1 /*
   2  * Copyright (c) 1997, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/stringTable.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/codeCache.hpp"
  30 #include "code/compiledIC.hpp"
  31 #include "code/codeCacheExtensions.hpp"
  32 #include "code/scopeDesc.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/abstractCompiler.hpp"
  35 #include "compiler/compileBroker.hpp"
  36 #include "compiler/disassembler.hpp"
  37 #include "gc/shared/gcLocker.inline.hpp"
  38 #include "interpreter/interpreter.hpp"
  39 #include "interpreter/interpreterRuntime.hpp"
  40 #include "logging/log.hpp"
  41 #include "memory/universe.inline.hpp"
  42 #include "oops/fieldStreams.hpp"
  43 #include "oops/objArrayKlass.inline.hpp"
  44 #include "oops/objArrayOop.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "oops/valueKlass.hpp"
  47 #include "prims/forte.hpp"
  48 #include "prims/jvmtiExport.hpp"
  49 #include "prims/jvmtiRedefineClassesTrace.hpp"
  50 #include "prims/methodHandles.hpp"
  51 #include "prims/nativeLookup.hpp"
  52 #include "runtime/arguments.hpp"
  53 #include "runtime/atomic.inline.hpp"
  54 #include "runtime/biasedLocking.hpp"
  55 #include "runtime/compilationPolicy.hpp"
  56 #include "runtime/handles.inline.hpp"
  57 #include "runtime/init.hpp"
  58 #include "runtime/interfaceSupport.hpp"
  59 #include "runtime/javaCalls.hpp"
  60 #include "runtime/sharedRuntime.hpp"
  61 #include "runtime/stubRoutines.hpp"
  62 #include "runtime/vframe.hpp"
  63 #include "runtime/vframeArray.hpp"
  64 #include "trace/tracing.hpp"
  65 #include "utilities/copy.hpp"
  66 #include "utilities/dtrace.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/hashtable.inline.hpp"
  69 #include "utilities/macros.hpp"
  70 #include "utilities/xmlstream.hpp"
  71 #ifdef COMPILER1
  72 #include "c1/c1_Runtime1.hpp"
  73 #endif
  74 
  75 // Shared stub locations
  76 RuntimeStub*        SharedRuntime::_wrong_method_blob;
  77 RuntimeStub*        SharedRuntime::_wrong_method_abstract_blob;
  78 RuntimeStub*        SharedRuntime::_ic_miss_blob;
  79 RuntimeStub*        SharedRuntime::_resolve_opt_virtual_call_blob;
  80 RuntimeStub*        SharedRuntime::_resolve_virtual_call_blob;
  81 RuntimeStub*        SharedRuntime::_resolve_static_call_blob;
  82 
  83 DeoptimizationBlob* SharedRuntime::_deopt_blob;
  84 SafepointBlob*      SharedRuntime::_polling_page_vectors_safepoint_handler_blob;
  85 SafepointBlob*      SharedRuntime::_polling_page_safepoint_handler_blob;
  86 SafepointBlob*      SharedRuntime::_polling_page_return_handler_blob;
  87 
  88 #ifdef COMPILER2
  89 UncommonTrapBlob*   SharedRuntime::_uncommon_trap_blob;
  90 #endif // COMPILER2
  91 
  92 
  93 //----------------------------generate_stubs-----------------------------------
  94 void SharedRuntime::generate_stubs() {
  95   _wrong_method_blob                   = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method),          "wrong_method_stub");
  96   _wrong_method_abstract_blob          = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_abstract), "wrong_method_abstract_stub");
  97   _ic_miss_blob                        = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::handle_wrong_method_ic_miss),  "ic_miss_stub");
  98   _resolve_opt_virtual_call_blob       = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_opt_virtual_call_C),   "resolve_opt_virtual_call");
  99   _resolve_virtual_call_blob           = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_virtual_call_C),       "resolve_virtual_call");
 100   _resolve_static_call_blob            = generate_resolve_blob(CAST_FROM_FN_PTR(address, SharedRuntime::resolve_static_call_C),        "resolve_static_call");
 101 
 102 #if defined(COMPILER2) || INCLUDE_JVMCI
 103   // Vectors are generated only by C2 and JVMCI.
 104   bool support_wide = is_wide_vector(MaxVectorSize);
 105   if (support_wide) {
 106     _polling_page_vectors_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_VECTOR_LOOP);
 107   }
 108 #endif // COMPILER2 || INCLUDE_JVMCI
 109   _polling_page_safepoint_handler_blob = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_LOOP);
 110   _polling_page_return_handler_blob    = generate_handler_blob(CAST_FROM_FN_PTR(address, SafepointSynchronize::handle_polling_page_exception), POLL_AT_RETURN);
 111 
 112   generate_deopt_blob();
 113 
 114 #ifdef COMPILER2
 115   generate_uncommon_trap_blob();
 116 #endif // COMPILER2
 117 }
 118 
 119 #include <math.h>
 120 
 121 // Implementation of SharedRuntime
 122 
 123 #ifndef PRODUCT
 124 // For statistics
 125 int SharedRuntime::_ic_miss_ctr = 0;
 126 int SharedRuntime::_wrong_method_ctr = 0;
 127 int SharedRuntime::_resolve_static_ctr = 0;
 128 int SharedRuntime::_resolve_virtual_ctr = 0;
 129 int SharedRuntime::_resolve_opt_virtual_ctr = 0;
 130 int SharedRuntime::_implicit_null_throws = 0;
 131 int SharedRuntime::_implicit_div0_throws = 0;
 132 int SharedRuntime::_throw_null_ctr = 0;
 133 
 134 int SharedRuntime::_nof_normal_calls = 0;
 135 int SharedRuntime::_nof_optimized_calls = 0;
 136 int SharedRuntime::_nof_inlined_calls = 0;
 137 int SharedRuntime::_nof_megamorphic_calls = 0;
 138 int SharedRuntime::_nof_static_calls = 0;
 139 int SharedRuntime::_nof_inlined_static_calls = 0;
 140 int SharedRuntime::_nof_interface_calls = 0;
 141 int SharedRuntime::_nof_optimized_interface_calls = 0;
 142 int SharedRuntime::_nof_inlined_interface_calls = 0;
 143 int SharedRuntime::_nof_megamorphic_interface_calls = 0;
 144 int SharedRuntime::_nof_removable_exceptions = 0;
 145 
 146 int SharedRuntime::_new_instance_ctr=0;
 147 int SharedRuntime::_new_array_ctr=0;
 148 int SharedRuntime::_multi1_ctr=0;
 149 int SharedRuntime::_multi2_ctr=0;
 150 int SharedRuntime::_multi3_ctr=0;
 151 int SharedRuntime::_multi4_ctr=0;
 152 int SharedRuntime::_multi5_ctr=0;
 153 int SharedRuntime::_mon_enter_stub_ctr=0;
 154 int SharedRuntime::_mon_exit_stub_ctr=0;
 155 int SharedRuntime::_mon_enter_ctr=0;
 156 int SharedRuntime::_mon_exit_ctr=0;
 157 int SharedRuntime::_partial_subtype_ctr=0;
 158 int SharedRuntime::_jbyte_array_copy_ctr=0;
 159 int SharedRuntime::_jshort_array_copy_ctr=0;
 160 int SharedRuntime::_jint_array_copy_ctr=0;
 161 int SharedRuntime::_jlong_array_copy_ctr=0;
 162 int SharedRuntime::_oop_array_copy_ctr=0;
 163 int SharedRuntime::_checkcast_array_copy_ctr=0;
 164 int SharedRuntime::_unsafe_array_copy_ctr=0;
 165 int SharedRuntime::_generic_array_copy_ctr=0;
 166 int SharedRuntime::_slow_array_copy_ctr=0;
 167 int SharedRuntime::_find_handler_ctr=0;
 168 int SharedRuntime::_rethrow_ctr=0;
 169 
 170 int     SharedRuntime::_ICmiss_index                    = 0;
 171 int     SharedRuntime::_ICmiss_count[SharedRuntime::maxICmiss_count];
 172 address SharedRuntime::_ICmiss_at[SharedRuntime::maxICmiss_count];
 173 
 174 
 175 void SharedRuntime::trace_ic_miss(address at) {
 176   for (int i = 0; i < _ICmiss_index; i++) {
 177     if (_ICmiss_at[i] == at) {
 178       _ICmiss_count[i]++;
 179       return;
 180     }
 181   }
 182   int index = _ICmiss_index++;
 183   if (_ICmiss_index >= maxICmiss_count) _ICmiss_index = maxICmiss_count - 1;
 184   _ICmiss_at[index] = at;
 185   _ICmiss_count[index] = 1;
 186 }
 187 
 188 void SharedRuntime::print_ic_miss_histogram() {
 189   if (ICMissHistogram) {
 190     tty->print_cr("IC Miss Histogram:");
 191     int tot_misses = 0;
 192     for (int i = 0; i < _ICmiss_index; i++) {
 193       tty->print_cr("  at: " INTPTR_FORMAT "  nof: %d", p2i(_ICmiss_at[i]), _ICmiss_count[i]);
 194       tot_misses += _ICmiss_count[i];
 195     }
 196     tty->print_cr("Total IC misses: %7d", tot_misses);
 197   }
 198 }
 199 #endif // PRODUCT
 200 
 201 #if INCLUDE_ALL_GCS
 202 
 203 // G1 write-barrier pre: executed before a pointer store.
 204 JRT_LEAF(void, SharedRuntime::g1_wb_pre(oopDesc* orig, JavaThread *thread))
 205   if (orig == NULL) {
 206     assert(false, "should be optimized out");
 207     return;
 208   }
 209   assert(orig->is_oop(true /* ignore mark word */), "Error");
 210   // store the original value that was in the field reference
 211   thread->satb_mark_queue().enqueue(orig);
 212 JRT_END
 213 
 214 // G1 write-barrier post: executed after a pointer store.
 215 JRT_LEAF(void, SharedRuntime::g1_wb_post(void* card_addr, JavaThread* thread))
 216   thread->dirty_card_queue().enqueue(card_addr);
 217 JRT_END
 218 
 219 #endif // INCLUDE_ALL_GCS
 220 
 221 
 222 JRT_LEAF(jlong, SharedRuntime::lmul(jlong y, jlong x))
 223   return x * y;
 224 JRT_END
 225 
 226 
 227 JRT_LEAF(jlong, SharedRuntime::ldiv(jlong y, jlong x))
 228   if (x == min_jlong && y == CONST64(-1)) {
 229     return x;
 230   } else {
 231     return x / y;
 232   }
 233 JRT_END
 234 
 235 
 236 JRT_LEAF(jlong, SharedRuntime::lrem(jlong y, jlong x))
 237   if (x == min_jlong && y == CONST64(-1)) {
 238     return 0;
 239   } else {
 240     return x % y;
 241   }
 242 JRT_END
 243 
 244 
 245 const juint  float_sign_mask  = 0x7FFFFFFF;
 246 const juint  float_infinity   = 0x7F800000;
 247 const julong double_sign_mask = CONST64(0x7FFFFFFFFFFFFFFF);
 248 const julong double_infinity  = CONST64(0x7FF0000000000000);
 249 
 250 JRT_LEAF(jfloat, SharedRuntime::frem(jfloat  x, jfloat  y))
 251 #ifdef _WIN64
 252   // 64-bit Windows on amd64 returns the wrong values for
 253   // infinity operands.
 254   union { jfloat f; juint i; } xbits, ybits;
 255   xbits.f = x;
 256   ybits.f = y;
 257   // x Mod Infinity == x unless x is infinity
 258   if (((xbits.i & float_sign_mask) != float_infinity) &&
 259        ((ybits.i & float_sign_mask) == float_infinity) ) {
 260     return x;
 261   }
 262   return ((jfloat)fmod_winx64((double)x, (double)y));
 263 #else
 264   return ((jfloat)fmod((double)x,(double)y));
 265 #endif
 266 JRT_END
 267 
 268 
 269 JRT_LEAF(jdouble, SharedRuntime::drem(jdouble x, jdouble y))
 270 #ifdef _WIN64
 271   union { jdouble d; julong l; } xbits, ybits;
 272   xbits.d = x;
 273   ybits.d = y;
 274   // x Mod Infinity == x unless x is infinity
 275   if (((xbits.l & double_sign_mask) != double_infinity) &&
 276        ((ybits.l & double_sign_mask) == double_infinity) ) {
 277     return x;
 278   }
 279   return ((jdouble)fmod_winx64((double)x, (double)y));
 280 #else
 281   return ((jdouble)fmod((double)x,(double)y));
 282 #endif
 283 JRT_END
 284 
 285 #ifdef __SOFTFP__
 286 JRT_LEAF(jfloat, SharedRuntime::fadd(jfloat x, jfloat y))
 287   return x + y;
 288 JRT_END
 289 
 290 JRT_LEAF(jfloat, SharedRuntime::fsub(jfloat x, jfloat y))
 291   return x - y;
 292 JRT_END
 293 
 294 JRT_LEAF(jfloat, SharedRuntime::fmul(jfloat x, jfloat y))
 295   return x * y;
 296 JRT_END
 297 
 298 JRT_LEAF(jfloat, SharedRuntime::fdiv(jfloat x, jfloat y))
 299   return x / y;
 300 JRT_END
 301 
 302 JRT_LEAF(jdouble, SharedRuntime::dadd(jdouble x, jdouble y))
 303   return x + y;
 304 JRT_END
 305 
 306 JRT_LEAF(jdouble, SharedRuntime::dsub(jdouble x, jdouble y))
 307   return x - y;
 308 JRT_END
 309 
 310 JRT_LEAF(jdouble, SharedRuntime::dmul(jdouble x, jdouble y))
 311   return x * y;
 312 JRT_END
 313 
 314 JRT_LEAF(jdouble, SharedRuntime::ddiv(jdouble x, jdouble y))
 315   return x / y;
 316 JRT_END
 317 
 318 JRT_LEAF(jfloat, SharedRuntime::i2f(jint x))
 319   return (jfloat)x;
 320 JRT_END
 321 
 322 JRT_LEAF(jdouble, SharedRuntime::i2d(jint x))
 323   return (jdouble)x;
 324 JRT_END
 325 
 326 JRT_LEAF(jdouble, SharedRuntime::f2d(jfloat x))
 327   return (jdouble)x;
 328 JRT_END
 329 
 330 JRT_LEAF(int,  SharedRuntime::fcmpl(float x, float y))
 331   return x>y ? 1 : (x==y ? 0 : -1);  /* x<y or is_nan*/
 332 JRT_END
 333 
 334 JRT_LEAF(int,  SharedRuntime::fcmpg(float x, float y))
 335   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 336 JRT_END
 337 
 338 JRT_LEAF(int,  SharedRuntime::dcmpl(double x, double y))
 339   return x>y ? 1 : (x==y ? 0 : -1); /* x<y or is_nan */
 340 JRT_END
 341 
 342 JRT_LEAF(int,  SharedRuntime::dcmpg(double x, double y))
 343   return x<y ? -1 : (x==y ? 0 : 1);  /* x>y or is_nan */
 344 JRT_END
 345 
 346 // Functions to return the opposite of the aeabi functions for nan.
 347 JRT_LEAF(int, SharedRuntime::unordered_fcmplt(float x, float y))
 348   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 349 JRT_END
 350 
 351 JRT_LEAF(int, SharedRuntime::unordered_dcmplt(double x, double y))
 352   return (x < y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 353 JRT_END
 354 
 355 JRT_LEAF(int, SharedRuntime::unordered_fcmple(float x, float y))
 356   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 357 JRT_END
 358 
 359 JRT_LEAF(int, SharedRuntime::unordered_dcmple(double x, double y))
 360   return (x <= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 361 JRT_END
 362 
 363 JRT_LEAF(int, SharedRuntime::unordered_fcmpge(float x, float y))
 364   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 365 JRT_END
 366 
 367 JRT_LEAF(int, SharedRuntime::unordered_dcmpge(double x, double y))
 368   return (x >= y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 369 JRT_END
 370 
 371 JRT_LEAF(int, SharedRuntime::unordered_fcmpgt(float x, float y))
 372   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 373 JRT_END
 374 
 375 JRT_LEAF(int, SharedRuntime::unordered_dcmpgt(double x, double y))
 376   return (x > y) ? 1 : ((g_isnan(x) || g_isnan(y)) ? 1 : 0);
 377 JRT_END
 378 
 379 // Intrinsics make gcc generate code for these.
 380 float  SharedRuntime::fneg(float f)   {
 381   return -f;
 382 }
 383 
 384 double SharedRuntime::dneg(double f)  {
 385   return -f;
 386 }
 387 
 388 #endif // __SOFTFP__
 389 
 390 #if defined(__SOFTFP__) || defined(E500V2)
 391 // Intrinsics make gcc generate code for these.
 392 double SharedRuntime::dabs(double f)  {
 393   return (f <= (double)0.0) ? (double)0.0 - f : f;
 394 }
 395 
 396 #endif
 397 
 398 #if defined(__SOFTFP__) || defined(PPC)
 399 double SharedRuntime::dsqrt(double f) {
 400   return sqrt(f);
 401 }
 402 #endif
 403 
 404 JRT_LEAF(jint, SharedRuntime::f2i(jfloat  x))
 405   if (g_isnan(x))
 406     return 0;
 407   if (x >= (jfloat) max_jint)
 408     return max_jint;
 409   if (x <= (jfloat) min_jint)
 410     return min_jint;
 411   return (jint) x;
 412 JRT_END
 413 
 414 
 415 JRT_LEAF(jlong, SharedRuntime::f2l(jfloat  x))
 416   if (g_isnan(x))
 417     return 0;
 418   if (x >= (jfloat) max_jlong)
 419     return max_jlong;
 420   if (x <= (jfloat) min_jlong)
 421     return min_jlong;
 422   return (jlong) x;
 423 JRT_END
 424 
 425 
 426 JRT_LEAF(jint, SharedRuntime::d2i(jdouble x))
 427   if (g_isnan(x))
 428     return 0;
 429   if (x >= (jdouble) max_jint)
 430     return max_jint;
 431   if (x <= (jdouble) min_jint)
 432     return min_jint;
 433   return (jint) x;
 434 JRT_END
 435 
 436 
 437 JRT_LEAF(jlong, SharedRuntime::d2l(jdouble x))
 438   if (g_isnan(x))
 439     return 0;
 440   if (x >= (jdouble) max_jlong)
 441     return max_jlong;
 442   if (x <= (jdouble) min_jlong)
 443     return min_jlong;
 444   return (jlong) x;
 445 JRT_END
 446 
 447 
 448 JRT_LEAF(jfloat, SharedRuntime::d2f(jdouble x))
 449   return (jfloat)x;
 450 JRT_END
 451 
 452 
 453 JRT_LEAF(jfloat, SharedRuntime::l2f(jlong x))
 454   return (jfloat)x;
 455 JRT_END
 456 
 457 
 458 JRT_LEAF(jdouble, SharedRuntime::l2d(jlong x))
 459   return (jdouble)x;
 460 JRT_END
 461 
 462 // Exception handling across interpreter/compiler boundaries
 463 //
 464 // exception_handler_for_return_address(...) returns the continuation address.
 465 // The continuation address is the entry point of the exception handler of the
 466 // previous frame depending on the return address.
 467 
 468 address SharedRuntime::raw_exception_handler_for_return_address(JavaThread* thread, address return_address) {
 469   assert(frame::verify_return_pc(return_address), "must be a return address: " INTPTR_FORMAT, p2i(return_address));
 470   assert(thread->frames_to_pop_failed_realloc() == 0 || Interpreter::contains(return_address), "missed frames to pop?");
 471 
 472   // Reset method handle flag.
 473   thread->set_is_method_handle_return(false);
 474 
 475 #if INCLUDE_JVMCI
 476   // JVMCI's ExceptionHandlerStub expects the thread local exception PC to be clear
 477   // and other exception handler continuations do not read it
 478   thread->set_exception_pc(NULL);
 479 #endif
 480 
 481   // The fastest case first
 482   CodeBlob* blob = CodeCache::find_blob(return_address);
 483   nmethod* nm = (blob != NULL) ? blob->as_nmethod_or_null() : NULL;
 484   if (nm != NULL) {
 485     // Set flag if return address is a method handle call site.
 486     thread->set_is_method_handle_return(nm->is_method_handle_return(return_address));
 487     // native nmethods don't have exception handlers
 488     assert(!nm->is_native_method(), "no exception handler");
 489     assert(nm->header_begin() != nm->exception_begin(), "no exception handler");
 490     if (nm->is_deopt_pc(return_address)) {
 491       // If we come here because of a stack overflow, the stack may be
 492       // unguarded. Reguard the stack otherwise if we return to the
 493       // deopt blob and the stack bang causes a stack overflow we
 494       // crash.
 495       bool guard_pages_enabled = thread->stack_guards_enabled();
 496       if (!guard_pages_enabled) guard_pages_enabled = thread->reguard_stack();
 497       if (thread->reserved_stack_activation() != thread->stack_base()) {
 498         thread->set_reserved_stack_activation(thread->stack_base());
 499       }
 500       assert(guard_pages_enabled, "stack banging in deopt blob may cause crash");
 501       return SharedRuntime::deopt_blob()->unpack_with_exception();
 502     } else {
 503       return nm->exception_begin();
 504     }
 505   }
 506 
 507   // Entry code
 508   if (StubRoutines::returns_to_call_stub(return_address)) {
 509     return StubRoutines::catch_exception_entry();
 510   }
 511   // Interpreted code
 512   if (Interpreter::contains(return_address)) {
 513     return Interpreter::rethrow_exception_entry();
 514   }
 515 
 516   guarantee(blob == NULL || !blob->is_runtime_stub(), "caller should have skipped stub");
 517   guarantee(!VtableStubs::contains(return_address), "NULL exceptions in vtables should have been handled already!");
 518 
 519 #ifndef PRODUCT
 520   { ResourceMark rm;
 521     tty->print_cr("No exception handler found for exception at " INTPTR_FORMAT " - potential problems:", p2i(return_address));
 522     tty->print_cr("a) exception happened in (new?) code stubs/buffers that is not handled here");
 523     tty->print_cr("b) other problem");
 524   }
 525 #endif // PRODUCT
 526 
 527   ShouldNotReachHere();
 528   return NULL;
 529 }
 530 
 531 
 532 JRT_LEAF(address, SharedRuntime::exception_handler_for_return_address(JavaThread* thread, address return_address))
 533   return raw_exception_handler_for_return_address(thread, return_address);
 534 JRT_END
 535 
 536 
 537 address SharedRuntime::get_poll_stub(address pc) {
 538   address stub;
 539   // Look up the code blob
 540   CodeBlob *cb = CodeCache::find_blob(pc);
 541 
 542   // Should be an nmethod
 543   assert(cb && cb->is_nmethod(), "safepoint polling: pc must refer to an nmethod");
 544 
 545   // Look up the relocation information
 546   assert(((nmethod*)cb)->is_at_poll_or_poll_return(pc),
 547     "safepoint polling: type must be poll");
 548 
 549 #ifdef ASSERT
 550   if (!((NativeInstruction*)pc)->is_safepoint_poll()) {
 551     tty->print_cr("bad pc: " PTR_FORMAT, p2i(pc));
 552     Disassembler::decode(cb);
 553     fatal("Only polling locations are used for safepoint");
 554   }
 555 #endif
 556 
 557   bool at_poll_return = ((nmethod*)cb)->is_at_poll_return(pc);
 558   bool has_wide_vectors = ((nmethod*)cb)->has_wide_vectors();
 559   if (at_poll_return) {
 560     assert(SharedRuntime::polling_page_return_handler_blob() != NULL,
 561            "polling page return stub not created yet");
 562     stub = SharedRuntime::polling_page_return_handler_blob()->entry_point();
 563   } else if (has_wide_vectors) {
 564     assert(SharedRuntime::polling_page_vectors_safepoint_handler_blob() != NULL,
 565            "polling page vectors safepoint stub not created yet");
 566     stub = SharedRuntime::polling_page_vectors_safepoint_handler_blob()->entry_point();
 567   } else {
 568     assert(SharedRuntime::polling_page_safepoint_handler_blob() != NULL,
 569            "polling page safepoint stub not created yet");
 570     stub = SharedRuntime::polling_page_safepoint_handler_blob()->entry_point();
 571   }
 572   log_debug(safepoint)("... found polling page %s exception at pc = "
 573                        INTPTR_FORMAT ", stub =" INTPTR_FORMAT,
 574                        at_poll_return ? "return" : "loop",
 575                        (intptr_t)pc, (intptr_t)stub);
 576   return stub;
 577 }
 578 
 579 
 580 oop SharedRuntime::retrieve_receiver( Symbol* sig, frame caller ) {
 581   assert(caller.is_interpreted_frame(), "");
 582   int args_size = ArgumentSizeComputer(sig).size() + 1;
 583   assert(args_size <= caller.interpreter_frame_expression_stack_size(), "receiver must be on interpreter stack");
 584   oop result = cast_to_oop(*caller.interpreter_frame_tos_at(args_size - 1));
 585   assert(Universe::heap()->is_in(result) && result->is_oop(), "receiver must be an oop");
 586   return result;
 587 }
 588 
 589 
 590 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Handle h_exception) {
 591   if (JvmtiExport::can_post_on_exceptions()) {
 592     vframeStream vfst(thread, true);
 593     methodHandle method = methodHandle(thread, vfst.method());
 594     address bcp = method()->bcp_from(vfst.bci());
 595     JvmtiExport::post_exception_throw(thread, method(), bcp, h_exception());
 596   }
 597   Exceptions::_throw(thread, __FILE__, __LINE__, h_exception);
 598 }
 599 
 600 void SharedRuntime::throw_and_post_jvmti_exception(JavaThread *thread, Symbol* name, const char *message) {
 601   Handle h_exception = Exceptions::new_exception(thread, name, message);
 602   throw_and_post_jvmti_exception(thread, h_exception);
 603 }
 604 
 605 // The interpreter code to call this tracing function is only
 606 // called/generated when TraceRedefineClasses has the right bits
 607 // set. Since obsolete methods are never compiled, we don't have
 608 // to modify the compilers to generate calls to this function.
 609 //
 610 JRT_LEAF(int, SharedRuntime::rc_trace_method_entry(
 611     JavaThread* thread, Method* method))
 612   assert(RC_TRACE_IN_RANGE(0x00001000, 0x00002000), "wrong call");
 613 
 614   if (method->is_obsolete()) {
 615     // We are calling an obsolete method, but this is not necessarily
 616     // an error. Our method could have been redefined just after we
 617     // fetched the Method* from the constant pool.
 618 
 619     // RC_TRACE macro has an embedded ResourceMark
 620     RC_TRACE_WITH_THREAD(0x00001000, thread,
 621                          ("calling obsolete method '%s'",
 622                           method->name_and_sig_as_C_string()));
 623     if (RC_TRACE_ENABLED(0x00002000)) {
 624       // this option is provided to debug calls to obsolete methods
 625       guarantee(false, "faulting at call to an obsolete method.");
 626     }
 627   }
 628   return 0;
 629 JRT_END
 630 
 631 // ret_pc points into caller; we are returning caller's exception handler
 632 // for given exception
 633 address SharedRuntime::compute_compiled_exc_handler(nmethod* nm, address ret_pc, Handle& exception,
 634                                                     bool force_unwind, bool top_frame_only) {
 635   assert(nm != NULL, "must exist");
 636   ResourceMark rm;
 637 
 638 #if INCLUDE_JVMCI
 639   if (nm->is_compiled_by_jvmci()) {
 640     // lookup exception handler for this pc
 641     int catch_pco = ret_pc - nm->code_begin();
 642     ExceptionHandlerTable table(nm);
 643     HandlerTableEntry *t = table.entry_for(catch_pco, -1, 0);
 644     if (t != NULL) {
 645       return nm->code_begin() + t->pco();
 646     } else {
 647       // there is no exception handler for this pc => deoptimize
 648       nm->make_not_entrant();
 649 
 650       // Use Deoptimization::deoptimize for all of its side-effects:
 651       // revoking biases of monitors, gathering traps statistics, logging...
 652       // it also patches the return pc but we do not care about that
 653       // since we return a continuation to the deopt_blob below.
 654       JavaThread* thread = JavaThread::current();
 655       RegisterMap reg_map(thread, UseBiasedLocking);
 656       frame runtime_frame = thread->last_frame();
 657       frame caller_frame = runtime_frame.sender(&reg_map);
 658       Deoptimization::deoptimize(thread, caller_frame, &reg_map, Deoptimization::Reason_not_compiled_exception_handler);
 659 
 660       return SharedRuntime::deopt_blob()->unpack_with_exception_in_tls();
 661     }
 662   }
 663 #endif // INCLUDE_JVMCI
 664 
 665   ScopeDesc* sd = nm->scope_desc_at(ret_pc);
 666   // determine handler bci, if any
 667   EXCEPTION_MARK;
 668 
 669   int handler_bci = -1;
 670   int scope_depth = 0;
 671   if (!force_unwind) {
 672     int bci = sd->bci();
 673     bool recursive_exception = false;
 674     do {
 675       bool skip_scope_increment = false;
 676       // exception handler lookup
 677       KlassHandle ek (THREAD, exception->klass());
 678       methodHandle mh(THREAD, sd->method());
 679       handler_bci = Method::fast_exception_handler_bci_for(mh, ek, bci, THREAD);
 680       if (HAS_PENDING_EXCEPTION) {
 681         recursive_exception = true;
 682         // We threw an exception while trying to find the exception handler.
 683         // Transfer the new exception to the exception handle which will
 684         // be set into thread local storage, and do another lookup for an
 685         // exception handler for this exception, this time starting at the
 686         // BCI of the exception handler which caused the exception to be
 687         // thrown (bugs 4307310 and 4546590). Set "exception" reference
 688         // argument to ensure that the correct exception is thrown (4870175).
 689         exception = Handle(THREAD, PENDING_EXCEPTION);
 690         CLEAR_PENDING_EXCEPTION;
 691         if (handler_bci >= 0) {
 692           bci = handler_bci;
 693           handler_bci = -1;
 694           skip_scope_increment = true;
 695         }
 696       }
 697       else {
 698         recursive_exception = false;
 699       }
 700       if (!top_frame_only && handler_bci < 0 && !skip_scope_increment) {
 701         sd = sd->sender();
 702         if (sd != NULL) {
 703           bci = sd->bci();
 704         }
 705         ++scope_depth;
 706       }
 707     } while (recursive_exception || (!top_frame_only && handler_bci < 0 && sd != NULL));
 708   }
 709 
 710   // found handling method => lookup exception handler
 711   int catch_pco = ret_pc - nm->code_begin();
 712 
 713   ExceptionHandlerTable table(nm);
 714   HandlerTableEntry *t = table.entry_for(catch_pco, handler_bci, scope_depth);
 715   if (t == NULL && (nm->is_compiled_by_c1() || handler_bci != -1)) {
 716     // Allow abbreviated catch tables.  The idea is to allow a method
 717     // to materialize its exceptions without committing to the exact
 718     // routing of exceptions.  In particular this is needed for adding
 719     // a synthetic handler to unlock monitors when inlining
 720     // synchronized methods since the unlock path isn't represented in
 721     // the bytecodes.
 722     t = table.entry_for(catch_pco, -1, 0);
 723   }
 724 
 725 #ifdef COMPILER1
 726   if (t == NULL && nm->is_compiled_by_c1()) {
 727     assert(nm->unwind_handler_begin() != NULL, "");
 728     return nm->unwind_handler_begin();
 729   }
 730 #endif
 731 
 732   if (t == NULL) {
 733     ttyLocker ttyl;
 734     tty->print_cr("MISSING EXCEPTION HANDLER for pc " INTPTR_FORMAT " and handler bci %d", p2i(ret_pc), handler_bci);
 735     tty->print_cr("   Exception:");
 736     exception->print();
 737     tty->cr();
 738     tty->print_cr(" Compiled exception table :");
 739     table.print();
 740     nm->print_code();
 741     guarantee(false, "missing exception handler");
 742     return NULL;
 743   }
 744 
 745   return nm->code_begin() + t->pco();
 746 }
 747 
 748 JRT_ENTRY(void, SharedRuntime::throw_AbstractMethodError(JavaThread* thread))
 749   // These errors occur only at call sites
 750   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_AbstractMethodError());
 751 JRT_END
 752 
 753 JRT_ENTRY(void, SharedRuntime::throw_IncompatibleClassChangeError(JavaThread* thread))
 754   // These errors occur only at call sites
 755   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_IncompatibleClassChangeError(), "vtable stub");
 756 JRT_END
 757 
 758 JRT_ENTRY(void, SharedRuntime::throw_ArithmeticException(JavaThread* thread))
 759   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_ArithmeticException(), "/ by zero");
 760 JRT_END
 761 
 762 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException(JavaThread* thread))
 763   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 764 JRT_END
 765 
 766 JRT_ENTRY(void, SharedRuntime::throw_NullPointerException_at_call(JavaThread* thread))
 767   // This entry point is effectively only used for NullPointerExceptions which occur at inline
 768   // cache sites (when the callee activation is not yet set up) so we are at a call site
 769   throw_and_post_jvmti_exception(thread, vmSymbols::java_lang_NullPointerException());
 770 JRT_END
 771 
 772 JRT_ENTRY(void, SharedRuntime::throw_StackOverflowError(JavaThread* thread))
 773   throw_StackOverflowError_common(thread, false);
 774 JRT_END
 775 
 776 JRT_ENTRY(void, SharedRuntime::throw_delayed_StackOverflowError(JavaThread* thread))
 777   throw_StackOverflowError_common(thread, true);
 778 JRT_END
 779 
 780 void SharedRuntime::throw_StackOverflowError_common(JavaThread* thread, bool delayed) {
 781   // We avoid using the normal exception construction in this case because
 782   // it performs an upcall to Java, and we're already out of stack space.
 783   Thread* THREAD = thread;
 784   Klass* k = SystemDictionary::StackOverflowError_klass();
 785   oop exception_oop = InstanceKlass::cast(k)->allocate_instance(CHECK);
 786   if (delayed) {
 787     java_lang_Throwable::set_message(exception_oop,
 788                                      Universe::delayed_stack_overflow_error_message());
 789   }
 790   Handle exception (thread, exception_oop);
 791   if (StackTraceInThrowable) {
 792     java_lang_Throwable::fill_in_stack_trace(exception);
 793   }
 794   // Increment counter for hs_err file reporting
 795   Atomic::inc(&Exceptions::_stack_overflow_errors);
 796   throw_and_post_jvmti_exception(thread, exception);
 797 }
 798 
 799 #if INCLUDE_JVMCI
 800 address SharedRuntime::deoptimize_for_implicit_exception(JavaThread* thread, address pc, nmethod* nm, int deopt_reason) {
 801   assert(deopt_reason > Deoptimization::Reason_none && deopt_reason < Deoptimization::Reason_LIMIT, "invalid deopt reason");
 802   thread->set_jvmci_implicit_exception_pc(pc);
 803   thread->set_pending_deoptimization(Deoptimization::make_trap_request((Deoptimization::DeoptReason)deopt_reason, Deoptimization::Action_reinterpret));
 804   return (SharedRuntime::deopt_blob()->implicit_exception_uncommon_trap());
 805 }
 806 #endif // INCLUDE_JVMCI
 807 
 808 address SharedRuntime::continuation_for_implicit_exception(JavaThread* thread,
 809                                                            address pc,
 810                                                            SharedRuntime::ImplicitExceptionKind exception_kind)
 811 {
 812   address target_pc = NULL;
 813 
 814   if (Interpreter::contains(pc)) {
 815 #ifdef CC_INTERP
 816     // C++ interpreter doesn't throw implicit exceptions
 817     ShouldNotReachHere();
 818 #else
 819     switch (exception_kind) {
 820       case IMPLICIT_NULL:           return Interpreter::throw_NullPointerException_entry();
 821       case IMPLICIT_DIVIDE_BY_ZERO: return Interpreter::throw_ArithmeticException_entry();
 822       case STACK_OVERFLOW:          return Interpreter::throw_StackOverflowError_entry();
 823       default:                      ShouldNotReachHere();
 824     }
 825 #endif // !CC_INTERP
 826   } else {
 827     switch (exception_kind) {
 828       case STACK_OVERFLOW: {
 829         // Stack overflow only occurs upon frame setup; the callee is
 830         // going to be unwound. Dispatch to a shared runtime stub
 831         // which will cause the StackOverflowError to be fabricated
 832         // and processed.
 833         // Stack overflow should never occur during deoptimization:
 834         // the compiled method bangs the stack by as much as the
 835         // interpreter would need in case of a deoptimization. The
 836         // deoptimization blob and uncommon trap blob bang the stack
 837         // in a debug VM to verify the correctness of the compiled
 838         // method stack banging.
 839         assert(thread->deopt_mark() == NULL, "no stack overflow from deopt blob/uncommon trap");
 840         Events::log_exception(thread, "StackOverflowError at " INTPTR_FORMAT, p2i(pc));
 841         return StubRoutines::throw_StackOverflowError_entry();
 842       }
 843 
 844       case IMPLICIT_NULL: {
 845         if (VtableStubs::contains(pc)) {
 846           // We haven't yet entered the callee frame. Fabricate an
 847           // exception and begin dispatching it in the caller. Since
 848           // the caller was at a call site, it's safe to destroy all
 849           // caller-saved registers, as these entry points do.
 850           VtableStub* vt_stub = VtableStubs::stub_containing(pc);
 851 
 852           // If vt_stub is NULL, then return NULL to signal handler to report the SEGV error.
 853           if (vt_stub == NULL) return NULL;
 854 
 855           if (vt_stub->is_abstract_method_error(pc)) {
 856             assert(!vt_stub->is_vtable_stub(), "should never see AbstractMethodErrors from vtable-type VtableStubs");
 857             Events::log_exception(thread, "AbstractMethodError at " INTPTR_FORMAT, p2i(pc));
 858             return StubRoutines::throw_AbstractMethodError_entry();
 859           } else {
 860             Events::log_exception(thread, "NullPointerException at vtable entry " INTPTR_FORMAT, p2i(pc));
 861             return StubRoutines::throw_NullPointerException_at_call_entry();
 862           }
 863         } else {
 864           CodeBlob* cb = CodeCache::find_blob(pc);
 865 
 866           // If code blob is NULL, then return NULL to signal handler to report the SEGV error.
 867           if (cb == NULL) return NULL;
 868 
 869           // Exception happened in CodeCache. Must be either:
 870           // 1. Inline-cache check in C2I handler blob,
 871           // 2. Inline-cache check in nmethod, or
 872           // 3. Implicit null exception in nmethod
 873 
 874           if (!cb->is_nmethod()) {
 875             bool is_in_blob = cb->is_adapter_blob() || cb->is_method_handles_adapter_blob();
 876             if (!is_in_blob) {
 877               // Allow normal crash reporting to handle this
 878               return NULL;
 879             }
 880             Events::log_exception(thread, "NullPointerException in code blob at " INTPTR_FORMAT, p2i(pc));
 881             // There is no handler here, so we will simply unwind.
 882             return StubRoutines::throw_NullPointerException_at_call_entry();
 883           }
 884 
 885           // Otherwise, it's an nmethod.  Consult its exception handlers.
 886           nmethod* nm = (nmethod*)cb;
 887           if (nm->inlinecache_check_contains(pc)) {
 888             // exception happened inside inline-cache check code
 889             // => the nmethod is not yet active (i.e., the frame
 890             // is not set up yet) => use return address pushed by
 891             // caller => don't push another return address
 892             Events::log_exception(thread, "NullPointerException in IC check " INTPTR_FORMAT, p2i(pc));
 893             return StubRoutines::throw_NullPointerException_at_call_entry();
 894           }
 895 
 896           if (nm->method()->is_method_handle_intrinsic()) {
 897             // exception happened inside MH dispatch code, similar to a vtable stub
 898             Events::log_exception(thread, "NullPointerException in MH adapter " INTPTR_FORMAT, p2i(pc));
 899             return StubRoutines::throw_NullPointerException_at_call_entry();
 900           }
 901 
 902 #ifndef PRODUCT
 903           _implicit_null_throws++;
 904 #endif
 905 #if INCLUDE_JVMCI
 906           if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 907             // If there's no PcDesc then we'll die way down inside of
 908             // deopt instead of just getting normal error reporting,
 909             // so only go there if it will succeed.
 910             return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_null_check);
 911           } else {
 912 #endif // INCLUDE_JVMCI
 913           assert (nm->is_nmethod(), "Expect nmethod");
 914           target_pc = nm->continuation_for_implicit_exception(pc);
 915 #if INCLUDE_JVMCI
 916           }
 917 #endif // INCLUDE_JVMCI
 918           // If there's an unexpected fault, target_pc might be NULL,
 919           // in which case we want to fall through into the normal
 920           // error handling code.
 921         }
 922 
 923         break; // fall through
 924       }
 925 
 926 
 927       case IMPLICIT_DIVIDE_BY_ZERO: {
 928         nmethod* nm = CodeCache::find_nmethod(pc);
 929         guarantee(nm != NULL, "must have containing compiled method for implicit division-by-zero exceptions");
 930 #ifndef PRODUCT
 931         _implicit_div0_throws++;
 932 #endif
 933 #if INCLUDE_JVMCI
 934         if (nm->is_compiled_by_jvmci() && nm->pc_desc_at(pc) != NULL) {
 935           return deoptimize_for_implicit_exception(thread, pc, nm, Deoptimization::Reason_div0_check);
 936         } else {
 937 #endif // INCLUDE_JVMCI
 938         target_pc = nm->continuation_for_implicit_exception(pc);
 939 #if INCLUDE_JVMCI
 940         }
 941 #endif // INCLUDE_JVMCI
 942         // If there's an unexpected fault, target_pc might be NULL,
 943         // in which case we want to fall through into the normal
 944         // error handling code.
 945         break; // fall through
 946       }
 947 
 948       default: ShouldNotReachHere();
 949     }
 950 
 951     assert(exception_kind == IMPLICIT_NULL || exception_kind == IMPLICIT_DIVIDE_BY_ZERO, "wrong implicit exception kind");
 952 
 953     if (exception_kind == IMPLICIT_NULL) {
 954 #ifndef PRODUCT
 955       // for AbortVMOnException flag
 956       Exceptions::debug_check_abort("java.lang.NullPointerException");
 957 #endif //PRODUCT
 958       Events::log_exception(thread, "Implicit null exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 959     } else {
 960 #ifndef PRODUCT
 961       // for AbortVMOnException flag
 962       Exceptions::debug_check_abort("java.lang.ArithmeticException");
 963 #endif //PRODUCT
 964       Events::log_exception(thread, "Implicit division by zero exception at " INTPTR_FORMAT " to " INTPTR_FORMAT, p2i(pc), p2i(target_pc));
 965     }
 966     return target_pc;
 967   }
 968 
 969   ShouldNotReachHere();
 970   return NULL;
 971 }
 972 
 973 
 974 /**
 975  * Throws an java/lang/UnsatisfiedLinkError.  The address of this method is
 976  * installed in the native function entry of all native Java methods before
 977  * they get linked to their actual native methods.
 978  *
 979  * \note
 980  * This method actually never gets called!  The reason is because
 981  * the interpreter's native entries call NativeLookup::lookup() which
 982  * throws the exception when the lookup fails.  The exception is then
 983  * caught and forwarded on the return from NativeLookup::lookup() call
 984  * before the call to the native function.  This might change in the future.
 985  */
 986 JNI_ENTRY(void*, throw_unsatisfied_link_error(JNIEnv* env, ...))
 987 {
 988   // We return a bad value here to make sure that the exception is
 989   // forwarded before we look at the return value.
 990   THROW_(vmSymbols::java_lang_UnsatisfiedLinkError(), (void*)badJNIHandle);
 991 }
 992 JNI_END
 993 
 994 address SharedRuntime::native_method_throw_unsatisfied_link_error_entry() {
 995   return CAST_FROM_FN_PTR(address, &throw_unsatisfied_link_error);
 996 }
 997 
 998 
 999 #ifndef PRODUCT
1000 JRT_ENTRY(intptr_t, SharedRuntime::trace_bytecode(JavaThread* thread, intptr_t preserve_this_value, intptr_t tos, intptr_t tos2))
1001   const frame f = thread->last_frame();
1002   assert(f.is_interpreted_frame(), "must be an interpreted frame");
1003 #ifndef PRODUCT
1004   methodHandle mh(THREAD, f.interpreter_frame_method());
1005   BytecodeTracer::trace(mh, f.interpreter_frame_bcp(), tos, tos2);
1006 #endif // !PRODUCT
1007   return preserve_this_value;
1008 JRT_END
1009 #endif // !PRODUCT
1010 
1011 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::register_finalizer(JavaThread* thread, oopDesc* obj))
1012   assert(obj->is_oop(), "must be a valid oop");
1013 #if INCLUDE_JVMCI
1014   // This removes the requirement for JVMCI compilers to emit code
1015   // performing a dynamic check that obj has a finalizer before
1016   // calling this routine. There should be no performance impact
1017   // for C1 since it emits a dynamic check. C2 and the interpreter
1018   // uses other runtime routines for registering finalizers.
1019   if (!obj->klass()->has_finalizer()) {
1020     return;
1021   }
1022 #endif // INCLUDE_JVMCI
1023   assert(obj->klass()->has_finalizer(), "shouldn't be here otherwise");
1024   InstanceKlass::register_finalizer(instanceOop(obj), CHECK);
1025 JRT_END
1026 
1027 
1028 jlong SharedRuntime::get_java_tid(Thread* thread) {
1029   if (thread != NULL) {
1030     if (thread->is_Java_thread()) {
1031       oop obj = ((JavaThread*)thread)->threadObj();
1032       return (obj == NULL) ? 0 : java_lang_Thread::thread_id(obj);
1033     }
1034   }
1035   return 0;
1036 }
1037 
1038 /**
1039  * This function ought to be a void function, but cannot be because
1040  * it gets turned into a tail-call on sparc, which runs into dtrace bug
1041  * 6254741.  Once that is fixed we can remove the dummy return value.
1042  */
1043 int SharedRuntime::dtrace_object_alloc(oopDesc* o, int size) {
1044   return dtrace_object_alloc_base(Thread::current(), o, size);
1045 }
1046 
1047 int SharedRuntime::dtrace_object_alloc_base(Thread* thread, oopDesc* o, int size) {
1048   assert(DTraceAllocProbes, "wrong call");
1049   Klass* klass = o->klass();
1050   Symbol* name = klass->name();
1051   HOTSPOT_OBJECT_ALLOC(
1052                    get_java_tid(thread),
1053                    (char *) name->bytes(), name->utf8_length(), size * HeapWordSize);
1054   return 0;
1055 }
1056 
1057 JRT_LEAF(int, SharedRuntime::dtrace_method_entry(
1058     JavaThread* thread, Method* method))
1059   assert(DTraceMethodProbes, "wrong call");
1060   Symbol* kname = method->klass_name();
1061   Symbol* name = method->name();
1062   Symbol* sig = method->signature();
1063   HOTSPOT_METHOD_ENTRY(
1064       get_java_tid(thread),
1065       (char *) kname->bytes(), kname->utf8_length(),
1066       (char *) name->bytes(), name->utf8_length(),
1067       (char *) sig->bytes(), sig->utf8_length());
1068   return 0;
1069 JRT_END
1070 
1071 JRT_LEAF(int, SharedRuntime::dtrace_method_exit(
1072     JavaThread* thread, Method* method))
1073   assert(DTraceMethodProbes, "wrong call");
1074   Symbol* kname = method->klass_name();
1075   Symbol* name = method->name();
1076   Symbol* sig = method->signature();
1077   HOTSPOT_METHOD_RETURN(
1078       get_java_tid(thread),
1079       (char *) kname->bytes(), kname->utf8_length(),
1080       (char *) name->bytes(), name->utf8_length(),
1081       (char *) sig->bytes(), sig->utf8_length());
1082   return 0;
1083 JRT_END
1084 
1085 
1086 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode)
1087 // for a call current in progress, i.e., arguments has been pushed on stack
1088 // put callee has not been invoked yet.  Used by: resolve virtual/static,
1089 // vtable updates, etc.  Caller frame must be compiled.
1090 Handle SharedRuntime::find_callee_info(JavaThread* thread, Bytecodes::Code& bc, CallInfo& callinfo, TRAPS) {
1091   ResourceMark rm(THREAD);
1092 
1093   // last java frame on stack (which includes native call frames)
1094   vframeStream vfst(thread, true);  // Do not skip and javaCalls
1095 
1096   return find_callee_info_helper(thread, vfst, bc, callinfo, THREAD);
1097 }
1098 
1099 methodHandle SharedRuntime::extract_attached_method(vframeStream& vfst) {
1100   nmethod* caller_nm = vfst.nm();
1101 
1102   nmethodLocker caller_lock(caller_nm);
1103 
1104   address pc = vfst.frame_pc();
1105   { // Get call instruction under lock because another thread may be busy patching it.
1106     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1107     return caller_nm->attached_method_before_pc(pc);
1108   }
1109   return NULL;
1110 }
1111 
1112 // Finds receiver, CallInfo (i.e. receiver method), and calling bytecode
1113 // for a call current in progress, i.e., arguments has been pushed on stack
1114 // but callee has not been invoked yet.  Caller frame must be compiled.
1115 Handle SharedRuntime::find_callee_info_helper(JavaThread* thread,
1116                                               vframeStream& vfst,
1117                                               Bytecodes::Code& bc,
1118                                               CallInfo& callinfo, TRAPS) {
1119   Handle receiver;
1120   Handle nullHandle;  //create a handy null handle for exception returns
1121 
1122   assert(!vfst.at_end(), "Java frame must exist");
1123 
1124   // Find caller and bci from vframe
1125   methodHandle caller(THREAD, vfst.method());
1126   int          bci   = vfst.bci();
1127 
1128   Bytecode_invoke bytecode(caller, bci);
1129   int bytecode_index = bytecode.index();
1130 
1131   methodHandle attached_method = extract_attached_method(vfst);
1132   if (attached_method.not_null()) {
1133     methodHandle callee = bytecode.static_target(CHECK_NH);
1134     vmIntrinsics::ID id = callee->intrinsic_id();
1135     // When VM replaces MH.invokeBasic/linkTo* call with a direct/virtual call,
1136     // it attaches statically resolved method to the call site.
1137     if (MethodHandles::is_signature_polymorphic(id) &&
1138         MethodHandles::is_signature_polymorphic_intrinsic(id)) {
1139       bc = MethodHandles::signature_polymorphic_intrinsic_bytecode(id);
1140 
1141       // Adjust invocation mode according to the attached method.
1142       switch (bc) {
1143         case Bytecodes::_invokeinterface:
1144           if (!attached_method->method_holder()->is_interface()) {
1145             bc = Bytecodes::_invokevirtual;
1146           }
1147           break;
1148         case Bytecodes::_invokehandle:
1149           if (!MethodHandles::is_signature_polymorphic_method(attached_method())) {
1150             bc = attached_method->is_static() ? Bytecodes::_invokestatic
1151                                               : Bytecodes::_invokevirtual;
1152           }
1153           break;
1154       }
1155     }
1156   } else {
1157     bc = bytecode.invoke_code();
1158   }
1159 
1160   bool has_receiver = bc != Bytecodes::_invokestatic &&
1161                       bc != Bytecodes::_invokedynamic &&
1162                       bc != Bytecodes::_invokehandle &&
1163                       bc != Bytecodes::_invokedirect;
1164 
1165   // Find receiver for non-static call
1166   if (has_receiver) {
1167     // This register map must be update since we need to find the receiver for
1168     // compiled frames. The receiver might be in a register.
1169     RegisterMap reg_map2(thread);
1170     frame stubFrame   = thread->last_frame();
1171     // Caller-frame is a compiled frame
1172     frame callerFrame = stubFrame.sender(&reg_map2);
1173 
1174     if (attached_method.is_null()) {
1175       methodHandle callee = bytecode.static_target(CHECK_NH);
1176       if (callee.is_null()) {
1177         THROW_(vmSymbols::java_lang_NoSuchMethodException(), nullHandle);
1178       }
1179     }
1180 
1181     // Retrieve from a compiled argument list
1182     receiver = Handle(THREAD, callerFrame.retrieve_receiver(&reg_map2));
1183 
1184     if (receiver.is_null()) {
1185       THROW_(vmSymbols::java_lang_NullPointerException(), nullHandle);
1186     }
1187   }
1188 
1189   assert(receiver.is_null() || receiver->is_oop(), "wrong receiver");
1190 
1191   // Resolve method
1192   if (attached_method.not_null()) {
1193     // Parameterized by attached method.
1194     LinkResolver::resolve_invoke(callinfo, receiver, attached_method, bc, CHECK_NH);
1195   } else {
1196     // Parameterized by bytecode.
1197     constantPoolHandle constants(THREAD, caller->constants());
1198     LinkResolver::resolve_invoke(callinfo, receiver, constants, bytecode_index, bc, CHECK_NH);
1199   }
1200 
1201 #ifdef ASSERT
1202   // Check that the receiver klass is of the right subtype and that it is initialized for virtual calls
1203   if (has_receiver) {
1204     assert(receiver.not_null(), "should have thrown exception");
1205     KlassHandle receiver_klass(THREAD, receiver->klass());
1206     Klass* rk = NULL;
1207     if (attached_method.not_null()) {
1208       // In case there's resolved method attached, use its holder during the check.
1209       rk = attached_method->method_holder();
1210     } else {
1211       // Klass is already loaded.
1212       constantPoolHandle constants(THREAD, caller->constants());
1213       rk = constants->klass_ref_at(bytecode_index, CHECK_NH);
1214     }
1215     KlassHandle static_receiver_klass(THREAD, rk);
1216     methodHandle callee = callinfo.selected_method();
1217     assert(receiver_klass->is_subtype_of(static_receiver_klass()),
1218            "actual receiver must be subclass of static receiver klass");
1219     if (receiver_klass->is_instance_klass()) {
1220       if (InstanceKlass::cast(receiver_klass())->is_not_initialized()) {
1221         tty->print_cr("ERROR: Klass not yet initialized!!");
1222         receiver_klass()->print();
1223       }
1224       assert(!InstanceKlass::cast(receiver_klass())->is_not_initialized(), "receiver_klass must be initialized");
1225     }
1226   }
1227 #endif
1228 
1229   return receiver;
1230 }
1231 
1232 methodHandle SharedRuntime::find_callee_method(JavaThread* thread, TRAPS) {
1233   ResourceMark rm(THREAD);
1234   // We need first to check if any Java activations (compiled, interpreted)
1235   // exist on the stack since last JavaCall.  If not, we need
1236   // to get the target method from the JavaCall wrapper.
1237   vframeStream vfst(thread, true);  // Do not skip any javaCalls
1238   methodHandle callee_method;
1239   if (vfst.at_end()) {
1240     // No Java frames were found on stack since we did the JavaCall.
1241     // Hence the stack can only contain an entry_frame.  We need to
1242     // find the target method from the stub frame.
1243     RegisterMap reg_map(thread, false);
1244     frame fr = thread->last_frame();
1245     assert(fr.is_runtime_frame(), "must be a runtimeStub");
1246     fr = fr.sender(&reg_map);
1247     assert(fr.is_entry_frame(), "must be");
1248     // fr is now pointing to the entry frame.
1249     callee_method = methodHandle(THREAD, fr.entry_frame_call_wrapper()->callee_method());
1250     assert(fr.entry_frame_call_wrapper()->receiver() == NULL || !callee_method->is_static(), "non-null receiver for static call??");
1251   } else {
1252     Bytecodes::Code bc;
1253     CallInfo callinfo;
1254     find_callee_info_helper(thread, vfst, bc, callinfo, CHECK_(methodHandle()));
1255     callee_method = callinfo.selected_method();
1256   }
1257   assert(callee_method()->is_method(), "must be");
1258   return callee_method;
1259 }
1260 
1261 // Resolves a call.
1262 methodHandle SharedRuntime::resolve_helper(JavaThread *thread,
1263                                            bool is_virtual,
1264                                            bool is_optimized, TRAPS) {
1265   methodHandle callee_method;
1266   callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1267   if (JvmtiExport::can_hotswap_or_post_breakpoint()) {
1268     int retry_count = 0;
1269     while (!HAS_PENDING_EXCEPTION && callee_method->is_old() &&
1270            callee_method->method_holder() != SystemDictionary::Object_klass()) {
1271       // If has a pending exception then there is no need to re-try to
1272       // resolve this method.
1273       // If the method has been redefined, we need to try again.
1274       // Hack: we have no way to update the vtables of arrays, so don't
1275       // require that java.lang.Object has been updated.
1276 
1277       // It is very unlikely that method is redefined more than 100 times
1278       // in the middle of resolve. If it is looping here more than 100 times
1279       // means then there could be a bug here.
1280       guarantee((retry_count++ < 100),
1281                 "Could not resolve to latest version of redefined method");
1282       // method is redefined in the middle of resolve so re-try.
1283       callee_method = resolve_sub_helper(thread, is_virtual, is_optimized, THREAD);
1284     }
1285   }
1286   return callee_method;
1287 }
1288 
1289 // Resolves a call.  The compilers generate code for calls that go here
1290 // and are patched with the real destination of the call.
1291 methodHandle SharedRuntime::resolve_sub_helper(JavaThread *thread,
1292                                            bool is_virtual,
1293                                            bool is_optimized, TRAPS) {
1294 
1295   ResourceMark rm(thread);
1296   RegisterMap cbl_map(thread, false);
1297   frame caller_frame = thread->last_frame().sender(&cbl_map);
1298 
1299   CodeBlob* caller_cb = caller_frame.cb();
1300   guarantee(caller_cb != NULL && caller_cb->is_nmethod(), "must be called from nmethod");
1301   nmethod* caller_nm = caller_cb->as_nmethod_or_null();
1302 
1303   // make sure caller is not getting deoptimized
1304   // and removed before we are done with it.
1305   // CLEANUP - with lazy deopt shouldn't need this lock
1306   nmethodLocker caller_lock(caller_nm);
1307 
1308   // determine call info & receiver
1309   // note: a) receiver is NULL for static calls
1310   //       b) an exception is thrown if receiver is NULL for non-static calls
1311   CallInfo call_info;
1312   Bytecodes::Code invoke_code = Bytecodes::_illegal;
1313   Handle receiver = find_callee_info(thread, invoke_code,
1314                                      call_info, CHECK_(methodHandle()));
1315   methodHandle callee_method = call_info.selected_method();
1316 
1317   assert((!is_virtual && invoke_code == Bytecodes::_invokestatic ) ||
1318          (!is_virtual && invoke_code == Bytecodes::_invokespecial) ||
1319          (!is_virtual && invoke_code == Bytecodes::_invokehandle ) ||
1320          (!is_virtual && invoke_code == Bytecodes::_invokedynamic) ||
1321          ( is_virtual && invoke_code != Bytecodes::_invokestatic ), "inconsistent bytecode");
1322 
1323   assert(caller_nm->is_alive(), "It should be alive");
1324 
1325 #ifndef PRODUCT
1326   // tracing/debugging/statistics
1327   int *addr = (is_optimized) ? (&_resolve_opt_virtual_ctr) :
1328                 (is_virtual) ? (&_resolve_virtual_ctr) :
1329                                (&_resolve_static_ctr);
1330   Atomic::inc(addr);
1331 
1332   if (TraceCallFixup) {
1333     ResourceMark rm(thread);
1334     tty->print("resolving %s%s (%s) call to",
1335       (is_optimized) ? "optimized " : "", (is_virtual) ? "virtual" : "static",
1336       Bytecodes::name(invoke_code));
1337     callee_method->print_short_name(tty);
1338     tty->print_cr(" at pc: " INTPTR_FORMAT " to code: " INTPTR_FORMAT,
1339                   p2i(caller_frame.pc()), p2i(callee_method->code()));
1340   }
1341 #endif
1342 
1343   // JSR 292 key invariant:
1344   // If the resolved method is a MethodHandle invoke target, the call
1345   // site must be a MethodHandle call site, because the lambda form might tail-call
1346   // leaving the stack in a state unknown to either caller or callee
1347   // TODO detune for now but we might need it again
1348 //  assert(!callee_method->is_compiled_lambda_form() ||
1349 //         caller_nm->is_method_handle_return(caller_frame.pc()), "must be MH call site");
1350 
1351   // Compute entry points. This might require generation of C2I converter
1352   // frames, so we cannot be holding any locks here. Furthermore, the
1353   // computation of the entry points is independent of patching the call.  We
1354   // always return the entry-point, but we only patch the stub if the call has
1355   // not been deoptimized.  Return values: For a virtual call this is an
1356   // (cached_oop, destination address) pair. For a static call/optimized
1357   // virtual this is just a destination address.
1358 
1359   StaticCallInfo static_call_info;
1360   CompiledICInfo virtual_call_info;
1361 
1362   // Make sure the callee nmethod does not get deoptimized and removed before
1363   // we are done patching the code.
1364   nmethod* callee_nm = callee_method->code();
1365   if (callee_nm != NULL && !callee_nm->is_in_use()) {
1366     // Patch call site to C2I adapter if callee nmethod is deoptimized or unloaded.
1367     callee_nm = NULL;
1368   }
1369   nmethodLocker nl_callee(callee_nm);
1370 #ifdef ASSERT
1371   address dest_entry_point = callee_nm == NULL ? 0 : callee_nm->entry_point(); // used below
1372 #endif
1373 
1374   if (is_virtual) {
1375     assert(receiver.not_null() || invoke_code == Bytecodes::_invokehandle || invoke_code == Bytecodes::_invokedirect, "sanity check");
1376     bool static_bound = call_info.resolved_method()->can_be_statically_bound();
1377     KlassHandle h_klass(THREAD, (invoke_code == Bytecodes::_invokehandle || invoke_code == Bytecodes::_invokedirect) ? NULL : receiver->klass());
1378     CompiledIC::compute_monomorphic_entry(callee_method, h_klass,
1379                      is_optimized, static_bound, virtual_call_info,
1380                      CHECK_(methodHandle()));
1381   } else {
1382     // static call
1383     CompiledStaticCall::compute_entry(callee_method, static_call_info);
1384   }
1385 
1386   // grab lock, check for deoptimization and potentially patch caller
1387   {
1388     MutexLocker ml_patch(CompiledIC_lock);
1389 
1390     // Lock blocks for safepoint during which both nmethods can change state.
1391 
1392     // Now that we are ready to patch if the Method* was redefined then
1393     // don't update call site and let the caller retry.
1394     // Don't update call site if callee nmethod was unloaded or deoptimized.
1395     // Don't update call site if callee nmethod was replaced by an other nmethod
1396     // which may happen when multiply alive nmethod (tiered compilation)
1397     // will be supported.
1398     if (!callee_method->is_old() &&
1399         (callee_nm == NULL || callee_nm->is_in_use() && (callee_method->code() == callee_nm))) {
1400 #ifdef ASSERT
1401       // We must not try to patch to jump to an already unloaded method.
1402       if (dest_entry_point != 0) {
1403         CodeBlob* cb = CodeCache::find_blob(dest_entry_point);
1404         assert((cb != NULL) && cb->is_nmethod() && (((nmethod*)cb) == callee_nm),
1405                "should not call unloaded nmethod");
1406       }
1407 #endif
1408       if (is_virtual) {
1409         CompiledIC* inline_cache = CompiledIC_before(caller_nm, caller_frame.pc());
1410         if (inline_cache->is_clean()) {
1411           inline_cache->set_to_monomorphic(virtual_call_info);
1412         }
1413       } else {
1414         CompiledStaticCall* ssc = compiledStaticCall_before(caller_frame.pc());
1415         if (ssc->is_clean()) ssc->set(static_call_info);
1416       }
1417     }
1418 
1419   } // unlock CompiledIC_lock
1420 
1421   return callee_method;
1422 }
1423 
1424 
1425 // Inline caches exist only in compiled code
1426 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_ic_miss(JavaThread* thread))
1427 #ifdef ASSERT
1428   RegisterMap reg_map(thread, false);
1429   frame stub_frame = thread->last_frame();
1430   assert(stub_frame.is_runtime_frame(), "sanity check");
1431   frame caller_frame = stub_frame.sender(&reg_map);
1432   assert(!caller_frame.is_interpreted_frame() && !caller_frame.is_entry_frame(), "unexpected frame");
1433 #endif /* ASSERT */
1434 
1435   methodHandle callee_method;
1436   JRT_BLOCK
1437     callee_method = SharedRuntime::handle_ic_miss_helper(thread, CHECK_NULL);
1438     // Return Method* through TLS
1439     thread->set_vm_result_2(callee_method());
1440   JRT_BLOCK_END
1441   // return compiled code entry point after potential safepoints
1442   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1443   return callee_method->verified_code_entry();
1444 JRT_END
1445 
1446 
1447 // Handle call site that has been made non-entrant
1448 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method(JavaThread* thread))
1449   // 6243940 We might end up in here if the callee is deoptimized
1450   // as we race to call it.  We don't want to take a safepoint if
1451   // the caller was interpreted because the caller frame will look
1452   // interpreted to the stack walkers and arguments are now
1453   // "compiled" so it is much better to make this transition
1454   // invisible to the stack walking code. The i2c path will
1455   // place the callee method in the callee_target. It is stashed
1456   // there because if we try and find the callee by normal means a
1457   // safepoint is possible and have trouble gc'ing the compiled args.
1458   RegisterMap reg_map(thread, false);
1459   frame stub_frame = thread->last_frame();
1460   assert(stub_frame.is_runtime_frame(), "sanity check");
1461   frame caller_frame = stub_frame.sender(&reg_map);
1462 
1463   if (caller_frame.is_interpreted_frame() ||
1464       caller_frame.is_entry_frame()) {
1465     Method* callee = thread->callee_target();
1466     guarantee(callee != NULL && callee->is_method(), "bad handshake");
1467     thread->set_vm_result_2(callee);
1468     thread->set_callee_target(NULL);
1469     return callee->get_c2i_entry();
1470   }
1471 
1472   // Must be compiled to compiled path which is safe to stackwalk
1473   methodHandle callee_method;
1474   JRT_BLOCK
1475     // Force resolving of caller (if we called from compiled frame)
1476     callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_NULL);
1477     thread->set_vm_result_2(callee_method());
1478   JRT_BLOCK_END
1479   // return compiled code entry point after potential safepoints
1480   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1481   return callee_method->verified_code_entry();
1482 JRT_END
1483 
1484 // Handle abstract method call
1485 JRT_BLOCK_ENTRY(address, SharedRuntime::handle_wrong_method_abstract(JavaThread* thread))
1486   return StubRoutines::throw_AbstractMethodError_entry();
1487 JRT_END
1488 
1489 
1490 // resolve a static call and patch code
1491 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_static_call_C(JavaThread *thread ))
1492   methodHandle callee_method;
1493   JRT_BLOCK
1494     callee_method = SharedRuntime::resolve_helper(thread, false, false, CHECK_NULL);
1495     thread->set_vm_result_2(callee_method());
1496   JRT_BLOCK_END
1497   // return compiled code entry point after potential safepoints
1498   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1499   return callee_method->verified_code_entry();
1500 JRT_END
1501 
1502 
1503 // resolve virtual call and update inline cache to monomorphic
1504 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_virtual_call_C(JavaThread *thread ))
1505   methodHandle callee_method;
1506   JRT_BLOCK
1507     callee_method = SharedRuntime::resolve_helper(thread, true, false, CHECK_NULL);
1508     thread->set_vm_result_2(callee_method());
1509   JRT_BLOCK_END
1510   // return compiled code entry point after potential safepoints
1511   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1512   return callee_method->verified_code_entry();
1513 JRT_END
1514 
1515 
1516 // Resolve a virtual call that can be statically bound (e.g., always
1517 // monomorphic, so it has no inline cache).  Patch code to resolved target.
1518 JRT_BLOCK_ENTRY(address, SharedRuntime::resolve_opt_virtual_call_C(JavaThread *thread))
1519   methodHandle callee_method;
1520   JRT_BLOCK
1521     callee_method = SharedRuntime::resolve_helper(thread, true, true, CHECK_NULL);
1522     thread->set_vm_result_2(callee_method());
1523   JRT_BLOCK_END
1524   // return compiled code entry point after potential safepoints
1525   assert(callee_method->verified_code_entry() != NULL, " Jump to zero!");
1526   return callee_method->verified_code_entry();
1527 JRT_END
1528 
1529 
1530 methodHandle SharedRuntime::handle_ic_miss_helper(JavaThread *thread, TRAPS) {
1531   ResourceMark rm(thread);
1532   CallInfo call_info;
1533   Bytecodes::Code bc;
1534 
1535   // receiver is NULL for static calls. An exception is thrown for NULL
1536   // receivers for non-static calls
1537   Handle receiver = find_callee_info(thread, bc, call_info,
1538                                      CHECK_(methodHandle()));
1539   // Compiler1 can produce virtual call sites that can actually be statically bound
1540   // If we fell thru to below we would think that the site was going megamorphic
1541   // when in fact the site can never miss. Worse because we'd think it was megamorphic
1542   // we'd try and do a vtable dispatch however methods that can be statically bound
1543   // don't have vtable entries (vtable_index < 0) and we'd blow up. So we force a
1544   // reresolution of the  call site (as if we did a handle_wrong_method and not an
1545   // plain ic_miss) and the site will be converted to an optimized virtual call site
1546   // never to miss again. I don't believe C2 will produce code like this but if it
1547   // did this would still be the correct thing to do for it too, hence no ifdef.
1548   //
1549   if (call_info.resolved_method()->can_be_statically_bound()) {
1550     methodHandle callee_method = SharedRuntime::reresolve_call_site(thread, CHECK_(methodHandle()));
1551     if (TraceCallFixup) {
1552       RegisterMap reg_map(thread, false);
1553       frame caller_frame = thread->last_frame().sender(&reg_map);
1554       ResourceMark rm(thread);
1555       tty->print("converting IC miss to reresolve (%s) call to", Bytecodes::name(bc));
1556       callee_method->print_short_name(tty);
1557       tty->print_cr(" from pc: " INTPTR_FORMAT, p2i(caller_frame.pc()));
1558       tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1559     }
1560     return callee_method;
1561   }
1562 
1563   methodHandle callee_method = call_info.selected_method();
1564 
1565   bool should_be_mono = false;
1566 
1567 #ifndef PRODUCT
1568   Atomic::inc(&_ic_miss_ctr);
1569 
1570   // Statistics & Tracing
1571   if (TraceCallFixup) {
1572     ResourceMark rm(thread);
1573     tty->print("IC miss (%s) call to", Bytecodes::name(bc));
1574     callee_method->print_short_name(tty);
1575     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1576   }
1577 
1578   if (ICMissHistogram) {
1579     MutexLocker m(VMStatistic_lock);
1580     RegisterMap reg_map(thread, false);
1581     frame f = thread->last_frame().real_sender(&reg_map);// skip runtime stub
1582     // produce statistics under the lock
1583     trace_ic_miss(f.pc());
1584   }
1585 #endif
1586 
1587   // install an event collector so that when a vtable stub is created the
1588   // profiler can be notified via a DYNAMIC_CODE_GENERATED event. The
1589   // event can't be posted when the stub is created as locks are held
1590   // - instead the event will be deferred until the event collector goes
1591   // out of scope.
1592   JvmtiDynamicCodeEventCollector event_collector;
1593 
1594   // Update inline cache to megamorphic. Skip update if we are called from interpreted.
1595   { MutexLocker ml_patch (CompiledIC_lock);
1596     RegisterMap reg_map(thread, false);
1597     frame caller_frame = thread->last_frame().sender(&reg_map);
1598     CodeBlob* cb = caller_frame.cb();
1599     if (cb->is_nmethod()) {
1600       CompiledIC* inline_cache = CompiledIC_before(((nmethod*)cb), caller_frame.pc());
1601       bool should_be_mono = false;
1602       if (inline_cache->is_optimized()) {
1603         if (TraceCallFixup) {
1604           ResourceMark rm(thread);
1605           tty->print("OPTIMIZED IC miss (%s) call to", Bytecodes::name(bc));
1606           callee_method->print_short_name(tty);
1607           tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1608         }
1609         should_be_mono = true;
1610       } else if (inline_cache->is_icholder_call()) {
1611         CompiledICHolder* ic_oop = inline_cache->cached_icholder();
1612         if (ic_oop != NULL) {
1613 
1614           if (receiver()->klass() == ic_oop->holder_klass()) {
1615             // This isn't a real miss. We must have seen that compiled code
1616             // is now available and we want the call site converted to a
1617             // monomorphic compiled call site.
1618             // We can't assert for callee_method->code() != NULL because it
1619             // could have been deoptimized in the meantime
1620             if (TraceCallFixup) {
1621               ResourceMark rm(thread);
1622               tty->print("FALSE IC miss (%s) converting to compiled call to", Bytecodes::name(bc));
1623               callee_method->print_short_name(tty);
1624               tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1625             }
1626             should_be_mono = true;
1627           }
1628         }
1629       }
1630 
1631       if (should_be_mono) {
1632 
1633         // We have a path that was monomorphic but was going interpreted
1634         // and now we have (or had) a compiled entry. We correct the IC
1635         // by using a new icBuffer.
1636         CompiledICInfo info;
1637         KlassHandle receiver_klass(THREAD, receiver()->klass());
1638         inline_cache->compute_monomorphic_entry(callee_method,
1639                                                 receiver_klass,
1640                                                 inline_cache->is_optimized(),
1641                                                 false,
1642                                                 info, CHECK_(methodHandle()));
1643         inline_cache->set_to_monomorphic(info);
1644       } else if (!inline_cache->is_megamorphic() && !inline_cache->is_clean()) {
1645         // Potential change to megamorphic
1646         bool successful = inline_cache->set_to_megamorphic(&call_info, bc, CHECK_(methodHandle()));
1647         if (!successful) {
1648           inline_cache->set_to_clean();
1649         }
1650       } else {
1651         // Either clean or megamorphic
1652       }
1653     } else {
1654       fatal("Unimplemented");
1655     }
1656   } // Release CompiledIC_lock
1657 
1658   return callee_method;
1659 }
1660 
1661 //
1662 // Resets a call-site in compiled code so it will get resolved again.
1663 // This routines handles both virtual call sites, optimized virtual call
1664 // sites, and static call sites. Typically used to change a call sites
1665 // destination from compiled to interpreted.
1666 //
1667 methodHandle SharedRuntime::reresolve_call_site(JavaThread *thread, TRAPS) {
1668   ResourceMark rm(thread);
1669   RegisterMap reg_map(thread, false);
1670   frame stub_frame = thread->last_frame();
1671   assert(stub_frame.is_runtime_frame(), "must be a runtimeStub");
1672   frame caller = stub_frame.sender(&reg_map);
1673 
1674   // Do nothing if the frame isn't a live compiled frame.
1675   // nmethod could be deoptimized by the time we get here
1676   // so no update to the caller is needed.
1677 
1678   if (caller.is_compiled_frame() && !caller.is_deoptimized_frame()) {
1679 
1680     address pc = caller.pc();
1681 
1682     // Check for static or virtual call
1683     bool is_static_call = false;
1684     nmethod* caller_nm = CodeCache::find_nmethod(pc);
1685 
1686     // Default call_addr is the location of the "basic" call.
1687     // Determine the address of the call we a reresolving. With
1688     // Inline Caches we will always find a recognizable call.
1689     // With Inline Caches disabled we may or may not find a
1690     // recognizable call. We will always find a call for static
1691     // calls and for optimized virtual calls. For vanilla virtual
1692     // calls it depends on the state of the UseInlineCaches switch.
1693     //
1694     // With Inline Caches disabled we can get here for a virtual call
1695     // for two reasons:
1696     //   1 - calling an abstract method. The vtable for abstract methods
1697     //       will run us thru handle_wrong_method and we will eventually
1698     //       end up in the interpreter to throw the ame.
1699     //   2 - a racing deoptimization. We could be doing a vanilla vtable
1700     //       call and between the time we fetch the entry address and
1701     //       we jump to it the target gets deoptimized. Similar to 1
1702     //       we will wind up in the interprter (thru a c2i with c2).
1703     //
1704     address call_addr = NULL;
1705     {
1706       // Get call instruction under lock because another thread may be
1707       // busy patching it.
1708       MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1709       // Location of call instruction
1710       if (NativeCall::is_call_before(pc)) {
1711         NativeCall *ncall = nativeCall_before(pc);
1712         call_addr = ncall->instruction_address();
1713       }
1714     }
1715     // Make sure nmethod doesn't get deoptimized and removed until
1716     // this is done with it.
1717     // CLEANUP - with lazy deopt shouldn't need this lock
1718     nmethodLocker nmlock(caller_nm);
1719 
1720     if (call_addr != NULL) {
1721       RelocIterator iter(caller_nm, call_addr, call_addr+1);
1722       int ret = iter.next(); // Get item
1723       if (ret) {
1724         assert(iter.addr() == call_addr, "must find call");
1725         if (iter.type() == relocInfo::static_call_type) {
1726           is_static_call = true;
1727         } else {
1728           assert(iter.type() == relocInfo::virtual_call_type ||
1729                  iter.type() == relocInfo::opt_virtual_call_type
1730                 , "unexpected relocInfo. type");
1731         }
1732       } else {
1733         assert(!UseInlineCaches, "relocation info. must exist for this address");
1734       }
1735 
1736       // Cleaning the inline cache will force a new resolve. This is more robust
1737       // than directly setting it to the new destination, since resolving of calls
1738       // is always done through the same code path. (experience shows that it
1739       // leads to very hard to track down bugs, if an inline cache gets updated
1740       // to a wrong method). It should not be performance critical, since the
1741       // resolve is only done once.
1742 
1743       MutexLocker ml(CompiledIC_lock);
1744       if (is_static_call) {
1745         CompiledStaticCall* ssc= compiledStaticCall_at(call_addr);
1746         ssc->set_to_clean();
1747       } else {
1748         // compiled, dispatched call (which used to call an interpreted method)
1749         CompiledIC* inline_cache = CompiledIC_at(caller_nm, call_addr);
1750         inline_cache->set_to_clean();
1751       }
1752     }
1753   }
1754 
1755   methodHandle callee_method = find_callee_method(thread, CHECK_(methodHandle()));
1756 
1757 
1758 #ifndef PRODUCT
1759   Atomic::inc(&_wrong_method_ctr);
1760 
1761   if (TraceCallFixup) {
1762     ResourceMark rm(thread);
1763     tty->print("handle_wrong_method reresolving call to");
1764     callee_method->print_short_name(tty);
1765     tty->print_cr(" code: " INTPTR_FORMAT, p2i(callee_method->code()));
1766   }
1767 #endif
1768 
1769   return callee_method;
1770 }
1771 
1772 #ifdef ASSERT
1773 void SharedRuntime::check_member_name_argument_is_last_argument(const methodHandle& method,
1774                                                                 const BasicType* sig_bt,
1775                                                                 const VMRegPair* regs) {
1776   ResourceMark rm;
1777   const int total_args_passed = method->size_of_parameters();
1778   const VMRegPair*    regs_with_member_name = regs;
1779         VMRegPair* regs_without_member_name = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed - 1);
1780 
1781   const int member_arg_pos = total_args_passed - 1;
1782   assert(member_arg_pos >= 0 && member_arg_pos < total_args_passed, "oob");
1783   assert(sig_bt[member_arg_pos] == T_OBJECT, "dispatch argument must be an object");
1784 
1785   const bool is_outgoing = method->is_method_handle_intrinsic();
1786   int comp_args_on_stack = java_calling_convention(sig_bt, regs_without_member_name, total_args_passed - 1, is_outgoing);
1787 
1788   for (int i = 0; i < member_arg_pos; i++) {
1789     VMReg a =    regs_with_member_name[i].first();
1790     VMReg b = regs_without_member_name[i].first();
1791     assert(a->value() == b->value(), "register allocation mismatch: a=" INTX_FORMAT ", b=" INTX_FORMAT, a->value(), b->value());
1792   }
1793   assert(regs_with_member_name[member_arg_pos].first()->is_valid(), "bad member arg");
1794 }
1795 #endif
1796 
1797 // ---------------------------------------------------------------------------
1798 // We are calling the interpreter via a c2i. Normally this would mean that
1799 // we were called by a compiled method. However we could have lost a race
1800 // where we went int -> i2c -> c2i and so the caller could in fact be
1801 // interpreted. If the caller is compiled we attempt to patch the caller
1802 // so he no longer calls into the interpreter.
1803 IRT_LEAF(void, SharedRuntime::fixup_callers_callsite(Method* method, address caller_pc))
1804   Method* moop(method);
1805 
1806   address entry_point = moop->from_compiled_entry();
1807 
1808   // It's possible that deoptimization can occur at a call site which hasn't
1809   // been resolved yet, in which case this function will be called from
1810   // an nmethod that has been patched for deopt and we can ignore the
1811   // request for a fixup.
1812   // Also it is possible that we lost a race in that from_compiled_entry
1813   // is now back to the i2c in that case we don't need to patch and if
1814   // we did we'd leap into space because the callsite needs to use
1815   // "to interpreter" stub in order to load up the Method*. Don't
1816   // ask me how I know this...
1817 
1818   CodeBlob* cb = CodeCache::find_blob(caller_pc);
1819   if (!cb->is_nmethod() || entry_point == moop->get_c2i_entry()) {
1820     return;
1821   }
1822 
1823   // The check above makes sure this is a nmethod.
1824   nmethod* nm = cb->as_nmethod_or_null();
1825   assert(nm, "must be");
1826 
1827   // Get the return PC for the passed caller PC.
1828   address return_pc = caller_pc + frame::pc_return_offset;
1829 
1830   // There is a benign race here. We could be attempting to patch to a compiled
1831   // entry point at the same time the callee is being deoptimized. If that is
1832   // the case then entry_point may in fact point to a c2i and we'd patch the
1833   // call site with the same old data. clear_code will set code() to NULL
1834   // at the end of it. If we happen to see that NULL then we can skip trying
1835   // to patch. If we hit the window where the callee has a c2i in the
1836   // from_compiled_entry and the NULL isn't present yet then we lose the race
1837   // and patch the code with the same old data. Asi es la vida.
1838 
1839   if (moop->code() == NULL) return;
1840 
1841   if (nm->is_in_use()) {
1842 
1843     // Expect to find a native call there (unless it was no-inline cache vtable dispatch)
1844     MutexLockerEx ml_patch(Patching_lock, Mutex::_no_safepoint_check_flag);
1845     if (NativeCall::is_call_before(return_pc)) {
1846       NativeCall *call = nativeCall_before(return_pc);
1847       //
1848       // bug 6281185. We might get here after resolving a call site to a vanilla
1849       // virtual call. Because the resolvee uses the verified entry it may then
1850       // see compiled code and attempt to patch the site by calling us. This would
1851       // then incorrectly convert the call site to optimized and its downhill from
1852       // there. If you're lucky you'll get the assert in the bugid, if not you've
1853       // just made a call site that could be megamorphic into a monomorphic site
1854       // for the rest of its life! Just another racing bug in the life of
1855       // fixup_callers_callsite ...
1856       //
1857       RelocIterator iter(nm, call->instruction_address(), call->next_instruction_address());
1858       iter.next();
1859       assert(iter.has_current(), "must have a reloc at java call site");
1860       relocInfo::relocType typ = iter.reloc()->type();
1861       if (typ != relocInfo::static_call_type &&
1862            typ != relocInfo::opt_virtual_call_type &&
1863            typ != relocInfo::static_stub_type) {
1864         return;
1865       }
1866       address destination = call->destination();
1867       if (destination != entry_point) {
1868         CodeBlob* callee = CodeCache::find_blob(destination);
1869         // callee == cb seems weird. It means calling interpreter thru stub.
1870         if (callee == cb || callee->is_adapter_blob()) {
1871           // static call or optimized virtual
1872           if (TraceCallFixup) {
1873             tty->print("fixup callsite           at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1874             moop->print_short_name(tty);
1875             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1876           }
1877           call->set_destination_mt_safe(entry_point);
1878         } else {
1879           if (TraceCallFixup) {
1880             tty->print("failed to fixup callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1881             moop->print_short_name(tty);
1882             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1883           }
1884           // assert is too strong could also be resolve destinations.
1885           // assert(InlineCacheBuffer::contains(destination) || VtableStubs::contains(destination), "must be");
1886         }
1887       } else {
1888           if (TraceCallFixup) {
1889             tty->print("already patched callsite at " INTPTR_FORMAT " to compiled code for", p2i(caller_pc));
1890             moop->print_short_name(tty);
1891             tty->print_cr(" to " INTPTR_FORMAT, p2i(entry_point));
1892           }
1893       }
1894     }
1895   }
1896 IRT_END
1897 
1898 
1899 // same as JVM_Arraycopy, but called directly from compiled code
1900 JRT_ENTRY(void, SharedRuntime::slow_arraycopy_C(oopDesc* src,  jint src_pos,
1901                                                 oopDesc* dest, jint dest_pos,
1902                                                 jint length,
1903                                                 JavaThread* thread)) {
1904 #ifndef PRODUCT
1905   _slow_array_copy_ctr++;
1906 #endif
1907   // Check if we have null pointers
1908   if (src == NULL || dest == NULL) {
1909     THROW(vmSymbols::java_lang_NullPointerException());
1910   }
1911   // Do the copy.  The casts to arrayOop are necessary to the copy_array API,
1912   // even though the copy_array API also performs dynamic checks to ensure
1913   // that src and dest are truly arrays (and are conformable).
1914   // The copy_array mechanism is awkward and could be removed, but
1915   // the compilers don't call this function except as a last resort,
1916   // so it probably doesn't matter.
1917   src->klass()->copy_array((arrayOopDesc*)src, src_pos,
1918                                         (arrayOopDesc*)dest, dest_pos,
1919                                         length, thread);
1920 }
1921 JRT_END
1922 
1923 char* SharedRuntime::generate_class_cast_message(
1924     JavaThread* thread, const char* objName) {
1925 
1926   // Get target class name from the checkcast instruction
1927   vframeStream vfst(thread, true);
1928   assert(!vfst.at_end(), "Java frame must exist");
1929   Bytecode_checkcast cc(vfst.method(), vfst.method()->bcp_from(vfst.bci()));
1930   Klass* targetKlass = vfst.method()->constants()->klass_at(
1931     cc.index(), thread);
1932   return generate_class_cast_message(objName, targetKlass->external_name());
1933 }
1934 
1935 char* SharedRuntime::generate_class_cast_message(
1936     const char* objName, const char* targetKlassName, const char* desc) {
1937   size_t msglen = strlen(objName) + strlen(desc) + strlen(targetKlassName) + 1;
1938 
1939   char* message = NEW_RESOURCE_ARRAY(char, msglen);
1940   if (NULL == message) {
1941     // Shouldn't happen, but don't cause even more problems if it does
1942     message = const_cast<char*>(objName);
1943   } else {
1944     jio_snprintf(message, msglen, "%s%s%s", objName, desc, targetKlassName);
1945   }
1946   return message;
1947 }
1948 
1949 JRT_LEAF(void, SharedRuntime::reguard_yellow_pages())
1950   (void) JavaThread::current()->reguard_stack();
1951 JRT_END
1952 
1953 
1954 // Handles the uncommon case in locking, i.e., contention or an inflated lock.
1955 JRT_BLOCK_ENTRY(void, SharedRuntime::complete_monitor_locking_C(oopDesc* _obj, BasicLock* lock, JavaThread* thread))
1956   // Disable ObjectSynchronizer::quick_enter() in default config
1957   // until JDK-8077392 is resolved.
1958   if ((SyncFlags & 256) != 0 && !SafepointSynchronize::is_synchronizing()) {
1959     // Only try quick_enter() if we're not trying to reach a safepoint
1960     // so that the calling thread reaches the safepoint more quickly.
1961     if (ObjectSynchronizer::quick_enter(_obj, thread, lock)) return;
1962   }
1963   // NO_ASYNC required because an async exception on the state transition destructor
1964   // would leave you with the lock held and it would never be released.
1965   // The normal monitorenter NullPointerException is thrown without acquiring a lock
1966   // and the model is that an exception implies the method failed.
1967   JRT_BLOCK_NO_ASYNC
1968   oop obj(_obj);
1969   if (PrintBiasedLockingStatistics) {
1970     Atomic::inc(BiasedLocking::slow_path_entry_count_addr());
1971   }
1972   Handle h_obj(THREAD, obj);
1973   if (UseBiasedLocking) {
1974     // Retry fast entry if bias is revoked to avoid unnecessary inflation
1975     ObjectSynchronizer::fast_enter(h_obj, lock, true, CHECK);
1976   } else {
1977     ObjectSynchronizer::slow_enter(h_obj, lock, CHECK);
1978   }
1979   assert(!HAS_PENDING_EXCEPTION, "Should have no exception here");
1980   JRT_BLOCK_END
1981 JRT_END
1982 
1983 // Handles the uncommon cases of monitor unlocking in compiled code
1984 JRT_LEAF(void, SharedRuntime::complete_monitor_unlocking_C(oopDesc* _obj, BasicLock* lock, JavaThread * THREAD))
1985    oop obj(_obj);
1986   assert(JavaThread::current() == THREAD, "invariant");
1987   // I'm not convinced we need the code contained by MIGHT_HAVE_PENDING anymore
1988   // testing was unable to ever fire the assert that guarded it so I have removed it.
1989   assert(!HAS_PENDING_EXCEPTION, "Do we need code below anymore?");
1990 #undef MIGHT_HAVE_PENDING
1991 #ifdef MIGHT_HAVE_PENDING
1992   // Save and restore any pending_exception around the exception mark.
1993   // While the slow_exit must not throw an exception, we could come into
1994   // this routine with one set.
1995   oop pending_excep = NULL;
1996   const char* pending_file;
1997   int pending_line;
1998   if (HAS_PENDING_EXCEPTION) {
1999     pending_excep = PENDING_EXCEPTION;
2000     pending_file  = THREAD->exception_file();
2001     pending_line  = THREAD->exception_line();
2002     CLEAR_PENDING_EXCEPTION;
2003   }
2004 #endif /* MIGHT_HAVE_PENDING */
2005 
2006   {
2007     // Exit must be non-blocking, and therefore no exceptions can be thrown.
2008     EXCEPTION_MARK;
2009     ObjectSynchronizer::slow_exit(obj, lock, THREAD);
2010   }
2011 
2012 #ifdef MIGHT_HAVE_PENDING
2013   if (pending_excep != NULL) {
2014     THREAD->set_pending_exception(pending_excep, pending_file, pending_line);
2015   }
2016 #endif /* MIGHT_HAVE_PENDING */
2017 JRT_END
2018 
2019 #ifndef PRODUCT
2020 
2021 void SharedRuntime::print_statistics() {
2022   ttyLocker ttyl;
2023   if (xtty != NULL)  xtty->head("statistics type='SharedRuntime'");
2024 
2025   if (_throw_null_ctr) tty->print_cr("%5d implicit null throw", _throw_null_ctr);
2026 
2027   SharedRuntime::print_ic_miss_histogram();
2028 
2029   if (CountRemovableExceptions) {
2030     if (_nof_removable_exceptions > 0) {
2031       Unimplemented(); // this counter is not yet incremented
2032       tty->print_cr("Removable exceptions: %d", _nof_removable_exceptions);
2033     }
2034   }
2035 
2036   // Dump the JRT_ENTRY counters
2037   if (_new_instance_ctr) tty->print_cr("%5d new instance requires GC", _new_instance_ctr);
2038   if (_new_array_ctr) tty->print_cr("%5d new array requires GC", _new_array_ctr);
2039   if (_multi1_ctr) tty->print_cr("%5d multianewarray 1 dim", _multi1_ctr);
2040   if (_multi2_ctr) tty->print_cr("%5d multianewarray 2 dim", _multi2_ctr);
2041   if (_multi3_ctr) tty->print_cr("%5d multianewarray 3 dim", _multi3_ctr);
2042   if (_multi4_ctr) tty->print_cr("%5d multianewarray 4 dim", _multi4_ctr);
2043   if (_multi5_ctr) tty->print_cr("%5d multianewarray 5 dim", _multi5_ctr);
2044 
2045   tty->print_cr("%5d inline cache miss in compiled", _ic_miss_ctr);
2046   tty->print_cr("%5d wrong method", _wrong_method_ctr);
2047   tty->print_cr("%5d unresolved static call site", _resolve_static_ctr);
2048   tty->print_cr("%5d unresolved virtual call site", _resolve_virtual_ctr);
2049   tty->print_cr("%5d unresolved opt virtual call site", _resolve_opt_virtual_ctr);
2050 
2051   if (_mon_enter_stub_ctr) tty->print_cr("%5d monitor enter stub", _mon_enter_stub_ctr);
2052   if (_mon_exit_stub_ctr) tty->print_cr("%5d monitor exit stub", _mon_exit_stub_ctr);
2053   if (_mon_enter_ctr) tty->print_cr("%5d monitor enter slow", _mon_enter_ctr);
2054   if (_mon_exit_ctr) tty->print_cr("%5d monitor exit slow", _mon_exit_ctr);
2055   if (_partial_subtype_ctr) tty->print_cr("%5d slow partial subtype", _partial_subtype_ctr);
2056   if (_jbyte_array_copy_ctr) tty->print_cr("%5d byte array copies", _jbyte_array_copy_ctr);
2057   if (_jshort_array_copy_ctr) tty->print_cr("%5d short array copies", _jshort_array_copy_ctr);
2058   if (_jint_array_copy_ctr) tty->print_cr("%5d int array copies", _jint_array_copy_ctr);
2059   if (_jlong_array_copy_ctr) tty->print_cr("%5d long array copies", _jlong_array_copy_ctr);
2060   if (_oop_array_copy_ctr) tty->print_cr("%5d oop array copies", _oop_array_copy_ctr);
2061   if (_checkcast_array_copy_ctr) tty->print_cr("%5d checkcast array copies", _checkcast_array_copy_ctr);
2062   if (_unsafe_array_copy_ctr) tty->print_cr("%5d unsafe array copies", _unsafe_array_copy_ctr);
2063   if (_generic_array_copy_ctr) tty->print_cr("%5d generic array copies", _generic_array_copy_ctr);
2064   if (_slow_array_copy_ctr) tty->print_cr("%5d slow array copies", _slow_array_copy_ctr);
2065   if (_find_handler_ctr) tty->print_cr("%5d find exception handler", _find_handler_ctr);
2066   if (_rethrow_ctr) tty->print_cr("%5d rethrow handler", _rethrow_ctr);
2067 
2068   AdapterHandlerLibrary::print_statistics();
2069 
2070   if (xtty != NULL)  xtty->tail("statistics");
2071 }
2072 
2073 inline double percent(int x, int y) {
2074   return 100.0 * x / MAX2(y, 1);
2075 }
2076 
2077 class MethodArityHistogram {
2078  public:
2079   enum { MAX_ARITY = 256 };
2080  private:
2081   static int _arity_histogram[MAX_ARITY];     // histogram of #args
2082   static int _size_histogram[MAX_ARITY];      // histogram of arg size in words
2083   static int _max_arity;                      // max. arity seen
2084   static int _max_size;                       // max. arg size seen
2085 
2086   static void add_method_to_histogram(nmethod* nm) {
2087     Method* m = nm->method();
2088     ArgumentCount args(m->signature());
2089     int arity   = args.size() + (m->is_static() ? 0 : 1);
2090     int argsize = m->size_of_parameters();
2091     arity   = MIN2(arity, MAX_ARITY-1);
2092     argsize = MIN2(argsize, MAX_ARITY-1);
2093     int count = nm->method()->compiled_invocation_count();
2094     _arity_histogram[arity]  += count;
2095     _size_histogram[argsize] += count;
2096     _max_arity = MAX2(_max_arity, arity);
2097     _max_size  = MAX2(_max_size, argsize);
2098   }
2099 
2100   void print_histogram_helper(int n, int* histo, const char* name) {
2101     const int N = MIN2(5, n);
2102     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2103     double sum = 0;
2104     double weighted_sum = 0;
2105     int i;
2106     for (i = 0; i <= n; i++) { sum += histo[i]; weighted_sum += i*histo[i]; }
2107     double rest = sum;
2108     double percent = sum / 100;
2109     for (i = 0; i <= N; i++) {
2110       rest -= histo[i];
2111       tty->print_cr("%4d: %7d (%5.1f%%)", i, histo[i], histo[i] / percent);
2112     }
2113     tty->print_cr("rest: %7d (%5.1f%%))", (int)rest, rest / percent);
2114     tty->print_cr("(avg. %s = %3.1f, max = %d)", name, weighted_sum / sum, n);
2115   }
2116 
2117   void print_histogram() {
2118     tty->print_cr("\nHistogram of call arity (incl. rcvr, calls to compiled methods only):");
2119     print_histogram_helper(_max_arity, _arity_histogram, "arity");
2120     tty->print_cr("\nSame for parameter size (in words):");
2121     print_histogram_helper(_max_size, _size_histogram, "size");
2122     tty->cr();
2123   }
2124 
2125  public:
2126   MethodArityHistogram() {
2127     MutexLockerEx mu(CodeCache_lock, Mutex::_no_safepoint_check_flag);
2128     _max_arity = _max_size = 0;
2129     for (int i = 0; i < MAX_ARITY; i++) _arity_histogram[i] = _size_histogram[i] = 0;
2130     CodeCache::nmethods_do(add_method_to_histogram);
2131     print_histogram();
2132   }
2133 };
2134 
2135 int MethodArityHistogram::_arity_histogram[MethodArityHistogram::MAX_ARITY];
2136 int MethodArityHistogram::_size_histogram[MethodArityHistogram::MAX_ARITY];
2137 int MethodArityHistogram::_max_arity;
2138 int MethodArityHistogram::_max_size;
2139 
2140 void SharedRuntime::print_call_statistics(int comp_total) {
2141   tty->print_cr("Calls from compiled code:");
2142   int total  = _nof_normal_calls + _nof_interface_calls + _nof_static_calls;
2143   int mono_c = _nof_normal_calls - _nof_optimized_calls - _nof_megamorphic_calls;
2144   int mono_i = _nof_interface_calls - _nof_optimized_interface_calls - _nof_megamorphic_interface_calls;
2145   tty->print_cr("\t%9d   (%4.1f%%) total non-inlined   ", total, percent(total, total));
2146   tty->print_cr("\t%9d   (%4.1f%%) virtual calls       ", _nof_normal_calls, percent(_nof_normal_calls, total));
2147   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_calls, percent(_nof_inlined_calls, _nof_normal_calls));
2148   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_calls, percent(_nof_optimized_calls, _nof_normal_calls));
2149   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_c, percent(mono_c, _nof_normal_calls));
2150   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_calls, percent(_nof_megamorphic_calls, _nof_normal_calls));
2151   tty->print_cr("\t%9d   (%4.1f%%) interface calls     ", _nof_interface_calls, percent(_nof_interface_calls, total));
2152   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_interface_calls, percent(_nof_inlined_interface_calls, _nof_interface_calls));
2153   tty->print_cr("\t  %9d  (%3.0f%%)   optimized        ", _nof_optimized_interface_calls, percent(_nof_optimized_interface_calls, _nof_interface_calls));
2154   tty->print_cr("\t  %9d  (%3.0f%%)   monomorphic      ", mono_i, percent(mono_i, _nof_interface_calls));
2155   tty->print_cr("\t  %9d  (%3.0f%%)   megamorphic      ", _nof_megamorphic_interface_calls, percent(_nof_megamorphic_interface_calls, _nof_interface_calls));
2156   tty->print_cr("\t%9d   (%4.1f%%) static/special calls", _nof_static_calls, percent(_nof_static_calls, total));
2157   tty->print_cr("\t  %9d  (%3.0f%%)   inlined          ", _nof_inlined_static_calls, percent(_nof_inlined_static_calls, _nof_static_calls));
2158   tty->cr();
2159   tty->print_cr("Note 1: counter updates are not MT-safe.");
2160   tty->print_cr("Note 2: %% in major categories are relative to total non-inlined calls;");
2161   tty->print_cr("        %% in nested categories are relative to their category");
2162   tty->print_cr("        (and thus add up to more than 100%% with inlining)");
2163   tty->cr();
2164 
2165   MethodArityHistogram h;
2166 }
2167 #endif
2168 
2169 
2170 // A simple wrapper class around the calling convention information
2171 // that allows sharing of adapters for the same calling convention.
2172 class AdapterFingerPrint : public CHeapObj<mtCode> {
2173  private:
2174   enum {
2175     _basic_type_bits = 4,
2176     _basic_type_mask = right_n_bits(_basic_type_bits),
2177     _basic_types_per_int = BitsPerInt / _basic_type_bits,
2178     _compact_int_count = 3
2179   };
2180   // TO DO:  Consider integrating this with a more global scheme for compressing signatures.
2181   // For now, 4 bits per components (plus T_VOID gaps after double/long) is not excessive.
2182 
2183   union {
2184     int  _compact[_compact_int_count];
2185     int* _fingerprint;
2186   } _value;
2187   int _length; // A negative length indicates the fingerprint is in the compact form,
2188                // Otherwise _value._fingerprint is the array.
2189 
2190   // Remap BasicTypes that are handled equivalently by the adapters.
2191   // These are correct for the current system but someday it might be
2192   // necessary to make this mapping platform dependent.
2193   static int adapter_encoding(BasicType in) {
2194     switch (in) {
2195       case T_BOOLEAN:
2196       case T_BYTE:
2197       case T_SHORT:
2198       case T_CHAR:
2199         // There are all promoted to T_INT in the calling convention
2200         return T_INT;
2201 
2202       case T_OBJECT:
2203       case T_VALUETYPE:
2204       case T_ARRAY:
2205         // In other words, we assume that any register good enough for
2206         // an int or long is good enough for a managed pointer.
2207 #ifdef _LP64
2208         return T_LONG;
2209 #else
2210         return T_INT;
2211 #endif
2212 
2213       case T_INT:
2214       case T_LONG:
2215       case T_FLOAT:
2216       case T_DOUBLE:
2217       case T_VOID:
2218         return in;
2219 
2220       default:
2221         ShouldNotReachHere();
2222         return T_CONFLICT;
2223     }
2224   }
2225 
2226  public:
2227   AdapterFingerPrint(int total_args_passed, BasicType* sig_bt) {
2228     // The fingerprint is based on the BasicType signature encoded
2229     // into an array of ints with eight entries per int.
2230     int* ptr;
2231     int len = (total_args_passed + (_basic_types_per_int-1)) / _basic_types_per_int;
2232     if (len <= _compact_int_count) {
2233       assert(_compact_int_count == 3, "else change next line");
2234       _value._compact[0] = _value._compact[1] = _value._compact[2] = 0;
2235       // Storing the signature encoded as signed chars hits about 98%
2236       // of the time.
2237       _length = -len;
2238       ptr = _value._compact;
2239     } else {
2240       _length = len;
2241       _value._fingerprint = NEW_C_HEAP_ARRAY(int, _length, mtCode);
2242       ptr = _value._fingerprint;
2243     }
2244 
2245     // Now pack the BasicTypes with 8 per int
2246     int sig_index = 0;
2247     for (int index = 0; index < len; index++) {
2248       int value = 0;
2249       for (int byte = 0; byte < _basic_types_per_int; byte++) {
2250         int bt = ((sig_index < total_args_passed)
2251                   ? adapter_encoding(sig_bt[sig_index++])
2252                   : 0);
2253         assert((bt & _basic_type_mask) == bt, "must fit in 4 bits");
2254         value = (value << _basic_type_bits) | bt;
2255       }
2256       ptr[index] = value;
2257     }
2258   }
2259 
2260   ~AdapterFingerPrint() {
2261     if (_length > 0) {
2262       FREE_C_HEAP_ARRAY(int, _value._fingerprint);
2263     }
2264   }
2265 
2266   int value(int index) {
2267     if (_length < 0) {
2268       return _value._compact[index];
2269     }
2270     return _value._fingerprint[index];
2271   }
2272   int length() {
2273     if (_length < 0) return -_length;
2274     return _length;
2275   }
2276 
2277   bool is_compact() {
2278     return _length <= 0;
2279   }
2280 
2281   unsigned int compute_hash() {
2282     int hash = 0;
2283     for (int i = 0; i < length(); i++) {
2284       int v = value(i);
2285       hash = (hash << 8) ^ v ^ (hash >> 5);
2286     }
2287     return (unsigned int)hash;
2288   }
2289 
2290   const char* as_string() {
2291     stringStream st;
2292     st.print("0x");
2293     for (int i = 0; i < length(); i++) {
2294       st.print("%08x", value(i));
2295     }
2296     return st.as_string();
2297   }
2298 
2299   bool equals(AdapterFingerPrint* other) {
2300     if (other->_length != _length) {
2301       return false;
2302     }
2303     if (_length < 0) {
2304       assert(_compact_int_count == 3, "else change next line");
2305       return _value._compact[0] == other->_value._compact[0] &&
2306              _value._compact[1] == other->_value._compact[1] &&
2307              _value._compact[2] == other->_value._compact[2];
2308     } else {
2309       for (int i = 0; i < _length; i++) {
2310         if (_value._fingerprint[i] != other->_value._fingerprint[i]) {
2311           return false;
2312         }
2313       }
2314     }
2315     return true;
2316   }
2317 };
2318 
2319 
2320 // A hashtable mapping from AdapterFingerPrints to AdapterHandlerEntries
2321 class AdapterHandlerTable : public BasicHashtable<mtCode> {
2322   friend class AdapterHandlerTableIterator;
2323 
2324  private:
2325 
2326 #ifndef PRODUCT
2327   static int _lookups; // number of calls to lookup
2328   static int _buckets; // number of buckets checked
2329   static int _equals;  // number of buckets checked with matching hash
2330   static int _hits;    // number of successful lookups
2331   static int _compact; // number of equals calls with compact signature
2332 #endif
2333 
2334   AdapterHandlerEntry* bucket(int i) {
2335     return (AdapterHandlerEntry*)BasicHashtable<mtCode>::bucket(i);
2336   }
2337 
2338  public:
2339   AdapterHandlerTable()
2340     : BasicHashtable<mtCode>(293, sizeof(AdapterHandlerEntry)) { }
2341 
2342   // Create a new entry suitable for insertion in the table
2343   AdapterHandlerEntry* new_entry(AdapterFingerPrint* fingerprint, address i2c_entry, address c2i_entry, address c2i_unverified_entry) {
2344     AdapterHandlerEntry* entry = (AdapterHandlerEntry*)BasicHashtable<mtCode>::new_entry(fingerprint->compute_hash());
2345     entry->init(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2346     return entry;
2347   }
2348 
2349   // Insert an entry into the table
2350   void add(AdapterHandlerEntry* entry) {
2351     int index = hash_to_index(entry->hash());
2352     add_entry(index, entry);
2353   }
2354 
2355   void free_entry(AdapterHandlerEntry* entry) {
2356     entry->deallocate();
2357     BasicHashtable<mtCode>::free_entry(entry);
2358   }
2359 
2360   // Find a entry with the same fingerprint if it exists
2361   AdapterHandlerEntry* lookup(int total_args_passed, BasicType* sig_bt) {
2362     NOT_PRODUCT(_lookups++);
2363     AdapterFingerPrint fp(total_args_passed, sig_bt);
2364     unsigned int hash = fp.compute_hash();
2365     int index = hash_to_index(hash);
2366     for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2367       NOT_PRODUCT(_buckets++);
2368       if (e->hash() == hash) {
2369         NOT_PRODUCT(_equals++);
2370         if (fp.equals(e->fingerprint())) {
2371 #ifndef PRODUCT
2372           if (fp.is_compact()) _compact++;
2373           _hits++;
2374 #endif
2375           return e;
2376         }
2377       }
2378     }
2379     return NULL;
2380   }
2381 
2382 #ifndef PRODUCT
2383   void print_statistics() {
2384     ResourceMark rm;
2385     int longest = 0;
2386     int empty = 0;
2387     int total = 0;
2388     int nonempty = 0;
2389     for (int index = 0; index < table_size(); index++) {
2390       int count = 0;
2391       for (AdapterHandlerEntry* e = bucket(index); e != NULL; e = e->next()) {
2392         count++;
2393       }
2394       if (count != 0) nonempty++;
2395       if (count == 0) empty++;
2396       if (count > longest) longest = count;
2397       total += count;
2398     }
2399     tty->print_cr("AdapterHandlerTable: empty %d longest %d total %d average %f",
2400                   empty, longest, total, total / (double)nonempty);
2401     tty->print_cr("AdapterHandlerTable: lookups %d buckets %d equals %d hits %d compact %d",
2402                   _lookups, _buckets, _equals, _hits, _compact);
2403   }
2404 #endif
2405 };
2406 
2407 
2408 #ifndef PRODUCT
2409 
2410 int AdapterHandlerTable::_lookups;
2411 int AdapterHandlerTable::_buckets;
2412 int AdapterHandlerTable::_equals;
2413 int AdapterHandlerTable::_hits;
2414 int AdapterHandlerTable::_compact;
2415 
2416 #endif
2417 
2418 class AdapterHandlerTableIterator : public StackObj {
2419  private:
2420   AdapterHandlerTable* _table;
2421   int _index;
2422   AdapterHandlerEntry* _current;
2423 
2424   void scan() {
2425     while (_index < _table->table_size()) {
2426       AdapterHandlerEntry* a = _table->bucket(_index);
2427       _index++;
2428       if (a != NULL) {
2429         _current = a;
2430         return;
2431       }
2432     }
2433   }
2434 
2435  public:
2436   AdapterHandlerTableIterator(AdapterHandlerTable* table): _table(table), _index(0), _current(NULL) {
2437     scan();
2438   }
2439   bool has_next() {
2440     return _current != NULL;
2441   }
2442   AdapterHandlerEntry* next() {
2443     if (_current != NULL) {
2444       AdapterHandlerEntry* result = _current;
2445       _current = _current->next();
2446       if (_current == NULL) scan();
2447       return result;
2448     } else {
2449       return NULL;
2450     }
2451   }
2452 };
2453 
2454 
2455 // ---------------------------------------------------------------------------
2456 // Implementation of AdapterHandlerLibrary
2457 AdapterHandlerTable* AdapterHandlerLibrary::_adapters = NULL;
2458 AdapterHandlerEntry* AdapterHandlerLibrary::_abstract_method_handler = NULL;
2459 const int AdapterHandlerLibrary_size = 16*K;
2460 BufferBlob* AdapterHandlerLibrary::_buffer = NULL;
2461 
2462 BufferBlob* AdapterHandlerLibrary::buffer_blob() {
2463   // Should be called only when AdapterHandlerLibrary_lock is active.
2464   if (_buffer == NULL) // Initialize lazily
2465       _buffer = BufferBlob::create("adapters", AdapterHandlerLibrary_size);
2466   return _buffer;
2467 }
2468 
2469 extern "C" void unexpected_adapter_call() {
2470   ShouldNotCallThis();
2471 }
2472 
2473 void AdapterHandlerLibrary::initialize() {
2474   if (_adapters != NULL) return;
2475   _adapters = new AdapterHandlerTable();
2476 
2477   if (!CodeCacheExtensions::skip_compiler_support()) {
2478     // Create a special handler for abstract methods.  Abstract methods
2479     // are never compiled so an i2c entry is somewhat meaningless, but
2480     // throw AbstractMethodError just in case.
2481     // Pass wrong_method_abstract for the c2i transitions to return
2482     // AbstractMethodError for invalid invocations.
2483     address wrong_method_abstract = SharedRuntime::get_handle_wrong_method_abstract_stub();
2484     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2485                                                                 StubRoutines::throw_AbstractMethodError_entry(),
2486                                                                 wrong_method_abstract, wrong_method_abstract);
2487   } else {
2488     // Adapters are not supposed to be used.
2489     // Generate a special one to cause an error if used (and store this
2490     // singleton in place of the useless _abstract_method_error adapter).
2491     address entry = (address) &unexpected_adapter_call;
2492     _abstract_method_handler = AdapterHandlerLibrary::new_entry(new AdapterFingerPrint(0, NULL),
2493                                                                 entry,
2494                                                                 entry,
2495                                                                 entry);
2496 
2497   }
2498 }
2499 
2500 AdapterHandlerEntry* AdapterHandlerLibrary::new_entry(AdapterFingerPrint* fingerprint,
2501                                                       address i2c_entry,
2502                                                       address c2i_entry,
2503                                                       address c2i_unverified_entry) {
2504   return _adapters->new_entry(fingerprint, i2c_entry, c2i_entry, c2i_unverified_entry);
2505 }
2506 
2507 // Value type arguments are not passed by reference, instead each
2508 // field of the value type is passed as an argument. This helper
2509 // function collects the fields of the value types (including embedded
2510 // value type's fields) in a list. Included with the field's type is
2511 // the offset of each field in the value type: i2c and c2i adapters
2512 // need that to load or store fields. Finally, the list of fields is
2513 // sorted in order of increasing offsets: the adapters and the
2514 // compiled code need and agreed upon order of fields.
2515 //
2516 // The list of basic type that is returned starts with a T_VALUETYPE
2517 // and ends with an extra T_VOID. T_VALUETYPE/T_VOID are used as
2518 // delimiters. Every entry between the two is a field of the value
2519 // type. If there's an embedded value type in the list, it also starts
2520 // with a T_VALUETYPE and ends with a T_VOID. This is so we can
2521 // generate a unique fingerprint for the method's adapters and we can
2522 // generate the list of basic types from the interpreter point of view
2523 // (value types passed as reference: iterate on the list until a
2524 // T_VALUETYPE, drop everything until and including the closing
2525 // T_VOID) or the compiler point of view (each field of the value
2526 // types is an argument: drop all T_VALUETYPE/T_VOID from the list).
2527 static GrowableArray<SigEntry> collect_fields(ValueKlass* vk, int base_off = 0) {
2528   GrowableArray<SigEntry> sig_extended;
2529   sig_extended.push(SigEntry(T_VALUETYPE, base_off));
2530   for (JavaFieldStream fs(vk); !fs.done(); fs.next()) {
2531     if (fs.access_flags().is_static())  continue;
2532     fieldDescriptor& fd = fs.field_descriptor();
2533     BasicType bt = fd.field_type();
2534     int offset = base_off + fd.offset() - (base_off > 0 ? vk->first_field_offset() : 0);
2535     if (bt == T_VALUETYPE) {
2536       Symbol* signature = fd.signature();
2537       JavaThread* THREAD = JavaThread::current();
2538       oop loader = vk->class_loader();
2539       oop protection_domain = vk->protection_domain();
2540       Klass* klass = SystemDictionary::resolve_or_null(signature,
2541                                                        Handle(THREAD, loader), Handle(THREAD, protection_domain),
2542                                                        THREAD);
2543       assert(klass != NULL && !HAS_PENDING_EXCEPTION, "lookup shouldn't fail");
2544       const GrowableArray<SigEntry>& embedded = collect_fields(ValueKlass::cast(klass), offset);
2545       sig_extended.appendAll(&embedded);
2546     } else {
2547       sig_extended.push(SigEntry(bt, offset));
2548       if (bt == T_LONG || bt == T_DOUBLE) {
2549         sig_extended.push(SigEntry(T_VOID, offset));
2550       }
2551     }
2552   }
2553   int offset = base_off + vk->size_helper()*HeapWordSize - (base_off > 0 ? vk->first_field_offset() : 0);
2554   sig_extended.push(SigEntry(T_VOID, offset)); // hack: use T_VOID to mark end of value type fields
2555   if (base_off == 0) {
2556     sig_extended.sort(SigEntry::compare);
2557   }
2558   assert(sig_extended.at(0)._bt == T_VALUETYPE && sig_extended.at(sig_extended.length()-1)._bt == T_VOID, "broken structure");
2559   return sig_extended;
2560 }
2561 
2562 AdapterHandlerEntry* AdapterHandlerLibrary::get_adapter(const methodHandle& method) {
2563   // Use customized signature handler.  Need to lock around updates to
2564   // the AdapterHandlerTable (it is not safe for concurrent readers
2565   // and a single writer: this could be fixed if it becomes a
2566   // problem).
2567 
2568   ResourceMark rm;
2569 
2570   NOT_PRODUCT(int insts_size = 0);
2571   AdapterBlob* new_adapter = NULL;
2572   AdapterHandlerEntry* entry = NULL;
2573   AdapterFingerPrint* fingerprint = NULL;
2574   {
2575     MutexLocker mu(AdapterHandlerLibrary_lock);
2576     // make sure data structure is initialized
2577     initialize();
2578 
2579     if (CodeCacheExtensions::skip_compiler_support()) {
2580       // adapters are useless and should not be used, including the
2581       // abstract_method_handler. However, some callers check that
2582       // an adapter was installed.
2583       // Return the singleton adapter, stored into _abstract_method_handler
2584       // and modified to cause an error if we ever call it.
2585       return _abstract_method_handler;
2586     }
2587 
2588     if (method->is_abstract()) {
2589       return _abstract_method_handler;
2590     }
2591 
2592     // Fill in the signature array, for the calling-convention call.
2593     GrowableArray<SigEntry> sig_extended;
2594     {
2595       MutexUnlocker mul(AdapterHandlerLibrary_lock);
2596       Thread* THREAD = Thread::current();
2597       Handle class_loader(THREAD, method->method_holder()->class_loader());
2598       Handle protection_domain(THREAD, method->method_holder()->protection_domain());
2599       GrowableArray<BasicType> sig_bt_tmp;
2600       int value_klasses = 0;
2601 
2602       int i = 0;
2603       if (!method->is_static()) {  // Pass in receiver first
2604         Klass* holder = method->method_holder();
2605         if (ValueTypePassFieldsAsArgs && holder->is_value()) {
2606           value_klasses++;
2607           ValueKlass* vk = ValueKlass::cast(holder);
2608           const GrowableArray<SigEntry>& sig_vk = collect_fields(vk);
2609           sig_extended.appendAll(&sig_vk);
2610         } else {
2611           sig_extended.push(SigEntry(T_OBJECT));
2612         }
2613       }
2614       for (SignatureStream ss(method->signature()); !ss.at_return_type(); ss.next()) {
2615         if (ValueTypePassFieldsAsArgs && ss.type() == T_VALUETYPE) {
2616           value_klasses++;
2617           Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
2618           assert(k != NULL && !HAS_PENDING_EXCEPTION, "can resolve klass?");
2619           ValueKlass* vk = ValueKlass::cast(k);
2620           const GrowableArray<SigEntry>& sig_vk = collect_fields(vk);
2621           sig_extended.appendAll(&sig_vk);
2622         } else {
2623           sig_extended.push(SigEntry(ss.type()));
2624           if (ss.type() == T_LONG || ss.type() == T_DOUBLE) {
2625             sig_extended.push(SigEntry(T_VOID));
2626           }
2627         }
2628       }
2629     }
2630 
2631     int values = 0;
2632     if (ValueTypePassFieldsAsArgs) {
2633       for (int i = 0; i < sig_extended.length(); i++) {
2634         if (sig_extended.at(i)._bt == T_VALUETYPE) {
2635           values++;
2636         }
2637       }
2638     }
2639     int total_args_passed_cc = sig_extended.length() - 2 * values;
2640     BasicType* sig_bt_cc = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_cc);
2641 
2642     int j = 0;
2643     for (int i = 0; i < sig_extended.length(); i++) {
2644       if (!ValueTypePassFieldsAsArgs) {
2645         sig_bt_cc[j++] = sig_extended.at(i)._bt;
2646       } else if (sig_extended.at(i)._bt != T_VALUETYPE &&
2647                  (sig_extended.at(i)._bt != T_VOID ||
2648                   sig_extended.at(i-1)._bt == T_LONG ||
2649                   sig_extended.at(i-1)._bt == T_DOUBLE)) {
2650         sig_bt_cc[j++] = sig_extended.at(i)._bt;
2651       }
2652     }
2653     assert(j == total_args_passed_cc, "bad number of arguments");
2654 
2655     int total_args_passed_fp = sig_extended.length();
2656     BasicType* sig_bt_fp = NEW_RESOURCE_ARRAY(BasicType, total_args_passed_fp);
2657     for (int i = 0; i < sig_extended.length(); i++) {
2658       sig_bt_fp[i] = sig_extended.at(i)._bt;
2659     }
2660 
2661     VMRegPair* regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed_cc);
2662 
2663     // Lookup method signature's fingerprint
2664     entry = _adapters->lookup(total_args_passed_fp, sig_bt_fp);
2665 
2666 #ifdef ASSERT
2667     AdapterHandlerEntry* shared_entry = NULL;
2668     // Start adapter sharing verification only after the VM is booted.
2669     if (VerifyAdapterSharing && (entry != NULL)) {
2670       shared_entry = entry;
2671       entry = NULL;
2672     }
2673 #endif
2674 
2675     if (entry != NULL) {
2676       return entry;
2677     }
2678 
2679     // Get a description of the compiled java calling convention and the largest used (VMReg) stack slot usage
2680     int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt_cc, regs, total_args_passed_cc, false);
2681 
2682     // Make a C heap allocated version of the fingerprint to store in the adapter
2683     fingerprint = new AdapterFingerPrint(total_args_passed_fp, sig_bt_fp);
2684 
2685     // StubRoutines::code2() is initialized after this function can be called. As a result,
2686     // VerifyAdapterCalls and VerifyAdapterSharing can fail if we re-use code that generated
2687     // prior to StubRoutines::code2() being set. Checks refer to checks generated in an I2C
2688     // stub that ensure that an I2C stub is called from an interpreter frame.
2689     bool contains_all_checks = StubRoutines::code2() != NULL;
2690 
2691     // Create I2C & C2I handlers
2692     BufferBlob* buf = buffer_blob(); // the temporary code buffer in CodeCache
2693     if (buf != NULL) {
2694       CodeBuffer buffer(buf);
2695       short buffer_locs[20];
2696       buffer.insts()->initialize_shared_locs((relocInfo*)buffer_locs,
2697                                              sizeof(buffer_locs)/sizeof(relocInfo));
2698 
2699 
2700       MacroAssembler _masm(&buffer);
2701       entry = SharedRuntime::generate_i2c2i_adapters(&_masm,
2702                                                      comp_args_on_stack,
2703                                                      sig_extended,
2704                                                      regs,
2705                                                      fingerprint,
2706                                                      new_adapter);
2707 #ifdef ASSERT
2708       if (VerifyAdapterSharing) {
2709         if (shared_entry != NULL) {
2710           assert(shared_entry->compare_code(buf->code_begin(), buffer.insts_size()), "code must match");
2711           // Release the one just created and return the original
2712           _adapters->free_entry(entry);
2713           return shared_entry;
2714         } else  {
2715           entry->save_code(buf->code_begin(), buffer.insts_size());
2716         }
2717       }
2718 #endif
2719 
2720       NOT_PRODUCT(insts_size = buffer.insts_size());
2721     }
2722     if (new_adapter == NULL) {
2723       // CodeCache is full, disable compilation
2724       // Ought to log this but compile log is only per compile thread
2725       // and we're some non descript Java thread.
2726       return NULL; // Out of CodeCache space
2727     }
2728     entry->relocate(new_adapter->content_begin());
2729 #ifndef PRODUCT
2730     // debugging suppport
2731     if (PrintAdapterHandlers || PrintStubCode) {
2732       ttyLocker ttyl;
2733       entry->print_adapter_on(tty);
2734       tty->print_cr("i2c argument handler #%d for: %s %s %s (%d bytes generated)",
2735                     _adapters->number_of_entries(), (method->is_static() ? "static" : "receiver"),
2736                     method->signature()->as_C_string(), fingerprint->as_string(), insts_size);
2737       tty->print_cr("c2i argument handler starts at %p", entry->get_c2i_entry());
2738       if (Verbose || PrintStubCode) {
2739         address first_pc = entry->base_address();
2740         if (first_pc != NULL) {
2741           Disassembler::decode(first_pc, first_pc + insts_size);
2742           tty->cr();
2743         }
2744       }
2745     }
2746 #endif
2747     // Add the entry only if the entry contains all required checks (see sharedRuntime_xxx.cpp)
2748     // The checks are inserted only if -XX:+VerifyAdapterCalls is specified.
2749     if (contains_all_checks || !VerifyAdapterCalls) {
2750       _adapters->add(entry);
2751     }
2752   }
2753   // Outside of the lock
2754   if (new_adapter != NULL) {
2755     char blob_id[256];
2756     jio_snprintf(blob_id,
2757                  sizeof(blob_id),
2758                  "%s(%s)@" PTR_FORMAT,
2759                  new_adapter->name(),
2760                  fingerprint->as_string(),
2761                  new_adapter->content_begin());
2762     Forte::register_stub(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2763 
2764     if (JvmtiExport::should_post_dynamic_code_generated()) {
2765       JvmtiExport::post_dynamic_code_generated(blob_id, new_adapter->content_begin(), new_adapter->content_end());
2766     }
2767   }
2768   return entry;
2769 }
2770 
2771 address AdapterHandlerEntry::base_address() {
2772   address base = _i2c_entry;
2773   if (base == NULL)  base = _c2i_entry;
2774   assert(base <= _c2i_entry || _c2i_entry == NULL, "");
2775   assert(base <= _c2i_unverified_entry || _c2i_unverified_entry == NULL, "");
2776   return base;
2777 }
2778 
2779 void AdapterHandlerEntry::relocate(address new_base) {
2780   address old_base = base_address();
2781   assert(old_base != NULL, "");
2782   ptrdiff_t delta = new_base - old_base;
2783   if (_i2c_entry != NULL)
2784     _i2c_entry += delta;
2785   if (_c2i_entry != NULL)
2786     _c2i_entry += delta;
2787   if (_c2i_unverified_entry != NULL)
2788     _c2i_unverified_entry += delta;
2789   assert(base_address() == new_base, "");
2790 }
2791 
2792 
2793 void AdapterHandlerEntry::deallocate() {
2794   delete _fingerprint;
2795 #ifdef ASSERT
2796   if (_saved_code) FREE_C_HEAP_ARRAY(unsigned char, _saved_code);
2797 #endif
2798 }
2799 
2800 
2801 #ifdef ASSERT
2802 // Capture the code before relocation so that it can be compared
2803 // against other versions.  If the code is captured after relocation
2804 // then relative instructions won't be equivalent.
2805 void AdapterHandlerEntry::save_code(unsigned char* buffer, int length) {
2806   _saved_code = NEW_C_HEAP_ARRAY(unsigned char, length, mtCode);
2807   _saved_code_length = length;
2808   memcpy(_saved_code, buffer, length);
2809 }
2810 
2811 
2812 bool AdapterHandlerEntry::compare_code(unsigned char* buffer, int length) {
2813   if (length != _saved_code_length) {
2814     return false;
2815   }
2816 
2817   return (memcmp(buffer, _saved_code, length) == 0) ? true : false;
2818 }
2819 #endif
2820 
2821 
2822 /**
2823  * Create a native wrapper for this native method.  The wrapper converts the
2824  * Java-compiled calling convention to the native convention, handles
2825  * arguments, and transitions to native.  On return from the native we transition
2826  * back to java blocking if a safepoint is in progress.
2827  */
2828 void AdapterHandlerLibrary::create_native_wrapper(const methodHandle& method) {
2829   ResourceMark rm;
2830   nmethod* nm = NULL;
2831 
2832   assert(method->is_native(), "must be native");
2833   assert(method->is_method_handle_intrinsic() ||
2834          method->has_native_function(), "must have something valid to call!");
2835 
2836   {
2837     // Perform the work while holding the lock, but perform any printing outside the lock
2838     MutexLocker mu(AdapterHandlerLibrary_lock);
2839     // See if somebody beat us to it
2840     if (method->code() != NULL) {
2841       return;
2842     }
2843 
2844     const int compile_id = CompileBroker::assign_compile_id(method, CompileBroker::standard_entry_bci);
2845     assert(compile_id > 0, "Must generate native wrapper");
2846 
2847 
2848     ResourceMark rm;
2849     BufferBlob*  buf = buffer_blob(); // the temporary code buffer in CodeCache
2850     if (buf != NULL) {
2851       CodeBuffer buffer(buf);
2852       double locs_buf[20];
2853       buffer.insts()->initialize_shared_locs((relocInfo*)locs_buf, sizeof(locs_buf) / sizeof(relocInfo));
2854       MacroAssembler _masm(&buffer);
2855 
2856       // Fill in the signature array, for the calling-convention call.
2857       const int total_args_passed = method->size_of_parameters();
2858 
2859       BasicType* sig_bt = NEW_RESOURCE_ARRAY(BasicType, total_args_passed);
2860       VMRegPair*   regs = NEW_RESOURCE_ARRAY(VMRegPair, total_args_passed);
2861       int i=0;
2862       if (!method->is_static())  // Pass in receiver first
2863         sig_bt[i++] = T_OBJECT;
2864       SignatureStream ss(method->signature());
2865       for (; !ss.at_return_type(); ss.next()) {
2866         sig_bt[i++] = ss.type();  // Collect remaining bits of signature
2867         if (ss.type() == T_LONG || ss.type() == T_DOUBLE)
2868           sig_bt[i++] = T_VOID;   // Longs & doubles take 2 Java slots
2869       }
2870       assert(i == total_args_passed, "");
2871       BasicType ret_type = ss.type();
2872 
2873       // Now get the compiled-Java layout as input (or output) arguments.
2874       // NOTE: Stubs for compiled entry points of method handle intrinsics
2875       // are just trampolines so the argument registers must be outgoing ones.
2876       const bool is_outgoing = method->is_method_handle_intrinsic();
2877       int comp_args_on_stack = SharedRuntime::java_calling_convention(sig_bt, regs, total_args_passed, is_outgoing);
2878 
2879       // Generate the compiled-to-native wrapper code
2880       nm = SharedRuntime::generate_native_wrapper(&_masm, method, compile_id, sig_bt, regs, ret_type);
2881 
2882       if (nm != NULL) {
2883         method->set_code(method, nm);
2884 
2885         DirectiveSet* directive = DirectivesStack::getDefaultDirective(CompileBroker::compiler(CompLevel_simple));
2886         if (directive->PrintAssemblyOption) {
2887           nm->print_code();
2888         }
2889         DirectivesStack::release(directive);
2890       }
2891     }
2892   } // Unlock AdapterHandlerLibrary_lock
2893 
2894 
2895   // Install the generated code.
2896   if (nm != NULL) {
2897     if (PrintCompilation) {
2898       ttyLocker ttyl;
2899       CompileTask::print(tty, nm, method->is_static() ? "(static)" : "");
2900     }
2901     nm->post_compiled_method_load_event();
2902   }
2903 }
2904 
2905 JRT_ENTRY_NO_ASYNC(void, SharedRuntime::block_for_jni_critical(JavaThread* thread))
2906   assert(thread == JavaThread::current(), "must be");
2907   // The code is about to enter a JNI lazy critical native method and
2908   // _needs_gc is true, so if this thread is already in a critical
2909   // section then just return, otherwise this thread should block
2910   // until needs_gc has been cleared.
2911   if (thread->in_critical()) {
2912     return;
2913   }
2914   // Lock and unlock a critical section to give the system a chance to block
2915   GCLocker::lock_critical(thread);
2916   GCLocker::unlock_critical(thread);
2917 JRT_END
2918 
2919 // -------------------------------------------------------------------------
2920 // Java-Java calling convention
2921 // (what you use when Java calls Java)
2922 
2923 //------------------------------name_for_receiver----------------------------------
2924 // For a given signature, return the VMReg for parameter 0.
2925 VMReg SharedRuntime::name_for_receiver() {
2926   VMRegPair regs;
2927   BasicType sig_bt = T_OBJECT;
2928   (void) java_calling_convention(&sig_bt, &regs, 1, true);
2929   // Return argument 0 register.  In the LP64 build pointers
2930   // take 2 registers, but the VM wants only the 'main' name.
2931   return regs.first();
2932 }
2933 
2934 VMRegPair *SharedRuntime::find_callee_arguments(Symbol* sig, bool has_receiver, bool has_appendix, int* arg_size) {
2935   // This method is returning a data structure allocating as a
2936   // ResourceObject, so do not put any ResourceMarks in here.
2937   char *s = sig->as_C_string();
2938   int len = (int)strlen(s);
2939   s++; len--;                   // Skip opening paren
2940   char *t = s+len;
2941   while (*(--t) != ')');      // Find close paren
2942 
2943   BasicType *sig_bt = NEW_RESOURCE_ARRAY(BasicType, 256);
2944   VMRegPair *regs = NEW_RESOURCE_ARRAY(VMRegPair, 256);
2945   int cnt = 0;
2946   if (has_receiver) {
2947     sig_bt[cnt++] = T_OBJECT; // Receiver is argument 0; not in signature
2948   }
2949 
2950   while (s < t) {
2951     switch (*s++) {            // Switch on signature character
2952     case 'B': sig_bt[cnt++] = T_BYTE;    break;
2953     case 'C': sig_bt[cnt++] = T_CHAR;    break;
2954     case 'D': sig_bt[cnt++] = T_DOUBLE;  sig_bt[cnt++] = T_VOID; break;
2955     case 'F': sig_bt[cnt++] = T_FLOAT;   break;
2956     case 'I': sig_bt[cnt++] = T_INT;     break;
2957     case 'J': sig_bt[cnt++] = T_LONG;    sig_bt[cnt++] = T_VOID; break;
2958     case 'S': sig_bt[cnt++] = T_SHORT;   break;
2959     case 'Z': sig_bt[cnt++] = T_BOOLEAN; break;
2960     case 'V': sig_bt[cnt++] = T_VOID;    break;
2961     case 'L':                   // Oop
2962       while (*s++ != ';');   // Skip signature
2963       sig_bt[cnt++] = T_OBJECT;
2964       break;
2965     case 'Q':                   // Oop
2966       while (*s++ != ';');   // Skip signature
2967       sig_bt[cnt++] = T_VALUETYPE;
2968       break;
2969     case '[': {                 // Array
2970       do {                      // Skip optional size
2971         while (*s >= '0' && *s <= '9') s++;
2972       } while (*s++ == '[');   // Nested arrays?
2973       // Skip element type
2974       if (s[-1] == 'L')
2975         while (*s++ != ';'); // Skip signature
2976       sig_bt[cnt++] = T_ARRAY;
2977       break;
2978     }
2979     default : ShouldNotReachHere();
2980     }
2981   }
2982 
2983   if (has_appendix) {
2984     sig_bt[cnt++] = T_OBJECT;
2985   }
2986 
2987   assert(cnt < 256, "grow table size");
2988 
2989   int comp_args_on_stack;
2990   comp_args_on_stack = java_calling_convention(sig_bt, regs, cnt, true);
2991 
2992   // the calling convention doesn't count out_preserve_stack_slots so
2993   // we must add that in to get "true" stack offsets.
2994 
2995   if (comp_args_on_stack) {
2996     for (int i = 0; i < cnt; i++) {
2997       VMReg reg1 = regs[i].first();
2998       if (reg1->is_stack()) {
2999         // Yuck
3000         reg1 = reg1->bias(out_preserve_stack_slots());
3001       }
3002       VMReg reg2 = regs[i].second();
3003       if (reg2->is_stack()) {
3004         // Yuck
3005         reg2 = reg2->bias(out_preserve_stack_slots());
3006       }
3007       regs[i].set_pair(reg2, reg1);
3008     }
3009   }
3010 
3011   // results
3012   *arg_size = cnt;
3013   return regs;
3014 }
3015 
3016 // OSR Migration Code
3017 //
3018 // This code is used convert interpreter frames into compiled frames.  It is
3019 // called from very start of a compiled OSR nmethod.  A temp array is
3020 // allocated to hold the interesting bits of the interpreter frame.  All
3021 // active locks are inflated to allow them to move.  The displaced headers and
3022 // active interpreter locals are copied into the temp buffer.  Then we return
3023 // back to the compiled code.  The compiled code then pops the current
3024 // interpreter frame off the stack and pushes a new compiled frame.  Then it
3025 // copies the interpreter locals and displaced headers where it wants.
3026 // Finally it calls back to free the temp buffer.
3027 //
3028 // All of this is done NOT at any Safepoint, nor is any safepoint or GC allowed.
3029 
3030 JRT_LEAF(intptr_t*, SharedRuntime::OSR_migration_begin( JavaThread *thread) )
3031 
3032   //
3033   // This code is dependent on the memory layout of the interpreter local
3034   // array and the monitors. On all of our platforms the layout is identical
3035   // so this code is shared. If some platform lays the their arrays out
3036   // differently then this code could move to platform specific code or
3037   // the code here could be modified to copy items one at a time using
3038   // frame accessor methods and be platform independent.
3039 
3040   frame fr = thread->last_frame();
3041   assert(fr.is_interpreted_frame(), "");
3042   assert(fr.interpreter_frame_expression_stack_size()==0, "only handle empty stacks");
3043 
3044   // Figure out how many monitors are active.
3045   int active_monitor_count = 0;
3046   for (BasicObjectLock *kptr = fr.interpreter_frame_monitor_end();
3047        kptr < fr.interpreter_frame_monitor_begin();
3048        kptr = fr.next_monitor_in_interpreter_frame(kptr) ) {
3049     if (kptr->obj() != NULL) active_monitor_count++;
3050   }
3051 
3052   // QQQ we could place number of active monitors in the array so that compiled code
3053   // could double check it.
3054 
3055   Method* moop = fr.interpreter_frame_method();
3056   int max_locals = moop->max_locals();
3057   // Allocate temp buffer, 1 word per local & 2 per active monitor
3058   int buf_size_words = max_locals + active_monitor_count*2;
3059   intptr_t *buf = NEW_C_HEAP_ARRAY(intptr_t,buf_size_words, mtCode);
3060 
3061   // Copy the locals.  Order is preserved so that loading of longs works.
3062   // Since there's no GC I can copy the oops blindly.
3063   assert(sizeof(HeapWord)==sizeof(intptr_t), "fix this code");
3064   Copy::disjoint_words((HeapWord*)fr.interpreter_frame_local_at(max_locals-1),
3065                        (HeapWord*)&buf[0],
3066                        max_locals);
3067 
3068   // Inflate locks.  Copy the displaced headers.  Be careful, there can be holes.
3069   int i = max_locals;
3070   for (BasicObjectLock *kptr2 = fr.interpreter_frame_monitor_end();
3071        kptr2 < fr.interpreter_frame_monitor_begin();
3072        kptr2 = fr.next_monitor_in_interpreter_frame(kptr2) ) {
3073     if (kptr2->obj() != NULL) {         // Avoid 'holes' in the monitor array
3074       BasicLock *lock = kptr2->lock();
3075       // Inflate so the displaced header becomes position-independent
3076       if (lock->displaced_header()->is_unlocked())
3077         ObjectSynchronizer::inflate_helper(kptr2->obj());
3078       // Now the displaced header is free to move
3079       buf[i++] = (intptr_t)lock->displaced_header();
3080       buf[i++] = cast_from_oop<intptr_t>(kptr2->obj());
3081     }
3082   }
3083   assert(i - max_locals == active_monitor_count*2, "found the expected number of monitors");
3084 
3085   return buf;
3086 JRT_END
3087 
3088 JRT_LEAF(void, SharedRuntime::OSR_migration_end( intptr_t* buf) )
3089   FREE_C_HEAP_ARRAY(intptr_t, buf);
3090 JRT_END
3091 
3092 bool AdapterHandlerLibrary::contains(const CodeBlob* b) {
3093   AdapterHandlerTableIterator iter(_adapters);
3094   while (iter.has_next()) {
3095     AdapterHandlerEntry* a = iter.next();
3096     if (b == CodeCache::find_blob(a->get_i2c_entry())) return true;
3097   }
3098   return false;
3099 }
3100 
3101 void AdapterHandlerLibrary::print_handler_on(outputStream* st, const CodeBlob* b) {
3102   AdapterHandlerTableIterator iter(_adapters);
3103   while (iter.has_next()) {
3104     AdapterHandlerEntry* a = iter.next();
3105     if (b == CodeCache::find_blob(a->get_i2c_entry())) {
3106       st->print("Adapter for signature: ");
3107       a->print_adapter_on(tty);
3108       return;
3109     }
3110   }
3111   assert(false, "Should have found handler");
3112 }
3113 
3114 void AdapterHandlerEntry::print_adapter_on(outputStream* st) const {
3115   st->print_cr("AHE@" INTPTR_FORMAT ": %s i2c: " INTPTR_FORMAT " c2i: " INTPTR_FORMAT " c2iUV: " INTPTR_FORMAT,
3116                p2i(this), fingerprint()->as_string(),
3117                p2i(get_i2c_entry()), p2i(get_c2i_entry()), p2i(get_c2i_unverified_entry()));
3118 
3119 }
3120 
3121 #ifndef PRODUCT
3122 
3123 void AdapterHandlerLibrary::print_statistics() {
3124   _adapters->print_statistics();
3125 }
3126 
3127 #endif /* PRODUCT */
3128 
3129 JRT_LEAF(void, SharedRuntime::enable_stack_reserved_zone(JavaThread* thread))
3130   assert(thread->is_Java_thread(), "Only Java threads have a stack reserved zone");
3131   thread->enable_stack_reserved_zone();
3132   thread->set_reserved_stack_activation(thread->stack_base());
3133 JRT_END
3134 
3135 frame SharedRuntime::look_for_reserved_stack_annotated_method(JavaThread* thread, frame fr) {
3136   frame activation;
3137   int decode_offset = 0;
3138   nmethod* nm = NULL;
3139   frame prv_fr = fr;
3140   int count = 1;
3141 
3142   assert(fr.is_java_frame(), "Must start on Java frame");
3143 
3144   while (!fr.is_first_frame()) {
3145     Method* method = NULL;
3146     // Compiled java method case.
3147     if (decode_offset != 0) {
3148       DebugInfoReadStream stream(nm, decode_offset);
3149       decode_offset = stream.read_int();
3150       method = (Method*)nm->metadata_at(stream.read_int());
3151     } else {
3152       if (fr.is_first_java_frame()) break;
3153       address pc = fr.pc();
3154       prv_fr = fr;
3155       if (fr.is_interpreted_frame()) {
3156         method = fr.interpreter_frame_method();
3157         fr = fr.java_sender();
3158       } else {
3159         CodeBlob* cb = fr.cb();
3160         fr = fr.java_sender();
3161         if (cb == NULL || !cb->is_nmethod()) {
3162           continue;
3163         }
3164         nm = (nmethod*)cb;
3165         if (nm->method()->is_native()) {
3166           method = nm->method();
3167         } else {
3168           PcDesc* pd = nm->pc_desc_at(pc);
3169           assert(pd != NULL, "PcDesc must not be NULL");
3170           decode_offset = pd->scope_decode_offset();
3171           // if decode_offset is not equal to 0, it will execute the
3172           // "compiled java method case" at the beginning of the loop.
3173           continue;
3174         }
3175       }
3176     }
3177     if (method->has_reserved_stack_access()) {
3178       ResourceMark rm(thread);
3179       activation = prv_fr;
3180       warning("Potentially dangerous stack overflow in "
3181               "ReservedStackAccess annotated method %s [%d]",
3182               method->name_and_sig_as_C_string(), count++);
3183       EventReservedStackActivation event;
3184       if (event.should_commit()) {
3185         event.set_method(method);
3186         event.commit();
3187       }
3188     }
3189   }
3190   return activation;
3191 }
3192 
3193 // We are at a compiled code to interpreter call. We need backing
3194 // buffers for all value type arguments. Allocate an object array to
3195 // hold them (convenient because once we're done with it we don't have
3196 // to worry about freeing it).
3197 JRT_ENTRY(void, SharedRuntime::allocate_value_types(JavaThread* thread, Method* callee_method))
3198 {
3199   assert(ValueTypePassFieldsAsArgs, "no reason to call this");
3200   ResourceMark rm;
3201   JavaThread* THREAD = thread;
3202   methodHandle callee(callee_method);
3203 
3204   int nb_slots = 0;
3205   if (!callee->is_static() && callee->method_holder()->is_value()) {
3206     nb_slots++;
3207   }
3208   Handle class_loader(THREAD, callee->method_holder()->class_loader());
3209   Handle protection_domain(THREAD, callee->method_holder()->protection_domain());
3210   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3211     if (ss.type() == T_VALUETYPE) {
3212       nb_slots++;
3213     }
3214   }
3215   objArrayHandle array = ObjArrayKlass::cast(Universe::objectArrayKlassObj())->allocate(nb_slots, CHECK);
3216   int i = 0;
3217   if (!callee->is_static() && callee->method_holder()->is_value()) {
3218     ValueKlass* vk = ValueKlass::cast(callee->method_holder());
3219     oop res = vk->allocate_instance(CHECK);
3220     array->obj_at_put(i, res);
3221     i++;
3222   }
3223   for (SignatureStream ss(callee->signature()); !ss.at_return_type(); ss.next()) {
3224     if (ss.type() == T_VALUETYPE) {
3225       Klass* k = ss.as_klass(class_loader, protection_domain, SignatureStream::ReturnNull, THREAD);
3226       assert(k != NULL && !HAS_PENDING_EXCEPTION, "can't resolve klass");
3227       ValueKlass* vk = ValueKlass::cast(k);
3228       oop res = vk->allocate_instance(CHECK);
3229       array->obj_at_put(i, res);
3230       i++;
3231     }
3232   }
3233   thread->set_vm_result(array());
3234   thread->set_vm_result_2(callee()); // TODO: required to keep callee live?
3235 }
3236 JRT_END