1 /*
   2  * Copyright (c) 1998, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "compiler/compileLog.hpp"
  27 #include "interpreter/linkResolver.hpp"
  28 #include "memory/universe.inline.hpp"
  29 #include "oops/objArrayKlass.hpp"
  30 #include "oops/valueArrayKlass.hpp"
  31 #include "opto/addnode.hpp"
  32 #include "opto/castnode.hpp"
  33 #include "opto/memnode.hpp"
  34 #include "opto/parse.hpp"
  35 #include "opto/rootnode.hpp"
  36 #include "opto/runtime.hpp"
  37 #include "opto/subnode.hpp"
  38 #include "opto/valuetypenode.hpp"
  39 #include "runtime/deoptimization.hpp"
  40 #include "runtime/handles.inline.hpp"
  41 
  42 //=============================================================================
  43 // Helper methods for _get* and _put* bytecodes
  44 //=============================================================================
  45 bool Parse::static_field_ok_in_clinit(ciField *field, ciMethod *method) {
  46   // Could be the field_holder's <clinit> method, or <clinit> for a subklass.
  47   // Better to check now than to Deoptimize as soon as we execute
  48   assert( field->is_static(), "Only check if field is static");
  49   // is_being_initialized() is too generous.  It allows access to statics
  50   // by threads that are not running the <clinit> before the <clinit> finishes.
  51   // return field->holder()->is_being_initialized();
  52 
  53   // The following restriction is correct but conservative.
  54   // It is also desirable to allow compilation of methods called from <clinit>
  55   // but this generated code will need to be made safe for execution by
  56   // other threads, or the transition from interpreted to compiled code would
  57   // need to be guarded.
  58   ciInstanceKlass *field_holder = field->holder();
  59 
  60   bool access_OK = false;
  61   if (method->holder()->is_subclass_of(field_holder)) {
  62     if (method->is_static()) {
  63       if (method->name() == ciSymbol::class_initializer_name()) {
  64         // OK to access static fields inside initializer
  65         access_OK = true;
  66       }
  67     } else {
  68       if (method->name() == ciSymbol::object_initializer_name()) {
  69         // It's also OK to access static fields inside a constructor,
  70         // because any thread calling the constructor must first have
  71         // synchronized on the class by executing a '_new' bytecode.
  72         access_OK = true;
  73       }
  74     }
  75   }
  76 
  77   return access_OK;
  78 
  79 }
  80 
  81 
  82 void Parse::do_field_access(bool is_get, bool is_field) {
  83   bool will_link;
  84   ciField* field = iter().get_field(will_link);
  85   assert(will_link, "getfield: typeflow responsibility");
  86 
  87   ciInstanceKlass* field_holder = field->holder();
  88 
  89   if (is_field == field->is_static()) {
  90     // Interpreter will throw java_lang_IncompatibleClassChangeError
  91     // Check this before allowing <clinit> methods to access static fields
  92     uncommon_trap(Deoptimization::Reason_unhandled,
  93                   Deoptimization::Action_none);
  94     return;
  95   }
  96 
  97   if (!is_field && !field_holder->is_initialized()) {
  98     if (!static_field_ok_in_clinit(field, method())) {
  99       uncommon_trap(Deoptimization::Reason_uninitialized,
 100                     Deoptimization::Action_reinterpret,
 101                     NULL, "!static_field_ok_in_clinit");
 102       return;
 103     }
 104   }
 105 
 106   // Deoptimize on putfield writes to call site target field.
 107   if (!is_get && field->is_call_site_target()) {
 108     uncommon_trap(Deoptimization::Reason_unhandled,
 109                   Deoptimization::Action_reinterpret,
 110                   NULL, "put to call site target field");
 111     return;
 112   }
 113 
 114   assert(field->will_link(method(), bc()), "getfield: typeflow responsibility");
 115 
 116   // Note:  We do not check for an unloaded field type here any more.
 117 
 118   // Generate code for the object pointer.
 119   Node* obj;
 120   if (is_field) {
 121     int obj_depth = is_get ? 0 : field->type()->size();
 122     obj = null_check(peek(obj_depth));
 123     // Compile-time detect of null-exception?
 124     if (stopped())  return;
 125 
 126 #ifdef ASSERT
 127     const TypeInstPtr *tjp = TypeInstPtr::make(TypePtr::NotNull, iter().get_declared_field_holder());
 128     assert(_gvn.type(obj)->higher_equal(tjp), "cast_up is no longer needed");
 129 #endif
 130 
 131     if (is_get) {
 132       (void) pop();  // pop receiver before getting
 133       do_get_xxx(obj, field, is_field);
 134     } else {
 135       do_put_xxx(obj, field, is_field);
 136       (void) pop();  // pop receiver after putting
 137     }
 138   } else {
 139     const TypeInstPtr* tip = TypeInstPtr::make(field_holder->java_mirror());
 140     obj = _gvn.makecon(tip);
 141     if (is_get) {
 142       do_get_xxx(obj, field, is_field);
 143     } else {
 144       do_put_xxx(obj, field, is_field);
 145     }
 146   }
 147 }
 148 
 149 void Parse::do_vgetfield() {
 150   // fixme null/top check?
 151   bool will_link;
 152   ciField* field = iter().get_field(will_link);
 153   BasicType bt = field->layout_type();
 154   ValueTypeNode* vt = pop()->as_ValueType();
 155   Node* value = vt->field_value_by_offset(field->offset());
 156   push_node(bt, value);
 157 }
 158 
 159 void Parse::do_get_xxx(Node* obj, ciField* field, bool is_field) {
 160   BasicType bt = field->layout_type();
 161 
 162   // Does this field have a constant value?  If so, just push the value.
 163   if (field->is_constant() &&
 164       // Keep consistent with types found by ciTypeFlow: for an
 165       // unloaded field type, ciTypeFlow::StateVector::do_getstatic()
 166       // speculates the field is null. The code in the rest of this
 167       // method does the same. We must not bypass it and use a non
 168       // null constant here.
 169       (bt != T_OBJECT || field->type()->is_loaded())) {
 170     // final or stable field
 171     Node* con = make_constant_from_field(field, obj);
 172     if (con != NULL) {
 173       push_node(field->layout_type(), con);
 174       return;
 175     }
 176   }
 177 
 178   ciType* field_klass = field->type();
 179   bool is_vol = field->is_volatile();
 180   // TODO change this when we support non-flattened value type fields that are non-static
 181   bool flattened = (bt == T_VALUETYPE) && !field->is_static();
 182 
 183   // Compute address and memory type.
 184   int offset = field->offset_in_bytes();
 185   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 186   Node *adr = basic_plus_adr(obj, obj, offset);
 187 
 188   // Build the resultant type of the load
 189   const Type *type;
 190 
 191   bool must_assert_null = false;
 192   if (bt == T_OBJECT || bt == T_VALUETYPE) {
 193     if (!field->type()->is_loaded()) {
 194       type = TypeInstPtr::BOTTOM;
 195       must_assert_null = true;
 196     } else if (field->is_static_constant()) {
 197       // This can happen if the constant oop is non-perm.
 198       ciObject* con = field->constant_value().as_object();
 199       // Do not "join" in the previous type; it doesn't add value,
 200       // and may yield a vacuous result if the field is of interface type.
 201       if (con->is_null_object()) {
 202         type = TypePtr::NULL_PTR;
 203       } else {
 204         type = TypeOopPtr::make_from_constant(con)->isa_oopptr();
 205       }
 206       assert(type != NULL, "field singleton type must be consistent");
 207     } else {
 208       type = TypeOopPtr::make_from_klass(field_klass->as_klass());
 209       if (bt == T_VALUETYPE && !flattened) {
 210         // A non-flattened value type field may be NULL
 211         bool maybe_null = true;
 212         if (field->is_static()) {
 213           // Check if static field is already initialized
 214           ciInstance* mirror = field->holder()->java_mirror();
 215           ciObject* val = mirror->field_value(field).as_object();
 216           if (!val->is_null_object()) {
 217             maybe_null = false;
 218           }
 219         }
 220         if (maybe_null) {
 221           type = type->is_valuetypeptr()->cast_to_ptr_type(TypePtr::BotPTR);
 222         }
 223       }
 224     }
 225   } else {
 226     type = Type::get_const_basic_type(bt);
 227   }
 228   if (support_IRIW_for_not_multiple_copy_atomic_cpu && field->is_volatile()) {
 229     insert_mem_bar(Op_MemBarVolatile);   // StoreLoad barrier
 230   }
 231 
 232   // Build the load.
 233   //
 234   MemNode::MemOrd mo = is_vol ? MemNode::acquire : MemNode::unordered;
 235   bool needs_atomic_access = is_vol || AlwaysAtomicAccesses;
 236   Node* ld = NULL;
 237    if (flattened) {
 238     // Load flattened value type
 239     ld = ValueTypeNode::make(_gvn, field_klass->as_value_klass(), map()->memory(), obj, obj, field->holder(), offset);
 240   } else {
 241     ld = make_load(NULL, adr, type, bt, adr_type, mo, LoadNode::DependsOnlyOnTest, needs_atomic_access);
 242   }
 243 
 244   // Adjust Java stack
 245   if (type2size[bt] == 1)
 246     push(ld);
 247   else
 248     push_pair(ld);
 249 
 250   if (must_assert_null) {
 251     // Do not take a trap here.  It's possible that the program
 252     // will never load the field's class, and will happily see
 253     // null values in this field forever.  Don't stumble into a
 254     // trap for such a program, or we might get a long series
 255     // of useless recompilations.  (Or, we might load a class
 256     // which should not be loaded.)  If we ever see a non-null
 257     // value, we will then trap and recompile.  (The trap will
 258     // not need to mention the class index, since the class will
 259     // already have been loaded if we ever see a non-null value.)
 260     // uncommon_trap(iter().get_field_signature_index());
 261     if (PrintOpto && (Verbose || WizardMode)) {
 262       method()->print_name(); tty->print_cr(" asserting nullness of field at bci: %d", bci());
 263     }
 264     if (C->log() != NULL) {
 265       C->log()->elem("assert_null reason='field' klass='%d'",
 266                      C->log()->identify(field->type()));
 267     }
 268     // If there is going to be a trap, put it at the next bytecode:
 269     set_bci(iter().next_bci());
 270     null_assert(peek());
 271     set_bci(iter().cur_bci()); // put it back
 272   }
 273 
 274   // If reference is volatile, prevent following memory ops from
 275   // floating up past the volatile read.  Also prevents commoning
 276   // another volatile read.
 277   if (field->is_volatile()) {
 278     // Memory barrier includes bogus read of value to force load BEFORE membar
 279     insert_mem_bar(Op_MemBarAcquire, ld);
 280   }
 281 }
 282 
 283 void Parse::do_put_xxx(Node* obj, ciField* field, bool is_field) {
 284   bool is_vol = field->is_volatile();
 285   // If reference is volatile, prevent following memory ops from
 286   // floating down past the volatile write.  Also prevents commoning
 287   // another volatile read.
 288   if (is_vol)  insert_mem_bar(Op_MemBarRelease);
 289 
 290   // Compute address and memory type.
 291   int offset = field->offset_in_bytes();
 292   const TypePtr* adr_type = C->alias_type(field)->adr_type();
 293   Node* adr = basic_plus_adr(obj, obj, offset);
 294   BasicType bt = field->layout_type();
 295   // Value to be stored
 296   Node* val = type2size[bt] == 1 ? pop() : pop_pair();
 297   // Round doubles before storing
 298   if (bt == T_DOUBLE)  val = dstore_rounding(val);
 299 
 300   // Conservatively release stores of object references.
 301   const MemNode::MemOrd mo =
 302     is_vol ?
 303     // Volatile fields need releasing stores.
 304     MemNode::release :
 305     // Non-volatile fields also need releasing stores if they hold an
 306     // object reference, because the object reference might point to
 307     // a freshly created object.
 308     StoreNode::release_if_reference(bt);
 309 
 310   // Store the value.
 311   if (bt == T_OBJECT || bt == T_VALUETYPE) {
 312     const TypeOopPtr* field_type;
 313     if (!field->type()->is_loaded()) {
 314       field_type = TypeInstPtr::BOTTOM;
 315     } else {
 316       field_type = TypeOopPtr::make_from_klass(field->type()->as_klass());
 317     }
 318     if (bt == T_VALUETYPE && !field->is_static()) {
 319       // Store flattened value type to non-static field
 320       val->as_ValueType()->store(this, obj, obj, field->holder(), offset);
 321     } else {
 322       store_oop_to_object(control(), obj, adr, adr_type, val, field_type, bt, mo);
 323     }
 324   } else {
 325     bool needs_atomic_access = is_vol || AlwaysAtomicAccesses;
 326     store_to_memory(control(), adr, val, bt, adr_type, mo, needs_atomic_access);
 327   }
 328 
 329   // If reference is volatile, prevent following volatiles ops from
 330   // floating up before the volatile write.
 331   if (is_vol) {
 332     // If not multiple copy atomic, we do the MemBarVolatile before the load.
 333     if (!support_IRIW_for_not_multiple_copy_atomic_cpu) {
 334       insert_mem_bar(Op_MemBarVolatile); // Use fat membar
 335     }
 336     // Remember we wrote a volatile field.
 337     // For not multiple copy atomic cpu (ppc64) a barrier should be issued
 338     // in constructors which have such stores. See do_exits() in parse1.cpp.
 339     if (is_field) {
 340       set_wrote_volatile(true);
 341     }
 342   }
 343 
 344   if (is_field) {
 345     set_wrote_fields(true);
 346   }
 347 
 348   // If the field is final, the rules of Java say we are in <init> or <clinit>.
 349   // Note the presence of writes to final non-static fields, so that we
 350   // can insert a memory barrier later on to keep the writes from floating
 351   // out of the constructor.
 352   // Any method can write a @Stable field; insert memory barriers after those also.
 353   if (is_field && (field->is_final() || field->is_stable())) {
 354     if (field->is_final()) {
 355         set_wrote_final(true);
 356     }
 357     if (field->is_stable()) {
 358         set_wrote_stable(true);
 359     }
 360 
 361     // Preserve allocation ptr to create precedent edge to it in membar
 362     // generated on exit from constructor.
 363     // Can't bind stable with its allocation, only record allocation for final field.
 364     if (field->is_final() && AllocateNode::Ideal_allocation(obj, &_gvn) != NULL) {
 365       set_alloc_with_final(obj);
 366     }
 367   }
 368 }
 369 
 370 //=============================================================================
 371 
 372 void Parse::do_newarray() {
 373   bool will_link;
 374   ciKlass* klass = iter().get_klass(will_link);
 375 
 376   // Uncommon Trap when class that array contains is not loaded
 377   // we need the loaded class for the rest of graph; do not
 378   // initialize the container class (see Java spec)!!!
 379   assert(will_link, "newarray: typeflow responsibility");
 380 
 381   ciArrayKlass* array_klass = ciArrayKlass::make(klass);
 382   // Check that array_klass object is loaded
 383   if (!array_klass->is_loaded()) {
 384     // Generate uncommon_trap for unloaded array_class
 385     uncommon_trap(Deoptimization::Reason_unloaded,
 386                   Deoptimization::Action_reinterpret,
 387                   array_klass);
 388     return;
 389   } else if (array_klass->element_klass() != NULL &&
 390              array_klass->element_klass()->is_valuetype() &&
 391              !array_klass->element_klass()->as_value_klass()->is_initialized()) {
 392     uncommon_trap(Deoptimization::Reason_uninitialized,
 393                   Deoptimization::Action_reinterpret,
 394                   NULL);
 395     return;
 396   }
 397 
 398   kill_dead_locals();
 399 
 400   const TypeKlassPtr* array_klass_type = TypeKlassPtr::make(array_klass);
 401   Node* count_val = pop();
 402   Node* obj = new_array(makecon(array_klass_type), count_val, 1);
 403   push(obj);
 404 }
 405 
 406 
 407 void Parse::do_newarray(BasicType elem_type) {
 408   kill_dead_locals();
 409 
 410   Node*   count_val = pop();
 411   const TypeKlassPtr* array_klass = TypeKlassPtr::make(ciTypeArrayKlass::make(elem_type));
 412   Node*   obj = new_array(makecon(array_klass), count_val, 1);
 413   // Push resultant oop onto stack
 414   push(obj);
 415 }
 416 
 417 // Expand simple expressions like new int[3][5] and new Object[2][nonConLen].
 418 // Also handle the degenerate 1-dimensional case of anewarray.
 419 Node* Parse::expand_multianewarray(ciArrayKlass* array_klass, Node* *lengths, int ndimensions, int nargs) {
 420   Node* length = lengths[0];
 421   assert(length != NULL, "");
 422   Node* array = new_array(makecon(TypeKlassPtr::make(array_klass)), length, nargs);
 423   if (ndimensions > 1) {
 424     jint length_con = find_int_con(length, -1);
 425     guarantee(length_con >= 0, "non-constant multianewarray");
 426     ciArrayKlass* array_klass_1 = array_klass->as_obj_array_klass()->element_klass()->as_array_klass();
 427     const TypePtr* adr_type = TypeAryPtr::OOPS;
 428     const TypeOopPtr*    elemtype = _gvn.type(array)->is_aryptr()->elem()->make_oopptr();
 429     const intptr_t header   = arrayOopDesc::base_offset_in_bytes(T_OBJECT);
 430     for (jint i = 0; i < length_con; i++) {
 431       Node*    elem   = expand_multianewarray(array_klass_1, &lengths[1], ndimensions-1, nargs);
 432       intptr_t offset = header + ((intptr_t)i << LogBytesPerHeapOop);
 433       Node*    eaddr  = basic_plus_adr(array, offset);
 434       store_oop_to_array(control(), array, eaddr, adr_type, elem, elemtype, T_OBJECT, MemNode::unordered);
 435     }
 436   }
 437   return array;
 438 }
 439 
 440 void Parse::do_multianewarray() {
 441   int ndimensions = iter().get_dimensions();
 442 
 443   // the m-dimensional array
 444   bool will_link;
 445   ciArrayKlass* array_klass = iter().get_klass(will_link)->as_array_klass();
 446   assert(will_link, "multianewarray: typeflow responsibility");
 447 
 448   // Note:  Array classes are always initialized; no is_initialized check.
 449 
 450   kill_dead_locals();
 451 
 452   // get the lengths from the stack (first dimension is on top)
 453   Node** length = NEW_RESOURCE_ARRAY(Node*, ndimensions + 1);
 454   length[ndimensions] = NULL;  // terminating null for make_runtime_call
 455   int j;
 456   for (j = ndimensions-1; j >= 0 ; j--) length[j] = pop();
 457 
 458   // The original expression was of this form: new T[length0][length1]...
 459   // It is often the case that the lengths are small (except the last).
 460   // If that happens, use the fast 1-d creator a constant number of times.
 461   const jint expand_limit = MIN2((jint)MultiArrayExpandLimit, 100);
 462   jint expand_count = 1;        // count of allocations in the expansion
 463   jint expand_fanout = 1;       // running total fanout
 464   for (j = 0; j < ndimensions-1; j++) {
 465     jint dim_con = find_int_con(length[j], -1);
 466     expand_fanout *= dim_con;
 467     expand_count  += expand_fanout; // count the level-J sub-arrays
 468     if (dim_con <= 0
 469         || dim_con > expand_limit
 470         || expand_count > expand_limit) {
 471       expand_count = 0;
 472       break;
 473     }
 474   }
 475 
 476   // Can use multianewarray instead of [a]newarray if only one dimension,
 477   // or if all non-final dimensions are small constants.
 478   if (ndimensions == 1 || (1 <= expand_count && expand_count <= expand_limit)) {
 479     Node* obj = NULL;
 480     // Set the original stack and the reexecute bit for the interpreter
 481     // to reexecute the multianewarray bytecode if deoptimization happens.
 482     // Do it unconditionally even for one dimension multianewarray.
 483     // Note: the reexecute bit will be set in GraphKit::add_safepoint_edges()
 484     // when AllocateArray node for newarray is created.
 485     { PreserveReexecuteState preexecs(this);
 486       inc_sp(ndimensions);
 487       // Pass 0 as nargs since uncommon trap code does not need to restore stack.
 488       obj = expand_multianewarray(array_klass, &length[0], ndimensions, 0);
 489     } //original reexecute and sp are set back here
 490     push(obj);
 491     return;
 492   }
 493 
 494   address fun = NULL;
 495   switch (ndimensions) {
 496   case 1: ShouldNotReachHere(); break;
 497   case 2: fun = OptoRuntime::multianewarray2_Java(); break;
 498   case 3: fun = OptoRuntime::multianewarray3_Java(); break;
 499   case 4: fun = OptoRuntime::multianewarray4_Java(); break;
 500   case 5: fun = OptoRuntime::multianewarray5_Java(); break;
 501   };
 502   Node* c = NULL;
 503 
 504   if (fun != NULL) {
 505     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 506                           OptoRuntime::multianewarray_Type(ndimensions),
 507                           fun, NULL, TypeRawPtr::BOTTOM,
 508                           makecon(TypeKlassPtr::make(array_klass)),
 509                           length[0], length[1], length[2],
 510                           (ndimensions > 2) ? length[3] : NULL,
 511                           (ndimensions > 3) ? length[4] : NULL);
 512   } else {
 513     // Create a java array for dimension sizes
 514     Node* dims = NULL;
 515     { PreserveReexecuteState preexecs(this);
 516       inc_sp(ndimensions);
 517       Node* dims_array_klass = makecon(TypeKlassPtr::make(ciArrayKlass::make(ciType::make(T_INT))));
 518       dims = new_array(dims_array_klass, intcon(ndimensions), 0);
 519 
 520       // Fill-in it with values
 521       for (j = 0; j < ndimensions; j++) {
 522         Node *dims_elem = array_element_address(dims, intcon(j), T_INT);
 523         store_to_memory(control(), dims_elem, length[j], T_INT, TypeAryPtr::INTS, MemNode::unordered);
 524       }
 525     }
 526 
 527     c = make_runtime_call(RC_NO_LEAF | RC_NO_IO,
 528                           OptoRuntime::multianewarrayN_Type(),
 529                           OptoRuntime::multianewarrayN_Java(), NULL, TypeRawPtr::BOTTOM,
 530                           makecon(TypeKlassPtr::make(array_klass)),
 531                           dims);
 532   }
 533   make_slow_call_ex(c, env()->Throwable_klass(), false);
 534 
 535   Node* res = _gvn.transform(new ProjNode(c, TypeFunc::Parms));
 536 
 537   const Type* type = TypeOopPtr::make_from_klass_raw(array_klass);
 538 
 539   // Improve the type:  We know it's not null, exact, and of a given length.
 540   type = type->is_ptr()->cast_to_ptr_type(TypePtr::NotNull);
 541   type = type->is_aryptr()->cast_to_exactness(true);
 542 
 543   const TypeInt* ltype = _gvn.find_int_type(length[0]);
 544   if (ltype != NULL)
 545     type = type->is_aryptr()->cast_to_size(ltype);
 546 
 547     // We cannot sharpen the nested sub-arrays, since the top level is mutable.
 548 
 549   Node* cast = _gvn.transform( new CheckCastPPNode(control(), res, type) );
 550   push(cast);
 551 
 552   // Possible improvements:
 553   // - Make a fast path for small multi-arrays.  (W/ implicit init. loops.)
 554   // - Issue CastII against length[*] values, to TypeInt::POS.
 555 }
 556 
 557 void Parse::do_vbox() {
 558   // Obtain target type (from bytecodes)
 559   bool will_link;
 560   ciKlass* target_klass = iter().get_klass(will_link);
 561   guarantee(will_link, "vbox: Value-capable class must be loaded");
 562   guarantee(target_klass->is_instance_klass(), "vbox: Target class must be an instance type");
 563 
 564   // Obtain source type
 565   ValueTypeNode* vt = peek()->as_ValueType();
 566   const TypeValueType* src_type = gvn().type(vt)->isa_valuetype();
 567   guarantee(src_type != NULL, "vbox: Source type must not be null");
 568   ciValueKlass* src_vk = src_type->value_klass();
 569   guarantee(src_vk != NULL && src_vk->is_loaded() && src_vk->exact_klass(),
 570             "vbox: Source class must be a value type and must be loaded and exact");
 571 
 572   kill_dead_locals();
 573 
 574   ciInstanceKlass* target_vcc_klass = target_klass->as_instance_klass();
 575   ciInstanceKlass* src_vcc_klass = src_vk->vcc_klass();;
 576 
 577   // TODO: Extend type check below if (and once) value type class hierarchies become available.
 578   // (incl. extension to support dynamic type checks).
 579   if (!src_vcc_klass->equals(target_vcc_klass)) {
 580     builtin_throw(Deoptimization::Reason_class_check);
 581     guarantee(stopped(), "A ClassCastException must be always thrown on this path");
 582     return;
 583   }
 584   guarantee(src_vk->is_valuetype(), "vbox: Target DVT must be a value type");
 585   pop();
 586 
 587   // Create new object
 588   Node* kls = makecon(TypeKlassPtr::make(target_vcc_klass));
 589   Node* obj = new_instance(kls);
 590 
 591   // Store all field values to the newly created object.
 592   // The code below relies on the assumption that the VCC has the
 593   // same memory layout as the derived value type.
 594   // TODO: Once the layout of the two is not the same, update code below.
 595   vt->as_ValueType()->store_values(this, obj, obj, target_vcc_klass);
 596 
 597   // Push the new object onto the stack
 598   push(obj);
 599 }
 600 
 601 void Parse::do_vunbox() {
 602   kill_dead_locals();
 603 
 604   // Check if the VCC instance is null.
 605   Node* not_null_obj = null_check(peek());
 606 
 607   // Value determined to be null at compile time
 608   if (stopped()) {
 609     return;
 610   }
 611 
 612   // Obtain target type (from bytecodes)
 613   bool will_link;
 614   ciKlass* target_klass = iter().get_klass(will_link);
 615   guarantee(will_link, "vunbox: Derived value type must be loaded");
 616   guarantee(target_klass->is_instance_klass(), "vunbox: Target class must be an instance type");
 617 
 618   // Obtain source type
 619   const TypeOopPtr* source_type = gvn().type(not_null_obj)->isa_oopptr();
 620   guarantee(source_type != NULL && source_type->klass() != NULL &&
 621             source_type->klass()->is_instance_klass() && source_type->klass()->is_loaded(),
 622             "vunbox: Source class must be an instance type and must be loaded");
 623 
 624   ciInstanceKlass* target_dvt_klass = target_klass->as_instance_klass();
 625   ciInstanceKlass* target_vcc_klass = target_dvt_klass->vcc_klass();
 626 
 627   // Check if the class of the source is a subclass of the value-capable class
 628   // corresponding to the target.
 629   // TOOD: Implement profiling of vunbox bytecodes to enable type speculation.
 630   if (target_vcc_klass == NULL || !source_type->klass()->is_subclass_of(target_vcc_klass)) {
 631     // It is obvious at compile-time that source and target are unrelated.
 632     builtin_throw(Deoptimization::Reason_class_check);
 633     guarantee(stopped(), "A ClassCastException must be always thrown on this path");
 634     return;
 635   }
 636   guarantee(target_dvt_klass->is_valuetype(), "vunbox: Target DVT must be a value type");
 637 
 638   if (!target_vcc_klass->equals(source_type->klass()) || !source_type->klass_is_exact()) {
 639     Node* exact_obj = not_null_obj;
 640     Node* slow_ctl  = type_check_receiver(exact_obj, target_vcc_klass, 1.0, &exact_obj);
 641     {
 642       PreserveJVMState pjvms(this);
 643       set_control(slow_ctl);
 644       builtin_throw(Deoptimization::Reason_class_check);
 645     }
 646     replace_in_map(not_null_obj, exact_obj);
 647     not_null_obj = exact_obj;
 648   }
 649 
 650   // Remove object from the top of the stack
 651   pop();
 652 
 653   // Create a value type node with the corresponding type
 654   ciValueKlass* vk = target_dvt_klass->as_value_klass();
 655   Node* vt = ValueTypeNode::make(gvn(), vk, map()->memory(), not_null_obj, not_null_obj, target_vcc_klass, vk->first_field_offset());
 656 
 657   // Push the value type onto the stack
 658   push(vt);
 659 }