1 /*
   2  * Copyright (c) 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "ci/ciValueKlass.hpp"
  26 #include "opto/addnode.hpp"
  27 #include "opto/graphKit.hpp"
  28 #include "opto/rootnode.hpp"
  29 #include "opto/valuetypenode.hpp"
  30 #include "opto/phaseX.hpp"
  31 
  32 ValueTypeNode* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* klass) {
  33   // Create a new ValueTypeNode with uninitialized values and NULL oop
  34   const TypeValueType* type = TypeValueType::make(klass);
  35   return new ValueTypeNode(type, gvn.zerocon(T_VALUETYPE));
  36 }
  37 
  38 Node* ValueTypeNode::make_default(PhaseGVN& gvn, ciValueKlass* vk) {
  39   // TODO re-use constant oop of pre-allocated default value type here?
  40   // Create a new ValueTypeNode with default values
  41   ValueTypeNode* vt = ValueTypeNode::make(gvn, vk);
  42   for (uint i = 0; i < vt->field_count(); ++i) {
  43     ciType* field_type = vt->field_type(i);
  44     Node* value = NULL;
  45     if (field_type->is_primitive_type()) {
  46       value = gvn.zerocon(field_type->basic_type());
  47     } else {
  48       value = ValueTypeNode::make_default(gvn, field_type->as_value_klass());
  49     }
  50     vt->set_field_value(i, value);
  51   }
  52   return gvn.transform(vt);
  53 }
  54 
  55 Node* ValueTypeNode::make(PhaseGVN& gvn, Node* mem, Node* oop) {
  56   // Create and initialize a ValueTypeNode by loading all field
  57   // values from a heap-allocated version and also save the oop.
  58   const TypeValueType* type = gvn.type(oop)->is_valuetypeptr()->value_type();
  59   ValueTypeNode* vt = new ValueTypeNode(type, oop);
  60   vt->load_values(gvn, mem, oop, oop, type->value_klass());
  61   return gvn.transform(vt);
  62 }
  63 
  64 Node* ValueTypeNode::make(PhaseGVN& gvn, ciValueKlass* vk, Node* mem, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
  65   // Create and initialize a ValueTypeNode by loading all field values from
  66   // a flattened value type field at 'holder_offset' or from a value type array.
  67   ValueTypeNode* vt = make(gvn, vk);
  68   // The value type is flattened into the object without an oop header. Subtract the
  69   // offset of the first field to account for the missing header when loading the values.
  70   holder_offset -= vk->first_field_offset();
  71   vt->load_values(gvn, mem, obj, ptr, holder, holder_offset);
  72   return gvn.transform(vt);
  73 }
  74 
  75 void ValueTypeNode::load_values(PhaseGVN& gvn, Node* mem, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) {
  76   // Initialize the value type by loading its field values from
  77   // memory and adding the values as input edges to the node.
  78   for (uint i = 0; i < field_count(); ++i) {
  79     int offset = holder_offset + field_offset(i);
  80     ciType* ftype = field_type(i);
  81     Node* value = NULL;
  82     if (ftype->is_valuetype()) {
  83       // Recursively load the flattened value type field
  84       value = ValueTypeNode::make(gvn, ftype->as_value_klass(), mem, base, ptr, holder, offset);
  85     } else {
  86       const Type* con_type = NULL;
  87       if (base->is_Con()) {
  88         // If the oop to the value type is constant (static final field), we can
  89         // also treat the fields as constants because the value type is immutable.
  90         const TypeOopPtr* oop_ptr = base->bottom_type()->isa_oopptr();
  91         ciObject* constant_oop = oop_ptr->const_oop();
  92         ciField* field = holder->get_field_by_offset(offset, false);
  93         ciConstant constant = constant_oop->as_instance()->field_value(field);
  94         con_type = Type::make_from_constant(constant, /*require_const=*/ true);
  95       }
  96       if (con_type != NULL) {
  97         // Found a constant field value
  98         value = gvn.makecon(con_type);
  99       } else {
 100         // Load field value from memory
 101         const Type* base_type = gvn.type(base); 
 102         const TypePtr* adr_type = NULL;
 103         if (base_type->isa_aryptr()) {
 104           // In the case of a flattened value type array, each field
 105           // has its own slice
 106           adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot);
 107         } else {
 108           ciField* field = holder->get_field_by_offset(offset, false);
 109           adr_type = gvn.C->alias_type(field)->adr_type();
 110         }
 111         Node* adr = gvn.transform(new AddPNode(base, ptr, gvn.MakeConX(offset)));
 112         value = LoadNode::make(gvn, NULL, mem, adr, adr_type, Type::get_const_type(ftype), ftype->basic_type(), MemNode::unordered);
 113       }
 114     }
 115     set_field_value(i, gvn.transform(value));
 116   }
 117 }
 118 
 119 void ValueTypeNode::store(GraphKit* kit, Node* obj, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 120   // The value type is embedded into the object without an oop header. Subtract the
 121   // offset of the first field to account for the missing header when storing the values.
 122   holder_offset -= value_klass()->first_field_offset();
 123   store_values(kit, obj, ptr, holder, holder_offset);
 124 }
 125 
 126 void ValueTypeNode::store_values(GraphKit* kit, Node* base, Node* ptr, ciInstanceKlass* holder, int holder_offset) const {
 127   // Write field values to memory
 128   for (uint i = 0; i < field_count(); ++i) {
 129     int offset = holder_offset + field_offset(i);
 130     Node* value = field_value(i);
 131     if (value->is_ValueType()) {
 132       // Recursively store the flattened value type field
 133       value->isa_ValueType()->store(kit, base, ptr, value_klass(), offset);
 134     } else {
 135       const Type* base_type = kit->gvn().type(base); 
 136       const TypePtr* adr_type = NULL;
 137       if (base_type->isa_aryptr()) {
 138         // In the case of a flattened value type array, each field has its own slice
 139         adr_type = base_type->is_aryptr()->with_field_offset(offset)->add_offset(Type::OffsetBot);
 140       } else {
 141         ciField* field = holder->get_field_by_offset(offset, false);
 142         adr_type = kit->C->alias_type(field)->adr_type();
 143       }
 144       Node* adr = kit->basic_plus_adr(base, ptr, offset);
 145       kit->store_to_memory(kit->control(), adr, value, field_type(i)->basic_type(), adr_type, MemNode::unordered);
 146     }
 147   }
 148 }
 149 
 150 Node* ValueTypeNode::store_to_memory(GraphKit* kit) {
 151   Node* in_oop = get_oop();
 152   Node* null_ctl = kit->top();
 153   // Check if value type is already allocated
 154   Node* not_null_oop = kit->null_check_oop(in_oop, &null_ctl);
 155   if (null_ctl->is_top()) {
 156     // Value type is allocated
 157     return not_null_oop;
 158   }
 159   // Not able to prove that value type is allocated.
 160   // Emit runtime check that may be folded later.
 161   const Type* oop_type = kit->gvn().type(in_oop);
 162   assert(TypePtr::NULL_PTR->higher_equal(oop_type), "should not be allocated");
 163 
 164   const TypeValueTypePtr* vtptr_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 165   RegionNode* region = new RegionNode(3);
 166   PhiNode* oop = new PhiNode(region, vtptr_type);
 167   PhiNode* io  = new PhiNode(region, Type::ABIO);
 168   PhiNode* mem = new PhiNode(region, Type::MEMORY, TypePtr::BOTTOM);
 169 
 170   // Oop is non-NULL, use it
 171   region->init_req(1, kit->control());
 172   // Fixme if we cast oop to not null we fail if the control path is not folded
 173   // castnode.cpp:69: #  assert(ft == Type::TOP) failed: special case #3
 174   //oop   ->init_req(1, not_null_oop);
 175   oop   ->init_req(1, in_oop);
 176   io    ->init_req(1, kit->i_o());
 177   mem   ->init_req(1, kit->merged_memory());
 178 
 179   // Oop is NULL, allocate value type
 180   kit->set_control(null_ctl);
 181   kit->kill_dead_locals();
 182   ciValueKlass* vk = value_klass();
 183   Node* klass_node = kit->makecon(TypeKlassPtr::make(vk));
 184   Node* alloc_oop  = kit->new_instance(klass_node);
 185   AllocateNode* alloc = AllocateNode::Ideal_allocation(alloc_oop, &kit->gvn());
 186   // TODO enable/fix this
 187   // alloc->initialization()->set_complete_with_arraycopy();
 188   // Write field values to memory
 189   store_values(kit, alloc_oop, alloc_oop, vk);
 190   region->init_req(2, kit->control());
 191   oop   ->init_req(2, alloc_oop);
 192   io    ->init_req(2, kit->i_o());
 193   mem   ->init_req(2, kit->merged_memory());
 194 
 195   // Update GraphKit
 196   kit->set_control(kit->gvn().transform(region));
 197   kit->set_i_o(kit->gvn().transform(io));
 198   kit->set_all_memory(kit->gvn().transform(mem));
 199   kit->record_for_igvn(region);
 200   kit->record_for_igvn(oop);
 201   kit->record_for_igvn(io);
 202   kit->record_for_igvn(mem);
 203 
 204   // Use cloned ValueTypeNode to propagate oop from now on
 205   Node* res_oop = kit->gvn().transform(oop);
 206   ValueTypeNode* vt = clone()->as_ValueType();
 207   vt->set_oop(res_oop);
 208   kit->replace_in_map(this, kit->gvn().transform(vt));
 209   return res_oop;
 210 }
 211 
 212 // Clones the values type to handle control flow merges involving multiple value types.
 213 // The inputs are replaced by PhiNodes to represent the merged values for the given region.
 214 ValueTypeNode* ValueTypeNode::clone_with_phis(PhaseGVN& gvn, Node* region) {
 215   ValueTypeNode* vt = clone()->as_ValueType();
 216 
 217   // Create a PhiNode for merging the oop values
 218   const TypeValueTypePtr* vtptr = TypeValueTypePtr::make(vt->bottom_type()->isa_valuetype());
 219   PhiNode* oop = PhiNode::make(region, vt->get_oop(), vtptr);
 220   gvn.set_type(oop, vtptr);
 221   vt->set_oop(oop);
 222 
 223   // Create a PhiNode each for merging the field values
 224   for (uint i = 0; i < vt->field_count(); ++i) {
 225     ciType* type = vt->field_type(i);
 226     Node*  value = vt->field_value(i);
 227     if (type->is_valuetype()) {
 228       // Handle flattened value type fields recursively
 229       value = value->as_ValueType()->clone_with_phis(gvn, region);
 230     } else {
 231       const Type* phi_type = Type::get_const_type(type);
 232       value = PhiNode::make(region, value, phi_type);
 233       gvn.set_type(value, phi_type);
 234     }
 235     vt->set_field_value(i, value);
 236   }
 237   gvn.set_type(vt, vt->bottom_type());
 238   return vt;
 239 }
 240 
 241 // Checks if the inputs of the ValueTypeNode were replaced by PhiNodes
 242 // for the given region (see ValueTypeNode::clone_with_phis).
 243 bool ValueTypeNode::has_phi_inputs(Node* region) {
 244   // Check oop input
 245   bool result = get_oop()->is_Phi() && get_oop()->as_Phi()->region() == region;
 246 #ifdef ASSERT
 247   if (result) {
 248     // Check all field value inputs for consistency
 249     for (uint i = 0; i < field_count(); ++i) {
 250       Node* value = field_value(i);
 251       if (value->is_ValueType()) {
 252         assert(value->as_ValueType()->has_phi_inputs(region), "inconsistent phi inputs");
 253       } else {
 254         assert(value->is_Phi() && value->as_Phi()->region() == region, "inconsistent phi inputs");
 255       }
 256     }
 257   }
 258 #endif
 259   return result;
 260 }
 261 
 262 // Merges 'this' with 'other' by updating the input PhiNodes added by 'clone_with_phis'
 263 Node* ValueTypeNode::merge_with(GraphKit* kit, const ValueTypeNode* other, int pnum) {
 264   // Merge oop inputs
 265   PhiNode* phi = get_oop()->as_Phi();
 266   phi->set_req(pnum, other->get_oop());
 267   if (pnum == PhiNode::Input) {
 268     // Last merge
 269     set_oop(kit->gvn().transform_no_reclaim(phi));
 270     kit->record_for_igvn(phi);
 271   }
 272   // Merge field values
 273   for (uint i = 0; i < field_count(); ++i) {
 274     Node* val1 =        field_value(i);
 275     Node* val2 = other->field_value(i);
 276     if (val1->isa_ValueType()) {
 277       val1->as_ValueType()->merge_with(kit, val2->as_ValueType(), pnum);
 278     } else {
 279       assert(!val2->is_ValueType(), "inconsistent merge values");
 280       val1->set_req(pnum, val2);
 281     }
 282     if (pnum == PhiNode::Input) {
 283       // Last merge
 284       set_field_value(i, kit->gvn().transform_no_reclaim(val1));
 285       kit->record_for_igvn(val1);
 286     }
 287   }
 288   if (pnum == PhiNode::Input) {
 289     // Last merge for this value type.
 290    kit->record_for_igvn(this);
 291    return kit->gvn().transform_no_reclaim(this);
 292   }
 293   return this;
 294 }
 295 
 296 Node* ValueTypeNode::field_value(uint index) const {
 297   assert(index < field_count(), "index out of bounds");
 298   return in(Values + index);
 299 }
 300 
 301 // Get the value of the field at the given offset.
 302 // If 'recursive' is true, flattened value type fields will be resolved recursively.
 303 Node* ValueTypeNode::field_value_by_offset(int offset, bool recursive) const {
 304   // If the field at 'offset' belongs to a flattened value type field, 'index' refers to the
 305   // corresponding ValueTypeNode input and 'sub_offset' is the offset in flattened value type.
 306   int index = value_klass()->field_index_by_offset(offset);
 307   int sub_offset = offset - field_offset(index);
 308   Node* value = field_value(index);
 309   if (recursive && value->is_ValueType()) {
 310     // Flattened value type field
 311     ValueTypeNode* vt = value->as_ValueType();
 312     sub_offset += vt->value_klass()->first_field_offset(); // Add header size
 313     return vt->field_value_by_offset(sub_offset);
 314   }
 315   assert(!(recursive && value->is_ValueType()), "should not be a value type");
 316   assert(sub_offset == 0, "offset mismatch");
 317   return value;
 318 }
 319 
 320 void ValueTypeNode::set_field_value(uint index, Node* value) {
 321   assert(index < field_count(), "index out of bounds");
 322   set_req(Values + index, value);
 323 }
 324 
 325 int ValueTypeNode::field_offset(uint index) const {
 326   assert(index < field_count(), "index out of bounds");
 327   return value_klass()->field_offset_by_index(index);
 328 }
 329 
 330 ciType* ValueTypeNode::field_type(uint index) const {
 331   assert(index < field_count(), "index out of bounds");
 332   return value_klass()->field_type_by_index(index);
 333 }
 334 
 335 void ValueTypeNode::make_scalar_in_safepoints(Compile* C) {
 336   const TypeValueTypePtr* res_type = TypeValueTypePtr::make(bottom_type()->isa_valuetype(), TypePtr::NotNull);
 337   ciValueKlass* vk = value_klass();
 338   uint nfields = vk->flattened_field_count();
 339   for (DUIterator_Fast imax, i = fast_outs(imax); i < imax; i++) {
 340     Node* u = fast_out(i);
 341     if (u->is_SafePoint() && (!u->is_Call() || u->as_Call()->has_debug_use(this))) {
 342       Node* in_oop = get_oop();
 343       const Type* oop_type = in_oop->bottom_type();
 344       SafePointNode* sfpt = u->as_SafePoint();
 345       JVMState* jvms = sfpt->jvms();
 346       int start = jvms->debug_start();
 347       int end   = jvms->debug_end();
 348       if (oop_type->meet(TypePtr::NULL_PTR) != oop_type) {
 349         // Replace safepoint edge by oop
 350         int nb = sfpt->replace_edges_in_range(this, in_oop, start, end);
 351         --i; imax -= nb;
 352       } else {
 353         // Replace safepoint edge by SafePointScalarObjectNode and add field values
 354         assert(jvms != NULL, "missing JVMS");
 355         uint first_ind = (sfpt->req() - jvms->scloff());
 356         SafePointScalarObjectNode* sobj = new SafePointScalarObjectNode(res_type,
 357 #ifdef ASSERT
 358                                                                         NULL,
 359 #endif
 360                                                                         first_ind, nfields);
 361         sobj->init_req(0, C->root());
 362         // Iterate over the value type fields in order of increasing
 363         // offset and add the field values to the safepoint.
 364         for (uint j = 0; j < nfields; ++j) {
 365           int offset = vk->nonstatic_field_at(j)->offset();
 366           Node* value = field_value_by_offset(offset, true /* include flattened value type fields */);
 367           sfpt->add_req(value);
 368         }
 369         jvms->set_endoff(sfpt->req());
 370         int nb = sfpt->replace_edges_in_range(this, sobj, start, end);
 371         --i; imax -= nb;
 372       }
 373     }
 374   }
 375 }
 376 
 377 uint ValueTypeNode::set_arguments_for_java_call(CallJavaNode* call, int base_input, const GraphKit& kit, ciValueKlass* base_vk, int base_offset) {
 378   ciValueKlass* vk = value_klass();
 379   if (base_vk == NULL) {
 380     base_vk = vk;
 381   }
 382   uint edges = 0;
 383   for (uint i = 0; i < field_count(); i++) {
 384     ciType* f_type = field_type(i);
 385     int offset = base_offset + field_offset(i) - (base_offset > 0 ? vk->first_field_offset() : 0);
 386     Node* arg = field_value(i);
 387     if (f_type->is_valuetype()) {
 388       ciValueKlass* embedded_vk = f_type->as_value_klass();
 389       edges += arg->as_ValueType()->set_arguments_for_java_call(call, base_input, kit, base_vk, offset);
 390     } else {
 391       int j = 0; int extra = 0;
 392       for (; j < base_vk->nof_nonstatic_fields(); j++) {
 393         ciField* f = base_vk->nonstatic_field_at(j);
 394         if (offset == f->offset()) {
 395           assert(f->type() == f_type, "inconsistent field type");
 396           break;
 397         }
 398         BasicType bt = f->type()->basic_type();
 399         if (bt == T_LONG || bt == T_DOUBLE) {
 400           extra++;
 401         }
 402       }
 403       call->init_req(base_input + j + extra, arg);
 404       edges++;
 405       BasicType bt = f_type->basic_type();
 406       if (bt == T_LONG || bt == T_DOUBLE) {
 407         call->init_req(base_input + j + extra + 1, kit.top());
 408         edges++;
 409       }
 410     }
 411   }
 412   return edges;
 413 }
 414 
 415 Node* ValueTypeNode::Ideal(PhaseGVN* phase, bool can_reshape) {
 416   // No optimizations for now
 417   return NULL;
 418 }
 419 
 420 #ifndef PRODUCT
 421 
 422 void ValueTypeNode::dump_spec(outputStream* st) const {
 423   TypeNode::dump_spec(st);
 424 }
 425 
 426 #endif