1 /*
   2  * Copyright (c) 1997, 2017, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "asm/assembler.hpp"
  27 #include "asm/assembler.inline.hpp"
  28 #include "compiler/disassembler.hpp"
  29 #include "gc/shared/cardTableModRefBS.hpp"
  30 #include "gc/shared/collectedHeap.inline.hpp"
  31 #include "interpreter/interpreter.hpp"
  32 #include "memory/resourceArea.hpp"
  33 #include "memory/universe.hpp"
  34 #include "oops/klass.inline.hpp"
  35 #include "prims/methodHandles.hpp"
  36 #include "runtime/biasedLocking.hpp"
  37 #include "runtime/interfaceSupport.hpp"
  38 #include "runtime/objectMonitor.hpp"
  39 #include "runtime/os.hpp"
  40 #include "runtime/sharedRuntime.hpp"
  41 #include "runtime/stubRoutines.hpp"
  42 #include "runtime/thread.hpp"
  43 #include "utilities/macros.hpp"
  44 #if INCLUDE_ALL_GCS
  45 #include "gc/g1/g1CollectedHeap.inline.hpp"
  46 #include "gc/g1/g1SATBCardTableModRefBS.hpp"
  47 #include "gc/g1/heapRegion.hpp"
  48 #endif // INCLUDE_ALL_GCS
  49 #include "crc32c.h"
  50 #ifdef COMPILER2
  51 #include "opto/intrinsicnode.hpp"
  52 #endif
  53 
  54 #ifdef PRODUCT
  55 #define BLOCK_COMMENT(str) /* nothing */
  56 #define STOP(error) stop(error)
  57 #else
  58 #define BLOCK_COMMENT(str) block_comment(str)
  59 #define STOP(error) block_comment(error); stop(error)
  60 #endif
  61 
  62 #define BIND(label) bind(label); BLOCK_COMMENT(#label ":")
  63 
  64 #ifdef ASSERT
  65 bool AbstractAssembler::pd_check_instruction_mark() { return true; }
  66 #endif
  67 
  68 static Assembler::Condition reverse[] = {
  69     Assembler::noOverflow     /* overflow      = 0x0 */ ,
  70     Assembler::overflow       /* noOverflow    = 0x1 */ ,
  71     Assembler::aboveEqual     /* carrySet      = 0x2, below         = 0x2 */ ,
  72     Assembler::below          /* aboveEqual    = 0x3, carryClear    = 0x3 */ ,
  73     Assembler::notZero        /* zero          = 0x4, equal         = 0x4 */ ,
  74     Assembler::zero           /* notZero       = 0x5, notEqual      = 0x5 */ ,
  75     Assembler::above          /* belowEqual    = 0x6 */ ,
  76     Assembler::belowEqual     /* above         = 0x7 */ ,
  77     Assembler::positive       /* negative      = 0x8 */ ,
  78     Assembler::negative       /* positive      = 0x9 */ ,
  79     Assembler::noParity       /* parity        = 0xa */ ,
  80     Assembler::parity         /* noParity      = 0xb */ ,
  81     Assembler::greaterEqual   /* less          = 0xc */ ,
  82     Assembler::less           /* greaterEqual  = 0xd */ ,
  83     Assembler::greater        /* lessEqual     = 0xe */ ,
  84     Assembler::lessEqual      /* greater       = 0xf, */
  85 
  86 };
  87 
  88 
  89 // Implementation of MacroAssembler
  90 
  91 // First all the versions that have distinct versions depending on 32/64 bit
  92 // Unless the difference is trivial (1 line or so).
  93 
  94 #ifndef _LP64
  95 
  96 // 32bit versions
  97 
  98 Address MacroAssembler::as_Address(AddressLiteral adr) {
  99   return Address(adr.target(), adr.rspec());
 100 }
 101 
 102 Address MacroAssembler::as_Address(ArrayAddress adr) {
 103   return Address::make_array(adr);
 104 }
 105 
 106 void MacroAssembler::call_VM_leaf_base(address entry_point,
 107                                        int number_of_arguments) {
 108   call(RuntimeAddress(entry_point));
 109   increment(rsp, number_of_arguments * wordSize);
 110 }
 111 
 112 void MacroAssembler::cmpklass(Address src1, Metadata* obj) {
 113   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 114 }
 115 
 116 void MacroAssembler::cmpklass(Register src1, Metadata* obj) {
 117   cmp_literal32(src1, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 118 }
 119 
 120 void MacroAssembler::cmpoop(Address src1, jobject obj) {
 121   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 122 }
 123 
 124 void MacroAssembler::cmpoop(Register src1, jobject obj) {
 125   cmp_literal32(src1, (int32_t)obj, oop_Relocation::spec_for_immediate());
 126 }
 127 
 128 void MacroAssembler::extend_sign(Register hi, Register lo) {
 129   // According to Intel Doc. AP-526, "Integer Divide", p.18.
 130   if (VM_Version::is_P6() && hi == rdx && lo == rax) {
 131     cdql();
 132   } else {
 133     movl(hi, lo);
 134     sarl(hi, 31);
 135   }
 136 }
 137 
 138 void MacroAssembler::jC2(Register tmp, Label& L) {
 139   // set parity bit if FPU flag C2 is set (via rax)
 140   save_rax(tmp);
 141   fwait(); fnstsw_ax();
 142   sahf();
 143   restore_rax(tmp);
 144   // branch
 145   jcc(Assembler::parity, L);
 146 }
 147 
 148 void MacroAssembler::jnC2(Register tmp, Label& L) {
 149   // set parity bit if FPU flag C2 is set (via rax)
 150   save_rax(tmp);
 151   fwait(); fnstsw_ax();
 152   sahf();
 153   restore_rax(tmp);
 154   // branch
 155   jcc(Assembler::noParity, L);
 156 }
 157 
 158 // 32bit can do a case table jump in one instruction but we no longer allow the base
 159 // to be installed in the Address class
 160 void MacroAssembler::jump(ArrayAddress entry) {
 161   jmp(as_Address(entry));
 162 }
 163 
 164 // Note: y_lo will be destroyed
 165 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 166   // Long compare for Java (semantics as described in JVM spec.)
 167   Label high, low, done;
 168 
 169   cmpl(x_hi, y_hi);
 170   jcc(Assembler::less, low);
 171   jcc(Assembler::greater, high);
 172   // x_hi is the return register
 173   xorl(x_hi, x_hi);
 174   cmpl(x_lo, y_lo);
 175   jcc(Assembler::below, low);
 176   jcc(Assembler::equal, done);
 177 
 178   bind(high);
 179   xorl(x_hi, x_hi);
 180   increment(x_hi);
 181   jmp(done);
 182 
 183   bind(low);
 184   xorl(x_hi, x_hi);
 185   decrementl(x_hi);
 186 
 187   bind(done);
 188 }
 189 
 190 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 191     mov_literal32(dst, (int32_t)src.target(), src.rspec());
 192 }
 193 
 194 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 195   // leal(dst, as_Address(adr));
 196   // see note in movl as to why we must use a move
 197   mov_literal32(dst, (int32_t) adr.target(), adr.rspec());
 198 }
 199 
 200 void MacroAssembler::leave() {
 201   mov(rsp, rbp);
 202   pop(rbp);
 203 }
 204 
 205 void MacroAssembler::lmul(int x_rsp_offset, int y_rsp_offset) {
 206   // Multiplication of two Java long values stored on the stack
 207   // as illustrated below. Result is in rdx:rax.
 208   //
 209   // rsp ---> [  ??  ] \               \
 210   //            ....    | y_rsp_offset  |
 211   //          [ y_lo ] /  (in bytes)    | x_rsp_offset
 212   //          [ y_hi ]                  | (in bytes)
 213   //            ....                    |
 214   //          [ x_lo ]                 /
 215   //          [ x_hi ]
 216   //            ....
 217   //
 218   // Basic idea: lo(result) = lo(x_lo * y_lo)
 219   //             hi(result) = hi(x_lo * y_lo) + lo(x_hi * y_lo) + lo(x_lo * y_hi)
 220   Address x_hi(rsp, x_rsp_offset + wordSize); Address x_lo(rsp, x_rsp_offset);
 221   Address y_hi(rsp, y_rsp_offset + wordSize); Address y_lo(rsp, y_rsp_offset);
 222   Label quick;
 223   // load x_hi, y_hi and check if quick
 224   // multiplication is possible
 225   movl(rbx, x_hi);
 226   movl(rcx, y_hi);
 227   movl(rax, rbx);
 228   orl(rbx, rcx);                                 // rbx, = 0 <=> x_hi = 0 and y_hi = 0
 229   jcc(Assembler::zero, quick);                   // if rbx, = 0 do quick multiply
 230   // do full multiplication
 231   // 1st step
 232   mull(y_lo);                                    // x_hi * y_lo
 233   movl(rbx, rax);                                // save lo(x_hi * y_lo) in rbx,
 234   // 2nd step
 235   movl(rax, x_lo);
 236   mull(rcx);                                     // x_lo * y_hi
 237   addl(rbx, rax);                                // add lo(x_lo * y_hi) to rbx,
 238   // 3rd step
 239   bind(quick);                                   // note: rbx, = 0 if quick multiply!
 240   movl(rax, x_lo);
 241   mull(y_lo);                                    // x_lo * y_lo
 242   addl(rdx, rbx);                                // correct hi(x_lo * y_lo)
 243 }
 244 
 245 void MacroAssembler::lneg(Register hi, Register lo) {
 246   negl(lo);
 247   adcl(hi, 0);
 248   negl(hi);
 249 }
 250 
 251 void MacroAssembler::lshl(Register hi, Register lo) {
 252   // Java shift left long support (semantics as described in JVM spec., p.305)
 253   // (basic idea for shift counts s >= n: x << s == (x << n) << (s - n))
 254   // shift value is in rcx !
 255   assert(hi != rcx, "must not use rcx");
 256   assert(lo != rcx, "must not use rcx");
 257   const Register s = rcx;                        // shift count
 258   const int      n = BitsPerWord;
 259   Label L;
 260   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 261   cmpl(s, n);                                    // if (s < n)
 262   jcc(Assembler::less, L);                       // else (s >= n)
 263   movl(hi, lo);                                  // x := x << n
 264   xorl(lo, lo);
 265   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 266   bind(L);                                       // s (mod n) < n
 267   shldl(hi, lo);                                 // x := x << s
 268   shll(lo);
 269 }
 270 
 271 
 272 void MacroAssembler::lshr(Register hi, Register lo, bool sign_extension) {
 273   // Java shift right long support (semantics as described in JVM spec., p.306 & p.310)
 274   // (basic idea for shift counts s >= n: x >> s == (x >> n) >> (s - n))
 275   assert(hi != rcx, "must not use rcx");
 276   assert(lo != rcx, "must not use rcx");
 277   const Register s = rcx;                        // shift count
 278   const int      n = BitsPerWord;
 279   Label L;
 280   andl(s, 0x3f);                                 // s := s & 0x3f (s < 0x40)
 281   cmpl(s, n);                                    // if (s < n)
 282   jcc(Assembler::less, L);                       // else (s >= n)
 283   movl(lo, hi);                                  // x := x >> n
 284   if (sign_extension) sarl(hi, 31);
 285   else                xorl(hi, hi);
 286   // Note: subl(s, n) is not needed since the Intel shift instructions work rcx mod n!
 287   bind(L);                                       // s (mod n) < n
 288   shrdl(lo, hi);                                 // x := x >> s
 289   if (sign_extension) sarl(hi);
 290   else                shrl(hi);
 291 }
 292 
 293 void MacroAssembler::movoop(Register dst, jobject obj) {
 294   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 295 }
 296 
 297 void MacroAssembler::movoop(Address dst, jobject obj) {
 298   mov_literal32(dst, (int32_t)obj, oop_Relocation::spec_for_immediate());
 299 }
 300 
 301 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 302   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 303 }
 304 
 305 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 306   mov_literal32(dst, (int32_t)obj, metadata_Relocation::spec_for_immediate());
 307 }
 308 
 309 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 310   // scratch register is not used,
 311   // it is defined to match parameters of 64-bit version of this method.
 312   if (src.is_lval()) {
 313     mov_literal32(dst, (intptr_t)src.target(), src.rspec());
 314   } else {
 315     movl(dst, as_Address(src));
 316   }
 317 }
 318 
 319 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 320   movl(as_Address(dst), src);
 321 }
 322 
 323 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 324   movl(dst, as_Address(src));
 325 }
 326 
 327 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 328 void MacroAssembler::movptr(Address dst, intptr_t src) {
 329   movl(dst, src);
 330 }
 331 
 332 
 333 void MacroAssembler::pop_callee_saved_registers() {
 334   pop(rcx);
 335   pop(rdx);
 336   pop(rdi);
 337   pop(rsi);
 338 }
 339 
 340 void MacroAssembler::pop_fTOS() {
 341   fld_d(Address(rsp, 0));
 342   addl(rsp, 2 * wordSize);
 343 }
 344 
 345 void MacroAssembler::push_callee_saved_registers() {
 346   push(rsi);
 347   push(rdi);
 348   push(rdx);
 349   push(rcx);
 350 }
 351 
 352 void MacroAssembler::push_fTOS() {
 353   subl(rsp, 2 * wordSize);
 354   fstp_d(Address(rsp, 0));
 355 }
 356 
 357 
 358 void MacroAssembler::pushoop(jobject obj) {
 359   push_literal32((int32_t)obj, oop_Relocation::spec_for_immediate());
 360 }
 361 
 362 void MacroAssembler::pushklass(Metadata* obj) {
 363   push_literal32((int32_t)obj, metadata_Relocation::spec_for_immediate());
 364 }
 365 
 366 void MacroAssembler::pushptr(AddressLiteral src) {
 367   if (src.is_lval()) {
 368     push_literal32((int32_t)src.target(), src.rspec());
 369   } else {
 370     pushl(as_Address(src));
 371   }
 372 }
 373 
 374 void MacroAssembler::set_word_if_not_zero(Register dst) {
 375   xorl(dst, dst);
 376   set_byte_if_not_zero(dst);
 377 }
 378 
 379 static void pass_arg0(MacroAssembler* masm, Register arg) {
 380   masm->push(arg);
 381 }
 382 
 383 static void pass_arg1(MacroAssembler* masm, Register arg) {
 384   masm->push(arg);
 385 }
 386 
 387 static void pass_arg2(MacroAssembler* masm, Register arg) {
 388   masm->push(arg);
 389 }
 390 
 391 static void pass_arg3(MacroAssembler* masm, Register arg) {
 392   masm->push(arg);
 393 }
 394 
 395 #ifndef PRODUCT
 396 extern "C" void findpc(intptr_t x);
 397 #endif
 398 
 399 void MacroAssembler::debug32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip, char* msg) {
 400   // In order to get locks to work, we need to fake a in_VM state
 401   JavaThread* thread = JavaThread::current();
 402   JavaThreadState saved_state = thread->thread_state();
 403   thread->set_thread_state(_thread_in_vm);
 404   if (ShowMessageBoxOnError) {
 405     JavaThread* thread = JavaThread::current();
 406     JavaThreadState saved_state = thread->thread_state();
 407     thread->set_thread_state(_thread_in_vm);
 408     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 409       ttyLocker ttyl;
 410       BytecodeCounter::print();
 411     }
 412     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 413     // This is the value of eip which points to where verify_oop will return.
 414     if (os::message_box(msg, "Execution stopped, print registers?")) {
 415       print_state32(rdi, rsi, rbp, rsp, rbx, rdx, rcx, rax, eip);
 416       BREAKPOINT;
 417     }
 418   } else {
 419     ttyLocker ttyl;
 420     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n", msg);
 421   }
 422   // Don't assert holding the ttyLock
 423     assert(false, "DEBUG MESSAGE: %s", msg);
 424   ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 425 }
 426 
 427 void MacroAssembler::print_state32(int rdi, int rsi, int rbp, int rsp, int rbx, int rdx, int rcx, int rax, int eip) {
 428   ttyLocker ttyl;
 429   FlagSetting fs(Debugging, true);
 430   tty->print_cr("eip = 0x%08x", eip);
 431 #ifndef PRODUCT
 432   if ((WizardMode || Verbose) && PrintMiscellaneous) {
 433     tty->cr();
 434     findpc(eip);
 435     tty->cr();
 436   }
 437 #endif
 438 #define PRINT_REG(rax) \
 439   { tty->print("%s = ", #rax); os::print_location(tty, rax); }
 440   PRINT_REG(rax);
 441   PRINT_REG(rbx);
 442   PRINT_REG(rcx);
 443   PRINT_REG(rdx);
 444   PRINT_REG(rdi);
 445   PRINT_REG(rsi);
 446   PRINT_REG(rbp);
 447   PRINT_REG(rsp);
 448 #undef PRINT_REG
 449   // Print some words near top of staack.
 450   int* dump_sp = (int*) rsp;
 451   for (int col1 = 0; col1 < 8; col1++) {
 452     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 453     os::print_location(tty, *dump_sp++);
 454   }
 455   for (int row = 0; row < 16; row++) {
 456     tty->print("(rsp+0x%03x) 0x%08x: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (intptr_t)dump_sp);
 457     for (int col = 0; col < 8; col++) {
 458       tty->print(" 0x%08x", *dump_sp++);
 459     }
 460     tty->cr();
 461   }
 462   // Print some instructions around pc:
 463   Disassembler::decode((address)eip-64, (address)eip);
 464   tty->print_cr("--------");
 465   Disassembler::decode((address)eip, (address)eip+32);
 466 }
 467 
 468 void MacroAssembler::stop(const char* msg) {
 469   ExternalAddress message((address)msg);
 470   // push address of message
 471   pushptr(message.addr());
 472   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 473   pusha();                                            // push registers
 474   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug32)));
 475   hlt();
 476 }
 477 
 478 void MacroAssembler::warn(const char* msg) {
 479   push_CPU_state();
 480 
 481   ExternalAddress message((address) msg);
 482   // push address of message
 483   pushptr(message.addr());
 484 
 485   call(RuntimeAddress(CAST_FROM_FN_PTR(address, warning)));
 486   addl(rsp, wordSize);       // discard argument
 487   pop_CPU_state();
 488 }
 489 
 490 void MacroAssembler::print_state() {
 491   { Label L; call(L, relocInfo::none); bind(L); }     // push eip
 492   pusha();                                            // push registers
 493 
 494   push_CPU_state();
 495   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::print_state32)));
 496   pop_CPU_state();
 497 
 498   popa();
 499   addl(rsp, wordSize);
 500 }
 501 
 502 #else // _LP64
 503 
 504 // 64 bit versions
 505 
 506 Address MacroAssembler::as_Address(AddressLiteral adr) {
 507   // amd64 always does this as a pc-rel
 508   // we can be absolute or disp based on the instruction type
 509   // jmp/call are displacements others are absolute
 510   assert(!adr.is_lval(), "must be rval");
 511   assert(reachable(adr), "must be");
 512   return Address((int32_t)(intptr_t)(adr.target() - pc()), adr.target(), adr.reloc());
 513 
 514 }
 515 
 516 Address MacroAssembler::as_Address(ArrayAddress adr) {
 517   AddressLiteral base = adr.base();
 518   lea(rscratch1, base);
 519   Address index = adr.index();
 520   assert(index._disp == 0, "must not have disp"); // maybe it can?
 521   Address array(rscratch1, index._index, index._scale, index._disp);
 522   return array;
 523 }
 524 
 525 void MacroAssembler::call_VM_leaf_base(address entry_point, int num_args) {
 526   Label L, E;
 527 
 528 #ifdef _WIN64
 529   // Windows always allocates space for it's register args
 530   assert(num_args <= 4, "only register arguments supported");
 531   subq(rsp,  frame::arg_reg_save_area_bytes);
 532 #endif
 533 
 534   // Align stack if necessary
 535   testl(rsp, 15);
 536   jcc(Assembler::zero, L);
 537 
 538   subq(rsp, 8);
 539   {
 540     call(RuntimeAddress(entry_point));
 541   }
 542   addq(rsp, 8);
 543   jmp(E);
 544 
 545   bind(L);
 546   {
 547     call(RuntimeAddress(entry_point));
 548   }
 549 
 550   bind(E);
 551 
 552 #ifdef _WIN64
 553   // restore stack pointer
 554   addq(rsp, frame::arg_reg_save_area_bytes);
 555 #endif
 556 
 557 }
 558 
 559 void MacroAssembler::cmp64(Register src1, AddressLiteral src2) {
 560   assert(!src2.is_lval(), "should use cmpptr");
 561 
 562   if (reachable(src2)) {
 563     cmpq(src1, as_Address(src2));
 564   } else {
 565     lea(rscratch1, src2);
 566     Assembler::cmpq(src1, Address(rscratch1, 0));
 567   }
 568 }
 569 
 570 int MacroAssembler::corrected_idivq(Register reg) {
 571   // Full implementation of Java ldiv and lrem; checks for special
 572   // case as described in JVM spec., p.243 & p.271.  The function
 573   // returns the (pc) offset of the idivl instruction - may be needed
 574   // for implicit exceptions.
 575   //
 576   //         normal case                           special case
 577   //
 578   // input : rax: dividend                         min_long
 579   //         reg: divisor   (may not be eax/edx)   -1
 580   //
 581   // output: rax: quotient  (= rax idiv reg)       min_long
 582   //         rdx: remainder (= rax irem reg)       0
 583   assert(reg != rax && reg != rdx, "reg cannot be rax or rdx register");
 584   static const int64_t min_long = 0x8000000000000000;
 585   Label normal_case, special_case;
 586 
 587   // check for special case
 588   cmp64(rax, ExternalAddress((address) &min_long));
 589   jcc(Assembler::notEqual, normal_case);
 590   xorl(rdx, rdx); // prepare rdx for possible special case (where
 591                   // remainder = 0)
 592   cmpq(reg, -1);
 593   jcc(Assembler::equal, special_case);
 594 
 595   // handle normal case
 596   bind(normal_case);
 597   cdqq();
 598   int idivq_offset = offset();
 599   idivq(reg);
 600 
 601   // normal and special case exit
 602   bind(special_case);
 603 
 604   return idivq_offset;
 605 }
 606 
 607 void MacroAssembler::decrementq(Register reg, int value) {
 608   if (value == min_jint) { subq(reg, value); return; }
 609   if (value <  0) { incrementq(reg, -value); return; }
 610   if (value == 0) {                        ; return; }
 611   if (value == 1 && UseIncDec) { decq(reg) ; return; }
 612   /* else */      { subq(reg, value)       ; return; }
 613 }
 614 
 615 void MacroAssembler::decrementq(Address dst, int value) {
 616   if (value == min_jint) { subq(dst, value); return; }
 617   if (value <  0) { incrementq(dst, -value); return; }
 618   if (value == 0) {                        ; return; }
 619   if (value == 1 && UseIncDec) { decq(dst) ; return; }
 620   /* else */      { subq(dst, value)       ; return; }
 621 }
 622 
 623 void MacroAssembler::incrementq(AddressLiteral dst) {
 624   if (reachable(dst)) {
 625     incrementq(as_Address(dst));
 626   } else {
 627     lea(rscratch1, dst);
 628     incrementq(Address(rscratch1, 0));
 629   }
 630 }
 631 
 632 void MacroAssembler::incrementq(Register reg, int value) {
 633   if (value == min_jint) { addq(reg, value); return; }
 634   if (value <  0) { decrementq(reg, -value); return; }
 635   if (value == 0) {                        ; return; }
 636   if (value == 1 && UseIncDec) { incq(reg) ; return; }
 637   /* else */      { addq(reg, value)       ; return; }
 638 }
 639 
 640 void MacroAssembler::incrementq(Address dst, int value) {
 641   if (value == min_jint) { addq(dst, value); return; }
 642   if (value <  0) { decrementq(dst, -value); return; }
 643   if (value == 0) {                        ; return; }
 644   if (value == 1 && UseIncDec) { incq(dst) ; return; }
 645   /* else */      { addq(dst, value)       ; return; }
 646 }
 647 
 648 // 32bit can do a case table jump in one instruction but we no longer allow the base
 649 // to be installed in the Address class
 650 void MacroAssembler::jump(ArrayAddress entry) {
 651   lea(rscratch1, entry.base());
 652   Address dispatch = entry.index();
 653   assert(dispatch._base == noreg, "must be");
 654   dispatch._base = rscratch1;
 655   jmp(dispatch);
 656 }
 657 
 658 void MacroAssembler::lcmp2int(Register x_hi, Register x_lo, Register y_hi, Register y_lo) {
 659   ShouldNotReachHere(); // 64bit doesn't use two regs
 660   cmpq(x_lo, y_lo);
 661 }
 662 
 663 void MacroAssembler::lea(Register dst, AddressLiteral src) {
 664     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 665 }
 666 
 667 void MacroAssembler::lea(Address dst, AddressLiteral adr) {
 668   mov_literal64(rscratch1, (intptr_t)adr.target(), adr.rspec());
 669   movptr(dst, rscratch1);
 670 }
 671 
 672 void MacroAssembler::leave() {
 673   // %%% is this really better? Why not on 32bit too?
 674   emit_int8((unsigned char)0xC9); // LEAVE
 675 }
 676 
 677 void MacroAssembler::lneg(Register hi, Register lo) {
 678   ShouldNotReachHere(); // 64bit doesn't use two regs
 679   negq(lo);
 680 }
 681 
 682 void MacroAssembler::movoop(Register dst, jobject obj) {
 683   mov_literal64(dst, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 684 }
 685 
 686 void MacroAssembler::movoop(Address dst, jobject obj) {
 687   mov_literal64(rscratch1, (intptr_t)obj, oop_Relocation::spec_for_immediate());
 688   movq(dst, rscratch1);
 689 }
 690 
 691 void MacroAssembler::mov_metadata(Register dst, Metadata* obj) {
 692   mov_literal64(dst, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 693 }
 694 
 695 void MacroAssembler::mov_metadata(Address dst, Metadata* obj) {
 696   mov_literal64(rscratch1, (intptr_t)obj, metadata_Relocation::spec_for_immediate());
 697   movq(dst, rscratch1);
 698 }
 699 
 700 void MacroAssembler::movptr(Register dst, AddressLiteral src, Register scratch) {
 701   if (src.is_lval()) {
 702     mov_literal64(dst, (intptr_t)src.target(), src.rspec());
 703   } else {
 704     if (reachable(src)) {
 705       movq(dst, as_Address(src));
 706     } else {
 707       lea(scratch, src);
 708       movq(dst, Address(scratch, 0));
 709     }
 710   }
 711 }
 712 
 713 void MacroAssembler::movptr(ArrayAddress dst, Register src) {
 714   movq(as_Address(dst), src);
 715 }
 716 
 717 void MacroAssembler::movptr(Register dst, ArrayAddress src) {
 718   movq(dst, as_Address(src));
 719 }
 720 
 721 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
 722 void MacroAssembler::movptr(Address dst, intptr_t src) {
 723   mov64(rscratch1, src);
 724   movq(dst, rscratch1);
 725 }
 726 
 727 // These are mostly for initializing NULL
 728 void MacroAssembler::movptr(Address dst, int32_t src) {
 729   movslq(dst, src);
 730 }
 731 
 732 void MacroAssembler::movptr(Register dst, int32_t src) {
 733   mov64(dst, (intptr_t)src);
 734 }
 735 
 736 void MacroAssembler::pushoop(jobject obj) {
 737   movoop(rscratch1, obj);
 738   push(rscratch1);
 739 }
 740 
 741 void MacroAssembler::pushklass(Metadata* obj) {
 742   mov_metadata(rscratch1, obj);
 743   push(rscratch1);
 744 }
 745 
 746 void MacroAssembler::pushptr(AddressLiteral src) {
 747   lea(rscratch1, src);
 748   if (src.is_lval()) {
 749     push(rscratch1);
 750   } else {
 751     pushq(Address(rscratch1, 0));
 752   }
 753 }
 754 
 755 void MacroAssembler::reset_last_Java_frame(bool clear_fp) {
 756   // we must set sp to zero to clear frame
 757   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
 758   // must clear fp, so that compiled frames are not confused; it is
 759   // possible that we need it only for debugging
 760   if (clear_fp) {
 761     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
 762   }
 763 
 764   // Always clear the pc because it could have been set by make_walkable()
 765   movptr(Address(r15_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
 766   vzeroupper();
 767 }
 768 
 769 void MacroAssembler::set_last_Java_frame(Register last_java_sp,
 770                                          Register last_java_fp,
 771                                          address  last_java_pc) {
 772   vzeroupper();
 773   // determine last_java_sp register
 774   if (!last_java_sp->is_valid()) {
 775     last_java_sp = rsp;
 776   }
 777 
 778   // last_java_fp is optional
 779   if (last_java_fp->is_valid()) {
 780     movptr(Address(r15_thread, JavaThread::last_Java_fp_offset()),
 781            last_java_fp);
 782   }
 783 
 784   // last_java_pc is optional
 785   if (last_java_pc != NULL) {
 786     Address java_pc(r15_thread,
 787                     JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset());
 788     lea(rscratch1, InternalAddress(last_java_pc));
 789     movptr(java_pc, rscratch1);
 790   }
 791 
 792   movptr(Address(r15_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
 793 }
 794 
 795 static void pass_arg0(MacroAssembler* masm, Register arg) {
 796   if (c_rarg0 != arg ) {
 797     masm->mov(c_rarg0, arg);
 798   }
 799 }
 800 
 801 static void pass_arg1(MacroAssembler* masm, Register arg) {
 802   if (c_rarg1 != arg ) {
 803     masm->mov(c_rarg1, arg);
 804   }
 805 }
 806 
 807 static void pass_arg2(MacroAssembler* masm, Register arg) {
 808   if (c_rarg2 != arg ) {
 809     masm->mov(c_rarg2, arg);
 810   }
 811 }
 812 
 813 static void pass_arg3(MacroAssembler* masm, Register arg) {
 814   if (c_rarg3 != arg ) {
 815     masm->mov(c_rarg3, arg);
 816   }
 817 }
 818 
 819 void MacroAssembler::stop(const char* msg) {
 820   address rip = pc();
 821   pusha(); // get regs on stack
 822   lea(c_rarg0, ExternalAddress((address) msg));
 823   lea(c_rarg1, InternalAddress(rip));
 824   movq(c_rarg2, rsp); // pass pointer to regs array
 825   andq(rsp, -16); // align stack as required by ABI
 826   call(RuntimeAddress(CAST_FROM_FN_PTR(address, MacroAssembler::debug64)));
 827   hlt();
 828 }
 829 
 830 void MacroAssembler::warn(const char* msg) {
 831   push(rbp);
 832   movq(rbp, rsp);
 833   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 834   push_CPU_state();   // keeps alignment at 16 bytes
 835   lea(c_rarg0, ExternalAddress((address) msg));
 836   call_VM_leaf(CAST_FROM_FN_PTR(address, warning), c_rarg0);
 837   pop_CPU_state();
 838   mov(rsp, rbp);
 839   pop(rbp);
 840 }
 841 
 842 void MacroAssembler::print_state() {
 843   address rip = pc();
 844   pusha();            // get regs on stack
 845   push(rbp);
 846   movq(rbp, rsp);
 847   andq(rsp, -16);     // align stack as required by push_CPU_state and call
 848   push_CPU_state();   // keeps alignment at 16 bytes
 849 
 850   lea(c_rarg0, InternalAddress(rip));
 851   lea(c_rarg1, Address(rbp, wordSize)); // pass pointer to regs array
 852   call_VM_leaf(CAST_FROM_FN_PTR(address, MacroAssembler::print_state64), c_rarg0, c_rarg1);
 853 
 854   pop_CPU_state();
 855   mov(rsp, rbp);
 856   pop(rbp);
 857   popa();
 858 }
 859 
 860 #ifndef PRODUCT
 861 extern "C" void findpc(intptr_t x);
 862 #endif
 863 
 864 void MacroAssembler::debug64(char* msg, int64_t pc, int64_t regs[]) {
 865   // In order to get locks to work, we need to fake a in_VM state
 866   if (ShowMessageBoxOnError) {
 867     JavaThread* thread = JavaThread::current();
 868     JavaThreadState saved_state = thread->thread_state();
 869     thread->set_thread_state(_thread_in_vm);
 870 #ifndef PRODUCT
 871     if (CountBytecodes || TraceBytecodes || StopInterpreterAt) {
 872       ttyLocker ttyl;
 873       BytecodeCounter::print();
 874     }
 875 #endif
 876     // To see where a verify_oop failed, get $ebx+40/X for this frame.
 877     // XXX correct this offset for amd64
 878     // This is the value of eip which points to where verify_oop will return.
 879     if (os::message_box(msg, "Execution stopped, print registers?")) {
 880       print_state64(pc, regs);
 881       BREAKPOINT;
 882       assert(false, "start up GDB");
 883     }
 884     ThreadStateTransition::transition(thread, _thread_in_vm, saved_state);
 885   } else {
 886     ttyLocker ttyl;
 887     ::tty->print_cr("=============== DEBUG MESSAGE: %s ================\n",
 888                     msg);
 889     assert(false, "DEBUG MESSAGE: %s", msg);
 890   }
 891 }
 892 
 893 void MacroAssembler::print_state64(int64_t pc, int64_t regs[]) {
 894   ttyLocker ttyl;
 895   FlagSetting fs(Debugging, true);
 896   tty->print_cr("rip = 0x%016lx", pc);
 897 #ifndef PRODUCT
 898   tty->cr();
 899   findpc(pc);
 900   tty->cr();
 901 #endif
 902 #define PRINT_REG(rax, value) \
 903   { tty->print("%s = ", #rax); os::print_location(tty, value); }
 904   PRINT_REG(rax, regs[15]);
 905   PRINT_REG(rbx, regs[12]);
 906   PRINT_REG(rcx, regs[14]);
 907   PRINT_REG(rdx, regs[13]);
 908   PRINT_REG(rdi, regs[8]);
 909   PRINT_REG(rsi, regs[9]);
 910   PRINT_REG(rbp, regs[10]);
 911   PRINT_REG(rsp, regs[11]);
 912   PRINT_REG(r8 , regs[7]);
 913   PRINT_REG(r9 , regs[6]);
 914   PRINT_REG(r10, regs[5]);
 915   PRINT_REG(r11, regs[4]);
 916   PRINT_REG(r12, regs[3]);
 917   PRINT_REG(r13, regs[2]);
 918   PRINT_REG(r14, regs[1]);
 919   PRINT_REG(r15, regs[0]);
 920 #undef PRINT_REG
 921   // Print some words near top of staack.
 922   int64_t* rsp = (int64_t*) regs[11];
 923   int64_t* dump_sp = rsp;
 924   for (int col1 = 0; col1 < 8; col1++) {
 925     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 926     os::print_location(tty, *dump_sp++);
 927   }
 928   for (int row = 0; row < 25; row++) {
 929     tty->print("(rsp+0x%03x) 0x%016lx: ", (int)((intptr_t)dump_sp - (intptr_t)rsp), (int64_t)dump_sp);
 930     for (int col = 0; col < 4; col++) {
 931       tty->print(" 0x%016lx", *dump_sp++);
 932     }
 933     tty->cr();
 934   }
 935   // Print some instructions around pc:
 936   Disassembler::decode((address)pc-64, (address)pc);
 937   tty->print_cr("--------");
 938   Disassembler::decode((address)pc, (address)pc+32);
 939 }
 940 
 941 #endif // _LP64
 942 
 943 // Now versions that are common to 32/64 bit
 944 
 945 void MacroAssembler::addptr(Register dst, int32_t imm32) {
 946   LP64_ONLY(addq(dst, imm32)) NOT_LP64(addl(dst, imm32));
 947 }
 948 
 949 void MacroAssembler::addptr(Register dst, Register src) {
 950   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 951 }
 952 
 953 void MacroAssembler::addptr(Address dst, Register src) {
 954   LP64_ONLY(addq(dst, src)) NOT_LP64(addl(dst, src));
 955 }
 956 
 957 void MacroAssembler::addsd(XMMRegister dst, AddressLiteral src) {
 958   if (reachable(src)) {
 959     Assembler::addsd(dst, as_Address(src));
 960   } else {
 961     lea(rscratch1, src);
 962     Assembler::addsd(dst, Address(rscratch1, 0));
 963   }
 964 }
 965 
 966 void MacroAssembler::addss(XMMRegister dst, AddressLiteral src) {
 967   if (reachable(src)) {
 968     addss(dst, as_Address(src));
 969   } else {
 970     lea(rscratch1, src);
 971     addss(dst, Address(rscratch1, 0));
 972   }
 973 }
 974 
 975 void MacroAssembler::addpd(XMMRegister dst, AddressLiteral src) {
 976   if (reachable(src)) {
 977     Assembler::addpd(dst, as_Address(src));
 978   } else {
 979     lea(rscratch1, src);
 980     Assembler::addpd(dst, Address(rscratch1, 0));
 981   }
 982 }
 983 
 984 void MacroAssembler::align(int modulus) {
 985   align(modulus, offset());
 986 }
 987 
 988 void MacroAssembler::align(int modulus, int target) {
 989   if (target % modulus != 0) {
 990     nop(modulus - (target % modulus));
 991   }
 992 }
 993 
 994 void MacroAssembler::andpd(XMMRegister dst, AddressLiteral src) {
 995   // Used in sign-masking with aligned address.
 996   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
 997   if (reachable(src)) {
 998     Assembler::andpd(dst, as_Address(src));
 999   } else {
1000     lea(rscratch1, src);
1001     Assembler::andpd(dst, Address(rscratch1, 0));
1002   }
1003 }
1004 
1005 void MacroAssembler::andps(XMMRegister dst, AddressLiteral src) {
1006   // Used in sign-masking with aligned address.
1007   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
1008   if (reachable(src)) {
1009     Assembler::andps(dst, as_Address(src));
1010   } else {
1011     lea(rscratch1, src);
1012     Assembler::andps(dst, Address(rscratch1, 0));
1013   }
1014 }
1015 
1016 void MacroAssembler::andptr(Register dst, int32_t imm32) {
1017   LP64_ONLY(andq(dst, imm32)) NOT_LP64(andl(dst, imm32));
1018 }
1019 
1020 void MacroAssembler::atomic_incl(Address counter_addr) {
1021   if (os::is_MP())
1022     lock();
1023   incrementl(counter_addr);
1024 }
1025 
1026 void MacroAssembler::atomic_incl(AddressLiteral counter_addr, Register scr) {
1027   if (reachable(counter_addr)) {
1028     atomic_incl(as_Address(counter_addr));
1029   } else {
1030     lea(scr, counter_addr);
1031     atomic_incl(Address(scr, 0));
1032   }
1033 }
1034 
1035 #ifdef _LP64
1036 void MacroAssembler::atomic_incq(Address counter_addr) {
1037   if (os::is_MP())
1038     lock();
1039   incrementq(counter_addr);
1040 }
1041 
1042 void MacroAssembler::atomic_incq(AddressLiteral counter_addr, Register scr) {
1043   if (reachable(counter_addr)) {
1044     atomic_incq(as_Address(counter_addr));
1045   } else {
1046     lea(scr, counter_addr);
1047     atomic_incq(Address(scr, 0));
1048   }
1049 }
1050 #endif
1051 
1052 // Writes to stack successive pages until offset reached to check for
1053 // stack overflow + shadow pages.  This clobbers tmp.
1054 void MacroAssembler::bang_stack_size(Register size, Register tmp) {
1055   movptr(tmp, rsp);
1056   // Bang stack for total size given plus shadow page size.
1057   // Bang one page at a time because large size can bang beyond yellow and
1058   // red zones.
1059   Label loop;
1060   bind(loop);
1061   movl(Address(tmp, (-os::vm_page_size())), size );
1062   subptr(tmp, os::vm_page_size());
1063   subl(size, os::vm_page_size());
1064   jcc(Assembler::greater, loop);
1065 
1066   // Bang down shadow pages too.
1067   // At this point, (tmp-0) is the last address touched, so don't
1068   // touch it again.  (It was touched as (tmp-pagesize) but then tmp
1069   // was post-decremented.)  Skip this address by starting at i=1, and
1070   // touch a few more pages below.  N.B.  It is important to touch all
1071   // the way down including all pages in the shadow zone.
1072   for (int i = 1; i < ((int)JavaThread::stack_shadow_zone_size() / os::vm_page_size()); i++) {
1073     // this could be any sized move but this is can be a debugging crumb
1074     // so the bigger the better.
1075     movptr(Address(tmp, (-i*os::vm_page_size())), size );
1076   }
1077 }
1078 
1079 void MacroAssembler::reserved_stack_check() {
1080     // testing if reserved zone needs to be enabled
1081     Label no_reserved_zone_enabling;
1082     Register thread = NOT_LP64(rsi) LP64_ONLY(r15_thread);
1083     NOT_LP64(get_thread(rsi);)
1084 
1085     cmpptr(rsp, Address(thread, JavaThread::reserved_stack_activation_offset()));
1086     jcc(Assembler::below, no_reserved_zone_enabling);
1087 
1088     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::enable_stack_reserved_zone), thread);
1089     jump(RuntimeAddress(StubRoutines::throw_delayed_StackOverflowError_entry()));
1090     should_not_reach_here();
1091 
1092     bind(no_reserved_zone_enabling);
1093 }
1094 
1095 int MacroAssembler::biased_locking_enter(Register lock_reg,
1096                                          Register obj_reg,
1097                                          Register swap_reg,
1098                                          Register tmp_reg,
1099                                          bool swap_reg_contains_mark,
1100                                          Label& done,
1101                                          Label* slow_case,
1102                                          BiasedLockingCounters* counters) {
1103   assert(UseBiasedLocking, "why call this otherwise?");
1104   assert(swap_reg == rax, "swap_reg must be rax for cmpxchgq");
1105   assert(tmp_reg != noreg, "tmp_reg must be supplied");
1106   assert_different_registers(lock_reg, obj_reg, swap_reg, tmp_reg);
1107   assert(markOopDesc::age_shift == markOopDesc::lock_bits + markOopDesc::biased_lock_bits, "biased locking makes assumptions about bit layout");
1108   Address mark_addr      (obj_reg, oopDesc::mark_offset_in_bytes());
1109   NOT_LP64( Address saved_mark_addr(lock_reg, 0); )
1110 
1111   if (PrintBiasedLockingStatistics && counters == NULL) {
1112     counters = BiasedLocking::counters();
1113   }
1114   // Biased locking
1115   // See whether the lock is currently biased toward our thread and
1116   // whether the epoch is still valid
1117   // Note that the runtime guarantees sufficient alignment of JavaThread
1118   // pointers to allow age to be placed into low bits
1119   // First check to see whether biasing is even enabled for this object
1120   Label cas_label;
1121   int null_check_offset = -1;
1122   if (!swap_reg_contains_mark) {
1123     null_check_offset = offset();
1124     movptr(swap_reg, mark_addr);
1125   }
1126   movptr(tmp_reg, swap_reg);
1127   andptr(tmp_reg, markOopDesc::biased_lock_mask_in_place);
1128   cmpptr(tmp_reg, markOopDesc::biased_lock_pattern);
1129   jcc(Assembler::notEqual, cas_label);
1130   // The bias pattern is present in the object's header. Need to check
1131   // whether the bias owner and the epoch are both still current.
1132 #ifndef _LP64
1133   // Note that because there is no current thread register on x86_32 we
1134   // need to store off the mark word we read out of the object to
1135   // avoid reloading it and needing to recheck invariants below. This
1136   // store is unfortunate but it makes the overall code shorter and
1137   // simpler.
1138   movptr(saved_mark_addr, swap_reg);
1139 #endif
1140   if (swap_reg_contains_mark) {
1141     null_check_offset = offset();
1142   }
1143   load_prototype_header(tmp_reg, obj_reg);
1144 #ifdef _LP64
1145   orptr(tmp_reg, r15_thread);
1146   xorptr(tmp_reg, swap_reg);
1147   Register header_reg = tmp_reg;
1148 #else
1149   xorptr(tmp_reg, swap_reg);
1150   get_thread(swap_reg);
1151   xorptr(swap_reg, tmp_reg);
1152   Register header_reg = swap_reg;
1153 #endif
1154   andptr(header_reg, ~((int) markOopDesc::age_mask_in_place));
1155   if (counters != NULL) {
1156     cond_inc32(Assembler::zero,
1157                ExternalAddress((address) counters->biased_lock_entry_count_addr()));
1158   }
1159   jcc(Assembler::equal, done);
1160 
1161   Label try_revoke_bias;
1162   Label try_rebias;
1163 
1164   // At this point we know that the header has the bias pattern and
1165   // that we are not the bias owner in the current epoch. We need to
1166   // figure out more details about the state of the header in order to
1167   // know what operations can be legally performed on the object's
1168   // header.
1169 
1170   // If the low three bits in the xor result aren't clear, that means
1171   // the prototype header is no longer biased and we have to revoke
1172   // the bias on this object.
1173   testptr(header_reg, markOopDesc::biased_lock_mask_in_place);
1174   jccb(Assembler::notZero, try_revoke_bias);
1175 
1176   // Biasing is still enabled for this data type. See whether the
1177   // epoch of the current bias is still valid, meaning that the epoch
1178   // bits of the mark word are equal to the epoch bits of the
1179   // prototype header. (Note that the prototype header's epoch bits
1180   // only change at a safepoint.) If not, attempt to rebias the object
1181   // toward the current thread. Note that we must be absolutely sure
1182   // that the current epoch is invalid in order to do this because
1183   // otherwise the manipulations it performs on the mark word are
1184   // illegal.
1185   testptr(header_reg, markOopDesc::epoch_mask_in_place);
1186   jccb(Assembler::notZero, try_rebias);
1187 
1188   // The epoch of the current bias is still valid but we know nothing
1189   // about the owner; it might be set or it might be clear. Try to
1190   // acquire the bias of the object using an atomic operation. If this
1191   // fails we will go in to the runtime to revoke the object's bias.
1192   // Note that we first construct the presumed unbiased header so we
1193   // don't accidentally blow away another thread's valid bias.
1194   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1195   andptr(swap_reg,
1196          markOopDesc::biased_lock_mask_in_place | markOopDesc::age_mask_in_place | markOopDesc::epoch_mask_in_place);
1197 #ifdef _LP64
1198   movptr(tmp_reg, swap_reg);
1199   orptr(tmp_reg, r15_thread);
1200 #else
1201   get_thread(tmp_reg);
1202   orptr(tmp_reg, swap_reg);
1203 #endif
1204   if (os::is_MP()) {
1205     lock();
1206   }
1207   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1208   // If the biasing toward our thread failed, this means that
1209   // another thread succeeded in biasing it toward itself and we
1210   // need to revoke that bias. The revocation will occur in the
1211   // interpreter runtime in the slow case.
1212   if (counters != NULL) {
1213     cond_inc32(Assembler::zero,
1214                ExternalAddress((address) counters->anonymously_biased_lock_entry_count_addr()));
1215   }
1216   if (slow_case != NULL) {
1217     jcc(Assembler::notZero, *slow_case);
1218   }
1219   jmp(done);
1220 
1221   bind(try_rebias);
1222   // At this point we know the epoch has expired, meaning that the
1223   // current "bias owner", if any, is actually invalid. Under these
1224   // circumstances _only_, we are allowed to use the current header's
1225   // value as the comparison value when doing the cas to acquire the
1226   // bias in the current epoch. In other words, we allow transfer of
1227   // the bias from one thread to another directly in this situation.
1228   //
1229   // FIXME: due to a lack of registers we currently blow away the age
1230   // bits in this situation. Should attempt to preserve them.
1231   load_prototype_header(tmp_reg, obj_reg);
1232 #ifdef _LP64
1233   orptr(tmp_reg, r15_thread);
1234 #else
1235   get_thread(swap_reg);
1236   orptr(tmp_reg, swap_reg);
1237   movptr(swap_reg, saved_mark_addr);
1238 #endif
1239   if (os::is_MP()) {
1240     lock();
1241   }
1242   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1243   // If the biasing toward our thread failed, then another thread
1244   // succeeded in biasing it toward itself and we need to revoke that
1245   // bias. The revocation will occur in the runtime in the slow case.
1246   if (counters != NULL) {
1247     cond_inc32(Assembler::zero,
1248                ExternalAddress((address) counters->rebiased_lock_entry_count_addr()));
1249   }
1250   if (slow_case != NULL) {
1251     jcc(Assembler::notZero, *slow_case);
1252   }
1253   jmp(done);
1254 
1255   bind(try_revoke_bias);
1256   // The prototype mark in the klass doesn't have the bias bit set any
1257   // more, indicating that objects of this data type are not supposed
1258   // to be biased any more. We are going to try to reset the mark of
1259   // this object to the prototype value and fall through to the
1260   // CAS-based locking scheme. Note that if our CAS fails, it means
1261   // that another thread raced us for the privilege of revoking the
1262   // bias of this particular object, so it's okay to continue in the
1263   // normal locking code.
1264   //
1265   // FIXME: due to a lack of registers we currently blow away the age
1266   // bits in this situation. Should attempt to preserve them.
1267   NOT_LP64( movptr(swap_reg, saved_mark_addr); )
1268   load_prototype_header(tmp_reg, obj_reg);
1269   if (os::is_MP()) {
1270     lock();
1271   }
1272   cmpxchgptr(tmp_reg, mark_addr); // compare tmp_reg and swap_reg
1273   // Fall through to the normal CAS-based lock, because no matter what
1274   // the result of the above CAS, some thread must have succeeded in
1275   // removing the bias bit from the object's header.
1276   if (counters != NULL) {
1277     cond_inc32(Assembler::zero,
1278                ExternalAddress((address) counters->revoked_lock_entry_count_addr()));
1279   }
1280 
1281   bind(cas_label);
1282 
1283   return null_check_offset;
1284 }
1285 
1286 void MacroAssembler::biased_locking_exit(Register obj_reg, Register temp_reg, Label& done) {
1287   assert(UseBiasedLocking, "why call this otherwise?");
1288 
1289   // Check for biased locking unlock case, which is a no-op
1290   // Note: we do not have to check the thread ID for two reasons.
1291   // First, the interpreter checks for IllegalMonitorStateException at
1292   // a higher level. Second, if the bias was revoked while we held the
1293   // lock, the object could not be rebiased toward another thread, so
1294   // the bias bit would be clear.
1295   movptr(temp_reg, Address(obj_reg, oopDesc::mark_offset_in_bytes()));
1296   andptr(temp_reg, markOopDesc::biased_lock_mask_in_place);
1297   cmpptr(temp_reg, markOopDesc::biased_lock_pattern);
1298   jcc(Assembler::equal, done);
1299 }
1300 
1301 #ifdef COMPILER2
1302 
1303 #if INCLUDE_RTM_OPT
1304 
1305 // Update rtm_counters based on abort status
1306 // input: abort_status
1307 //        rtm_counters (RTMLockingCounters*)
1308 // flags are killed
1309 void MacroAssembler::rtm_counters_update(Register abort_status, Register rtm_counters) {
1310 
1311   atomic_incptr(Address(rtm_counters, RTMLockingCounters::abort_count_offset()));
1312   if (PrintPreciseRTMLockingStatistics) {
1313     for (int i = 0; i < RTMLockingCounters::ABORT_STATUS_LIMIT; i++) {
1314       Label check_abort;
1315       testl(abort_status, (1<<i));
1316       jccb(Assembler::equal, check_abort);
1317       atomic_incptr(Address(rtm_counters, RTMLockingCounters::abortX_count_offset() + (i * sizeof(uintx))));
1318       bind(check_abort);
1319     }
1320   }
1321 }
1322 
1323 // Branch if (random & (count-1) != 0), count is 2^n
1324 // tmp, scr and flags are killed
1325 void MacroAssembler::branch_on_random_using_rdtsc(Register tmp, Register scr, int count, Label& brLabel) {
1326   assert(tmp == rax, "");
1327   assert(scr == rdx, "");
1328   rdtsc(); // modifies EDX:EAX
1329   andptr(tmp, count-1);
1330   jccb(Assembler::notZero, brLabel);
1331 }
1332 
1333 // Perform abort ratio calculation, set no_rtm bit if high ratio
1334 // input:  rtm_counters_Reg (RTMLockingCounters* address)
1335 // tmpReg, rtm_counters_Reg and flags are killed
1336 void MacroAssembler::rtm_abort_ratio_calculation(Register tmpReg,
1337                                                  Register rtm_counters_Reg,
1338                                                  RTMLockingCounters* rtm_counters,
1339                                                  Metadata* method_data) {
1340   Label L_done, L_check_always_rtm1, L_check_always_rtm2;
1341 
1342   if (RTMLockingCalculationDelay > 0) {
1343     // Delay calculation
1344     movptr(tmpReg, ExternalAddress((address) RTMLockingCounters::rtm_calculation_flag_addr()), tmpReg);
1345     testptr(tmpReg, tmpReg);
1346     jccb(Assembler::equal, L_done);
1347   }
1348   // Abort ratio calculation only if abort_count > RTMAbortThreshold
1349   //   Aborted transactions = abort_count * 100
1350   //   All transactions = total_count *  RTMTotalCountIncrRate
1351   //   Set no_rtm bit if (Aborted transactions >= All transactions * RTMAbortRatio)
1352 
1353   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::abort_count_offset()));
1354   cmpptr(tmpReg, RTMAbortThreshold);
1355   jccb(Assembler::below, L_check_always_rtm2);
1356   imulptr(tmpReg, tmpReg, 100);
1357 
1358   Register scrReg = rtm_counters_Reg;
1359   movptr(scrReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1360   imulptr(scrReg, scrReg, RTMTotalCountIncrRate);
1361   imulptr(scrReg, scrReg, RTMAbortRatio);
1362   cmpptr(tmpReg, scrReg);
1363   jccb(Assembler::below, L_check_always_rtm1);
1364   if (method_data != NULL) {
1365     // set rtm_state to "no rtm" in MDO
1366     mov_metadata(tmpReg, method_data);
1367     if (os::is_MP()) {
1368       lock();
1369     }
1370     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), NoRTM);
1371   }
1372   jmpb(L_done);
1373   bind(L_check_always_rtm1);
1374   // Reload RTMLockingCounters* address
1375   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1376   bind(L_check_always_rtm2);
1377   movptr(tmpReg, Address(rtm_counters_Reg, RTMLockingCounters::total_count_offset()));
1378   cmpptr(tmpReg, RTMLockingThreshold / RTMTotalCountIncrRate);
1379   jccb(Assembler::below, L_done);
1380   if (method_data != NULL) {
1381     // set rtm_state to "always rtm" in MDO
1382     mov_metadata(tmpReg, method_data);
1383     if (os::is_MP()) {
1384       lock();
1385     }
1386     orl(Address(tmpReg, MethodData::rtm_state_offset_in_bytes()), UseRTM);
1387   }
1388   bind(L_done);
1389 }
1390 
1391 // Update counters and perform abort ratio calculation
1392 // input:  abort_status_Reg
1393 // rtm_counters_Reg, flags are killed
1394 void MacroAssembler::rtm_profiling(Register abort_status_Reg,
1395                                    Register rtm_counters_Reg,
1396                                    RTMLockingCounters* rtm_counters,
1397                                    Metadata* method_data,
1398                                    bool profile_rtm) {
1399 
1400   assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1401   // update rtm counters based on rax value at abort
1402   // reads abort_status_Reg, updates flags
1403   lea(rtm_counters_Reg, ExternalAddress((address)rtm_counters));
1404   rtm_counters_update(abort_status_Reg, rtm_counters_Reg);
1405   if (profile_rtm) {
1406     // Save abort status because abort_status_Reg is used by following code.
1407     if (RTMRetryCount > 0) {
1408       push(abort_status_Reg);
1409     }
1410     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1411     rtm_abort_ratio_calculation(abort_status_Reg, rtm_counters_Reg, rtm_counters, method_data);
1412     // restore abort status
1413     if (RTMRetryCount > 0) {
1414       pop(abort_status_Reg);
1415     }
1416   }
1417 }
1418 
1419 // Retry on abort if abort's status is 0x6: can retry (0x2) | memory conflict (0x4)
1420 // inputs: retry_count_Reg
1421 //       : abort_status_Reg
1422 // output: retry_count_Reg decremented by 1
1423 // flags are killed
1424 void MacroAssembler::rtm_retry_lock_on_abort(Register retry_count_Reg, Register abort_status_Reg, Label& retryLabel) {
1425   Label doneRetry;
1426   assert(abort_status_Reg == rax, "");
1427   // The abort reason bits are in eax (see all states in rtmLocking.hpp)
1428   // 0x6 = conflict on which we can retry (0x2) | memory conflict (0x4)
1429   // if reason is in 0x6 and retry count != 0 then retry
1430   andptr(abort_status_Reg, 0x6);
1431   jccb(Assembler::zero, doneRetry);
1432   testl(retry_count_Reg, retry_count_Reg);
1433   jccb(Assembler::zero, doneRetry);
1434   pause();
1435   decrementl(retry_count_Reg);
1436   jmp(retryLabel);
1437   bind(doneRetry);
1438 }
1439 
1440 // Spin and retry if lock is busy,
1441 // inputs: box_Reg (monitor address)
1442 //       : retry_count_Reg
1443 // output: retry_count_Reg decremented by 1
1444 //       : clear z flag if retry count exceeded
1445 // tmp_Reg, scr_Reg, flags are killed
1446 void MacroAssembler::rtm_retry_lock_on_busy(Register retry_count_Reg, Register box_Reg,
1447                                             Register tmp_Reg, Register scr_Reg, Label& retryLabel) {
1448   Label SpinLoop, SpinExit, doneRetry;
1449   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1450 
1451   testl(retry_count_Reg, retry_count_Reg);
1452   jccb(Assembler::zero, doneRetry);
1453   decrementl(retry_count_Reg);
1454   movptr(scr_Reg, RTMSpinLoopCount);
1455 
1456   bind(SpinLoop);
1457   pause();
1458   decrementl(scr_Reg);
1459   jccb(Assembler::lessEqual, SpinExit);
1460   movptr(tmp_Reg, Address(box_Reg, owner_offset));
1461   testptr(tmp_Reg, tmp_Reg);
1462   jccb(Assembler::notZero, SpinLoop);
1463 
1464   bind(SpinExit);
1465   jmp(retryLabel);
1466   bind(doneRetry);
1467   incrementl(retry_count_Reg); // clear z flag
1468 }
1469 
1470 // Use RTM for normal stack locks
1471 // Input: objReg (object to lock)
1472 void MacroAssembler::rtm_stack_locking(Register objReg, Register tmpReg, Register scrReg,
1473                                        Register retry_on_abort_count_Reg,
1474                                        RTMLockingCounters* stack_rtm_counters,
1475                                        Metadata* method_data, bool profile_rtm,
1476                                        Label& DONE_LABEL, Label& IsInflated) {
1477   assert(UseRTMForStackLocks, "why call this otherwise?");
1478   assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1479   assert(tmpReg == rax, "");
1480   assert(scrReg == rdx, "");
1481   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1482 
1483   if (RTMRetryCount > 0) {
1484     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1485     bind(L_rtm_retry);
1486   }
1487   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1488   testptr(tmpReg, markOopDesc::monitor_value);  // inflated vs stack-locked|neutral|biased
1489   jcc(Assembler::notZero, IsInflated);
1490 
1491   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1492     Label L_noincrement;
1493     if (RTMTotalCountIncrRate > 1) {
1494       // tmpReg, scrReg and flags are killed
1495       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1496     }
1497     assert(stack_rtm_counters != NULL, "should not be NULL when profiling RTM");
1498     atomic_incptr(ExternalAddress((address)stack_rtm_counters->total_count_addr()), scrReg);
1499     bind(L_noincrement);
1500   }
1501   xbegin(L_on_abort);
1502   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));       // fetch markword
1503   andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1504   cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1505   jcc(Assembler::equal, DONE_LABEL);        // all done if unlocked
1506 
1507   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1508   if (UseRTMXendForLockBusy) {
1509     xend();
1510     movptr(abort_status_Reg, 0x2);   // Set the abort status to 2 (so we can retry)
1511     jmp(L_decrement_retry);
1512   }
1513   else {
1514     xabort(0);
1515   }
1516   bind(L_on_abort);
1517   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1518     rtm_profiling(abort_status_Reg, scrReg, stack_rtm_counters, method_data, profile_rtm);
1519   }
1520   bind(L_decrement_retry);
1521   if (RTMRetryCount > 0) {
1522     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1523     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1524   }
1525 }
1526 
1527 // Use RTM for inflating locks
1528 // inputs: objReg (object to lock)
1529 //         boxReg (on-stack box address (displaced header location) - KILLED)
1530 //         tmpReg (ObjectMonitor address + markOopDesc::monitor_value)
1531 void MacroAssembler::rtm_inflated_locking(Register objReg, Register boxReg, Register tmpReg,
1532                                           Register scrReg, Register retry_on_busy_count_Reg,
1533                                           Register retry_on_abort_count_Reg,
1534                                           RTMLockingCounters* rtm_counters,
1535                                           Metadata* method_data, bool profile_rtm,
1536                                           Label& DONE_LABEL) {
1537   assert(UseRTMLocking, "why call this otherwise?");
1538   assert(tmpReg == rax, "");
1539   assert(scrReg == rdx, "");
1540   Label L_rtm_retry, L_decrement_retry, L_on_abort;
1541   int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
1542 
1543   // Without cast to int32_t a movptr will destroy r10 which is typically obj
1544   movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1545   movptr(boxReg, tmpReg); // Save ObjectMonitor address
1546 
1547   if (RTMRetryCount > 0) {
1548     movl(retry_on_busy_count_Reg, RTMRetryCount);  // Retry on lock busy
1549     movl(retry_on_abort_count_Reg, RTMRetryCount); // Retry on abort
1550     bind(L_rtm_retry);
1551   }
1552   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1553     Label L_noincrement;
1554     if (RTMTotalCountIncrRate > 1) {
1555       // tmpReg, scrReg and flags are killed
1556       branch_on_random_using_rdtsc(tmpReg, scrReg, (int)RTMTotalCountIncrRate, L_noincrement);
1557     }
1558     assert(rtm_counters != NULL, "should not be NULL when profiling RTM");
1559     atomic_incptr(ExternalAddress((address)rtm_counters->total_count_addr()), scrReg);
1560     bind(L_noincrement);
1561   }
1562   xbegin(L_on_abort);
1563   movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));
1564   movptr(tmpReg, Address(tmpReg, owner_offset));
1565   testptr(tmpReg, tmpReg);
1566   jcc(Assembler::zero, DONE_LABEL);
1567   if (UseRTMXendForLockBusy) {
1568     xend();
1569     jmp(L_decrement_retry);
1570   }
1571   else {
1572     xabort(0);
1573   }
1574   bind(L_on_abort);
1575   Register abort_status_Reg = tmpReg; // status of abort is stored in RAX
1576   if (PrintPreciseRTMLockingStatistics || profile_rtm) {
1577     rtm_profiling(abort_status_Reg, scrReg, rtm_counters, method_data, profile_rtm);
1578   }
1579   if (RTMRetryCount > 0) {
1580     // retry on lock abort if abort status is 'can retry' (0x2) or 'memory conflict' (0x4)
1581     rtm_retry_lock_on_abort(retry_on_abort_count_Reg, abort_status_Reg, L_rtm_retry);
1582   }
1583 
1584   movptr(tmpReg, Address(boxReg, owner_offset)) ;
1585   testptr(tmpReg, tmpReg) ;
1586   jccb(Assembler::notZero, L_decrement_retry) ;
1587 
1588   // Appears unlocked - try to swing _owner from null to non-null.
1589   // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1590 #ifdef _LP64
1591   Register threadReg = r15_thread;
1592 #else
1593   get_thread(scrReg);
1594   Register threadReg = scrReg;
1595 #endif
1596   if (os::is_MP()) {
1597     lock();
1598   }
1599   cmpxchgptr(threadReg, Address(boxReg, owner_offset)); // Updates tmpReg
1600 
1601   if (RTMRetryCount > 0) {
1602     // success done else retry
1603     jccb(Assembler::equal, DONE_LABEL) ;
1604     bind(L_decrement_retry);
1605     // Spin and retry if lock is busy.
1606     rtm_retry_lock_on_busy(retry_on_busy_count_Reg, boxReg, tmpReg, scrReg, L_rtm_retry);
1607   }
1608   else {
1609     bind(L_decrement_retry);
1610   }
1611 }
1612 
1613 #endif //  INCLUDE_RTM_OPT
1614 
1615 // Fast_Lock and Fast_Unlock used by C2
1616 
1617 // Because the transitions from emitted code to the runtime
1618 // monitorenter/exit helper stubs are so slow it's critical that
1619 // we inline both the stack-locking fast-path and the inflated fast path.
1620 //
1621 // See also: cmpFastLock and cmpFastUnlock.
1622 //
1623 // What follows is a specialized inline transliteration of the code
1624 // in slow_enter() and slow_exit().  If we're concerned about I$ bloat
1625 // another option would be to emit TrySlowEnter and TrySlowExit methods
1626 // at startup-time.  These methods would accept arguments as
1627 // (rax,=Obj, rbx=Self, rcx=box, rdx=Scratch) and return success-failure
1628 // indications in the icc.ZFlag.  Fast_Lock and Fast_Unlock would simply
1629 // marshal the arguments and emit calls to TrySlowEnter and TrySlowExit.
1630 // In practice, however, the # of lock sites is bounded and is usually small.
1631 // Besides the call overhead, TrySlowEnter and TrySlowExit might suffer
1632 // if the processor uses simple bimodal branch predictors keyed by EIP
1633 // Since the helper routines would be called from multiple synchronization
1634 // sites.
1635 //
1636 // An even better approach would be write "MonitorEnter()" and "MonitorExit()"
1637 // in java - using j.u.c and unsafe - and just bind the lock and unlock sites
1638 // to those specialized methods.  That'd give us a mostly platform-independent
1639 // implementation that the JITs could optimize and inline at their pleasure.
1640 // Done correctly, the only time we'd need to cross to native could would be
1641 // to park() or unpark() threads.  We'd also need a few more unsafe operators
1642 // to (a) prevent compiler-JIT reordering of non-volatile accesses, and
1643 // (b) explicit barriers or fence operations.
1644 //
1645 // TODO:
1646 //
1647 // *  Arrange for C2 to pass "Self" into Fast_Lock and Fast_Unlock in one of the registers (scr).
1648 //    This avoids manifesting the Self pointer in the Fast_Lock and Fast_Unlock terminals.
1649 //    Given TLAB allocation, Self is usually manifested in a register, so passing it into
1650 //    the lock operators would typically be faster than reifying Self.
1651 //
1652 // *  Ideally I'd define the primitives as:
1653 //       fast_lock   (nax Obj, nax box, EAX tmp, nax scr) where box, tmp and scr are KILLED.
1654 //       fast_unlock (nax Obj, EAX box, nax tmp) where box and tmp are KILLED
1655 //    Unfortunately ADLC bugs prevent us from expressing the ideal form.
1656 //    Instead, we're stuck with a rather awkward and brittle register assignments below.
1657 //    Furthermore the register assignments are overconstrained, possibly resulting in
1658 //    sub-optimal code near the synchronization site.
1659 //
1660 // *  Eliminate the sp-proximity tests and just use "== Self" tests instead.
1661 //    Alternately, use a better sp-proximity test.
1662 //
1663 // *  Currently ObjectMonitor._Owner can hold either an sp value or a (THREAD *) value.
1664 //    Either one is sufficient to uniquely identify a thread.
1665 //    TODO: eliminate use of sp in _owner and use get_thread(tr) instead.
1666 //
1667 // *  Intrinsify notify() and notifyAll() for the common cases where the
1668 //    object is locked by the calling thread but the waitlist is empty.
1669 //    avoid the expensive JNI call to JVM_Notify() and JVM_NotifyAll().
1670 //
1671 // *  use jccb and jmpb instead of jcc and jmp to improve code density.
1672 //    But beware of excessive branch density on AMD Opterons.
1673 //
1674 // *  Both Fast_Lock and Fast_Unlock set the ICC.ZF to indicate success
1675 //    or failure of the fast-path.  If the fast-path fails then we pass
1676 //    control to the slow-path, typically in C.  In Fast_Lock and
1677 //    Fast_Unlock we often branch to DONE_LABEL, just to find that C2
1678 //    will emit a conditional branch immediately after the node.
1679 //    So we have branches to branches and lots of ICC.ZF games.
1680 //    Instead, it might be better to have C2 pass a "FailureLabel"
1681 //    into Fast_Lock and Fast_Unlock.  In the case of success, control
1682 //    will drop through the node.  ICC.ZF is undefined at exit.
1683 //    In the case of failure, the node will branch directly to the
1684 //    FailureLabel
1685 
1686 
1687 // obj: object to lock
1688 // box: on-stack box address (displaced header location) - KILLED
1689 // rax,: tmp -- KILLED
1690 // scr: tmp -- KILLED
1691 void MacroAssembler::fast_lock(Register objReg, Register boxReg, Register tmpReg,
1692                                Register scrReg, Register cx1Reg, Register cx2Reg,
1693                                BiasedLockingCounters* counters,
1694                                RTMLockingCounters* rtm_counters,
1695                                RTMLockingCounters* stack_rtm_counters,
1696                                Metadata* method_data,
1697                                bool use_rtm, bool profile_rtm) {
1698   // Ensure the register assignments are disjoint
1699   assert(tmpReg == rax, "");
1700 
1701   if (use_rtm) {
1702     assert_different_registers(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg);
1703   } else {
1704     assert(cx1Reg == noreg, "");
1705     assert(cx2Reg == noreg, "");
1706     assert_different_registers(objReg, boxReg, tmpReg, scrReg);
1707   }
1708 
1709   if (counters != NULL) {
1710     atomic_incl(ExternalAddress((address)counters->total_entry_count_addr()), scrReg);
1711   }
1712   if (EmitSync & 1) {
1713       // set box->dhw = markOopDesc::unused_mark()
1714       // Force all sync thru slow-path: slow_enter() and slow_exit()
1715       movptr (Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1716       cmpptr (rsp, (int32_t)NULL_WORD);
1717   } else {
1718     // Possible cases that we'll encounter in fast_lock
1719     // ------------------------------------------------
1720     // * Inflated
1721     //    -- unlocked
1722     //    -- Locked
1723     //       = by self
1724     //       = by other
1725     // * biased
1726     //    -- by Self
1727     //    -- by other
1728     // * neutral
1729     // * stack-locked
1730     //    -- by self
1731     //       = sp-proximity test hits
1732     //       = sp-proximity test generates false-negative
1733     //    -- by other
1734     //
1735 
1736     Label IsInflated, DONE_LABEL;
1737 
1738     // it's stack-locked, biased or neutral
1739     // TODO: optimize away redundant LDs of obj->mark and improve the markword triage
1740     // order to reduce the number of conditional branches in the most common cases.
1741     // Beware -- there's a subtle invariant that fetch of the markword
1742     // at [FETCH], below, will never observe a biased encoding (*101b).
1743     // If this invariant is not held we risk exclusion (safety) failure.
1744     if (UseBiasedLocking && !UseOptoBiasInlining) {
1745       biased_locking_enter(boxReg, objReg, tmpReg, scrReg, false, DONE_LABEL, NULL, counters);
1746     }
1747 
1748 #if INCLUDE_RTM_OPT
1749     if (UseRTMForStackLocks && use_rtm) {
1750       rtm_stack_locking(objReg, tmpReg, scrReg, cx2Reg,
1751                         stack_rtm_counters, method_data, profile_rtm,
1752                         DONE_LABEL, IsInflated);
1753     }
1754 #endif // INCLUDE_RTM_OPT
1755 
1756     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));          // [FETCH]
1757     testptr(tmpReg, markOopDesc::monitor_value); // inflated vs stack-locked|neutral|biased
1758     jccb(Assembler::notZero, IsInflated);
1759 
1760     // Attempt stack-locking ...
1761     orptr (tmpReg, markOopDesc::unlocked_value);
1762     movptr(Address(boxReg, 0), tmpReg);          // Anticipate successful CAS
1763     if (os::is_MP()) {
1764       lock();
1765     }
1766     cmpxchgptr(boxReg, Address(objReg, oopDesc::mark_offset_in_bytes()));      // Updates tmpReg
1767     if (counters != NULL) {
1768       cond_inc32(Assembler::equal,
1769                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1770     }
1771     jcc(Assembler::equal, DONE_LABEL);           // Success
1772 
1773     // Recursive locking.
1774     // The object is stack-locked: markword contains stack pointer to BasicLock.
1775     // Locked by current thread if difference with current SP is less than one page.
1776     subptr(tmpReg, rsp);
1777     // Next instruction set ZFlag == 1 (Success) if difference is less then one page.
1778     andptr(tmpReg, (int32_t) (NOT_LP64(0xFFFFF003) LP64_ONLY(7 - os::vm_page_size())) );
1779     movptr(Address(boxReg, 0), tmpReg);
1780     if (counters != NULL) {
1781       cond_inc32(Assembler::equal,
1782                  ExternalAddress((address)counters->fast_path_entry_count_addr()));
1783     }
1784     jmp(DONE_LABEL);
1785 
1786     bind(IsInflated);
1787     // The object is inflated. tmpReg contains pointer to ObjectMonitor* + markOopDesc::monitor_value
1788 
1789 #if INCLUDE_RTM_OPT
1790     // Use the same RTM locking code in 32- and 64-bit VM.
1791     if (use_rtm) {
1792       rtm_inflated_locking(objReg, boxReg, tmpReg, scrReg, cx1Reg, cx2Reg,
1793                            rtm_counters, method_data, profile_rtm, DONE_LABEL);
1794     } else {
1795 #endif // INCLUDE_RTM_OPT
1796 
1797 #ifndef _LP64
1798     // The object is inflated.
1799 
1800     // boxReg refers to the on-stack BasicLock in the current frame.
1801     // We'd like to write:
1802     //   set box->_displaced_header = markOopDesc::unused_mark().  Any non-0 value suffices.
1803     // This is convenient but results a ST-before-CAS penalty.  The following CAS suffers
1804     // additional latency as we have another ST in the store buffer that must drain.
1805 
1806     if (EmitSync & 8192) {
1807        movptr(Address(boxReg, 0), 3);            // results in ST-before-CAS penalty
1808        get_thread (scrReg);
1809        movptr(boxReg, tmpReg);                    // consider: LEA box, [tmp-2]
1810        movptr(tmpReg, NULL_WORD);                 // consider: xor vs mov
1811        if (os::is_MP()) {
1812          lock();
1813        }
1814        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1815     } else
1816     if ((EmitSync & 128) == 0) {                      // avoid ST-before-CAS
1817        // register juggle because we need tmpReg for cmpxchgptr below
1818        movptr(scrReg, boxReg);
1819        movptr(boxReg, tmpReg);                   // consider: LEA box, [tmp-2]
1820 
1821        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1822        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1823           // prefetchw [eax + Offset(_owner)-2]
1824           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1825        }
1826 
1827        if ((EmitSync & 64) == 0) {
1828          // Optimistic form: consider XORL tmpReg,tmpReg
1829          movptr(tmpReg, NULL_WORD);
1830        } else {
1831          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1832          // Test-And-CAS instead of CAS
1833          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1834          testptr(tmpReg, tmpReg);                   // Locked ?
1835          jccb  (Assembler::notZero, DONE_LABEL);
1836        }
1837 
1838        // Appears unlocked - try to swing _owner from null to non-null.
1839        // Ideally, I'd manifest "Self" with get_thread and then attempt
1840        // to CAS the register containing Self into m->Owner.
1841        // But we don't have enough registers, so instead we can either try to CAS
1842        // rsp or the address of the box (in scr) into &m->owner.  If the CAS succeeds
1843        // we later store "Self" into m->Owner.  Transiently storing a stack address
1844        // (rsp or the address of the box) into  m->owner is harmless.
1845        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1846        if (os::is_MP()) {
1847          lock();
1848        }
1849        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1850        movptr(Address(scrReg, 0), 3);          // box->_displaced_header = 3
1851        // If we weren't able to swing _owner from NULL to the BasicLock
1852        // then take the slow path.
1853        jccb  (Assembler::notZero, DONE_LABEL);
1854        // update _owner from BasicLock to thread
1855        get_thread (scrReg);                    // beware: clobbers ICCs
1856        movptr(Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), scrReg);
1857        xorptr(boxReg, boxReg);                 // set icc.ZFlag = 1 to indicate success
1858 
1859        // If the CAS fails we can either retry or pass control to the slow-path.
1860        // We use the latter tactic.
1861        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1862        // If the CAS was successful ...
1863        //   Self has acquired the lock
1864        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1865        // Intentional fall-through into DONE_LABEL ...
1866     } else {
1867        movptr(Address(boxReg, 0), intptr_t(markOopDesc::unused_mark()));  // results in ST-before-CAS penalty
1868        movptr(boxReg, tmpReg);
1869 
1870        // Using a prefetchw helps avoid later RTS->RTO upgrades and cache probes
1871        if ((EmitSync & 2048) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
1872           // prefetchw [eax + Offset(_owner)-2]
1873           prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1874        }
1875 
1876        if ((EmitSync & 64) == 0) {
1877          // Optimistic form
1878          xorptr  (tmpReg, tmpReg);
1879        } else {
1880          // Can suffer RTS->RTO upgrades on shared or cold $ lines
1881          movptr(tmpReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));   // rax, = m->_owner
1882          testptr(tmpReg, tmpReg);                   // Locked ?
1883          jccb  (Assembler::notZero, DONE_LABEL);
1884        }
1885 
1886        // Appears unlocked - try to swing _owner from null to non-null.
1887        // Use either "Self" (in scr) or rsp as thread identity in _owner.
1888        // Invariant: tmpReg == 0.  tmpReg is EAX which is the implicit cmpxchg comparand.
1889        get_thread (scrReg);
1890        if (os::is_MP()) {
1891          lock();
1892        }
1893        cmpxchgptr(scrReg, Address(boxReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1894 
1895        // If the CAS fails we can either retry or pass control to the slow-path.
1896        // We use the latter tactic.
1897        // Pass the CAS result in the icc.ZFlag into DONE_LABEL
1898        // If the CAS was successful ...
1899        //   Self has acquired the lock
1900        //   Invariant: m->_recursions should already be 0, so we don't need to explicitly set it.
1901        // Intentional fall-through into DONE_LABEL ...
1902     }
1903 #else // _LP64
1904     // It's inflated
1905     movq(scrReg, tmpReg);
1906     xorq(tmpReg, tmpReg);
1907 
1908     if (os::is_MP()) {
1909       lock();
1910     }
1911     cmpxchgptr(r15_thread, Address(scrReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
1912     // Unconditionally set box->_displaced_header = markOopDesc::unused_mark().
1913     // Without cast to int32_t movptr will destroy r10 which is typically obj.
1914     movptr(Address(boxReg, 0), (int32_t)intptr_t(markOopDesc::unused_mark()));
1915     // Intentional fall-through into DONE_LABEL ...
1916     // Propagate ICC.ZF from CAS above into DONE_LABEL.
1917 #endif // _LP64
1918 #if INCLUDE_RTM_OPT
1919     } // use_rtm()
1920 #endif
1921     // DONE_LABEL is a hot target - we'd really like to place it at the
1922     // start of cache line by padding with NOPs.
1923     // See the AMD and Intel software optimization manuals for the
1924     // most efficient "long" NOP encodings.
1925     // Unfortunately none of our alignment mechanisms suffice.
1926     bind(DONE_LABEL);
1927 
1928     // At DONE_LABEL the icc ZFlag is set as follows ...
1929     // Fast_Unlock uses the same protocol.
1930     // ZFlag == 1 -> Success
1931     // ZFlag == 0 -> Failure - force control through the slow-path
1932   }
1933 }
1934 
1935 // obj: object to unlock
1936 // box: box address (displaced header location), killed.  Must be EAX.
1937 // tmp: killed, cannot be obj nor box.
1938 //
1939 // Some commentary on balanced locking:
1940 //
1941 // Fast_Lock and Fast_Unlock are emitted only for provably balanced lock sites.
1942 // Methods that don't have provably balanced locking are forced to run in the
1943 // interpreter - such methods won't be compiled to use fast_lock and fast_unlock.
1944 // The interpreter provides two properties:
1945 // I1:  At return-time the interpreter automatically and quietly unlocks any
1946 //      objects acquired the current activation (frame).  Recall that the
1947 //      interpreter maintains an on-stack list of locks currently held by
1948 //      a frame.
1949 // I2:  If a method attempts to unlock an object that is not held by the
1950 //      the frame the interpreter throws IMSX.
1951 //
1952 // Lets say A(), which has provably balanced locking, acquires O and then calls B().
1953 // B() doesn't have provably balanced locking so it runs in the interpreter.
1954 // Control returns to A() and A() unlocks O.  By I1 and I2, above, we know that O
1955 // is still locked by A().
1956 //
1957 // The only other source of unbalanced locking would be JNI.  The "Java Native Interface:
1958 // Programmer's Guide and Specification" claims that an object locked by jni_monitorenter
1959 // should not be unlocked by "normal" java-level locking and vice-versa.  The specification
1960 // doesn't specify what will occur if a program engages in such mixed-mode locking, however.
1961 // Arguably given that the spec legislates the JNI case as undefined our implementation
1962 // could reasonably *avoid* checking owner in Fast_Unlock().
1963 // In the interest of performance we elide m->Owner==Self check in unlock.
1964 // A perfectly viable alternative is to elide the owner check except when
1965 // Xcheck:jni is enabled.
1966 
1967 void MacroAssembler::fast_unlock(Register objReg, Register boxReg, Register tmpReg, bool use_rtm) {
1968   assert(boxReg == rax, "");
1969   assert_different_registers(objReg, boxReg, tmpReg);
1970 
1971   if (EmitSync & 4) {
1972     // Disable - inhibit all inlining.  Force control through the slow-path
1973     cmpptr (rsp, 0);
1974   } else {
1975     Label DONE_LABEL, Stacked, CheckSucc;
1976 
1977     // Critically, the biased locking test must have precedence over
1978     // and appear before the (box->dhw == 0) recursive stack-lock test.
1979     if (UseBiasedLocking && !UseOptoBiasInlining) {
1980        biased_locking_exit(objReg, tmpReg, DONE_LABEL);
1981     }
1982 
1983 #if INCLUDE_RTM_OPT
1984     if (UseRTMForStackLocks && use_rtm) {
1985       assert(!UseBiasedLocking, "Biased locking is not supported with RTM locking");
1986       Label L_regular_unlock;
1987       movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));           // fetch markword
1988       andptr(tmpReg, markOopDesc::biased_lock_mask_in_place); // look at 3 lock bits
1989       cmpptr(tmpReg, markOopDesc::unlocked_value);            // bits = 001 unlocked
1990       jccb(Assembler::notEqual, L_regular_unlock);  // if !HLE RegularLock
1991       xend();                                       // otherwise end...
1992       jmp(DONE_LABEL);                              // ... and we're done
1993       bind(L_regular_unlock);
1994     }
1995 #endif
1996 
1997     cmpptr(Address(boxReg, 0), (int32_t)NULL_WORD); // Examine the displaced header
1998     jcc   (Assembler::zero, DONE_LABEL);            // 0 indicates recursive stack-lock
1999     movptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes()));             // Examine the object's markword
2000     testptr(tmpReg, markOopDesc::monitor_value);    // Inflated?
2001     jccb  (Assembler::zero, Stacked);
2002 
2003     // It's inflated.
2004 #if INCLUDE_RTM_OPT
2005     if (use_rtm) {
2006       Label L_regular_inflated_unlock;
2007       int owner_offset = OM_OFFSET_NO_MONITOR_VALUE_TAG(owner);
2008       movptr(boxReg, Address(tmpReg, owner_offset));
2009       testptr(boxReg, boxReg);
2010       jccb(Assembler::notZero, L_regular_inflated_unlock);
2011       xend();
2012       jmpb(DONE_LABEL);
2013       bind(L_regular_inflated_unlock);
2014     }
2015 #endif
2016 
2017     // Despite our balanced locking property we still check that m->_owner == Self
2018     // as java routines or native JNI code called by this thread might
2019     // have released the lock.
2020     // Refer to the comments in synchronizer.cpp for how we might encode extra
2021     // state in _succ so we can avoid fetching EntryList|cxq.
2022     //
2023     // I'd like to add more cases in fast_lock() and fast_unlock() --
2024     // such as recursive enter and exit -- but we have to be wary of
2025     // I$ bloat, T$ effects and BP$ effects.
2026     //
2027     // If there's no contention try a 1-0 exit.  That is, exit without
2028     // a costly MEMBAR or CAS.  See synchronizer.cpp for details on how
2029     // we detect and recover from the race that the 1-0 exit admits.
2030     //
2031     // Conceptually Fast_Unlock() must execute a STST|LDST "release" barrier
2032     // before it STs null into _owner, releasing the lock.  Updates
2033     // to data protected by the critical section must be visible before
2034     // we drop the lock (and thus before any other thread could acquire
2035     // the lock and observe the fields protected by the lock).
2036     // IA32's memory-model is SPO, so STs are ordered with respect to
2037     // each other and there's no need for an explicit barrier (fence).
2038     // See also http://gee.cs.oswego.edu/dl/jmm/cookbook.html.
2039 #ifndef _LP64
2040     get_thread (boxReg);
2041     if ((EmitSync & 4096) && VM_Version::supports_3dnow_prefetch() && os::is_MP()) {
2042       // prefetchw [ebx + Offset(_owner)-2]
2043       prefetchw(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2044     }
2045 
2046     // Note that we could employ various encoding schemes to reduce
2047     // the number of loads below (currently 4) to just 2 or 3.
2048     // Refer to the comments in synchronizer.cpp.
2049     // In practice the chain of fetches doesn't seem to impact performance, however.
2050     xorptr(boxReg, boxReg);
2051     if ((EmitSync & 65536) == 0 && (EmitSync & 256)) {
2052        // Attempt to reduce branch density - AMD's branch predictor.
2053        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2054        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2055        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2056        jccb  (Assembler::notZero, DONE_LABEL);
2057        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2058        jmpb  (DONE_LABEL);
2059     } else {
2060        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2061        jccb  (Assembler::notZero, DONE_LABEL);
2062        movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2063        orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2064        jccb  (Assembler::notZero, CheckSucc);
2065        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2066        jmpb  (DONE_LABEL);
2067     }
2068 
2069     // The Following code fragment (EmitSync & 65536) improves the performance of
2070     // contended applications and contended synchronization microbenchmarks.
2071     // Unfortunately the emission of the code - even though not executed - causes regressions
2072     // in scimark and jetstream, evidently because of $ effects.  Replacing the code
2073     // with an equal number of never-executed NOPs results in the same regression.
2074     // We leave it off by default.
2075 
2076     if ((EmitSync & 65536) != 0) {
2077        Label LSuccess, LGoSlowPath ;
2078 
2079        bind  (CheckSucc);
2080 
2081        // Optional pre-test ... it's safe to elide this
2082        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2083        jccb(Assembler::zero, LGoSlowPath);
2084 
2085        // We have a classic Dekker-style idiom:
2086        //    ST m->_owner = 0 ; MEMBAR; LD m->_succ
2087        // There are a number of ways to implement the barrier:
2088        // (1) lock:andl &m->_owner, 0
2089        //     is fast, but mask doesn't currently support the "ANDL M,IMM32" form.
2090        //     LOCK: ANDL [ebx+Offset(_Owner)-2], 0
2091        //     Encodes as 81 31 OFF32 IMM32 or 83 63 OFF8 IMM8
2092        // (2) If supported, an explicit MFENCE is appealing.
2093        //     In older IA32 processors MFENCE is slower than lock:add or xchg
2094        //     particularly if the write-buffer is full as might be the case if
2095        //     if stores closely precede the fence or fence-equivalent instruction.
2096        //     See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2097        //     as the situation has changed with Nehalem and Shanghai.
2098        // (3) In lieu of an explicit fence, use lock:addl to the top-of-stack
2099        //     The $lines underlying the top-of-stack should be in M-state.
2100        //     The locked add instruction is serializing, of course.
2101        // (4) Use xchg, which is serializing
2102        //     mov boxReg, 0; xchgl boxReg, [tmpReg + Offset(_owner)-2] also works
2103        // (5) ST m->_owner = 0 and then execute lock:orl &m->_succ, 0.
2104        //     The integer condition codes will tell us if succ was 0.
2105        //     Since _succ and _owner should reside in the same $line and
2106        //     we just stored into _owner, it's likely that the $line
2107        //     remains in M-state for the lock:orl.
2108        //
2109        // We currently use (3), although it's likely that switching to (2)
2110        // is correct for the future.
2111 
2112        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), NULL_WORD);
2113        if (os::is_MP()) {
2114          lock(); addptr(Address(rsp, 0), 0);
2115        }
2116        // Ratify _succ remains non-null
2117        cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), 0);
2118        jccb  (Assembler::notZero, LSuccess);
2119 
2120        xorptr(boxReg, boxReg);                  // box is really EAX
2121        if (os::is_MP()) { lock(); }
2122        cmpxchgptr(rsp, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2123        // There's no successor so we tried to regrab the lock with the
2124        // placeholder value. If that didn't work, then another thread
2125        // grabbed the lock so we're done (and exit was a success).
2126        jccb  (Assembler::notEqual, LSuccess);
2127        // Since we're low on registers we installed rsp as a placeholding in _owner.
2128        // Now install Self over rsp.  This is safe as we're transitioning from
2129        // non-null to non=null
2130        get_thread (boxReg);
2131        movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), boxReg);
2132        // Intentional fall-through into LGoSlowPath ...
2133 
2134        bind  (LGoSlowPath);
2135        orptr(boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2136        jmpb  (DONE_LABEL);
2137 
2138        bind  (LSuccess);
2139        xorptr(boxReg, boxReg);                 // set ICC.ZF=1 to indicate success
2140        jmpb  (DONE_LABEL);
2141     }
2142 
2143     bind (Stacked);
2144     // It's not inflated and it's not recursively stack-locked and it's not biased.
2145     // It must be stack-locked.
2146     // Try to reset the header to displaced header.
2147     // The "box" value on the stack is stable, so we can reload
2148     // and be assured we observe the same value as above.
2149     movptr(tmpReg, Address(boxReg, 0));
2150     if (os::is_MP()) {
2151       lock();
2152     }
2153     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2154     // Intention fall-thru into DONE_LABEL
2155 
2156     // DONE_LABEL is a hot target - we'd really like to place it at the
2157     // start of cache line by padding with NOPs.
2158     // See the AMD and Intel software optimization manuals for the
2159     // most efficient "long" NOP encodings.
2160     // Unfortunately none of our alignment mechanisms suffice.
2161     if ((EmitSync & 65536) == 0) {
2162        bind (CheckSucc);
2163     }
2164 #else // _LP64
2165     // It's inflated
2166     if (EmitSync & 1024) {
2167       // Emit code to check that _owner == Self
2168       // We could fold the _owner test into subsequent code more efficiently
2169       // than using a stand-alone check, but since _owner checking is off by
2170       // default we don't bother. We also might consider predicating the
2171       // _owner==Self check on Xcheck:jni or running on a debug build.
2172       movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2173       xorptr(boxReg, r15_thread);
2174     } else {
2175       xorptr(boxReg, boxReg);
2176     }
2177     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(recursions)));
2178     jccb  (Assembler::notZero, DONE_LABEL);
2179     movptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(cxq)));
2180     orptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(EntryList)));
2181     jccb  (Assembler::notZero, CheckSucc);
2182     movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2183     jmpb  (DONE_LABEL);
2184 
2185     if ((EmitSync & 65536) == 0) {
2186       // Try to avoid passing control into the slow_path ...
2187       Label LSuccess, LGoSlowPath ;
2188       bind  (CheckSucc);
2189 
2190       // The following optional optimization can be elided if necessary
2191       // Effectively: if (succ == null) goto SlowPath
2192       // The code reduces the window for a race, however,
2193       // and thus benefits performance.
2194       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2195       jccb  (Assembler::zero, LGoSlowPath);
2196 
2197       xorptr(boxReg, boxReg);
2198       if ((EmitSync & 16) && os::is_MP()) {
2199         xchgptr(boxReg, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2200       } else {
2201         movptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)), (int32_t)NULL_WORD);
2202         if (os::is_MP()) {
2203           // Memory barrier/fence
2204           // Dekker pivot point -- fulcrum : ST Owner; MEMBAR; LD Succ
2205           // Instead of MFENCE we use a dummy locked add of 0 to the top-of-stack.
2206           // This is faster on Nehalem and AMD Shanghai/Barcelona.
2207           // See https://blogs.oracle.com/dave/entry/instruction_selection_for_volatile_fences
2208           // We might also restructure (ST Owner=0;barrier;LD _Succ) to
2209           // (mov box,0; xchgq box, &m->Owner; LD _succ) .
2210           lock(); addl(Address(rsp, 0), 0);
2211         }
2212       }
2213       cmpptr(Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(succ)), (int32_t)NULL_WORD);
2214       jccb  (Assembler::notZero, LSuccess);
2215 
2216       // Rare inopportune interleaving - race.
2217       // The successor vanished in the small window above.
2218       // The lock is contended -- (cxq|EntryList) != null -- and there's no apparent successor.
2219       // We need to ensure progress and succession.
2220       // Try to reacquire the lock.
2221       // If that fails then the new owner is responsible for succession and this
2222       // thread needs to take no further action and can exit via the fast path (success).
2223       // If the re-acquire succeeds then pass control into the slow path.
2224       // As implemented, this latter mode is horrible because we generated more
2225       // coherence traffic on the lock *and* artifically extended the critical section
2226       // length while by virtue of passing control into the slow path.
2227 
2228       // box is really RAX -- the following CMPXCHG depends on that binding
2229       // cmpxchg R,[M] is equivalent to rax = CAS(M,rax,R)
2230       if (os::is_MP()) { lock(); }
2231       cmpxchgptr(r15_thread, Address(tmpReg, OM_OFFSET_NO_MONITOR_VALUE_TAG(owner)));
2232       // There's no successor so we tried to regrab the lock.
2233       // If that didn't work, then another thread grabbed the
2234       // lock so we're done (and exit was a success).
2235       jccb  (Assembler::notEqual, LSuccess);
2236       // Intentional fall-through into slow-path
2237 
2238       bind  (LGoSlowPath);
2239       orl   (boxReg, 1);                      // set ICC.ZF=0 to indicate failure
2240       jmpb  (DONE_LABEL);
2241 
2242       bind  (LSuccess);
2243       testl (boxReg, 0);                      // set ICC.ZF=1 to indicate success
2244       jmpb  (DONE_LABEL);
2245     }
2246 
2247     bind  (Stacked);
2248     movptr(tmpReg, Address (boxReg, 0));      // re-fetch
2249     if (os::is_MP()) { lock(); }
2250     cmpxchgptr(tmpReg, Address(objReg, oopDesc::mark_offset_in_bytes())); // Uses RAX which is box
2251 
2252     if (EmitSync & 65536) {
2253        bind (CheckSucc);
2254     }
2255 #endif
2256     bind(DONE_LABEL);
2257   }
2258 }
2259 #endif // COMPILER2
2260 
2261 void MacroAssembler::c2bool(Register x) {
2262   // implements x == 0 ? 0 : 1
2263   // note: must only look at least-significant byte of x
2264   //       since C-style booleans are stored in one byte
2265   //       only! (was bug)
2266   andl(x, 0xFF);
2267   setb(Assembler::notZero, x);
2268 }
2269 
2270 // Wouldn't need if AddressLiteral version had new name
2271 void MacroAssembler::call(Label& L, relocInfo::relocType rtype) {
2272   Assembler::call(L, rtype);
2273 }
2274 
2275 void MacroAssembler::call(Register entry) {
2276   Assembler::call(entry);
2277 }
2278 
2279 void MacroAssembler::call(AddressLiteral entry) {
2280   if (reachable(entry)) {
2281     Assembler::call_literal(entry.target(), entry.rspec());
2282   } else {
2283     lea(rscratch1, entry);
2284     Assembler::call(rscratch1);
2285   }
2286 }
2287 
2288 void MacroAssembler::ic_call(address entry, jint method_index) {
2289   RelocationHolder rh = virtual_call_Relocation::spec(pc(), method_index);
2290   movptr(rax, (intptr_t)Universe::non_oop_word());
2291   call(AddressLiteral(entry, rh));
2292 }
2293 
2294 // Implementation of call_VM versions
2295 
2296 void MacroAssembler::call_VM(Register oop_result,
2297                              address entry_point,
2298                              bool check_exceptions) {
2299   Label C, E;
2300   call(C, relocInfo::none);
2301   jmp(E);
2302 
2303   bind(C);
2304   call_VM_helper(oop_result, entry_point, 0, check_exceptions);
2305   ret(0);
2306 
2307   bind(E);
2308 }
2309 
2310 void MacroAssembler::call_VM(Register oop_result,
2311                              address entry_point,
2312                              Register arg_1,
2313                              bool check_exceptions) {
2314   Label C, E;
2315   call(C, relocInfo::none);
2316   jmp(E);
2317 
2318   bind(C);
2319   pass_arg1(this, arg_1);
2320   call_VM_helper(oop_result, entry_point, 1, check_exceptions);
2321   ret(0);
2322 
2323   bind(E);
2324 }
2325 
2326 void MacroAssembler::call_VM(Register oop_result,
2327                              address entry_point,
2328                              Register arg_1,
2329                              Register arg_2,
2330                              bool check_exceptions) {
2331   Label C, E;
2332   call(C, relocInfo::none);
2333   jmp(E);
2334 
2335   bind(C);
2336 
2337   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2338 
2339   pass_arg2(this, arg_2);
2340   pass_arg1(this, arg_1);
2341   call_VM_helper(oop_result, entry_point, 2, check_exceptions);
2342   ret(0);
2343 
2344   bind(E);
2345 }
2346 
2347 void MacroAssembler::call_VM(Register oop_result,
2348                              address entry_point,
2349                              Register arg_1,
2350                              Register arg_2,
2351                              Register arg_3,
2352                              bool check_exceptions) {
2353   Label C, E;
2354   call(C, relocInfo::none);
2355   jmp(E);
2356 
2357   bind(C);
2358 
2359   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2360   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2361   pass_arg3(this, arg_3);
2362 
2363   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2364   pass_arg2(this, arg_2);
2365 
2366   pass_arg1(this, arg_1);
2367   call_VM_helper(oop_result, entry_point, 3, check_exceptions);
2368   ret(0);
2369 
2370   bind(E);
2371 }
2372 
2373 void MacroAssembler::call_VM(Register oop_result,
2374                              Register last_java_sp,
2375                              address entry_point,
2376                              int number_of_arguments,
2377                              bool check_exceptions) {
2378   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2379   call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2380 }
2381 
2382 void MacroAssembler::call_VM(Register oop_result,
2383                              Register last_java_sp,
2384                              address entry_point,
2385                              Register arg_1,
2386                              bool check_exceptions) {
2387   pass_arg1(this, arg_1);
2388   call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2389 }
2390 
2391 void MacroAssembler::call_VM(Register oop_result,
2392                              Register last_java_sp,
2393                              address entry_point,
2394                              Register arg_1,
2395                              Register arg_2,
2396                              bool check_exceptions) {
2397 
2398   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2399   pass_arg2(this, arg_2);
2400   pass_arg1(this, arg_1);
2401   call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2402 }
2403 
2404 void MacroAssembler::call_VM(Register oop_result,
2405                              Register last_java_sp,
2406                              address entry_point,
2407                              Register arg_1,
2408                              Register arg_2,
2409                              Register arg_3,
2410                              bool check_exceptions) {
2411   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2412   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2413   pass_arg3(this, arg_3);
2414   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2415   pass_arg2(this, arg_2);
2416   pass_arg1(this, arg_1);
2417   call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2418 }
2419 
2420 void MacroAssembler::super_call_VM(Register oop_result,
2421                                    Register last_java_sp,
2422                                    address entry_point,
2423                                    int number_of_arguments,
2424                                    bool check_exceptions) {
2425   Register thread = LP64_ONLY(r15_thread) NOT_LP64(noreg);
2426   MacroAssembler::call_VM_base(oop_result, thread, last_java_sp, entry_point, number_of_arguments, check_exceptions);
2427 }
2428 
2429 void MacroAssembler::super_call_VM(Register oop_result,
2430                                    Register last_java_sp,
2431                                    address entry_point,
2432                                    Register arg_1,
2433                                    bool check_exceptions) {
2434   pass_arg1(this, arg_1);
2435   super_call_VM(oop_result, last_java_sp, entry_point, 1, check_exceptions);
2436 }
2437 
2438 void MacroAssembler::super_call_VM(Register oop_result,
2439                                    Register last_java_sp,
2440                                    address entry_point,
2441                                    Register arg_1,
2442                                    Register arg_2,
2443                                    bool check_exceptions) {
2444 
2445   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2446   pass_arg2(this, arg_2);
2447   pass_arg1(this, arg_1);
2448   super_call_VM(oop_result, last_java_sp, entry_point, 2, check_exceptions);
2449 }
2450 
2451 void MacroAssembler::super_call_VM(Register oop_result,
2452                                    Register last_java_sp,
2453                                    address entry_point,
2454                                    Register arg_1,
2455                                    Register arg_2,
2456                                    Register arg_3,
2457                                    bool check_exceptions) {
2458   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2459   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2460   pass_arg3(this, arg_3);
2461   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2462   pass_arg2(this, arg_2);
2463   pass_arg1(this, arg_1);
2464   super_call_VM(oop_result, last_java_sp, entry_point, 3, check_exceptions);
2465 }
2466 
2467 void MacroAssembler::call_VM_base(Register oop_result,
2468                                   Register java_thread,
2469                                   Register last_java_sp,
2470                                   address  entry_point,
2471                                   int      number_of_arguments,
2472                                   bool     check_exceptions) {
2473   // determine java_thread register
2474   if (!java_thread->is_valid()) {
2475 #ifdef _LP64
2476     java_thread = r15_thread;
2477 #else
2478     java_thread = rdi;
2479     get_thread(java_thread);
2480 #endif // LP64
2481   }
2482   // determine last_java_sp register
2483   if (!last_java_sp->is_valid()) {
2484     last_java_sp = rsp;
2485   }
2486   // debugging support
2487   assert(number_of_arguments >= 0   , "cannot have negative number of arguments");
2488   LP64_ONLY(assert(java_thread == r15_thread, "unexpected register"));
2489 #ifdef ASSERT
2490   // TraceBytecodes does not use r12 but saves it over the call, so don't verify
2491   // r12 is the heapbase.
2492   LP64_ONLY(if ((UseCompressedOops || UseCompressedClassPointers) && !TraceBytecodes) verify_heapbase("call_VM_base: heap base corrupted?");)
2493 #endif // ASSERT
2494 
2495   assert(java_thread != oop_result  , "cannot use the same register for java_thread & oop_result");
2496   assert(java_thread != last_java_sp, "cannot use the same register for java_thread & last_java_sp");
2497 
2498   // push java thread (becomes first argument of C function)
2499 
2500   NOT_LP64(push(java_thread); number_of_arguments++);
2501   LP64_ONLY(mov(c_rarg0, r15_thread));
2502 
2503   // set last Java frame before call
2504   assert(last_java_sp != rbp, "can't use ebp/rbp");
2505 
2506   // Only interpreter should have to set fp
2507   set_last_Java_frame(java_thread, last_java_sp, rbp, NULL);
2508 
2509   // do the call, remove parameters
2510   MacroAssembler::call_VM_leaf_base(entry_point, number_of_arguments);
2511 
2512   // restore the thread (cannot use the pushed argument since arguments
2513   // may be overwritten by C code generated by an optimizing compiler);
2514   // however can use the register value directly if it is callee saved.
2515   if (LP64_ONLY(true ||) java_thread == rdi || java_thread == rsi) {
2516     // rdi & rsi (also r15) are callee saved -> nothing to do
2517 #ifdef ASSERT
2518     guarantee(java_thread != rax, "change this code");
2519     push(rax);
2520     { Label L;
2521       get_thread(rax);
2522       cmpptr(java_thread, rax);
2523       jcc(Assembler::equal, L);
2524       STOP("MacroAssembler::call_VM_base: rdi not callee saved?");
2525       bind(L);
2526     }
2527     pop(rax);
2528 #endif
2529   } else {
2530     get_thread(java_thread);
2531   }
2532   // reset last Java frame
2533   // Only interpreter should have to clear fp
2534   reset_last_Java_frame(java_thread, true);
2535 
2536    // C++ interp handles this in the interpreter
2537   check_and_handle_popframe(java_thread);
2538   check_and_handle_earlyret(java_thread);
2539 
2540   if (check_exceptions) {
2541     // check for pending exceptions (java_thread is set upon return)
2542     cmpptr(Address(java_thread, Thread::pending_exception_offset()), (int32_t) NULL_WORD);
2543 #ifndef _LP64
2544     jump_cc(Assembler::notEqual,
2545             RuntimeAddress(StubRoutines::forward_exception_entry()));
2546 #else
2547     // This used to conditionally jump to forward_exception however it is
2548     // possible if we relocate that the branch will not reach. So we must jump
2549     // around so we can always reach
2550 
2551     Label ok;
2552     jcc(Assembler::equal, ok);
2553     jump(RuntimeAddress(StubRoutines::forward_exception_entry()));
2554     bind(ok);
2555 #endif // LP64
2556   }
2557 
2558   // get oop result if there is one and reset the value in the thread
2559   if (oop_result->is_valid()) {
2560     get_vm_result(oop_result, java_thread);
2561   }
2562 }
2563 
2564 void MacroAssembler::call_VM_helper(Register oop_result, address entry_point, int number_of_arguments, bool check_exceptions) {
2565 
2566   // Calculate the value for last_Java_sp
2567   // somewhat subtle. call_VM does an intermediate call
2568   // which places a return address on the stack just under the
2569   // stack pointer as the user finsihed with it. This allows
2570   // use to retrieve last_Java_pc from last_Java_sp[-1].
2571   // On 32bit we then have to push additional args on the stack to accomplish
2572   // the actual requested call. On 64bit call_VM only can use register args
2573   // so the only extra space is the return address that call_VM created.
2574   // This hopefully explains the calculations here.
2575 
2576 #ifdef _LP64
2577   // We've pushed one address, correct last_Java_sp
2578   lea(rax, Address(rsp, wordSize));
2579 #else
2580   lea(rax, Address(rsp, (1 + number_of_arguments) * wordSize));
2581 #endif // LP64
2582 
2583   call_VM_base(oop_result, noreg, rax, entry_point, number_of_arguments, check_exceptions);
2584 
2585 }
2586 
2587 // Use this method when MacroAssembler version of call_VM_leaf_base() should be called from Interpreter.
2588 void MacroAssembler::call_VM_leaf0(address entry_point) {
2589   MacroAssembler::call_VM_leaf_base(entry_point, 0);
2590 }
2591 
2592 void MacroAssembler::call_VM_leaf(address entry_point, int number_of_arguments) {
2593   call_VM_leaf_base(entry_point, number_of_arguments);
2594 }
2595 
2596 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0) {
2597   pass_arg0(this, arg_0);
2598   call_VM_leaf(entry_point, 1);
2599 }
2600 
2601 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2602 
2603   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2604   pass_arg1(this, arg_1);
2605   pass_arg0(this, arg_0);
2606   call_VM_leaf(entry_point, 2);
2607 }
2608 
2609 void MacroAssembler::call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2610   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2611   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2612   pass_arg2(this, arg_2);
2613   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2614   pass_arg1(this, arg_1);
2615   pass_arg0(this, arg_0);
2616   call_VM_leaf(entry_point, 3);
2617 }
2618 
2619 void MacroAssembler::super_call_VM_leaf(address entry_point) {
2620   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2621 }
2622 
2623 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0) {
2624   pass_arg0(this, arg_0);
2625   MacroAssembler::call_VM_leaf_base(entry_point, 1);
2626 }
2627 
2628 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1) {
2629 
2630   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2631   pass_arg1(this, arg_1);
2632   pass_arg0(this, arg_0);
2633   MacroAssembler::call_VM_leaf_base(entry_point, 2);
2634 }
2635 
2636 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2) {
2637   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2638   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2639   pass_arg2(this, arg_2);
2640   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2641   pass_arg1(this, arg_1);
2642   pass_arg0(this, arg_0);
2643   MacroAssembler::call_VM_leaf_base(entry_point, 3);
2644 }
2645 
2646 void MacroAssembler::super_call_VM_leaf(address entry_point, Register arg_0, Register arg_1, Register arg_2, Register arg_3) {
2647   LP64_ONLY(assert(arg_0 != c_rarg3, "smashed arg"));
2648   LP64_ONLY(assert(arg_1 != c_rarg3, "smashed arg"));
2649   LP64_ONLY(assert(arg_2 != c_rarg3, "smashed arg"));
2650   pass_arg3(this, arg_3);
2651   LP64_ONLY(assert(arg_0 != c_rarg2, "smashed arg"));
2652   LP64_ONLY(assert(arg_1 != c_rarg2, "smashed arg"));
2653   pass_arg2(this, arg_2);
2654   LP64_ONLY(assert(arg_0 != c_rarg1, "smashed arg"));
2655   pass_arg1(this, arg_1);
2656   pass_arg0(this, arg_0);
2657   MacroAssembler::call_VM_leaf_base(entry_point, 4);
2658 }
2659 
2660 void MacroAssembler::get_vm_result(Register oop_result, Register java_thread) {
2661   movptr(oop_result, Address(java_thread, JavaThread::vm_result_offset()));
2662   movptr(Address(java_thread, JavaThread::vm_result_offset()), NULL_WORD);
2663   verify_oop(oop_result, "broken oop in call_VM_base");
2664 }
2665 
2666 void MacroAssembler::get_vm_result_2(Register metadata_result, Register java_thread) {
2667   movptr(metadata_result, Address(java_thread, JavaThread::vm_result_2_offset()));
2668   movptr(Address(java_thread, JavaThread::vm_result_2_offset()), NULL_WORD);
2669 }
2670 
2671 void MacroAssembler::check_and_handle_earlyret(Register java_thread) {
2672 }
2673 
2674 void MacroAssembler::check_and_handle_popframe(Register java_thread) {
2675 }
2676 
2677 void MacroAssembler::cmp32(AddressLiteral src1, int32_t imm) {
2678   if (reachable(src1)) {
2679     cmpl(as_Address(src1), imm);
2680   } else {
2681     lea(rscratch1, src1);
2682     cmpl(Address(rscratch1, 0), imm);
2683   }
2684 }
2685 
2686 void MacroAssembler::cmp32(Register src1, AddressLiteral src2) {
2687   assert(!src2.is_lval(), "use cmpptr");
2688   if (reachable(src2)) {
2689     cmpl(src1, as_Address(src2));
2690   } else {
2691     lea(rscratch1, src2);
2692     cmpl(src1, Address(rscratch1, 0));
2693   }
2694 }
2695 
2696 void MacroAssembler::cmp32(Register src1, int32_t imm) {
2697   Assembler::cmpl(src1, imm);
2698 }
2699 
2700 void MacroAssembler::cmp32(Register src1, Address src2) {
2701   Assembler::cmpl(src1, src2);
2702 }
2703 
2704 void MacroAssembler::cmpsd2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2705   ucomisd(opr1, opr2);
2706 
2707   Label L;
2708   if (unordered_is_less) {
2709     movl(dst, -1);
2710     jcc(Assembler::parity, L);
2711     jcc(Assembler::below , L);
2712     movl(dst, 0);
2713     jcc(Assembler::equal , L);
2714     increment(dst);
2715   } else { // unordered is greater
2716     movl(dst, 1);
2717     jcc(Assembler::parity, L);
2718     jcc(Assembler::above , L);
2719     movl(dst, 0);
2720     jcc(Assembler::equal , L);
2721     decrementl(dst);
2722   }
2723   bind(L);
2724 }
2725 
2726 void MacroAssembler::cmpss2int(XMMRegister opr1, XMMRegister opr2, Register dst, bool unordered_is_less) {
2727   ucomiss(opr1, opr2);
2728 
2729   Label L;
2730   if (unordered_is_less) {
2731     movl(dst, -1);
2732     jcc(Assembler::parity, L);
2733     jcc(Assembler::below , L);
2734     movl(dst, 0);
2735     jcc(Assembler::equal , L);
2736     increment(dst);
2737   } else { // unordered is greater
2738     movl(dst, 1);
2739     jcc(Assembler::parity, L);
2740     jcc(Assembler::above , L);
2741     movl(dst, 0);
2742     jcc(Assembler::equal , L);
2743     decrementl(dst);
2744   }
2745   bind(L);
2746 }
2747 
2748 
2749 void MacroAssembler::cmp8(AddressLiteral src1, int imm) {
2750   if (reachable(src1)) {
2751     cmpb(as_Address(src1), imm);
2752   } else {
2753     lea(rscratch1, src1);
2754     cmpb(Address(rscratch1, 0), imm);
2755   }
2756 }
2757 
2758 void MacroAssembler::cmpptr(Register src1, AddressLiteral src2) {
2759 #ifdef _LP64
2760   if (src2.is_lval()) {
2761     movptr(rscratch1, src2);
2762     Assembler::cmpq(src1, rscratch1);
2763   } else if (reachable(src2)) {
2764     cmpq(src1, as_Address(src2));
2765   } else {
2766     lea(rscratch1, src2);
2767     Assembler::cmpq(src1, Address(rscratch1, 0));
2768   }
2769 #else
2770   if (src2.is_lval()) {
2771     cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2772   } else {
2773     cmpl(src1, as_Address(src2));
2774   }
2775 #endif // _LP64
2776 }
2777 
2778 void MacroAssembler::cmpptr(Address src1, AddressLiteral src2) {
2779   assert(src2.is_lval(), "not a mem-mem compare");
2780 #ifdef _LP64
2781   // moves src2's literal address
2782   movptr(rscratch1, src2);
2783   Assembler::cmpq(src1, rscratch1);
2784 #else
2785   cmp_literal32(src1, (int32_t) src2.target(), src2.rspec());
2786 #endif // _LP64
2787 }
2788 
2789 void MacroAssembler::locked_cmpxchgptr(Register reg, AddressLiteral adr) {
2790   if (reachable(adr)) {
2791     if (os::is_MP())
2792       lock();
2793     cmpxchgptr(reg, as_Address(adr));
2794   } else {
2795     lea(rscratch1, adr);
2796     if (os::is_MP())
2797       lock();
2798     cmpxchgptr(reg, Address(rscratch1, 0));
2799   }
2800 }
2801 
2802 void MacroAssembler::cmpxchgptr(Register reg, Address adr) {
2803   LP64_ONLY(cmpxchgq(reg, adr)) NOT_LP64(cmpxchgl(reg, adr));
2804 }
2805 
2806 void MacroAssembler::comisd(XMMRegister dst, AddressLiteral src) {
2807   if (reachable(src)) {
2808     Assembler::comisd(dst, as_Address(src));
2809   } else {
2810     lea(rscratch1, src);
2811     Assembler::comisd(dst, Address(rscratch1, 0));
2812   }
2813 }
2814 
2815 void MacroAssembler::comiss(XMMRegister dst, AddressLiteral src) {
2816   if (reachable(src)) {
2817     Assembler::comiss(dst, as_Address(src));
2818   } else {
2819     lea(rscratch1, src);
2820     Assembler::comiss(dst, Address(rscratch1, 0));
2821   }
2822 }
2823 
2824 
2825 void MacroAssembler::cond_inc32(Condition cond, AddressLiteral counter_addr) {
2826   Condition negated_cond = negate_condition(cond);
2827   Label L;
2828   jcc(negated_cond, L);
2829   pushf(); // Preserve flags
2830   atomic_incl(counter_addr);
2831   popf();
2832   bind(L);
2833 }
2834 
2835 int MacroAssembler::corrected_idivl(Register reg) {
2836   // Full implementation of Java idiv and irem; checks for
2837   // special case as described in JVM spec., p.243 & p.271.
2838   // The function returns the (pc) offset of the idivl
2839   // instruction - may be needed for implicit exceptions.
2840   //
2841   //         normal case                           special case
2842   //
2843   // input : rax,: dividend                         min_int
2844   //         reg: divisor   (may not be rax,/rdx)   -1
2845   //
2846   // output: rax,: quotient  (= rax, idiv reg)       min_int
2847   //         rdx: remainder (= rax, irem reg)       0
2848   assert(reg != rax && reg != rdx, "reg cannot be rax, or rdx register");
2849   const int min_int = 0x80000000;
2850   Label normal_case, special_case;
2851 
2852   // check for special case
2853   cmpl(rax, min_int);
2854   jcc(Assembler::notEqual, normal_case);
2855   xorl(rdx, rdx); // prepare rdx for possible special case (where remainder = 0)
2856   cmpl(reg, -1);
2857   jcc(Assembler::equal, special_case);
2858 
2859   // handle normal case
2860   bind(normal_case);
2861   cdql();
2862   int idivl_offset = offset();
2863   idivl(reg);
2864 
2865   // normal and special case exit
2866   bind(special_case);
2867 
2868   return idivl_offset;
2869 }
2870 
2871 
2872 
2873 void MacroAssembler::decrementl(Register reg, int value) {
2874   if (value == min_jint) {subl(reg, value) ; return; }
2875   if (value <  0) { incrementl(reg, -value); return; }
2876   if (value == 0) {                        ; return; }
2877   if (value == 1 && UseIncDec) { decl(reg) ; return; }
2878   /* else */      { subl(reg, value)       ; return; }
2879 }
2880 
2881 void MacroAssembler::decrementl(Address dst, int value) {
2882   if (value == min_jint) {subl(dst, value) ; return; }
2883   if (value <  0) { incrementl(dst, -value); return; }
2884   if (value == 0) {                        ; return; }
2885   if (value == 1 && UseIncDec) { decl(dst) ; return; }
2886   /* else */      { subl(dst, value)       ; return; }
2887 }
2888 
2889 void MacroAssembler::division_with_shift (Register reg, int shift_value) {
2890   assert (shift_value > 0, "illegal shift value");
2891   Label _is_positive;
2892   testl (reg, reg);
2893   jcc (Assembler::positive, _is_positive);
2894   int offset = (1 << shift_value) - 1 ;
2895 
2896   if (offset == 1) {
2897     incrementl(reg);
2898   } else {
2899     addl(reg, offset);
2900   }
2901 
2902   bind (_is_positive);
2903   sarl(reg, shift_value);
2904 }
2905 
2906 void MacroAssembler::divsd(XMMRegister dst, AddressLiteral src) {
2907   if (reachable(src)) {
2908     Assembler::divsd(dst, as_Address(src));
2909   } else {
2910     lea(rscratch1, src);
2911     Assembler::divsd(dst, Address(rscratch1, 0));
2912   }
2913 }
2914 
2915 void MacroAssembler::divss(XMMRegister dst, AddressLiteral src) {
2916   if (reachable(src)) {
2917     Assembler::divss(dst, as_Address(src));
2918   } else {
2919     lea(rscratch1, src);
2920     Assembler::divss(dst, Address(rscratch1, 0));
2921   }
2922 }
2923 
2924 // !defined(COMPILER2) is because of stupid core builds
2925 #if !defined(_LP64) || defined(COMPILER1) || !defined(COMPILER2) || INCLUDE_JVMCI
2926 void MacroAssembler::empty_FPU_stack() {
2927   if (VM_Version::supports_mmx()) {
2928     emms();
2929   } else {
2930     for (int i = 8; i-- > 0; ) ffree(i);
2931   }
2932 }
2933 #endif // !LP64 || C1 || !C2 || INCLUDE_JVMCI
2934 
2935 
2936 // Defines obj, preserves var_size_in_bytes
2937 void MacroAssembler::eden_allocate(Register obj,
2938                                    Register var_size_in_bytes,
2939                                    int con_size_in_bytes,
2940                                    Register t1,
2941                                    Label& slow_case) {
2942   assert(obj == rax, "obj must be in rax, for cmpxchg");
2943   assert_different_registers(obj, var_size_in_bytes, t1);
2944   if (!Universe::heap()->supports_inline_contig_alloc()) {
2945     jmp(slow_case);
2946   } else {
2947     Register end = t1;
2948     Label retry;
2949     bind(retry);
2950     ExternalAddress heap_top((address) Universe::heap()->top_addr());
2951     movptr(obj, heap_top);
2952     if (var_size_in_bytes == noreg) {
2953       lea(end, Address(obj, con_size_in_bytes));
2954     } else {
2955       lea(end, Address(obj, var_size_in_bytes, Address::times_1));
2956     }
2957     // if end < obj then we wrapped around => object too long => slow case
2958     cmpptr(end, obj);
2959     jcc(Assembler::below, slow_case);
2960     cmpptr(end, ExternalAddress((address) Universe::heap()->end_addr()));
2961     jcc(Assembler::above, slow_case);
2962     // Compare obj with the top addr, and if still equal, store the new top addr in
2963     // end at the address of the top addr pointer. Sets ZF if was equal, and clears
2964     // it otherwise. Use lock prefix for atomicity on MPs.
2965     locked_cmpxchgptr(end, heap_top);
2966     jcc(Assembler::notEqual, retry);
2967   }
2968 }
2969 
2970 void MacroAssembler::enter() {
2971   push(rbp);
2972   mov(rbp, rsp);
2973 }
2974 
2975 // A 5 byte nop that is safe for patching (see patch_verified_entry)
2976 void MacroAssembler::fat_nop() {
2977   if (UseAddressNop) {
2978     addr_nop_5();
2979   } else {
2980     emit_int8(0x26); // es:
2981     emit_int8(0x2e); // cs:
2982     emit_int8(0x64); // fs:
2983     emit_int8(0x65); // gs:
2984     emit_int8((unsigned char)0x90);
2985   }
2986 }
2987 
2988 void MacroAssembler::fcmp(Register tmp) {
2989   fcmp(tmp, 1, true, true);
2990 }
2991 
2992 void MacroAssembler::fcmp(Register tmp, int index, bool pop_left, bool pop_right) {
2993   assert(!pop_right || pop_left, "usage error");
2994   if (VM_Version::supports_cmov()) {
2995     assert(tmp == noreg, "unneeded temp");
2996     if (pop_left) {
2997       fucomip(index);
2998     } else {
2999       fucomi(index);
3000     }
3001     if (pop_right) {
3002       fpop();
3003     }
3004   } else {
3005     assert(tmp != noreg, "need temp");
3006     if (pop_left) {
3007       if (pop_right) {
3008         fcompp();
3009       } else {
3010         fcomp(index);
3011       }
3012     } else {
3013       fcom(index);
3014     }
3015     // convert FPU condition into eflags condition via rax,
3016     save_rax(tmp);
3017     fwait(); fnstsw_ax();
3018     sahf();
3019     restore_rax(tmp);
3020   }
3021   // condition codes set as follows:
3022   //
3023   // CF (corresponds to C0) if x < y
3024   // PF (corresponds to C2) if unordered
3025   // ZF (corresponds to C3) if x = y
3026 }
3027 
3028 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less) {
3029   fcmp2int(dst, unordered_is_less, 1, true, true);
3030 }
3031 
3032 void MacroAssembler::fcmp2int(Register dst, bool unordered_is_less, int index, bool pop_left, bool pop_right) {
3033   fcmp(VM_Version::supports_cmov() ? noreg : dst, index, pop_left, pop_right);
3034   Label L;
3035   if (unordered_is_less) {
3036     movl(dst, -1);
3037     jcc(Assembler::parity, L);
3038     jcc(Assembler::below , L);
3039     movl(dst, 0);
3040     jcc(Assembler::equal , L);
3041     increment(dst);
3042   } else { // unordered is greater
3043     movl(dst, 1);
3044     jcc(Assembler::parity, L);
3045     jcc(Assembler::above , L);
3046     movl(dst, 0);
3047     jcc(Assembler::equal , L);
3048     decrementl(dst);
3049   }
3050   bind(L);
3051 }
3052 
3053 void MacroAssembler::fld_d(AddressLiteral src) {
3054   fld_d(as_Address(src));
3055 }
3056 
3057 void MacroAssembler::fld_s(AddressLiteral src) {
3058   fld_s(as_Address(src));
3059 }
3060 
3061 void MacroAssembler::fld_x(AddressLiteral src) {
3062   Assembler::fld_x(as_Address(src));
3063 }
3064 
3065 void MacroAssembler::fldcw(AddressLiteral src) {
3066   Assembler::fldcw(as_Address(src));
3067 }
3068 
3069 void MacroAssembler::mulpd(XMMRegister dst, AddressLiteral src) {
3070   if (reachable(src)) {
3071     Assembler::mulpd(dst, as_Address(src));
3072   } else {
3073     lea(rscratch1, src);
3074     Assembler::mulpd(dst, Address(rscratch1, 0));
3075   }
3076 }
3077 
3078 void MacroAssembler::increase_precision() {
3079   subptr(rsp, BytesPerWord);
3080   fnstcw(Address(rsp, 0));
3081   movl(rax, Address(rsp, 0));
3082   orl(rax, 0x300);
3083   push(rax);
3084   fldcw(Address(rsp, 0));
3085   pop(rax);
3086 }
3087 
3088 void MacroAssembler::restore_precision() {
3089   fldcw(Address(rsp, 0));
3090   addptr(rsp, BytesPerWord);
3091 }
3092 
3093 void MacroAssembler::fpop() {
3094   ffree();
3095   fincstp();
3096 }
3097 
3098 void MacroAssembler::load_float(Address src) {
3099   if (UseSSE >= 1) {
3100     movflt(xmm0, src);
3101   } else {
3102     LP64_ONLY(ShouldNotReachHere());
3103     NOT_LP64(fld_s(src));
3104   }
3105 }
3106 
3107 void MacroAssembler::store_float(Address dst) {
3108   if (UseSSE >= 1) {
3109     movflt(dst, xmm0);
3110   } else {
3111     LP64_ONLY(ShouldNotReachHere());
3112     NOT_LP64(fstp_s(dst));
3113   }
3114 }
3115 
3116 void MacroAssembler::load_double(Address src) {
3117   if (UseSSE >= 2) {
3118     movdbl(xmm0, src);
3119   } else {
3120     LP64_ONLY(ShouldNotReachHere());
3121     NOT_LP64(fld_d(src));
3122   }
3123 }
3124 
3125 void MacroAssembler::store_double(Address dst) {
3126   if (UseSSE >= 2) {
3127     movdbl(dst, xmm0);
3128   } else {
3129     LP64_ONLY(ShouldNotReachHere());
3130     NOT_LP64(fstp_d(dst));
3131   }
3132 }
3133 
3134 void MacroAssembler::fremr(Register tmp) {
3135   save_rax(tmp);
3136   { Label L;
3137     bind(L);
3138     fprem();
3139     fwait(); fnstsw_ax();
3140 #ifdef _LP64
3141     testl(rax, 0x400);
3142     jcc(Assembler::notEqual, L);
3143 #else
3144     sahf();
3145     jcc(Assembler::parity, L);
3146 #endif // _LP64
3147   }
3148   restore_rax(tmp);
3149   // Result is in ST0.
3150   // Note: fxch & fpop to get rid of ST1
3151   // (otherwise FPU stack could overflow eventually)
3152   fxch(1);
3153   fpop();
3154 }
3155 
3156 // dst = c = a * b + c
3157 void MacroAssembler::fmad(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3158   Assembler::vfmadd231sd(c, a, b);
3159   if (dst != c) {
3160     movdbl(dst, c);
3161   }
3162 }
3163 
3164 // dst = c = a * b + c
3165 void MacroAssembler::fmaf(XMMRegister dst, XMMRegister a, XMMRegister b, XMMRegister c) {
3166   Assembler::vfmadd231ss(c, a, b);
3167   if (dst != c) {
3168     movflt(dst, c);
3169   }
3170 }
3171 
3172 
3173 
3174 
3175 void MacroAssembler::incrementl(AddressLiteral dst) {
3176   if (reachable(dst)) {
3177     incrementl(as_Address(dst));
3178   } else {
3179     lea(rscratch1, dst);
3180     incrementl(Address(rscratch1, 0));
3181   }
3182 }
3183 
3184 void MacroAssembler::incrementl(ArrayAddress dst) {
3185   incrementl(as_Address(dst));
3186 }
3187 
3188 void MacroAssembler::incrementl(Register reg, int value) {
3189   if (value == min_jint) {addl(reg, value) ; return; }
3190   if (value <  0) { decrementl(reg, -value); return; }
3191   if (value == 0) {                        ; return; }
3192   if (value == 1 && UseIncDec) { incl(reg) ; return; }
3193   /* else */      { addl(reg, value)       ; return; }
3194 }
3195 
3196 void MacroAssembler::incrementl(Address dst, int value) {
3197   if (value == min_jint) {addl(dst, value) ; return; }
3198   if (value <  0) { decrementl(dst, -value); return; }
3199   if (value == 0) {                        ; return; }
3200   if (value == 1 && UseIncDec) { incl(dst) ; return; }
3201   /* else */      { addl(dst, value)       ; return; }
3202 }
3203 
3204 void MacroAssembler::jump(AddressLiteral dst) {
3205   if (reachable(dst)) {
3206     jmp_literal(dst.target(), dst.rspec());
3207   } else {
3208     lea(rscratch1, dst);
3209     jmp(rscratch1);
3210   }
3211 }
3212 
3213 void MacroAssembler::jump_cc(Condition cc, AddressLiteral dst) {
3214   if (reachable(dst)) {
3215     InstructionMark im(this);
3216     relocate(dst.reloc());
3217     const int short_size = 2;
3218     const int long_size = 6;
3219     int offs = (intptr_t)dst.target() - ((intptr_t)pc());
3220     if (dst.reloc() == relocInfo::none && is8bit(offs - short_size)) {
3221       // 0111 tttn #8-bit disp
3222       emit_int8(0x70 | cc);
3223       emit_int8((offs - short_size) & 0xFF);
3224     } else {
3225       // 0000 1111 1000 tttn #32-bit disp
3226       emit_int8(0x0F);
3227       emit_int8((unsigned char)(0x80 | cc));
3228       emit_int32(offs - long_size);
3229     }
3230   } else {
3231 #ifdef ASSERT
3232     warning("reversing conditional branch");
3233 #endif /* ASSERT */
3234     Label skip;
3235     jccb(reverse[cc], skip);
3236     lea(rscratch1, dst);
3237     Assembler::jmp(rscratch1);
3238     bind(skip);
3239   }
3240 }
3241 
3242 void MacroAssembler::ldmxcsr(AddressLiteral src) {
3243   if (reachable(src)) {
3244     Assembler::ldmxcsr(as_Address(src));
3245   } else {
3246     lea(rscratch1, src);
3247     Assembler::ldmxcsr(Address(rscratch1, 0));
3248   }
3249 }
3250 
3251 int MacroAssembler::load_signed_byte(Register dst, Address src) {
3252   int off;
3253   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3254     off = offset();
3255     movsbl(dst, src); // movsxb
3256   } else {
3257     off = load_unsigned_byte(dst, src);
3258     shll(dst, 24);
3259     sarl(dst, 24);
3260   }
3261   return off;
3262 }
3263 
3264 // Note: load_signed_short used to be called load_signed_word.
3265 // Although the 'w' in x86 opcodes refers to the term "word" in the assembler
3266 // manual, which means 16 bits, that usage is found nowhere in HotSpot code.
3267 // The term "word" in HotSpot means a 32- or 64-bit machine word.
3268 int MacroAssembler::load_signed_short(Register dst, Address src) {
3269   int off;
3270   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3271     // This is dubious to me since it seems safe to do a signed 16 => 64 bit
3272     // version but this is what 64bit has always done. This seems to imply
3273     // that users are only using 32bits worth.
3274     off = offset();
3275     movswl(dst, src); // movsxw
3276   } else {
3277     off = load_unsigned_short(dst, src);
3278     shll(dst, 16);
3279     sarl(dst, 16);
3280   }
3281   return off;
3282 }
3283 
3284 int MacroAssembler::load_unsigned_byte(Register dst, Address src) {
3285   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3286   // and "3.9 Partial Register Penalties", p. 22).
3287   int off;
3288   if (LP64_ONLY(true || ) VM_Version::is_P6() || src.uses(dst)) {
3289     off = offset();
3290     movzbl(dst, src); // movzxb
3291   } else {
3292     xorl(dst, dst);
3293     off = offset();
3294     movb(dst, src);
3295   }
3296   return off;
3297 }
3298 
3299 // Note: load_unsigned_short used to be called load_unsigned_word.
3300 int MacroAssembler::load_unsigned_short(Register dst, Address src) {
3301   // According to Intel Doc. AP-526, "Zero-Extension of Short", p.16,
3302   // and "3.9 Partial Register Penalties", p. 22).
3303   int off;
3304   if (LP64_ONLY(true ||) VM_Version::is_P6() || src.uses(dst)) {
3305     off = offset();
3306     movzwl(dst, src); // movzxw
3307   } else {
3308     xorl(dst, dst);
3309     off = offset();
3310     movw(dst, src);
3311   }
3312   return off;
3313 }
3314 
3315 void MacroAssembler::load_sized_value(Register dst, Address src, size_t size_in_bytes, bool is_signed, Register dst2) {
3316   switch (size_in_bytes) {
3317 #ifndef _LP64
3318   case  8:
3319     assert(dst2 != noreg, "second dest register required");
3320     movl(dst,  src);
3321     movl(dst2, src.plus_disp(BytesPerInt));
3322     break;
3323 #else
3324   case  8:  movq(dst, src); break;
3325 #endif
3326   case  4:  movl(dst, src); break;
3327   case  2:  is_signed ? load_signed_short(dst, src) : load_unsigned_short(dst, src); break;
3328   case  1:  is_signed ? load_signed_byte( dst, src) : load_unsigned_byte( dst, src); break;
3329   default:  ShouldNotReachHere();
3330   }
3331 }
3332 
3333 void MacroAssembler::store_sized_value(Address dst, Register src, size_t size_in_bytes, Register src2) {
3334   switch (size_in_bytes) {
3335 #ifndef _LP64
3336   case  8:
3337     assert(src2 != noreg, "second source register required");
3338     movl(dst,                        src);
3339     movl(dst.plus_disp(BytesPerInt), src2);
3340     break;
3341 #else
3342   case  8:  movq(dst, src); break;
3343 #endif
3344   case  4:  movl(dst, src); break;
3345   case  2:  movw(dst, src); break;
3346   case  1:  movb(dst, src); break;
3347   default:  ShouldNotReachHere();
3348   }
3349 }
3350 
3351 void MacroAssembler::mov32(AddressLiteral dst, Register src) {
3352   if (reachable(dst)) {
3353     movl(as_Address(dst), src);
3354   } else {
3355     lea(rscratch1, dst);
3356     movl(Address(rscratch1, 0), src);
3357   }
3358 }
3359 
3360 void MacroAssembler::mov32(Register dst, AddressLiteral src) {
3361   if (reachable(src)) {
3362     movl(dst, as_Address(src));
3363   } else {
3364     lea(rscratch1, src);
3365     movl(dst, Address(rscratch1, 0));
3366   }
3367 }
3368 
3369 // C++ bool manipulation
3370 
3371 void MacroAssembler::movbool(Register dst, Address src) {
3372   if(sizeof(bool) == 1)
3373     movb(dst, src);
3374   else if(sizeof(bool) == 2)
3375     movw(dst, src);
3376   else if(sizeof(bool) == 4)
3377     movl(dst, src);
3378   else
3379     // unsupported
3380     ShouldNotReachHere();
3381 }
3382 
3383 void MacroAssembler::movbool(Address dst, bool boolconst) {
3384   if(sizeof(bool) == 1)
3385     movb(dst, (int) boolconst);
3386   else if(sizeof(bool) == 2)
3387     movw(dst, (int) boolconst);
3388   else if(sizeof(bool) == 4)
3389     movl(dst, (int) boolconst);
3390   else
3391     // unsupported
3392     ShouldNotReachHere();
3393 }
3394 
3395 void MacroAssembler::movbool(Address dst, Register src) {
3396   if(sizeof(bool) == 1)
3397     movb(dst, src);
3398   else if(sizeof(bool) == 2)
3399     movw(dst, src);
3400   else if(sizeof(bool) == 4)
3401     movl(dst, src);
3402   else
3403     // unsupported
3404     ShouldNotReachHere();
3405 }
3406 
3407 void MacroAssembler::movbyte(ArrayAddress dst, int src) {
3408   movb(as_Address(dst), src);
3409 }
3410 
3411 void MacroAssembler::movdl(XMMRegister dst, AddressLiteral src) {
3412   if (reachable(src)) {
3413     movdl(dst, as_Address(src));
3414   } else {
3415     lea(rscratch1, src);
3416     movdl(dst, Address(rscratch1, 0));
3417   }
3418 }
3419 
3420 void MacroAssembler::movq(XMMRegister dst, AddressLiteral src) {
3421   if (reachable(src)) {
3422     movq(dst, as_Address(src));
3423   } else {
3424     lea(rscratch1, src);
3425     movq(dst, Address(rscratch1, 0));
3426   }
3427 }
3428 
3429 void MacroAssembler::setvectmask(Register dst, Register src) {
3430   Assembler::movl(dst, 1);
3431   Assembler::shlxl(dst, dst, src);
3432   Assembler::decl(dst);
3433   Assembler::kmovdl(k1, dst);
3434   Assembler::movl(dst, src);
3435 }
3436 
3437 void MacroAssembler::restorevectmask() {
3438   Assembler::knotwl(k1, k0);
3439 }
3440 
3441 void MacroAssembler::movdbl(XMMRegister dst, AddressLiteral src) {
3442   if (reachable(src)) {
3443     if (UseXmmLoadAndClearUpper) {
3444       movsd (dst, as_Address(src));
3445     } else {
3446       movlpd(dst, as_Address(src));
3447     }
3448   } else {
3449     lea(rscratch1, src);
3450     if (UseXmmLoadAndClearUpper) {
3451       movsd (dst, Address(rscratch1, 0));
3452     } else {
3453       movlpd(dst, Address(rscratch1, 0));
3454     }
3455   }
3456 }
3457 
3458 void MacroAssembler::movflt(XMMRegister dst, AddressLiteral src) {
3459   if (reachable(src)) {
3460     movss(dst, as_Address(src));
3461   } else {
3462     lea(rscratch1, src);
3463     movss(dst, Address(rscratch1, 0));
3464   }
3465 }
3466 
3467 void MacroAssembler::movptr(Register dst, Register src) {
3468   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3469 }
3470 
3471 void MacroAssembler::movptr(Register dst, Address src) {
3472   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3473 }
3474 
3475 // src should NEVER be a real pointer. Use AddressLiteral for true pointers
3476 void MacroAssembler::movptr(Register dst, intptr_t src) {
3477   LP64_ONLY(mov64(dst, src)) NOT_LP64(movl(dst, src));
3478 }
3479 
3480 void MacroAssembler::movptr(Address dst, Register src) {
3481   LP64_ONLY(movq(dst, src)) NOT_LP64(movl(dst, src));
3482 }
3483 
3484 void MacroAssembler::movdqu(Address dst, XMMRegister src) {
3485   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3486     Assembler::vextractf32x4(dst, src, 0);
3487   } else {
3488     Assembler::movdqu(dst, src);
3489   }
3490 }
3491 
3492 void MacroAssembler::movdqu(XMMRegister dst, Address src) {
3493   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3494     Assembler::vinsertf32x4(dst, dst, src, 0);
3495   } else {
3496     Assembler::movdqu(dst, src);
3497   }
3498 }
3499 
3500 void MacroAssembler::movdqu(XMMRegister dst, XMMRegister src) {
3501   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3502     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3503   } else {
3504     Assembler::movdqu(dst, src);
3505   }
3506 }
3507 
3508 void MacroAssembler::movdqu(XMMRegister dst, AddressLiteral src, Register scratchReg) {
3509   if (reachable(src)) {
3510     movdqu(dst, as_Address(src));
3511   } else {
3512     lea(scratchReg, src);
3513     movdqu(dst, Address(scratchReg, 0));
3514   }
3515 }
3516 
3517 void MacroAssembler::vmovdqu(Address dst, XMMRegister src) {
3518   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (src->encoding() > 15)) {
3519     vextractf64x4_low(dst, src);
3520   } else {
3521     Assembler::vmovdqu(dst, src);
3522   }
3523 }
3524 
3525 void MacroAssembler::vmovdqu(XMMRegister dst, Address src) {
3526   if (UseAVX > 2 && !VM_Version::supports_avx512vl() && (dst->encoding() > 15)) {
3527     vinsertf64x4_low(dst, src);
3528   } else {
3529     Assembler::vmovdqu(dst, src);
3530   }
3531 }
3532 
3533 void MacroAssembler::vmovdqu(XMMRegister dst, XMMRegister src) {
3534   if (UseAVX > 2 && !VM_Version::supports_avx512vl()) {
3535     Assembler::evmovdqul(dst, src, Assembler::AVX_512bit);
3536   }
3537   else {
3538     Assembler::vmovdqu(dst, src);
3539   }
3540 }
3541 
3542 void MacroAssembler::vmovdqu(XMMRegister dst, AddressLiteral src) {
3543   if (reachable(src)) {
3544     vmovdqu(dst, as_Address(src));
3545   }
3546   else {
3547     lea(rscratch1, src);
3548     vmovdqu(dst, Address(rscratch1, 0));
3549   }
3550 }
3551 
3552 void MacroAssembler::movdqa(XMMRegister dst, AddressLiteral src) {
3553   if (reachable(src)) {
3554     Assembler::movdqa(dst, as_Address(src));
3555   } else {
3556     lea(rscratch1, src);
3557     Assembler::movdqa(dst, Address(rscratch1, 0));
3558   }
3559 }
3560 
3561 void MacroAssembler::movsd(XMMRegister dst, AddressLiteral src) {
3562   if (reachable(src)) {
3563     Assembler::movsd(dst, as_Address(src));
3564   } else {
3565     lea(rscratch1, src);
3566     Assembler::movsd(dst, Address(rscratch1, 0));
3567   }
3568 }
3569 
3570 void MacroAssembler::movss(XMMRegister dst, AddressLiteral src) {
3571   if (reachable(src)) {
3572     Assembler::movss(dst, as_Address(src));
3573   } else {
3574     lea(rscratch1, src);
3575     Assembler::movss(dst, Address(rscratch1, 0));
3576   }
3577 }
3578 
3579 void MacroAssembler::mulsd(XMMRegister dst, AddressLiteral src) {
3580   if (reachable(src)) {
3581     Assembler::mulsd(dst, as_Address(src));
3582   } else {
3583     lea(rscratch1, src);
3584     Assembler::mulsd(dst, Address(rscratch1, 0));
3585   }
3586 }
3587 
3588 void MacroAssembler::mulss(XMMRegister dst, AddressLiteral src) {
3589   if (reachable(src)) {
3590     Assembler::mulss(dst, as_Address(src));
3591   } else {
3592     lea(rscratch1, src);
3593     Assembler::mulss(dst, Address(rscratch1, 0));
3594   }
3595 }
3596 
3597 void MacroAssembler::null_check(Register reg, int offset) {
3598   if (needs_explicit_null_check(offset)) {
3599     // provoke OS NULL exception if reg = NULL by
3600     // accessing M[reg] w/o changing any (non-CC) registers
3601     // NOTE: cmpl is plenty here to provoke a segv
3602     cmpptr(rax, Address(reg, 0));
3603     // Note: should probably use testl(rax, Address(reg, 0));
3604     //       may be shorter code (however, this version of
3605     //       testl needs to be implemented first)
3606   } else {
3607     // nothing to do, (later) access of M[reg + offset]
3608     // will provoke OS NULL exception if reg = NULL
3609   }
3610 }
3611 
3612 void MacroAssembler::os_breakpoint() {
3613   // instead of directly emitting a breakpoint, call os:breakpoint for better debugability
3614   // (e.g., MSVC can't call ps() otherwise)
3615   call(RuntimeAddress(CAST_FROM_FN_PTR(address, os::breakpoint)));
3616 }
3617 
3618 #ifdef _LP64
3619 #define XSTATE_BV 0x200
3620 #endif
3621 
3622 void MacroAssembler::pop_CPU_state() {
3623   pop_FPU_state();
3624   pop_IU_state();
3625 }
3626 
3627 void MacroAssembler::pop_FPU_state() {
3628 #ifndef _LP64
3629   frstor(Address(rsp, 0));
3630 #else
3631   fxrstor(Address(rsp, 0));
3632 #endif
3633   addptr(rsp, FPUStateSizeInWords * wordSize);
3634 }
3635 
3636 void MacroAssembler::pop_IU_state() {
3637   popa();
3638   LP64_ONLY(addq(rsp, 8));
3639   popf();
3640 }
3641 
3642 // Save Integer and Float state
3643 // Warning: Stack must be 16 byte aligned (64bit)
3644 void MacroAssembler::push_CPU_state() {
3645   push_IU_state();
3646   push_FPU_state();
3647 }
3648 
3649 void MacroAssembler::push_FPU_state() {
3650   subptr(rsp, FPUStateSizeInWords * wordSize);
3651 #ifndef _LP64
3652   fnsave(Address(rsp, 0));
3653   fwait();
3654 #else
3655   fxsave(Address(rsp, 0));
3656 #endif // LP64
3657 }
3658 
3659 void MacroAssembler::push_IU_state() {
3660   // Push flags first because pusha kills them
3661   pushf();
3662   // Make sure rsp stays 16-byte aligned
3663   LP64_ONLY(subq(rsp, 8));
3664   pusha();
3665 }
3666 
3667 void MacroAssembler::reset_last_Java_frame(Register java_thread, bool clear_fp) { // determine java_thread register
3668   if (!java_thread->is_valid()) {
3669     java_thread = rdi;
3670     get_thread(java_thread);
3671   }
3672   // we must set sp to zero to clear frame
3673   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), NULL_WORD);
3674   if (clear_fp) {
3675     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), NULL_WORD);
3676   }
3677 
3678   // Always clear the pc because it could have been set by make_walkable()
3679   movptr(Address(java_thread, JavaThread::last_Java_pc_offset()), NULL_WORD);
3680 
3681   vzeroupper();
3682 }
3683 
3684 void MacroAssembler::restore_rax(Register tmp) {
3685   if (tmp == noreg) pop(rax);
3686   else if (tmp != rax) mov(rax, tmp);
3687 }
3688 
3689 void MacroAssembler::round_to(Register reg, int modulus) {
3690   addptr(reg, modulus - 1);
3691   andptr(reg, -modulus);
3692 }
3693 
3694 void MacroAssembler::save_rax(Register tmp) {
3695   if (tmp == noreg) push(rax);
3696   else if (tmp != rax) mov(tmp, rax);
3697 }
3698 
3699 // Write serialization page so VM thread can do a pseudo remote membar.
3700 // We use the current thread pointer to calculate a thread specific
3701 // offset to write to within the page. This minimizes bus traffic
3702 // due to cache line collision.
3703 void MacroAssembler::serialize_memory(Register thread, Register tmp) {
3704   movl(tmp, thread);
3705   shrl(tmp, os::get_serialize_page_shift_count());
3706   andl(tmp, (os::vm_page_size() - sizeof(int)));
3707 
3708   Address index(noreg, tmp, Address::times_1);
3709   ExternalAddress page(os::get_memory_serialize_page());
3710 
3711   // Size of store must match masking code above
3712   movl(as_Address(ArrayAddress(page, index)), tmp);
3713 }
3714 
3715 // Calls to C land
3716 //
3717 // When entering C land, the rbp, & rsp of the last Java frame have to be recorded
3718 // in the (thread-local) JavaThread object. When leaving C land, the last Java fp
3719 // has to be reset to 0. This is required to allow proper stack traversal.
3720 void MacroAssembler::set_last_Java_frame(Register java_thread,
3721                                          Register last_java_sp,
3722                                          Register last_java_fp,
3723                                          address  last_java_pc) {
3724   vzeroupper();
3725   // determine java_thread register
3726   if (!java_thread->is_valid()) {
3727     java_thread = rdi;
3728     get_thread(java_thread);
3729   }
3730   // determine last_java_sp register
3731   if (!last_java_sp->is_valid()) {
3732     last_java_sp = rsp;
3733   }
3734 
3735   // last_java_fp is optional
3736 
3737   if (last_java_fp->is_valid()) {
3738     movptr(Address(java_thread, JavaThread::last_Java_fp_offset()), last_java_fp);
3739   }
3740 
3741   // last_java_pc is optional
3742 
3743   if (last_java_pc != NULL) {
3744     lea(Address(java_thread,
3745                  JavaThread::frame_anchor_offset() + JavaFrameAnchor::last_Java_pc_offset()),
3746         InternalAddress(last_java_pc));
3747 
3748   }
3749   movptr(Address(java_thread, JavaThread::last_Java_sp_offset()), last_java_sp);
3750 }
3751 
3752 void MacroAssembler::shlptr(Register dst, int imm8) {
3753   LP64_ONLY(shlq(dst, imm8)) NOT_LP64(shll(dst, imm8));
3754 }
3755 
3756 void MacroAssembler::shrptr(Register dst, int imm8) {
3757   LP64_ONLY(shrq(dst, imm8)) NOT_LP64(shrl(dst, imm8));
3758 }
3759 
3760 void MacroAssembler::sign_extend_byte(Register reg) {
3761   if (LP64_ONLY(true ||) (VM_Version::is_P6() && reg->has_byte_register())) {
3762     movsbl(reg, reg); // movsxb
3763   } else {
3764     shll(reg, 24);
3765     sarl(reg, 24);
3766   }
3767 }
3768 
3769 void MacroAssembler::sign_extend_short(Register reg) {
3770   if (LP64_ONLY(true ||) VM_Version::is_P6()) {
3771     movswl(reg, reg); // movsxw
3772   } else {
3773     shll(reg, 16);
3774     sarl(reg, 16);
3775   }
3776 }
3777 
3778 void MacroAssembler::testl(Register dst, AddressLiteral src) {
3779   assert(reachable(src), "Address should be reachable");
3780   testl(dst, as_Address(src));
3781 }
3782 
3783 void MacroAssembler::pcmpeqb(XMMRegister dst, XMMRegister src) {
3784   int dst_enc = dst->encoding();
3785   int src_enc = src->encoding();
3786   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3787     Assembler::pcmpeqb(dst, src);
3788   } else if ((dst_enc < 16) && (src_enc < 16)) {
3789     Assembler::pcmpeqb(dst, src);
3790   } else if (src_enc < 16) {
3791     subptr(rsp, 64);
3792     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3793     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3794     Assembler::pcmpeqb(xmm0, src);
3795     movdqu(dst, xmm0);
3796     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3797     addptr(rsp, 64);
3798   } else if (dst_enc < 16) {
3799     subptr(rsp, 64);
3800     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3801     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3802     Assembler::pcmpeqb(dst, xmm0);
3803     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3804     addptr(rsp, 64);
3805   } else {
3806     subptr(rsp, 64);
3807     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3808     subptr(rsp, 64);
3809     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3810     movdqu(xmm0, src);
3811     movdqu(xmm1, dst);
3812     Assembler::pcmpeqb(xmm1, xmm0);
3813     movdqu(dst, xmm1);
3814     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3815     addptr(rsp, 64);
3816     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3817     addptr(rsp, 64);
3818   }
3819 }
3820 
3821 void MacroAssembler::pcmpeqw(XMMRegister dst, XMMRegister src) {
3822   int dst_enc = dst->encoding();
3823   int src_enc = src->encoding();
3824   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3825     Assembler::pcmpeqw(dst, src);
3826   } else if ((dst_enc < 16) && (src_enc < 16)) {
3827     Assembler::pcmpeqw(dst, src);
3828   } else if (src_enc < 16) {
3829     subptr(rsp, 64);
3830     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3831     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3832     Assembler::pcmpeqw(xmm0, src);
3833     movdqu(dst, xmm0);
3834     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3835     addptr(rsp, 64);
3836   } else if (dst_enc < 16) {
3837     subptr(rsp, 64);
3838     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3839     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3840     Assembler::pcmpeqw(dst, xmm0);
3841     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3842     addptr(rsp, 64);
3843   } else {
3844     subptr(rsp, 64);
3845     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3846     subptr(rsp, 64);
3847     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3848     movdqu(xmm0, src);
3849     movdqu(xmm1, dst);
3850     Assembler::pcmpeqw(xmm1, xmm0);
3851     movdqu(dst, xmm1);
3852     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3853     addptr(rsp, 64);
3854     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3855     addptr(rsp, 64);
3856   }
3857 }
3858 
3859 void MacroAssembler::pcmpestri(XMMRegister dst, Address src, int imm8) {
3860   int dst_enc = dst->encoding();
3861   if (dst_enc < 16) {
3862     Assembler::pcmpestri(dst, src, imm8);
3863   } else {
3864     subptr(rsp, 64);
3865     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3866     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3867     Assembler::pcmpestri(xmm0, src, imm8);
3868     movdqu(dst, xmm0);
3869     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3870     addptr(rsp, 64);
3871   }
3872 }
3873 
3874 void MacroAssembler::pcmpestri(XMMRegister dst, XMMRegister src, int imm8) {
3875   int dst_enc = dst->encoding();
3876   int src_enc = src->encoding();
3877   if ((dst_enc < 16) && (src_enc < 16)) {
3878     Assembler::pcmpestri(dst, src, imm8);
3879   } else if (src_enc < 16) {
3880     subptr(rsp, 64);
3881     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3882     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3883     Assembler::pcmpestri(xmm0, src, imm8);
3884     movdqu(dst, xmm0);
3885     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3886     addptr(rsp, 64);
3887   } else if (dst_enc < 16) {
3888     subptr(rsp, 64);
3889     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3890     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3891     Assembler::pcmpestri(dst, xmm0, imm8);
3892     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3893     addptr(rsp, 64);
3894   } else {
3895     subptr(rsp, 64);
3896     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3897     subptr(rsp, 64);
3898     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3899     movdqu(xmm0, src);
3900     movdqu(xmm1, dst);
3901     Assembler::pcmpestri(xmm1, xmm0, imm8);
3902     movdqu(dst, xmm1);
3903     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3904     addptr(rsp, 64);
3905     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3906     addptr(rsp, 64);
3907   }
3908 }
3909 
3910 void MacroAssembler::pmovzxbw(XMMRegister dst, XMMRegister src) {
3911   int dst_enc = dst->encoding();
3912   int src_enc = src->encoding();
3913   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3914     Assembler::pmovzxbw(dst, src);
3915   } else if ((dst_enc < 16) && (src_enc < 16)) {
3916     Assembler::pmovzxbw(dst, src);
3917   } else if (src_enc < 16) {
3918     subptr(rsp, 64);
3919     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3920     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3921     Assembler::pmovzxbw(xmm0, src);
3922     movdqu(dst, xmm0);
3923     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3924     addptr(rsp, 64);
3925   } else if (dst_enc < 16) {
3926     subptr(rsp, 64);
3927     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3928     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3929     Assembler::pmovzxbw(dst, xmm0);
3930     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3931     addptr(rsp, 64);
3932   } else {
3933     subptr(rsp, 64);
3934     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3935     subptr(rsp, 64);
3936     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
3937     movdqu(xmm0, src);
3938     movdqu(xmm1, dst);
3939     Assembler::pmovzxbw(xmm1, xmm0);
3940     movdqu(dst, xmm1);
3941     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
3942     addptr(rsp, 64);
3943     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3944     addptr(rsp, 64);
3945   }
3946 }
3947 
3948 void MacroAssembler::pmovzxbw(XMMRegister dst, Address src) {
3949   int dst_enc = dst->encoding();
3950   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
3951     Assembler::pmovzxbw(dst, src);
3952   } else if (dst_enc < 16) {
3953     Assembler::pmovzxbw(dst, src);
3954   } else {
3955     subptr(rsp, 64);
3956     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3957     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3958     Assembler::pmovzxbw(xmm0, src);
3959     movdqu(dst, xmm0);
3960     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3961     addptr(rsp, 64);
3962   }
3963 }
3964 
3965 void MacroAssembler::pmovmskb(Register dst, XMMRegister src) {
3966   int src_enc = src->encoding();
3967   if (src_enc < 16) {
3968     Assembler::pmovmskb(dst, src);
3969   } else {
3970     subptr(rsp, 64);
3971     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3972     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3973     Assembler::pmovmskb(dst, xmm0);
3974     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3975     addptr(rsp, 64);
3976   }
3977 }
3978 
3979 void MacroAssembler::ptest(XMMRegister dst, XMMRegister src) {
3980   int dst_enc = dst->encoding();
3981   int src_enc = src->encoding();
3982   if ((dst_enc < 16) && (src_enc < 16)) {
3983     Assembler::ptest(dst, src);
3984   } else if (src_enc < 16) {
3985     subptr(rsp, 64);
3986     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3987     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
3988     Assembler::ptest(xmm0, src);
3989     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3990     addptr(rsp, 64);
3991   } else if (dst_enc < 16) {
3992     subptr(rsp, 64);
3993     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
3994     evmovdqul(xmm0, src, Assembler::AVX_512bit);
3995     Assembler::ptest(dst, xmm0);
3996     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
3997     addptr(rsp, 64);
3998   } else {
3999     subptr(rsp, 64);
4000     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4001     subptr(rsp, 64);
4002     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4003     movdqu(xmm0, src);
4004     movdqu(xmm1, dst);
4005     Assembler::ptest(xmm1, xmm0);
4006     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4007     addptr(rsp, 64);
4008     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4009     addptr(rsp, 64);
4010   }
4011 }
4012 
4013 void MacroAssembler::sqrtsd(XMMRegister dst, AddressLiteral src) {
4014   if (reachable(src)) {
4015     Assembler::sqrtsd(dst, as_Address(src));
4016   } else {
4017     lea(rscratch1, src);
4018     Assembler::sqrtsd(dst, Address(rscratch1, 0));
4019   }
4020 }
4021 
4022 void MacroAssembler::sqrtss(XMMRegister dst, AddressLiteral src) {
4023   if (reachable(src)) {
4024     Assembler::sqrtss(dst, as_Address(src));
4025   } else {
4026     lea(rscratch1, src);
4027     Assembler::sqrtss(dst, Address(rscratch1, 0));
4028   }
4029 }
4030 
4031 void MacroAssembler::subsd(XMMRegister dst, AddressLiteral src) {
4032   if (reachable(src)) {
4033     Assembler::subsd(dst, as_Address(src));
4034   } else {
4035     lea(rscratch1, src);
4036     Assembler::subsd(dst, Address(rscratch1, 0));
4037   }
4038 }
4039 
4040 void MacroAssembler::subss(XMMRegister dst, AddressLiteral src) {
4041   if (reachable(src)) {
4042     Assembler::subss(dst, as_Address(src));
4043   } else {
4044     lea(rscratch1, src);
4045     Assembler::subss(dst, Address(rscratch1, 0));
4046   }
4047 }
4048 
4049 void MacroAssembler::ucomisd(XMMRegister dst, AddressLiteral src) {
4050   if (reachable(src)) {
4051     Assembler::ucomisd(dst, as_Address(src));
4052   } else {
4053     lea(rscratch1, src);
4054     Assembler::ucomisd(dst, Address(rscratch1, 0));
4055   }
4056 }
4057 
4058 void MacroAssembler::ucomiss(XMMRegister dst, AddressLiteral src) {
4059   if (reachable(src)) {
4060     Assembler::ucomiss(dst, as_Address(src));
4061   } else {
4062     lea(rscratch1, src);
4063     Assembler::ucomiss(dst, Address(rscratch1, 0));
4064   }
4065 }
4066 
4067 void MacroAssembler::xorpd(XMMRegister dst, AddressLiteral src) {
4068   // Used in sign-bit flipping with aligned address.
4069   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4070   if (reachable(src)) {
4071     Assembler::xorpd(dst, as_Address(src));
4072   } else {
4073     lea(rscratch1, src);
4074     Assembler::xorpd(dst, Address(rscratch1, 0));
4075   }
4076 }
4077 
4078 void MacroAssembler::xorpd(XMMRegister dst, XMMRegister src) {
4079   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4080     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4081   }
4082   else {
4083     Assembler::xorpd(dst, src);
4084   }
4085 }
4086 
4087 void MacroAssembler::xorps(XMMRegister dst, XMMRegister src) {
4088   if (UseAVX > 2 && !VM_Version::supports_avx512dq() && (dst->encoding() == src->encoding())) {
4089     Assembler::vpxor(dst, dst, src, Assembler::AVX_512bit);
4090   } else {
4091     Assembler::xorps(dst, src);
4092   }
4093 }
4094 
4095 void MacroAssembler::xorps(XMMRegister dst, AddressLiteral src) {
4096   // Used in sign-bit flipping with aligned address.
4097   assert((UseAVX > 0) || (((intptr_t)src.target() & 15) == 0), "SSE mode requires address alignment 16 bytes");
4098   if (reachable(src)) {
4099     Assembler::xorps(dst, as_Address(src));
4100   } else {
4101     lea(rscratch1, src);
4102     Assembler::xorps(dst, Address(rscratch1, 0));
4103   }
4104 }
4105 
4106 void MacroAssembler::pshufb(XMMRegister dst, AddressLiteral src) {
4107   // Used in sign-bit flipping with aligned address.
4108   bool aligned_adr = (((intptr_t)src.target() & 15) == 0);
4109   assert((UseAVX > 0) || aligned_adr, "SSE mode requires address alignment 16 bytes");
4110   if (reachable(src)) {
4111     Assembler::pshufb(dst, as_Address(src));
4112   } else {
4113     lea(rscratch1, src);
4114     Assembler::pshufb(dst, Address(rscratch1, 0));
4115   }
4116 }
4117 
4118 // AVX 3-operands instructions
4119 
4120 void MacroAssembler::vaddsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4121   if (reachable(src)) {
4122     vaddsd(dst, nds, as_Address(src));
4123   } else {
4124     lea(rscratch1, src);
4125     vaddsd(dst, nds, Address(rscratch1, 0));
4126   }
4127 }
4128 
4129 void MacroAssembler::vaddss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
4130   if (reachable(src)) {
4131     vaddss(dst, nds, as_Address(src));
4132   } else {
4133     lea(rscratch1, src);
4134     vaddss(dst, nds, Address(rscratch1, 0));
4135   }
4136 }
4137 
4138 void MacroAssembler::vabsss(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4139   int dst_enc = dst->encoding();
4140   int nds_enc = nds->encoding();
4141   int src_enc = src->encoding();
4142   if ((dst_enc < 16) && (nds_enc < 16)) {
4143     vandps(dst, nds, negate_field, vector_len);
4144   } else if ((src_enc < 16) && (dst_enc < 16)) {
4145     movss(src, nds);
4146     vandps(dst, src, negate_field, vector_len);
4147   } else if (src_enc < 16) {
4148     movss(src, nds);
4149     vandps(src, src, negate_field, vector_len);
4150     movss(dst, src);
4151   } else if (dst_enc < 16) {
4152     movdqu(src, xmm0);
4153     movss(xmm0, nds);
4154     vandps(dst, xmm0, negate_field, vector_len);
4155     movdqu(xmm0, src);
4156   } else if (nds_enc < 16) {
4157     movdqu(src, xmm0);
4158     vandps(xmm0, nds, negate_field, vector_len);
4159     movss(dst, xmm0);
4160     movdqu(xmm0, src);
4161   } else {
4162     movdqu(src, xmm0);
4163     movss(xmm0, nds);
4164     vandps(xmm0, xmm0, negate_field, vector_len);
4165     movss(dst, xmm0);
4166     movdqu(xmm0, src);
4167   }
4168 }
4169 
4170 void MacroAssembler::vabssd(XMMRegister dst, XMMRegister nds, XMMRegister src, AddressLiteral negate_field, int vector_len) {
4171   int dst_enc = dst->encoding();
4172   int nds_enc = nds->encoding();
4173   int src_enc = src->encoding();
4174   if ((dst_enc < 16) && (nds_enc < 16)) {
4175     vandpd(dst, nds, negate_field, vector_len);
4176   } else if ((src_enc < 16) && (dst_enc < 16)) {
4177     movsd(src, nds);
4178     vandpd(dst, src, negate_field, vector_len);
4179   } else if (src_enc < 16) {
4180     movsd(src, nds);
4181     vandpd(src, src, negate_field, vector_len);
4182     movsd(dst, src);
4183   } else if (dst_enc < 16) {
4184     movdqu(src, xmm0);
4185     movsd(xmm0, nds);
4186     vandpd(dst, xmm0, negate_field, vector_len);
4187     movdqu(xmm0, src);
4188   } else if (nds_enc < 16) {
4189     movdqu(src, xmm0);
4190     vandpd(xmm0, nds, negate_field, vector_len);
4191     movsd(dst, xmm0);
4192     movdqu(xmm0, src);
4193   } else {
4194     movdqu(src, xmm0);
4195     movsd(xmm0, nds);
4196     vandpd(xmm0, xmm0, negate_field, vector_len);
4197     movsd(dst, xmm0);
4198     movdqu(xmm0, src);
4199   }
4200 }
4201 
4202 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4203   int dst_enc = dst->encoding();
4204   int nds_enc = nds->encoding();
4205   int src_enc = src->encoding();
4206   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4207     Assembler::vpaddb(dst, nds, src, vector_len);
4208   } else if ((dst_enc < 16) && (src_enc < 16)) {
4209     Assembler::vpaddb(dst, dst, src, vector_len);
4210   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4211     // use nds as scratch for src
4212     evmovdqul(nds, src, Assembler::AVX_512bit);
4213     Assembler::vpaddb(dst, dst, nds, vector_len);
4214   } else if ((src_enc < 16) && (nds_enc < 16)) {
4215     // use nds as scratch for dst
4216     evmovdqul(nds, dst, Assembler::AVX_512bit);
4217     Assembler::vpaddb(nds, nds, src, vector_len);
4218     evmovdqul(dst, nds, Assembler::AVX_512bit);
4219   } else if (dst_enc < 16) {
4220     // use nds as scatch for xmm0 to hold src
4221     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4222     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4223     Assembler::vpaddb(dst, dst, xmm0, vector_len);
4224     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4225   } else {
4226     // worse case scenario, all regs are in the upper bank
4227     subptr(rsp, 64);
4228     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4229     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4230     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4231     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4232     Assembler::vpaddb(xmm0, xmm0, xmm1, vector_len);
4233     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4234     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4235     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4236     addptr(rsp, 64);
4237   }
4238 }
4239 
4240 void MacroAssembler::vpaddb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4241   int dst_enc = dst->encoding();
4242   int nds_enc = nds->encoding();
4243   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4244     Assembler::vpaddb(dst, nds, src, vector_len);
4245   } else if (dst_enc < 16) {
4246     Assembler::vpaddb(dst, dst, src, vector_len);
4247   } else if (nds_enc < 16) {
4248     // implies dst_enc in upper bank with src as scratch
4249     evmovdqul(nds, dst, Assembler::AVX_512bit);
4250     Assembler::vpaddb(nds, nds, src, vector_len);
4251     evmovdqul(dst, nds, Assembler::AVX_512bit);
4252   } else {
4253     // worse case scenario, all regs in upper bank
4254     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4255     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4256     Assembler::vpaddb(xmm0, xmm0, src, vector_len);
4257     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4258   }
4259 }
4260 
4261 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4262   int dst_enc = dst->encoding();
4263   int nds_enc = nds->encoding();
4264   int src_enc = src->encoding();
4265   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4266     Assembler::vpaddw(dst, nds, src, vector_len);
4267   } else if ((dst_enc < 16) && (src_enc < 16)) {
4268     Assembler::vpaddw(dst, dst, src, vector_len);
4269   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4270     // use nds as scratch for src
4271     evmovdqul(nds, src, Assembler::AVX_512bit);
4272     Assembler::vpaddw(dst, dst, nds, vector_len);
4273   } else if ((src_enc < 16) && (nds_enc < 16)) {
4274     // use nds as scratch for dst
4275     evmovdqul(nds, dst, Assembler::AVX_512bit);
4276     Assembler::vpaddw(nds, nds, src, vector_len);
4277     evmovdqul(dst, nds, Assembler::AVX_512bit);
4278   } else if (dst_enc < 16) {
4279     // use nds as scatch for xmm0 to hold src
4280     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4281     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4282     Assembler::vpaddw(dst, dst, xmm0, vector_len);
4283     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4284   } else {
4285     // worse case scenario, all regs are in the upper bank
4286     subptr(rsp, 64);
4287     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4288     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4289     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4290     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4291     Assembler::vpaddw(xmm0, xmm0, xmm1, vector_len);
4292     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4293     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4294     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4295     addptr(rsp, 64);
4296   }
4297 }
4298 
4299 void MacroAssembler::vpaddw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4300   int dst_enc = dst->encoding();
4301   int nds_enc = nds->encoding();
4302   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4303     Assembler::vpaddw(dst, nds, src, vector_len);
4304   } else if (dst_enc < 16) {
4305     Assembler::vpaddw(dst, dst, src, vector_len);
4306   } else if (nds_enc < 16) {
4307     // implies dst_enc in upper bank with src as scratch
4308     evmovdqul(nds, dst, Assembler::AVX_512bit);
4309     Assembler::vpaddw(nds, nds, src, vector_len);
4310     evmovdqul(dst, nds, Assembler::AVX_512bit);
4311   } else {
4312     // worse case scenario, all regs in upper bank
4313     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4314     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4315     Assembler::vpaddw(xmm0, xmm0, src, vector_len);
4316     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4317   }
4318 }
4319 
4320 void MacroAssembler::vpand(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
4321   if (reachable(src)) {
4322     Assembler::vpand(dst, nds, as_Address(src), vector_len);
4323   } else {
4324     lea(rscratch1, src);
4325     Assembler::vpand(dst, nds, Address(rscratch1, 0), vector_len);
4326   }
4327 }
4328 
4329 void MacroAssembler::vpbroadcastw(XMMRegister dst, XMMRegister src) {
4330   int dst_enc = dst->encoding();
4331   int src_enc = src->encoding();
4332   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4333     Assembler::vpbroadcastw(dst, src);
4334   } else if ((dst_enc < 16) && (src_enc < 16)) {
4335     Assembler::vpbroadcastw(dst, src);
4336   } else if (src_enc < 16) {
4337     subptr(rsp, 64);
4338     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4339     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4340     Assembler::vpbroadcastw(xmm0, src);
4341     movdqu(dst, xmm0);
4342     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4343     addptr(rsp, 64);
4344   } else if (dst_enc < 16) {
4345     subptr(rsp, 64);
4346     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4347     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4348     Assembler::vpbroadcastw(dst, xmm0);
4349     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4350     addptr(rsp, 64);
4351   } else {
4352     subptr(rsp, 64);
4353     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4354     subptr(rsp, 64);
4355     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4356     movdqu(xmm0, src);
4357     movdqu(xmm1, dst);
4358     Assembler::vpbroadcastw(xmm1, xmm0);
4359     movdqu(dst, xmm1);
4360     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4361     addptr(rsp, 64);
4362     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4363     addptr(rsp, 64);
4364   }
4365 }
4366 
4367 void MacroAssembler::vpcmpeqb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4368   int dst_enc = dst->encoding();
4369   int nds_enc = nds->encoding();
4370   int src_enc = src->encoding();
4371   assert(dst_enc == nds_enc, "");
4372   if ((dst_enc < 16) && (src_enc < 16)) {
4373     Assembler::vpcmpeqb(dst, nds, src, vector_len);
4374   } else if (src_enc < 16) {
4375     subptr(rsp, 64);
4376     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4377     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4378     Assembler::vpcmpeqb(xmm0, xmm0, src, vector_len);
4379     movdqu(dst, xmm0);
4380     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4381     addptr(rsp, 64);
4382   } else if (dst_enc < 16) {
4383     subptr(rsp, 64);
4384     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4385     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4386     Assembler::vpcmpeqb(dst, dst, xmm0, vector_len);
4387     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4388     addptr(rsp, 64);
4389   } else {
4390     subptr(rsp, 64);
4391     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4392     subptr(rsp, 64);
4393     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4394     movdqu(xmm0, src);
4395     movdqu(xmm1, dst);
4396     Assembler::vpcmpeqb(xmm1, xmm1, xmm0, vector_len);
4397     movdqu(dst, xmm1);
4398     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4399     addptr(rsp, 64);
4400     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4401     addptr(rsp, 64);
4402   }
4403 }
4404 
4405 void MacroAssembler::vpcmpeqw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4406   int dst_enc = dst->encoding();
4407   int nds_enc = nds->encoding();
4408   int src_enc = src->encoding();
4409   assert(dst_enc == nds_enc, "");
4410   if ((dst_enc < 16) && (src_enc < 16)) {
4411     Assembler::vpcmpeqw(dst, nds, src, vector_len);
4412   } else if (src_enc < 16) {
4413     subptr(rsp, 64);
4414     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4415     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4416     Assembler::vpcmpeqw(xmm0, xmm0, src, vector_len);
4417     movdqu(dst, xmm0);
4418     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4419     addptr(rsp, 64);
4420   } else if (dst_enc < 16) {
4421     subptr(rsp, 64);
4422     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4423     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4424     Assembler::vpcmpeqw(dst, dst, xmm0, vector_len);
4425     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4426     addptr(rsp, 64);
4427   } else {
4428     subptr(rsp, 64);
4429     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4430     subptr(rsp, 64);
4431     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4432     movdqu(xmm0, src);
4433     movdqu(xmm1, dst);
4434     Assembler::vpcmpeqw(xmm1, xmm1, xmm0, vector_len);
4435     movdqu(dst, xmm1);
4436     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4437     addptr(rsp, 64);
4438     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4439     addptr(rsp, 64);
4440   }
4441 }
4442 
4443 void MacroAssembler::vpmovzxbw(XMMRegister dst, Address src, int vector_len) {
4444   int dst_enc = dst->encoding();
4445   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4446     Assembler::vpmovzxbw(dst, src, vector_len);
4447   } else if (dst_enc < 16) {
4448     Assembler::vpmovzxbw(dst, src, vector_len);
4449   } else {
4450     subptr(rsp, 64);
4451     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4452     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4453     Assembler::vpmovzxbw(xmm0, src, vector_len);
4454     movdqu(dst, xmm0);
4455     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4456     addptr(rsp, 64);
4457   }
4458 }
4459 
4460 void MacroAssembler::vpmovmskb(Register dst, XMMRegister src) {
4461   int src_enc = src->encoding();
4462   if (src_enc < 16) {
4463     Assembler::vpmovmskb(dst, src);
4464   } else {
4465     subptr(rsp, 64);
4466     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4467     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4468     Assembler::vpmovmskb(dst, xmm0);
4469     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4470     addptr(rsp, 64);
4471   }
4472 }
4473 
4474 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4475   int dst_enc = dst->encoding();
4476   int nds_enc = nds->encoding();
4477   int src_enc = src->encoding();
4478   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4479     Assembler::vpmullw(dst, nds, src, vector_len);
4480   } else if ((dst_enc < 16) && (src_enc < 16)) {
4481     Assembler::vpmullw(dst, dst, src, vector_len);
4482   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4483     // use nds as scratch for src
4484     evmovdqul(nds, src, Assembler::AVX_512bit);
4485     Assembler::vpmullw(dst, dst, nds, vector_len);
4486   } else if ((src_enc < 16) && (nds_enc < 16)) {
4487     // use nds as scratch for dst
4488     evmovdqul(nds, dst, Assembler::AVX_512bit);
4489     Assembler::vpmullw(nds, nds, src, vector_len);
4490     evmovdqul(dst, nds, Assembler::AVX_512bit);
4491   } else if (dst_enc < 16) {
4492     // use nds as scatch for xmm0 to hold src
4493     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4494     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4495     Assembler::vpmullw(dst, dst, xmm0, vector_len);
4496     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4497   } else {
4498     // worse case scenario, all regs are in the upper bank
4499     subptr(rsp, 64);
4500     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4501     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4502     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4503     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4504     Assembler::vpmullw(xmm0, xmm0, xmm1, vector_len);
4505     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4506     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4507     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4508     addptr(rsp, 64);
4509   }
4510 }
4511 
4512 void MacroAssembler::vpmullw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4513   int dst_enc = dst->encoding();
4514   int nds_enc = nds->encoding();
4515   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4516     Assembler::vpmullw(dst, nds, src, vector_len);
4517   } else if (dst_enc < 16) {
4518     Assembler::vpmullw(dst, dst, src, vector_len);
4519   } else if (nds_enc < 16) {
4520     // implies dst_enc in upper bank with src as scratch
4521     evmovdqul(nds, dst, Assembler::AVX_512bit);
4522     Assembler::vpmullw(nds, nds, src, vector_len);
4523     evmovdqul(dst, nds, Assembler::AVX_512bit);
4524   } else {
4525     // worse case scenario, all regs in upper bank
4526     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4527     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4528     Assembler::vpmullw(xmm0, xmm0, src, vector_len);
4529     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4530   }
4531 }
4532 
4533 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4534   int dst_enc = dst->encoding();
4535   int nds_enc = nds->encoding();
4536   int src_enc = src->encoding();
4537   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4538     Assembler::vpsubb(dst, nds, src, vector_len);
4539   } else if ((dst_enc < 16) && (src_enc < 16)) {
4540     Assembler::vpsubb(dst, dst, src, vector_len);
4541   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4542     // use nds as scratch for src
4543     evmovdqul(nds, src, Assembler::AVX_512bit);
4544     Assembler::vpsubb(dst, dst, nds, vector_len);
4545   } else if ((src_enc < 16) && (nds_enc < 16)) {
4546     // use nds as scratch for dst
4547     evmovdqul(nds, dst, Assembler::AVX_512bit);
4548     Assembler::vpsubb(nds, nds, src, vector_len);
4549     evmovdqul(dst, nds, Assembler::AVX_512bit);
4550   } else if (dst_enc < 16) {
4551     // use nds as scatch for xmm0 to hold src
4552     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4553     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4554     Assembler::vpsubb(dst, dst, xmm0, vector_len);
4555     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4556   } else {
4557     // worse case scenario, all regs are in the upper bank
4558     subptr(rsp, 64);
4559     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4560     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4561     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4562     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4563     Assembler::vpsubb(xmm0, xmm0, xmm1, vector_len);
4564     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4565     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4566     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4567     addptr(rsp, 64);
4568   }
4569 }
4570 
4571 void MacroAssembler::vpsubb(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4572   int dst_enc = dst->encoding();
4573   int nds_enc = nds->encoding();
4574   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4575     Assembler::vpsubb(dst, nds, src, vector_len);
4576   } else if (dst_enc < 16) {
4577     Assembler::vpsubb(dst, dst, src, vector_len);
4578   } else if (nds_enc < 16) {
4579     // implies dst_enc in upper bank with src as scratch
4580     evmovdqul(nds, dst, Assembler::AVX_512bit);
4581     Assembler::vpsubb(nds, nds, src, vector_len);
4582     evmovdqul(dst, nds, Assembler::AVX_512bit);
4583   } else {
4584     // worse case scenario, all regs in upper bank
4585     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4586     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4587     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4588     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4589   }
4590 }
4591 
4592 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, XMMRegister src, int vector_len) {
4593   int dst_enc = dst->encoding();
4594   int nds_enc = nds->encoding();
4595   int src_enc = src->encoding();
4596   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4597     Assembler::vpsubw(dst, nds, src, vector_len);
4598   } else if ((dst_enc < 16) && (src_enc < 16)) {
4599     Assembler::vpsubw(dst, dst, src, vector_len);
4600   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4601     // use nds as scratch for src
4602     evmovdqul(nds, src, Assembler::AVX_512bit);
4603     Assembler::vpsubw(dst, dst, nds, vector_len);
4604   } else if ((src_enc < 16) && (nds_enc < 16)) {
4605     // use nds as scratch for dst
4606     evmovdqul(nds, dst, Assembler::AVX_512bit);
4607     Assembler::vpsubw(nds, nds, src, vector_len);
4608     evmovdqul(dst, nds, Assembler::AVX_512bit);
4609   } else if (dst_enc < 16) {
4610     // use nds as scatch for xmm0 to hold src
4611     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4612     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4613     Assembler::vpsubw(dst, dst, xmm0, vector_len);
4614     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4615   } else {
4616     // worse case scenario, all regs are in the upper bank
4617     subptr(rsp, 64);
4618     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4619     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4620     evmovdqul(xmm1, src, Assembler::AVX_512bit);
4621     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4622     Assembler::vpsubw(xmm0, xmm0, xmm1, vector_len);
4623     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4624     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4625     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4626     addptr(rsp, 64);
4627   }
4628 }
4629 
4630 void MacroAssembler::vpsubw(XMMRegister dst, XMMRegister nds, Address src, int vector_len) {
4631   int dst_enc = dst->encoding();
4632   int nds_enc = nds->encoding();
4633   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4634     Assembler::vpsubw(dst, nds, src, vector_len);
4635   } else if (dst_enc < 16) {
4636     Assembler::vpsubw(dst, dst, src, vector_len);
4637   } else if (nds_enc < 16) {
4638     // implies dst_enc in upper bank with src as scratch
4639     evmovdqul(nds, dst, Assembler::AVX_512bit);
4640     Assembler::vpsubw(nds, nds, src, vector_len);
4641     evmovdqul(dst, nds, Assembler::AVX_512bit);
4642   } else {
4643     // worse case scenario, all regs in upper bank
4644     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4645     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4646     Assembler::vpsubw(xmm0, xmm0, src, vector_len);
4647     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4648   }
4649 }
4650 
4651 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4652   int dst_enc = dst->encoding();
4653   int nds_enc = nds->encoding();
4654   int shift_enc = shift->encoding();
4655   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4656     Assembler::vpsraw(dst, nds, shift, vector_len);
4657   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4658     Assembler::vpsraw(dst, dst, shift, vector_len);
4659   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4660     // use nds_enc as scratch with shift
4661     evmovdqul(nds, shift, Assembler::AVX_512bit);
4662     Assembler::vpsraw(dst, dst, nds, vector_len);
4663   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4664     // use nds as scratch with dst
4665     evmovdqul(nds, dst, Assembler::AVX_512bit);
4666     Assembler::vpsraw(nds, nds, shift, vector_len);
4667     evmovdqul(dst, nds, Assembler::AVX_512bit);
4668   } else if (dst_enc < 16) {
4669     // use nds to save a copy of xmm0 and hold shift
4670     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4671     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4672     Assembler::vpsraw(dst, dst, xmm0, vector_len);
4673     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4674   } else if (nds_enc < 16) {
4675     // use nds as dest as temps
4676     evmovdqul(nds, dst, Assembler::AVX_512bit);
4677     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4678     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4679     Assembler::vpsraw(nds, nds, xmm0, vector_len);
4680     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4681     evmovdqul(dst, nds, Assembler::AVX_512bit);
4682   } else {
4683     // worse case scenario, all regs are in the upper bank
4684     subptr(rsp, 64);
4685     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4686     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4687     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4688     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4689     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4690     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4691     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4692     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4693     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4694     addptr(rsp, 64);
4695   }
4696 }
4697 
4698 void MacroAssembler::vpsraw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4699   int dst_enc = dst->encoding();
4700   int nds_enc = nds->encoding();
4701   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4702     Assembler::vpsraw(dst, nds, shift, vector_len);
4703   } else if (dst_enc < 16) {
4704     Assembler::vpsraw(dst, dst, shift, vector_len);
4705   } else if (nds_enc < 16) {
4706     // use nds as scratch
4707     evmovdqul(nds, dst, Assembler::AVX_512bit);
4708     Assembler::vpsraw(nds, nds, shift, vector_len);
4709     evmovdqul(dst, nds, Assembler::AVX_512bit);
4710   } else {
4711     // use nds as scratch for xmm0
4712     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4713     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4714     Assembler::vpsraw(xmm0, xmm0, shift, vector_len);
4715     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4716   }
4717 }
4718 
4719 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4720   int dst_enc = dst->encoding();
4721   int nds_enc = nds->encoding();
4722   int shift_enc = shift->encoding();
4723   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4724     Assembler::vpsrlw(dst, nds, shift, vector_len);
4725   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4726     Assembler::vpsrlw(dst, dst, shift, vector_len);
4727   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4728     // use nds_enc as scratch with shift
4729     evmovdqul(nds, shift, Assembler::AVX_512bit);
4730     Assembler::vpsrlw(dst, dst, nds, vector_len);
4731   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4732     // use nds as scratch with dst
4733     evmovdqul(nds, dst, Assembler::AVX_512bit);
4734     Assembler::vpsrlw(nds, nds, shift, vector_len);
4735     evmovdqul(dst, nds, Assembler::AVX_512bit);
4736   } else if (dst_enc < 16) {
4737     // use nds to save a copy of xmm0 and hold shift
4738     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4739     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4740     Assembler::vpsrlw(dst, dst, xmm0, vector_len);
4741     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4742   } else if (nds_enc < 16) {
4743     // use nds as dest as temps
4744     evmovdqul(nds, dst, Assembler::AVX_512bit);
4745     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4746     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4747     Assembler::vpsrlw(nds, nds, xmm0, vector_len);
4748     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4749     evmovdqul(dst, nds, Assembler::AVX_512bit);
4750   } else {
4751     // worse case scenario, all regs are in the upper bank
4752     subptr(rsp, 64);
4753     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4754     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4755     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4756     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4757     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4758     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4759     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4760     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4761     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4762     addptr(rsp, 64);
4763   }
4764 }
4765 
4766 void MacroAssembler::vpsrlw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4767   int dst_enc = dst->encoding();
4768   int nds_enc = nds->encoding();
4769   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4770     Assembler::vpsrlw(dst, nds, shift, vector_len);
4771   } else if (dst_enc < 16) {
4772     Assembler::vpsrlw(dst, dst, shift, vector_len);
4773   } else if (nds_enc < 16) {
4774     // use nds as scratch
4775     evmovdqul(nds, dst, Assembler::AVX_512bit);
4776     Assembler::vpsrlw(nds, nds, shift, vector_len);
4777     evmovdqul(dst, nds, Assembler::AVX_512bit);
4778   } else {
4779     // use nds as scratch for xmm0
4780     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4781     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4782     Assembler::vpsrlw(xmm0, xmm0, shift, vector_len);
4783     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4784   }
4785 }
4786 
4787 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, XMMRegister shift, int vector_len) {
4788   int dst_enc = dst->encoding();
4789   int nds_enc = nds->encoding();
4790   int shift_enc = shift->encoding();
4791   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4792     Assembler::vpsllw(dst, nds, shift, vector_len);
4793   } else if ((dst_enc < 16) && (shift_enc < 16)) {
4794     Assembler::vpsllw(dst, dst, shift, vector_len);
4795   } else if ((dst_enc < 16) && (nds_enc < 16)) {
4796     // use nds_enc as scratch with shift
4797     evmovdqul(nds, shift, Assembler::AVX_512bit);
4798     Assembler::vpsllw(dst, dst, nds, vector_len);
4799   } else if ((shift_enc < 16) && (nds_enc < 16)) {
4800     // use nds as scratch with dst
4801     evmovdqul(nds, dst, Assembler::AVX_512bit);
4802     Assembler::vpsllw(nds, nds, shift, vector_len);
4803     evmovdqul(dst, nds, Assembler::AVX_512bit);
4804   } else if (dst_enc < 16) {
4805     // use nds to save a copy of xmm0 and hold shift
4806     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4807     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4808     Assembler::vpsllw(dst, dst, xmm0, vector_len);
4809     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4810   } else if (nds_enc < 16) {
4811     // use nds as dest as temps
4812     evmovdqul(nds, dst, Assembler::AVX_512bit);
4813     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4814     evmovdqul(xmm0, shift, Assembler::AVX_512bit);
4815     Assembler::vpsllw(nds, nds, xmm0, vector_len);
4816     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4817     evmovdqul(dst, nds, Assembler::AVX_512bit);
4818   } else {
4819     // worse case scenario, all regs are in the upper bank
4820     subptr(rsp, 64);
4821     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4822     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4823     evmovdqul(xmm1, shift, Assembler::AVX_512bit);
4824     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4825     Assembler::vpsllw(xmm0, xmm0, xmm1, vector_len);
4826     evmovdqul(xmm1, dst, Assembler::AVX_512bit);
4827     evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4828     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4829     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4830     addptr(rsp, 64);
4831   }
4832 }
4833 
4834 void MacroAssembler::vpsllw(XMMRegister dst, XMMRegister nds, int shift, int vector_len) {
4835   int dst_enc = dst->encoding();
4836   int nds_enc = nds->encoding();
4837   if (VM_Version::supports_avxonly() || VM_Version::supports_avx512bw()) {
4838     Assembler::vpsllw(dst, nds, shift, vector_len);
4839   } else if (dst_enc < 16) {
4840     Assembler::vpsllw(dst, dst, shift, vector_len);
4841   } else if (nds_enc < 16) {
4842     // use nds as scratch
4843     evmovdqul(nds, dst, Assembler::AVX_512bit);
4844     Assembler::vpsllw(nds, nds, shift, vector_len);
4845     evmovdqul(dst, nds, Assembler::AVX_512bit);
4846   } else {
4847     // use nds as scratch for xmm0
4848     evmovdqul(nds, xmm0, Assembler::AVX_512bit);
4849     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4850     Assembler::vpsllw(xmm0, xmm0, shift, vector_len);
4851     evmovdqul(xmm0, nds, Assembler::AVX_512bit);
4852   }
4853 }
4854 
4855 void MacroAssembler::vptest(XMMRegister dst, XMMRegister src) {
4856   int dst_enc = dst->encoding();
4857   int src_enc = src->encoding();
4858   if ((dst_enc < 16) && (src_enc < 16)) {
4859     Assembler::vptest(dst, src);
4860   } else if (src_enc < 16) {
4861     subptr(rsp, 64);
4862     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4863     evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4864     Assembler::vptest(xmm0, src);
4865     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4866     addptr(rsp, 64);
4867   } else if (dst_enc < 16) {
4868     subptr(rsp, 64);
4869     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4870     evmovdqul(xmm0, src, Assembler::AVX_512bit);
4871     Assembler::vptest(dst, xmm0);
4872     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4873     addptr(rsp, 64);
4874   } else {
4875     subptr(rsp, 64);
4876     evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4877     subptr(rsp, 64);
4878     evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4879     movdqu(xmm0, src);
4880     movdqu(xmm1, dst);
4881     Assembler::vptest(xmm1, xmm0);
4882     evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4883     addptr(rsp, 64);
4884     evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4885     addptr(rsp, 64);
4886   }
4887 }
4888 
4889 // This instruction exists within macros, ergo we cannot control its input
4890 // when emitted through those patterns.
4891 void MacroAssembler::punpcklbw(XMMRegister dst, XMMRegister src) {
4892   if (VM_Version::supports_avx512nobw()) {
4893     int dst_enc = dst->encoding();
4894     int src_enc = src->encoding();
4895     if (dst_enc == src_enc) {
4896       if (dst_enc < 16) {
4897         Assembler::punpcklbw(dst, src);
4898       } else {
4899         subptr(rsp, 64);
4900         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4901         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4902         Assembler::punpcklbw(xmm0, xmm0);
4903         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4904         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4905         addptr(rsp, 64);
4906       }
4907     } else {
4908       if ((src_enc < 16) && (dst_enc < 16)) {
4909         Assembler::punpcklbw(dst, src);
4910       } else if (src_enc < 16) {
4911         subptr(rsp, 64);
4912         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4913         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4914         Assembler::punpcklbw(xmm0, src);
4915         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4916         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4917         addptr(rsp, 64);
4918       } else if (dst_enc < 16) {
4919         subptr(rsp, 64);
4920         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4921         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4922         Assembler::punpcklbw(dst, xmm0);
4923         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4924         addptr(rsp, 64);
4925       } else {
4926         subptr(rsp, 64);
4927         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4928         subptr(rsp, 64);
4929         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4930         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4931         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4932         Assembler::punpcklbw(xmm0, xmm1);
4933         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4934         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4935         addptr(rsp, 64);
4936         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4937         addptr(rsp, 64);
4938       }
4939     }
4940   } else {
4941     Assembler::punpcklbw(dst, src);
4942   }
4943 }
4944 
4945 // This instruction exists within macros, ergo we cannot control its input
4946 // when emitted through those patterns.
4947 void MacroAssembler::pshuflw(XMMRegister dst, XMMRegister src, int mode) {
4948   if (VM_Version::supports_avx512nobw()) {
4949     int dst_enc = dst->encoding();
4950     int src_enc = src->encoding();
4951     if (dst_enc == src_enc) {
4952       if (dst_enc < 16) {
4953         Assembler::pshuflw(dst, src, mode);
4954       } else {
4955         subptr(rsp, 64);
4956         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4957         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4958         Assembler::pshuflw(xmm0, xmm0, mode);
4959         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4960         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4961         addptr(rsp, 64);
4962       }
4963     } else {
4964       if ((src_enc < 16) && (dst_enc < 16)) {
4965         Assembler::pshuflw(dst, src, mode);
4966       } else if (src_enc < 16) {
4967         subptr(rsp, 64);
4968         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4969         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4970         Assembler::pshuflw(xmm0, src, mode);
4971         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4972         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4973         addptr(rsp, 64);
4974       } else if (dst_enc < 16) {
4975         subptr(rsp, 64);
4976         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4977         evmovdqul(xmm0, src, Assembler::AVX_512bit);
4978         Assembler::pshuflw(dst, xmm0, mode);
4979         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4980         addptr(rsp, 64);
4981       } else {
4982         subptr(rsp, 64);
4983         evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
4984         subptr(rsp, 64);
4985         evmovdqul(Address(rsp, 0), xmm1, Assembler::AVX_512bit);
4986         evmovdqul(xmm0, dst, Assembler::AVX_512bit);
4987         evmovdqul(xmm1, src, Assembler::AVX_512bit);
4988         Assembler::pshuflw(xmm0, xmm1, mode);
4989         evmovdqul(dst, xmm0, Assembler::AVX_512bit);
4990         evmovdqul(xmm1, Address(rsp, 0), Assembler::AVX_512bit);
4991         addptr(rsp, 64);
4992         evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
4993         addptr(rsp, 64);
4994       }
4995     }
4996   } else {
4997     Assembler::pshuflw(dst, src, mode);
4998   }
4999 }
5000 
5001 void MacroAssembler::vandpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5002   if (reachable(src)) {
5003     vandpd(dst, nds, as_Address(src), vector_len);
5004   } else {
5005     lea(rscratch1, src);
5006     vandpd(dst, nds, Address(rscratch1, 0), vector_len);
5007   }
5008 }
5009 
5010 void MacroAssembler::vandps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5011   if (reachable(src)) {
5012     vandps(dst, nds, as_Address(src), vector_len);
5013   } else {
5014     lea(rscratch1, src);
5015     vandps(dst, nds, Address(rscratch1, 0), vector_len);
5016   }
5017 }
5018 
5019 void MacroAssembler::vdivsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5020   if (reachable(src)) {
5021     vdivsd(dst, nds, as_Address(src));
5022   } else {
5023     lea(rscratch1, src);
5024     vdivsd(dst, nds, Address(rscratch1, 0));
5025   }
5026 }
5027 
5028 void MacroAssembler::vdivss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5029   if (reachable(src)) {
5030     vdivss(dst, nds, as_Address(src));
5031   } else {
5032     lea(rscratch1, src);
5033     vdivss(dst, nds, Address(rscratch1, 0));
5034   }
5035 }
5036 
5037 void MacroAssembler::vmulsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5038   if (reachable(src)) {
5039     vmulsd(dst, nds, as_Address(src));
5040   } else {
5041     lea(rscratch1, src);
5042     vmulsd(dst, nds, Address(rscratch1, 0));
5043   }
5044 }
5045 
5046 void MacroAssembler::vmulss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5047   if (reachable(src)) {
5048     vmulss(dst, nds, as_Address(src));
5049   } else {
5050     lea(rscratch1, src);
5051     vmulss(dst, nds, Address(rscratch1, 0));
5052   }
5053 }
5054 
5055 void MacroAssembler::vsubsd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5056   if (reachable(src)) {
5057     vsubsd(dst, nds, as_Address(src));
5058   } else {
5059     lea(rscratch1, src);
5060     vsubsd(dst, nds, Address(rscratch1, 0));
5061   }
5062 }
5063 
5064 void MacroAssembler::vsubss(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5065   if (reachable(src)) {
5066     vsubss(dst, nds, as_Address(src));
5067   } else {
5068     lea(rscratch1, src);
5069     vsubss(dst, nds, Address(rscratch1, 0));
5070   }
5071 }
5072 
5073 void MacroAssembler::vnegatess(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5074   int nds_enc = nds->encoding();
5075   int dst_enc = dst->encoding();
5076   bool dst_upper_bank = (dst_enc > 15);
5077   bool nds_upper_bank = (nds_enc > 15);
5078   if (VM_Version::supports_avx512novl() &&
5079       (nds_upper_bank || dst_upper_bank)) {
5080     if (dst_upper_bank) {
5081       subptr(rsp, 64);
5082       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5083       movflt(xmm0, nds);
5084       vxorps(xmm0, xmm0, src, Assembler::AVX_128bit);
5085       movflt(dst, xmm0);
5086       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5087       addptr(rsp, 64);
5088     } else {
5089       movflt(dst, nds);
5090       vxorps(dst, dst, src, Assembler::AVX_128bit);
5091     }
5092   } else {
5093     vxorps(dst, nds, src, Assembler::AVX_128bit);
5094   }
5095 }
5096 
5097 void MacroAssembler::vnegatesd(XMMRegister dst, XMMRegister nds, AddressLiteral src) {
5098   int nds_enc = nds->encoding();
5099   int dst_enc = dst->encoding();
5100   bool dst_upper_bank = (dst_enc > 15);
5101   bool nds_upper_bank = (nds_enc > 15);
5102   if (VM_Version::supports_avx512novl() &&
5103       (nds_upper_bank || dst_upper_bank)) {
5104     if (dst_upper_bank) {
5105       subptr(rsp, 64);
5106       evmovdqul(Address(rsp, 0), xmm0, Assembler::AVX_512bit);
5107       movdbl(xmm0, nds);
5108       vxorpd(xmm0, xmm0, src, Assembler::AVX_128bit);
5109       movdbl(dst, xmm0);
5110       evmovdqul(xmm0, Address(rsp, 0), Assembler::AVX_512bit);
5111       addptr(rsp, 64);
5112     } else {
5113       movdbl(dst, nds);
5114       vxorpd(dst, dst, src, Assembler::AVX_128bit);
5115     }
5116   } else {
5117     vxorpd(dst, nds, src, Assembler::AVX_128bit);
5118   }
5119 }
5120 
5121 void MacroAssembler::vxorpd(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5122   if (reachable(src)) {
5123     vxorpd(dst, nds, as_Address(src), vector_len);
5124   } else {
5125     lea(rscratch1, src);
5126     vxorpd(dst, nds, Address(rscratch1, 0), vector_len);
5127   }
5128 }
5129 
5130 void MacroAssembler::vxorps(XMMRegister dst, XMMRegister nds, AddressLiteral src, int vector_len) {
5131   if (reachable(src)) {
5132     vxorps(dst, nds, as_Address(src), vector_len);
5133   } else {
5134     lea(rscratch1, src);
5135     vxorps(dst, nds, Address(rscratch1, 0), vector_len);
5136   }
5137 }
5138 
5139 
5140 void MacroAssembler::resolve_jobject(Register value,
5141                                      Register thread,
5142                                      Register tmp) {
5143   assert_different_registers(value, thread, tmp);
5144   Label done, not_weak;
5145   testptr(value, value);
5146   jcc(Assembler::zero, done);                // Use NULL as-is.
5147   testptr(value, JNIHandles::weak_tag_mask); // Test for jweak tag.
5148   jcc(Assembler::zero, not_weak);
5149   // Resolve jweak.
5150   movptr(value, Address(value, -JNIHandles::weak_tag_value));
5151   verify_oop(value);
5152 #if INCLUDE_ALL_GCS
5153   if (UseG1GC) {
5154     g1_write_barrier_pre(noreg /* obj */,
5155                          value /* pre_val */,
5156                          thread /* thread */,
5157                          tmp /* tmp */,
5158                          true /* tosca_live */,
5159                          true /* expand_call */);
5160   }
5161 #endif // INCLUDE_ALL_GCS
5162   jmp(done);
5163   bind(not_weak);
5164   // Resolve (untagged) jobject.
5165   movptr(value, Address(value, 0));
5166   verify_oop(value);
5167   bind(done);
5168 }
5169 
5170 void MacroAssembler::clear_jweak_tag(Register possibly_jweak) {
5171   const int32_t inverted_jweak_mask = ~static_cast<int32_t>(JNIHandles::weak_tag_mask);
5172   STATIC_ASSERT(inverted_jweak_mask == -2); // otherwise check this code
5173   // The inverted mask is sign-extended
5174   andptr(possibly_jweak, inverted_jweak_mask);
5175 }
5176 
5177 //////////////////////////////////////////////////////////////////////////////////
5178 #if INCLUDE_ALL_GCS
5179 
5180 void MacroAssembler::g1_write_barrier_pre(Register obj,
5181                                           Register pre_val,
5182                                           Register thread,
5183                                           Register tmp,
5184                                           bool tosca_live,
5185                                           bool expand_call) {
5186 
5187   // If expand_call is true then we expand the call_VM_leaf macro
5188   // directly to skip generating the check by
5189   // InterpreterMacroAssembler::call_VM_leaf_base that checks _last_sp.
5190 
5191 #ifdef _LP64
5192   assert(thread == r15_thread, "must be");
5193 #endif // _LP64
5194 
5195   Label done;
5196   Label runtime;
5197 
5198   assert(pre_val != noreg, "check this code");
5199 
5200   if (obj != noreg) {
5201     assert_different_registers(obj, pre_val, tmp);
5202     assert(pre_val != rax, "check this code");
5203   }
5204 
5205   Address in_progress(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5206                                        SATBMarkQueue::byte_offset_of_active()));
5207   Address index(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5208                                        SATBMarkQueue::byte_offset_of_index()));
5209   Address buffer(thread, in_bytes(JavaThread::satb_mark_queue_offset() +
5210                                        SATBMarkQueue::byte_offset_of_buf()));
5211 
5212 
5213   // Is marking active?
5214   if (in_bytes(SATBMarkQueue::byte_width_of_active()) == 4) {
5215     cmpl(in_progress, 0);
5216   } else {
5217     assert(in_bytes(SATBMarkQueue::byte_width_of_active()) == 1, "Assumption");
5218     cmpb(in_progress, 0);
5219   }
5220   jcc(Assembler::equal, done);
5221 
5222   // Do we need to load the previous value?
5223   if (obj != noreg) {
5224     load_heap_oop(pre_val, Address(obj, 0));
5225   }
5226 
5227   // Is the previous value null?
5228   cmpptr(pre_val, (int32_t) NULL_WORD);
5229   jcc(Assembler::equal, done);
5230 
5231   // Can we store original value in the thread's buffer?
5232   // Is index == 0?
5233   // (The index field is typed as size_t.)
5234 
5235   movptr(tmp, index);                   // tmp := *index_adr
5236   cmpptr(tmp, 0);                       // tmp == 0?
5237   jcc(Assembler::equal, runtime);       // If yes, goto runtime
5238 
5239   subptr(tmp, wordSize);                // tmp := tmp - wordSize
5240   movptr(index, tmp);                   // *index_adr := tmp
5241   addptr(tmp, buffer);                  // tmp := tmp + *buffer_adr
5242 
5243   // Record the previous value
5244   movptr(Address(tmp, 0), pre_val);
5245   jmp(done);
5246 
5247   bind(runtime);
5248   // save the live input values
5249   if(tosca_live) push(rax);
5250 
5251   if (obj != noreg && obj != rax)
5252     push(obj);
5253 
5254   if (pre_val != rax)
5255     push(pre_val);
5256 
5257   // Calling the runtime using the regular call_VM_leaf mechanism generates
5258   // code (generated by InterpreterMacroAssember::call_VM_leaf_base)
5259   // that checks that the *(ebp+frame::interpreter_frame_last_sp) == NULL.
5260   //
5261   // If we care generating the pre-barrier without a frame (e.g. in the
5262   // intrinsified Reference.get() routine) then ebp might be pointing to
5263   // the caller frame and so this check will most likely fail at runtime.
5264   //
5265   // Expanding the call directly bypasses the generation of the check.
5266   // So when we do not have have a full interpreter frame on the stack
5267   // expand_call should be passed true.
5268 
5269   NOT_LP64( push(thread); )
5270 
5271   if (expand_call) {
5272     LP64_ONLY( assert(pre_val != c_rarg1, "smashed arg"); )
5273     pass_arg1(this, thread);
5274     pass_arg0(this, pre_val);
5275     MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), 2);
5276   } else {
5277     call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_pre), pre_val, thread);
5278   }
5279 
5280   NOT_LP64( pop(thread); )
5281 
5282   // save the live input values
5283   if (pre_val != rax)
5284     pop(pre_val);
5285 
5286   if (obj != noreg && obj != rax)
5287     pop(obj);
5288 
5289   if(tosca_live) pop(rax);
5290 
5291   bind(done);
5292 }
5293 
5294 void MacroAssembler::g1_write_barrier_post(Register store_addr,
5295                                            Register new_val,
5296                                            Register thread,
5297                                            Register tmp,
5298                                            Register tmp2) {
5299 #ifdef _LP64
5300   assert(thread == r15_thread, "must be");
5301 #endif // _LP64
5302 
5303   Address queue_index(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5304                                        DirtyCardQueue::byte_offset_of_index()));
5305   Address buffer(thread, in_bytes(JavaThread::dirty_card_queue_offset() +
5306                                        DirtyCardQueue::byte_offset_of_buf()));
5307 
5308   CardTableModRefBS* ct =
5309     barrier_set_cast<CardTableModRefBS>(Universe::heap()->barrier_set());
5310   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5311 
5312   Label done;
5313   Label runtime;
5314 
5315   // Does store cross heap regions?
5316 
5317   movptr(tmp, store_addr);
5318   xorptr(tmp, new_val);
5319   shrptr(tmp, HeapRegion::LogOfHRGrainBytes);
5320   jcc(Assembler::equal, done);
5321 
5322   // crosses regions, storing NULL?
5323 
5324   cmpptr(new_val, (int32_t) NULL_WORD);
5325   jcc(Assembler::equal, done);
5326 
5327   // storing region crossing non-NULL, is card already dirty?
5328 
5329   const Register card_addr = tmp;
5330   const Register cardtable = tmp2;
5331 
5332   movptr(card_addr, store_addr);
5333   shrptr(card_addr, CardTableModRefBS::card_shift);
5334   // Do not use ExternalAddress to load 'byte_map_base', since 'byte_map_base' is NOT
5335   // a valid address and therefore is not properly handled by the relocation code.
5336   movptr(cardtable, (intptr_t)ct->byte_map_base);
5337   addptr(card_addr, cardtable);
5338 
5339   cmpb(Address(card_addr, 0), (int)G1SATBCardTableModRefBS::g1_young_card_val());
5340   jcc(Assembler::equal, done);
5341 
5342   membar(Assembler::Membar_mask_bits(Assembler::StoreLoad));
5343   cmpb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5344   jcc(Assembler::equal, done);
5345 
5346 
5347   // storing a region crossing, non-NULL oop, card is clean.
5348   // dirty card and log.
5349 
5350   movb(Address(card_addr, 0), (int)CardTableModRefBS::dirty_card_val());
5351 
5352   cmpl(queue_index, 0);
5353   jcc(Assembler::equal, runtime);
5354   subl(queue_index, wordSize);
5355   movptr(tmp2, buffer);
5356 #ifdef _LP64
5357   movslq(rscratch1, queue_index);
5358   addq(tmp2, rscratch1);
5359   movq(Address(tmp2, 0), card_addr);
5360 #else
5361   addl(tmp2, queue_index);
5362   movl(Address(tmp2, 0), card_addr);
5363 #endif
5364   jmp(done);
5365 
5366   bind(runtime);
5367   // save the live input values
5368   push(store_addr);
5369   push(new_val);
5370 #ifdef _LP64
5371   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, r15_thread);
5372 #else
5373   push(thread);
5374   call_VM_leaf(CAST_FROM_FN_PTR(address, SharedRuntime::g1_wb_post), card_addr, thread);
5375   pop(thread);
5376 #endif
5377   pop(new_val);
5378   pop(store_addr);
5379 
5380   bind(done);
5381 }
5382 
5383 #endif // INCLUDE_ALL_GCS
5384 //////////////////////////////////////////////////////////////////////////////////
5385 
5386 
5387 void MacroAssembler::store_check(Register obj, Address dst) {
5388   store_check(obj);
5389 }
5390 
5391 void MacroAssembler::store_check(Register obj) {
5392   // Does a store check for the oop in register obj. The content of
5393   // register obj is destroyed afterwards.
5394   BarrierSet* bs = Universe::heap()->barrier_set();
5395   assert(bs->kind() == BarrierSet::CardTableForRS ||
5396          bs->kind() == BarrierSet::CardTableExtension,
5397          "Wrong barrier set kind");
5398 
5399   CardTableModRefBS* ct = barrier_set_cast<CardTableModRefBS>(bs);
5400   assert(sizeof(*ct->byte_map_base) == sizeof(jbyte), "adjust this code");
5401 
5402   shrptr(obj, CardTableModRefBS::card_shift);
5403 
5404   Address card_addr;
5405 
5406   // The calculation for byte_map_base is as follows:
5407   // byte_map_base = _byte_map - (uintptr_t(low_bound) >> card_shift);
5408   // So this essentially converts an address to a displacement and it will
5409   // never need to be relocated. On 64bit however the value may be too
5410   // large for a 32bit displacement.
5411   intptr_t disp = (intptr_t) ct->byte_map_base;
5412   if (is_simm32(disp)) {
5413     card_addr = Address(noreg, obj, Address::times_1, disp);
5414   } else {
5415     // By doing it as an ExternalAddress 'disp' could be converted to a rip-relative
5416     // displacement and done in a single instruction given favorable mapping and a
5417     // smarter version of as_Address. However, 'ExternalAddress' generates a relocation
5418     // entry and that entry is not properly handled by the relocation code.
5419     AddressLiteral cardtable((address)ct->byte_map_base, relocInfo::none);
5420     Address index(noreg, obj, Address::times_1);
5421     card_addr = as_Address(ArrayAddress(cardtable, index));
5422   }
5423 
5424   int dirty = CardTableModRefBS::dirty_card_val();
5425   if (UseCondCardMark) {
5426     Label L_already_dirty;
5427     if (UseConcMarkSweepGC) {
5428       membar(Assembler::StoreLoad);
5429     }
5430     cmpb(card_addr, dirty);
5431     jcc(Assembler::equal, L_already_dirty);
5432     movb(card_addr, dirty);
5433     bind(L_already_dirty);
5434   } else {
5435     movb(card_addr, dirty);
5436   }
5437 }
5438 
5439 void MacroAssembler::subptr(Register dst, int32_t imm32) {
5440   LP64_ONLY(subq(dst, imm32)) NOT_LP64(subl(dst, imm32));
5441 }
5442 
5443 // Force generation of a 4 byte immediate value even if it fits into 8bit
5444 void MacroAssembler::subptr_imm32(Register dst, int32_t imm32) {
5445   LP64_ONLY(subq_imm32(dst, imm32)) NOT_LP64(subl_imm32(dst, imm32));
5446 }
5447 
5448 void MacroAssembler::subptr(Register dst, Register src) {
5449   LP64_ONLY(subq(dst, src)) NOT_LP64(subl(dst, src));
5450 }
5451 
5452 // C++ bool manipulation
5453 void MacroAssembler::testbool(Register dst) {
5454   if(sizeof(bool) == 1)
5455     testb(dst, 0xff);
5456   else if(sizeof(bool) == 2) {
5457     // testw implementation needed for two byte bools
5458     ShouldNotReachHere();
5459   } else if(sizeof(bool) == 4)
5460     testl(dst, dst);
5461   else
5462     // unsupported
5463     ShouldNotReachHere();
5464 }
5465 
5466 void MacroAssembler::testptr(Register dst, Register src) {
5467   LP64_ONLY(testq(dst, src)) NOT_LP64(testl(dst, src));
5468 }
5469 
5470 // Defines obj, preserves var_size_in_bytes, okay for t2 == var_size_in_bytes.
5471 void MacroAssembler::tlab_allocate(Register obj,
5472                                    Register var_size_in_bytes,
5473                                    int con_size_in_bytes,
5474                                    Register t1,
5475                                    Register t2,
5476                                    Label& slow_case) {
5477   assert_different_registers(obj, t1, t2);
5478   assert_different_registers(obj, var_size_in_bytes, t1);
5479   Register end = t2;
5480   Register thread = NOT_LP64(t1) LP64_ONLY(r15_thread);
5481 
5482   verify_tlab();
5483 
5484   NOT_LP64(get_thread(thread));
5485 
5486   movptr(obj, Address(thread, JavaThread::tlab_top_offset()));
5487   if (var_size_in_bytes == noreg) {
5488     lea(end, Address(obj, con_size_in_bytes));
5489   } else {
5490     lea(end, Address(obj, var_size_in_bytes, Address::times_1));
5491   }
5492   cmpptr(end, Address(thread, JavaThread::tlab_end_offset()));
5493   jcc(Assembler::above, slow_case);
5494 
5495   // update the tlab top pointer
5496   movptr(Address(thread, JavaThread::tlab_top_offset()), end);
5497 
5498   // recover var_size_in_bytes if necessary
5499   if (var_size_in_bytes == end) {
5500     subptr(var_size_in_bytes, obj);
5501   }
5502   verify_tlab();
5503 }
5504 
5505 // Preserves rbx, and rdx.
5506 Register MacroAssembler::tlab_refill(Label& retry,
5507                                      Label& try_eden,
5508                                      Label& slow_case) {
5509   Register top = rax;
5510   Register t1  = rcx; // object size
5511   Register t2  = rsi;
5512   Register thread_reg = NOT_LP64(rdi) LP64_ONLY(r15_thread);
5513   assert_different_registers(top, thread_reg, t1, t2, /* preserve: */ rbx, rdx);
5514   Label do_refill, discard_tlab;
5515 
5516   if (!Universe::heap()->supports_inline_contig_alloc()) {
5517     // No allocation in the shared eden.
5518     jmp(slow_case);
5519   }
5520 
5521   NOT_LP64(get_thread(thread_reg));
5522 
5523   movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
5524   movptr(t1,  Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
5525 
5526   // calculate amount of free space
5527   subptr(t1, top);
5528   shrptr(t1, LogHeapWordSize);
5529 
5530   // Retain tlab and allocate object in shared space if
5531   // the amount free in the tlab is too large to discard.
5532   cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())));
5533   jcc(Assembler::lessEqual, discard_tlab);
5534 
5535   // Retain
5536   // %%% yuck as movptr...
5537   movptr(t2, (int32_t) ThreadLocalAllocBuffer::refill_waste_limit_increment());
5538   addptr(Address(thread_reg, in_bytes(JavaThread::tlab_refill_waste_limit_offset())), t2);
5539   if (TLABStats) {
5540     // increment number of slow_allocations
5541     addl(Address(thread_reg, in_bytes(JavaThread::tlab_slow_allocations_offset())), 1);
5542   }
5543   jmp(try_eden);
5544 
5545   bind(discard_tlab);
5546   if (TLABStats) {
5547     // increment number of refills
5548     addl(Address(thread_reg, in_bytes(JavaThread::tlab_number_of_refills_offset())), 1);
5549     // accumulate wastage -- t1 is amount free in tlab
5550     addl(Address(thread_reg, in_bytes(JavaThread::tlab_fast_refill_waste_offset())), t1);
5551   }
5552 
5553   // if tlab is currently allocated (top or end != null) then
5554   // fill [top, end + alignment_reserve) with array object
5555   testptr(top, top);
5556   jcc(Assembler::zero, do_refill);
5557 
5558   // set up the mark word
5559   movptr(Address(top, oopDesc::mark_offset_in_bytes()), (intptr_t)markOopDesc::prototype()->copy_set_hash(0x2));
5560   // set the length to the remaining space
5561   subptr(t1, typeArrayOopDesc::header_size(T_INT));
5562   addptr(t1, (int32_t)ThreadLocalAllocBuffer::alignment_reserve());
5563   shlptr(t1, log2_intptr(HeapWordSize/sizeof(jint)));
5564   movl(Address(top, arrayOopDesc::length_offset_in_bytes()), t1);
5565   // set klass to intArrayKlass
5566   // dubious reloc why not an oop reloc?
5567   movptr(t1, ExternalAddress((address)Universe::intArrayKlassObj_addr()));
5568   // store klass last.  concurrent gcs assumes klass length is valid if
5569   // klass field is not null.
5570   store_klass(top, t1);
5571 
5572   movptr(t1, top);
5573   subptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5574   incr_allocated_bytes(thread_reg, t1, 0);
5575 
5576   // refill the tlab with an eden allocation
5577   bind(do_refill);
5578   movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5579   shlptr(t1, LogHeapWordSize);
5580   // allocate new tlab, address returned in top
5581   eden_allocate(top, t1, 0, t2, slow_case);
5582 
5583   // Check that t1 was preserved in eden_allocate.
5584 #ifdef ASSERT
5585   if (UseTLAB) {
5586     Label ok;
5587     Register tsize = rsi;
5588     assert_different_registers(tsize, thread_reg, t1);
5589     push(tsize);
5590     movptr(tsize, Address(thread_reg, in_bytes(JavaThread::tlab_size_offset())));
5591     shlptr(tsize, LogHeapWordSize);
5592     cmpptr(t1, tsize);
5593     jcc(Assembler::equal, ok);
5594     STOP("assert(t1 != tlab size)");
5595     should_not_reach_here();
5596 
5597     bind(ok);
5598     pop(tsize);
5599   }
5600 #endif
5601   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())), top);
5602   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())), top);
5603   addptr(top, t1);
5604   subptr(top, (int32_t)ThreadLocalAllocBuffer::alignment_reserve_in_bytes());
5605   movptr(Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())), top);
5606 
5607   if (ZeroTLAB) {
5608     // This is a fast TLAB refill, therefore the GC is not notified of it.
5609     // So compiled code must fill the new TLAB with zeroes.
5610     movptr(top, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
5611     zero_memory(top, t1, 0, t2);
5612   }
5613 
5614   verify_tlab();
5615   jmp(retry);
5616 
5617   return thread_reg; // for use by caller
5618 }
5619 
5620 // Preserves the contents of address, destroys the contents length_in_bytes and temp.
5621 void MacroAssembler::zero_memory(Register address, Register length_in_bytes, int offset_in_bytes, Register temp) {
5622   assert(address != length_in_bytes && address != temp && temp != length_in_bytes, "registers must be different");
5623   assert((offset_in_bytes & (BytesPerWord - 1)) == 0, "offset must be a multiple of BytesPerWord");
5624   Label done;
5625 
5626   testptr(length_in_bytes, length_in_bytes);
5627   jcc(Assembler::zero, done);
5628 
5629   // initialize topmost word, divide index by 2, check if odd and test if zero
5630   // note: for the remaining code to work, index must be a multiple of BytesPerWord
5631 #ifdef ASSERT
5632   {
5633     Label L;
5634     testptr(length_in_bytes, BytesPerWord - 1);
5635     jcc(Assembler::zero, L);
5636     stop("length must be a multiple of BytesPerWord");
5637     bind(L);
5638   }
5639 #endif
5640   Register index = length_in_bytes;
5641   xorptr(temp, temp);    // use _zero reg to clear memory (shorter code)
5642   if (UseIncDec) {
5643     shrptr(index, 3);  // divide by 8/16 and set carry flag if bit 2 was set
5644   } else {
5645     shrptr(index, 2);  // use 2 instructions to avoid partial flag stall
5646     shrptr(index, 1);
5647   }
5648 #ifndef _LP64
5649   // index could have not been a multiple of 8 (i.e., bit 2 was set)
5650   {
5651     Label even;
5652     // note: if index was a multiple of 8, then it cannot
5653     //       be 0 now otherwise it must have been 0 before
5654     //       => if it is even, we don't need to check for 0 again
5655     jcc(Assembler::carryClear, even);
5656     // clear topmost word (no jump would be needed if conditional assignment worked here)
5657     movptr(Address(address, index, Address::times_8, offset_in_bytes - 0*BytesPerWord), temp);
5658     // index could be 0 now, must check again
5659     jcc(Assembler::zero, done);
5660     bind(even);
5661   }
5662 #endif // !_LP64
5663   // initialize remaining object fields: index is a multiple of 2 now
5664   {
5665     Label loop;
5666     bind(loop);
5667     movptr(Address(address, index, Address::times_8, offset_in_bytes - 1*BytesPerWord), temp);
5668     NOT_LP64(movptr(Address(address, index, Address::times_8, offset_in_bytes - 2*BytesPerWord), temp);)
5669     decrement(index);
5670     jcc(Assembler::notZero, loop);
5671   }
5672 
5673   bind(done);
5674 }
5675 
5676 void MacroAssembler::incr_allocated_bytes(Register thread,
5677                                           Register var_size_in_bytes,
5678                                           int con_size_in_bytes,
5679                                           Register t1) {
5680   if (!thread->is_valid()) {
5681 #ifdef _LP64
5682     thread = r15_thread;
5683 #else
5684     assert(t1->is_valid(), "need temp reg");
5685     thread = t1;
5686     get_thread(thread);
5687 #endif
5688   }
5689 
5690 #ifdef _LP64
5691   if (var_size_in_bytes->is_valid()) {
5692     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5693   } else {
5694     addq(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5695   }
5696 #else
5697   if (var_size_in_bytes->is_valid()) {
5698     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), var_size_in_bytes);
5699   } else {
5700     addl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())), con_size_in_bytes);
5701   }
5702   adcl(Address(thread, in_bytes(JavaThread::allocated_bytes_offset())+4), 0);
5703 #endif
5704 }
5705 
5706 // Look up the method for a megamorphic invokeinterface call.
5707 // The target method is determined by <intf_klass, itable_index>.
5708 // The receiver klass is in recv_klass.
5709 // On success, the result will be in method_result, and execution falls through.
5710 // On failure, execution transfers to the given label.
5711 void MacroAssembler::lookup_interface_method(Register recv_klass,
5712                                              Register intf_klass,
5713                                              RegisterOrConstant itable_index,
5714                                              Register method_result,
5715                                              Register scan_temp,
5716                                              Label& L_no_such_interface) {
5717   assert_different_registers(recv_klass, intf_klass, method_result, scan_temp);
5718   assert(itable_index.is_constant() || itable_index.as_register() == method_result,
5719          "caller must use same register for non-constant itable index as for method");
5720 
5721   // Compute start of first itableOffsetEntry (which is at the end of the vtable)
5722   int vtable_base = in_bytes(Klass::vtable_start_offset());
5723   int itentry_off = itableMethodEntry::method_offset_in_bytes();
5724   int scan_step   = itableOffsetEntry::size() * wordSize;
5725   int vte_size    = vtableEntry::size_in_bytes();
5726   Address::ScaleFactor times_vte_scale = Address::times_ptr;
5727   assert(vte_size == wordSize, "else adjust times_vte_scale");
5728 
5729   movl(scan_temp, Address(recv_klass, Klass::vtable_length_offset()));
5730 
5731   // %%% Could store the aligned, prescaled offset in the klassoop.
5732   lea(scan_temp, Address(recv_klass, scan_temp, times_vte_scale, vtable_base));
5733 
5734   // Adjust recv_klass by scaled itable_index, so we can free itable_index.
5735   assert(itableMethodEntry::size() * wordSize == wordSize, "adjust the scaling in the code below");
5736   lea(recv_klass, Address(recv_klass, itable_index, Address::times_ptr, itentry_off));
5737 
5738   // for (scan = klass->itable(); scan->interface() != NULL; scan += scan_step) {
5739   //   if (scan->interface() == intf) {
5740   //     result = (klass + scan->offset() + itable_index);
5741   //   }
5742   // }
5743   Label search, found_method;
5744 
5745   for (int peel = 1; peel >= 0; peel--) {
5746     movptr(method_result, Address(scan_temp, itableOffsetEntry::interface_offset_in_bytes()));
5747     cmpptr(intf_klass, method_result);
5748 
5749     if (peel) {
5750       jccb(Assembler::equal, found_method);
5751     } else {
5752       jccb(Assembler::notEqual, search);
5753       // (invert the test to fall through to found_method...)
5754     }
5755 
5756     if (!peel)  break;
5757 
5758     bind(search);
5759 
5760     // Check that the previous entry is non-null.  A null entry means that
5761     // the receiver class doesn't implement the interface, and wasn't the
5762     // same as when the caller was compiled.
5763     testptr(method_result, method_result);
5764     jcc(Assembler::zero, L_no_such_interface);
5765     addptr(scan_temp, scan_step);
5766   }
5767 
5768   bind(found_method);
5769 
5770   // Got a hit.
5771   movl(scan_temp, Address(scan_temp, itableOffsetEntry::offset_offset_in_bytes()));
5772   movptr(method_result, Address(recv_klass, scan_temp, Address::times_1));
5773 }
5774 
5775 
5776 // virtual method calling
5777 void MacroAssembler::lookup_virtual_method(Register recv_klass,
5778                                            RegisterOrConstant vtable_index,
5779                                            Register method_result) {
5780   const int base = in_bytes(Klass::vtable_start_offset());
5781   assert(vtableEntry::size() * wordSize == wordSize, "else adjust the scaling in the code below");
5782   Address vtable_entry_addr(recv_klass,
5783                             vtable_index, Address::times_ptr,
5784                             base + vtableEntry::method_offset_in_bytes());
5785   movptr(method_result, vtable_entry_addr);
5786 }
5787 
5788 
5789 void MacroAssembler::check_klass_subtype(Register sub_klass,
5790                            Register super_klass,
5791                            Register temp_reg,
5792                            Label& L_success) {
5793   Label L_failure;
5794   check_klass_subtype_fast_path(sub_klass, super_klass, temp_reg,        &L_success, &L_failure, NULL);
5795   check_klass_subtype_slow_path(sub_klass, super_klass, temp_reg, noreg, &L_success, NULL);
5796   bind(L_failure);
5797 }
5798 
5799 
5800 void MacroAssembler::check_klass_subtype_fast_path(Register sub_klass,
5801                                                    Register super_klass,
5802                                                    Register temp_reg,
5803                                                    Label* L_success,
5804                                                    Label* L_failure,
5805                                                    Label* L_slow_path,
5806                                         RegisterOrConstant super_check_offset) {
5807   assert_different_registers(sub_klass, super_klass, temp_reg);
5808   bool must_load_sco = (super_check_offset.constant_or_zero() == -1);
5809   if (super_check_offset.is_register()) {
5810     assert_different_registers(sub_klass, super_klass,
5811                                super_check_offset.as_register());
5812   } else if (must_load_sco) {
5813     assert(temp_reg != noreg, "supply either a temp or a register offset");
5814   }
5815 
5816   Label L_fallthrough;
5817   int label_nulls = 0;
5818   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5819   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5820   if (L_slow_path == NULL) { L_slow_path = &L_fallthrough; label_nulls++; }
5821   assert(label_nulls <= 1, "at most one NULL in the batch");
5822 
5823   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5824   int sco_offset = in_bytes(Klass::super_check_offset_offset());
5825   Address super_check_offset_addr(super_klass, sco_offset);
5826 
5827   // Hacked jcc, which "knows" that L_fallthrough, at least, is in
5828   // range of a jccb.  If this routine grows larger, reconsider at
5829   // least some of these.
5830 #define local_jcc(assembler_cond, label)                                \
5831   if (&(label) == &L_fallthrough)  jccb(assembler_cond, label);         \
5832   else                             jcc( assembler_cond, label) /*omit semi*/
5833 
5834   // Hacked jmp, which may only be used just before L_fallthrough.
5835 #define final_jmp(label)                                                \
5836   if (&(label) == &L_fallthrough) { /*do nothing*/ }                    \
5837   else                            jmp(label)                /*omit semi*/
5838 
5839   // If the pointers are equal, we are done (e.g., String[] elements).
5840   // This self-check enables sharing of secondary supertype arrays among
5841   // non-primary types such as array-of-interface.  Otherwise, each such
5842   // type would need its own customized SSA.
5843   // We move this check to the front of the fast path because many
5844   // type checks are in fact trivially successful in this manner,
5845   // so we get a nicely predicted branch right at the start of the check.
5846   cmpptr(sub_klass, super_klass);
5847   local_jcc(Assembler::equal, *L_success);
5848 
5849   // Check the supertype display:
5850   if (must_load_sco) {
5851     // Positive movl does right thing on LP64.
5852     movl(temp_reg, super_check_offset_addr);
5853     super_check_offset = RegisterOrConstant(temp_reg);
5854   }
5855   Address super_check_addr(sub_klass, super_check_offset, Address::times_1, 0);
5856   cmpptr(super_klass, super_check_addr); // load displayed supertype
5857 
5858   // This check has worked decisively for primary supers.
5859   // Secondary supers are sought in the super_cache ('super_cache_addr').
5860   // (Secondary supers are interfaces and very deeply nested subtypes.)
5861   // This works in the same check above because of a tricky aliasing
5862   // between the super_cache and the primary super display elements.
5863   // (The 'super_check_addr' can address either, as the case requires.)
5864   // Note that the cache is updated below if it does not help us find
5865   // what we need immediately.
5866   // So if it was a primary super, we can just fail immediately.
5867   // Otherwise, it's the slow path for us (no success at this point).
5868 
5869   if (super_check_offset.is_register()) {
5870     local_jcc(Assembler::equal, *L_success);
5871     cmpl(super_check_offset.as_register(), sc_offset);
5872     if (L_failure == &L_fallthrough) {
5873       local_jcc(Assembler::equal, *L_slow_path);
5874     } else {
5875       local_jcc(Assembler::notEqual, *L_failure);
5876       final_jmp(*L_slow_path);
5877     }
5878   } else if (super_check_offset.as_constant() == sc_offset) {
5879     // Need a slow path; fast failure is impossible.
5880     if (L_slow_path == &L_fallthrough) {
5881       local_jcc(Assembler::equal, *L_success);
5882     } else {
5883       local_jcc(Assembler::notEqual, *L_slow_path);
5884       final_jmp(*L_success);
5885     }
5886   } else {
5887     // No slow path; it's a fast decision.
5888     if (L_failure == &L_fallthrough) {
5889       local_jcc(Assembler::equal, *L_success);
5890     } else {
5891       local_jcc(Assembler::notEqual, *L_failure);
5892       final_jmp(*L_success);
5893     }
5894   }
5895 
5896   bind(L_fallthrough);
5897 
5898 #undef local_jcc
5899 #undef final_jmp
5900 }
5901 
5902 
5903 void MacroAssembler::check_klass_subtype_slow_path(Register sub_klass,
5904                                                    Register super_klass,
5905                                                    Register temp_reg,
5906                                                    Register temp2_reg,
5907                                                    Label* L_success,
5908                                                    Label* L_failure,
5909                                                    bool set_cond_codes) {
5910   assert_different_registers(sub_klass, super_klass, temp_reg);
5911   if (temp2_reg != noreg)
5912     assert_different_registers(sub_klass, super_klass, temp_reg, temp2_reg);
5913 #define IS_A_TEMP(reg) ((reg) == temp_reg || (reg) == temp2_reg)
5914 
5915   Label L_fallthrough;
5916   int label_nulls = 0;
5917   if (L_success == NULL)   { L_success   = &L_fallthrough; label_nulls++; }
5918   if (L_failure == NULL)   { L_failure   = &L_fallthrough; label_nulls++; }
5919   assert(label_nulls <= 1, "at most one NULL in the batch");
5920 
5921   // a couple of useful fields in sub_klass:
5922   int ss_offset = in_bytes(Klass::secondary_supers_offset());
5923   int sc_offset = in_bytes(Klass::secondary_super_cache_offset());
5924   Address secondary_supers_addr(sub_klass, ss_offset);
5925   Address super_cache_addr(     sub_klass, sc_offset);
5926 
5927   // Do a linear scan of the secondary super-klass chain.
5928   // This code is rarely used, so simplicity is a virtue here.
5929   // The repne_scan instruction uses fixed registers, which we must spill.
5930   // Don't worry too much about pre-existing connections with the input regs.
5931 
5932   assert(sub_klass != rax, "killed reg"); // killed by mov(rax, super)
5933   assert(sub_klass != rcx, "killed reg"); // killed by lea(rcx, &pst_counter)
5934 
5935   // Get super_klass value into rax (even if it was in rdi or rcx).
5936   bool pushed_rax = false, pushed_rcx = false, pushed_rdi = false;
5937   if (super_klass != rax || UseCompressedOops) {
5938     if (!IS_A_TEMP(rax)) { push(rax); pushed_rax = true; }
5939     mov(rax, super_klass);
5940   }
5941   if (!IS_A_TEMP(rcx)) { push(rcx); pushed_rcx = true; }
5942   if (!IS_A_TEMP(rdi)) { push(rdi); pushed_rdi = true; }
5943 
5944 #ifndef PRODUCT
5945   int* pst_counter = &SharedRuntime::_partial_subtype_ctr;
5946   ExternalAddress pst_counter_addr((address) pst_counter);
5947   NOT_LP64(  incrementl(pst_counter_addr) );
5948   LP64_ONLY( lea(rcx, pst_counter_addr) );
5949   LP64_ONLY( incrementl(Address(rcx, 0)) );
5950 #endif //PRODUCT
5951 
5952   // We will consult the secondary-super array.
5953   movptr(rdi, secondary_supers_addr);
5954   // Load the array length.  (Positive movl does right thing on LP64.)
5955   movl(rcx, Address(rdi, Array<Klass*>::length_offset_in_bytes()));
5956   // Skip to start of data.
5957   addptr(rdi, Array<Klass*>::base_offset_in_bytes());
5958 
5959   // Scan RCX words at [RDI] for an occurrence of RAX.
5960   // Set NZ/Z based on last compare.
5961   // Z flag value will not be set by 'repne' if RCX == 0 since 'repne' does
5962   // not change flags (only scas instruction which is repeated sets flags).
5963   // Set Z = 0 (not equal) before 'repne' to indicate that class was not found.
5964 
5965     testptr(rax,rax); // Set Z = 0
5966     repne_scan();
5967 
5968   // Unspill the temp. registers:
5969   if (pushed_rdi)  pop(rdi);
5970   if (pushed_rcx)  pop(rcx);
5971   if (pushed_rax)  pop(rax);
5972 
5973   if (set_cond_codes) {
5974     // Special hack for the AD files:  rdi is guaranteed non-zero.
5975     assert(!pushed_rdi, "rdi must be left non-NULL");
5976     // Also, the condition codes are properly set Z/NZ on succeed/failure.
5977   }
5978 
5979   if (L_failure == &L_fallthrough)
5980         jccb(Assembler::notEqual, *L_failure);
5981   else  jcc(Assembler::notEqual, *L_failure);
5982 
5983   // Success.  Cache the super we found and proceed in triumph.
5984   movptr(super_cache_addr, super_klass);
5985 
5986   if (L_success != &L_fallthrough) {
5987     jmp(*L_success);
5988   }
5989 
5990 #undef IS_A_TEMP
5991 
5992   bind(L_fallthrough);
5993 }
5994 
5995 
5996 void MacroAssembler::cmov32(Condition cc, Register dst, Address src) {
5997   if (VM_Version::supports_cmov()) {
5998     cmovl(cc, dst, src);
5999   } else {
6000     Label L;
6001     jccb(negate_condition(cc), L);
6002     movl(dst, src);
6003     bind(L);
6004   }
6005 }
6006 
6007 void MacroAssembler::cmov32(Condition cc, Register dst, Register src) {
6008   if (VM_Version::supports_cmov()) {
6009     cmovl(cc, dst, src);
6010   } else {
6011     Label L;
6012     jccb(negate_condition(cc), L);
6013     movl(dst, src);
6014     bind(L);
6015   }
6016 }
6017 
6018 void MacroAssembler::verify_oop(Register reg, const char* s) {
6019   if (!VerifyOops || VerifyAdapterSharing) {
6020     // Below address of the code string confuses VerifyAdapterSharing
6021     // because it may differ between otherwise equivalent adapters.
6022     return;
6023   }
6024 
6025   // Pass register number to verify_oop_subroutine
6026   const char* b = NULL;
6027   {
6028     ResourceMark rm;
6029     stringStream ss;
6030     ss.print("verify_oop: %s: %s", reg->name(), s);
6031     b = code_string(ss.as_string());
6032   }
6033   BLOCK_COMMENT("verify_oop {");
6034 #ifdef _LP64
6035   push(rscratch1);                    // save r10, trashed by movptr()
6036 #endif
6037   push(rax);                          // save rax,
6038   push(reg);                          // pass register argument
6039   ExternalAddress buffer((address) b);
6040   // avoid using pushptr, as it modifies scratch registers
6041   // and our contract is not to modify anything
6042   movptr(rax, buffer.addr());
6043   push(rax);
6044   // call indirectly to solve generation ordering problem
6045   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6046   call(rax);
6047   // Caller pops the arguments (oop, message) and restores rax, r10
6048   BLOCK_COMMENT("} verify_oop");
6049 }
6050 
6051 
6052 RegisterOrConstant MacroAssembler::delayed_value_impl(intptr_t* delayed_value_addr,
6053                                                       Register tmp,
6054                                                       int offset) {
6055   intptr_t value = *delayed_value_addr;
6056   if (value != 0)
6057     return RegisterOrConstant(value + offset);
6058 
6059   // load indirectly to solve generation ordering problem
6060   movptr(tmp, ExternalAddress((address) delayed_value_addr));
6061 
6062 #ifdef ASSERT
6063   { Label L;
6064     testptr(tmp, tmp);
6065     if (WizardMode) {
6066       const char* buf = NULL;
6067       {
6068         ResourceMark rm;
6069         stringStream ss;
6070         ss.print("DelayedValue=" INTPTR_FORMAT, delayed_value_addr[1]);
6071         buf = code_string(ss.as_string());
6072       }
6073       jcc(Assembler::notZero, L);
6074       STOP(buf);
6075     } else {
6076       jccb(Assembler::notZero, L);
6077       hlt();
6078     }
6079     bind(L);
6080   }
6081 #endif
6082 
6083   if (offset != 0)
6084     addptr(tmp, offset);
6085 
6086   return RegisterOrConstant(tmp);
6087 }
6088 
6089 
6090 Address MacroAssembler::argument_address(RegisterOrConstant arg_slot,
6091                                          int extra_slot_offset) {
6092   // cf. TemplateTable::prepare_invoke(), if (load_receiver).
6093   int stackElementSize = Interpreter::stackElementSize;
6094   int offset = Interpreter::expr_offset_in_bytes(extra_slot_offset+0);
6095 #ifdef ASSERT
6096   int offset1 = Interpreter::expr_offset_in_bytes(extra_slot_offset+1);
6097   assert(offset1 - offset == stackElementSize, "correct arithmetic");
6098 #endif
6099   Register             scale_reg    = noreg;
6100   Address::ScaleFactor scale_factor = Address::no_scale;
6101   if (arg_slot.is_constant()) {
6102     offset += arg_slot.as_constant() * stackElementSize;
6103   } else {
6104     scale_reg    = arg_slot.as_register();
6105     scale_factor = Address::times(stackElementSize);
6106   }
6107   offset += wordSize;           // return PC is on stack
6108   return Address(rsp, scale_reg, scale_factor, offset);
6109 }
6110 
6111 
6112 void MacroAssembler::verify_oop_addr(Address addr, const char* s) {
6113   if (!VerifyOops || VerifyAdapterSharing) {
6114     // Below address of the code string confuses VerifyAdapterSharing
6115     // because it may differ between otherwise equivalent adapters.
6116     return;
6117   }
6118 
6119   // Address adjust(addr.base(), addr.index(), addr.scale(), addr.disp() + BytesPerWord);
6120   // Pass register number to verify_oop_subroutine
6121   const char* b = NULL;
6122   {
6123     ResourceMark rm;
6124     stringStream ss;
6125     ss.print("verify_oop_addr: %s", s);
6126     b = code_string(ss.as_string());
6127   }
6128 #ifdef _LP64
6129   push(rscratch1);                    // save r10, trashed by movptr()
6130 #endif
6131   push(rax);                          // save rax,
6132   // addr may contain rsp so we will have to adjust it based on the push
6133   // we just did (and on 64 bit we do two pushes)
6134   // NOTE: 64bit seemed to have had a bug in that it did movq(addr, rax); which
6135   // stores rax into addr which is backwards of what was intended.
6136   if (addr.uses(rsp)) {
6137     lea(rax, addr);
6138     pushptr(Address(rax, LP64_ONLY(2 *) BytesPerWord));
6139   } else {
6140     pushptr(addr);
6141   }
6142 
6143   ExternalAddress buffer((address) b);
6144   // pass msg argument
6145   // avoid using pushptr, as it modifies scratch registers
6146   // and our contract is not to modify anything
6147   movptr(rax, buffer.addr());
6148   push(rax);
6149 
6150   // call indirectly to solve generation ordering problem
6151   movptr(rax, ExternalAddress(StubRoutines::verify_oop_subroutine_entry_address()));
6152   call(rax);
6153   // Caller pops the arguments (addr, message) and restores rax, r10.
6154 }
6155 
6156 void MacroAssembler::verify_tlab() {
6157 #ifdef ASSERT
6158   if (UseTLAB && VerifyOops) {
6159     Label next, ok;
6160     Register t1 = rsi;
6161     Register thread_reg = NOT_LP64(rbx) LP64_ONLY(r15_thread);
6162 
6163     push(t1);
6164     NOT_LP64(push(thread_reg));
6165     NOT_LP64(get_thread(thread_reg));
6166 
6167     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6168     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_start_offset())));
6169     jcc(Assembler::aboveEqual, next);
6170     STOP("assert(top >= start)");
6171     should_not_reach_here();
6172 
6173     bind(next);
6174     movptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_end_offset())));
6175     cmpptr(t1, Address(thread_reg, in_bytes(JavaThread::tlab_top_offset())));
6176     jcc(Assembler::aboveEqual, ok);
6177     STOP("assert(top <= end)");
6178     should_not_reach_here();
6179 
6180     bind(ok);
6181     NOT_LP64(pop(thread_reg));
6182     pop(t1);
6183   }
6184 #endif
6185 }
6186 
6187 class ControlWord {
6188  public:
6189   int32_t _value;
6190 
6191   int  rounding_control() const        { return  (_value >> 10) & 3      ; }
6192   int  precision_control() const       { return  (_value >>  8) & 3      ; }
6193   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6194   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6195   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6196   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6197   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6198   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6199 
6200   void print() const {
6201     // rounding control
6202     const char* rc;
6203     switch (rounding_control()) {
6204       case 0: rc = "round near"; break;
6205       case 1: rc = "round down"; break;
6206       case 2: rc = "round up  "; break;
6207       case 3: rc = "chop      "; break;
6208     };
6209     // precision control
6210     const char* pc;
6211     switch (precision_control()) {
6212       case 0: pc = "24 bits "; break;
6213       case 1: pc = "reserved"; break;
6214       case 2: pc = "53 bits "; break;
6215       case 3: pc = "64 bits "; break;
6216     };
6217     // flags
6218     char f[9];
6219     f[0] = ' ';
6220     f[1] = ' ';
6221     f[2] = (precision   ()) ? 'P' : 'p';
6222     f[3] = (underflow   ()) ? 'U' : 'u';
6223     f[4] = (overflow    ()) ? 'O' : 'o';
6224     f[5] = (zero_divide ()) ? 'Z' : 'z';
6225     f[6] = (denormalized()) ? 'D' : 'd';
6226     f[7] = (invalid     ()) ? 'I' : 'i';
6227     f[8] = '\x0';
6228     // output
6229     printf("%04x  masks = %s, %s, %s", _value & 0xFFFF, f, rc, pc);
6230   }
6231 
6232 };
6233 
6234 class StatusWord {
6235  public:
6236   int32_t _value;
6237 
6238   bool busy() const                    { return ((_value >> 15) & 1) != 0; }
6239   bool C3() const                      { return ((_value >> 14) & 1) != 0; }
6240   bool C2() const                      { return ((_value >> 10) & 1) != 0; }
6241   bool C1() const                      { return ((_value >>  9) & 1) != 0; }
6242   bool C0() const                      { return ((_value >>  8) & 1) != 0; }
6243   int  top() const                     { return  (_value >> 11) & 7      ; }
6244   bool error_status() const            { return ((_value >>  7) & 1) != 0; }
6245   bool stack_fault() const             { return ((_value >>  6) & 1) != 0; }
6246   bool precision() const               { return ((_value >>  5) & 1) != 0; }
6247   bool underflow() const               { return ((_value >>  4) & 1) != 0; }
6248   bool overflow() const                { return ((_value >>  3) & 1) != 0; }
6249   bool zero_divide() const             { return ((_value >>  2) & 1) != 0; }
6250   bool denormalized() const            { return ((_value >>  1) & 1) != 0; }
6251   bool invalid() const                 { return ((_value >>  0) & 1) != 0; }
6252 
6253   void print() const {
6254     // condition codes
6255     char c[5];
6256     c[0] = (C3()) ? '3' : '-';
6257     c[1] = (C2()) ? '2' : '-';
6258     c[2] = (C1()) ? '1' : '-';
6259     c[3] = (C0()) ? '0' : '-';
6260     c[4] = '\x0';
6261     // flags
6262     char f[9];
6263     f[0] = (error_status()) ? 'E' : '-';
6264     f[1] = (stack_fault ()) ? 'S' : '-';
6265     f[2] = (precision   ()) ? 'P' : '-';
6266     f[3] = (underflow   ()) ? 'U' : '-';
6267     f[4] = (overflow    ()) ? 'O' : '-';
6268     f[5] = (zero_divide ()) ? 'Z' : '-';
6269     f[6] = (denormalized()) ? 'D' : '-';
6270     f[7] = (invalid     ()) ? 'I' : '-';
6271     f[8] = '\x0';
6272     // output
6273     printf("%04x  flags = %s, cc =  %s, top = %d", _value & 0xFFFF, f, c, top());
6274   }
6275 
6276 };
6277 
6278 class TagWord {
6279  public:
6280   int32_t _value;
6281 
6282   int tag_at(int i) const              { return (_value >> (i*2)) & 3; }
6283 
6284   void print() const {
6285     printf("%04x", _value & 0xFFFF);
6286   }
6287 
6288 };
6289 
6290 class FPU_Register {
6291  public:
6292   int32_t _m0;
6293   int32_t _m1;
6294   int16_t _ex;
6295 
6296   bool is_indefinite() const           {
6297     return _ex == -1 && _m1 == (int32_t)0xC0000000 && _m0 == 0;
6298   }
6299 
6300   void print() const {
6301     char  sign = (_ex < 0) ? '-' : '+';
6302     const char* kind = (_ex == 0x7FFF || _ex == (int16_t)-1) ? "NaN" : "   ";
6303     printf("%c%04hx.%08x%08x  %s", sign, _ex, _m1, _m0, kind);
6304   };
6305 
6306 };
6307 
6308 class FPU_State {
6309  public:
6310   enum {
6311     register_size       = 10,
6312     number_of_registers =  8,
6313     register_mask       =  7
6314   };
6315 
6316   ControlWord  _control_word;
6317   StatusWord   _status_word;
6318   TagWord      _tag_word;
6319   int32_t      _error_offset;
6320   int32_t      _error_selector;
6321   int32_t      _data_offset;
6322   int32_t      _data_selector;
6323   int8_t       _register[register_size * number_of_registers];
6324 
6325   int tag_for_st(int i) const          { return _tag_word.tag_at((_status_word.top() + i) & register_mask); }
6326   FPU_Register* st(int i) const        { return (FPU_Register*)&_register[register_size * i]; }
6327 
6328   const char* tag_as_string(int tag) const {
6329     switch (tag) {
6330       case 0: return "valid";
6331       case 1: return "zero";
6332       case 2: return "special";
6333       case 3: return "empty";
6334     }
6335     ShouldNotReachHere();
6336     return NULL;
6337   }
6338 
6339   void print() const {
6340     // print computation registers
6341     { int t = _status_word.top();
6342       for (int i = 0; i < number_of_registers; i++) {
6343         int j = (i - t) & register_mask;
6344         printf("%c r%d = ST%d = ", (j == 0 ? '*' : ' '), i, j);
6345         st(j)->print();
6346         printf(" %s\n", tag_as_string(_tag_word.tag_at(i)));
6347       }
6348     }
6349     printf("\n");
6350     // print control registers
6351     printf("ctrl = "); _control_word.print(); printf("\n");
6352     printf("stat = "); _status_word .print(); printf("\n");
6353     printf("tags = "); _tag_word    .print(); printf("\n");
6354   }
6355 
6356 };
6357 
6358 class Flag_Register {
6359  public:
6360   int32_t _value;
6361 
6362   bool overflow() const                { return ((_value >> 11) & 1) != 0; }
6363   bool direction() const               { return ((_value >> 10) & 1) != 0; }
6364   bool sign() const                    { return ((_value >>  7) & 1) != 0; }
6365   bool zero() const                    { return ((_value >>  6) & 1) != 0; }
6366   bool auxiliary_carry() const         { return ((_value >>  4) & 1) != 0; }
6367   bool parity() const                  { return ((_value >>  2) & 1) != 0; }
6368   bool carry() const                   { return ((_value >>  0) & 1) != 0; }
6369 
6370   void print() const {
6371     // flags
6372     char f[8];
6373     f[0] = (overflow       ()) ? 'O' : '-';
6374     f[1] = (direction      ()) ? 'D' : '-';
6375     f[2] = (sign           ()) ? 'S' : '-';
6376     f[3] = (zero           ()) ? 'Z' : '-';
6377     f[4] = (auxiliary_carry()) ? 'A' : '-';
6378     f[5] = (parity         ()) ? 'P' : '-';
6379     f[6] = (carry          ()) ? 'C' : '-';
6380     f[7] = '\x0';
6381     // output
6382     printf("%08x  flags = %s", _value, f);
6383   }
6384 
6385 };
6386 
6387 class IU_Register {
6388  public:
6389   int32_t _value;
6390 
6391   void print() const {
6392     printf("%08x  %11d", _value, _value);
6393   }
6394 
6395 };
6396 
6397 class IU_State {
6398  public:
6399   Flag_Register _eflags;
6400   IU_Register   _rdi;
6401   IU_Register   _rsi;
6402   IU_Register   _rbp;
6403   IU_Register   _rsp;
6404   IU_Register   _rbx;
6405   IU_Register   _rdx;
6406   IU_Register   _rcx;
6407   IU_Register   _rax;
6408 
6409   void print() const {
6410     // computation registers
6411     printf("rax,  = "); _rax.print(); printf("\n");
6412     printf("rbx,  = "); _rbx.print(); printf("\n");
6413     printf("rcx  = "); _rcx.print(); printf("\n");
6414     printf("rdx  = "); _rdx.print(); printf("\n");
6415     printf("rdi  = "); _rdi.print(); printf("\n");
6416     printf("rsi  = "); _rsi.print(); printf("\n");
6417     printf("rbp,  = "); _rbp.print(); printf("\n");
6418     printf("rsp  = "); _rsp.print(); printf("\n");
6419     printf("\n");
6420     // control registers
6421     printf("flgs = "); _eflags.print(); printf("\n");
6422   }
6423 };
6424 
6425 
6426 class CPU_State {
6427  public:
6428   FPU_State _fpu_state;
6429   IU_State  _iu_state;
6430 
6431   void print() const {
6432     printf("--------------------------------------------------\n");
6433     _iu_state .print();
6434     printf("\n");
6435     _fpu_state.print();
6436     printf("--------------------------------------------------\n");
6437   }
6438 
6439 };
6440 
6441 
6442 static void _print_CPU_state(CPU_State* state) {
6443   state->print();
6444 };
6445 
6446 
6447 void MacroAssembler::print_CPU_state() {
6448   push_CPU_state();
6449   push(rsp);                // pass CPU state
6450   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _print_CPU_state)));
6451   addptr(rsp, wordSize);       // discard argument
6452   pop_CPU_state();
6453 }
6454 
6455 
6456 static bool _verify_FPU(int stack_depth, char* s, CPU_State* state) {
6457   static int counter = 0;
6458   FPU_State* fs = &state->_fpu_state;
6459   counter++;
6460   // For leaf calls, only verify that the top few elements remain empty.
6461   // We only need 1 empty at the top for C2 code.
6462   if( stack_depth < 0 ) {
6463     if( fs->tag_for_st(7) != 3 ) {
6464       printf("FPR7 not empty\n");
6465       state->print();
6466       assert(false, "error");
6467       return false;
6468     }
6469     return true;                // All other stack states do not matter
6470   }
6471 
6472   assert((fs->_control_word._value & 0xffff) == StubRoutines::_fpu_cntrl_wrd_std,
6473          "bad FPU control word");
6474 
6475   // compute stack depth
6476   int i = 0;
6477   while (i < FPU_State::number_of_registers && fs->tag_for_st(i)  < 3) i++;
6478   int d = i;
6479   while (i < FPU_State::number_of_registers && fs->tag_for_st(i) == 3) i++;
6480   // verify findings
6481   if (i != FPU_State::number_of_registers) {
6482     // stack not contiguous
6483     printf("%s: stack not contiguous at ST%d\n", s, i);
6484     state->print();
6485     assert(false, "error");
6486     return false;
6487   }
6488   // check if computed stack depth corresponds to expected stack depth
6489   if (stack_depth < 0) {
6490     // expected stack depth is -stack_depth or less
6491     if (d > -stack_depth) {
6492       // too many elements on the stack
6493       printf("%s: <= %d stack elements expected but found %d\n", s, -stack_depth, d);
6494       state->print();
6495       assert(false, "error");
6496       return false;
6497     }
6498   } else {
6499     // expected stack depth is stack_depth
6500     if (d != stack_depth) {
6501       // wrong stack depth
6502       printf("%s: %d stack elements expected but found %d\n", s, stack_depth, d);
6503       state->print();
6504       assert(false, "error");
6505       return false;
6506     }
6507   }
6508   // everything is cool
6509   return true;
6510 }
6511 
6512 
6513 void MacroAssembler::verify_FPU(int stack_depth, const char* s) {
6514   if (!VerifyFPU) return;
6515   push_CPU_state();
6516   push(rsp);                // pass CPU state
6517   ExternalAddress msg((address) s);
6518   // pass message string s
6519   pushptr(msg.addr());
6520   push(stack_depth);        // pass stack depth
6521   call(RuntimeAddress(CAST_FROM_FN_PTR(address, _verify_FPU)));
6522   addptr(rsp, 3 * wordSize);   // discard arguments
6523   // check for error
6524   { Label L;
6525     testl(rax, rax);
6526     jcc(Assembler::notZero, L);
6527     int3();                  // break if error condition
6528     bind(L);
6529   }
6530   pop_CPU_state();
6531 }
6532 
6533 void MacroAssembler::restore_cpu_control_state_after_jni() {
6534   // Either restore the MXCSR register after returning from the JNI Call
6535   // or verify that it wasn't changed (with -Xcheck:jni flag).
6536   if (VM_Version::supports_sse()) {
6537     if (RestoreMXCSROnJNICalls) {
6538       ldmxcsr(ExternalAddress(StubRoutines::addr_mxcsr_std()));
6539     } else if (CheckJNICalls) {
6540       call(RuntimeAddress(StubRoutines::x86::verify_mxcsr_entry()));
6541     }
6542   }
6543   // Clear upper bits of YMM registers to avoid SSE <-> AVX transition penalty.
6544   vzeroupper();
6545 
6546 #ifndef _LP64
6547   // Either restore the x87 floating pointer control word after returning
6548   // from the JNI call or verify that it wasn't changed.
6549   if (CheckJNICalls) {
6550     call(RuntimeAddress(StubRoutines::x86::verify_fpu_cntrl_wrd_entry()));
6551   }
6552 #endif // _LP64
6553 }
6554 
6555 void MacroAssembler::load_mirror(Register mirror, Register method) {
6556   // get mirror
6557   const int mirror_offset = in_bytes(Klass::java_mirror_offset());
6558   movptr(mirror, Address(method, Method::const_offset()));
6559   movptr(mirror, Address(mirror, ConstMethod::constants_offset()));
6560   movptr(mirror, Address(mirror, ConstantPool::pool_holder_offset_in_bytes()));
6561   movptr(mirror, Address(mirror, mirror_offset));
6562 }
6563 
6564 void MacroAssembler::load_klass(Register dst, Register src) {
6565 #ifdef _LP64
6566   if (UseCompressedClassPointers) {
6567     movl(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6568     decode_klass_not_null(dst);
6569   } else
6570 #endif
6571     movptr(dst, Address(src, oopDesc::klass_offset_in_bytes()));
6572 }
6573 
6574 void MacroAssembler::load_prototype_header(Register dst, Register src) {
6575   load_klass(dst, src);
6576   movptr(dst, Address(dst, Klass::prototype_header_offset()));
6577 }
6578 
6579 void MacroAssembler::store_klass(Register dst, Register src) {
6580 #ifdef _LP64
6581   if (UseCompressedClassPointers) {
6582     encode_klass_not_null(src);
6583     movl(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6584   } else
6585 #endif
6586     movptr(Address(dst, oopDesc::klass_offset_in_bytes()), src);
6587 }
6588 
6589 void MacroAssembler::load_heap_oop(Register dst, Address src) {
6590 #ifdef _LP64
6591   // FIXME: Must change all places where we try to load the klass.
6592   if (UseCompressedOops) {
6593     movl(dst, src);
6594     decode_heap_oop(dst);
6595   } else
6596 #endif
6597     movptr(dst, src);
6598 }
6599 
6600 // Doesn't do verfication, generates fixed size code
6601 void MacroAssembler::load_heap_oop_not_null(Register dst, Address src) {
6602 #ifdef _LP64
6603   if (UseCompressedOops) {
6604     movl(dst, src);
6605     decode_heap_oop_not_null(dst);
6606   } else
6607 #endif
6608     movptr(dst, src);
6609 }
6610 
6611 void MacroAssembler::store_heap_oop(Address dst, Register src) {
6612 #ifdef _LP64
6613   if (UseCompressedOops) {
6614     assert(!dst.uses(src), "not enough registers");
6615     encode_heap_oop(src);
6616     movl(dst, src);
6617   } else
6618 #endif
6619     movptr(dst, src);
6620 }
6621 
6622 void MacroAssembler::cmp_heap_oop(Register src1, Address src2, Register tmp) {
6623   assert_different_registers(src1, tmp);
6624 #ifdef _LP64
6625   if (UseCompressedOops) {
6626     bool did_push = false;
6627     if (tmp == noreg) {
6628       tmp = rax;
6629       push(tmp);
6630       did_push = true;
6631       assert(!src2.uses(rsp), "can't push");
6632     }
6633     load_heap_oop(tmp, src2);
6634     cmpptr(src1, tmp);
6635     if (did_push)  pop(tmp);
6636   } else
6637 #endif
6638     cmpptr(src1, src2);
6639 }
6640 
6641 // Used for storing NULLs.
6642 void MacroAssembler::store_heap_oop_null(Address dst) {
6643 #ifdef _LP64
6644   if (UseCompressedOops) {
6645     movl(dst, (int32_t)NULL_WORD);
6646   } else {
6647     movslq(dst, (int32_t)NULL_WORD);
6648   }
6649 #else
6650   movl(dst, (int32_t)NULL_WORD);
6651 #endif
6652 }
6653 
6654 #ifdef _LP64
6655 void MacroAssembler::store_klass_gap(Register dst, Register src) {
6656   if (UseCompressedClassPointers) {
6657     // Store to klass gap in destination
6658     movl(Address(dst, oopDesc::klass_gap_offset_in_bytes()), src);
6659   }
6660 }
6661 
6662 #ifdef ASSERT
6663 void MacroAssembler::verify_heapbase(const char* msg) {
6664   assert (UseCompressedOops, "should be compressed");
6665   assert (Universe::heap() != NULL, "java heap should be initialized");
6666   if (CheckCompressedOops) {
6667     Label ok;
6668     push(rscratch1); // cmpptr trashes rscratch1
6669     cmpptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6670     jcc(Assembler::equal, ok);
6671     STOP(msg);
6672     bind(ok);
6673     pop(rscratch1);
6674   }
6675 }
6676 #endif
6677 
6678 // Algorithm must match oop.inline.hpp encode_heap_oop.
6679 void MacroAssembler::encode_heap_oop(Register r) {
6680 #ifdef ASSERT
6681   verify_heapbase("MacroAssembler::encode_heap_oop: heap base corrupted?");
6682 #endif
6683   verify_oop(r, "broken oop in encode_heap_oop");
6684   if (Universe::narrow_oop_base() == NULL) {
6685     if (Universe::narrow_oop_shift() != 0) {
6686       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6687       shrq(r, LogMinObjAlignmentInBytes);
6688     }
6689     return;
6690   }
6691   testq(r, r);
6692   cmovq(Assembler::equal, r, r12_heapbase);
6693   subq(r, r12_heapbase);
6694   shrq(r, LogMinObjAlignmentInBytes);
6695 }
6696 
6697 void MacroAssembler::encode_heap_oop_not_null(Register r) {
6698 #ifdef ASSERT
6699   verify_heapbase("MacroAssembler::encode_heap_oop_not_null: heap base corrupted?");
6700   if (CheckCompressedOops) {
6701     Label ok;
6702     testq(r, r);
6703     jcc(Assembler::notEqual, ok);
6704     STOP("null oop passed to encode_heap_oop_not_null");
6705     bind(ok);
6706   }
6707 #endif
6708   verify_oop(r, "broken oop in encode_heap_oop_not_null");
6709   if (Universe::narrow_oop_base() != NULL) {
6710     subq(r, r12_heapbase);
6711   }
6712   if (Universe::narrow_oop_shift() != 0) {
6713     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6714     shrq(r, LogMinObjAlignmentInBytes);
6715   }
6716 }
6717 
6718 void MacroAssembler::encode_heap_oop_not_null(Register dst, Register src) {
6719 #ifdef ASSERT
6720   verify_heapbase("MacroAssembler::encode_heap_oop_not_null2: heap base corrupted?");
6721   if (CheckCompressedOops) {
6722     Label ok;
6723     testq(src, src);
6724     jcc(Assembler::notEqual, ok);
6725     STOP("null oop passed to encode_heap_oop_not_null2");
6726     bind(ok);
6727   }
6728 #endif
6729   verify_oop(src, "broken oop in encode_heap_oop_not_null2");
6730   if (dst != src) {
6731     movq(dst, src);
6732   }
6733   if (Universe::narrow_oop_base() != NULL) {
6734     subq(dst, r12_heapbase);
6735   }
6736   if (Universe::narrow_oop_shift() != 0) {
6737     assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6738     shrq(dst, LogMinObjAlignmentInBytes);
6739   }
6740 }
6741 
6742 void  MacroAssembler::decode_heap_oop(Register r) {
6743 #ifdef ASSERT
6744   verify_heapbase("MacroAssembler::decode_heap_oop: heap base corrupted?");
6745 #endif
6746   if (Universe::narrow_oop_base() == NULL) {
6747     if (Universe::narrow_oop_shift() != 0) {
6748       assert (LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6749       shlq(r, LogMinObjAlignmentInBytes);
6750     }
6751   } else {
6752     Label done;
6753     shlq(r, LogMinObjAlignmentInBytes);
6754     jccb(Assembler::equal, done);
6755     addq(r, r12_heapbase);
6756     bind(done);
6757   }
6758   verify_oop(r, "broken oop in decode_heap_oop");
6759 }
6760 
6761 void  MacroAssembler::decode_heap_oop_not_null(Register r) {
6762   // Note: it will change flags
6763   assert (UseCompressedOops, "should only be used for compressed headers");
6764   assert (Universe::heap() != NULL, "java heap should be initialized");
6765   // Cannot assert, unverified entry point counts instructions (see .ad file)
6766   // vtableStubs also counts instructions in pd_code_size_limit.
6767   // Also do not verify_oop as this is called by verify_oop.
6768   if (Universe::narrow_oop_shift() != 0) {
6769     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6770     shlq(r, LogMinObjAlignmentInBytes);
6771     if (Universe::narrow_oop_base() != NULL) {
6772       addq(r, r12_heapbase);
6773     }
6774   } else {
6775     assert (Universe::narrow_oop_base() == NULL, "sanity");
6776   }
6777 }
6778 
6779 void  MacroAssembler::decode_heap_oop_not_null(Register dst, Register src) {
6780   // Note: it will change flags
6781   assert (UseCompressedOops, "should only be used for compressed headers");
6782   assert (Universe::heap() != NULL, "java heap should be initialized");
6783   // Cannot assert, unverified entry point counts instructions (see .ad file)
6784   // vtableStubs also counts instructions in pd_code_size_limit.
6785   // Also do not verify_oop as this is called by verify_oop.
6786   if (Universe::narrow_oop_shift() != 0) {
6787     assert(LogMinObjAlignmentInBytes == Universe::narrow_oop_shift(), "decode alg wrong");
6788     if (LogMinObjAlignmentInBytes == Address::times_8) {
6789       leaq(dst, Address(r12_heapbase, src, Address::times_8, 0));
6790     } else {
6791       if (dst != src) {
6792         movq(dst, src);
6793       }
6794       shlq(dst, LogMinObjAlignmentInBytes);
6795       if (Universe::narrow_oop_base() != NULL) {
6796         addq(dst, r12_heapbase);
6797       }
6798     }
6799   } else {
6800     assert (Universe::narrow_oop_base() == NULL, "sanity");
6801     if (dst != src) {
6802       movq(dst, src);
6803     }
6804   }
6805 }
6806 
6807 void MacroAssembler::encode_klass_not_null(Register r) {
6808   if (Universe::narrow_klass_base() != NULL) {
6809     // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6810     assert(r != r12_heapbase, "Encoding a klass in r12");
6811     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6812     subq(r, r12_heapbase);
6813   }
6814   if (Universe::narrow_klass_shift() != 0) {
6815     assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6816     shrq(r, LogKlassAlignmentInBytes);
6817   }
6818   if (Universe::narrow_klass_base() != NULL) {
6819     reinit_heapbase();
6820   }
6821 }
6822 
6823 void MacroAssembler::encode_klass_not_null(Register dst, Register src) {
6824   if (dst == src) {
6825     encode_klass_not_null(src);
6826   } else {
6827     if (Universe::narrow_klass_base() != NULL) {
6828       mov64(dst, (int64_t)Universe::narrow_klass_base());
6829       negq(dst);
6830       addq(dst, src);
6831     } else {
6832       movptr(dst, src);
6833     }
6834     if (Universe::narrow_klass_shift() != 0) {
6835       assert (LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6836       shrq(dst, LogKlassAlignmentInBytes);
6837     }
6838   }
6839 }
6840 
6841 // Function instr_size_for_decode_klass_not_null() counts the instructions
6842 // generated by decode_klass_not_null(register r) and reinit_heapbase(),
6843 // when (Universe::heap() != NULL).  Hence, if the instructions they
6844 // generate change, then this method needs to be updated.
6845 int MacroAssembler::instr_size_for_decode_klass_not_null() {
6846   assert (UseCompressedClassPointers, "only for compressed klass ptrs");
6847   if (Universe::narrow_klass_base() != NULL) {
6848     // mov64 + addq + shlq? + mov64  (for reinit_heapbase()).
6849     return (Universe::narrow_klass_shift() == 0 ? 20 : 24);
6850   } else {
6851     // longest load decode klass function, mov64, leaq
6852     return 16;
6853   }
6854 }
6855 
6856 // !!! If the instructions that get generated here change then function
6857 // instr_size_for_decode_klass_not_null() needs to get updated.
6858 void  MacroAssembler::decode_klass_not_null(Register r) {
6859   // Note: it will change flags
6860   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6861   assert(r != r12_heapbase, "Decoding a klass in r12");
6862   // Cannot assert, unverified entry point counts instructions (see .ad file)
6863   // vtableStubs also counts instructions in pd_code_size_limit.
6864   // Also do not verify_oop as this is called by verify_oop.
6865   if (Universe::narrow_klass_shift() != 0) {
6866     assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6867     shlq(r, LogKlassAlignmentInBytes);
6868   }
6869   // Use r12 as a scratch register in which to temporarily load the narrow_klass_base.
6870   if (Universe::narrow_klass_base() != NULL) {
6871     mov64(r12_heapbase, (int64_t)Universe::narrow_klass_base());
6872     addq(r, r12_heapbase);
6873     reinit_heapbase();
6874   }
6875 }
6876 
6877 void  MacroAssembler::decode_klass_not_null(Register dst, Register src) {
6878   // Note: it will change flags
6879   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6880   if (dst == src) {
6881     decode_klass_not_null(dst);
6882   } else {
6883     // Cannot assert, unverified entry point counts instructions (see .ad file)
6884     // vtableStubs also counts instructions in pd_code_size_limit.
6885     // Also do not verify_oop as this is called by verify_oop.
6886     mov64(dst, (int64_t)Universe::narrow_klass_base());
6887     if (Universe::narrow_klass_shift() != 0) {
6888       assert(LogKlassAlignmentInBytes == Universe::narrow_klass_shift(), "decode alg wrong");
6889       assert(LogKlassAlignmentInBytes == Address::times_8, "klass not aligned on 64bits?");
6890       leaq(dst, Address(dst, src, Address::times_8, 0));
6891     } else {
6892       addq(dst, src);
6893     }
6894   }
6895 }
6896 
6897 void  MacroAssembler::set_narrow_oop(Register dst, jobject obj) {
6898   assert (UseCompressedOops, "should only be used for compressed headers");
6899   assert (Universe::heap() != NULL, "java heap should be initialized");
6900   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6901   int oop_index = oop_recorder()->find_index(obj);
6902   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6903   mov_narrow_oop(dst, oop_index, rspec);
6904 }
6905 
6906 void  MacroAssembler::set_narrow_oop(Address dst, jobject obj) {
6907   assert (UseCompressedOops, "should only be used for compressed headers");
6908   assert (Universe::heap() != NULL, "java heap should be initialized");
6909   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6910   int oop_index = oop_recorder()->find_index(obj);
6911   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6912   mov_narrow_oop(dst, oop_index, rspec);
6913 }
6914 
6915 void  MacroAssembler::set_narrow_klass(Register dst, Klass* k) {
6916   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6917   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6918   int klass_index = oop_recorder()->find_index(k);
6919   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6920   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6921 }
6922 
6923 void  MacroAssembler::set_narrow_klass(Address dst, Klass* k) {
6924   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6925   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6926   int klass_index = oop_recorder()->find_index(k);
6927   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6928   mov_narrow_oop(dst, Klass::encode_klass(k), rspec);
6929 }
6930 
6931 void  MacroAssembler::cmp_narrow_oop(Register dst, jobject obj) {
6932   assert (UseCompressedOops, "should only be used for compressed headers");
6933   assert (Universe::heap() != NULL, "java heap should be initialized");
6934   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6935   int oop_index = oop_recorder()->find_index(obj);
6936   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6937   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6938 }
6939 
6940 void  MacroAssembler::cmp_narrow_oop(Address dst, jobject obj) {
6941   assert (UseCompressedOops, "should only be used for compressed headers");
6942   assert (Universe::heap() != NULL, "java heap should be initialized");
6943   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6944   int oop_index = oop_recorder()->find_index(obj);
6945   RelocationHolder rspec = oop_Relocation::spec(oop_index);
6946   Assembler::cmp_narrow_oop(dst, oop_index, rspec);
6947 }
6948 
6949 void  MacroAssembler::cmp_narrow_klass(Register dst, Klass* k) {
6950   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6951   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6952   int klass_index = oop_recorder()->find_index(k);
6953   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6954   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6955 }
6956 
6957 void  MacroAssembler::cmp_narrow_klass(Address dst, Klass* k) {
6958   assert (UseCompressedClassPointers, "should only be used for compressed headers");
6959   assert (oop_recorder() != NULL, "this assembler needs an OopRecorder");
6960   int klass_index = oop_recorder()->find_index(k);
6961   RelocationHolder rspec = metadata_Relocation::spec(klass_index);
6962   Assembler::cmp_narrow_oop(dst, Klass::encode_klass(k), rspec);
6963 }
6964 
6965 void MacroAssembler::reinit_heapbase() {
6966   if (UseCompressedOops || UseCompressedClassPointers) {
6967     if (Universe::heap() != NULL) {
6968       if (Universe::narrow_oop_base() == NULL) {
6969         MacroAssembler::xorptr(r12_heapbase, r12_heapbase);
6970       } else {
6971         mov64(r12_heapbase, (int64_t)Universe::narrow_ptrs_base());
6972       }
6973     } else {
6974       movptr(r12_heapbase, ExternalAddress((address)Universe::narrow_ptrs_base_addr()));
6975     }
6976   }
6977 }
6978 
6979 #endif // _LP64
6980 
6981 
6982 // C2 compiled method's prolog code.
6983 void MacroAssembler::verified_entry(int framesize, int stack_bang_size, bool fp_mode_24b) {
6984 
6985   // WARNING: Initial instruction MUST be 5 bytes or longer so that
6986   // NativeJump::patch_verified_entry will be able to patch out the entry
6987   // code safely. The push to verify stack depth is ok at 5 bytes,
6988   // the frame allocation can be either 3 or 6 bytes. So if we don't do
6989   // stack bang then we must use the 6 byte frame allocation even if
6990   // we have no frame. :-(
6991   assert(stack_bang_size >= framesize || stack_bang_size <= 0, "stack bang size incorrect");
6992 
6993   assert((framesize & (StackAlignmentInBytes-1)) == 0, "frame size not aligned");
6994   // Remove word for return addr
6995   framesize -= wordSize;
6996   stack_bang_size -= wordSize;
6997 
6998   // Calls to C2R adapters often do not accept exceptional returns.
6999   // We require that their callers must bang for them.  But be careful, because
7000   // some VM calls (such as call site linkage) can use several kilobytes of
7001   // stack.  But the stack safety zone should account for that.
7002   // See bugs 4446381, 4468289, 4497237.
7003   if (stack_bang_size > 0) {
7004     generate_stack_overflow_check(stack_bang_size);
7005 
7006     // We always push rbp, so that on return to interpreter rbp, will be
7007     // restored correctly and we can correct the stack.
7008     push(rbp);
7009     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7010     if (PreserveFramePointer) {
7011       mov(rbp, rsp);
7012     }
7013     // Remove word for ebp
7014     framesize -= wordSize;
7015 
7016     // Create frame
7017     if (framesize) {
7018       subptr(rsp, framesize);
7019     }
7020   } else {
7021     // Create frame (force generation of a 4 byte immediate value)
7022     subptr_imm32(rsp, framesize);
7023 
7024     // Save RBP register now.
7025     framesize -= wordSize;
7026     movptr(Address(rsp, framesize), rbp);
7027     // Save caller's stack pointer into RBP if the frame pointer is preserved.
7028     if (PreserveFramePointer) {
7029       movptr(rbp, rsp);
7030       if (framesize > 0) {
7031         addptr(rbp, framesize);
7032       }
7033     }
7034   }
7035 
7036   if (VerifyStackAtCalls) { // Majik cookie to verify stack depth
7037     framesize -= wordSize;
7038     movptr(Address(rsp, framesize), (int32_t)0xbadb100d);
7039   }
7040 
7041 #ifndef _LP64
7042   // If method sets FPU control word do it now
7043   if (fp_mode_24b) {
7044     fldcw(ExternalAddress(StubRoutines::addr_fpu_cntrl_wrd_24()));
7045   }
7046   if (UseSSE >= 2 && VerifyFPU) {
7047     verify_FPU(0, "FPU stack must be clean on entry");
7048   }
7049 #endif
7050 
7051 #ifdef ASSERT
7052   if (VerifyStackAtCalls) {
7053     Label L;
7054     push(rax);
7055     mov(rax, rsp);
7056     andptr(rax, StackAlignmentInBytes-1);
7057     cmpptr(rax, StackAlignmentInBytes-wordSize);
7058     pop(rax);
7059     jcc(Assembler::equal, L);
7060     STOP("Stack is not properly aligned!");
7061     bind(L);
7062   }
7063 #endif
7064 
7065 }
7066 
7067 void MacroAssembler::clear_mem(Register base, Register cnt, Register tmp, bool is_large) {
7068   // cnt - number of qwords (8-byte words).
7069   // base - start address, qword aligned.
7070   // is_large - if optimizers know cnt is larger than InitArrayShortSize
7071   assert(base==rdi, "base register must be edi for rep stos");
7072   assert(tmp==rax,   "tmp register must be eax for rep stos");
7073   assert(cnt==rcx,   "cnt register must be ecx for rep stos");
7074   assert(InitArrayShortSize % BytesPerLong == 0,
7075     "InitArrayShortSize should be the multiple of BytesPerLong");
7076 
7077   Label DONE;
7078 
7079   xorptr(tmp, tmp);
7080 
7081   if (!is_large) {
7082     Label LOOP, LONG;
7083     cmpptr(cnt, InitArrayShortSize/BytesPerLong);
7084     jccb(Assembler::greater, LONG);
7085 
7086     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7087 
7088     decrement(cnt);
7089     jccb(Assembler::negative, DONE); // Zero length
7090 
7091     // Use individual pointer-sized stores for small counts:
7092     BIND(LOOP);
7093     movptr(Address(base, cnt, Address::times_ptr), tmp);
7094     decrement(cnt);
7095     jccb(Assembler::greaterEqual, LOOP);
7096     jmpb(DONE);
7097 
7098     BIND(LONG);
7099   }
7100 
7101   // Use longer rep-prefixed ops for non-small counts:
7102   if (UseFastStosb) {
7103     shlptr(cnt, 3); // convert to number of bytes
7104     rep_stosb();
7105   } else {
7106     NOT_LP64(shlptr(cnt, 1);) // convert to number of 32-bit words for 32-bit VM
7107     rep_stos();
7108   }
7109 
7110   BIND(DONE);
7111 }
7112 
7113 #ifdef COMPILER2
7114 
7115 // IndexOf for constant substrings with size >= 8 chars
7116 // which don't need to be loaded through stack.
7117 void MacroAssembler::string_indexofC8(Register str1, Register str2,
7118                                       Register cnt1, Register cnt2,
7119                                       int int_cnt2,  Register result,
7120                                       XMMRegister vec, Register tmp,
7121                                       int ae) {
7122   ShortBranchVerifier sbv(this);
7123   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7124   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7125 
7126   // This method uses the pcmpestri instruction with bound registers
7127   //   inputs:
7128   //     xmm - substring
7129   //     rax - substring length (elements count)
7130   //     mem - scanned string
7131   //     rdx - string length (elements count)
7132   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7133   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7134   //   outputs:
7135   //     rcx - matched index in string
7136   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7137   int mode   = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7138   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7139   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7140   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7141 
7142   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR,
7143         RET_FOUND, RET_NOT_FOUND, EXIT, FOUND_SUBSTR,
7144         MATCH_SUBSTR_HEAD, RELOAD_STR, FOUND_CANDIDATE;
7145 
7146   // Note, inline_string_indexOf() generates checks:
7147   // if (substr.count > string.count) return -1;
7148   // if (substr.count == 0) return 0;
7149   assert(int_cnt2 >= stride, "this code is used only for cnt2 >= 8 chars");
7150 
7151   // Load substring.
7152   if (ae == StrIntrinsicNode::UL) {
7153     pmovzxbw(vec, Address(str2, 0));
7154   } else {
7155     movdqu(vec, Address(str2, 0));
7156   }
7157   movl(cnt2, int_cnt2);
7158   movptr(result, str1); // string addr
7159 
7160   if (int_cnt2 > stride) {
7161     jmpb(SCAN_TO_SUBSTR);
7162 
7163     // Reload substr for rescan, this code
7164     // is executed only for large substrings (> 8 chars)
7165     bind(RELOAD_SUBSTR);
7166     if (ae == StrIntrinsicNode::UL) {
7167       pmovzxbw(vec, Address(str2, 0));
7168     } else {
7169       movdqu(vec, Address(str2, 0));
7170     }
7171     negptr(cnt2); // Jumped here with negative cnt2, convert to positive
7172 
7173     bind(RELOAD_STR);
7174     // We came here after the beginning of the substring was
7175     // matched but the rest of it was not so we need to search
7176     // again. Start from the next element after the previous match.
7177 
7178     // cnt2 is number of substring reminding elements and
7179     // cnt1 is number of string reminding elements when cmp failed.
7180     // Restored cnt1 = cnt1 - cnt2 + int_cnt2
7181     subl(cnt1, cnt2);
7182     addl(cnt1, int_cnt2);
7183     movl(cnt2, int_cnt2); // Now restore cnt2
7184 
7185     decrementl(cnt1);     // Shift to next element
7186     cmpl(cnt1, cnt2);
7187     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7188 
7189     addptr(result, (1<<scale1));
7190 
7191   } // (int_cnt2 > 8)
7192 
7193   // Scan string for start of substr in 16-byte vectors
7194   bind(SCAN_TO_SUBSTR);
7195   pcmpestri(vec, Address(result, 0), mode);
7196   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7197   subl(cnt1, stride);
7198   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7199   cmpl(cnt1, cnt2);
7200   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7201   addptr(result, 16);
7202   jmpb(SCAN_TO_SUBSTR);
7203 
7204   // Found a potential substr
7205   bind(FOUND_CANDIDATE);
7206   // Matched whole vector if first element matched (tmp(rcx) == 0).
7207   if (int_cnt2 == stride) {
7208     jccb(Assembler::overflow, RET_FOUND);    // OF == 1
7209   } else { // int_cnt2 > 8
7210     jccb(Assembler::overflow, FOUND_SUBSTR);
7211   }
7212   // After pcmpestri tmp(rcx) contains matched element index
7213   // Compute start addr of substr
7214   lea(result, Address(result, tmp, scale1));
7215 
7216   // Make sure string is still long enough
7217   subl(cnt1, tmp);
7218   cmpl(cnt1, cnt2);
7219   if (int_cnt2 == stride) {
7220     jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7221   } else { // int_cnt2 > 8
7222     jccb(Assembler::greaterEqual, MATCH_SUBSTR_HEAD);
7223   }
7224   // Left less then substring.
7225 
7226   bind(RET_NOT_FOUND);
7227   movl(result, -1);
7228   jmp(EXIT);
7229 
7230   if (int_cnt2 > stride) {
7231     // This code is optimized for the case when whole substring
7232     // is matched if its head is matched.
7233     bind(MATCH_SUBSTR_HEAD);
7234     pcmpestri(vec, Address(result, 0), mode);
7235     // Reload only string if does not match
7236     jcc(Assembler::noOverflow, RELOAD_STR); // OF == 0
7237 
7238     Label CONT_SCAN_SUBSTR;
7239     // Compare the rest of substring (> 8 chars).
7240     bind(FOUND_SUBSTR);
7241     // First 8 chars are already matched.
7242     negptr(cnt2);
7243     addptr(cnt2, stride);
7244 
7245     bind(SCAN_SUBSTR);
7246     subl(cnt1, stride);
7247     cmpl(cnt2, -stride); // Do not read beyond substring
7248     jccb(Assembler::lessEqual, CONT_SCAN_SUBSTR);
7249     // Back-up strings to avoid reading beyond substring:
7250     // cnt1 = cnt1 - cnt2 + 8
7251     addl(cnt1, cnt2); // cnt2 is negative
7252     addl(cnt1, stride);
7253     movl(cnt2, stride); negptr(cnt2);
7254     bind(CONT_SCAN_SUBSTR);
7255     if (int_cnt2 < (int)G) {
7256       int tail_off1 = int_cnt2<<scale1;
7257       int tail_off2 = int_cnt2<<scale2;
7258       if (ae == StrIntrinsicNode::UL) {
7259         pmovzxbw(vec, Address(str2, cnt2, scale2, tail_off2));
7260       } else {
7261         movdqu(vec, Address(str2, cnt2, scale2, tail_off2));
7262       }
7263       pcmpestri(vec, Address(result, cnt2, scale1, tail_off1), mode);
7264     } else {
7265       // calculate index in register to avoid integer overflow (int_cnt2*2)
7266       movl(tmp, int_cnt2);
7267       addptr(tmp, cnt2);
7268       if (ae == StrIntrinsicNode::UL) {
7269         pmovzxbw(vec, Address(str2, tmp, scale2, 0));
7270       } else {
7271         movdqu(vec, Address(str2, tmp, scale2, 0));
7272       }
7273       pcmpestri(vec, Address(result, tmp, scale1, 0), mode);
7274     }
7275     // Need to reload strings pointers if not matched whole vector
7276     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7277     addptr(cnt2, stride);
7278     jcc(Assembler::negative, SCAN_SUBSTR);
7279     // Fall through if found full substring
7280 
7281   } // (int_cnt2 > 8)
7282 
7283   bind(RET_FOUND);
7284   // Found result if we matched full small substring.
7285   // Compute substr offset
7286   subptr(result, str1);
7287   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7288     shrl(result, 1); // index
7289   }
7290   bind(EXIT);
7291 
7292 } // string_indexofC8
7293 
7294 // Small strings are loaded through stack if they cross page boundary.
7295 void MacroAssembler::string_indexof(Register str1, Register str2,
7296                                     Register cnt1, Register cnt2,
7297                                     int int_cnt2,  Register result,
7298                                     XMMRegister vec, Register tmp,
7299                                     int ae) {
7300   ShortBranchVerifier sbv(this);
7301   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7302   assert(ae != StrIntrinsicNode::LU, "Invalid encoding");
7303 
7304   //
7305   // int_cnt2 is length of small (< 8 chars) constant substring
7306   // or (-1) for non constant substring in which case its length
7307   // is in cnt2 register.
7308   //
7309   // Note, inline_string_indexOf() generates checks:
7310   // if (substr.count > string.count) return -1;
7311   // if (substr.count == 0) return 0;
7312   //
7313   int stride = (ae == StrIntrinsicNode::LL) ? 16 : 8; //UU, UL -> 8
7314   assert(int_cnt2 == -1 || (0 < int_cnt2 && int_cnt2 < stride), "should be != 0");
7315   // This method uses the pcmpestri instruction with bound registers
7316   //   inputs:
7317   //     xmm - substring
7318   //     rax - substring length (elements count)
7319   //     mem - scanned string
7320   //     rdx - string length (elements count)
7321   //     0xd - mode: 1100 (substring search) + 01 (unsigned shorts)
7322   //     0xc - mode: 1100 (substring search) + 00 (unsigned bytes)
7323   //   outputs:
7324   //     rcx - matched index in string
7325   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7326   int mode = (ae == StrIntrinsicNode::LL) ? 0x0c : 0x0d; // bytes or shorts
7327   Address::ScaleFactor scale1 = (ae == StrIntrinsicNode::LL) ? Address::times_1 : Address::times_2;
7328   Address::ScaleFactor scale2 = (ae == StrIntrinsicNode::UL) ? Address::times_1 : scale1;
7329 
7330   Label RELOAD_SUBSTR, SCAN_TO_SUBSTR, SCAN_SUBSTR, ADJUST_STR,
7331         RET_FOUND, RET_NOT_FOUND, CLEANUP, FOUND_SUBSTR,
7332         FOUND_CANDIDATE;
7333 
7334   { //========================================================
7335     // We don't know where these strings are located
7336     // and we can't read beyond them. Load them through stack.
7337     Label BIG_STRINGS, CHECK_STR, COPY_SUBSTR, COPY_STR;
7338 
7339     movptr(tmp, rsp); // save old SP
7340 
7341     if (int_cnt2 > 0) {     // small (< 8 chars) constant substring
7342       if (int_cnt2 == (1>>scale2)) { // One byte
7343         assert((ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL), "Only possible for latin1 encoding");
7344         load_unsigned_byte(result, Address(str2, 0));
7345         movdl(vec, result); // move 32 bits
7346       } else if (ae == StrIntrinsicNode::LL && int_cnt2 == 3) {  // Three bytes
7347         // Not enough header space in 32-bit VM: 12+3 = 15.
7348         movl(result, Address(str2, -1));
7349         shrl(result, 8);
7350         movdl(vec, result); // move 32 bits
7351       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (2>>scale2)) {  // One char
7352         load_unsigned_short(result, Address(str2, 0));
7353         movdl(vec, result); // move 32 bits
7354       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (4>>scale2)) { // Two chars
7355         movdl(vec, Address(str2, 0)); // move 32 bits
7356       } else if (ae != StrIntrinsicNode::UL && int_cnt2 == (8>>scale2)) { // Four chars
7357         movq(vec, Address(str2, 0));  // move 64 bits
7358       } else { // cnt2 = { 3, 5, 6, 7 } || (ae == StrIntrinsicNode::UL && cnt2 ={2, ..., 7})
7359         // Array header size is 12 bytes in 32-bit VM
7360         // + 6 bytes for 3 chars == 18 bytes,
7361         // enough space to load vec and shift.
7362         assert(HeapWordSize*TypeArrayKlass::header_size() >= 12,"sanity");
7363         if (ae == StrIntrinsicNode::UL) {
7364           int tail_off = int_cnt2-8;
7365           pmovzxbw(vec, Address(str2, tail_off));
7366           psrldq(vec, -2*tail_off);
7367         }
7368         else {
7369           int tail_off = int_cnt2*(1<<scale2);
7370           movdqu(vec, Address(str2, tail_off-16));
7371           psrldq(vec, 16-tail_off);
7372         }
7373       }
7374     } else { // not constant substring
7375       cmpl(cnt2, stride);
7376       jccb(Assembler::aboveEqual, BIG_STRINGS); // Both strings are big enough
7377 
7378       // We can read beyond string if srt+16 does not cross page boundary
7379       // since heaps are aligned and mapped by pages.
7380       assert(os::vm_page_size() < (int)G, "default page should be small");
7381       movl(result, str2); // We need only low 32 bits
7382       andl(result, (os::vm_page_size()-1));
7383       cmpl(result, (os::vm_page_size()-16));
7384       jccb(Assembler::belowEqual, CHECK_STR);
7385 
7386       // Move small strings to stack to allow load 16 bytes into vec.
7387       subptr(rsp, 16);
7388       int stk_offset = wordSize-(1<<scale2);
7389       push(cnt2);
7390 
7391       bind(COPY_SUBSTR);
7392       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UL) {
7393         load_unsigned_byte(result, Address(str2, cnt2, scale2, -1));
7394         movb(Address(rsp, cnt2, scale2, stk_offset), result);
7395       } else if (ae == StrIntrinsicNode::UU) {
7396         load_unsigned_short(result, Address(str2, cnt2, scale2, -2));
7397         movw(Address(rsp, cnt2, scale2, stk_offset), result);
7398       }
7399       decrement(cnt2);
7400       jccb(Assembler::notZero, COPY_SUBSTR);
7401 
7402       pop(cnt2);
7403       movptr(str2, rsp);  // New substring address
7404     } // non constant
7405 
7406     bind(CHECK_STR);
7407     cmpl(cnt1, stride);
7408     jccb(Assembler::aboveEqual, BIG_STRINGS);
7409 
7410     // Check cross page boundary.
7411     movl(result, str1); // We need only low 32 bits
7412     andl(result, (os::vm_page_size()-1));
7413     cmpl(result, (os::vm_page_size()-16));
7414     jccb(Assembler::belowEqual, BIG_STRINGS);
7415 
7416     subptr(rsp, 16);
7417     int stk_offset = -(1<<scale1);
7418     if (int_cnt2 < 0) { // not constant
7419       push(cnt2);
7420       stk_offset += wordSize;
7421     }
7422     movl(cnt2, cnt1);
7423 
7424     bind(COPY_STR);
7425     if (ae == StrIntrinsicNode::LL) {
7426       load_unsigned_byte(result, Address(str1, cnt2, scale1, -1));
7427       movb(Address(rsp, cnt2, scale1, stk_offset), result);
7428     } else {
7429       load_unsigned_short(result, Address(str1, cnt2, scale1, -2));
7430       movw(Address(rsp, cnt2, scale1, stk_offset), result);
7431     }
7432     decrement(cnt2);
7433     jccb(Assembler::notZero, COPY_STR);
7434 
7435     if (int_cnt2 < 0) { // not constant
7436       pop(cnt2);
7437     }
7438     movptr(str1, rsp);  // New string address
7439 
7440     bind(BIG_STRINGS);
7441     // Load substring.
7442     if (int_cnt2 < 0) { // -1
7443       if (ae == StrIntrinsicNode::UL) {
7444         pmovzxbw(vec, Address(str2, 0));
7445       } else {
7446         movdqu(vec, Address(str2, 0));
7447       }
7448       push(cnt2);       // substr count
7449       push(str2);       // substr addr
7450       push(str1);       // string addr
7451     } else {
7452       // Small (< 8 chars) constant substrings are loaded already.
7453       movl(cnt2, int_cnt2);
7454     }
7455     push(tmp);  // original SP
7456 
7457   } // Finished loading
7458 
7459   //========================================================
7460   // Start search
7461   //
7462 
7463   movptr(result, str1); // string addr
7464 
7465   if (int_cnt2  < 0) {  // Only for non constant substring
7466     jmpb(SCAN_TO_SUBSTR);
7467 
7468     // SP saved at sp+0
7469     // String saved at sp+1*wordSize
7470     // Substr saved at sp+2*wordSize
7471     // Substr count saved at sp+3*wordSize
7472 
7473     // Reload substr for rescan, this code
7474     // is executed only for large substrings (> 8 chars)
7475     bind(RELOAD_SUBSTR);
7476     movptr(str2, Address(rsp, 2*wordSize));
7477     movl(cnt2, Address(rsp, 3*wordSize));
7478     if (ae == StrIntrinsicNode::UL) {
7479       pmovzxbw(vec, Address(str2, 0));
7480     } else {
7481       movdqu(vec, Address(str2, 0));
7482     }
7483     // We came here after the beginning of the substring was
7484     // matched but the rest of it was not so we need to search
7485     // again. Start from the next element after the previous match.
7486     subptr(str1, result); // Restore counter
7487     if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7488       shrl(str1, 1);
7489     }
7490     addl(cnt1, str1);
7491     decrementl(cnt1);   // Shift to next element
7492     cmpl(cnt1, cnt2);
7493     jcc(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7494 
7495     addptr(result, (1<<scale1));
7496   } // non constant
7497 
7498   // Scan string for start of substr in 16-byte vectors
7499   bind(SCAN_TO_SUBSTR);
7500   assert(cnt1 == rdx && cnt2 == rax && tmp == rcx, "pcmpestri");
7501   pcmpestri(vec, Address(result, 0), mode);
7502   jccb(Assembler::below, FOUND_CANDIDATE);   // CF == 1
7503   subl(cnt1, stride);
7504   jccb(Assembler::lessEqual, RET_NOT_FOUND); // Scanned full string
7505   cmpl(cnt1, cnt2);
7506   jccb(Assembler::negative, RET_NOT_FOUND);  // Left less then substring
7507   addptr(result, 16);
7508 
7509   bind(ADJUST_STR);
7510   cmpl(cnt1, stride); // Do not read beyond string
7511   jccb(Assembler::greaterEqual, SCAN_TO_SUBSTR);
7512   // Back-up string to avoid reading beyond string.
7513   lea(result, Address(result, cnt1, scale1, -16));
7514   movl(cnt1, stride);
7515   jmpb(SCAN_TO_SUBSTR);
7516 
7517   // Found a potential substr
7518   bind(FOUND_CANDIDATE);
7519   // After pcmpestri tmp(rcx) contains matched element index
7520 
7521   // Make sure string is still long enough
7522   subl(cnt1, tmp);
7523   cmpl(cnt1, cnt2);
7524   jccb(Assembler::greaterEqual, FOUND_SUBSTR);
7525   // Left less then substring.
7526 
7527   bind(RET_NOT_FOUND);
7528   movl(result, -1);
7529   jmpb(CLEANUP);
7530 
7531   bind(FOUND_SUBSTR);
7532   // Compute start addr of substr
7533   lea(result, Address(result, tmp, scale1));
7534   if (int_cnt2 > 0) { // Constant substring
7535     // Repeat search for small substring (< 8 chars)
7536     // from new point without reloading substring.
7537     // Have to check that we don't read beyond string.
7538     cmpl(tmp, stride-int_cnt2);
7539     jccb(Assembler::greater, ADJUST_STR);
7540     // Fall through if matched whole substring.
7541   } else { // non constant
7542     assert(int_cnt2 == -1, "should be != 0");
7543 
7544     addl(tmp, cnt2);
7545     // Found result if we matched whole substring.
7546     cmpl(tmp, stride);
7547     jccb(Assembler::lessEqual, RET_FOUND);
7548 
7549     // Repeat search for small substring (<= 8 chars)
7550     // from new point 'str1' without reloading substring.
7551     cmpl(cnt2, stride);
7552     // Have to check that we don't read beyond string.
7553     jccb(Assembler::lessEqual, ADJUST_STR);
7554 
7555     Label CHECK_NEXT, CONT_SCAN_SUBSTR, RET_FOUND_LONG;
7556     // Compare the rest of substring (> 8 chars).
7557     movptr(str1, result);
7558 
7559     cmpl(tmp, cnt2);
7560     // First 8 chars are already matched.
7561     jccb(Assembler::equal, CHECK_NEXT);
7562 
7563     bind(SCAN_SUBSTR);
7564     pcmpestri(vec, Address(str1, 0), mode);
7565     // Need to reload strings pointers if not matched whole vector
7566     jcc(Assembler::noOverflow, RELOAD_SUBSTR); // OF == 0
7567 
7568     bind(CHECK_NEXT);
7569     subl(cnt2, stride);
7570     jccb(Assembler::lessEqual, RET_FOUND_LONG); // Found full substring
7571     addptr(str1, 16);
7572     if (ae == StrIntrinsicNode::UL) {
7573       addptr(str2, 8);
7574     } else {
7575       addptr(str2, 16);
7576     }
7577     subl(cnt1, stride);
7578     cmpl(cnt2, stride); // Do not read beyond substring
7579     jccb(Assembler::greaterEqual, CONT_SCAN_SUBSTR);
7580     // Back-up strings to avoid reading beyond substring.
7581 
7582     if (ae == StrIntrinsicNode::UL) {
7583       lea(str2, Address(str2, cnt2, scale2, -8));
7584       lea(str1, Address(str1, cnt2, scale1, -16));
7585     } else {
7586       lea(str2, Address(str2, cnt2, scale2, -16));
7587       lea(str1, Address(str1, cnt2, scale1, -16));
7588     }
7589     subl(cnt1, cnt2);
7590     movl(cnt2, stride);
7591     addl(cnt1, stride);
7592     bind(CONT_SCAN_SUBSTR);
7593     if (ae == StrIntrinsicNode::UL) {
7594       pmovzxbw(vec, Address(str2, 0));
7595     } else {
7596       movdqu(vec, Address(str2, 0));
7597     }
7598     jmp(SCAN_SUBSTR);
7599 
7600     bind(RET_FOUND_LONG);
7601     movptr(str1, Address(rsp, wordSize));
7602   } // non constant
7603 
7604   bind(RET_FOUND);
7605   // Compute substr offset
7606   subptr(result, str1);
7607   if (ae == StrIntrinsicNode::UU || ae == StrIntrinsicNode::UL) {
7608     shrl(result, 1); // index
7609   }
7610   bind(CLEANUP);
7611   pop(rsp); // restore SP
7612 
7613 } // string_indexof
7614 
7615 void MacroAssembler::string_indexof_char(Register str1, Register cnt1, Register ch, Register result,
7616                                          XMMRegister vec1, XMMRegister vec2, XMMRegister vec3, Register tmp) {
7617   ShortBranchVerifier sbv(this);
7618   assert(UseSSE42Intrinsics, "SSE4.2 intrinsics are required");
7619 
7620   int stride = 8;
7621 
7622   Label FOUND_CHAR, SCAN_TO_CHAR, SCAN_TO_CHAR_LOOP,
7623         SCAN_TO_8_CHAR, SCAN_TO_8_CHAR_LOOP, SCAN_TO_16_CHAR_LOOP,
7624         RET_NOT_FOUND, SCAN_TO_8_CHAR_INIT,
7625         FOUND_SEQ_CHAR, DONE_LABEL;
7626 
7627   movptr(result, str1);
7628   if (UseAVX >= 2) {
7629     cmpl(cnt1, stride);
7630     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7631     cmpl(cnt1, 2*stride);
7632     jcc(Assembler::less, SCAN_TO_8_CHAR_INIT);
7633     movdl(vec1, ch);
7634     vpbroadcastw(vec1, vec1);
7635     vpxor(vec2, vec2);
7636     movl(tmp, cnt1);
7637     andl(tmp, 0xFFFFFFF0);  //vector count (in chars)
7638     andl(cnt1,0x0000000F);  //tail count (in chars)
7639 
7640     bind(SCAN_TO_16_CHAR_LOOP);
7641     vmovdqu(vec3, Address(result, 0));
7642     vpcmpeqw(vec3, vec3, vec1, 1);
7643     vptest(vec2, vec3);
7644     jcc(Assembler::carryClear, FOUND_CHAR);
7645     addptr(result, 32);
7646     subl(tmp, 2*stride);
7647     jccb(Assembler::notZero, SCAN_TO_16_CHAR_LOOP);
7648     jmp(SCAN_TO_8_CHAR);
7649     bind(SCAN_TO_8_CHAR_INIT);
7650     movdl(vec1, ch);
7651     pshuflw(vec1, vec1, 0x00);
7652     pshufd(vec1, vec1, 0);
7653     pxor(vec2, vec2);
7654   }
7655   bind(SCAN_TO_8_CHAR);
7656   cmpl(cnt1, stride);
7657   if (UseAVX >= 2) {
7658     jcc(Assembler::less, SCAN_TO_CHAR);
7659   } else {
7660     jcc(Assembler::less, SCAN_TO_CHAR_LOOP);
7661     movdl(vec1, ch);
7662     pshuflw(vec1, vec1, 0x00);
7663     pshufd(vec1, vec1, 0);
7664     pxor(vec2, vec2);
7665   }
7666   movl(tmp, cnt1);
7667   andl(tmp, 0xFFFFFFF8);  //vector count (in chars)
7668   andl(cnt1,0x00000007);  //tail count (in chars)
7669 
7670   bind(SCAN_TO_8_CHAR_LOOP);
7671   movdqu(vec3, Address(result, 0));
7672   pcmpeqw(vec3, vec1);
7673   ptest(vec2, vec3);
7674   jcc(Assembler::carryClear, FOUND_CHAR);
7675   addptr(result, 16);
7676   subl(tmp, stride);
7677   jccb(Assembler::notZero, SCAN_TO_8_CHAR_LOOP);
7678   bind(SCAN_TO_CHAR);
7679   testl(cnt1, cnt1);
7680   jcc(Assembler::zero, RET_NOT_FOUND);
7681   bind(SCAN_TO_CHAR_LOOP);
7682   load_unsigned_short(tmp, Address(result, 0));
7683   cmpl(ch, tmp);
7684   jccb(Assembler::equal, FOUND_SEQ_CHAR);
7685   addptr(result, 2);
7686   subl(cnt1, 1);
7687   jccb(Assembler::zero, RET_NOT_FOUND);
7688   jmp(SCAN_TO_CHAR_LOOP);
7689 
7690   bind(RET_NOT_FOUND);
7691   movl(result, -1);
7692   jmpb(DONE_LABEL);
7693 
7694   bind(FOUND_CHAR);
7695   if (UseAVX >= 2) {
7696     vpmovmskb(tmp, vec3);
7697   } else {
7698     pmovmskb(tmp, vec3);
7699   }
7700   bsfl(ch, tmp);
7701   addl(result, ch);
7702 
7703   bind(FOUND_SEQ_CHAR);
7704   subptr(result, str1);
7705   shrl(result, 1);
7706 
7707   bind(DONE_LABEL);
7708 } // string_indexof_char
7709 
7710 // helper function for string_compare
7711 void MacroAssembler::load_next_elements(Register elem1, Register elem2, Register str1, Register str2,
7712                                         Address::ScaleFactor scale, Address::ScaleFactor scale1,
7713                                         Address::ScaleFactor scale2, Register index, int ae) {
7714   if (ae == StrIntrinsicNode::LL) {
7715     load_unsigned_byte(elem1, Address(str1, index, scale, 0));
7716     load_unsigned_byte(elem2, Address(str2, index, scale, 0));
7717   } else if (ae == StrIntrinsicNode::UU) {
7718     load_unsigned_short(elem1, Address(str1, index, scale, 0));
7719     load_unsigned_short(elem2, Address(str2, index, scale, 0));
7720   } else {
7721     load_unsigned_byte(elem1, Address(str1, index, scale1, 0));
7722     load_unsigned_short(elem2, Address(str2, index, scale2, 0));
7723   }
7724 }
7725 
7726 // Compare strings, used for char[] and byte[].
7727 void MacroAssembler::string_compare(Register str1, Register str2,
7728                                     Register cnt1, Register cnt2, Register result,
7729                                     XMMRegister vec1, int ae) {
7730   ShortBranchVerifier sbv(this);
7731   Label LENGTH_DIFF_LABEL, POP_LABEL, DONE_LABEL, WHILE_HEAD_LABEL;
7732   Label COMPARE_WIDE_VECTORS_LOOP_FAILED;  // used only _LP64 && AVX3
7733   int stride, stride2, adr_stride, adr_stride1, adr_stride2;
7734   int stride2x2 = 0x40;
7735   Address::ScaleFactor scale = Address::no_scale;
7736   Address::ScaleFactor scale1 = Address::no_scale;
7737   Address::ScaleFactor scale2 = Address::no_scale;
7738 
7739   if (ae != StrIntrinsicNode::LL) {
7740     stride2x2 = 0x20;
7741   }
7742 
7743   if (ae == StrIntrinsicNode::LU || ae == StrIntrinsicNode::UL) {
7744     shrl(cnt2, 1);
7745   }
7746   // Compute the minimum of the string lengths and the
7747   // difference of the string lengths (stack).
7748   // Do the conditional move stuff
7749   movl(result, cnt1);
7750   subl(cnt1, cnt2);
7751   push(cnt1);
7752   cmov32(Assembler::lessEqual, cnt2, result);    // cnt2 = min(cnt1, cnt2)
7753 
7754   // Is the minimum length zero?
7755   testl(cnt2, cnt2);
7756   jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7757   if (ae == StrIntrinsicNode::LL) {
7758     // Load first bytes
7759     load_unsigned_byte(result, Address(str1, 0));  // result = str1[0]
7760     load_unsigned_byte(cnt1, Address(str2, 0));    // cnt1   = str2[0]
7761   } else if (ae == StrIntrinsicNode::UU) {
7762     // Load first characters
7763     load_unsigned_short(result, Address(str1, 0));
7764     load_unsigned_short(cnt1, Address(str2, 0));
7765   } else {
7766     load_unsigned_byte(result, Address(str1, 0));
7767     load_unsigned_short(cnt1, Address(str2, 0));
7768   }
7769   subl(result, cnt1);
7770   jcc(Assembler::notZero,  POP_LABEL);
7771 
7772   if (ae == StrIntrinsicNode::UU) {
7773     // Divide length by 2 to get number of chars
7774     shrl(cnt2, 1);
7775   }
7776   cmpl(cnt2, 1);
7777   jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7778 
7779   // Check if the strings start at the same location and setup scale and stride
7780   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7781     cmpptr(str1, str2);
7782     jcc(Assembler::equal, LENGTH_DIFF_LABEL);
7783     if (ae == StrIntrinsicNode::LL) {
7784       scale = Address::times_1;
7785       stride = 16;
7786     } else {
7787       scale = Address::times_2;
7788       stride = 8;
7789     }
7790   } else {
7791     scale1 = Address::times_1;
7792     scale2 = Address::times_2;
7793     // scale not used
7794     stride = 8;
7795   }
7796 
7797   if (UseAVX >= 2 && UseSSE42Intrinsics) {
7798     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_WIDE_TAIL, COMPARE_SMALL_STR;
7799     Label COMPARE_WIDE_VECTORS_LOOP, COMPARE_16_CHARS, COMPARE_INDEX_CHAR;
7800     Label COMPARE_WIDE_VECTORS_LOOP_AVX2;
7801     Label COMPARE_TAIL_LONG;
7802     Label COMPARE_WIDE_VECTORS_LOOP_AVX3;  // used only _LP64 && AVX3
7803 
7804     int pcmpmask = 0x19;
7805     if (ae == StrIntrinsicNode::LL) {
7806       pcmpmask &= ~0x01;
7807     }
7808 
7809     // Setup to compare 16-chars (32-bytes) vectors,
7810     // start from first character again because it has aligned address.
7811     if (ae == StrIntrinsicNode::LL) {
7812       stride2 = 32;
7813     } else {
7814       stride2 = 16;
7815     }
7816     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7817       adr_stride = stride << scale;
7818     } else {
7819       adr_stride1 = 8;  //stride << scale1;
7820       adr_stride2 = 16; //stride << scale2;
7821     }
7822 
7823     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7824     // rax and rdx are used by pcmpestri as elements counters
7825     movl(result, cnt2);
7826     andl(cnt2, ~(stride2-1));   // cnt2 holds the vector count
7827     jcc(Assembler::zero, COMPARE_TAIL_LONG);
7828 
7829     // fast path : compare first 2 8-char vectors.
7830     bind(COMPARE_16_CHARS);
7831     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7832       movdqu(vec1, Address(str1, 0));
7833     } else {
7834       pmovzxbw(vec1, Address(str1, 0));
7835     }
7836     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7837     jccb(Assembler::below, COMPARE_INDEX_CHAR);
7838 
7839     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7840       movdqu(vec1, Address(str1, adr_stride));
7841       pcmpestri(vec1, Address(str2, adr_stride), pcmpmask);
7842     } else {
7843       pmovzxbw(vec1, Address(str1, adr_stride1));
7844       pcmpestri(vec1, Address(str2, adr_stride2), pcmpmask);
7845     }
7846     jccb(Assembler::aboveEqual, COMPARE_WIDE_VECTORS);
7847     addl(cnt1, stride);
7848 
7849     // Compare the characters at index in cnt1
7850     bind(COMPARE_INDEX_CHAR); // cnt1 has the offset of the mismatching character
7851     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
7852     subl(result, cnt2);
7853     jmp(POP_LABEL);
7854 
7855     // Setup the registers to start vector comparison loop
7856     bind(COMPARE_WIDE_VECTORS);
7857     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7858       lea(str1, Address(str1, result, scale));
7859       lea(str2, Address(str2, result, scale));
7860     } else {
7861       lea(str1, Address(str1, result, scale1));
7862       lea(str2, Address(str2, result, scale2));
7863     }
7864     subl(result, stride2);
7865     subl(cnt2, stride2);
7866     jcc(Assembler::zero, COMPARE_WIDE_TAIL);
7867     negptr(result);
7868 
7869     //  In a loop, compare 16-chars (32-bytes) at once using (vpxor+vptest)
7870     bind(COMPARE_WIDE_VECTORS_LOOP);
7871 
7872 #ifdef _LP64
7873     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
7874       cmpl(cnt2, stride2x2);
7875       jccb(Assembler::below, COMPARE_WIDE_VECTORS_LOOP_AVX2);
7876       testl(cnt2, stride2x2-1);   // cnt2 holds the vector count
7877       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX2);   // means we cannot subtract by 0x40
7878 
7879       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
7880       if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7881         evmovdquq(vec1, Address(str1, result, scale), Assembler::AVX_512bit);
7882         evpcmpeqb(k7, vec1, Address(str2, result, scale), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7883       } else {
7884         vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_512bit);
7885         evpcmpeqb(k7, vec1, Address(str2, result, scale2), Assembler::AVX_512bit); // k7 == 11..11, if operands equal, otherwise k7 has some 0
7886       }
7887       kortestql(k7, k7);
7888       jcc(Assembler::aboveEqual, COMPARE_WIDE_VECTORS_LOOP_FAILED);     // miscompare
7889       addptr(result, stride2x2);  // update since we already compared at this addr
7890       subl(cnt2, stride2x2);      // and sub the size too
7891       jccb(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP_AVX3);
7892 
7893       vpxor(vec1, vec1);
7894       jmpb(COMPARE_WIDE_TAIL);
7895     }//if (VM_Version::supports_avx512vlbw())
7896 #endif // _LP64
7897 
7898 
7899     bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7900     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7901       vmovdqu(vec1, Address(str1, result, scale));
7902       vpxor(vec1, Address(str2, result, scale));
7903     } else {
7904       vpmovzxbw(vec1, Address(str1, result, scale1), Assembler::AVX_256bit);
7905       vpxor(vec1, Address(str2, result, scale2));
7906     }
7907     vptest(vec1, vec1);
7908     jcc(Assembler::notZero, VECTOR_NOT_EQUAL);
7909     addptr(result, stride2);
7910     subl(cnt2, stride2);
7911     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS_LOOP);
7912     // clean upper bits of YMM registers
7913     vpxor(vec1, vec1);
7914 
7915     // compare wide vectors tail
7916     bind(COMPARE_WIDE_TAIL);
7917     testptr(result, result);
7918     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7919 
7920     movl(result, stride2);
7921     movl(cnt2, result);
7922     negptr(result);
7923     jmp(COMPARE_WIDE_VECTORS_LOOP_AVX2);
7924 
7925     // Identifies the mismatching (higher or lower)16-bytes in the 32-byte vectors.
7926     bind(VECTOR_NOT_EQUAL);
7927     // clean upper bits of YMM registers
7928     vpxor(vec1, vec1);
7929     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7930       lea(str1, Address(str1, result, scale));
7931       lea(str2, Address(str2, result, scale));
7932     } else {
7933       lea(str1, Address(str1, result, scale1));
7934       lea(str2, Address(str2, result, scale2));
7935     }
7936     jmp(COMPARE_16_CHARS);
7937 
7938     // Compare tail chars, length between 1 to 15 chars
7939     bind(COMPARE_TAIL_LONG);
7940     movl(cnt2, result);
7941     cmpl(cnt2, stride);
7942     jcc(Assembler::less, COMPARE_SMALL_STR);
7943 
7944     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7945       movdqu(vec1, Address(str1, 0));
7946     } else {
7947       pmovzxbw(vec1, Address(str1, 0));
7948     }
7949     pcmpestri(vec1, Address(str2, 0), pcmpmask);
7950     jcc(Assembler::below, COMPARE_INDEX_CHAR);
7951     subptr(cnt2, stride);
7952     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
7953     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7954       lea(str1, Address(str1, result, scale));
7955       lea(str2, Address(str2, result, scale));
7956     } else {
7957       lea(str1, Address(str1, result, scale1));
7958       lea(str2, Address(str2, result, scale2));
7959     }
7960     negptr(cnt2);
7961     jmpb(WHILE_HEAD_LABEL);
7962 
7963     bind(COMPARE_SMALL_STR);
7964   } else if (UseSSE42Intrinsics) {
7965     Label COMPARE_WIDE_VECTORS, VECTOR_NOT_EQUAL, COMPARE_TAIL;
7966     int pcmpmask = 0x19;
7967     // Setup to compare 8-char (16-byte) vectors,
7968     // start from first character again because it has aligned address.
7969     movl(result, cnt2);
7970     andl(cnt2, ~(stride - 1));   // cnt2 holds the vector count
7971     if (ae == StrIntrinsicNode::LL) {
7972       pcmpmask &= ~0x01;
7973     }
7974     jcc(Assembler::zero, COMPARE_TAIL);
7975     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7976       lea(str1, Address(str1, result, scale));
7977       lea(str2, Address(str2, result, scale));
7978     } else {
7979       lea(str1, Address(str1, result, scale1));
7980       lea(str2, Address(str2, result, scale2));
7981     }
7982     negptr(result);
7983 
7984     // pcmpestri
7985     //   inputs:
7986     //     vec1- substring
7987     //     rax - negative string length (elements count)
7988     //     mem - scanned string
7989     //     rdx - string length (elements count)
7990     //     pcmpmask - cmp mode: 11000 (string compare with negated result)
7991     //               + 00 (unsigned bytes) or  + 01 (unsigned shorts)
7992     //   outputs:
7993     //     rcx - first mismatched element index
7994     assert(result == rax && cnt2 == rdx && cnt1 == rcx, "pcmpestri");
7995 
7996     bind(COMPARE_WIDE_VECTORS);
7997     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
7998       movdqu(vec1, Address(str1, result, scale));
7999       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8000     } else {
8001       pmovzxbw(vec1, Address(str1, result, scale1));
8002       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8003     }
8004     // After pcmpestri cnt1(rcx) contains mismatched element index
8005 
8006     jccb(Assembler::below, VECTOR_NOT_EQUAL);  // CF==1
8007     addptr(result, stride);
8008     subptr(cnt2, stride);
8009     jccb(Assembler::notZero, COMPARE_WIDE_VECTORS);
8010 
8011     // compare wide vectors tail
8012     testptr(result, result);
8013     jcc(Assembler::zero, LENGTH_DIFF_LABEL);
8014 
8015     movl(cnt2, stride);
8016     movl(result, stride);
8017     negptr(result);
8018     if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8019       movdqu(vec1, Address(str1, result, scale));
8020       pcmpestri(vec1, Address(str2, result, scale), pcmpmask);
8021     } else {
8022       pmovzxbw(vec1, Address(str1, result, scale1));
8023       pcmpestri(vec1, Address(str2, result, scale2), pcmpmask);
8024     }
8025     jccb(Assembler::aboveEqual, LENGTH_DIFF_LABEL);
8026 
8027     // Mismatched characters in the vectors
8028     bind(VECTOR_NOT_EQUAL);
8029     addptr(cnt1, result);
8030     load_next_elements(result, cnt2, str1, str2, scale, scale1, scale2, cnt1, ae);
8031     subl(result, cnt2);
8032     jmpb(POP_LABEL);
8033 
8034     bind(COMPARE_TAIL); // limit is zero
8035     movl(cnt2, result);
8036     // Fallthru to tail compare
8037   }
8038   // Shift str2 and str1 to the end of the arrays, negate min
8039   if (ae == StrIntrinsicNode::LL || ae == StrIntrinsicNode::UU) {
8040     lea(str1, Address(str1, cnt2, scale));
8041     lea(str2, Address(str2, cnt2, scale));
8042   } else {
8043     lea(str1, Address(str1, cnt2, scale1));
8044     lea(str2, Address(str2, cnt2, scale2));
8045   }
8046   decrementl(cnt2);  // first character was compared already
8047   negptr(cnt2);
8048 
8049   // Compare the rest of the elements
8050   bind(WHILE_HEAD_LABEL);
8051   load_next_elements(result, cnt1, str1, str2, scale, scale1, scale2, cnt2, ae);
8052   subl(result, cnt1);
8053   jccb(Assembler::notZero, POP_LABEL);
8054   increment(cnt2);
8055   jccb(Assembler::notZero, WHILE_HEAD_LABEL);
8056 
8057   // Strings are equal up to min length.  Return the length difference.
8058   bind(LENGTH_DIFF_LABEL);
8059   pop(result);
8060   if (ae == StrIntrinsicNode::UU) {
8061     // Divide diff by 2 to get number of chars
8062     sarl(result, 1);
8063   }
8064   jmpb(DONE_LABEL);
8065 
8066 #ifdef _LP64
8067   if (VM_Version::supports_avx512vlbw()) {
8068 
8069     bind(COMPARE_WIDE_VECTORS_LOOP_FAILED);
8070 
8071     kmovql(cnt1, k7);
8072     notq(cnt1);
8073     bsfq(cnt2, cnt1);
8074     if (ae != StrIntrinsicNode::LL) {
8075       // Divide diff by 2 to get number of chars
8076       sarl(cnt2, 1);
8077     }
8078     addq(result, cnt2);
8079     if (ae == StrIntrinsicNode::LL) {
8080       load_unsigned_byte(cnt1, Address(str2, result));
8081       load_unsigned_byte(result, Address(str1, result));
8082     } else if (ae == StrIntrinsicNode::UU) {
8083       load_unsigned_short(cnt1, Address(str2, result, scale));
8084       load_unsigned_short(result, Address(str1, result, scale));
8085     } else {
8086       load_unsigned_short(cnt1, Address(str2, result, scale2));
8087       load_unsigned_byte(result, Address(str1, result, scale1));
8088     }
8089     subl(result, cnt1);
8090     jmpb(POP_LABEL);
8091   }//if (VM_Version::supports_avx512vlbw())
8092 #endif // _LP64
8093 
8094   // Discard the stored length difference
8095   bind(POP_LABEL);
8096   pop(cnt1);
8097 
8098   // That's it
8099   bind(DONE_LABEL);
8100   if(ae == StrIntrinsicNode::UL) {
8101     negl(result);
8102   }
8103 
8104 }
8105 
8106 // Search for Non-ASCII character (Negative byte value) in a byte array,
8107 // return true if it has any and false otherwise.
8108 //   ..\jdk\src\java.base\share\classes\java\lang\StringCoding.java
8109 //   @HotSpotIntrinsicCandidate
8110 //   private static boolean hasNegatives(byte[] ba, int off, int len) {
8111 //     for (int i = off; i < off + len; i++) {
8112 //       if (ba[i] < 0) {
8113 //         return true;
8114 //       }
8115 //     }
8116 //     return false;
8117 //   }
8118 void MacroAssembler::has_negatives(Register ary1, Register len,
8119   Register result, Register tmp1,
8120   XMMRegister vec1, XMMRegister vec2) {
8121   // rsi: byte array
8122   // rcx: len
8123   // rax: result
8124   ShortBranchVerifier sbv(this);
8125   assert_different_registers(ary1, len, result, tmp1);
8126   assert_different_registers(vec1, vec2);
8127   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_CHAR, COMPARE_VECTORS, COMPARE_BYTE;
8128 
8129   // len == 0
8130   testl(len, len);
8131   jcc(Assembler::zero, FALSE_LABEL);
8132 
8133   if ((UseAVX > 2) && // AVX512
8134     VM_Version::supports_avx512vlbw() &&
8135     VM_Version::supports_bmi2()) {
8136 
8137     set_vector_masking();  // opening of the stub context for programming mask registers
8138 
8139     Label test_64_loop, test_tail;
8140     Register tmp3_aliased = len;
8141 
8142     movl(tmp1, len);
8143     vpxor(vec2, vec2, vec2, Assembler::AVX_512bit);
8144 
8145     andl(tmp1, 64 - 1);   // tail count (in chars) 0x3F
8146     andl(len, ~(64 - 1));    // vector count (in chars)
8147     jccb(Assembler::zero, test_tail);
8148 
8149     lea(ary1, Address(ary1, len, Address::times_1));
8150     negptr(len);
8151 
8152     bind(test_64_loop);
8153     // Check whether our 64 elements of size byte contain negatives
8154     evpcmpgtb(k2, vec2, Address(ary1, len, Address::times_1), Assembler::AVX_512bit);
8155     kortestql(k2, k2);
8156     jcc(Assembler::notZero, TRUE_LABEL);
8157 
8158     addptr(len, 64);
8159     jccb(Assembler::notZero, test_64_loop);
8160 
8161 
8162     bind(test_tail);
8163     // bail out when there is nothing to be done
8164     testl(tmp1, -1);
8165     jcc(Assembler::zero, FALSE_LABEL);
8166 
8167     // Save k1
8168     kmovql(k3, k1);
8169 
8170     // ~(~0 << len) applied up to two times (for 32-bit scenario)
8171 #ifdef _LP64
8172     mov64(tmp3_aliased, 0xFFFFFFFFFFFFFFFF);
8173     shlxq(tmp3_aliased, tmp3_aliased, tmp1);
8174     notq(tmp3_aliased);
8175     kmovql(k1, tmp3_aliased);
8176 #else
8177     Label k_init;
8178     jmp(k_init);
8179 
8180     // We could not read 64-bits from a general purpose register thus we move
8181     // data required to compose 64 1's to the instruction stream
8182     // We emit 64 byte wide series of elements from 0..63 which later on would
8183     // be used as a compare targets with tail count contained in tmp1 register.
8184     // Result would be a k1 register having tmp1 consecutive number or 1
8185     // counting from least significant bit.
8186     address tmp = pc();
8187     emit_int64(0x0706050403020100);
8188     emit_int64(0x0F0E0D0C0B0A0908);
8189     emit_int64(0x1716151413121110);
8190     emit_int64(0x1F1E1D1C1B1A1918);
8191     emit_int64(0x2726252423222120);
8192     emit_int64(0x2F2E2D2C2B2A2928);
8193     emit_int64(0x3736353433323130);
8194     emit_int64(0x3F3E3D3C3B3A3938);
8195 
8196     bind(k_init);
8197     lea(len, InternalAddress(tmp));
8198     // create mask to test for negative byte inside a vector
8199     evpbroadcastb(vec1, tmp1, Assembler::AVX_512bit);
8200     evpcmpgtb(k1, vec1, Address(len, 0), Assembler::AVX_512bit);
8201 
8202 #endif
8203     evpcmpgtb(k2, k1, vec2, Address(ary1, 0), Assembler::AVX_512bit);
8204     ktestq(k2, k1);
8205     // Restore k1
8206     kmovql(k1, k3);
8207     jcc(Assembler::notZero, TRUE_LABEL);
8208 
8209     jmp(FALSE_LABEL);
8210 
8211     clear_vector_masking();   // closing of the stub context for programming mask registers
8212   } else {
8213     movl(result, len); // copy
8214 
8215     if (UseAVX == 2 && UseSSE >= 2) {
8216       // With AVX2, use 32-byte vector compare
8217       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8218 
8219       // Compare 32-byte vectors
8220       andl(result, 0x0000001f);  //   tail count (in bytes)
8221       andl(len, 0xffffffe0);   // vector count (in bytes)
8222       jccb(Assembler::zero, COMPARE_TAIL);
8223 
8224       lea(ary1, Address(ary1, len, Address::times_1));
8225       negptr(len);
8226 
8227       movl(tmp1, 0x80808080);   // create mask to test for Unicode chars in vector
8228       movdl(vec2, tmp1);
8229       vpbroadcastd(vec2, vec2);
8230 
8231       bind(COMPARE_WIDE_VECTORS);
8232       vmovdqu(vec1, Address(ary1, len, Address::times_1));
8233       vptest(vec1, vec2);
8234       jccb(Assembler::notZero, TRUE_LABEL);
8235       addptr(len, 32);
8236       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8237 
8238       testl(result, result);
8239       jccb(Assembler::zero, FALSE_LABEL);
8240 
8241       vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8242       vptest(vec1, vec2);
8243       jccb(Assembler::notZero, TRUE_LABEL);
8244       jmpb(FALSE_LABEL);
8245 
8246       bind(COMPARE_TAIL); // len is zero
8247       movl(len, result);
8248       // Fallthru to tail compare
8249     } else if (UseSSE42Intrinsics) {
8250       // With SSE4.2, use double quad vector compare
8251       Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8252 
8253       // Compare 16-byte vectors
8254       andl(result, 0x0000000f);  //   tail count (in bytes)
8255       andl(len, 0xfffffff0);   // vector count (in bytes)
8256       jccb(Assembler::zero, COMPARE_TAIL);
8257 
8258       lea(ary1, Address(ary1, len, Address::times_1));
8259       negptr(len);
8260 
8261       movl(tmp1, 0x80808080);
8262       movdl(vec2, tmp1);
8263       pshufd(vec2, vec2, 0);
8264 
8265       bind(COMPARE_WIDE_VECTORS);
8266       movdqu(vec1, Address(ary1, len, Address::times_1));
8267       ptest(vec1, vec2);
8268       jccb(Assembler::notZero, TRUE_LABEL);
8269       addptr(len, 16);
8270       jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8271 
8272       testl(result, result);
8273       jccb(Assembler::zero, FALSE_LABEL);
8274 
8275       movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8276       ptest(vec1, vec2);
8277       jccb(Assembler::notZero, TRUE_LABEL);
8278       jmpb(FALSE_LABEL);
8279 
8280       bind(COMPARE_TAIL); // len is zero
8281       movl(len, result);
8282       // Fallthru to tail compare
8283     }
8284   }
8285   // Compare 4-byte vectors
8286   andl(len, 0xfffffffc); // vector count (in bytes)
8287   jccb(Assembler::zero, COMPARE_CHAR);
8288 
8289   lea(ary1, Address(ary1, len, Address::times_1));
8290   negptr(len);
8291 
8292   bind(COMPARE_VECTORS);
8293   movl(tmp1, Address(ary1, len, Address::times_1));
8294   andl(tmp1, 0x80808080);
8295   jccb(Assembler::notZero, TRUE_LABEL);
8296   addptr(len, 4);
8297   jcc(Assembler::notZero, COMPARE_VECTORS);
8298 
8299   // Compare trailing char (final 2 bytes), if any
8300   bind(COMPARE_CHAR);
8301   testl(result, 0x2);   // tail  char
8302   jccb(Assembler::zero, COMPARE_BYTE);
8303   load_unsigned_short(tmp1, Address(ary1, 0));
8304   andl(tmp1, 0x00008080);
8305   jccb(Assembler::notZero, TRUE_LABEL);
8306   subptr(result, 2);
8307   lea(ary1, Address(ary1, 2));
8308 
8309   bind(COMPARE_BYTE);
8310   testl(result, 0x1);   // tail  byte
8311   jccb(Assembler::zero, FALSE_LABEL);
8312   load_unsigned_byte(tmp1, Address(ary1, 0));
8313   andl(tmp1, 0x00000080);
8314   jccb(Assembler::notEqual, TRUE_LABEL);
8315   jmpb(FALSE_LABEL);
8316 
8317   bind(TRUE_LABEL);
8318   movl(result, 1);   // return true
8319   jmpb(DONE);
8320 
8321   bind(FALSE_LABEL);
8322   xorl(result, result); // return false
8323 
8324   // That's it
8325   bind(DONE);
8326   if (UseAVX >= 2 && UseSSE >= 2) {
8327     // clean upper bits of YMM registers
8328     vpxor(vec1, vec1);
8329     vpxor(vec2, vec2);
8330   }
8331 }
8332 // Compare char[] or byte[] arrays aligned to 4 bytes or substrings.
8333 void MacroAssembler::arrays_equals(bool is_array_equ, Register ary1, Register ary2,
8334                                    Register limit, Register result, Register chr,
8335                                    XMMRegister vec1, XMMRegister vec2, bool is_char) {
8336   ShortBranchVerifier sbv(this);
8337   Label TRUE_LABEL, FALSE_LABEL, DONE, COMPARE_VECTORS, COMPARE_CHAR, COMPARE_BYTE;
8338 
8339   int length_offset  = arrayOopDesc::length_offset_in_bytes();
8340   int base_offset    = arrayOopDesc::base_offset_in_bytes(is_char ? T_CHAR : T_BYTE);
8341 
8342   if (is_array_equ) {
8343     // Check the input args
8344     cmpptr(ary1, ary2);
8345     jcc(Assembler::equal, TRUE_LABEL);
8346 
8347     // Need additional checks for arrays_equals.
8348     testptr(ary1, ary1);
8349     jcc(Assembler::zero, FALSE_LABEL);
8350     testptr(ary2, ary2);
8351     jcc(Assembler::zero, FALSE_LABEL);
8352 
8353     // Check the lengths
8354     movl(limit, Address(ary1, length_offset));
8355     cmpl(limit, Address(ary2, length_offset));
8356     jcc(Assembler::notEqual, FALSE_LABEL);
8357   }
8358 
8359   // count == 0
8360   testl(limit, limit);
8361   jcc(Assembler::zero, TRUE_LABEL);
8362 
8363   if (is_array_equ) {
8364     // Load array address
8365     lea(ary1, Address(ary1, base_offset));
8366     lea(ary2, Address(ary2, base_offset));
8367   }
8368 
8369   if (is_array_equ && is_char) {
8370     // arrays_equals when used for char[].
8371     shll(limit, 1);      // byte count != 0
8372   }
8373   movl(result, limit); // copy
8374 
8375   if (UseAVX >= 2) {
8376     // With AVX2, use 32-byte vector compare
8377     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8378 
8379     // Compare 32-byte vectors
8380     andl(result, 0x0000001f);  //   tail count (in bytes)
8381     andl(limit, 0xffffffe0);   // vector count (in bytes)
8382     jcc(Assembler::zero, COMPARE_TAIL);
8383 
8384     lea(ary1, Address(ary1, limit, Address::times_1));
8385     lea(ary2, Address(ary2, limit, Address::times_1));
8386     negptr(limit);
8387 
8388     bind(COMPARE_WIDE_VECTORS);
8389 
8390 #ifdef _LP64
8391     if (VM_Version::supports_avx512vlbw()) { // trying 64 bytes fast loop
8392       Label COMPARE_WIDE_VECTORS_LOOP_AVX2, COMPARE_WIDE_VECTORS_LOOP_AVX3;
8393 
8394       cmpl(limit, -64);
8395       jccb(Assembler::greater, COMPARE_WIDE_VECTORS_LOOP_AVX2);
8396 
8397       bind(COMPARE_WIDE_VECTORS_LOOP_AVX3); // the hottest loop
8398 
8399       evmovdquq(vec1, Address(ary1, limit, Address::times_1), Assembler::AVX_512bit);
8400       evpcmpeqb(k7, vec1, Address(ary2, limit, Address::times_1), Assembler::AVX_512bit);
8401       kortestql(k7, k7);
8402       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8403       addptr(limit, 64);  // update since we already compared at this addr
8404       cmpl(limit, -64);
8405       jccb(Assembler::lessEqual, COMPARE_WIDE_VECTORS_LOOP_AVX3);
8406 
8407       // At this point we may still need to compare -limit+result bytes.
8408       // We could execute the next two instruction and just continue via non-wide path:
8409       //  cmpl(limit, 0);
8410       //  jcc(Assembler::equal, COMPARE_TAIL);  // true
8411       // But since we stopped at the points ary{1,2}+limit which are
8412       // not farther than 64 bytes from the ends of arrays ary{1,2}+result
8413       // (|limit| <= 32 and result < 32),
8414       // we may just compare the last 64 bytes.
8415       //
8416       addptr(result, -64);   // it is safe, bc we just came from this area
8417       evmovdquq(vec1, Address(ary1, result, Address::times_1), Assembler::AVX_512bit);
8418       evpcmpeqb(k7, vec1, Address(ary2, result, Address::times_1), Assembler::AVX_512bit);
8419       kortestql(k7, k7);
8420       jcc(Assembler::aboveEqual, FALSE_LABEL);     // miscompare
8421 
8422       jmp(TRUE_LABEL);
8423 
8424       bind(COMPARE_WIDE_VECTORS_LOOP_AVX2);
8425 
8426     }//if (VM_Version::supports_avx512vlbw())
8427 #endif //_LP64
8428 
8429     vmovdqu(vec1, Address(ary1, limit, Address::times_1));
8430     vmovdqu(vec2, Address(ary2, limit, Address::times_1));
8431     vpxor(vec1, vec2);
8432 
8433     vptest(vec1, vec1);
8434     jcc(Assembler::notZero, FALSE_LABEL);
8435     addptr(limit, 32);
8436     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8437 
8438     testl(result, result);
8439     jcc(Assembler::zero, TRUE_LABEL);
8440 
8441     vmovdqu(vec1, Address(ary1, result, Address::times_1, -32));
8442     vmovdqu(vec2, Address(ary2, result, Address::times_1, -32));
8443     vpxor(vec1, vec2);
8444 
8445     vptest(vec1, vec1);
8446     jccb(Assembler::notZero, FALSE_LABEL);
8447     jmpb(TRUE_LABEL);
8448 
8449     bind(COMPARE_TAIL); // limit is zero
8450     movl(limit, result);
8451     // Fallthru to tail compare
8452   } else if (UseSSE42Intrinsics) {
8453     // With SSE4.2, use double quad vector compare
8454     Label COMPARE_WIDE_VECTORS, COMPARE_TAIL;
8455 
8456     // Compare 16-byte vectors
8457     andl(result, 0x0000000f);  //   tail count (in bytes)
8458     andl(limit, 0xfffffff0);   // vector count (in bytes)
8459     jcc(Assembler::zero, COMPARE_TAIL);
8460 
8461     lea(ary1, Address(ary1, limit, Address::times_1));
8462     lea(ary2, Address(ary2, limit, Address::times_1));
8463     negptr(limit);
8464 
8465     bind(COMPARE_WIDE_VECTORS);
8466     movdqu(vec1, Address(ary1, limit, Address::times_1));
8467     movdqu(vec2, Address(ary2, limit, Address::times_1));
8468     pxor(vec1, vec2);
8469 
8470     ptest(vec1, vec1);
8471     jcc(Assembler::notZero, FALSE_LABEL);
8472     addptr(limit, 16);
8473     jcc(Assembler::notZero, COMPARE_WIDE_VECTORS);
8474 
8475     testl(result, result);
8476     jcc(Assembler::zero, TRUE_LABEL);
8477 
8478     movdqu(vec1, Address(ary1, result, Address::times_1, -16));
8479     movdqu(vec2, Address(ary2, result, Address::times_1, -16));
8480     pxor(vec1, vec2);
8481 
8482     ptest(vec1, vec1);
8483     jccb(Assembler::notZero, FALSE_LABEL);
8484     jmpb(TRUE_LABEL);
8485 
8486     bind(COMPARE_TAIL); // limit is zero
8487     movl(limit, result);
8488     // Fallthru to tail compare
8489   }
8490 
8491   // Compare 4-byte vectors
8492   andl(limit, 0xfffffffc); // vector count (in bytes)
8493   jccb(Assembler::zero, COMPARE_CHAR);
8494 
8495   lea(ary1, Address(ary1, limit, Address::times_1));
8496   lea(ary2, Address(ary2, limit, Address::times_1));
8497   negptr(limit);
8498 
8499   bind(COMPARE_VECTORS);
8500   movl(chr, Address(ary1, limit, Address::times_1));
8501   cmpl(chr, Address(ary2, limit, Address::times_1));
8502   jccb(Assembler::notEqual, FALSE_LABEL);
8503   addptr(limit, 4);
8504   jcc(Assembler::notZero, COMPARE_VECTORS);
8505 
8506   // Compare trailing char (final 2 bytes), if any
8507   bind(COMPARE_CHAR);
8508   testl(result, 0x2);   // tail  char
8509   jccb(Assembler::zero, COMPARE_BYTE);
8510   load_unsigned_short(chr, Address(ary1, 0));
8511   load_unsigned_short(limit, Address(ary2, 0));
8512   cmpl(chr, limit);
8513   jccb(Assembler::notEqual, FALSE_LABEL);
8514 
8515   if (is_array_equ && is_char) {
8516     bind(COMPARE_BYTE);
8517   } else {
8518     lea(ary1, Address(ary1, 2));
8519     lea(ary2, Address(ary2, 2));
8520 
8521     bind(COMPARE_BYTE);
8522     testl(result, 0x1);   // tail  byte
8523     jccb(Assembler::zero, TRUE_LABEL);
8524     load_unsigned_byte(chr, Address(ary1, 0));
8525     load_unsigned_byte(limit, Address(ary2, 0));
8526     cmpl(chr, limit);
8527     jccb(Assembler::notEqual, FALSE_LABEL);
8528   }
8529   bind(TRUE_LABEL);
8530   movl(result, 1);   // return true
8531   jmpb(DONE);
8532 
8533   bind(FALSE_LABEL);
8534   xorl(result, result); // return false
8535 
8536   // That's it
8537   bind(DONE);
8538   if (UseAVX >= 2) {
8539     // clean upper bits of YMM registers
8540     vpxor(vec1, vec1);
8541     vpxor(vec2, vec2);
8542   }
8543 }
8544 
8545 #endif
8546 
8547 void MacroAssembler::generate_fill(BasicType t, bool aligned,
8548                                    Register to, Register value, Register count,
8549                                    Register rtmp, XMMRegister xtmp) {
8550   ShortBranchVerifier sbv(this);
8551   assert_different_registers(to, value, count, rtmp);
8552   Label L_exit, L_skip_align1, L_skip_align2, L_fill_byte;
8553   Label L_fill_2_bytes, L_fill_4_bytes;
8554 
8555   int shift = -1;
8556   switch (t) {
8557     case T_BYTE:
8558       shift = 2;
8559       break;
8560     case T_SHORT:
8561       shift = 1;
8562       break;
8563     case T_INT:
8564       shift = 0;
8565       break;
8566     default: ShouldNotReachHere();
8567   }
8568 
8569   if (t == T_BYTE) {
8570     andl(value, 0xff);
8571     movl(rtmp, value);
8572     shll(rtmp, 8);
8573     orl(value, rtmp);
8574   }
8575   if (t == T_SHORT) {
8576     andl(value, 0xffff);
8577   }
8578   if (t == T_BYTE || t == T_SHORT) {
8579     movl(rtmp, value);
8580     shll(rtmp, 16);
8581     orl(value, rtmp);
8582   }
8583 
8584   cmpl(count, 2<<shift); // Short arrays (< 8 bytes) fill by element
8585   jcc(Assembler::below, L_fill_4_bytes); // use unsigned cmp
8586   if (!UseUnalignedLoadStores && !aligned && (t == T_BYTE || t == T_SHORT)) {
8587     // align source address at 4 bytes address boundary
8588     if (t == T_BYTE) {
8589       // One byte misalignment happens only for byte arrays
8590       testptr(to, 1);
8591       jccb(Assembler::zero, L_skip_align1);
8592       movb(Address(to, 0), value);
8593       increment(to);
8594       decrement(count);
8595       BIND(L_skip_align1);
8596     }
8597     // Two bytes misalignment happens only for byte and short (char) arrays
8598     testptr(to, 2);
8599     jccb(Assembler::zero, L_skip_align2);
8600     movw(Address(to, 0), value);
8601     addptr(to, 2);
8602     subl(count, 1<<(shift-1));
8603     BIND(L_skip_align2);
8604   }
8605   if (UseSSE < 2) {
8606     Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8607     // Fill 32-byte chunks
8608     subl(count, 8 << shift);
8609     jcc(Assembler::less, L_check_fill_8_bytes);
8610     align(16);
8611 
8612     BIND(L_fill_32_bytes_loop);
8613 
8614     for (int i = 0; i < 32; i += 4) {
8615       movl(Address(to, i), value);
8616     }
8617 
8618     addptr(to, 32);
8619     subl(count, 8 << shift);
8620     jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8621     BIND(L_check_fill_8_bytes);
8622     addl(count, 8 << shift);
8623     jccb(Assembler::zero, L_exit);
8624     jmpb(L_fill_8_bytes);
8625 
8626     //
8627     // length is too short, just fill qwords
8628     //
8629     BIND(L_fill_8_bytes_loop);
8630     movl(Address(to, 0), value);
8631     movl(Address(to, 4), value);
8632     addptr(to, 8);
8633     BIND(L_fill_8_bytes);
8634     subl(count, 1 << (shift + 1));
8635     jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8636     // fall through to fill 4 bytes
8637   } else {
8638     Label L_fill_32_bytes;
8639     if (!UseUnalignedLoadStores) {
8640       // align to 8 bytes, we know we are 4 byte aligned to start
8641       testptr(to, 4);
8642       jccb(Assembler::zero, L_fill_32_bytes);
8643       movl(Address(to, 0), value);
8644       addptr(to, 4);
8645       subl(count, 1<<shift);
8646     }
8647     BIND(L_fill_32_bytes);
8648     {
8649       assert( UseSSE >= 2, "supported cpu only" );
8650       Label L_fill_32_bytes_loop, L_check_fill_8_bytes, L_fill_8_bytes_loop, L_fill_8_bytes;
8651       if (UseAVX > 2) {
8652         movl(rtmp, 0xffff);
8653         kmovwl(k1, rtmp);
8654       }
8655       movdl(xtmp, value);
8656       if (UseAVX > 2 && UseUnalignedLoadStores) {
8657         // Fill 64-byte chunks
8658         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8659         evpbroadcastd(xtmp, xtmp, Assembler::AVX_512bit);
8660 
8661         subl(count, 16 << shift);
8662         jcc(Assembler::less, L_check_fill_32_bytes);
8663         align(16);
8664 
8665         BIND(L_fill_64_bytes_loop);
8666         evmovdqul(Address(to, 0), xtmp, Assembler::AVX_512bit);
8667         addptr(to, 64);
8668         subl(count, 16 << shift);
8669         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8670 
8671         BIND(L_check_fill_32_bytes);
8672         addl(count, 8 << shift);
8673         jccb(Assembler::less, L_check_fill_8_bytes);
8674         vmovdqu(Address(to, 0), xtmp);
8675         addptr(to, 32);
8676         subl(count, 8 << shift);
8677 
8678         BIND(L_check_fill_8_bytes);
8679       } else if (UseAVX == 2 && UseUnalignedLoadStores) {
8680         // Fill 64-byte chunks
8681         Label L_fill_64_bytes_loop, L_check_fill_32_bytes;
8682         vpbroadcastd(xtmp, xtmp);
8683 
8684         subl(count, 16 << shift);
8685         jcc(Assembler::less, L_check_fill_32_bytes);
8686         align(16);
8687 
8688         BIND(L_fill_64_bytes_loop);
8689         vmovdqu(Address(to, 0), xtmp);
8690         vmovdqu(Address(to, 32), xtmp);
8691         addptr(to, 64);
8692         subl(count, 16 << shift);
8693         jcc(Assembler::greaterEqual, L_fill_64_bytes_loop);
8694 
8695         BIND(L_check_fill_32_bytes);
8696         addl(count, 8 << shift);
8697         jccb(Assembler::less, L_check_fill_8_bytes);
8698         vmovdqu(Address(to, 0), xtmp);
8699         addptr(to, 32);
8700         subl(count, 8 << shift);
8701 
8702         BIND(L_check_fill_8_bytes);
8703         // clean upper bits of YMM registers
8704         movdl(xtmp, value);
8705         pshufd(xtmp, xtmp, 0);
8706       } else {
8707         // Fill 32-byte chunks
8708         pshufd(xtmp, xtmp, 0);
8709 
8710         subl(count, 8 << shift);
8711         jcc(Assembler::less, L_check_fill_8_bytes);
8712         align(16);
8713 
8714         BIND(L_fill_32_bytes_loop);
8715 
8716         if (UseUnalignedLoadStores) {
8717           movdqu(Address(to, 0), xtmp);
8718           movdqu(Address(to, 16), xtmp);
8719         } else {
8720           movq(Address(to, 0), xtmp);
8721           movq(Address(to, 8), xtmp);
8722           movq(Address(to, 16), xtmp);
8723           movq(Address(to, 24), xtmp);
8724         }
8725 
8726         addptr(to, 32);
8727         subl(count, 8 << shift);
8728         jcc(Assembler::greaterEqual, L_fill_32_bytes_loop);
8729 
8730         BIND(L_check_fill_8_bytes);
8731       }
8732       addl(count, 8 << shift);
8733       jccb(Assembler::zero, L_exit);
8734       jmpb(L_fill_8_bytes);
8735 
8736       //
8737       // length is too short, just fill qwords
8738       //
8739       BIND(L_fill_8_bytes_loop);
8740       movq(Address(to, 0), xtmp);
8741       addptr(to, 8);
8742       BIND(L_fill_8_bytes);
8743       subl(count, 1 << (shift + 1));
8744       jcc(Assembler::greaterEqual, L_fill_8_bytes_loop);
8745     }
8746   }
8747   // fill trailing 4 bytes
8748   BIND(L_fill_4_bytes);
8749   testl(count, 1<<shift);
8750   jccb(Assembler::zero, L_fill_2_bytes);
8751   movl(Address(to, 0), value);
8752   if (t == T_BYTE || t == T_SHORT) {
8753     addptr(to, 4);
8754     BIND(L_fill_2_bytes);
8755     // fill trailing 2 bytes
8756     testl(count, 1<<(shift-1));
8757     jccb(Assembler::zero, L_fill_byte);
8758     movw(Address(to, 0), value);
8759     if (t == T_BYTE) {
8760       addptr(to, 2);
8761       BIND(L_fill_byte);
8762       // fill trailing byte
8763       testl(count, 1);
8764       jccb(Assembler::zero, L_exit);
8765       movb(Address(to, 0), value);
8766     } else {
8767       BIND(L_fill_byte);
8768     }
8769   } else {
8770     BIND(L_fill_2_bytes);
8771   }
8772   BIND(L_exit);
8773 }
8774 
8775 // encode char[] to byte[] in ISO_8859_1
8776    //@HotSpotIntrinsicCandidate
8777    //private static int implEncodeISOArray(byte[] sa, int sp,
8778    //byte[] da, int dp, int len) {
8779    //  int i = 0;
8780    //  for (; i < len; i++) {
8781    //    char c = StringUTF16.getChar(sa, sp++);
8782    //    if (c > '\u00FF')
8783    //      break;
8784    //    da[dp++] = (byte)c;
8785    //  }
8786    //  return i;
8787    //}
8788 void MacroAssembler::encode_iso_array(Register src, Register dst, Register len,
8789   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
8790   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
8791   Register tmp5, Register result) {
8792 
8793   // rsi: src
8794   // rdi: dst
8795   // rdx: len
8796   // rcx: tmp5
8797   // rax: result
8798   ShortBranchVerifier sbv(this);
8799   assert_different_registers(src, dst, len, tmp5, result);
8800   Label L_done, L_copy_1_char, L_copy_1_char_exit;
8801 
8802   // set result
8803   xorl(result, result);
8804   // check for zero length
8805   testl(len, len);
8806   jcc(Assembler::zero, L_done);
8807 
8808   movl(result, len);
8809 
8810   // Setup pointers
8811   lea(src, Address(src, len, Address::times_2)); // char[]
8812   lea(dst, Address(dst, len, Address::times_1)); // byte[]
8813   negptr(len);
8814 
8815   if (UseSSE42Intrinsics || UseAVX >= 2) {
8816     Label L_chars_8_check, L_copy_8_chars, L_copy_8_chars_exit;
8817     Label L_chars_16_check, L_copy_16_chars, L_copy_16_chars_exit;
8818 
8819     if (UseAVX >= 2) {
8820       Label L_chars_32_check, L_copy_32_chars, L_copy_32_chars_exit;
8821       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8822       movdl(tmp1Reg, tmp5);
8823       vpbroadcastd(tmp1Reg, tmp1Reg);
8824       jmp(L_chars_32_check);
8825 
8826       bind(L_copy_32_chars);
8827       vmovdqu(tmp3Reg, Address(src, len, Address::times_2, -64));
8828       vmovdqu(tmp4Reg, Address(src, len, Address::times_2, -32));
8829       vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8830       vptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8831       jccb(Assembler::notZero, L_copy_32_chars_exit);
8832       vpackuswb(tmp3Reg, tmp3Reg, tmp4Reg, /* vector_len */ 1);
8833       vpermq(tmp4Reg, tmp3Reg, 0xD8, /* vector_len */ 1);
8834       vmovdqu(Address(dst, len, Address::times_1, -32), tmp4Reg);
8835 
8836       bind(L_chars_32_check);
8837       addptr(len, 32);
8838       jcc(Assembler::lessEqual, L_copy_32_chars);
8839 
8840       bind(L_copy_32_chars_exit);
8841       subptr(len, 16);
8842       jccb(Assembler::greater, L_copy_16_chars_exit);
8843 
8844     } else if (UseSSE42Intrinsics) {
8845       movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vector
8846       movdl(tmp1Reg, tmp5);
8847       pshufd(tmp1Reg, tmp1Reg, 0);
8848       jmpb(L_chars_16_check);
8849     }
8850 
8851     bind(L_copy_16_chars);
8852     if (UseAVX >= 2) {
8853       vmovdqu(tmp2Reg, Address(src, len, Address::times_2, -32));
8854       vptest(tmp2Reg, tmp1Reg);
8855       jcc(Assembler::notZero, L_copy_16_chars_exit);
8856       vpackuswb(tmp2Reg, tmp2Reg, tmp1Reg, /* vector_len */ 1);
8857       vpermq(tmp3Reg, tmp2Reg, 0xD8, /* vector_len */ 1);
8858     } else {
8859       if (UseAVX > 0) {
8860         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8861         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8862         vpor(tmp2Reg, tmp3Reg, tmp4Reg, /* vector_len */ 0);
8863       } else {
8864         movdqu(tmp3Reg, Address(src, len, Address::times_2, -32));
8865         por(tmp2Reg, tmp3Reg);
8866         movdqu(tmp4Reg, Address(src, len, Address::times_2, -16));
8867         por(tmp2Reg, tmp4Reg);
8868       }
8869       ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in  vector
8870       jccb(Assembler::notZero, L_copy_16_chars_exit);
8871       packuswb(tmp3Reg, tmp4Reg);
8872     }
8873     movdqu(Address(dst, len, Address::times_1, -16), tmp3Reg);
8874 
8875     bind(L_chars_16_check);
8876     addptr(len, 16);
8877     jcc(Assembler::lessEqual, L_copy_16_chars);
8878 
8879     bind(L_copy_16_chars_exit);
8880     if (UseAVX >= 2) {
8881       // clean upper bits of YMM registers
8882       vpxor(tmp2Reg, tmp2Reg);
8883       vpxor(tmp3Reg, tmp3Reg);
8884       vpxor(tmp4Reg, tmp4Reg);
8885       movdl(tmp1Reg, tmp5);
8886       pshufd(tmp1Reg, tmp1Reg, 0);
8887     }
8888     subptr(len, 8);
8889     jccb(Assembler::greater, L_copy_8_chars_exit);
8890 
8891     bind(L_copy_8_chars);
8892     movdqu(tmp3Reg, Address(src, len, Address::times_2, -16));
8893     ptest(tmp3Reg, tmp1Reg);
8894     jccb(Assembler::notZero, L_copy_8_chars_exit);
8895     packuswb(tmp3Reg, tmp1Reg);
8896     movq(Address(dst, len, Address::times_1, -8), tmp3Reg);
8897     addptr(len, 8);
8898     jccb(Assembler::lessEqual, L_copy_8_chars);
8899 
8900     bind(L_copy_8_chars_exit);
8901     subptr(len, 8);
8902     jccb(Assembler::zero, L_done);
8903   }
8904 
8905   bind(L_copy_1_char);
8906   load_unsigned_short(tmp5, Address(src, len, Address::times_2, 0));
8907   testl(tmp5, 0xff00);      // check if Unicode char
8908   jccb(Assembler::notZero, L_copy_1_char_exit);
8909   movb(Address(dst, len, Address::times_1, 0), tmp5);
8910   addptr(len, 1);
8911   jccb(Assembler::less, L_copy_1_char);
8912 
8913   bind(L_copy_1_char_exit);
8914   addptr(result, len); // len is negative count of not processed elements
8915 
8916   bind(L_done);
8917 }
8918 
8919 #ifdef _LP64
8920 /**
8921  * Helper for multiply_to_len().
8922  */
8923 void MacroAssembler::add2_with_carry(Register dest_hi, Register dest_lo, Register src1, Register src2) {
8924   addq(dest_lo, src1);
8925   adcq(dest_hi, 0);
8926   addq(dest_lo, src2);
8927   adcq(dest_hi, 0);
8928 }
8929 
8930 /**
8931  * Multiply 64 bit by 64 bit first loop.
8932  */
8933 void MacroAssembler::multiply_64_x_64_loop(Register x, Register xstart, Register x_xstart,
8934                                            Register y, Register y_idx, Register z,
8935                                            Register carry, Register product,
8936                                            Register idx, Register kdx) {
8937   //
8938   //  jlong carry, x[], y[], z[];
8939   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
8940   //    huge_128 product = y[idx] * x[xstart] + carry;
8941   //    z[kdx] = (jlong)product;
8942   //    carry  = (jlong)(product >>> 64);
8943   //  }
8944   //  z[xstart] = carry;
8945   //
8946 
8947   Label L_first_loop, L_first_loop_exit;
8948   Label L_one_x, L_one_y, L_multiply;
8949 
8950   decrementl(xstart);
8951   jcc(Assembler::negative, L_one_x);
8952 
8953   movq(x_xstart, Address(x, xstart, Address::times_4,  0));
8954   rorq(x_xstart, 32); // convert big-endian to little-endian
8955 
8956   bind(L_first_loop);
8957   decrementl(idx);
8958   jcc(Assembler::negative, L_first_loop_exit);
8959   decrementl(idx);
8960   jcc(Assembler::negative, L_one_y);
8961   movq(y_idx, Address(y, idx, Address::times_4,  0));
8962   rorq(y_idx, 32); // convert big-endian to little-endian
8963   bind(L_multiply);
8964   movq(product, x_xstart);
8965   mulq(y_idx); // product(rax) * y_idx -> rdx:rax
8966   addq(product, carry);
8967   adcq(rdx, 0);
8968   subl(kdx, 2);
8969   movl(Address(z, kdx, Address::times_4,  4), product);
8970   shrq(product, 32);
8971   movl(Address(z, kdx, Address::times_4,  0), product);
8972   movq(carry, rdx);
8973   jmp(L_first_loop);
8974 
8975   bind(L_one_y);
8976   movl(y_idx, Address(y,  0));
8977   jmp(L_multiply);
8978 
8979   bind(L_one_x);
8980   movl(x_xstart, Address(x,  0));
8981   jmp(L_first_loop);
8982 
8983   bind(L_first_loop_exit);
8984 }
8985 
8986 /**
8987  * Multiply 64 bit by 64 bit and add 128 bit.
8988  */
8989 void MacroAssembler::multiply_add_128_x_128(Register x_xstart, Register y, Register z,
8990                                             Register yz_idx, Register idx,
8991                                             Register carry, Register product, int offset) {
8992   //     huge_128 product = (y[idx] * x_xstart) + z[kdx] + carry;
8993   //     z[kdx] = (jlong)product;
8994 
8995   movq(yz_idx, Address(y, idx, Address::times_4,  offset));
8996   rorq(yz_idx, 32); // convert big-endian to little-endian
8997   movq(product, x_xstart);
8998   mulq(yz_idx);     // product(rax) * yz_idx -> rdx:product(rax)
8999   movq(yz_idx, Address(z, idx, Address::times_4,  offset));
9000   rorq(yz_idx, 32); // convert big-endian to little-endian
9001 
9002   add2_with_carry(rdx, product, carry, yz_idx);
9003 
9004   movl(Address(z, idx, Address::times_4,  offset+4), product);
9005   shrq(product, 32);
9006   movl(Address(z, idx, Address::times_4,  offset), product);
9007 
9008 }
9009 
9010 /**
9011  * Multiply 128 bit by 128 bit. Unrolled inner loop.
9012  */
9013 void MacroAssembler::multiply_128_x_128_loop(Register x_xstart, Register y, Register z,
9014                                              Register yz_idx, Register idx, Register jdx,
9015                                              Register carry, Register product,
9016                                              Register carry2) {
9017   //   jlong carry, x[], y[], z[];
9018   //   int kdx = ystart+1;
9019   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9020   //     huge_128 product = (y[idx+1] * x_xstart) + z[kdx+idx+1] + carry;
9021   //     z[kdx+idx+1] = (jlong)product;
9022   //     jlong carry2  = (jlong)(product >>> 64);
9023   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry2;
9024   //     z[kdx+idx] = (jlong)product;
9025   //     carry  = (jlong)(product >>> 64);
9026   //   }
9027   //   idx += 2;
9028   //   if (idx > 0) {
9029   //     product = (y[idx] * x_xstart) + z[kdx+idx] + carry;
9030   //     z[kdx+idx] = (jlong)product;
9031   //     carry  = (jlong)(product >>> 64);
9032   //   }
9033   //
9034 
9035   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9036 
9037   movl(jdx, idx);
9038   andl(jdx, 0xFFFFFFFC);
9039   shrl(jdx, 2);
9040 
9041   bind(L_third_loop);
9042   subl(jdx, 1);
9043   jcc(Assembler::negative, L_third_loop_exit);
9044   subl(idx, 4);
9045 
9046   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 8);
9047   movq(carry2, rdx);
9048 
9049   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry2, product, 0);
9050   movq(carry, rdx);
9051   jmp(L_third_loop);
9052 
9053   bind (L_third_loop_exit);
9054 
9055   andl (idx, 0x3);
9056   jcc(Assembler::zero, L_post_third_loop_done);
9057 
9058   Label L_check_1;
9059   subl(idx, 2);
9060   jcc(Assembler::negative, L_check_1);
9061 
9062   multiply_add_128_x_128(x_xstart, y, z, yz_idx, idx, carry, product, 0);
9063   movq(carry, rdx);
9064 
9065   bind (L_check_1);
9066   addl (idx, 0x2);
9067   andl (idx, 0x1);
9068   subl(idx, 1);
9069   jcc(Assembler::negative, L_post_third_loop_done);
9070 
9071   movl(yz_idx, Address(y, idx, Address::times_4,  0));
9072   movq(product, x_xstart);
9073   mulq(yz_idx); // product(rax) * yz_idx -> rdx:product(rax)
9074   movl(yz_idx, Address(z, idx, Address::times_4,  0));
9075 
9076   add2_with_carry(rdx, product, yz_idx, carry);
9077 
9078   movl(Address(z, idx, Address::times_4,  0), product);
9079   shrq(product, 32);
9080 
9081   shlq(rdx, 32);
9082   orq(product, rdx);
9083   movq(carry, product);
9084 
9085   bind(L_post_third_loop_done);
9086 }
9087 
9088 /**
9089  * Multiply 128 bit by 128 bit using BMI2. Unrolled inner loop.
9090  *
9091  */
9092 void MacroAssembler::multiply_128_x_128_bmi2_loop(Register y, Register z,
9093                                                   Register carry, Register carry2,
9094                                                   Register idx, Register jdx,
9095                                                   Register yz_idx1, Register yz_idx2,
9096                                                   Register tmp, Register tmp3, Register tmp4) {
9097   assert(UseBMI2Instructions, "should be used only when BMI2 is available");
9098 
9099   //   jlong carry, x[], y[], z[];
9100   //   int kdx = ystart+1;
9101   //   for (int idx=ystart-2; idx >= 0; idx -= 2) { // Third loop
9102   //     huge_128 tmp3 = (y[idx+1] * rdx) + z[kdx+idx+1] + carry;
9103   //     jlong carry2  = (jlong)(tmp3 >>> 64);
9104   //     huge_128 tmp4 = (y[idx]   * rdx) + z[kdx+idx] + carry2;
9105   //     carry  = (jlong)(tmp4 >>> 64);
9106   //     z[kdx+idx+1] = (jlong)tmp3;
9107   //     z[kdx+idx] = (jlong)tmp4;
9108   //   }
9109   //   idx += 2;
9110   //   if (idx > 0) {
9111   //     yz_idx1 = (y[idx] * rdx) + z[kdx+idx] + carry;
9112   //     z[kdx+idx] = (jlong)yz_idx1;
9113   //     carry  = (jlong)(yz_idx1 >>> 64);
9114   //   }
9115   //
9116 
9117   Label L_third_loop, L_third_loop_exit, L_post_third_loop_done;
9118 
9119   movl(jdx, idx);
9120   andl(jdx, 0xFFFFFFFC);
9121   shrl(jdx, 2);
9122 
9123   bind(L_third_loop);
9124   subl(jdx, 1);
9125   jcc(Assembler::negative, L_third_loop_exit);
9126   subl(idx, 4);
9127 
9128   movq(yz_idx1,  Address(y, idx, Address::times_4,  8));
9129   rorxq(yz_idx1, yz_idx1, 32); // convert big-endian to little-endian
9130   movq(yz_idx2, Address(y, idx, Address::times_4,  0));
9131   rorxq(yz_idx2, yz_idx2, 32);
9132 
9133   mulxq(tmp4, tmp3, yz_idx1);  //  yz_idx1 * rdx -> tmp4:tmp3
9134   mulxq(carry2, tmp, yz_idx2); //  yz_idx2 * rdx -> carry2:tmp
9135 
9136   movq(yz_idx1,  Address(z, idx, Address::times_4,  8));
9137   rorxq(yz_idx1, yz_idx1, 32);
9138   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9139   rorxq(yz_idx2, yz_idx2, 32);
9140 
9141   if (VM_Version::supports_adx()) {
9142     adcxq(tmp3, carry);
9143     adoxq(tmp3, yz_idx1);
9144 
9145     adcxq(tmp4, tmp);
9146     adoxq(tmp4, yz_idx2);
9147 
9148     movl(carry, 0); // does not affect flags
9149     adcxq(carry2, carry);
9150     adoxq(carry2, carry);
9151   } else {
9152     add2_with_carry(tmp4, tmp3, carry, yz_idx1);
9153     add2_with_carry(carry2, tmp4, tmp, yz_idx2);
9154   }
9155   movq(carry, carry2);
9156 
9157   movl(Address(z, idx, Address::times_4, 12), tmp3);
9158   shrq(tmp3, 32);
9159   movl(Address(z, idx, Address::times_4,  8), tmp3);
9160 
9161   movl(Address(z, idx, Address::times_4,  4), tmp4);
9162   shrq(tmp4, 32);
9163   movl(Address(z, idx, Address::times_4,  0), tmp4);
9164 
9165   jmp(L_third_loop);
9166 
9167   bind (L_third_loop_exit);
9168 
9169   andl (idx, 0x3);
9170   jcc(Assembler::zero, L_post_third_loop_done);
9171 
9172   Label L_check_1;
9173   subl(idx, 2);
9174   jcc(Assembler::negative, L_check_1);
9175 
9176   movq(yz_idx1, Address(y, idx, Address::times_4,  0));
9177   rorxq(yz_idx1, yz_idx1, 32);
9178   mulxq(tmp4, tmp3, yz_idx1); //  yz_idx1 * rdx -> tmp4:tmp3
9179   movq(yz_idx2, Address(z, idx, Address::times_4,  0));
9180   rorxq(yz_idx2, yz_idx2, 32);
9181 
9182   add2_with_carry(tmp4, tmp3, carry, yz_idx2);
9183 
9184   movl(Address(z, idx, Address::times_4,  4), tmp3);
9185   shrq(tmp3, 32);
9186   movl(Address(z, idx, Address::times_4,  0), tmp3);
9187   movq(carry, tmp4);
9188 
9189   bind (L_check_1);
9190   addl (idx, 0x2);
9191   andl (idx, 0x1);
9192   subl(idx, 1);
9193   jcc(Assembler::negative, L_post_third_loop_done);
9194   movl(tmp4, Address(y, idx, Address::times_4,  0));
9195   mulxq(carry2, tmp3, tmp4);  //  tmp4 * rdx -> carry2:tmp3
9196   movl(tmp4, Address(z, idx, Address::times_4,  0));
9197 
9198   add2_with_carry(carry2, tmp3, tmp4, carry);
9199 
9200   movl(Address(z, idx, Address::times_4,  0), tmp3);
9201   shrq(tmp3, 32);
9202 
9203   shlq(carry2, 32);
9204   orq(tmp3, carry2);
9205   movq(carry, tmp3);
9206 
9207   bind(L_post_third_loop_done);
9208 }
9209 
9210 /**
9211  * Code for BigInteger::multiplyToLen() instrinsic.
9212  *
9213  * rdi: x
9214  * rax: xlen
9215  * rsi: y
9216  * rcx: ylen
9217  * r8:  z
9218  * r11: zlen
9219  * r12: tmp1
9220  * r13: tmp2
9221  * r14: tmp3
9222  * r15: tmp4
9223  * rbx: tmp5
9224  *
9225  */
9226 void MacroAssembler::multiply_to_len(Register x, Register xlen, Register y, Register ylen, Register z, Register zlen,
9227                                      Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5) {
9228   ShortBranchVerifier sbv(this);
9229   assert_different_registers(x, xlen, y, ylen, z, zlen, tmp1, tmp2, tmp3, tmp4, tmp5, rdx);
9230 
9231   push(tmp1);
9232   push(tmp2);
9233   push(tmp3);
9234   push(tmp4);
9235   push(tmp5);
9236 
9237   push(xlen);
9238   push(zlen);
9239 
9240   const Register idx = tmp1;
9241   const Register kdx = tmp2;
9242   const Register xstart = tmp3;
9243 
9244   const Register y_idx = tmp4;
9245   const Register carry = tmp5;
9246   const Register product  = xlen;
9247   const Register x_xstart = zlen;  // reuse register
9248 
9249   // First Loop.
9250   //
9251   //  final static long LONG_MASK = 0xffffffffL;
9252   //  int xstart = xlen - 1;
9253   //  int ystart = ylen - 1;
9254   //  long carry = 0;
9255   //  for (int idx=ystart, kdx=ystart+1+xstart; idx >= 0; idx-, kdx--) {
9256   //    long product = (y[idx] & LONG_MASK) * (x[xstart] & LONG_MASK) + carry;
9257   //    z[kdx] = (int)product;
9258   //    carry = product >>> 32;
9259   //  }
9260   //  z[xstart] = (int)carry;
9261   //
9262 
9263   movl(idx, ylen);      // idx = ylen;
9264   movl(kdx, zlen);      // kdx = xlen+ylen;
9265   xorq(carry, carry);   // carry = 0;
9266 
9267   Label L_done;
9268 
9269   movl(xstart, xlen);
9270   decrementl(xstart);
9271   jcc(Assembler::negative, L_done);
9272 
9273   multiply_64_x_64_loop(x, xstart, x_xstart, y, y_idx, z, carry, product, idx, kdx);
9274 
9275   Label L_second_loop;
9276   testl(kdx, kdx);
9277   jcc(Assembler::zero, L_second_loop);
9278 
9279   Label L_carry;
9280   subl(kdx, 1);
9281   jcc(Assembler::zero, L_carry);
9282 
9283   movl(Address(z, kdx, Address::times_4,  0), carry);
9284   shrq(carry, 32);
9285   subl(kdx, 1);
9286 
9287   bind(L_carry);
9288   movl(Address(z, kdx, Address::times_4,  0), carry);
9289 
9290   // Second and third (nested) loops.
9291   //
9292   // for (int i = xstart-1; i >= 0; i--) { // Second loop
9293   //   carry = 0;
9294   //   for (int jdx=ystart, k=ystart+1+i; jdx >= 0; jdx--, k--) { // Third loop
9295   //     long product = (y[jdx] & LONG_MASK) * (x[i] & LONG_MASK) +
9296   //                    (z[k] & LONG_MASK) + carry;
9297   //     z[k] = (int)product;
9298   //     carry = product >>> 32;
9299   //   }
9300   //   z[i] = (int)carry;
9301   // }
9302   //
9303   // i = xlen, j = tmp1, k = tmp2, carry = tmp5, x[i] = rdx
9304 
9305   const Register jdx = tmp1;
9306 
9307   bind(L_second_loop);
9308   xorl(carry, carry);    // carry = 0;
9309   movl(jdx, ylen);       // j = ystart+1
9310 
9311   subl(xstart, 1);       // i = xstart-1;
9312   jcc(Assembler::negative, L_done);
9313 
9314   push (z);
9315 
9316   Label L_last_x;
9317   lea(z, Address(z, xstart, Address::times_4, 4)); // z = z + k - j
9318   subl(xstart, 1);       // i = xstart-1;
9319   jcc(Assembler::negative, L_last_x);
9320 
9321   if (UseBMI2Instructions) {
9322     movq(rdx,  Address(x, xstart, Address::times_4,  0));
9323     rorxq(rdx, rdx, 32); // convert big-endian to little-endian
9324   } else {
9325     movq(x_xstart, Address(x, xstart, Address::times_4,  0));
9326     rorq(x_xstart, 32);  // convert big-endian to little-endian
9327   }
9328 
9329   Label L_third_loop_prologue;
9330   bind(L_third_loop_prologue);
9331 
9332   push (x);
9333   push (xstart);
9334   push (ylen);
9335 
9336 
9337   if (UseBMI2Instructions) {
9338     multiply_128_x_128_bmi2_loop(y, z, carry, x, jdx, ylen, product, tmp2, x_xstart, tmp3, tmp4);
9339   } else { // !UseBMI2Instructions
9340     multiply_128_x_128_loop(x_xstart, y, z, y_idx, jdx, ylen, carry, product, x);
9341   }
9342 
9343   pop(ylen);
9344   pop(xlen);
9345   pop(x);
9346   pop(z);
9347 
9348   movl(tmp3, xlen);
9349   addl(tmp3, 1);
9350   movl(Address(z, tmp3, Address::times_4,  0), carry);
9351   subl(tmp3, 1);
9352   jccb(Assembler::negative, L_done);
9353 
9354   shrq(carry, 32);
9355   movl(Address(z, tmp3, Address::times_4,  0), carry);
9356   jmp(L_second_loop);
9357 
9358   // Next infrequent code is moved outside loops.
9359   bind(L_last_x);
9360   if (UseBMI2Instructions) {
9361     movl(rdx, Address(x,  0));
9362   } else {
9363     movl(x_xstart, Address(x,  0));
9364   }
9365   jmp(L_third_loop_prologue);
9366 
9367   bind(L_done);
9368 
9369   pop(zlen);
9370   pop(xlen);
9371 
9372   pop(tmp5);
9373   pop(tmp4);
9374   pop(tmp3);
9375   pop(tmp2);
9376   pop(tmp1);
9377 }
9378 
9379 void MacroAssembler::vectorized_mismatch(Register obja, Register objb, Register length, Register log2_array_indxscale,
9380   Register result, Register tmp1, Register tmp2, XMMRegister rymm0, XMMRegister rymm1, XMMRegister rymm2){
9381   assert(UseSSE42Intrinsics, "SSE4.2 must be enabled.");
9382   Label VECTOR64_LOOP, VECTOR64_TAIL, VECTOR64_NOT_EQUAL, VECTOR32_TAIL;
9383   Label VECTOR32_LOOP, VECTOR16_LOOP, VECTOR8_LOOP, VECTOR4_LOOP;
9384   Label VECTOR16_TAIL, VECTOR8_TAIL, VECTOR4_TAIL;
9385   Label VECTOR32_NOT_EQUAL, VECTOR16_NOT_EQUAL, VECTOR8_NOT_EQUAL, VECTOR4_NOT_EQUAL;
9386   Label SAME_TILL_END, DONE;
9387   Label BYTES_LOOP, BYTES_TAIL, BYTES_NOT_EQUAL;
9388 
9389   //scale is in rcx in both Win64 and Unix
9390   ShortBranchVerifier sbv(this);
9391 
9392   shlq(length);
9393   xorq(result, result);
9394 
9395   if ((UseAVX > 2) &&
9396       VM_Version::supports_avx512vlbw()) {
9397     set_vector_masking();  // opening of the stub context for programming mask registers
9398     cmpq(length, 64);
9399     jcc(Assembler::less, VECTOR32_TAIL);
9400     movq(tmp1, length);
9401     andq(tmp1, 0x3F);      // tail count
9402     andq(length, ~(0x3F)); //vector count
9403 
9404     bind(VECTOR64_LOOP);
9405     // AVX512 code to compare 64 byte vectors.
9406     evmovdqub(rymm0, Address(obja, result), Assembler::AVX_512bit);
9407     evpcmpeqb(k7, rymm0, Address(objb, result), Assembler::AVX_512bit);
9408     kortestql(k7, k7);
9409     jcc(Assembler::aboveEqual, VECTOR64_NOT_EQUAL);     // mismatch
9410     addq(result, 64);
9411     subq(length, 64);
9412     jccb(Assembler::notZero, VECTOR64_LOOP);
9413 
9414     //bind(VECTOR64_TAIL);
9415     testq(tmp1, tmp1);
9416     jcc(Assembler::zero, SAME_TILL_END);
9417 
9418     bind(VECTOR64_TAIL);
9419     // AVX512 code to compare upto 63 byte vectors.
9420     // Save k1
9421     kmovql(k3, k1);
9422     mov64(tmp2, 0xFFFFFFFFFFFFFFFF);
9423     shlxq(tmp2, tmp2, tmp1);
9424     notq(tmp2);
9425     kmovql(k1, tmp2);
9426 
9427     evmovdqub(rymm0, k1, Address(obja, result), Assembler::AVX_512bit);
9428     evpcmpeqb(k7, k1, rymm0, Address(objb, result), Assembler::AVX_512bit);
9429 
9430     ktestql(k7, k1);
9431     // Restore k1
9432     kmovql(k1, k3);
9433     jcc(Assembler::below, SAME_TILL_END);     // not mismatch
9434 
9435     bind(VECTOR64_NOT_EQUAL);
9436     kmovql(tmp1, k7);
9437     notq(tmp1);
9438     tzcntq(tmp1, tmp1);
9439     addq(result, tmp1);
9440     shrq(result);
9441     jmp(DONE);
9442     bind(VECTOR32_TAIL);
9443     clear_vector_masking();   // closing of the stub context for programming mask registers
9444   }
9445 
9446   cmpq(length, 8);
9447   jcc(Assembler::equal, VECTOR8_LOOP);
9448   jcc(Assembler::less, VECTOR4_TAIL);
9449 
9450   if (UseAVX >= 2) {
9451 
9452     cmpq(length, 16);
9453     jcc(Assembler::equal, VECTOR16_LOOP);
9454     jcc(Assembler::less, VECTOR8_LOOP);
9455 
9456     cmpq(length, 32);
9457     jccb(Assembler::less, VECTOR16_TAIL);
9458 
9459     subq(length, 32);
9460     bind(VECTOR32_LOOP);
9461     vmovdqu(rymm0, Address(obja, result));
9462     vmovdqu(rymm1, Address(objb, result));
9463     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_256bit);
9464     vptest(rymm2, rymm2);
9465     jcc(Assembler::notZero, VECTOR32_NOT_EQUAL);//mismatch found
9466     addq(result, 32);
9467     subq(length, 32);
9468     jccb(Assembler::greaterEqual, VECTOR32_LOOP);
9469     addq(length, 32);
9470     jcc(Assembler::equal, SAME_TILL_END);
9471     //falling through if less than 32 bytes left //close the branch here.
9472 
9473     bind(VECTOR16_TAIL);
9474     cmpq(length, 16);
9475     jccb(Assembler::less, VECTOR8_TAIL);
9476     bind(VECTOR16_LOOP);
9477     movdqu(rymm0, Address(obja, result));
9478     movdqu(rymm1, Address(objb, result));
9479     vpxor(rymm2, rymm0, rymm1, Assembler::AVX_128bit);
9480     ptest(rymm2, rymm2);
9481     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9482     addq(result, 16);
9483     subq(length, 16);
9484     jcc(Assembler::equal, SAME_TILL_END);
9485     //falling through if less than 16 bytes left
9486   } else {//regular intrinsics
9487 
9488     cmpq(length, 16);
9489     jccb(Assembler::less, VECTOR8_TAIL);
9490 
9491     subq(length, 16);
9492     bind(VECTOR16_LOOP);
9493     movdqu(rymm0, Address(obja, result));
9494     movdqu(rymm1, Address(objb, result));
9495     pxor(rymm0, rymm1);
9496     ptest(rymm0, rymm0);
9497     jcc(Assembler::notZero, VECTOR16_NOT_EQUAL);//mismatch found
9498     addq(result, 16);
9499     subq(length, 16);
9500     jccb(Assembler::greaterEqual, VECTOR16_LOOP);
9501     addq(length, 16);
9502     jcc(Assembler::equal, SAME_TILL_END);
9503     //falling through if less than 16 bytes left
9504   }
9505 
9506   bind(VECTOR8_TAIL);
9507   cmpq(length, 8);
9508   jccb(Assembler::less, VECTOR4_TAIL);
9509   bind(VECTOR8_LOOP);
9510   movq(tmp1, Address(obja, result));
9511   movq(tmp2, Address(objb, result));
9512   xorq(tmp1, tmp2);
9513   testq(tmp1, tmp1);
9514   jcc(Assembler::notZero, VECTOR8_NOT_EQUAL);//mismatch found
9515   addq(result, 8);
9516   subq(length, 8);
9517   jcc(Assembler::equal, SAME_TILL_END);
9518   //falling through if less than 8 bytes left
9519 
9520   bind(VECTOR4_TAIL);
9521   cmpq(length, 4);
9522   jccb(Assembler::less, BYTES_TAIL);
9523   bind(VECTOR4_LOOP);
9524   movl(tmp1, Address(obja, result));
9525   xorl(tmp1, Address(objb, result));
9526   testl(tmp1, tmp1);
9527   jcc(Assembler::notZero, VECTOR4_NOT_EQUAL);//mismatch found
9528   addq(result, 4);
9529   subq(length, 4);
9530   jcc(Assembler::equal, SAME_TILL_END);
9531   //falling through if less than 4 bytes left
9532 
9533   bind(BYTES_TAIL);
9534   bind(BYTES_LOOP);
9535   load_unsigned_byte(tmp1, Address(obja, result));
9536   load_unsigned_byte(tmp2, Address(objb, result));
9537   xorl(tmp1, tmp2);
9538   testl(tmp1, tmp1);
9539   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9540   decq(length);
9541   jccb(Assembler::zero, SAME_TILL_END);
9542   incq(result);
9543   load_unsigned_byte(tmp1, Address(obja, result));
9544   load_unsigned_byte(tmp2, Address(objb, result));
9545   xorl(tmp1, tmp2);
9546   testl(tmp1, tmp1);
9547   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9548   decq(length);
9549   jccb(Assembler::zero, SAME_TILL_END);
9550   incq(result);
9551   load_unsigned_byte(tmp1, Address(obja, result));
9552   load_unsigned_byte(tmp2, Address(objb, result));
9553   xorl(tmp1, tmp2);
9554   testl(tmp1, tmp1);
9555   jccb(Assembler::notZero, BYTES_NOT_EQUAL);//mismatch found
9556   jmpb(SAME_TILL_END);
9557 
9558   if (UseAVX >= 2) {
9559     bind(VECTOR32_NOT_EQUAL);
9560     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_256bit);
9561     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_256bit);
9562     vpxor(rymm0, rymm0, rymm2, Assembler::AVX_256bit);
9563     vpmovmskb(tmp1, rymm0);
9564     bsfq(tmp1, tmp1);
9565     addq(result, tmp1);
9566     shrq(result);
9567     jmpb(DONE);
9568   }
9569 
9570   bind(VECTOR16_NOT_EQUAL);
9571   if (UseAVX >= 2) {
9572     vpcmpeqb(rymm2, rymm2, rymm2, Assembler::AVX_128bit);
9573     vpcmpeqb(rymm0, rymm0, rymm1, Assembler::AVX_128bit);
9574     pxor(rymm0, rymm2);
9575   } else {
9576     pcmpeqb(rymm2, rymm2);
9577     pxor(rymm0, rymm1);
9578     pcmpeqb(rymm0, rymm1);
9579     pxor(rymm0, rymm2);
9580   }
9581   pmovmskb(tmp1, rymm0);
9582   bsfq(tmp1, tmp1);
9583   addq(result, tmp1);
9584   shrq(result);
9585   jmpb(DONE);
9586 
9587   bind(VECTOR8_NOT_EQUAL);
9588   bind(VECTOR4_NOT_EQUAL);
9589   bsfq(tmp1, tmp1);
9590   shrq(tmp1, 3);
9591   addq(result, tmp1);
9592   bind(BYTES_NOT_EQUAL);
9593   shrq(result);
9594   jmpb(DONE);
9595 
9596   bind(SAME_TILL_END);
9597   mov64(result, -1);
9598 
9599   bind(DONE);
9600 }
9601 
9602 //Helper functions for square_to_len()
9603 
9604 /**
9605  * Store the squares of x[], right shifted one bit (divided by 2) into z[]
9606  * Preserves x and z and modifies rest of the registers.
9607  */
9608 void MacroAssembler::square_rshift(Register x, Register xlen, Register z, Register tmp1, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9609   // Perform square and right shift by 1
9610   // Handle odd xlen case first, then for even xlen do the following
9611   // jlong carry = 0;
9612   // for (int j=0, i=0; j < xlen; j+=2, i+=4) {
9613   //     huge_128 product = x[j:j+1] * x[j:j+1];
9614   //     z[i:i+1] = (carry << 63) | (jlong)(product >>> 65);
9615   //     z[i+2:i+3] = (jlong)(product >>> 1);
9616   //     carry = (jlong)product;
9617   // }
9618 
9619   xorq(tmp5, tmp5);     // carry
9620   xorq(rdxReg, rdxReg);
9621   xorl(tmp1, tmp1);     // index for x
9622   xorl(tmp4, tmp4);     // index for z
9623 
9624   Label L_first_loop, L_first_loop_exit;
9625 
9626   testl(xlen, 1);
9627   jccb(Assembler::zero, L_first_loop); //jump if xlen is even
9628 
9629   // Square and right shift by 1 the odd element using 32 bit multiply
9630   movl(raxReg, Address(x, tmp1, Address::times_4, 0));
9631   imulq(raxReg, raxReg);
9632   shrq(raxReg, 1);
9633   adcq(tmp5, 0);
9634   movq(Address(z, tmp4, Address::times_4, 0), raxReg);
9635   incrementl(tmp1);
9636   addl(tmp4, 2);
9637 
9638   // Square and  right shift by 1 the rest using 64 bit multiply
9639   bind(L_first_loop);
9640   cmpptr(tmp1, xlen);
9641   jccb(Assembler::equal, L_first_loop_exit);
9642 
9643   // Square
9644   movq(raxReg, Address(x, tmp1, Address::times_4,  0));
9645   rorq(raxReg, 32);    // convert big-endian to little-endian
9646   mulq(raxReg);        // 64-bit multiply rax * rax -> rdx:rax
9647 
9648   // Right shift by 1 and save carry
9649   shrq(tmp5, 1);       // rdx:rax:tmp5 = (tmp5:rdx:rax) >>> 1
9650   rcrq(rdxReg, 1);
9651   rcrq(raxReg, 1);
9652   adcq(tmp5, 0);
9653 
9654   // Store result in z
9655   movq(Address(z, tmp4, Address::times_4, 0), rdxReg);
9656   movq(Address(z, tmp4, Address::times_4, 8), raxReg);
9657 
9658   // Update indices for x and z
9659   addl(tmp1, 2);
9660   addl(tmp4, 4);
9661   jmp(L_first_loop);
9662 
9663   bind(L_first_loop_exit);
9664 }
9665 
9666 
9667 /**
9668  * Perform the following multiply add operation using BMI2 instructions
9669  * carry:sum = sum + op1*op2 + carry
9670  * op2 should be in rdx
9671  * op2 is preserved, all other registers are modified
9672  */
9673 void MacroAssembler::multiply_add_64_bmi2(Register sum, Register op1, Register op2, Register carry, Register tmp2) {
9674   // assert op2 is rdx
9675   mulxq(tmp2, op1, op1);  //  op1 * op2 -> tmp2:op1
9676   addq(sum, carry);
9677   adcq(tmp2, 0);
9678   addq(sum, op1);
9679   adcq(tmp2, 0);
9680   movq(carry, tmp2);
9681 }
9682 
9683 /**
9684  * Perform the following multiply add operation:
9685  * carry:sum = sum + op1*op2 + carry
9686  * Preserves op1, op2 and modifies rest of registers
9687  */
9688 void MacroAssembler::multiply_add_64(Register sum, Register op1, Register op2, Register carry, Register rdxReg, Register raxReg) {
9689   // rdx:rax = op1 * op2
9690   movq(raxReg, op2);
9691   mulq(op1);
9692 
9693   //  rdx:rax = sum + carry + rdx:rax
9694   addq(sum, carry);
9695   adcq(rdxReg, 0);
9696   addq(sum, raxReg);
9697   adcq(rdxReg, 0);
9698 
9699   // carry:sum = rdx:sum
9700   movq(carry, rdxReg);
9701 }
9702 
9703 /**
9704  * Add 64 bit long carry into z[] with carry propogation.
9705  * Preserves z and carry register values and modifies rest of registers.
9706  *
9707  */
9708 void MacroAssembler::add_one_64(Register z, Register zlen, Register carry, Register tmp1) {
9709   Label L_fourth_loop, L_fourth_loop_exit;
9710 
9711   movl(tmp1, 1);
9712   subl(zlen, 2);
9713   addq(Address(z, zlen, Address::times_4, 0), carry);
9714 
9715   bind(L_fourth_loop);
9716   jccb(Assembler::carryClear, L_fourth_loop_exit);
9717   subl(zlen, 2);
9718   jccb(Assembler::negative, L_fourth_loop_exit);
9719   addq(Address(z, zlen, Address::times_4, 0), tmp1);
9720   jmp(L_fourth_loop);
9721   bind(L_fourth_loop_exit);
9722 }
9723 
9724 /**
9725  * Shift z[] left by 1 bit.
9726  * Preserves x, len, z and zlen registers and modifies rest of the registers.
9727  *
9728  */
9729 void MacroAssembler::lshift_by_1(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4) {
9730 
9731   Label L_fifth_loop, L_fifth_loop_exit;
9732 
9733   // Fifth loop
9734   // Perform primitiveLeftShift(z, zlen, 1)
9735 
9736   const Register prev_carry = tmp1;
9737   const Register new_carry = tmp4;
9738   const Register value = tmp2;
9739   const Register zidx = tmp3;
9740 
9741   // int zidx, carry;
9742   // long value;
9743   // carry = 0;
9744   // for (zidx = zlen-2; zidx >=0; zidx -= 2) {
9745   //    (carry:value)  = (z[i] << 1) | carry ;
9746   //    z[i] = value;
9747   // }
9748 
9749   movl(zidx, zlen);
9750   xorl(prev_carry, prev_carry); // clear carry flag and prev_carry register
9751 
9752   bind(L_fifth_loop);
9753   decl(zidx);  // Use decl to preserve carry flag
9754   decl(zidx);
9755   jccb(Assembler::negative, L_fifth_loop_exit);
9756 
9757   if (UseBMI2Instructions) {
9758      movq(value, Address(z, zidx, Address::times_4, 0));
9759      rclq(value, 1);
9760      rorxq(value, value, 32);
9761      movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9762   }
9763   else {
9764     // clear new_carry
9765     xorl(new_carry, new_carry);
9766 
9767     // Shift z[i] by 1, or in previous carry and save new carry
9768     movq(value, Address(z, zidx, Address::times_4, 0));
9769     shlq(value, 1);
9770     adcl(new_carry, 0);
9771 
9772     orq(value, prev_carry);
9773     rorq(value, 0x20);
9774     movq(Address(z, zidx, Address::times_4,  0), value);  // Store back in big endian form
9775 
9776     // Set previous carry = new carry
9777     movl(prev_carry, new_carry);
9778   }
9779   jmp(L_fifth_loop);
9780 
9781   bind(L_fifth_loop_exit);
9782 }
9783 
9784 
9785 /**
9786  * Code for BigInteger::squareToLen() intrinsic
9787  *
9788  * rdi: x
9789  * rsi: len
9790  * r8:  z
9791  * rcx: zlen
9792  * r12: tmp1
9793  * r13: tmp2
9794  * r14: tmp3
9795  * r15: tmp4
9796  * rbx: tmp5
9797  *
9798  */
9799 void MacroAssembler::square_to_len(Register x, Register len, Register z, Register zlen, Register tmp1, Register tmp2, Register tmp3, Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9800 
9801   Label L_second_loop, L_second_loop_exit, L_third_loop, L_third_loop_exit, fifth_loop, fifth_loop_exit, L_last_x, L_multiply;
9802   push(tmp1);
9803   push(tmp2);
9804   push(tmp3);
9805   push(tmp4);
9806   push(tmp5);
9807 
9808   // First loop
9809   // Store the squares, right shifted one bit (i.e., divided by 2).
9810   square_rshift(x, len, z, tmp1, tmp3, tmp4, tmp5, rdxReg, raxReg);
9811 
9812   // Add in off-diagonal sums.
9813   //
9814   // Second, third (nested) and fourth loops.
9815   // zlen +=2;
9816   // for (int xidx=len-2,zidx=zlen-4; xidx > 0; xidx-=2,zidx-=4) {
9817   //    carry = 0;
9818   //    long op2 = x[xidx:xidx+1];
9819   //    for (int j=xidx-2,k=zidx; j >= 0; j-=2) {
9820   //       k -= 2;
9821   //       long op1 = x[j:j+1];
9822   //       long sum = z[k:k+1];
9823   //       carry:sum = multiply_add_64(sum, op1, op2, carry, tmp_regs);
9824   //       z[k:k+1] = sum;
9825   //    }
9826   //    add_one_64(z, k, carry, tmp_regs);
9827   // }
9828 
9829   const Register carry = tmp5;
9830   const Register sum = tmp3;
9831   const Register op1 = tmp4;
9832   Register op2 = tmp2;
9833 
9834   push(zlen);
9835   push(len);
9836   addl(zlen,2);
9837   bind(L_second_loop);
9838   xorq(carry, carry);
9839   subl(zlen, 4);
9840   subl(len, 2);
9841   push(zlen);
9842   push(len);
9843   cmpl(len, 0);
9844   jccb(Assembler::lessEqual, L_second_loop_exit);
9845 
9846   // Multiply an array by one 64 bit long.
9847   if (UseBMI2Instructions) {
9848     op2 = rdxReg;
9849     movq(op2, Address(x, len, Address::times_4,  0));
9850     rorxq(op2, op2, 32);
9851   }
9852   else {
9853     movq(op2, Address(x, len, Address::times_4,  0));
9854     rorq(op2, 32);
9855   }
9856 
9857   bind(L_third_loop);
9858   decrementl(len);
9859   jccb(Assembler::negative, L_third_loop_exit);
9860   decrementl(len);
9861   jccb(Assembler::negative, L_last_x);
9862 
9863   movq(op1, Address(x, len, Address::times_4,  0));
9864   rorq(op1, 32);
9865 
9866   bind(L_multiply);
9867   subl(zlen, 2);
9868   movq(sum, Address(z, zlen, Address::times_4,  0));
9869 
9870   // Multiply 64 bit by 64 bit and add 64 bits lower half and upper 64 bits as carry.
9871   if (UseBMI2Instructions) {
9872     multiply_add_64_bmi2(sum, op1, op2, carry, tmp2);
9873   }
9874   else {
9875     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9876   }
9877 
9878   movq(Address(z, zlen, Address::times_4, 0), sum);
9879 
9880   jmp(L_third_loop);
9881   bind(L_third_loop_exit);
9882 
9883   // Fourth loop
9884   // Add 64 bit long carry into z with carry propogation.
9885   // Uses offsetted zlen.
9886   add_one_64(z, zlen, carry, tmp1);
9887 
9888   pop(len);
9889   pop(zlen);
9890   jmp(L_second_loop);
9891 
9892   // Next infrequent code is moved outside loops.
9893   bind(L_last_x);
9894   movl(op1, Address(x, 0));
9895   jmp(L_multiply);
9896 
9897   bind(L_second_loop_exit);
9898   pop(len);
9899   pop(zlen);
9900   pop(len);
9901   pop(zlen);
9902 
9903   // Fifth loop
9904   // Shift z left 1 bit.
9905   lshift_by_1(x, len, z, zlen, tmp1, tmp2, tmp3, tmp4);
9906 
9907   // z[zlen-1] |= x[len-1] & 1;
9908   movl(tmp3, Address(x, len, Address::times_4, -4));
9909   andl(tmp3, 1);
9910   orl(Address(z, zlen, Address::times_4,  -4), tmp3);
9911 
9912   pop(tmp5);
9913   pop(tmp4);
9914   pop(tmp3);
9915   pop(tmp2);
9916   pop(tmp1);
9917 }
9918 
9919 /**
9920  * Helper function for mul_add()
9921  * Multiply the in[] by int k and add to out[] starting at offset offs using
9922  * 128 bit by 32 bit multiply and return the carry in tmp5.
9923  * Only quad int aligned length of in[] is operated on in this function.
9924  * k is in rdxReg for BMI2Instructions, for others it is in tmp2.
9925  * This function preserves out, in and k registers.
9926  * len and offset point to the appropriate index in "in" & "out" correspondingly
9927  * tmp5 has the carry.
9928  * other registers are temporary and are modified.
9929  *
9930  */
9931 void MacroAssembler::mul_add_128_x_32_loop(Register out, Register in,
9932   Register offset, Register len, Register tmp1, Register tmp2, Register tmp3,
9933   Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
9934 
9935   Label L_first_loop, L_first_loop_exit;
9936 
9937   movl(tmp1, len);
9938   shrl(tmp1, 2);
9939 
9940   bind(L_first_loop);
9941   subl(tmp1, 1);
9942   jccb(Assembler::negative, L_first_loop_exit);
9943 
9944   subl(len, 4);
9945   subl(offset, 4);
9946 
9947   Register op2 = tmp2;
9948   const Register sum = tmp3;
9949   const Register op1 = tmp4;
9950   const Register carry = tmp5;
9951 
9952   if (UseBMI2Instructions) {
9953     op2 = rdxReg;
9954   }
9955 
9956   movq(op1, Address(in, len, Address::times_4,  8));
9957   rorq(op1, 32);
9958   movq(sum, Address(out, offset, Address::times_4,  8));
9959   rorq(sum, 32);
9960   if (UseBMI2Instructions) {
9961     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9962   }
9963   else {
9964     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9965   }
9966   // Store back in big endian from little endian
9967   rorq(sum, 0x20);
9968   movq(Address(out, offset, Address::times_4,  8), sum);
9969 
9970   movq(op1, Address(in, len, Address::times_4,  0));
9971   rorq(op1, 32);
9972   movq(sum, Address(out, offset, Address::times_4,  0));
9973   rorq(sum, 32);
9974   if (UseBMI2Instructions) {
9975     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
9976   }
9977   else {
9978     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
9979   }
9980   // Store back in big endian from little endian
9981   rorq(sum, 0x20);
9982   movq(Address(out, offset, Address::times_4,  0), sum);
9983 
9984   jmp(L_first_loop);
9985   bind(L_first_loop_exit);
9986 }
9987 
9988 /**
9989  * Code for BigInteger::mulAdd() intrinsic
9990  *
9991  * rdi: out
9992  * rsi: in
9993  * r11: offs (out.length - offset)
9994  * rcx: len
9995  * r8:  k
9996  * r12: tmp1
9997  * r13: tmp2
9998  * r14: tmp3
9999  * r15: tmp4
10000  * rbx: tmp5
10001  * Multiply the in[] by word k and add to out[], return the carry in rax
10002  */
10003 void MacroAssembler::mul_add(Register out, Register in, Register offs,
10004    Register len, Register k, Register tmp1, Register tmp2, Register tmp3,
10005    Register tmp4, Register tmp5, Register rdxReg, Register raxReg) {
10006 
10007   Label L_carry, L_last_in, L_done;
10008 
10009 // carry = 0;
10010 // for (int j=len-1; j >= 0; j--) {
10011 //    long product = (in[j] & LONG_MASK) * kLong +
10012 //                   (out[offs] & LONG_MASK) + carry;
10013 //    out[offs--] = (int)product;
10014 //    carry = product >>> 32;
10015 // }
10016 //
10017   push(tmp1);
10018   push(tmp2);
10019   push(tmp3);
10020   push(tmp4);
10021   push(tmp5);
10022 
10023   Register op2 = tmp2;
10024   const Register sum = tmp3;
10025   const Register op1 = tmp4;
10026   const Register carry =  tmp5;
10027 
10028   if (UseBMI2Instructions) {
10029     op2 = rdxReg;
10030     movl(op2, k);
10031   }
10032   else {
10033     movl(op2, k);
10034   }
10035 
10036   xorq(carry, carry);
10037 
10038   //First loop
10039 
10040   //Multiply in[] by k in a 4 way unrolled loop using 128 bit by 32 bit multiply
10041   //The carry is in tmp5
10042   mul_add_128_x_32_loop(out, in, offs, len, tmp1, tmp2, tmp3, tmp4, tmp5, rdxReg, raxReg);
10043 
10044   //Multiply the trailing in[] entry using 64 bit by 32 bit, if any
10045   decrementl(len);
10046   jccb(Assembler::negative, L_carry);
10047   decrementl(len);
10048   jccb(Assembler::negative, L_last_in);
10049 
10050   movq(op1, Address(in, len, Address::times_4,  0));
10051   rorq(op1, 32);
10052 
10053   subl(offs, 2);
10054   movq(sum, Address(out, offs, Address::times_4,  0));
10055   rorq(sum, 32);
10056 
10057   if (UseBMI2Instructions) {
10058     multiply_add_64_bmi2(sum, op1, op2, carry, raxReg);
10059   }
10060   else {
10061     multiply_add_64(sum, op1, op2, carry, rdxReg, raxReg);
10062   }
10063 
10064   // Store back in big endian from little endian
10065   rorq(sum, 0x20);
10066   movq(Address(out, offs, Address::times_4,  0), sum);
10067 
10068   testl(len, len);
10069   jccb(Assembler::zero, L_carry);
10070 
10071   //Multiply the last in[] entry, if any
10072   bind(L_last_in);
10073   movl(op1, Address(in, 0));
10074   movl(sum, Address(out, offs, Address::times_4,  -4));
10075 
10076   movl(raxReg, k);
10077   mull(op1); //tmp4 * eax -> edx:eax
10078   addl(sum, carry);
10079   adcl(rdxReg, 0);
10080   addl(sum, raxReg);
10081   adcl(rdxReg, 0);
10082   movl(carry, rdxReg);
10083 
10084   movl(Address(out, offs, Address::times_4,  -4), sum);
10085 
10086   bind(L_carry);
10087   //return tmp5/carry as carry in rax
10088   movl(rax, carry);
10089 
10090   bind(L_done);
10091   pop(tmp5);
10092   pop(tmp4);
10093   pop(tmp3);
10094   pop(tmp2);
10095   pop(tmp1);
10096 }
10097 #endif
10098 
10099 /**
10100  * Emits code to update CRC-32 with a byte value according to constants in table
10101  *
10102  * @param [in,out]crc   Register containing the crc.
10103  * @param [in]val       Register containing the byte to fold into the CRC.
10104  * @param [in]table     Register containing the table of crc constants.
10105  *
10106  * uint32_t crc;
10107  * val = crc_table[(val ^ crc) & 0xFF];
10108  * crc = val ^ (crc >> 8);
10109  *
10110  */
10111 void MacroAssembler::update_byte_crc32(Register crc, Register val, Register table) {
10112   xorl(val, crc);
10113   andl(val, 0xFF);
10114   shrl(crc, 8); // unsigned shift
10115   xorl(crc, Address(table, val, Address::times_4, 0));
10116 }
10117 
10118 /**
10119  * Fold 128-bit data chunk
10120  */
10121 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, Register buf, int offset) {
10122   if (UseAVX > 0) {
10123     vpclmulhdq(xtmp, xK, xcrc); // [123:64]
10124     vpclmulldq(xcrc, xK, xcrc); // [63:0]
10125     vpxor(xcrc, xcrc, Address(buf, offset), 0 /* vector_len */);
10126     pxor(xcrc, xtmp);
10127   } else {
10128     movdqa(xtmp, xcrc);
10129     pclmulhdq(xtmp, xK);   // [123:64]
10130     pclmulldq(xcrc, xK);   // [63:0]
10131     pxor(xcrc, xtmp);
10132     movdqu(xtmp, Address(buf, offset));
10133     pxor(xcrc, xtmp);
10134   }
10135 }
10136 
10137 void MacroAssembler::fold_128bit_crc32(XMMRegister xcrc, XMMRegister xK, XMMRegister xtmp, XMMRegister xbuf) {
10138   if (UseAVX > 0) {
10139     vpclmulhdq(xtmp, xK, xcrc);
10140     vpclmulldq(xcrc, xK, xcrc);
10141     pxor(xcrc, xbuf);
10142     pxor(xcrc, xtmp);
10143   } else {
10144     movdqa(xtmp, xcrc);
10145     pclmulhdq(xtmp, xK);
10146     pclmulldq(xcrc, xK);
10147     pxor(xcrc, xbuf);
10148     pxor(xcrc, xtmp);
10149   }
10150 }
10151 
10152 /**
10153  * 8-bit folds to compute 32-bit CRC
10154  *
10155  * uint64_t xcrc;
10156  * timesXtoThe32[xcrc & 0xFF] ^ (xcrc >> 8);
10157  */
10158 void MacroAssembler::fold_8bit_crc32(XMMRegister xcrc, Register table, XMMRegister xtmp, Register tmp) {
10159   movdl(tmp, xcrc);
10160   andl(tmp, 0xFF);
10161   movdl(xtmp, Address(table, tmp, Address::times_4, 0));
10162   psrldq(xcrc, 1); // unsigned shift one byte
10163   pxor(xcrc, xtmp);
10164 }
10165 
10166 /**
10167  * uint32_t crc;
10168  * timesXtoThe32[crc & 0xFF] ^ (crc >> 8);
10169  */
10170 void MacroAssembler::fold_8bit_crc32(Register crc, Register table, Register tmp) {
10171   movl(tmp, crc);
10172   andl(tmp, 0xFF);
10173   shrl(crc, 8);
10174   xorl(crc, Address(table, tmp, Address::times_4, 0));
10175 }
10176 
10177 /**
10178  * @param crc   register containing existing CRC (32-bit)
10179  * @param buf   register pointing to input byte buffer (byte*)
10180  * @param len   register containing number of bytes
10181  * @param table register that will contain address of CRC table
10182  * @param tmp   scratch register
10183  */
10184 void MacroAssembler::kernel_crc32(Register crc, Register buf, Register len, Register table, Register tmp) {
10185   assert_different_registers(crc, buf, len, table, tmp, rax);
10186 
10187   Label L_tail, L_tail_restore, L_tail_loop, L_exit, L_align_loop, L_aligned;
10188   Label L_fold_tail, L_fold_128b, L_fold_512b, L_fold_512b_loop, L_fold_tail_loop;
10189 
10190   // For EVEX with VL and BW, provide a standard mask, VL = 128 will guide the merge
10191   // context for the registers used, where all instructions below are using 128-bit mode
10192   // On EVEX without VL and BW, these instructions will all be AVX.
10193   if (VM_Version::supports_avx512vlbw()) {
10194     movl(tmp, 0xffff);
10195     kmovwl(k1, tmp);
10196   }
10197 
10198   lea(table, ExternalAddress(StubRoutines::crc_table_addr()));
10199   notl(crc); // ~crc
10200   cmpl(len, 16);
10201   jcc(Assembler::less, L_tail);
10202 
10203   // Align buffer to 16 bytes
10204   movl(tmp, buf);
10205   andl(tmp, 0xF);
10206   jccb(Assembler::zero, L_aligned);
10207   subl(tmp,  16);
10208   addl(len, tmp);
10209 
10210   align(4);
10211   BIND(L_align_loop);
10212   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10213   update_byte_crc32(crc, rax, table);
10214   increment(buf);
10215   incrementl(tmp);
10216   jccb(Assembler::less, L_align_loop);
10217 
10218   BIND(L_aligned);
10219   movl(tmp, len); // save
10220   shrl(len, 4);
10221   jcc(Assembler::zero, L_tail_restore);
10222 
10223   // Fold crc into first bytes of vector
10224   movdqa(xmm1, Address(buf, 0));
10225   movdl(rax, xmm1);
10226   xorl(crc, rax);
10227   if (VM_Version::supports_sse4_1()) {
10228     pinsrd(xmm1, crc, 0);
10229   } else {
10230     pinsrw(xmm1, crc, 0);
10231     shrl(crc, 16);
10232     pinsrw(xmm1, crc, 1);
10233   }
10234   addptr(buf, 16);
10235   subl(len, 4); // len > 0
10236   jcc(Assembler::less, L_fold_tail);
10237 
10238   movdqa(xmm2, Address(buf,  0));
10239   movdqa(xmm3, Address(buf, 16));
10240   movdqa(xmm4, Address(buf, 32));
10241   addptr(buf, 48);
10242   subl(len, 3);
10243   jcc(Assembler::lessEqual, L_fold_512b);
10244 
10245   // Fold total 512 bits of polynomial on each iteration,
10246   // 128 bits per each of 4 parallel streams.
10247   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 32));
10248 
10249   align(32);
10250   BIND(L_fold_512b_loop);
10251   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10252   fold_128bit_crc32(xmm2, xmm0, xmm5, buf, 16);
10253   fold_128bit_crc32(xmm3, xmm0, xmm5, buf, 32);
10254   fold_128bit_crc32(xmm4, xmm0, xmm5, buf, 48);
10255   addptr(buf, 64);
10256   subl(len, 4);
10257   jcc(Assembler::greater, L_fold_512b_loop);
10258 
10259   // Fold 512 bits to 128 bits.
10260   BIND(L_fold_512b);
10261   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10262   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm2);
10263   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm3);
10264   fold_128bit_crc32(xmm1, xmm0, xmm5, xmm4);
10265 
10266   // Fold the rest of 128 bits data chunks
10267   BIND(L_fold_tail);
10268   addl(len, 3);
10269   jccb(Assembler::lessEqual, L_fold_128b);
10270   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr() + 16));
10271 
10272   BIND(L_fold_tail_loop);
10273   fold_128bit_crc32(xmm1, xmm0, xmm5, buf,  0);
10274   addptr(buf, 16);
10275   decrementl(len);
10276   jccb(Assembler::greater, L_fold_tail_loop);
10277 
10278   // Fold 128 bits in xmm1 down into 32 bits in crc register.
10279   BIND(L_fold_128b);
10280   movdqu(xmm0, ExternalAddress(StubRoutines::x86::crc_by128_masks_addr()));
10281   if (UseAVX > 0) {
10282     vpclmulqdq(xmm2, xmm0, xmm1, 0x1);
10283     vpand(xmm3, xmm0, xmm2, 0 /* vector_len */);
10284     vpclmulqdq(xmm0, xmm0, xmm3, 0x1);
10285   } else {
10286     movdqa(xmm2, xmm0);
10287     pclmulqdq(xmm2, xmm1, 0x1);
10288     movdqa(xmm3, xmm0);
10289     pand(xmm3, xmm2);
10290     pclmulqdq(xmm0, xmm3, 0x1);
10291   }
10292   psrldq(xmm1, 8);
10293   psrldq(xmm2, 4);
10294   pxor(xmm0, xmm1);
10295   pxor(xmm0, xmm2);
10296 
10297   // 8 8-bit folds to compute 32-bit CRC.
10298   for (int j = 0; j < 4; j++) {
10299     fold_8bit_crc32(xmm0, table, xmm1, rax);
10300   }
10301   movdl(crc, xmm0); // mov 32 bits to general register
10302   for (int j = 0; j < 4; j++) {
10303     fold_8bit_crc32(crc, table, rax);
10304   }
10305 
10306   BIND(L_tail_restore);
10307   movl(len, tmp); // restore
10308   BIND(L_tail);
10309   andl(len, 0xf);
10310   jccb(Assembler::zero, L_exit);
10311 
10312   // Fold the rest of bytes
10313   align(4);
10314   BIND(L_tail_loop);
10315   movsbl(rax, Address(buf, 0)); // load byte with sign extension
10316   update_byte_crc32(crc, rax, table);
10317   increment(buf);
10318   decrementl(len);
10319   jccb(Assembler::greater, L_tail_loop);
10320 
10321   BIND(L_exit);
10322   notl(crc); // ~c
10323 }
10324 
10325 #ifdef _LP64
10326 // S. Gueron / Information Processing Letters 112 (2012) 184
10327 // Algorithm 4: Computing carry-less multiplication using a precomputed lookup table.
10328 // Input: A 32 bit value B = [byte3, byte2, byte1, byte0].
10329 // Output: the 64-bit carry-less product of B * CONST
10330 void MacroAssembler::crc32c_ipl_alg4(Register in, uint32_t n,
10331                                      Register tmp1, Register tmp2, Register tmp3) {
10332   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10333   if (n > 0) {
10334     addq(tmp3, n * 256 * 8);
10335   }
10336   //    Q1 = TABLEExt[n][B & 0xFF];
10337   movl(tmp1, in);
10338   andl(tmp1, 0x000000FF);
10339   shll(tmp1, 3);
10340   addq(tmp1, tmp3);
10341   movq(tmp1, Address(tmp1, 0));
10342 
10343   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10344   movl(tmp2, in);
10345   shrl(tmp2, 8);
10346   andl(tmp2, 0x000000FF);
10347   shll(tmp2, 3);
10348   addq(tmp2, tmp3);
10349   movq(tmp2, Address(tmp2, 0));
10350 
10351   shlq(tmp2, 8);
10352   xorq(tmp1, tmp2);
10353 
10354   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10355   movl(tmp2, in);
10356   shrl(tmp2, 16);
10357   andl(tmp2, 0x000000FF);
10358   shll(tmp2, 3);
10359   addq(tmp2, tmp3);
10360   movq(tmp2, Address(tmp2, 0));
10361 
10362   shlq(tmp2, 16);
10363   xorq(tmp1, tmp2);
10364 
10365   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10366   shrl(in, 24);
10367   andl(in, 0x000000FF);
10368   shll(in, 3);
10369   addq(in, tmp3);
10370   movq(in, Address(in, 0));
10371 
10372   shlq(in, 24);
10373   xorq(in, tmp1);
10374   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10375 }
10376 
10377 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10378                                       Register in_out,
10379                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10380                                       XMMRegister w_xtmp2,
10381                                       Register tmp1,
10382                                       Register n_tmp2, Register n_tmp3) {
10383   if (is_pclmulqdq_supported) {
10384     movdl(w_xtmp1, in_out); // modified blindly
10385 
10386     movl(tmp1, const_or_pre_comp_const_index);
10387     movdl(w_xtmp2, tmp1);
10388     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10389 
10390     movdq(in_out, w_xtmp1);
10391   } else {
10392     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3);
10393   }
10394 }
10395 
10396 // Recombination Alternative 2: No bit-reflections
10397 // T1 = (CRC_A * U1) << 1
10398 // T2 = (CRC_B * U2) << 1
10399 // C1 = T1 >> 32
10400 // C2 = T2 >> 32
10401 // T1 = T1 & 0xFFFFFFFF
10402 // T2 = T2 & 0xFFFFFFFF
10403 // T1 = CRC32(0, T1)
10404 // T2 = CRC32(0, T2)
10405 // C1 = C1 ^ T1
10406 // C2 = C2 ^ T2
10407 // CRC = C1 ^ C2 ^ CRC_C
10408 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10409                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10410                                      Register tmp1, Register tmp2,
10411                                      Register n_tmp3) {
10412   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10413   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10414   shlq(in_out, 1);
10415   movl(tmp1, in_out);
10416   shrq(in_out, 32);
10417   xorl(tmp2, tmp2);
10418   crc32(tmp2, tmp1, 4);
10419   xorl(in_out, tmp2); // we don't care about upper 32 bit contents here
10420   shlq(in1, 1);
10421   movl(tmp1, in1);
10422   shrq(in1, 32);
10423   xorl(tmp2, tmp2);
10424   crc32(tmp2, tmp1, 4);
10425   xorl(in1, tmp2);
10426   xorl(in_out, in1);
10427   xorl(in_out, in2);
10428 }
10429 
10430 // Set N to predefined value
10431 // Subtract from a lenght of a buffer
10432 // execute in a loop:
10433 // CRC_A = 0xFFFFFFFF, CRC_B = 0, CRC_C = 0
10434 // for i = 1 to N do
10435 //  CRC_A = CRC32(CRC_A, A[i])
10436 //  CRC_B = CRC32(CRC_B, B[i])
10437 //  CRC_C = CRC32(CRC_C, C[i])
10438 // end for
10439 // Recombine
10440 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10441                                        Register in_out1, Register in_out2, Register in_out3,
10442                                        Register tmp1, Register tmp2, Register tmp3,
10443                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10444                                        Register tmp4, Register tmp5,
10445                                        Register n_tmp6) {
10446   Label L_processPartitions;
10447   Label L_processPartition;
10448   Label L_exit;
10449 
10450   bind(L_processPartitions);
10451   cmpl(in_out1, 3 * size);
10452   jcc(Assembler::less, L_exit);
10453     xorl(tmp1, tmp1);
10454     xorl(tmp2, tmp2);
10455     movq(tmp3, in_out2);
10456     addq(tmp3, size);
10457 
10458     bind(L_processPartition);
10459       crc32(in_out3, Address(in_out2, 0), 8);
10460       crc32(tmp1, Address(in_out2, size), 8);
10461       crc32(tmp2, Address(in_out2, size * 2), 8);
10462       addq(in_out2, 8);
10463       cmpq(in_out2, tmp3);
10464       jcc(Assembler::less, L_processPartition);
10465     crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10466             w_xtmp1, w_xtmp2, w_xtmp3,
10467             tmp4, tmp5,
10468             n_tmp6);
10469     addq(in_out2, 2 * size);
10470     subl(in_out1, 3 * size);
10471     jmp(L_processPartitions);
10472 
10473   bind(L_exit);
10474 }
10475 #else
10476 void MacroAssembler::crc32c_ipl_alg4(Register in_out, uint32_t n,
10477                                      Register tmp1, Register tmp2, Register tmp3,
10478                                      XMMRegister xtmp1, XMMRegister xtmp2) {
10479   lea(tmp3, ExternalAddress(StubRoutines::crc32c_table_addr()));
10480   if (n > 0) {
10481     addl(tmp3, n * 256 * 8);
10482   }
10483   //    Q1 = TABLEExt[n][B & 0xFF];
10484   movl(tmp1, in_out);
10485   andl(tmp1, 0x000000FF);
10486   shll(tmp1, 3);
10487   addl(tmp1, tmp3);
10488   movq(xtmp1, Address(tmp1, 0));
10489 
10490   //    Q2 = TABLEExt[n][B >> 8 & 0xFF];
10491   movl(tmp2, in_out);
10492   shrl(tmp2, 8);
10493   andl(tmp2, 0x000000FF);
10494   shll(tmp2, 3);
10495   addl(tmp2, tmp3);
10496   movq(xtmp2, Address(tmp2, 0));
10497 
10498   psllq(xtmp2, 8);
10499   pxor(xtmp1, xtmp2);
10500 
10501   //    Q3 = TABLEExt[n][B >> 16 & 0xFF];
10502   movl(tmp2, in_out);
10503   shrl(tmp2, 16);
10504   andl(tmp2, 0x000000FF);
10505   shll(tmp2, 3);
10506   addl(tmp2, tmp3);
10507   movq(xtmp2, Address(tmp2, 0));
10508 
10509   psllq(xtmp2, 16);
10510   pxor(xtmp1, xtmp2);
10511 
10512   //    Q4 = TABLEExt[n][B >> 24 & 0xFF];
10513   shrl(in_out, 24);
10514   andl(in_out, 0x000000FF);
10515   shll(in_out, 3);
10516   addl(in_out, tmp3);
10517   movq(xtmp2, Address(in_out, 0));
10518 
10519   psllq(xtmp2, 24);
10520   pxor(xtmp1, xtmp2); // Result in CXMM
10521   //    return Q1 ^ Q2 << 8 ^ Q3 << 16 ^ Q4 << 24;
10522 }
10523 
10524 void MacroAssembler::crc32c_pclmulqdq(XMMRegister w_xtmp1,
10525                                       Register in_out,
10526                                       uint32_t const_or_pre_comp_const_index, bool is_pclmulqdq_supported,
10527                                       XMMRegister w_xtmp2,
10528                                       Register tmp1,
10529                                       Register n_tmp2, Register n_tmp3) {
10530   if (is_pclmulqdq_supported) {
10531     movdl(w_xtmp1, in_out);
10532 
10533     movl(tmp1, const_or_pre_comp_const_index);
10534     movdl(w_xtmp2, tmp1);
10535     pclmulqdq(w_xtmp1, w_xtmp2, 0);
10536     // Keep result in XMM since GPR is 32 bit in length
10537   } else {
10538     crc32c_ipl_alg4(in_out, const_or_pre_comp_const_index, tmp1, n_tmp2, n_tmp3, w_xtmp1, w_xtmp2);
10539   }
10540 }
10541 
10542 void MacroAssembler::crc32c_rec_alt2(uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported, Register in_out, Register in1, Register in2,
10543                                      XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10544                                      Register tmp1, Register tmp2,
10545                                      Register n_tmp3) {
10546   crc32c_pclmulqdq(w_xtmp1, in_out, const_or_pre_comp_const_index_u1, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10547   crc32c_pclmulqdq(w_xtmp2, in1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, w_xtmp3, tmp1, tmp2, n_tmp3);
10548 
10549   psllq(w_xtmp1, 1);
10550   movdl(tmp1, w_xtmp1);
10551   psrlq(w_xtmp1, 32);
10552   movdl(in_out, w_xtmp1);
10553 
10554   xorl(tmp2, tmp2);
10555   crc32(tmp2, tmp1, 4);
10556   xorl(in_out, tmp2);
10557 
10558   psllq(w_xtmp2, 1);
10559   movdl(tmp1, w_xtmp2);
10560   psrlq(w_xtmp2, 32);
10561   movdl(in1, w_xtmp2);
10562 
10563   xorl(tmp2, tmp2);
10564   crc32(tmp2, tmp1, 4);
10565   xorl(in1, tmp2);
10566   xorl(in_out, in1);
10567   xorl(in_out, in2);
10568 }
10569 
10570 void MacroAssembler::crc32c_proc_chunk(uint32_t size, uint32_t const_or_pre_comp_const_index_u1, uint32_t const_or_pre_comp_const_index_u2, bool is_pclmulqdq_supported,
10571                                        Register in_out1, Register in_out2, Register in_out3,
10572                                        Register tmp1, Register tmp2, Register tmp3,
10573                                        XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10574                                        Register tmp4, Register tmp5,
10575                                        Register n_tmp6) {
10576   Label L_processPartitions;
10577   Label L_processPartition;
10578   Label L_exit;
10579 
10580   bind(L_processPartitions);
10581   cmpl(in_out1, 3 * size);
10582   jcc(Assembler::less, L_exit);
10583     xorl(tmp1, tmp1);
10584     xorl(tmp2, tmp2);
10585     movl(tmp3, in_out2);
10586     addl(tmp3, size);
10587 
10588     bind(L_processPartition);
10589       crc32(in_out3, Address(in_out2, 0), 4);
10590       crc32(tmp1, Address(in_out2, size), 4);
10591       crc32(tmp2, Address(in_out2, size*2), 4);
10592       crc32(in_out3, Address(in_out2, 0+4), 4);
10593       crc32(tmp1, Address(in_out2, size+4), 4);
10594       crc32(tmp2, Address(in_out2, size*2+4), 4);
10595       addl(in_out2, 8);
10596       cmpl(in_out2, tmp3);
10597       jcc(Assembler::less, L_processPartition);
10598 
10599         push(tmp3);
10600         push(in_out1);
10601         push(in_out2);
10602         tmp4 = tmp3;
10603         tmp5 = in_out1;
10604         n_tmp6 = in_out2;
10605 
10606       crc32c_rec_alt2(const_or_pre_comp_const_index_u1, const_or_pre_comp_const_index_u2, is_pclmulqdq_supported, in_out3, tmp1, tmp2,
10607             w_xtmp1, w_xtmp2, w_xtmp3,
10608             tmp4, tmp5,
10609             n_tmp6);
10610 
10611         pop(in_out2);
10612         pop(in_out1);
10613         pop(tmp3);
10614 
10615     addl(in_out2, 2 * size);
10616     subl(in_out1, 3 * size);
10617     jmp(L_processPartitions);
10618 
10619   bind(L_exit);
10620 }
10621 #endif //LP64
10622 
10623 #ifdef _LP64
10624 // Algorithm 2: Pipelined usage of the CRC32 instruction.
10625 // Input: A buffer I of L bytes.
10626 // Output: the CRC32C value of the buffer.
10627 // Notations:
10628 // Write L = 24N + r, with N = floor (L/24).
10629 // r = L mod 24 (0 <= r < 24).
10630 // Consider I as the concatenation of A|B|C|R, where A, B, C, each,
10631 // N quadwords, and R consists of r bytes.
10632 // A[j] = I [8j+7:8j], j= 0, 1, ..., N-1
10633 // B[j] = I [N + 8j+7:N + 8j], j= 0, 1, ..., N-1
10634 // C[j] = I [2N + 8j+7:2N + 8j], j= 0, 1, ..., N-1
10635 // if r > 0 R[j] = I [3N +j], j= 0, 1, ...,r-1
10636 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10637                                           Register tmp1, Register tmp2, Register tmp3,
10638                                           Register tmp4, Register tmp5, Register tmp6,
10639                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10640                                           bool is_pclmulqdq_supported) {
10641   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10642   Label L_wordByWord;
10643   Label L_byteByByteProlog;
10644   Label L_byteByByte;
10645   Label L_exit;
10646 
10647   if (is_pclmulqdq_supported ) {
10648     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10649     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr+1);
10650 
10651     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10652     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10653 
10654     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10655     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10656     assert((CRC32C_NUM_PRECOMPUTED_CONSTANTS - 1 ) == 5, "Checking whether you declared all of the constants based on the number of \"chunks\"");
10657   } else {
10658     const_or_pre_comp_const_index[0] = 1;
10659     const_or_pre_comp_const_index[1] = 0;
10660 
10661     const_or_pre_comp_const_index[2] = 3;
10662     const_or_pre_comp_const_index[3] = 2;
10663 
10664     const_or_pre_comp_const_index[4] = 5;
10665     const_or_pre_comp_const_index[5] = 4;
10666    }
10667   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10668                     in2, in1, in_out,
10669                     tmp1, tmp2, tmp3,
10670                     w_xtmp1, w_xtmp2, w_xtmp3,
10671                     tmp4, tmp5,
10672                     tmp6);
10673   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10674                     in2, in1, in_out,
10675                     tmp1, tmp2, tmp3,
10676                     w_xtmp1, w_xtmp2, w_xtmp3,
10677                     tmp4, tmp5,
10678                     tmp6);
10679   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10680                     in2, in1, in_out,
10681                     tmp1, tmp2, tmp3,
10682                     w_xtmp1, w_xtmp2, w_xtmp3,
10683                     tmp4, tmp5,
10684                     tmp6);
10685   movl(tmp1, in2);
10686   andl(tmp1, 0x00000007);
10687   negl(tmp1);
10688   addl(tmp1, in2);
10689   addq(tmp1, in1);
10690 
10691   BIND(L_wordByWord);
10692   cmpq(in1, tmp1);
10693   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10694     crc32(in_out, Address(in1, 0), 4);
10695     addq(in1, 4);
10696     jmp(L_wordByWord);
10697 
10698   BIND(L_byteByByteProlog);
10699   andl(in2, 0x00000007);
10700   movl(tmp2, 1);
10701 
10702   BIND(L_byteByByte);
10703   cmpl(tmp2, in2);
10704   jccb(Assembler::greater, L_exit);
10705     crc32(in_out, Address(in1, 0), 1);
10706     incq(in1);
10707     incl(tmp2);
10708     jmp(L_byteByByte);
10709 
10710   BIND(L_exit);
10711 }
10712 #else
10713 void MacroAssembler::crc32c_ipl_alg2_alt2(Register in_out, Register in1, Register in2,
10714                                           Register tmp1, Register  tmp2, Register tmp3,
10715                                           Register tmp4, Register  tmp5, Register tmp6,
10716                                           XMMRegister w_xtmp1, XMMRegister w_xtmp2, XMMRegister w_xtmp3,
10717                                           bool is_pclmulqdq_supported) {
10718   uint32_t const_or_pre_comp_const_index[CRC32C_NUM_PRECOMPUTED_CONSTANTS];
10719   Label L_wordByWord;
10720   Label L_byteByByteProlog;
10721   Label L_byteByByte;
10722   Label L_exit;
10723 
10724   if (is_pclmulqdq_supported) {
10725     const_or_pre_comp_const_index[1] = *(uint32_t *)StubRoutines::_crc32c_table_addr;
10726     const_or_pre_comp_const_index[0] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 1);
10727 
10728     const_or_pre_comp_const_index[3] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 2);
10729     const_or_pre_comp_const_index[2] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 3);
10730 
10731     const_or_pre_comp_const_index[5] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 4);
10732     const_or_pre_comp_const_index[4] = *((uint32_t *)StubRoutines::_crc32c_table_addr + 5);
10733   } else {
10734     const_or_pre_comp_const_index[0] = 1;
10735     const_or_pre_comp_const_index[1] = 0;
10736 
10737     const_or_pre_comp_const_index[2] = 3;
10738     const_or_pre_comp_const_index[3] = 2;
10739 
10740     const_or_pre_comp_const_index[4] = 5;
10741     const_or_pre_comp_const_index[5] = 4;
10742   }
10743   crc32c_proc_chunk(CRC32C_HIGH, const_or_pre_comp_const_index[0], const_or_pre_comp_const_index[1], is_pclmulqdq_supported,
10744                     in2, in1, in_out,
10745                     tmp1, tmp2, tmp3,
10746                     w_xtmp1, w_xtmp2, w_xtmp3,
10747                     tmp4, tmp5,
10748                     tmp6);
10749   crc32c_proc_chunk(CRC32C_MIDDLE, const_or_pre_comp_const_index[2], const_or_pre_comp_const_index[3], is_pclmulqdq_supported,
10750                     in2, in1, in_out,
10751                     tmp1, tmp2, tmp3,
10752                     w_xtmp1, w_xtmp2, w_xtmp3,
10753                     tmp4, tmp5,
10754                     tmp6);
10755   crc32c_proc_chunk(CRC32C_LOW, const_or_pre_comp_const_index[4], const_or_pre_comp_const_index[5], is_pclmulqdq_supported,
10756                     in2, in1, in_out,
10757                     tmp1, tmp2, tmp3,
10758                     w_xtmp1, w_xtmp2, w_xtmp3,
10759                     tmp4, tmp5,
10760                     tmp6);
10761   movl(tmp1, in2);
10762   andl(tmp1, 0x00000007);
10763   negl(tmp1);
10764   addl(tmp1, in2);
10765   addl(tmp1, in1);
10766 
10767   BIND(L_wordByWord);
10768   cmpl(in1, tmp1);
10769   jcc(Assembler::greaterEqual, L_byteByByteProlog);
10770     crc32(in_out, Address(in1,0), 4);
10771     addl(in1, 4);
10772     jmp(L_wordByWord);
10773 
10774   BIND(L_byteByByteProlog);
10775   andl(in2, 0x00000007);
10776   movl(tmp2, 1);
10777 
10778   BIND(L_byteByByte);
10779   cmpl(tmp2, in2);
10780   jccb(Assembler::greater, L_exit);
10781     movb(tmp1, Address(in1, 0));
10782     crc32(in_out, tmp1, 1);
10783     incl(in1);
10784     incl(tmp2);
10785     jmp(L_byteByByte);
10786 
10787   BIND(L_exit);
10788 }
10789 #endif // LP64
10790 #undef BIND
10791 #undef BLOCK_COMMENT
10792 
10793 // Compress char[] array to byte[].
10794 //   ..\jdk\src\java.base\share\classes\java\lang\StringUTF16.java
10795 //   @HotSpotIntrinsicCandidate
10796 //   private static int compress(char[] src, int srcOff, byte[] dst, int dstOff, int len) {
10797 //     for (int i = 0; i < len; i++) {
10798 //       int c = src[srcOff++];
10799 //       if (c >>> 8 != 0) {
10800 //         return 0;
10801 //       }
10802 //       dst[dstOff++] = (byte)c;
10803 //     }
10804 //     return len;
10805 //   }
10806 void MacroAssembler::char_array_compress(Register src, Register dst, Register len,
10807   XMMRegister tmp1Reg, XMMRegister tmp2Reg,
10808   XMMRegister tmp3Reg, XMMRegister tmp4Reg,
10809   Register tmp5, Register result) {
10810   Label copy_chars_loop, return_length, return_zero, done, below_threshold;
10811 
10812   // rsi: src
10813   // rdi: dst
10814   // rdx: len
10815   // rcx: tmp5
10816   // rax: result
10817 
10818   // rsi holds start addr of source char[] to be compressed
10819   // rdi holds start addr of destination byte[]
10820   // rdx holds length
10821 
10822   assert(len != result, "");
10823 
10824   // save length for return
10825   push(len);
10826 
10827   if ((UseAVX > 2) && // AVX512
10828     VM_Version::supports_avx512vlbw() &&
10829     VM_Version::supports_bmi2()) {
10830 
10831     set_vector_masking();  // opening of the stub context for programming mask registers
10832 
10833     Label copy_32_loop, copy_loop_tail, restore_k1_return_zero;
10834 
10835     // alignement
10836     Label post_alignement;
10837 
10838     // if length of the string is less than 16, handle it in an old fashioned
10839     // way
10840     testl(len, -32);
10841     jcc(Assembler::zero, below_threshold);
10842 
10843     // First check whether a character is compressable ( <= 0xFF).
10844     // Create mask to test for Unicode chars inside zmm vector
10845     movl(result, 0x00FF);
10846     evpbroadcastw(tmp2Reg, result, Assembler::AVX_512bit);
10847 
10848     // Save k1
10849     kmovql(k3, k1);
10850 
10851     testl(len, -64);
10852     jcc(Assembler::zero, post_alignement);
10853 
10854     movl(tmp5, dst);
10855     andl(tmp5, (32 - 1));
10856     negl(tmp5);
10857     andl(tmp5, (32 - 1));
10858 
10859     // bail out when there is nothing to be done
10860     testl(tmp5, 0xFFFFFFFF);
10861     jcc(Assembler::zero, post_alignement);
10862 
10863     // ~(~0 << len), where len is the # of remaining elements to process
10864     movl(result, 0xFFFFFFFF);
10865     shlxl(result, result, tmp5);
10866     notl(result);
10867     kmovdl(k1, result);
10868 
10869     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10870     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10871     ktestd(k2, k1);
10872     jcc(Assembler::carryClear, restore_k1_return_zero);
10873 
10874     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10875 
10876     addptr(src, tmp5);
10877     addptr(src, tmp5);
10878     addptr(dst, tmp5);
10879     subl(len, tmp5);
10880 
10881     bind(post_alignement);
10882     // end of alignement
10883 
10884     movl(tmp5, len);
10885     andl(tmp5, (32 - 1));    // tail count (in chars)
10886     andl(len, ~(32 - 1));    // vector count (in chars)
10887     jcc(Assembler::zero, copy_loop_tail);
10888 
10889     lea(src, Address(src, len, Address::times_2));
10890     lea(dst, Address(dst, len, Address::times_1));
10891     negptr(len);
10892 
10893     bind(copy_32_loop);
10894     evmovdquw(tmp1Reg, Address(src, len, Address::times_2), Assembler::AVX_512bit);
10895     evpcmpuw(k2, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10896     kortestdl(k2, k2);
10897     jcc(Assembler::carryClear, restore_k1_return_zero);
10898 
10899     // All elements in current processed chunk are valid candidates for
10900     // compression. Write a truncated byte elements to the memory.
10901     evpmovwb(Address(dst, len, Address::times_1), tmp1Reg, Assembler::AVX_512bit);
10902     addptr(len, 32);
10903     jcc(Assembler::notZero, copy_32_loop);
10904 
10905     bind(copy_loop_tail);
10906     // bail out when there is nothing to be done
10907     testl(tmp5, 0xFFFFFFFF);
10908     // Restore k1
10909     kmovql(k1, k3);
10910     jcc(Assembler::zero, return_length);
10911 
10912     movl(len, tmp5);
10913 
10914     // ~(~0 << len), where len is the # of remaining elements to process
10915     movl(result, 0xFFFFFFFF);
10916     shlxl(result, result, len);
10917     notl(result);
10918 
10919     kmovdl(k1, result);
10920 
10921     evmovdquw(tmp1Reg, k1, Address(src, 0), Assembler::AVX_512bit);
10922     evpcmpuw(k2, k1, tmp1Reg, tmp2Reg, Assembler::le, Assembler::AVX_512bit);
10923     ktestd(k2, k1);
10924     jcc(Assembler::carryClear, restore_k1_return_zero);
10925 
10926     evpmovwb(Address(dst, 0), k1, tmp1Reg, Assembler::AVX_512bit);
10927     // Restore k1
10928     kmovql(k1, k3);
10929     jmp(return_length);
10930 
10931     bind(restore_k1_return_zero);
10932     // Restore k1
10933     kmovql(k1, k3);
10934     jmp(return_zero);
10935 
10936     clear_vector_masking();   // closing of the stub context for programming mask registers
10937   }
10938   if (UseSSE42Intrinsics) {
10939     Label copy_32_loop, copy_16, copy_tail;
10940 
10941     bind(below_threshold);
10942 
10943     movl(result, len);
10944 
10945     movl(tmp5, 0xff00ff00);   // create mask to test for Unicode chars in vectors
10946 
10947     // vectored compression
10948     andl(len, 0xfffffff0);    // vector count (in chars)
10949     andl(result, 0x0000000f);    // tail count (in chars)
10950     testl(len, len);
10951     jccb(Assembler::zero, copy_16);
10952 
10953     // compress 16 chars per iter
10954     movdl(tmp1Reg, tmp5);
10955     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10956     pxor(tmp4Reg, tmp4Reg);
10957 
10958     lea(src, Address(src, len, Address::times_2));
10959     lea(dst, Address(dst, len, Address::times_1));
10960     negptr(len);
10961 
10962     bind(copy_32_loop);
10963     movdqu(tmp2Reg, Address(src, len, Address::times_2));     // load 1st 8 characters
10964     por(tmp4Reg, tmp2Reg);
10965     movdqu(tmp3Reg, Address(src, len, Address::times_2, 16)); // load next 8 characters
10966     por(tmp4Reg, tmp3Reg);
10967     ptest(tmp4Reg, tmp1Reg);       // check for Unicode chars in next vector
10968     jcc(Assembler::notZero, return_zero);
10969     packuswb(tmp2Reg, tmp3Reg);    // only ASCII chars; compress each to 1 byte
10970     movdqu(Address(dst, len, Address::times_1), tmp2Reg);
10971     addptr(len, 16);
10972     jcc(Assembler::notZero, copy_32_loop);
10973 
10974     // compress next vector of 8 chars (if any)
10975     bind(copy_16);
10976     movl(len, result);
10977     andl(len, 0xfffffff8);    // vector count (in chars)
10978     andl(result, 0x00000007);    // tail count (in chars)
10979     testl(len, len);
10980     jccb(Assembler::zero, copy_tail);
10981 
10982     movdl(tmp1Reg, tmp5);
10983     pshufd(tmp1Reg, tmp1Reg, 0);   // store Unicode mask in tmp1Reg
10984     pxor(tmp3Reg, tmp3Reg);
10985 
10986     movdqu(tmp2Reg, Address(src, 0));
10987     ptest(tmp2Reg, tmp1Reg);       // check for Unicode chars in vector
10988     jccb(Assembler::notZero, return_zero);
10989     packuswb(tmp2Reg, tmp3Reg);    // only LATIN1 chars; compress each to 1 byte
10990     movq(Address(dst, 0), tmp2Reg);
10991     addptr(src, 16);
10992     addptr(dst, 8);
10993 
10994     bind(copy_tail);
10995     movl(len, result);
10996   }
10997   // compress 1 char per iter
10998   testl(len, len);
10999   jccb(Assembler::zero, return_length);
11000   lea(src, Address(src, len, Address::times_2));
11001   lea(dst, Address(dst, len, Address::times_1));
11002   negptr(len);
11003 
11004   bind(copy_chars_loop);
11005   load_unsigned_short(result, Address(src, len, Address::times_2));
11006   testl(result, 0xff00);      // check if Unicode char
11007   jccb(Assembler::notZero, return_zero);
11008   movb(Address(dst, len, Address::times_1), result);  // ASCII char; compress to 1 byte
11009   increment(len);
11010   jcc(Assembler::notZero, copy_chars_loop);
11011 
11012   // if compression succeeded, return length
11013   bind(return_length);
11014   pop(result);
11015   jmpb(done);
11016 
11017   // if compression failed, return 0
11018   bind(return_zero);
11019   xorl(result, result);
11020   addptr(rsp, wordSize);
11021 
11022   bind(done);
11023 }
11024 
11025 // Inflate byte[] array to char[].
11026 //   ..\jdk\src\java.base\share\classes\java\lang\StringLatin1.java
11027 //   @HotSpotIntrinsicCandidate
11028 //   private static void inflate(byte[] src, int srcOff, char[] dst, int dstOff, int len) {
11029 //     for (int i = 0; i < len; i++) {
11030 //       dst[dstOff++] = (char)(src[srcOff++] & 0xff);
11031 //     }
11032 //   }
11033 void MacroAssembler::byte_array_inflate(Register src, Register dst, Register len,
11034   XMMRegister tmp1, Register tmp2) {
11035   Label copy_chars_loop, done, below_threshold;
11036   // rsi: src
11037   // rdi: dst
11038   // rdx: len
11039   // rcx: tmp2
11040 
11041   // rsi holds start addr of source byte[] to be inflated
11042   // rdi holds start addr of destination char[]
11043   // rdx holds length
11044   assert_different_registers(src, dst, len, tmp2);
11045 
11046   if ((UseAVX > 2) && // AVX512
11047     VM_Version::supports_avx512vlbw() &&
11048     VM_Version::supports_bmi2()) {
11049 
11050     set_vector_masking();  // opening of the stub context for programming mask registers
11051 
11052     Label copy_32_loop, copy_tail;
11053     Register tmp3_aliased = len;
11054 
11055     // if length of the string is less than 16, handle it in an old fashioned
11056     // way
11057     testl(len, -16);
11058     jcc(Assembler::zero, below_threshold);
11059 
11060     // In order to use only one arithmetic operation for the main loop we use
11061     // this pre-calculation
11062     movl(tmp2, len);
11063     andl(tmp2, (32 - 1)); // tail count (in chars), 32 element wide loop
11064     andl(len, -32);     // vector count
11065     jccb(Assembler::zero, copy_tail);
11066 
11067     lea(src, Address(src, len, Address::times_1));
11068     lea(dst, Address(dst, len, Address::times_2));
11069     negptr(len);
11070 
11071 
11072     // inflate 32 chars per iter
11073     bind(copy_32_loop);
11074     vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_512bit);
11075     evmovdquw(Address(dst, len, Address::times_2), tmp1, Assembler::AVX_512bit);
11076     addptr(len, 32);
11077     jcc(Assembler::notZero, copy_32_loop);
11078 
11079     bind(copy_tail);
11080     // bail out when there is nothing to be done
11081     testl(tmp2, -1); // we don't destroy the contents of tmp2 here
11082     jcc(Assembler::zero, done);
11083 
11084     // Save k1
11085     kmovql(k2, k1);
11086 
11087     // ~(~0 << length), where length is the # of remaining elements to process
11088     movl(tmp3_aliased, -1);
11089     shlxl(tmp3_aliased, tmp3_aliased, tmp2);
11090     notl(tmp3_aliased);
11091     kmovdl(k1, tmp3_aliased);
11092     evpmovzxbw(tmp1, k1, Address(src, 0), Assembler::AVX_512bit);
11093     evmovdquw(Address(dst, 0), k1, tmp1, Assembler::AVX_512bit);
11094 
11095     // Restore k1
11096     kmovql(k1, k2);
11097     jmp(done);
11098 
11099     clear_vector_masking();   // closing of the stub context for programming mask registers
11100   }
11101   if (UseSSE42Intrinsics) {
11102     Label copy_16_loop, copy_8_loop, copy_bytes, copy_new_tail, copy_tail;
11103 
11104     movl(tmp2, len);
11105 
11106     if (UseAVX > 1) {
11107       andl(tmp2, (16 - 1));
11108       andl(len, -16);
11109       jccb(Assembler::zero, copy_new_tail);
11110     } else {
11111       andl(tmp2, 0x00000007);   // tail count (in chars)
11112       andl(len, 0xfffffff8);    // vector count (in chars)
11113       jccb(Assembler::zero, copy_tail);
11114     }
11115 
11116     // vectored inflation
11117     lea(src, Address(src, len, Address::times_1));
11118     lea(dst, Address(dst, len, Address::times_2));
11119     negptr(len);
11120 
11121     if (UseAVX > 1) {
11122       bind(copy_16_loop);
11123       vpmovzxbw(tmp1, Address(src, len, Address::times_1), Assembler::AVX_256bit);
11124       vmovdqu(Address(dst, len, Address::times_2), tmp1);
11125       addptr(len, 16);
11126       jcc(Assembler::notZero, copy_16_loop);
11127 
11128       bind(below_threshold);
11129       bind(copy_new_tail);
11130       if ((UseAVX > 2) &&
11131         VM_Version::supports_avx512vlbw() &&
11132         VM_Version::supports_bmi2()) {
11133         movl(tmp2, len);
11134       } else {
11135         movl(len, tmp2);
11136       }
11137       andl(tmp2, 0x00000007);
11138       andl(len, 0xFFFFFFF8);
11139       jccb(Assembler::zero, copy_tail);
11140 
11141       pmovzxbw(tmp1, Address(src, 0));
11142       movdqu(Address(dst, 0), tmp1);
11143       addptr(src, 8);
11144       addptr(dst, 2 * 8);
11145 
11146       jmp(copy_tail, true);
11147     }
11148 
11149     // inflate 8 chars per iter
11150     bind(copy_8_loop);
11151     pmovzxbw(tmp1, Address(src, len, Address::times_1));  // unpack to 8 words
11152     movdqu(Address(dst, len, Address::times_2), tmp1);
11153     addptr(len, 8);
11154     jcc(Assembler::notZero, copy_8_loop);
11155 
11156     bind(copy_tail);
11157     movl(len, tmp2);
11158 
11159     cmpl(len, 4);
11160     jccb(Assembler::less, copy_bytes);
11161 
11162     movdl(tmp1, Address(src, 0));  // load 4 byte chars
11163     pmovzxbw(tmp1, tmp1);
11164     movq(Address(dst, 0), tmp1);
11165     subptr(len, 4);
11166     addptr(src, 4);
11167     addptr(dst, 8);
11168 
11169     bind(copy_bytes);
11170   }
11171   testl(len, len);
11172   jccb(Assembler::zero, done);
11173   lea(src, Address(src, len, Address::times_1));
11174   lea(dst, Address(dst, len, Address::times_2));
11175   negptr(len);
11176 
11177   // inflate 1 char per iter
11178   bind(copy_chars_loop);
11179   load_unsigned_byte(tmp2, Address(src, len, Address::times_1));  // load byte char
11180   movw(Address(dst, len, Address::times_2), tmp2);  // inflate byte char to word
11181   increment(len);
11182   jcc(Assembler::notZero, copy_chars_loop);
11183 
11184   bind(done);
11185 }
11186 
11187 Assembler::Condition MacroAssembler::negate_condition(Assembler::Condition cond) {
11188   switch (cond) {
11189     // Note some conditions are synonyms for others
11190     case Assembler::zero:         return Assembler::notZero;
11191     case Assembler::notZero:      return Assembler::zero;
11192     case Assembler::less:         return Assembler::greaterEqual;
11193     case Assembler::lessEqual:    return Assembler::greater;
11194     case Assembler::greater:      return Assembler::lessEqual;
11195     case Assembler::greaterEqual: return Assembler::less;
11196     case Assembler::below:        return Assembler::aboveEqual;
11197     case Assembler::belowEqual:   return Assembler::above;
11198     case Assembler::above:        return Assembler::belowEqual;
11199     case Assembler::aboveEqual:   return Assembler::below;
11200     case Assembler::overflow:     return Assembler::noOverflow;
11201     case Assembler::noOverflow:   return Assembler::overflow;
11202     case Assembler::negative:     return Assembler::positive;
11203     case Assembler::positive:     return Assembler::negative;
11204     case Assembler::parity:       return Assembler::noParity;
11205     case Assembler::noParity:     return Assembler::parity;
11206   }
11207   ShouldNotReachHere(); return Assembler::overflow;
11208 }
11209 
11210 SkipIfEqual::SkipIfEqual(
11211     MacroAssembler* masm, const bool* flag_addr, bool value) {
11212   _masm = masm;
11213   _masm->cmp8(ExternalAddress((address)flag_addr), value);
11214   _masm->jcc(Assembler::equal, _label);
11215 }
11216 
11217 SkipIfEqual::~SkipIfEqual() {
11218   _masm->bind(_label);
11219 }
11220 
11221 // 32-bit Windows has its own fast-path implementation
11222 // of get_thread
11223 #if !defined(WIN32) || defined(_LP64)
11224 
11225 // This is simply a call to Thread::current()
11226 void MacroAssembler::get_thread(Register thread) {
11227   if (thread != rax) {
11228     push(rax);
11229   }
11230   LP64_ONLY(push(rdi);)
11231   LP64_ONLY(push(rsi);)
11232   push(rdx);
11233   push(rcx);
11234 #ifdef _LP64
11235   push(r8);
11236   push(r9);
11237   push(r10);
11238   push(r11);
11239 #endif
11240 
11241   MacroAssembler::call_VM_leaf_base(CAST_FROM_FN_PTR(address, Thread::current), 0);
11242 
11243 #ifdef _LP64
11244   pop(r11);
11245   pop(r10);
11246   pop(r9);
11247   pop(r8);
11248 #endif
11249   pop(rcx);
11250   pop(rdx);
11251   LP64_ONLY(pop(rsi);)
11252   LP64_ONLY(pop(rdi);)
11253   if (thread != rax) {
11254     mov(thread, rax);
11255     pop(rax);
11256   }
11257 }
11258 
11259 #endif