1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.  Oracle designates this
   8  * particular file as subject to the "Classpath" exception as provided
   9  * by Oracle in the LICENSE file that accompanied this code.
  10  *
  11  * This code is distributed in the hope that it will be useful, but WITHOUT
  12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  14  * version 2 for more details (a copy is included in the LICENSE file that
  15  * accompanied this code).
  16  *
  17  * You should have received a copy of the GNU General Public License version
  18  * 2 along with this work; if not, write to the Free Software Foundation,
  19  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  20  *
  21  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  22  * or visit www.oracle.com if you need additional information or have any
  23  * questions.
  24  */
  25 
  26 package java.lang;
  27 import java.lang.ref.*;
  28 import java.util.Objects;
  29 import java.util.concurrent.atomic.AtomicInteger;
  30 import java.util.function.Supplier;
  31 import jdk.internal.misc.JdkThreadLocal;
  32 
  33 /**
  34  * This class provides thread-local variables.  These variables differ from
  35  * their normal counterparts in that each thread that accesses one (via its
  36  * {@code get} or {@code set} method) has its own, independently initialized
  37  * copy of the variable.  {@code ThreadLocal} instances are typically private
  38  * static fields in classes that wish to associate state with a thread (e.g.,
  39  * a user ID or Transaction ID).
  40  *
  41  * <p>For example, the class below generates unique identifiers local to each
  42  * thread.
  43  * A thread's id is assigned the first time it invokes {@code ThreadId.get()}
  44  * and remains unchanged on subsequent calls.
  45  * <pre>
  46  * import java.util.concurrent.atomic.AtomicInteger;
  47  *
  48  * public class ThreadId {
  49  *     // Atomic integer containing the next thread ID to be assigned
  50  *     private static final AtomicInteger nextId = new AtomicInteger(0);
  51  *
  52  *     // Thread local variable containing each thread's ID
  53  *     private static final ThreadLocal&lt;Integer&gt; threadId =
  54  *         new ThreadLocal&lt;Integer&gt;() {
  55  *             @Override protected Integer initialValue() {
  56  *                 return nextId.getAndIncrement();
  57  *         }
  58  *     };
  59  *
  60  *     // Returns the current thread's unique ID, assigning it if necessary
  61  *     public static int get() {
  62  *         return threadId.get();
  63  *     }
  64  * }
  65  * </pre>
  66  * <p>Each thread holds an implicit reference to its copy of a thread-local
  67  * variable as long as the thread is alive and the {@code ThreadLocal}
  68  * instance is accessible; after a thread goes away, all of its copies of
  69  * thread-local instances are subject to garbage collection (unless other
  70  * references to these copies exist).
  71  *
  72  * @author  Josh Bloch and Doug Lea
  73  * @since   1.2
  74  */
  75 public class ThreadLocal<T> {
  76     /**
  77      * ThreadLocals rely on per-thread linear-probe hash maps attached
  78      * to each thread (Thread.threadLocals and
  79      * inheritableThreadLocals).  The ThreadLocal objects act as keys,
  80      * searched via threadLocalHashCode.  This is a custom hash code
  81      * (useful only within ThreadLocalMaps) that eliminates collisions
  82      * in the common case where consecutively constructed ThreadLocals
  83      * are used by the same threads, while remaining well-behaved in
  84      * less common cases.
  85      */
  86     private final int threadLocalHashCode = nextHashCode();
  87 
  88     static void callThreadTerminated(ThreadLocalMap map) {
  89         if (map == null) {
  90             return;
  91         }
  92 
  93         // We expect to have a very small number of hooks and
  94         // potentially a lot of entries in the map. So, it should be
  95         // faster to iterate over the hooks and do look-ups on the map
  96         // instead of iterating over the map.
  97         JdkThreadLocal.forEach(tl -> {
  98             final ThreadLocalMap.Entry entry = map.getEntry(tl);
  99             if (entry != null) {
 100                 tl.callThreadTerminated(entry.value);
 101             }
 102         });
 103     }
 104 
 105     /**
 106      * The next hash code to be given out. Updated atomically. Starts at
 107      * zero.
 108      */
 109     private static AtomicInteger nextHashCode =
 110         new AtomicInteger();
 111 
 112     /**
 113      * The difference between successively generated hash codes - turns
 114      * implicit sequential thread-local IDs into near-optimally spread
 115      * multiplicative hash values for power-of-two-sized tables.
 116      */
 117     private static final int HASH_INCREMENT = 0x61c88647;
 118 
 119     /**
 120      * Returns the next hash code.
 121      */
 122     private static int nextHashCode() {
 123         return nextHashCode.getAndAdd(HASH_INCREMENT);
 124     }
 125 
 126     /**
 127      * Returns the current thread's "initial value" for this
 128      * thread-local variable.  This method will be invoked the first
 129      * time a thread accesses the variable with the {@link #get}
 130      * method, unless the thread previously invoked the {@link #set}
 131      * method, in which case the {@code initialValue} method will not
 132      * be invoked for the thread.  Normally, this method is invoked at
 133      * most once per thread, but it may be invoked again in case of
 134      * subsequent invocations of {@link #remove} followed by {@link #get}.
 135      *
 136      * <p>This implementation simply returns {@code null}; if the
 137      * programmer desires thread-local variables to have an initial
 138      * value other than {@code null}, {@code ThreadLocal} must be
 139      * subclassed, and this method overridden.  Typically, an
 140      * anonymous inner class will be used.
 141      *
 142      * @return the initial value for this thread-local
 143      */
 144     protected T initialValue() {
 145         return null;
 146     }
 147 
 148     /**
 149      * Creates a thread local variable. The initial value of the variable is
 150      * determined by invoking the {@code get} method on the {@code Supplier}.
 151      *
 152      * @param <S> the type of the thread local's value
 153      * @param supplier the supplier to be used to determine the initial value
 154      * @return a new thread local variable
 155      * @throws NullPointerException if the specified supplier is null
 156      * @since 1.8
 157      */
 158     public static <S> ThreadLocal<S> withInitial(Supplier<? extends S> supplier) {
 159         return new SuppliedThreadLocal<>(supplier);
 160     }
 161 
 162     /**
 163      * Creates a thread local variable.
 164      * @see #withInitial(java.util.function.Supplier)
 165      */
 166     public ThreadLocal() {
 167     }
 168 
 169     /**
 170      * Returns the value in the current thread's copy of this
 171      * thread-local variable.  If the variable has no value for the
 172      * current thread, it is first initialized to the value returned
 173      * by an invocation of the {@link #initialValue} method.
 174      *
 175      * @return the current thread's value of this thread-local
 176      */
 177     public T get() {
 178         Thread t = Thread.currentThread();
 179         ThreadLocalMap map = getMap(t);
 180         if (map != null) {
 181             ThreadLocalMap.Entry e = map.getEntry(this);
 182             if (e != null) {
 183                 @SuppressWarnings("unchecked")
 184                 T result = (T)e.value;
 185                 return result;
 186             }
 187         }
 188         return setInitialValue();
 189     }
 190 
 191     /**
 192      * Variant of set() to establish initialValue. Used instead
 193      * of set() in case user has overridden the set() method.
 194      *
 195      * @return the initial value
 196      */
 197     private T setInitialValue() {
 198         T value = initialValue();
 199         Thread t = Thread.currentThread();
 200         ThreadLocalMap map = getMap(t);
 201         if (map != null)
 202             map.set(this, value);
 203         else
 204             createMap(t, value);
 205         return value;
 206     }
 207 
 208     /**
 209      * Sets the current thread's copy of this thread-local variable
 210      * to the specified value.  Most subclasses will have no need to
 211      * override this method, relying solely on the {@link #initialValue}
 212      * method to set the values of thread-locals.
 213      *
 214      * @param value the value to be stored in the current thread's copy of
 215      *        this thread-local.
 216      */
 217     public void set(T value) {
 218         Thread t = Thread.currentThread();
 219         ThreadLocalMap map = getMap(t);
 220         if (map != null)
 221             map.set(this, value);
 222         else
 223             createMap(t, value);
 224     }
 225 
 226     /**
 227      * Removes the current thread's value for this thread-local
 228      * variable.  If this thread-local variable is subsequently
 229      * {@linkplain #get read} by the current thread, its value will be
 230      * reinitialized by invoking its {@link #initialValue} method,
 231      * unless its value is {@linkplain #set set} by the current thread
 232      * in the interim.  This may result in multiple invocations of the
 233      * {@code initialValue} method in the current thread.
 234      *
 235      * @since 1.5
 236      */
 237      public void remove() {
 238          ThreadLocalMap m = getMap(Thread.currentThread());
 239          if (m != null)
 240              m.remove(this);
 241      }
 242 
 243     /**
 244      * Get the map associated with a ThreadLocal. Overridden in
 245      * InheritableThreadLocal.
 246      *
 247      * @param  t the current thread
 248      * @return the map
 249      */
 250     ThreadLocalMap getMap(Thread t) {
 251         return t.threadLocals;
 252     }
 253 
 254     /**
 255      * Create the map associated with a ThreadLocal. Overridden in
 256      * InheritableThreadLocal.
 257      *
 258      * @param t the current thread
 259      * @param firstValue value for the initial entry of the map
 260      */
 261     void createMap(Thread t, T firstValue) {
 262         t.threadLocals = new ThreadLocalMap(this, firstValue);
 263     }
 264 
 265     /**
 266      * Factory method to create map of inherited thread locals.
 267      * Designed to be called only from Thread constructor.
 268      *
 269      * @param  parentMap the map associated with parent thread
 270      * @return a map containing the parent's inheritable bindings
 271      */
 272     static ThreadLocalMap createInheritedMap(ThreadLocalMap parentMap) {
 273         return new ThreadLocalMap(parentMap);
 274     }
 275 
 276     /**
 277      * Method childValue is visibly defined in subclass
 278      * InheritableThreadLocal, but is internally defined here for the
 279      * sake of providing createInheritedMap factory method without
 280      * needing to subclass the map class in InheritableThreadLocal.
 281      * This technique is preferable to the alternative of embedding
 282      * instanceof tests in methods.
 283      */
 284     T childValue(T parentValue) {
 285         throw new UnsupportedOperationException();
 286     }
 287 
 288     /**
 289      * An extension of ThreadLocal that obtains its initial value from
 290      * the specified {@code Supplier}.
 291      */
 292     static final class SuppliedThreadLocal<T> extends ThreadLocal<T> {
 293 
 294         private final Supplier<? extends T> supplier;
 295 
 296         SuppliedThreadLocal(Supplier<? extends T> supplier) {
 297             this.supplier = Objects.requireNonNull(supplier);
 298         }
 299 
 300         @Override
 301         protected T initialValue() {
 302             return supplier.get();
 303         }
 304     }
 305 
 306     /**
 307      * ThreadLocalMap is a customized hash map suitable only for
 308      * maintaining thread local values. No operations are exported
 309      * outside of the ThreadLocal class. The class is package private to
 310      * allow declaration of fields in class Thread.  To help deal with
 311      * very large and long-lived usages, the hash table entries use
 312      * WeakReferences for keys. However, since reference queues are not
 313      * used, stale entries are guaranteed to be removed only when
 314      * the table starts running out of space.
 315      */
 316     static class ThreadLocalMap {
 317 
 318         /**
 319          * The entries in this hash map extend WeakReference, using
 320          * its main ref field as the key (which is always a
 321          * ThreadLocal object).  Note that null keys (i.e. entry.get()
 322          * == null) mean that the key is no longer referenced, so the
 323          * entry can be expunged from table.  Such entries are referred to
 324          * as "stale entries" in the code that follows.
 325          */
 326         static class Entry extends WeakReference<ThreadLocal<?>> {
 327             /** The value associated with this ThreadLocal. */
 328             Object value;
 329 
 330             Entry(ThreadLocal<?> k, Object v) {
 331                 super(k);
 332                 value = v;
 333             }
 334         }
 335 
 336         /**
 337          * The initial capacity -- MUST be a power of two.
 338          */
 339         private static final int INITIAL_CAPACITY = 16;
 340 
 341         /**
 342          * The table, resized as necessary.
 343          * table.length MUST always be a power of two.
 344          */
 345         private Entry[] table;
 346 
 347         /**
 348          * The number of entries in the table.
 349          */
 350         private int size = 0;
 351 
 352         /**
 353          * The next size value at which to resize.
 354          */
 355         private int threshold; // Default to 0
 356 
 357         /**
 358          * Set the resize threshold to maintain at worst a 2/3 load factor.
 359          */
 360         private void setThreshold(int len) {
 361             threshold = len * 2 / 3;
 362         }
 363 
 364         /**
 365          * Increment i modulo len.
 366          */
 367         private static int nextIndex(int i, int len) {
 368             return ((i + 1 < len) ? i + 1 : 0);
 369         }
 370 
 371         /**
 372          * Decrement i modulo len.
 373          */
 374         private static int prevIndex(int i, int len) {
 375             return ((i - 1 >= 0) ? i - 1 : len - 1);
 376         }
 377 
 378         /**
 379          * Construct a new map initially containing (firstKey, firstValue).
 380          * ThreadLocalMaps are constructed lazily, so we only create
 381          * one when we have at least one entry to put in it.
 382          */
 383         ThreadLocalMap(ThreadLocal<?> firstKey, Object firstValue) {
 384             table = new Entry[INITIAL_CAPACITY];
 385             int i = firstKey.threadLocalHashCode & (INITIAL_CAPACITY - 1);
 386             table[i] = new Entry(firstKey, firstValue);
 387             size = 1;
 388             setThreshold(INITIAL_CAPACITY);
 389         }
 390 
 391         /**
 392          * Construct a new map including all Inheritable ThreadLocals
 393          * from given parent map. Called only by createInheritedMap.
 394          *
 395          * @param parentMap the map associated with parent thread.
 396          */
 397         private ThreadLocalMap(ThreadLocalMap parentMap) {
 398             Entry[] parentTable = parentMap.table;
 399             int len = parentTable.length;
 400             setThreshold(len);
 401             table = new Entry[len];
 402 
 403             for (Entry e : parentTable) {
 404                 if (e != null) {
 405                     @SuppressWarnings("unchecked")
 406                     ThreadLocal<Object> key = (ThreadLocal<Object>) e.get();
 407                     if (key != null) {
 408                         Object value = key.childValue(e.value);
 409                         Entry c = new Entry(key, value);
 410                         int h = key.threadLocalHashCode & (len - 1);
 411                         while (table[h] != null)
 412                             h = nextIndex(h, len);
 413                         table[h] = c;
 414                         size++;
 415                     }
 416                 }
 417             }
 418         }
 419 
 420         /**
 421          * Get the entry associated with key.  This method
 422          * itself handles only the fast path: a direct hit of existing
 423          * key. It otherwise relays to getEntryAfterMiss.  This is
 424          * designed to maximize performance for direct hits, in part
 425          * by making this method readily inlinable.
 426          *
 427          * @param  key the thread local object
 428          * @return the entry associated with key, or null if no such
 429          */
 430         private Entry getEntry(ThreadLocal<?> key) {
 431             int i = key.threadLocalHashCode & (table.length - 1);
 432             Entry e = table[i];
 433             if (e != null && e.get() == key)
 434                 return e;
 435             else
 436                 return getEntryAfterMiss(key, i, e);
 437         }
 438 
 439         /**
 440          * Version of getEntry method for use when key is not found in
 441          * its direct hash slot.
 442          *
 443          * @param  key the thread local object
 444          * @param  i the table index for key's hash code
 445          * @param  e the entry at table[i]
 446          * @return the entry associated with key, or null if no such
 447          */
 448         private Entry getEntryAfterMiss(ThreadLocal<?> key, int i, Entry e) {
 449             Entry[] tab = table;
 450             int len = tab.length;
 451 
 452             while (e != null) {
 453                 ThreadLocal<?> k = e.get();
 454                 if (k == key)
 455                     return e;
 456                 if (k == null)
 457                     expungeStaleEntry(i);
 458                 else
 459                     i = nextIndex(i, len);
 460                 e = tab[i];
 461             }
 462             return null;
 463         }
 464 
 465         /**
 466          * Set the value associated with key.
 467          *
 468          * @param key the thread local object
 469          * @param value the value to be set
 470          */
 471         private void set(ThreadLocal<?> key, Object value) {
 472 
 473             // We don't use a fast path as with get() because it is at
 474             // least as common to use set() to create new entries as
 475             // it is to replace existing ones, in which case, a fast
 476             // path would fail more often than not.
 477 
 478             Entry[] tab = table;
 479             int len = tab.length;
 480             int i = key.threadLocalHashCode & (len-1);
 481 
 482             for (Entry e = tab[i];
 483                  e != null;
 484                  e = tab[i = nextIndex(i, len)]) {
 485                 ThreadLocal<?> k = e.get();
 486 
 487                 if (k == key) {
 488                     e.value = value;
 489                     return;
 490                 }
 491 
 492                 if (k == null) {
 493                     replaceStaleEntry(key, value, i);
 494                     return;
 495                 }
 496             }
 497 
 498             tab[i] = new Entry(key, value);
 499             int sz = ++size;
 500             if (!cleanSomeSlots(i, sz) && sz >= threshold)
 501                 rehash();
 502         }
 503 
 504         /**
 505          * Remove the entry for key.
 506          */
 507         private void remove(ThreadLocal<?> key) {
 508             Entry[] tab = table;
 509             int len = tab.length;
 510             int i = key.threadLocalHashCode & (len-1);
 511             for (Entry e = tab[i];
 512                  e != null;
 513                  e = tab[i = nextIndex(i, len)]) {
 514                 if (e.get() == key) {
 515                     e.clear();
 516                     expungeStaleEntry(i);
 517                     return;
 518                 }
 519             }
 520         }
 521 
 522         /**
 523          * Replace a stale entry encountered during a set operation
 524          * with an entry for the specified key.  The value passed in
 525          * the value parameter is stored in the entry, whether or not
 526          * an entry already exists for the specified key.
 527          *
 528          * As a side effect, this method expunges all stale entries in the
 529          * "run" containing the stale entry.  (A run is a sequence of entries
 530          * between two null slots.)
 531          *
 532          * @param  key the key
 533          * @param  value the value to be associated with key
 534          * @param  staleSlot index of the first stale entry encountered while
 535          *         searching for key.
 536          */
 537         private void replaceStaleEntry(ThreadLocal<?> key, Object value,
 538                                        int staleSlot) {
 539             Entry[] tab = table;
 540             int len = tab.length;
 541             Entry e;
 542 
 543             // Back up to check for prior stale entry in current run.
 544             // We clean out whole runs at a time to avoid continual
 545             // incremental rehashing due to garbage collector freeing
 546             // up refs in bunches (i.e., whenever the collector runs).
 547             int slotToExpunge = staleSlot;
 548             for (int i = prevIndex(staleSlot, len);
 549                  (e = tab[i]) != null;
 550                  i = prevIndex(i, len))
 551                 if (e.get() == null)
 552                     slotToExpunge = i;
 553 
 554             // Find either the key or trailing null slot of run, whichever
 555             // occurs first
 556             for (int i = nextIndex(staleSlot, len);
 557                  (e = tab[i]) != null;
 558                  i = nextIndex(i, len)) {
 559                 ThreadLocal<?> k = e.get();
 560 
 561                 // If we find key, then we need to swap it
 562                 // with the stale entry to maintain hash table order.
 563                 // The newly stale slot, or any other stale slot
 564                 // encountered above it, can then be sent to expungeStaleEntry
 565                 // to remove or rehash all of the other entries in run.
 566                 if (k == key) {
 567                     e.value = value;
 568 
 569                     tab[i] = tab[staleSlot];
 570                     tab[staleSlot] = e;
 571 
 572                     // Start expunge at preceding stale entry if it exists
 573                     if (slotToExpunge == staleSlot)
 574                         slotToExpunge = i;
 575                     cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 576                     return;
 577                 }
 578 
 579                 // If we didn't find stale entry on backward scan, the
 580                 // first stale entry seen while scanning for key is the
 581                 // first still present in the run.
 582                 if (k == null && slotToExpunge == staleSlot)
 583                     slotToExpunge = i;
 584             }
 585 
 586             // If key not found, put new entry in stale slot
 587             tab[staleSlot].value = null;
 588             tab[staleSlot] = new Entry(key, value);
 589 
 590             // If there are any other stale entries in run, expunge them
 591             if (slotToExpunge != staleSlot)
 592                 cleanSomeSlots(expungeStaleEntry(slotToExpunge), len);
 593         }
 594 
 595         /**
 596          * Expunge a stale entry by rehashing any possibly colliding entries
 597          * lying between staleSlot and the next null slot.  This also expunges
 598          * any other stale entries encountered before the trailing null.  See
 599          * Knuth, Section 6.4
 600          *
 601          * @param staleSlot index of slot known to have null key
 602          * @return the index of the next null slot after staleSlot
 603          * (all between staleSlot and this slot will have been checked
 604          * for expunging).
 605          */
 606         private int expungeStaleEntry(int staleSlot) {
 607             Entry[] tab = table;
 608             int len = tab.length;
 609 
 610             // expunge entry at staleSlot
 611             tab[staleSlot].value = null;
 612             tab[staleSlot] = null;
 613             size--;
 614 
 615             // Rehash until we encounter null
 616             Entry e;
 617             int i;
 618             for (i = nextIndex(staleSlot, len);
 619                  (e = tab[i]) != null;
 620                  i = nextIndex(i, len)) {
 621                 ThreadLocal<?> k = e.get();
 622                 if (k == null) {
 623                     e.value = null;
 624                     tab[i] = null;
 625                     size--;
 626                 } else {
 627                     int h = k.threadLocalHashCode & (len - 1);
 628                     if (h != i) {
 629                         tab[i] = null;
 630 
 631                         // Unlike Knuth 6.4 Algorithm R, we must scan until
 632                         // null because multiple entries could have been stale.
 633                         while (tab[h] != null)
 634                             h = nextIndex(h, len);
 635                         tab[h] = e;
 636                     }
 637                 }
 638             }
 639             return i;
 640         }
 641 
 642         /**
 643          * Heuristically scan some cells looking for stale entries.
 644          * This is invoked when either a new element is added, or
 645          * another stale one has been expunged. It performs a
 646          * logarithmic number of scans, as a balance between no
 647          * scanning (fast but retains garbage) and a number of scans
 648          * proportional to number of elements, that would find all
 649          * garbage but would cause some insertions to take O(n) time.
 650          *
 651          * @param i a position known NOT to hold a stale entry. The
 652          * scan starts at the element after i.
 653          *
 654          * @param n scan control: {@code log2(n)} cells are scanned,
 655          * unless a stale entry is found, in which case
 656          * {@code log2(table.length)-1} additional cells are scanned.
 657          * When called from insertions, this parameter is the number
 658          * of elements, but when from replaceStaleEntry, it is the
 659          * table length. (Note: all this could be changed to be either
 660          * more or less aggressive by weighting n instead of just
 661          * using straight log n. But this version is simple, fast, and
 662          * seems to work well.)
 663          *
 664          * @return true if any stale entries have been removed.
 665          */
 666         private boolean cleanSomeSlots(int i, int n) {
 667             boolean removed = false;
 668             Entry[] tab = table;
 669             int len = tab.length;
 670             do {
 671                 i = nextIndex(i, len);
 672                 Entry e = tab[i];
 673                 if (e != null && e.get() == null) {
 674                     n = len;
 675                     removed = true;
 676                     i = expungeStaleEntry(i);
 677                 }
 678             } while ( (n >>>= 1) != 0);
 679             return removed;
 680         }
 681 
 682         /**
 683          * Re-pack and/or re-size the table. First scan the entire
 684          * table removing stale entries. If this doesn't sufficiently
 685          * shrink the size of the table, double the table size.
 686          */
 687         private void rehash() {
 688             expungeStaleEntries();
 689 
 690             // Use lower threshold for doubling to avoid hysteresis
 691             if (size >= threshold - threshold / 4)
 692                 resize();
 693         }
 694 
 695         /**
 696          * Double the capacity of the table.
 697          */
 698         private void resize() {
 699             Entry[] oldTab = table;
 700             int oldLen = oldTab.length;
 701             int newLen = oldLen * 2;
 702             Entry[] newTab = new Entry[newLen];
 703             int count = 0;
 704 
 705             for (Entry e : oldTab) {
 706                 if (e != null) {
 707                     ThreadLocal<?> k = e.get();
 708                     if (k == null) {
 709                         e.value = null; // Help the GC
 710                     } else {
 711                         int h = k.threadLocalHashCode & (newLen - 1);
 712                         while (newTab[h] != null)
 713                             h = nextIndex(h, newLen);
 714                         newTab[h] = e;
 715                         count++;
 716                     }
 717                 }
 718             }
 719 
 720             setThreshold(newLen);
 721             size = count;
 722             table = newTab;
 723         }
 724 
 725         /**
 726          * Expunge all stale entries in the table.
 727          */
 728         private void expungeStaleEntries() {
 729             Entry[] tab = table;
 730             int len = tab.length;
 731             for (int j = 0; j < len; j++) {
 732                 Entry e = tab[j];
 733                 if (e != null && e.get() == null)
 734                     expungeStaleEntry(j);
 735             }
 736         }
 737     }
 738 }