID:
4154       etype = T_BYTE;           // will produce conservatively high value
4155     }
4156     cache = res = arrayOopDesc::max_array_length(etype);
4157   }
4158   return res;
4159 }
4160 
4161 // Narrow the given size type to the index range for the given array base type.
4162 // Return NULL if the resulting int type becomes empty.
4163 const TypeInt* TypeAryPtr::narrow_size_type(const TypeInt* size) const {
4164   jint hi = size->_hi;
4165   jint lo = size->_lo;
4166   jint min_lo = 0;
4167   jint max_hi = max_array_length(elem()->basic_type());
4168   //if (index_not_size)  --max_hi;     // type of a valid array index, FTR
4169   bool chg = false;
4170   if (lo < min_lo) {
4171     lo = min_lo;
4172     if (size->is_con()) {
4173       hi = lo;
4174     }
4175     chg = true;
4176   }
4177   if (hi > max_hi) {
4178     hi = max_hi;
4179     if (size->is_con()) {
4180       lo = hi;
4181     }
4182     chg = true;
4183   }
4184   // Negative length arrays will produce weird intermediate dead fast-path code
4185   if (lo > hi)
4186     return TypeInt::ZERO;
4187   if (!chg)
4188     return size;
4189   return TypeInt::make(lo, hi, Type::WidenMin);
4190 }
4191 
4192 //-------------------------------cast_to_size----------------------------------
4193 const TypeAryPtr* TypeAryPtr::cast_to_size(const TypeInt* new_size) const {
4194   assert(new_size != NULL, "");
4195   new_size = narrow_size_type(new_size);
4196   if (new_size == size())  return this;
4197   const TypeAry* new_ary = TypeAry::make(elem(), new_size, is_stable());
4198   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4199 }
4200 
4201 //------------------------------cast_to_stable---------------------------------
4202 const TypeAryPtr* TypeAryPtr::cast_to_stable(bool stable, int stable_dimension) const {
4203   if (stable_dimension <= 0 || (stable_dimension == 1 && stable == this->is_stable()))
4204     return this;
4205 
4206   const Type* elem = this->elem();
4207   const TypePtr* elem_ptr = elem->make_ptr();
4208 
4209   if (stable_dimension > 1 && elem_ptr != NULL && elem_ptr->isa_aryptr()) {
4210     // If this is widened from a narrow oop, TypeAry::make will re-narrow it.
4211     elem = elem_ptr = elem_ptr->is_aryptr()->cast_to_stable(stable, stable_dimension - 1);
4212   }
4213 
4214   const TypeAry* new_ary = TypeAry::make(elem, size(), stable);
4215 
4216   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4217 }
4218 
4219 //-----------------------------stable_dimension--------------------------------
4220 int TypeAryPtr::stable_dimension() const {
4221   if (!is_stable())  return 0;
4222   int dim = 1;
4223   const TypePtr* elem_ptr = elem()->make_ptr();
4224   if (elem_ptr != NULL && elem_ptr->isa_aryptr())
4225     dim += elem_ptr->is_aryptr()->stable_dimension();
4226   return dim;
4227 }
4228 
4229 //----------------------cast_to_autobox_cache-----------------------------------
4230 const TypeAryPtr* TypeAryPtr::cast_to_autobox_cache(bool cache) const {
4231   if (is_autobox_cache() == cache)  return this;
4232   const TypeOopPtr* etype = elem()->make_oopptr();
4233   if (etype == NULL)  return this;
4234   // The pointers in the autobox arrays are always non-null.
4235   TypePtr::PTR ptr_type = cache ? TypePtr::NotNull : TypePtr::AnyNull;
4236   etype = etype->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
4237   const TypeAry* new_ary = TypeAry::make(etype, size(), is_stable());
4238   return make(ptr(), const_oop(), new_ary, klass(), klass_is_exact(), _offset, _field_offset, _instance_id, _speculative, _inline_depth, cache);
4239 }
4240 
4241 //------------------------------eq---------------------------------------------
4242 // Structural equality check for Type representations
4243 bool TypeAryPtr::eq( const Type *t ) const {
4244   const TypeAryPtr *p = t->is_aryptr();
4245   return
4246     _ary == p->_ary &&  // Check array
4247     TypeOopPtr::eq(p) &&// Check sub-parts
4248     _field_offset == p->_field_offset;
4249 }
4250 
4251 //------------------------------hash-------------------------------------------
4252 // Type-specific hashing function.
4253 int TypeAryPtr::hash(void) const {
4254   return (intptr_t)_ary + TypeOopPtr::hash() + field_offset();
4255 }
4256 
4257 //------------------------------meet-------------------------------------------
4258 // Compute the MEET of two types.  It returns a new Type object.
4259 const Type *TypeAryPtr::xmeet_helper(const Type *t) const {
4260   // Perform a fast test for common case; meeting the same types together.
4261   if( this == t ) return this;  // Meeting same type-rep?
4262   // Current "this->_base" is Pointer
4263   switch (t->base()) {          // switch on original type
4264 
4265   // Mixing ints & oops happens when javac reuses local variables
4266   case Int:
4267   case Long:
4268   case FloatTop:
4269   case FloatCon:
4270   case FloatBot:
4271   case DoubleTop:
4272   case DoubleCon:
4273   case DoubleBot:
4274   case NarrowOop:
4275   case NarrowKlass:
4276   case Bottom:                  // Ye Olde Default
4277     return Type::BOTTOM;
4278   case Top:
4279     return this;
4280 
4281   default:                      // All else is a mistake
4282     typerr(t);
4283 
4284   case OopPtr: {                // Meeting to OopPtrs
4285     // Found a OopPtr type vs self-AryPtr type
4286     const TypeOopPtr *tp = t->is_oopptr();
4287     Offset offset = meet_offset(tp->offset());
4288     PTR ptr = meet_ptr(tp->ptr());
4289     int depth = meet_inline_depth(tp->inline_depth());
4290     const TypePtr* speculative = xmeet_speculative(tp);
4291     switch (tp->ptr()) {
4292     case TopPTR:
4293     case AnyNull: {
4294       int instance_id = meet_instance_id(InstanceTop);
4295       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4296                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4297     }
4298     case BotPTR:
4299     case NotNull: {
4300       int instance_id = meet_instance_id(tp->instance_id());
4301       return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4302     }
4303     default: ShouldNotReachHere();
4304     }
4305   }
4306 
4307   case AnyPtr: {                // Meeting two AnyPtrs
4308     // Found an AnyPtr type vs self-AryPtr type
4309     const TypePtr *tp = t->is_ptr();
4310     Offset offset = meet_offset(tp->offset());
4311     PTR ptr = meet_ptr(tp->ptr());
4312     const TypePtr* speculative = xmeet_speculative(tp);
4313     int depth = meet_inline_depth(tp->inline_depth());
4314     switch (tp->ptr()) {
4315     case TopPTR:
4316       return this;
4317     case BotPTR:
4318     case NotNull:
4319       return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4320     case Null:
4321       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4322       // else fall through to AnyNull
4323     case AnyNull: {
4324       int instance_id = meet_instance_id(InstanceTop);
4325       return make(ptr, (ptr == Constant ? const_oop() : NULL),
4326                   _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4327     }
4328     default: ShouldNotReachHere();
4329     }
4330   }
4331 
4332   case MetadataPtr:
4333   case KlassPtr:
4334   case RawPtr: return TypePtr::BOTTOM;
4335 
4336   case AryPtr: {                // Meeting 2 references?
4337     const TypeAryPtr *tap = t->is_aryptr();
4338     Offset off = meet_offset(tap->offset());
4339     Offset field_off = meet_field_offset(tap->field_offset());
4340     const TypeAry *tary = _ary->meet_speculative(tap->_ary)->is_ary();
4341     PTR ptr = meet_ptr(tap->ptr());
4342     int instance_id = meet_instance_id(tap->instance_id());
4343     const TypePtr* speculative = xmeet_speculative(tap);
4344     int depth = meet_inline_depth(tap->inline_depth());
4345     ciKlass* lazy_klass = NULL;
4346     if (tary->_elem->isa_int()) {
4347       // Integral array element types have irrelevant lattice relations.
4348       // It is the klass that determines array layout, not the element type.
4349       if (_klass == NULL)
4350         lazy_klass = tap->_klass;
4351       else if (tap->_klass == NULL || tap->_klass == _klass) {
4352         lazy_klass = _klass;
4353       } else {
4354         // Something like byte[int+] meets char[int+].
4355         // This must fall to bottom, not (int[-128..65535])[int+].
4356         instance_id = InstanceBot;
4357         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4358       }
4359     } else // Non integral arrays.
4360       // Must fall to bottom if exact klasses in upper lattice
4361       // are not equal or super klass is exact.
4362       if ((above_centerline(ptr) || ptr == Constant) && klass() != tap->klass() &&
4363           // meet with top[] and bottom[] are processed further down:
4364           tap->_klass != NULL  && this->_klass != NULL   &&
4365           // both are exact and not equal:
4366           ((tap->_klass_is_exact && this->_klass_is_exact) ||
4367            // 'tap'  is exact and super or unrelated:
4368            (tap->_klass_is_exact && !tap->klass()->is_subtype_of(klass())) ||
4369            // 'this' is exact and super or unrelated:
4370            (this->_klass_is_exact && !klass()->is_subtype_of(tap->klass())))) {
4371       if (above_centerline(ptr)) {
4372         tary = TypeAry::make(Type::BOTTOM, tary->_size, tary->_stable);
4373       }
4374       return make(NotNull, NULL, tary, lazy_klass, false, off, field_off, InstanceBot, speculative, depth);
4375     }
4376 
4377     bool xk = false;
4378     switch (tap->ptr()) {
4379     case AnyNull:
4380     case TopPTR:
4381       // Compute new klass on demand, do not use tap->_klass
4382       if (below_centerline(this->_ptr)) {
4383         xk = this->_klass_is_exact;
4384       } else {
4385         xk = (tap->_klass_is_exact | this->_klass_is_exact);
4386       }
4387       return make(ptr, const_oop(), tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4388     case Constant: {
4389       ciObject* o = const_oop();
4390       if( _ptr == Constant ) {
4391         if( tap->const_oop() != NULL && !o->equals(tap->const_oop()) ) {
4392           xk = (klass() == tap->klass());
4393           ptr = NotNull;
4394           o = NULL;
4395           instance_id = InstanceBot;
4396         } else {
4397           xk = true;
4398         }
4399       } else if(above_centerline(_ptr)) {
4400         o = tap->const_oop();
4401         xk = true;
4402       } else {
4403         // Only precise for identical arrays
4404         xk = this->_klass_is_exact && (klass() == tap->klass());
4405       }
4406       return TypeAryPtr::make(ptr, o, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4407     }
4408     case NotNull:
4409     case BotPTR:
4410       // Compute new klass on demand, do not use tap->_klass
4411       if (above_centerline(this->_ptr))
4412             xk = tap->_klass_is_exact;
4413       else  xk = (tap->_klass_is_exact & this->_klass_is_exact) &&
4414               (klass() == tap->klass()); // Only precise for identical arrays
4415       return TypeAryPtr::make(ptr, NULL, tary, lazy_klass, xk, off, field_off, instance_id, speculative, depth);
4416     default: ShouldNotReachHere();
4417     }
4418   }
4419 
4420   // All arrays inherit from Object class
4421   case InstPtr: {
4422     const TypeInstPtr *tp = t->is_instptr();
4423     Offset offset = meet_offset(tp->offset());
4424     PTR ptr = meet_ptr(tp->ptr());
4425     int instance_id = meet_instance_id(tp->instance_id());
4426     const TypePtr* speculative = xmeet_speculative(tp);
4427     int depth = meet_inline_depth(tp->inline_depth());
4428     switch (ptr) {
4429     case TopPTR:
4430     case AnyNull:                // Fall 'down' to dual of object klass
4431       // For instances when a subclass meets a superclass we fall
4432       // below the centerline when the superclass is exact. We need to
4433       // do the same here.
4434       if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4435         return TypeAryPtr::make(ptr, _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4436       } else {
4437         // cannot subclass, so the meet has to fall badly below the centerline
4438         ptr = NotNull;
4439         instance_id = InstanceBot;
4440         return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4441       }
4442     case Constant:
4443     case NotNull:
4444     case BotPTR:                // Fall down to object klass
4445       // LCA is object_klass, but if we subclass from the top we can do better
4446       if (above_centerline(tp->ptr())) {
4447         // If 'tp'  is above the centerline and it is Object class
4448         // then we can subclass in the Java class hierarchy.
4449         // For instances when a subclass meets a superclass we fall
4450         // below the centerline when the superclass is exact. We need
4451         // to do the same here.
4452         if (tp->klass()->equals(ciEnv::current()->Object_klass()) && !tp->klass_is_exact()) {
4453           // that is, my array type is a subtype of 'tp' klass
4454           return make(ptr, (ptr == Constant ? const_oop() : NULL),
4455                       _ary, _klass, _klass_is_exact, offset, _field_offset, instance_id, speculative, depth);
4456         }
4457       }
4458       // The other case cannot happen, since t cannot be a subtype of an array.
4459       // The meet falls down to Object class below centerline.
4460       if( ptr == Constant )
4461          ptr = NotNull;
4462       instance_id = InstanceBot;
4463       return TypeInstPtr::make(ptr, ciEnv::current()->Object_klass(), false, NULL,offset, instance_id, speculative, depth);
4464     default: typerr(t);
4465     }
4466   }
4467   }
4468   return this;                  // Lint noise
4469 }
4470 
4471 //------------------------------xdual------------------------------------------
4472 // Dual: compute field-by-field dual
4473 const Type *TypeAryPtr::xdual() const {
4474   return new TypeAryPtr(dual_ptr(), _const_oop, _ary->dual()->is_ary(),_klass, _klass_is_exact, dual_offset(), dual_field_offset(), dual_instance_id(), is_autobox_cache(), dual_speculative(), dual_inline_depth());
4475 }
4476 
4477 Type::Offset TypeAryPtr::meet_field_offset(int field_offset) const {
4478   return _field_offset.meet(Offset(field_offset));
4479 }
4480 
4481 //------------------------------dual_offset------------------------------------
4482 Type::Offset TypeAryPtr::dual_field_offset() const {
4483   return _field_offset.dual();
4484 }
4485 
4486 //----------------------interface_vs_oop---------------------------------------
4487 #ifdef ASSERT
4488 bool TypeAryPtr::interface_vs_oop(const Type *t) const {
4489   const TypeAryPtr* t_aryptr = t->isa_aryptr();
4490   if (t_aryptr) {
4491     return _ary->interface_vs_oop(t_aryptr->_ary);
4492   }
4493   return false;
4494 }
4495 #endif
4496 
4497 //------------------------------dump2------------------------------------------
4498 #ifndef PRODUCT
4499 void TypeAryPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
4500   _ary->dump2(d,depth,st);
4501   switch( _ptr ) {
4502   case Constant:
4503     const_oop()->print(st);
4504     break;
4505   case BotPTR:
4506     if (!WizardMode && !Verbose) {
4507       if( _klass_is_exact ) st->print(":exact");
4508       break;
4509     }
4510   case TopPTR:
4511   case AnyNull:
4512   case NotNull:
4513     st->print(":%s", ptr_msg[_ptr]);
4514     if( _klass_is_exact ) st->print(":exact");
4515     break;
4516   }
4517 
4518   if (elem()->isa_valuetype()) {
4519     st->print("(");
4520     _field_offset.dump2(st);
4521     st->print(")");
4522   }
4523   if (offset() != 0) {
4524     int header_size = objArrayOopDesc::header_size() * wordSize;
4525     if( _offset == Offset::top )       st->print("+undefined");
4526     else if( _offset == Offset::bottom )  st->print("+any");
4527     else if( offset() < header_size ) st->print("+%d", offset());
4528     else {
4529       BasicType basic_elem_type = elem()->basic_type();
4530       int array_base = arrayOopDesc::base_offset_in_bytes(basic_elem_type);
4531       int elem_size = type2aelembytes(basic_elem_type);
4532       st->print("[%d]", (offset() - array_base)/elem_size);
4533     }
4534   }
4535   st->print(" *");
4536   if (_instance_id == InstanceTop)
4537     st->print(",iid=top");
4538   else if (_instance_id != InstanceBot)
4539     st->print(",iid=%d",_instance_id);
4540 
4541   dump_inline_depth(st);
4542   dump_speculative(st);
4543 }
4544 #endif
4545 
4546 bool TypeAryPtr::empty(void) const {
4547   if (_ary->empty())       return true;
4548   return TypeOopPtr::empty();
4549 }
4550 
4551 //------------------------------add_offset-------------------------------------
4552 const TypePtr *TypeAryPtr::add_offset(intptr_t offset) const {
4553   return make(_ptr, _const_oop, _ary, _klass, _klass_is_exact, xadd_offset(offset), _field_offset, _instance_id, add_offset_speculative(offset), _inline_depth, _is_autobox_cache);
4554 }
4555 
4556 const Type *TypeAryPtr::remove_speculative() const {
4557   if (_speculative == NULL) {
4558     return this;
4559   }
4560   assert(_inline_depth == InlineDepthTop || _inline_depth == InlineDepthBottom, "non speculative type shouldn't have inline depth");
4561   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, NULL, _inline_depth, _is_autobox_cache);
4562 }
4563 
4564 const TypePtr *TypeAryPtr::with_inline_depth(int depth) const {
4565   if (!UseInlineDepthForSpeculativeTypes) {
4566     return this;
4567   }
4568   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, _field_offset, _instance_id, _speculative, depth, _is_autobox_cache);
4569 }
4570 
4571 const TypeAryPtr* TypeAryPtr::with_field_offset(int offset) const {
4572   return make(_ptr, _const_oop, _ary->remove_speculative()->is_ary(), _klass, _klass_is_exact, _offset, Offset(offset), _instance_id, _speculative, _inline_depth, _is_autobox_cache);
4573 }
4574 
4575 const TypePtr* TypeAryPtr::with_field_offset_and_offset(intptr_t offset) const {
4576   if (offset != Type::OffsetBot) {
4577     const Type* elemtype = elem();
4578     if (elemtype->isa_valuetype()) {
4579       uint header = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
4580       if (offset >= header) {
4581         ciKlass* arytype_klass = klass();
4582         ciValueArrayKlass* vak = arytype_klass->as_value_array_klass();
4583         int shift = vak->log2_element_size();
4584         intptr_t field_offset = ((offset - header) & ((1 << shift) - 1));
4585         
4586         return with_field_offset(field_offset)->add_offset(offset - field_offset);
4587       }
4588     }
4589   }
4590   return add_offset(offset);;
4591 }
4592 
4593 //=============================================================================
4594 
4595 
4596 //=============================================================================
4597 
4598 //------------------------------make-------------------------------------------
4599 const TypeValueTypePtr* TypeValueTypePtr::make(const TypeValueType* vt, PTR ptr, ciObject* o, Offset offset, int instance_id, const TypePtr* speculative, int inline_depth) {
4600   return (TypeValueTypePtr*)(new TypeValueTypePtr(vt, ptr, o, offset, instance_id, speculative, inline_depth))->hashcons();
4601 }
4602 
4603 const TypePtr* TypeValueTypePtr::add_offset(intptr_t offset) const {
4604   return make(_vt, _ptr, _const_oop, Offset(offset), _instance_id, _speculative, _inline_depth);
4605 }
4606 
4607 //------------------------------cast_to_ptr_type-------------------------------
4608 const Type* TypeValueTypePtr::cast_to_ptr_type(PTR ptr) const {
4609   if (ptr == _ptr) return this;
4610   return make(_vt, ptr, _const_oop, _offset, _instance_id, _speculative, _inline_depth);
4611 }
4612 
4613 //-----------------------------cast_to_instance_id----------------------------
4614 const TypeOopPtr* TypeValueTypePtr::cast_to_instance_id(int instance_id) const {
4615   if (instance_id == _instance_id) return this;
4616   return make(_vt, _ptr, _const_oop, _offset, instance_id, _speculative, _inline_depth);
4617 }
4618 
4619 //------------------------------meet-------------------------------------------
4620 // Compute the MEET of two types.  It returns a new Type object.
4621 const Type* TypeValueTypePtr::xmeet_helper(const Type* t) const {
4622   // Perform a fast test for common case; meeting the same types together.
4623   if (this == t) return this;  // Meeting same type-rep?
4624 
4625   switch (t->base()) {          // switch on original type
4626     case Int:                     // Mixing ints & oops happens when javac
4627     case Long:                    // reuses local variables
4628     case FloatTop:
4629     case FloatCon:
4630     case FloatBot:
4631     case DoubleTop:
4632     case DoubleCon:
4633     case DoubleBot:
4634     case NarrowOop:
4635     case NarrowKlass:
4636     case MetadataPtr:
4637     case KlassPtr:
4638     case RawPtr:
4639     case AryPtr:
4640     case InstPtr:
4641     case Bottom:                  // Ye Olde Default
4642       return Type::BOTTOM;
4643     case Top:
4644       return this;
4645 
4646     default:                      // All else is a mistake
4647       typerr(t);
4648 
4649     case OopPtr: {
4650       // Found a OopPtr type vs self-ValueTypePtr type
4651       const TypeOopPtr* tp = t->is_oopptr();
4652       Offset offset = meet_offset(tp->offset());
4653       PTR ptr = meet_ptr(tp->ptr());
4654       int instance_id = meet_instance_id(tp->instance_id());
4655       const TypePtr* speculative = xmeet_speculative(tp);
4656       int depth = meet_inline_depth(tp->inline_depth());
4657       switch (tp->ptr()) {
4658       case TopPTR:
4659       case AnyNull: {
4660         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4661       }
4662       case NotNull:
4663       case BotPTR: {
4664         return TypeOopPtr::make(ptr, offset, instance_id, speculative, depth);
4665       }
4666       default: typerr(t);
4667       }
4668     }
4669 
4670     case AnyPtr: {
4671       // Found an AnyPtr type vs self-ValueTypePtr type
4672       const TypePtr* tp = t->is_ptr();
4673       Offset offset = meet_offset(tp->offset());
4674       PTR ptr = meet_ptr(tp->ptr());
4675       int instance_id = meet_instance_id(InstanceTop);
4676       const TypePtr* speculative = xmeet_speculative(tp);
4677       int depth = meet_inline_depth(tp->inline_depth());
4678       switch (tp->ptr()) {
4679       case Null:
4680         if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4681         // else fall through to AnyNull
4682       case TopPTR:
4683       case AnyNull: {
4684         return make(_vt, ptr, NULL, offset, instance_id, speculative, depth);
4685       }
4686       case NotNull:
4687       case BotPTR:
4688         return TypePtr::make(AnyPtr, ptr, offset, speculative, depth);
4689       default: typerr(t);
4690       }
4691     }
4692 
4693     case ValueTypePtr: {
4694       // Found an ValueTypePtr type vs self-ValueTypePtr type
4695       const TypeValueTypePtr* tp = t->is_valuetypeptr();
4696       Offset offset = meet_offset(tp->offset());
4697       PTR ptr = meet_ptr(tp->ptr());
4698       int instance_id = meet_instance_id(InstanceTop);
4699       const TypePtr* speculative = xmeet_speculative(tp);
4700       int depth = meet_inline_depth(tp->inline_depth());
4701       // Compute constant oop
4702       ciObject* o = NULL;
4703       ciObject* this_oop  = const_oop();
4704       ciObject* tp_oop = tp->const_oop();
4705       if (ptr == Constant) {
4706         if (this_oop != NULL && tp_oop != NULL &&
4707             this_oop->equals(tp_oop) ) {
4708           o = this_oop;
4709         } else if (above_centerline(this ->_ptr)) {
4710           o = tp_oop;
4711         } else if (above_centerline(tp ->_ptr)) {
4712           o = this_oop;
4713         } else {
4714           ptr = NotNull;
4715         }
4716       }
4717       return make(_vt, ptr, o, offset, instance_id, speculative, depth);
4718     }
4719     }
4720 }
4721 
4722 // Dual: compute field-by-field dual
4723 const Type* TypeValueTypePtr::xdual() const {
4724   return new TypeValueTypePtr(_vt, dual_ptr(), const_oop(), dual_offset(), dual_instance_id(), dual_speculative(), dual_inline_depth());
4725 }
4726 
4727 //------------------------------eq---------------------------------------------
4728 // Structural equality check for Type representations
4729 bool TypeValueTypePtr::eq(const Type* t) const {
4730   const TypeValueTypePtr* p = t->is_valuetypeptr();
4731   return _vt->eq(p->value_type()) && TypeOopPtr::eq(p);
4732 }
4733 
4734 //------------------------------hash-------------------------------------------
4735 // Type-specific hashing function.
4736 int TypeValueTypePtr::hash(void) const {
4737   return java_add(_vt->hash(), TypeOopPtr::hash());
4738 }
4739 
4740 //------------------------------empty------------------------------------------
4741 // TRUE if Type is a type with no values, FALSE otherwise.
4742 bool TypeValueTypePtr::empty(void) const {
4743   // FIXME
4744   return false;
4745 }
4746 
4747 //------------------------------dump2------------------------------------------
4748 #ifndef PRODUCT
4749 void TypeValueTypePtr::dump2(Dict &d, uint depth, outputStream *st) const {
4750   st->print("valuetype* ");
4751   klass()->print_name_on(st);
4752   st->print(":%s", ptr_msg[_ptr]);
4753   _offset.dump2(st);
4754 }
4755 #endif
4756 
4757 //=============================================================================
4758 
4759 //------------------------------hash-------------------------------------------
4760 // Type-specific hashing function.
4761 int TypeNarrowPtr::hash(void) const {
4762   return _ptrtype->hash() + 7;
4763 }
4764 
4765 bool TypeNarrowPtr::singleton(void) const {    // TRUE if type is a singleton
4766   return _ptrtype->singleton();
4767 }
4768 
4769 bool TypeNarrowPtr::empty(void) const {
4770   return _ptrtype->empty();
4771 }
4772 
4773 intptr_t TypeNarrowPtr::get_con() const {
4774   return _ptrtype->get_con();
4775 }
4776 
4777 bool TypeNarrowPtr::eq( const Type *t ) const {
4778   const TypeNarrowPtr* tc = isa_same_narrowptr(t);
4779   if (tc != NULL) {
4780     if (_ptrtype->base() != tc->_ptrtype->base()) {
4781       return false;
4782     }
4783     return tc->_ptrtype->eq(_ptrtype);
4784   }
4785   return false;
4786 }
4787 
4788 const Type *TypeNarrowPtr::xdual() const {    // Compute dual right now.
4789   const TypePtr* odual = _ptrtype->dual()->is_ptr();
4790   return make_same_narrowptr(odual);
4791 }
4792 
4793 
4794 const Type *TypeNarrowPtr::filter_helper(const Type *kills, bool include_speculative) const {
4795   if (isa_same_narrowptr(kills)) {
4796     const Type* ft =_ptrtype->filter_helper(is_same_narrowptr(kills)->_ptrtype, include_speculative);
4797     if (ft->empty())
4798       return Type::TOP;           // Canonical empty value
4799     if (ft->isa_ptr()) {
4800       return make_hash_same_narrowptr(ft->isa_ptr());
4801     }
4802     return ft;
4803   } else if (kills->isa_ptr()) {
4804     const Type* ft = _ptrtype->join_helper(kills, include_speculative);
4805     if (ft->empty())
4806       return Type::TOP;           // Canonical empty value
4807     return ft;
4808   } else {
4809     return Type::TOP;
4810   }
4811 }
4812 
4813 //------------------------------xmeet------------------------------------------
4814 // Compute the MEET of two types.  It returns a new Type object.
4815 const Type *TypeNarrowPtr::xmeet( const Type *t ) const {
4816   // Perform a fast test for common case; meeting the same types together.
4817   if( this == t ) return this;  // Meeting same type-rep?
4818 
4819   if (t->base() == base()) {
4820     const Type* result = _ptrtype->xmeet(t->make_ptr());
4821     if (result->isa_ptr()) {
4822       return make_hash_same_narrowptr(result->is_ptr());
4823     }
4824     return result;
4825   }
4826 
4827   // Current "this->_base" is NarrowKlass or NarrowOop
4828   switch (t->base()) {          // switch on original type
4829 
4830   case Int:                     // Mixing ints & oops happens when javac
4831   case Long:                    // reuses local variables
4832   case FloatTop:
4833   case FloatCon:
4834   case FloatBot:
4835   case DoubleTop:
4836   case DoubleCon:
4837   case DoubleBot:
4838   case AnyPtr:
4839   case RawPtr:
4840   case OopPtr:
4841   case InstPtr:
4842   case ValueTypePtr:
4843   case AryPtr:
4844   case MetadataPtr:
4845   case KlassPtr:
4846   case NarrowOop:
4847   case NarrowKlass:
4848 
4849   case Bottom:                  // Ye Olde Default
4850     return Type::BOTTOM;
4851   case Top:
4852     return this;
4853 
4854   default:                      // All else is a mistake
4855     typerr(t);
4856 
4857   } // End of switch
4858 
4859   return this;
4860 }
4861 
4862 #ifndef PRODUCT
4863 void TypeNarrowPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
4864   _ptrtype->dump2(d, depth, st);
4865 }
4866 #endif
4867 
4868 const TypeNarrowOop *TypeNarrowOop::BOTTOM;
4869 const TypeNarrowOop *TypeNarrowOop::NULL_PTR;
4870 
4871 
4872 const TypeNarrowOop* TypeNarrowOop::make(const TypePtr* type) {
4873   return (const TypeNarrowOop*)(new TypeNarrowOop(type))->hashcons();
4874 }
4875 
4876 const Type* TypeNarrowOop::remove_speculative() const {
4877   return make(_ptrtype->remove_speculative()->is_ptr());
4878 }
4879 
4880 const Type* TypeNarrowOop::cleanup_speculative() const {
4881   return make(_ptrtype->cleanup_speculative()->is_ptr());
4882 }
4883 
4884 #ifndef PRODUCT
4885 void TypeNarrowOop::dump2( Dict & d, uint depth, outputStream *st ) const {
4886   st->print("narrowoop: ");
4887   TypeNarrowPtr::dump2(d, depth, st);
4888 }
4889 #endif
4890 
4891 const TypeNarrowKlass *TypeNarrowKlass::NULL_PTR;
4892 
4893 const TypeNarrowKlass* TypeNarrowKlass::make(const TypePtr* type) {
4894   return (const TypeNarrowKlass*)(new TypeNarrowKlass(type))->hashcons();
4895 }
4896 
4897 #ifndef PRODUCT
4898 void TypeNarrowKlass::dump2( Dict & d, uint depth, outputStream *st ) const {
4899   st->print("narrowklass: ");
4900   TypeNarrowPtr::dump2(d, depth, st);
4901 }
4902 #endif
4903 
4904 
4905 //------------------------------eq---------------------------------------------
4906 // Structural equality check for Type representations
4907 bool TypeMetadataPtr::eq( const Type *t ) const {
4908   const TypeMetadataPtr *a = (const TypeMetadataPtr*)t;
4909   ciMetadata* one = metadata();
4910   ciMetadata* two = a->metadata();
4911   if (one == NULL || two == NULL) {
4912     return (one == two) && TypePtr::eq(t);
4913   } else {
4914     return one->equals(two) && TypePtr::eq(t);
4915   }
4916 }
4917 
4918 //------------------------------hash-------------------------------------------
4919 // Type-specific hashing function.
4920 int TypeMetadataPtr::hash(void) const {
4921   return
4922     (metadata() ? metadata()->hash() : 0) +
4923     TypePtr::hash();
4924 }
4925 
4926 //------------------------------singleton--------------------------------------
4927 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
4928 // constants
4929 bool TypeMetadataPtr::singleton(void) const {
4930   // detune optimizer to not generate constant metadata + constant offset as a constant!
4931   // TopPTR, Null, AnyNull, Constant are all singletons
4932   return (offset() == 0) && !below_centerline(_ptr);
4933 }
4934 
4935 //------------------------------add_offset-------------------------------------
4936 const TypePtr *TypeMetadataPtr::add_offset( intptr_t offset ) const {
4937   return make( _ptr, _metadata, xadd_offset(offset));
4938 }
4939 
4940 //-----------------------------filter------------------------------------------
4941 // Do not allow interface-vs.-noninterface joins to collapse to top.
4942 const Type *TypeMetadataPtr::filter_helper(const Type *kills, bool include_speculative) const {
4943   const TypeMetadataPtr* ft = join_helper(kills, include_speculative)->isa_metadataptr();
4944   if (ft == NULL || ft->empty())
4945     return Type::TOP;           // Canonical empty value
4946   return ft;
4947 }
4948 
4949  //------------------------------get_con----------------------------------------
4950 intptr_t TypeMetadataPtr::get_con() const {
4951   assert( _ptr == Null || _ptr == Constant, "" );
4952   assert(offset() >= 0, "");
4953 
4954   if (offset() != 0) {
4955     // After being ported to the compiler interface, the compiler no longer
4956     // directly manipulates the addresses of oops.  Rather, it only has a pointer
4957     // to a handle at compile time.  This handle is embedded in the generated
4958     // code and dereferenced at the time the nmethod is made.  Until that time,
4959     // it is not reasonable to do arithmetic with the addresses of oops (we don't
4960     // have access to the addresses!).  This does not seem to currently happen,
4961     // but this assertion here is to help prevent its occurence.
4962     tty->print_cr("Found oop constant with non-zero offset");
4963     ShouldNotReachHere();
4964   }
4965 
4966   return (intptr_t)metadata()->constant_encoding();
4967 }
4968 
4969 //------------------------------cast_to_ptr_type-------------------------------
4970 const Type *TypeMetadataPtr::cast_to_ptr_type(PTR ptr) const {
4971   if( ptr == _ptr ) return this;
4972   return make(ptr, metadata(), _offset);
4973 }
4974 
4975 //------------------------------meet-------------------------------------------
4976 // Compute the MEET of two types.  It returns a new Type object.
4977 const Type *TypeMetadataPtr::xmeet( const Type *t ) const {
4978   // Perform a fast test for common case; meeting the same types together.
4979   if( this == t ) return this;  // Meeting same type-rep?
4980 
4981   // Current "this->_base" is OopPtr
4982   switch (t->base()) {          // switch on original type
4983 
4984   case Int:                     // Mixing ints & oops happens when javac
4985   case Long:                    // reuses local variables
4986   case FloatTop:
4987   case FloatCon:
4988   case FloatBot:
4989   case DoubleTop:
4990   case DoubleCon:
4991   case DoubleBot:
4992   case NarrowOop:
4993   case NarrowKlass:
4994   case Bottom:                  // Ye Olde Default
4995     return Type::BOTTOM;
4996   case Top:
4997     return this;
4998 
4999   default:                      // All else is a mistake
5000     typerr(t);
5001 
5002   case AnyPtr: {
5003     // Found an AnyPtr type vs self-OopPtr type
5004     const TypePtr *tp = t->is_ptr();
5005     Offset offset = meet_offset(tp->offset());
5006     PTR ptr = meet_ptr(tp->ptr());
5007     switch (tp->ptr()) {
5008     case Null:
5009       if (ptr == Null)  return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5010       // else fall through:
5011     case TopPTR:
5012     case AnyNull: {
5013       return make(ptr, _metadata, offset);
5014     }
5015     case BotPTR:
5016     case NotNull:
5017       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5018     default: typerr(t);
5019     }
5020   }
5021 
5022   case RawPtr:
5023   case KlassPtr:
5024   case OopPtr:
5025   case InstPtr:
5026   case ValueTypePtr:
5027   case AryPtr:
5028     return TypePtr::BOTTOM;     // Oop meet raw is not well defined
5029 
5030   case MetadataPtr: {
5031     const TypeMetadataPtr *tp = t->is_metadataptr();
5032     Offset offset = meet_offset(tp->offset());
5033     PTR tptr = tp->ptr();
5034     PTR ptr = meet_ptr(tptr);
5035     ciMetadata* md = (tptr == TopPTR) ? metadata() : tp->metadata();
5036     if (tptr == TopPTR || _ptr == TopPTR ||
5037         metadata()->equals(tp->metadata())) {
5038       return make(ptr, md, offset);
5039     }
5040     // metadata is different
5041     if( ptr == Constant ) {  // Cannot be equal constants, so...
5042       if( tptr == Constant && _ptr != Constant)  return t;
5043       if( _ptr == Constant && tptr != Constant)  return this;
5044       ptr = NotNull;            // Fall down in lattice
5045     }
5046     return make(ptr, NULL, offset);
5047     break;
5048   }
5049   } // End of switch
5050   return this;                  // Return the double constant
5051 }
5052 
5053 
5054 //------------------------------xdual------------------------------------------
5055 // Dual of a pure metadata pointer.
5056 const Type *TypeMetadataPtr::xdual() const {
5057   return new TypeMetadataPtr(dual_ptr(), metadata(), dual_offset());
5058 }
5059 
5060 //------------------------------dump2------------------------------------------
5061 #ifndef PRODUCT
5062 void TypeMetadataPtr::dump2( Dict &d, uint depth, outputStream *st ) const {
5063   st->print("metadataptr:%s", ptr_msg[_ptr]);
5064   if( metadata() ) st->print(INTPTR_FORMAT, p2i(metadata()));
5065   switch (offset()) {
5066   case OffsetTop: st->print("+top"); break;
5067   case OffsetBot: st->print("+any"); break;
5068   case         0: break;
5069   default:        st->print("+%d",offset()); break;
5070   }
5071 }
5072 #endif
5073 
5074 
5075 //=============================================================================
5076 // Convenience common pre-built type.
5077 const TypeMetadataPtr *TypeMetadataPtr::BOTTOM;
5078 
5079 TypeMetadataPtr::TypeMetadataPtr(PTR ptr, ciMetadata* metadata, Offset offset):
5080   TypePtr(MetadataPtr, ptr, offset), _metadata(metadata) {
5081 }
5082 
5083 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethod* m) {
5084   return make(Constant, m, Offset(0));
5085 }
5086 const TypeMetadataPtr* TypeMetadataPtr::make(ciMethodData* m) {
5087   return make(Constant, m, Offset(0));
5088 }
5089 
5090 //------------------------------make-------------------------------------------
5091 // Create a meta data constant
5092 const TypeMetadataPtr* TypeMetadataPtr::make(PTR ptr, ciMetadata* m, Offset offset) {
5093   assert(m == NULL || !m->is_klass(), "wrong type");
5094   return (TypeMetadataPtr*)(new TypeMetadataPtr(ptr, m, offset))->hashcons();
5095 }
5096 
5097 
5098 //=============================================================================
5099 // Convenience common pre-built types.
5100 
5101 // Not-null object klass or below
5102 const TypeKlassPtr *TypeKlassPtr::OBJECT;
5103 const TypeKlassPtr *TypeKlassPtr::OBJECT_OR_NULL;
5104 
5105 //------------------------------TypeKlassPtr-----------------------------------
5106 TypeKlassPtr::TypeKlassPtr( PTR ptr, ciKlass* klass, Offset offset )
5107   : TypePtr(KlassPtr, ptr, offset), _klass(klass), _klass_is_exact(ptr == Constant) {
5108 }
5109 
5110 //------------------------------make-------------------------------------------
5111 // ptr to klass 'k', if Constant, or possibly to a sub-klass if not a Constant
5112 const TypeKlassPtr* TypeKlassPtr::make(PTR ptr, ciKlass* k, Offset offset) {
5113   assert( k != NULL, "Expect a non-NULL klass");
5114   assert(k->is_instance_klass() || k->is_array_klass(), "Incorrect type of klass oop");
5115   TypeKlassPtr *r =
5116     (TypeKlassPtr*)(new TypeKlassPtr(ptr, k, offset))->hashcons();
5117 
5118   return r;
5119 }
5120 
5121 //------------------------------eq---------------------------------------------
5122 // Structural equality check for Type representations
5123 bool TypeKlassPtr::eq( const Type *t ) const {
5124   const TypeKlassPtr *p = t->is_klassptr();
5125   return
5126     klass()->equals(p->klass()) &&
5127     TypePtr::eq(p);
5128 }
5129 
5130 //------------------------------hash-------------------------------------------
5131 // Type-specific hashing function.
5132 int TypeKlassPtr::hash(void) const {
5133   return java_add(klass()->hash(), TypePtr::hash());
5134 }
5135 
5136 //------------------------------singleton--------------------------------------
5137 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5138 // constants
5139 bool TypeKlassPtr::singleton(void) const {
5140   // detune optimizer to not generate constant klass + constant offset as a constant!
5141   // TopPTR, Null, AnyNull, Constant are all singletons
5142   return (offset() == 0) && !below_centerline(_ptr);
5143 }
5144 
5145 // Do not allow interface-vs.-noninterface joins to collapse to top.
5146 const Type *TypeKlassPtr::filter_helper(const Type *kills, bool include_speculative) const {
5147   // logic here mirrors the one from TypeOopPtr::filter. See comments
5148   // there.
5149   const Type* ft = join_helper(kills, include_speculative);
5150   const TypeKlassPtr* ftkp = ft->isa_klassptr();
5151   const TypeKlassPtr* ktkp = kills->isa_klassptr();
5152 
5153   if (ft->empty()) {
5154     if (!empty() && ktkp != NULL && ktkp->klass()->is_loaded() && ktkp->klass()->is_interface())
5155       return kills;             // Uplift to interface
5156 
5157     return Type::TOP;           // Canonical empty value
5158   }
5159 
5160   // Interface klass type could be exact in opposite to interface type,
5161   // return it here instead of incorrect Constant ptr J/L/Object (6894807).
5162   if (ftkp != NULL && ktkp != NULL &&
5163       ftkp->is_loaded() &&  ftkp->klass()->is_interface() &&
5164       !ftkp->klass_is_exact() && // Keep exact interface klass
5165       ktkp->is_loaded() && !ktkp->klass()->is_interface()) {
5166     return ktkp->cast_to_ptr_type(ftkp->ptr());
5167   }
5168 
5169   return ft;
5170 }
5171 
5172 //----------------------compute_klass------------------------------------------
5173 // Compute the defining klass for this class
5174 ciKlass* TypeAryPtr::compute_klass(DEBUG_ONLY(bool verify)) const {
5175   // Compute _klass based on element type.
5176   ciKlass* k_ary = NULL;
5177   const TypeAryPtr *tary;
5178   const Type* el = elem();
5179   if (el->isa_narrowoop()) {
5180     el = el->make_ptr();
5181   }
5182 
5183   // Get element klass
5184   if (el->isa_instptr() || el->isa_valuetypeptr()) {
5185     // Compute object array klass from element klass
5186     k_ary = ciArrayKlass::make(el->is_oopptr()->klass());
5187   } else if (el->isa_valuetype()) {
5188     k_ary = ciArrayKlass::make(el->is_valuetype()->value_klass());
5189   } else if ((tary = el->isa_aryptr()) != NULL) {
5190     // Compute array klass from element klass
5191     ciKlass* k_elem = tary->klass();
5192     // If element type is something like bottom[], k_elem will be null.
5193     if (k_elem != NULL)
5194       k_ary = ciObjArrayKlass::make(k_elem);
5195   } else if ((el->base() == Type::Top) ||
5196              (el->base() == Type::Bottom)) {
5197     // element type of Bottom occurs from meet of basic type
5198     // and object; Top occurs when doing join on Bottom.
5199     // Leave k_ary at NULL.
5200   } else {
5201     // Cannot compute array klass directly from basic type,
5202     // since subtypes of TypeInt all have basic type T_INT.
5203 #ifdef ASSERT
5204     if (verify && el->isa_int()) {
5205       // Check simple cases when verifying klass.
5206       BasicType bt = T_ILLEGAL;
5207       if (el == TypeInt::BYTE) {
5208         bt = T_BYTE;
5209       } else if (el == TypeInt::SHORT) {
5210         bt = T_SHORT;
5211       } else if (el == TypeInt::CHAR) {
5212         bt = T_CHAR;
5213       } else if (el == TypeInt::INT) {
5214         bt = T_INT;
5215       } else {
5216         return _klass; // just return specified klass
5217       }
5218       return ciTypeArrayKlass::make(bt);
5219     }
5220 #endif
5221     assert(!el->isa_int(),
5222            "integral arrays must be pre-equipped with a class");
5223     // Compute array klass directly from basic type
5224     k_ary = ciTypeArrayKlass::make(el->basic_type());
5225   }
5226   return k_ary;
5227 }
5228 
5229 //------------------------------klass------------------------------------------
5230 // Return the defining klass for this class
5231 ciKlass* TypeAryPtr::klass() const {
5232   if( _klass ) return _klass;   // Return cached value, if possible
5233 
5234   // Oops, need to compute _klass and cache it
5235   ciKlass* k_ary = compute_klass();
5236 
5237   if( this != TypeAryPtr::OOPS && this->dual() != TypeAryPtr::OOPS ) {
5238     // The _klass field acts as a cache of the underlying
5239     // ciKlass for this array type.  In order to set the field,
5240     // we need to cast away const-ness.
5241     //
5242     // IMPORTANT NOTE: we *never* set the _klass field for the
5243     // type TypeAryPtr::OOPS.  This Type is shared between all
5244     // active compilations.  However, the ciKlass which represents
5245     // this Type is *not* shared between compilations, so caching
5246     // this value would result in fetching a dangling pointer.
5247     //
5248     // Recomputing the underlying ciKlass for each request is
5249     // a bit less efficient than caching, but calls to
5250     // TypeAryPtr::OOPS->klass() are not common enough to matter.
5251     ((TypeAryPtr*)this)->_klass = k_ary;
5252     if (UseCompressedOops && k_ary != NULL && k_ary->is_obj_array_klass() &&
5253         offset() != 0 && offset() != arrayOopDesc::length_offset_in_bytes()) {
5254       ((TypeAryPtr*)this)->_is_ptr_to_narrowoop = true;
5255     }
5256   }
5257   return k_ary;
5258 }
5259 
5260 
5261 //------------------------------add_offset-------------------------------------
5262 // Access internals of klass object
5263 const TypePtr *TypeKlassPtr::add_offset( intptr_t offset ) const {
5264   return make( _ptr, klass(), xadd_offset(offset) );
5265 }
5266 
5267 //------------------------------cast_to_ptr_type-------------------------------
5268 const Type *TypeKlassPtr::cast_to_ptr_type(PTR ptr) const {
5269   assert(_base == KlassPtr, "subclass must override cast_to_ptr_type");
5270   if( ptr == _ptr ) return this;
5271   return make(ptr, _klass, _offset);
5272 }
5273 
5274 
5275 //-----------------------------cast_to_exactness-------------------------------
5276 const Type *TypeKlassPtr::cast_to_exactness(bool klass_is_exact) const {
5277   if( klass_is_exact == _klass_is_exact ) return this;
5278   if (!UseExactTypes)  return this;
5279   return make(klass_is_exact ? Constant : NotNull, _klass, _offset);
5280 }
5281 
5282 
5283 //-----------------------------as_instance_type--------------------------------
5284 // Corresponding type for an instance of the given class.
5285 // It will be NotNull, and exact if and only if the klass type is exact.
5286 const TypeOopPtr* TypeKlassPtr::as_instance_type() const {
5287   ciKlass* k = klass();
5288   bool    xk = klass_is_exact();
5289   //return TypeInstPtr::make(TypePtr::NotNull, k, xk, NULL, 0);
5290   const TypeOopPtr* toop = TypeOopPtr::make_from_klass_raw(k);
5291   guarantee(toop != NULL, "need type for given klass");
5292   toop = toop->cast_to_ptr_type(TypePtr::NotNull)->is_oopptr();
5293   return toop->cast_to_exactness(xk)->is_oopptr();
5294 }
5295 
5296 
5297 //------------------------------xmeet------------------------------------------
5298 // Compute the MEET of two types, return a new Type object.
5299 const Type    *TypeKlassPtr::xmeet( const Type *t ) const {
5300   // Perform a fast test for common case; meeting the same types together.
5301   if( this == t ) return this;  // Meeting same type-rep?
5302 
5303   // Current "this->_base" is Pointer
5304   switch (t->base()) {          // switch on original type
5305 
5306   case Int:                     // Mixing ints & oops happens when javac
5307   case Long:                    // reuses local variables
5308   case FloatTop:
5309   case FloatCon:
5310   case FloatBot:
5311   case DoubleTop:
5312   case DoubleCon:
5313   case DoubleBot:
5314   case NarrowOop:
5315   case NarrowKlass:
5316   case Bottom:                  // Ye Olde Default
5317     return Type::BOTTOM;
5318   case Top:
5319     return this;
5320 
5321   default:                      // All else is a mistake
5322     typerr(t);
5323 
5324   case AnyPtr: {                // Meeting to AnyPtrs
5325     // Found an AnyPtr type vs self-KlassPtr type
5326     const TypePtr *tp = t->is_ptr();
5327     Offset offset = meet_offset(tp->offset());
5328     PTR ptr = meet_ptr(tp->ptr());
5329     switch (tp->ptr()) {
5330     case TopPTR:
5331       return this;
5332     case Null:
5333       if( ptr == Null ) return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5334     case AnyNull:
5335       return make( ptr, klass(), offset );
5336     case BotPTR:
5337     case NotNull:
5338       return TypePtr::make(AnyPtr, ptr, offset, tp->speculative(), tp->inline_depth());
5339     default: typerr(t);
5340     }
5341   }
5342 
5343   case RawPtr:
5344   case MetadataPtr:
5345   case OopPtr:
5346   case AryPtr:                  // Meet with AryPtr
5347   case InstPtr:                 // Meet with InstPtr
5348   case ValueTypePtr:
5349     return TypePtr::BOTTOM;
5350 
5351   //
5352   //             A-top         }
5353   //           /   |   \       }  Tops
5354   //       B-top A-any C-top   }
5355   //          | /  |  \ |      }  Any-nulls
5356   //       B-any   |   C-any   }
5357   //          |    |    |
5358   //       B-con A-con C-con   } constants; not comparable across classes
5359   //          |    |    |
5360   //       B-not   |   C-not   }
5361   //          | \  |  / |      }  not-nulls
5362   //       B-bot A-not C-bot   }
5363   //           \   |   /       }  Bottoms
5364   //             A-bot         }
5365   //
5366 
5367   case KlassPtr: {  // Meet two KlassPtr types
5368     const TypeKlassPtr *tkls = t->is_klassptr();
5369     Offset  off  = meet_offset(tkls->offset());
5370     PTR  ptr     = meet_ptr(tkls->ptr());
5371 
5372     // Check for easy case; klasses are equal (and perhaps not loaded!)
5373     // If we have constants, then we created oops so classes are loaded
5374     // and we can handle the constants further down.  This case handles
5375     // not-loaded classes
5376     if( ptr != Constant && tkls->klass()->equals(klass()) ) {
5377       return make( ptr, klass(), off );
5378     }
5379 
5380     // Classes require inspection in the Java klass hierarchy.  Must be loaded.
5381     ciKlass* tkls_klass = tkls->klass();
5382     ciKlass* this_klass = this->klass();
5383     assert( tkls_klass->is_loaded(), "This class should have been loaded.");
5384     assert( this_klass->is_loaded(), "This class should have been loaded.");
5385 
5386     // If 'this' type is above the centerline and is a superclass of the
5387     // other, we can treat 'this' as having the same type as the other.
5388     if ((above_centerline(this->ptr())) &&
5389         tkls_klass->is_subtype_of(this_klass)) {
5390       this_klass = tkls_klass;
5391     }
5392     // If 'tinst' type is above the centerline and is a superclass of the
5393     // other, we can treat 'tinst' as having the same type as the other.
5394     if ((above_centerline(tkls->ptr())) &&
5395         this_klass->is_subtype_of(tkls_klass)) {
5396       tkls_klass = this_klass;
5397     }
5398 
5399     // Check for classes now being equal
5400     if (tkls_klass->equals(this_klass)) {
5401       // If the klasses are equal, the constants may still differ.  Fall to
5402       // NotNull if they do (neither constant is NULL; that is a special case
5403       // handled elsewhere).
5404       if( ptr == Constant ) {
5405         if (this->_ptr == Constant && tkls->_ptr == Constant &&
5406             this->klass()->equals(tkls->klass()));
5407         else if (above_centerline(this->ptr()));
5408         else if (above_centerline(tkls->ptr()));
5409         else
5410           ptr = NotNull;
5411       }
5412       return make( ptr, this_klass, off );
5413     } // Else classes are not equal
5414 
5415     // Since klasses are different, we require the LCA in the Java
5416     // class hierarchy - which means we have to fall to at least NotNull.
5417     if( ptr == TopPTR || ptr == AnyNull || ptr == Constant )
5418       ptr = NotNull;
5419     // Now we find the LCA of Java classes
5420     ciKlass* k = this_klass->least_common_ancestor(tkls_klass);
5421     return   make( ptr, k, off );
5422   } // End of case KlassPtr
5423 
5424   } // End of switch
5425   return this;                  // Return the double constant
5426 }
5427 
5428 //------------------------------xdual------------------------------------------
5429 // Dual: compute field-by-field dual
5430 const Type    *TypeKlassPtr::xdual() const {
5431   return new TypeKlassPtr( dual_ptr(), klass(), dual_offset() );
5432 }
5433 
5434 //------------------------------get_con----------------------------------------
5435 intptr_t TypeKlassPtr::get_con() const {
5436   assert( _ptr == Null || _ptr == Constant, "" );
5437   assert(offset() >= 0, "");
5438 
5439   if (offset() != 0) {
5440     // After being ported to the compiler interface, the compiler no longer
5441     // directly manipulates the addresses of oops.  Rather, it only has a pointer
5442     // to a handle at compile time.  This handle is embedded in the generated
5443     // code and dereferenced at the time the nmethod is made.  Until that time,
5444     // it is not reasonable to do arithmetic with the addresses of oops (we don't
5445     // have access to the addresses!).  This does not seem to currently happen,
5446     // but this assertion here is to help prevent its occurence.
5447     tty->print_cr("Found oop constant with non-zero offset");
5448     ShouldNotReachHere();
5449   }
5450 
5451   return (intptr_t)klass()->constant_encoding();
5452 }
5453 //------------------------------dump2------------------------------------------
5454 // Dump Klass Type
5455 #ifndef PRODUCT
5456 void TypeKlassPtr::dump2( Dict & d, uint depth, outputStream *st ) const {
5457   switch( _ptr ) {
5458   case Constant:
5459     st->print("precise ");
5460   case NotNull:
5461     {
5462       const char *name = klass()->name()->as_utf8();
5463       if( name ) {
5464         st->print("klass %s: " INTPTR_FORMAT, name, p2i(klass()));
5465       } else {
5466         ShouldNotReachHere();
5467       }
5468     }
5469   case BotPTR:
5470     if( !WizardMode && !Verbose && !_klass_is_exact ) break;
5471   case TopPTR:
5472   case AnyNull:
5473     st->print(":%s", ptr_msg[_ptr]);
5474     if( _klass_is_exact ) st->print(":exact");
5475     break;
5476   }
5477 
5478   _offset.dump2(st);
5479 
5480   st->print(" *");
5481 }
5482 #endif
5483 
5484 
5485 
5486 //=============================================================================
5487 // Convenience common pre-built types.
5488 
5489 //------------------------------make-------------------------------------------
5490 const TypeFunc *TypeFunc::make( const TypeTuple *domain_sig, const TypeTuple* domain_cc, const TypeTuple *range ) {
5491   return (TypeFunc*)(new TypeFunc(domain_sig, domain_cc, range))->hashcons();
5492 }
5493 
5494 const TypeFunc *TypeFunc::make( const TypeTuple *domain, const TypeTuple *range ) {
5495   return make(domain, domain, range);
5496 }
5497 
5498 //------------------------------make-------------------------------------------
5499 const TypeFunc *TypeFunc::make(ciMethod* method) {
5500   Compile* C = Compile::current();
5501   const TypeFunc* tf = C->last_tf(method); // check cache
5502   if (tf != NULL)  return tf;  // The hit rate here is almost 50%.
5503   const TypeTuple *domain_sig, *domain_cc;
5504   // Value type arguments are not passed by reference, instead each
5505   // field of the value type is passed as an argument. We maintain 2
5506   // views of the argument list here: one based on the signature (with
5507   // a value type argument as a single slot), one based on the actual
5508   // calling convention (with a value type argument as a list of its
5509   // fields).
5510   if (method->is_static()) {
5511     domain_sig = TypeTuple::make_domain(NULL, method->signature(), false);
5512     domain_cc = TypeTuple::make_domain(NULL, method->signature(), ValueTypePassFieldsAsArgs);
5513   } else {
5514     domain_sig = TypeTuple::make_domain(method->holder(), method->signature(), false);
5515     domain_cc = TypeTuple::make_domain(method->holder(), method->signature(), ValueTypePassFieldsAsArgs);
5516   }
5517   const TypeTuple *range  = TypeTuple::make_range(method->signature());
5518   tf = TypeFunc::make(domain_sig, domain_cc, range);
5519   C->set_last_tf(method, tf);  // fill cache
5520   return tf;
5521 }
5522 
5523 //------------------------------meet-------------------------------------------
5524 // Compute the MEET of two types.  It returns a new Type object.
5525 const Type *TypeFunc::xmeet( const Type *t ) const {
5526   // Perform a fast test for common case; meeting the same types together.
5527   if( this == t ) return this;  // Meeting same type-rep?
5528 
5529   // Current "this->_base" is Func
5530   switch (t->base()) {          // switch on original type
5531 
5532   case Bottom:                  // Ye Olde Default
5533     return t;
5534 
5535   default:                      // All else is a mistake
5536     typerr(t);
5537 
5538   case Top:
5539     break;
5540   }
5541   return this;                  // Return the double constant
5542 }
5543 
5544 //------------------------------xdual------------------------------------------
5545 // Dual: compute field-by-field dual
5546 const Type *TypeFunc::xdual() const {
5547   return this;
5548 }
5549 
5550 //------------------------------eq---------------------------------------------
5551 // Structural equality check for Type representations
5552 bool TypeFunc::eq( const Type *t ) const {
5553   const TypeFunc *a = (const TypeFunc*)t;
5554   return _domain_sig == a->_domain_sig &&
5555     _domain_cc == a->_domain_cc &&
5556     _range == a->_range;
5557 }
5558 
5559 //------------------------------hash-------------------------------------------
5560 // Type-specific hashing function.
5561 int TypeFunc::hash(void) const {
5562   return (intptr_t)_domain_sig + (intptr_t)_domain_cc + (intptr_t)_range;
5563 }
5564 
5565 //------------------------------dump2------------------------------------------
5566 // Dump Function Type
5567 #ifndef PRODUCT
5568 void TypeFunc::dump2( Dict &d, uint depth, outputStream *st ) const {
5569   if( _range->cnt() <= Parms )
5570     st->print("void");
5571   else {
5572     uint i;
5573     for (i = Parms; i < _range->cnt()-1; i++) {
5574       _range->field_at(i)->dump2(d,depth,st);
5575       st->print("/");
5576     }
5577     _range->field_at(i)->dump2(d,depth,st);
5578   }
5579   st->print(" ");
5580   st->print("( ");
5581   if( !depth || d[this] ) {     // Check for recursive dump
5582     st->print("...)");
5583     return;
5584   }
5585   d.Insert((void*)this,(void*)this);    // Stop recursion
5586   if (Parms < _domain_sig->cnt())
5587     _domain_sig->field_at(Parms)->dump2(d,depth-1,st);
5588   for (uint i = Parms+1; i < _domain_sig->cnt(); i++) {
5589     st->print(", ");
5590     _domain_sig->field_at(i)->dump2(d,depth-1,st);
5591   }
5592   st->print(" )");
5593 }
5594 #endif
5595 
5596 //------------------------------singleton--------------------------------------
5597 // TRUE if Type is a singleton type, FALSE otherwise.   Singletons are simple
5598 // constants (Ldi nodes).  Singletons are integer, float or double constants
5599 // or a single symbol.
5600 bool TypeFunc::singleton(void) const {
5601   return false;                 // Never a singleton
5602 }
5603 
5604 bool TypeFunc::empty(void) const {
5605   return false;                 // Never empty
5606 }
5607 
5608 
5609 BasicType TypeFunc::return_type() const{
5610   if (range()->cnt() == TypeFunc::Parms) {
5611     return T_VOID;
5612   }
5613   return range()->field_at(TypeFunc::Parms)->basic_type();
5614 }