1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/dirtyCardQueue.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CardTable.inline.hpp"
  29 #include "gc/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc/g1/g1ConcurrentRefine.hpp"
  31 #include "gc/g1/g1FromCardCache.hpp"
  32 #include "gc/g1/g1GCPhaseTimes.hpp"
  33 #include "gc/g1/g1HotCardCache.hpp"
  34 #include "gc/g1/g1OopClosures.inline.hpp"
  35 #include "gc/g1/g1RootClosures.hpp"
  36 #include "gc/g1/g1RemSet.hpp"
  37 #include "gc/g1/heapRegion.inline.hpp"
  38 #include "gc/g1/heapRegionManager.inline.hpp"
  39 #include "gc/g1/heapRegionRemSet.hpp"
  40 #include "gc/shared/gcTraceTime.inline.hpp"
  41 #include "gc/shared/suspendibleThreadSet.hpp"
  42 #include "memory/iterator.hpp"
  43 #include "memory/resourceArea.hpp"
  44 #include "oops/access.inline.hpp"
  45 #include "oops/oop.inline.hpp"
  46 #include "utilities/align.hpp"
  47 #include "utilities/globalDefinitions.hpp"
  48 #include "utilities/intHisto.hpp"
  49 #include "utilities/stack.inline.hpp"
  50 #include "utilities/ticks.inline.hpp"
  51 
  52 // Collects information about the overall remembered set scan progress during an evacuation.
  53 class G1RemSetScanState : public CHeapObj<mtGC> {
  54 private:
  55   class G1ClearCardTableTask : public AbstractGangTask {
  56     G1CollectedHeap* _g1h;
  57     uint* _dirty_region_list;
  58     size_t _num_dirty_regions;
  59     size_t _chunk_length;
  60 
  61     size_t volatile _cur_dirty_regions;
  62   public:
  63     G1ClearCardTableTask(G1CollectedHeap* g1h,
  64                          uint* dirty_region_list,
  65                          size_t num_dirty_regions,
  66                          size_t chunk_length) :
  67       AbstractGangTask("G1 Clear Card Table Task"),
  68       _g1h(g1h),
  69       _dirty_region_list(dirty_region_list),
  70       _num_dirty_regions(num_dirty_regions),
  71       _chunk_length(chunk_length),
  72       _cur_dirty_regions(0) {
  73 
  74       assert(chunk_length > 0, "must be");
  75     }
  76 
  77     static size_t chunk_size() { return M; }
  78 
  79     void work(uint worker_id) {
  80       while (_cur_dirty_regions < _num_dirty_regions) {
  81         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  82         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  83 
  84         for (size_t i = next; i < max; i++) {
  85           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  86           if (!r->is_survivor()) {
  87             r->clear_cardtable();
  88           }
  89         }
  90       }
  91     }
  92   };
  93 
  94   size_t _max_regions;
  95 
  96   // Scan progress for the remembered set of a single region. Transitions from
  97   // Unclaimed -> Claimed -> Complete.
  98   // At each of the transitions the thread that does the transition needs to perform
  99   // some special action once. This is the reason for the extra "Claimed" state.
 100   typedef jint G1RemsetIterState;
 101 
 102   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 103   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 104   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 105 
 106   G1RemsetIterState volatile* _iter_states;
 107   // The current location where the next thread should continue scanning in a region's
 108   // remembered set.
 109   size_t volatile* _iter_claims;
 110 
 111   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 112   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 113   uint* _dirty_region_buffer;
 114 
 115   typedef jbyte IsDirtyRegionState;
 116   static const IsDirtyRegionState Clean = 0;
 117   static const IsDirtyRegionState Dirty = 1;
 118   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 119   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 120   IsDirtyRegionState* _in_dirty_region_buffer;
 121   size_t _cur_dirty_region;
 122 
 123   // Creates a snapshot of the current _top values at the start of collection to
 124   // filter out card marks that we do not want to scan.
 125   class G1ResetScanTopClosure : public HeapRegionClosure {
 126   private:
 127     HeapWord** _scan_top;
 128   public:
 129     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 130 
 131     virtual bool do_heap_region(HeapRegion* r) {
 132       uint hrm_index = r->hrm_index();
 133       if (!r->in_collection_set() && r->is_old_or_humongous()) {
 134         _scan_top[hrm_index] = r->top();
 135       } else {
 136         _scan_top[hrm_index] = r->bottom();
 137       }
 138       return false;
 139     }
 140   };
 141 
 142   // For each region, contains the maximum top() value to be used during this garbage
 143   // collection. Subsumes common checks like filtering out everything but old and
 144   // humongous regions outside the collection set.
 145   // This is valid because we are not interested in scanning stray remembered set
 146   // entries from free or archive regions.
 147   HeapWord** _scan_top;
 148 public:
 149   G1RemSetScanState() :
 150     _max_regions(0),
 151     _iter_states(NULL),
 152     _iter_claims(NULL),
 153     _dirty_region_buffer(NULL),
 154     _in_dirty_region_buffer(NULL),
 155     _cur_dirty_region(0),
 156     _scan_top(NULL) {
 157   }
 158 
 159   ~G1RemSetScanState() {
 160     if (_iter_states != NULL) {
 161       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 162     }
 163     if (_iter_claims != NULL) {
 164       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 165     }
 166     if (_dirty_region_buffer != NULL) {
 167       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 168     }
 169     if (_in_dirty_region_buffer != NULL) {
 170       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 171     }
 172     if (_scan_top != NULL) {
 173       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 174     }
 175   }
 176 
 177   void initialize(uint max_regions) {
 178     assert(_iter_states == NULL, "Must not be initialized twice");
 179     assert(_iter_claims == NULL, "Must not be initialized twice");
 180     _max_regions = max_regions;
 181     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 182     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 183     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 184     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 185     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 186   }
 187 
 188   void reset() {
 189     for (uint i = 0; i < _max_regions; i++) {
 190       _iter_states[i] = Unclaimed;
 191     }
 192 
 193     G1ResetScanTopClosure cl(_scan_top);
 194     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 195 
 196     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 197     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 198     _cur_dirty_region = 0;
 199   }
 200 
 201   // Attempt to claim the remembered set of the region for iteration. Returns true
 202   // if this call caused the transition from Unclaimed to Claimed.
 203   inline bool claim_iter(uint region) {
 204     assert(region < _max_regions, "Tried to access invalid region %u", region);
 205     if (_iter_states[region] != Unclaimed) {
 206       return false;
 207     }
 208     G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed);
 209     return (res == Unclaimed);
 210   }
 211 
 212   // Try to atomically sets the iteration state to "complete". Returns true for the
 213   // thread that caused the transition.
 214   inline bool set_iter_complete(uint region) {
 215     if (iter_is_complete(region)) {
 216       return false;
 217     }
 218     G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed);
 219     return (res == Claimed);
 220   }
 221 
 222   // Returns true if the region's iteration is complete.
 223   inline bool iter_is_complete(uint region) const {
 224     assert(region < _max_regions, "Tried to access invalid region %u", region);
 225     return _iter_states[region] == Complete;
 226   }
 227 
 228   // The current position within the remembered set of the given region.
 229   inline size_t iter_claimed(uint region) const {
 230     assert(region < _max_regions, "Tried to access invalid region %u", region);
 231     return _iter_claims[region];
 232   }
 233 
 234   // Claim the next block of cards within the remembered set of the region with
 235   // step size.
 236   inline size_t iter_claimed_next(uint region, size_t step) {
 237     return Atomic::add(step, &_iter_claims[region]) - step;
 238   }
 239 
 240   void add_dirty_region(uint region) {
 241     if (_in_dirty_region_buffer[region] == Dirty) {
 242       return;
 243     }
 244 
 245     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 246     if (marked_as_dirty) {
 247       size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1;
 248       _dirty_region_buffer[allocated] = region;
 249     }
 250   }
 251 
 252   HeapWord* scan_top(uint region_idx) const {
 253     return _scan_top[region_idx];
 254   }
 255 
 256   // Clear the card table of "dirty" regions.
 257   void clear_card_table(WorkGang* workers) {
 258     if (_cur_dirty_region == 0) {
 259       return;
 260     }
 261 
 262     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 263     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 264     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 265 
 266     // Iterate over the dirty cards region list.
 267     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 268 
 269     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 270                         "units of work for " SIZE_FORMAT " regions.",
 271                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 272     workers->run_task(&cl, num_workers);
 273 
 274 #ifndef PRODUCT
 275     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 276 #endif
 277   }
 278 };
 279 
 280 G1RemSet::G1RemSet(G1CollectedHeap* g1h,
 281                    G1CardTable* ct,
 282                    G1HotCardCache* hot_card_cache) :
 283   _g1h(g1h),
 284   _scan_state(new G1RemSetScanState()),
 285   _num_conc_refined_cards(0),
 286   _ct(ct),
 287   _g1p(_g1h->g1_policy()),
 288   _hot_card_cache(hot_card_cache),
 289   _prev_period_summary() {
 290 }
 291 
 292 G1RemSet::~G1RemSet() {
 293   if (_scan_state != NULL) {
 294     delete _scan_state;
 295   }
 296 }
 297 
 298 uint G1RemSet::num_par_rem_sets() {
 299   return DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads);
 300 }
 301 
 302 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 303   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 304   _scan_state->initialize(max_regions);
 305 }
 306 
 307 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 308                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 309                                                    CodeBlobClosure* code_root_cl,
 310                                                    uint worker_i) :
 311   _scan_state(scan_state),
 312   _scan_objs_on_card_cl(scan_obj_on_card),
 313   _code_root_cl(code_root_cl),
 314   _strong_code_root_scan_time_sec(0.0),
 315   _cards_claimed(0),
 316   _cards_scanned(0),
 317   _cards_skipped(0),
 318   _worker_i(worker_i) {
 319   _g1h = G1CollectedHeap::heap();
 320   _bot = _g1h->bot();
 321   _ct = _g1h->card_table();
 322 }
 323 
 324 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
 325   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 326   _scan_objs_on_card_cl->set_region(card_region);
 327   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 328   _scan_objs_on_card_cl->trim_queue_partially();
 329   _cards_scanned++;
 330 }
 331 
 332 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 333   double scan_start = os::elapsedTime();
 334   r->strong_code_roots_do(_code_root_cl);
 335   _strong_code_root_scan_time_sec += (os::elapsedTime() - scan_start);
 336 }
 337 
 338 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
 339   _ct->set_card_claimed(card_index);
 340   _scan_state->add_dirty_region(region_idx_for_card);
 341 }
 342 
 343 bool G1ScanRSForRegionClosure::do_heap_region(HeapRegion* r) {
 344   assert(r->in_collection_set(), "should only be called on elements of CS.");
 345   uint region_idx = r->hrm_index();
 346 
 347   if (_scan_state->iter_is_complete(region_idx)) {
 348     return false;
 349   }
 350   if (_scan_state->claim_iter(region_idx)) {
 351     // If we ever free the collection set concurrently, we should also
 352     // clear the card table concurrently therefore we won't need to
 353     // add regions of the collection set to the dirty cards region.
 354     _scan_state->add_dirty_region(region_idx);
 355   }
 356 
 357   // We claim cards in blocks so as to reduce the contention.
 358   size_t const block_size = G1RSetScanBlockSize;
 359 
 360   HeapRegionRemSetIterator iter(r->rem_set());
 361   size_t card_index;
 362 
 363   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 364   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 365     if (current_card >= claimed_card_block + block_size) {
 366       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 367     }
 368     if (current_card < claimed_card_block) {
 369       _cards_skipped++;
 370       continue;
 371     }
 372     _cards_claimed++;
 373 
 374     // If the card is dirty, then G1 will scan it during Update RS.
 375     if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) {
 376       continue;
 377     }
 378 
 379     HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
 380     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
 381 
 382     assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
 383            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 384     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 385     if (card_start >= top) {
 386       continue;
 387     }
 388 
 389     // We claim lazily (so races are possible but they're benign), which reduces the
 390     // number of duplicate scans (the rsets of the regions in the cset can intersect).
 391     // Claim the card after checking bounds above: the remembered set may contain
 392     // random cards into current survivor, and we would then have an incorrectly
 393     // claimed card in survivor space. Card table clear does not reset the card table
 394     // of survivor space regions.
 395     claim_card(card_index, region_idx_for_card);
 396 
 397     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
 398 
 399     scan_card(mr, region_idx_for_card);
 400   }
 401   if (_scan_state->set_iter_complete(region_idx)) {
 402     // Scan the strong code root list attached to the current region
 403     scan_strong_code_roots(r);
 404   }
 405   return false;
 406 }
 407 
 408 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss,
 409                             uint worker_i) {
 410   double rs_time_start = os::elapsedTime();
 411 
 412   CodeBlobClosure* heap_region_codeblobs = pss->closures()->weak_codeblobs();
 413 
 414   G1ScanObjsDuringScanRSClosure scan_cl(_g1h, pss);
 415   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, heap_region_codeblobs, worker_i);
 416   _g1h->collection_set_iterate_from(&cl, worker_i);
 417 
 418   double scan_rs_time_sec = (os::elapsedTime() - rs_time_start) -
 419                             cl.strong_code_root_scan_time_sec();
 420 
 421   G1GCPhaseTimes* p = _g1p->phase_times();
 422 
 423   double scan_rs_trim_queue_time = TicksToTimeHelper::seconds(scan_cl.trim_ticks_and_reset());
 424 
 425   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, scan_rs_time_sec);
 426   p->move_time_secs(G1GCPhaseTimes::ScanRS, G1GCPhaseTimes::ObjCopy, worker_i, scan_rs_trim_queue_time);
 427 
 428   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards);
 429   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards);
 430   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards);
 431 
 432   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, cl.strong_code_root_scan_time_sec());
 433   p->move_time_secs(G1GCPhaseTimes::CodeRoots, G1GCPhaseTimes::ObjCopy, worker_i, pss->closures()->trim_time_seconds());
 434 }
 435 
 436 // Closure used for updating rem sets. Only called during an evacuation pause.
 437 class G1RefineCardClosure: public CardTableEntryClosure {
 438   G1RemSet* _g1rs;
 439   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 440 
 441   size_t _cards_scanned;
 442   size_t _cards_skipped;
 443 public:
 444   G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 445     _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0)
 446   {}
 447 
 448   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 449     // The only time we care about recording cards that
 450     // contain references that point into the collection set
 451     // is during RSet updating within an evacuation pause.
 452     // In this case worker_i should be the id of a GC worker thread.
 453     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 454 
 455     bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
 456 
 457     if (card_scanned) {
 458       _update_rs_cl->trim_queue_partially();
 459       _cards_scanned++;
 460     } else {
 461       _cards_skipped++;
 462     }
 463     return true;
 464   }
 465 
 466   size_t cards_scanned() const { return _cards_scanned; }
 467   size_t cards_skipped() const { return _cards_skipped; }
 468 };
 469 
 470 void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 471   G1GCPhaseTimes* p = _g1p->phase_times();
 472   double scan_hcc_trim_queue_time = 0.0;
 473 
 474   G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1h, pss, worker_i);
 475   G1RefineCardClosure refine_card_cl(_g1h, &update_rs_cl);
 476 
 477   {
 478     G1GCParPhaseTimesTracker x(p, G1GCPhaseTimes::UpdateRS, worker_i);
 479     if (G1HotCardCache::default_use_cache()) {
 480       {
 481         // Apply the closure to the entries of the hot card cache.
 482         G1GCParPhaseTimesTracker y(p, G1GCPhaseTimes::ScanHCC, worker_i);
 483         _g1h->iterate_hcc_closure(&refine_card_cl, worker_i);
 484       }
 485       scan_hcc_trim_queue_time = TicksToTimeHelper::seconds(update_rs_cl.trim_ticks_and_reset());
 486       p->move_time_secs(G1GCPhaseTimes::ScanHCC, G1GCPhaseTimes::ObjCopy, worker_i, scan_hcc_trim_queue_time);
 487     }
 488     // Apply the closure to all remaining log entries.
 489     _g1h->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 490   }
 491   double update_rs_trim_queue_time = TicksToTimeHelper::seconds(update_rs_cl.trim_ticks_and_reset());
 492 
 493   p->move_time_secs(G1GCPhaseTimes::UpdateRS, G1GCPhaseTimes::ObjCopy, worker_i, update_rs_trim_queue_time + scan_hcc_trim_queue_time);
 494 
 495   p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards);
 496   p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards);
 497 }
 498 
 499 void G1RemSet::cleanupHRRS() {
 500   HeapRegionRemSet::cleanup();
 501 }
 502 
 503 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss, uint worker_i) {
 504   update_rem_set(pss, worker_i);
 505   scan_rem_set(pss, worker_i);;
 506 }
 507 
 508 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 509   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 510   dcqs.concatenate_logs();
 511 
 512   _scan_state->reset();
 513 }
 514 
 515 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 516   G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
 517 
 518   // Set all cards back to clean.
 519   double start = os::elapsedTime();
 520   _scan_state->clear_card_table(_g1h->workers());
 521   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 522 }
 523 
 524 inline void check_card_ptr(jbyte* card_ptr, G1CardTable* ct) {
 525 #ifdef ASSERT
 526   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 527   assert(g1h->is_in_exact(ct->addr_for(card_ptr)),
 528          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 529          p2i(card_ptr),
 530          ct->index_for(ct->addr_for(card_ptr)),
 531          p2i(ct->addr_for(card_ptr)),
 532          g1h->addr_to_region(ct->addr_for(card_ptr)));
 533 #endif
 534 }
 535 
 536 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 537                                         uint worker_i) {
 538   assert(!_g1h->is_gc_active(), "Only call concurrently");
 539 
 540   check_card_ptr(card_ptr, _ct);
 541 
 542   // If the card is no longer dirty, nothing to do.
 543   if (*card_ptr != G1CardTable::dirty_card_val()) {
 544     return;
 545   }
 546 
 547   // Construct the region representing the card.
 548   HeapWord* start = _ct->addr_for(card_ptr);
 549   // And find the region containing it.
 550   HeapRegion* r = _g1h->heap_region_containing(start);
 551 
 552   // This check is needed for some uncommon cases where we should
 553   // ignore the card.
 554   //
 555   // The region could be young.  Cards for young regions are
 556   // distinctly marked (set to g1_young_gen), so the post-barrier will
 557   // filter them out.  However, that marking is performed
 558   // concurrently.  A write to a young object could occur before the
 559   // card has been marked young, slipping past the filter.
 560   //
 561   // The card could be stale, because the region has been freed since
 562   // the card was recorded. In this case the region type could be
 563   // anything.  If (still) free or (reallocated) young, just ignore
 564   // it.  If (reallocated) old or humongous, the later card trimming
 565   // and additional checks in iteration may detect staleness.  At
 566   // worst, we end up processing a stale card unnecessarily.
 567   //
 568   // In the normal (non-stale) case, the synchronization between the
 569   // enqueueing of the card and processing it here will have ensured
 570   // we see the up-to-date region type here.
 571   if (!r->is_old_or_humongous()) {
 572     return;
 573   }
 574 
 575   // The result from the hot card cache insert call is either:
 576   //   * pointer to the current card
 577   //     (implying that the current card is not 'hot'),
 578   //   * null
 579   //     (meaning we had inserted the card ptr into the "hot" card cache,
 580   //     which had some headroom),
 581   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 582   //
 583 
 584   if (_hot_card_cache->use_cache()) {
 585     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 586 
 587     const jbyte* orig_card_ptr = card_ptr;
 588     card_ptr = _hot_card_cache->insert(card_ptr);
 589     if (card_ptr == NULL) {
 590       // There was no eviction. Nothing to do.
 591       return;
 592     } else if (card_ptr != orig_card_ptr) {
 593       // Original card was inserted and an old card was evicted.
 594       start = _ct->addr_for(card_ptr);
 595       r = _g1h->heap_region_containing(start);
 596 
 597       // Check whether the region formerly in the cache should be
 598       // ignored, as discussed earlier for the original card.  The
 599       // region could have been freed while in the cache.
 600       if (!r->is_old_or_humongous()) {
 601         return;
 602       }
 603     } // Else we still have the original card.
 604   }
 605 
 606   // Trim the region designated by the card to what's been allocated
 607   // in the region.  The card could be stale, or the card could cover
 608   // (part of) an object at the end of the allocated space and extend
 609   // beyond the end of allocation.
 610 
 611   // Non-humongous objects are only allocated in the old-gen during
 612   // GC, so if region is old then top is stable.  Humongous object
 613   // allocation sets top last; if top has not yet been set, this is
 614   // a stale card and we'll end up with an empty intersection.  If
 615   // this is not a stale card, the synchronization between the
 616   // enqueuing of the card and processing it here will have ensured
 617   // we see the up-to-date top here.
 618   HeapWord* scan_limit = r->top();
 619 
 620   if (scan_limit <= start) {
 621     // If the trimmed region is empty, the card must be stale.
 622     return;
 623   }
 624 
 625   // Okay to clean and process the card now.  There are still some
 626   // stale card cases that may be detected by iteration and dealt with
 627   // as iteration failure.
 628   *const_cast<volatile jbyte*>(card_ptr) = G1CardTable::clean_card_val();
 629 
 630   // This fence serves two purposes.  First, the card must be cleaned
 631   // before processing the contents.  Second, we can't proceed with
 632   // processing until after the read of top, for synchronization with
 633   // possibly concurrent humongous object allocation.  It's okay that
 634   // reading top and reading type were racy wrto each other.  We need
 635   // both set, in any order, to proceed.
 636   OrderAccess::fence();
 637 
 638   // Don't use addr_for(card_ptr + 1) which can ask for
 639   // a card beyond the heap.
 640   HeapWord* end = start + G1CardTable::card_size_in_words;
 641   MemRegion dirty_region(start, MIN2(scan_limit, end));
 642   assert(!dirty_region.is_empty(), "sanity");
 643 
 644   G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_i);
 645 
 646   bool card_processed =
 647     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 648 
 649   // If unable to process the card then we encountered an unparsable
 650   // part of the heap (e.g. a partially allocated object) while
 651   // processing a stale card.  Despite the card being stale, redirty
 652   // and re-enqueue, because we've already cleaned the card.  Without
 653   // this we could incorrectly discard a non-stale card.
 654   if (!card_processed) {
 655     // The card might have gotten re-dirtied and re-enqueued while we
 656     // worked.  (In fact, it's pretty likely.)
 657     if (*card_ptr != G1CardTable::dirty_card_val()) {
 658       *card_ptr = G1CardTable::dirty_card_val();
 659       MutexLockerEx x(Shared_DirtyCardQ_lock,
 660                       Mutex::_no_safepoint_check_flag);
 661       DirtyCardQueue* sdcq =
 662         JavaThread::dirty_card_queue_set().shared_dirty_card_queue();
 663       sdcq->enqueue(card_ptr);
 664     }
 665   } else {
 666     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
 667   }
 668 }
 669 
 670 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 671                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 672   assert(_g1h->is_gc_active(), "Only call during GC");
 673 
 674   check_card_ptr(card_ptr, _ct);
 675 
 676   // If the card is no longer dirty, nothing to do. This covers cards that were already
 677   // scanned as parts of the remembered sets.
 678   if (*card_ptr != G1CardTable::dirty_card_val()) {
 679     return false;
 680   }
 681 
 682   // We claim lazily (so races are possible but they're benign), which reduces the
 683   // number of potential duplicate scans (multiple threads may enqueue the same card twice).
 684   *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val();
 685 
 686   // Construct the region representing the card.
 687   HeapWord* card_start = _ct->addr_for(card_ptr);
 688   // And find the region containing it.
 689   uint const card_region_idx = _g1h->addr_to_region(card_start);
 690 
 691   _scan_state->add_dirty_region(card_region_idx);
 692   HeapWord* scan_limit = _scan_state->scan_top(card_region_idx);
 693   if (scan_limit <= card_start) {
 694     // If the card starts above the area in the region containing objects to scan, skip it.
 695     return false;
 696   }
 697 
 698   // Don't use addr_for(card_ptr + 1) which can ask for
 699   // a card beyond the heap.
 700   HeapWord* card_end = card_start + G1CardTable::card_size_in_words;
 701   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 702   assert(!dirty_region.is_empty(), "sanity");
 703 
 704   HeapRegion* const card_region = _g1h->region_at(card_region_idx);
 705   update_rs_cl->set_region(card_region);
 706   bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 707   assert(card_processed, "must be");
 708   return true;
 709 }
 710 
 711 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 712   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 713       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 714 
 715     G1RemSetSummary current(this);
 716     _prev_period_summary.subtract_from(&current);
 717 
 718     Log(gc, remset) log;
 719     log.trace("%s", header);
 720     ResourceMark rm;
 721     LogStream ls(log.trace());
 722     _prev_period_summary.print_on(&ls);
 723 
 724     _prev_period_summary.set(&current);
 725   }
 726 }
 727 
 728 void G1RemSet::print_summary_info() {
 729   Log(gc, remset, exit) log;
 730   if (log.is_trace()) {
 731     log.trace(" Cumulative RS summary");
 732     G1RemSetSummary current(this);
 733     ResourceMark rm;
 734     LogStream ls(log.trace());
 735     current.print_on(&ls);
 736   }
 737 }
 738 
 739 class G1RebuildRemSetTask: public AbstractGangTask {
 740   // Aggregate the counting data that was constructed concurrently
 741   // with marking.
 742   class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure {
 743     G1ConcurrentMark* _cm;
 744     G1RebuildRemSetClosure _update_cl;
 745 
 746     // Applies _update_cl to the references of the given object, limiting objArrays
 747     // to the given MemRegion. Returns the amount of words actually scanned.
 748     size_t scan_for_references(oop const obj, MemRegion mr) {
 749       size_t const obj_size = obj->size();
 750       // All non-objArrays and objArrays completely within the mr
 751       // can be scanned without passing the mr.
 752       if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) {
 753         obj->oop_iterate(&_update_cl);
 754         return obj_size;
 755       }
 756       // This path is for objArrays crossing the given MemRegion. Only scan the
 757       // area within the MemRegion.
 758       obj->oop_iterate(&_update_cl, mr);
 759       return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size();
 760     }
 761 
 762     // A humongous object is live (with respect to the scanning) either
 763     // a) it is marked on the bitmap as such
 764     // b) its TARS is larger than TAMS, i.e. has been allocated during marking.
 765     bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const {
 766       return bitmap->is_marked(humongous_obj) || (tars > tams);
 767     }
 768 
 769     // Iterator over the live objects within the given MemRegion.
 770     class LiveObjIterator : public StackObj {
 771       const G1CMBitMap* const _bitmap;
 772       const HeapWord* _tams;
 773       const MemRegion _mr;
 774       HeapWord* _current;
 775 
 776       bool is_below_tams() const {
 777         return _current < _tams;
 778       }
 779 
 780       bool is_live(HeapWord* obj) const {
 781         return !is_below_tams() || _bitmap->is_marked(obj);
 782       }
 783 
 784       HeapWord* bitmap_limit() const {
 785         return MIN2(const_cast<HeapWord*>(_tams), _mr.end());
 786       }
 787 
 788       void move_if_below_tams() {
 789         if (is_below_tams() && has_next()) {
 790           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 791         }
 792       }
 793     public:
 794       LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) :
 795           _bitmap(bitmap),
 796           _tams(tams),
 797           _mr(mr),
 798           _current(first_oop_into_mr) {
 799 
 800         assert(_current <= _mr.start(),
 801                "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")",
 802                p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end()));
 803 
 804         // Step to the next live object within the MemRegion if needed.
 805         if (is_live(_current)) {
 806           // Non-objArrays were scanned by the previous part of that region.
 807           if (_current < mr.start() && !oop(_current)->is_objArray()) {
 808             _current += oop(_current)->size();
 809             // We might have positioned _current on a non-live object. Reposition to the next
 810             // live one if needed.
 811             move_if_below_tams();
 812           }
 813         } else {
 814           // The object at _current can only be dead if below TAMS, so we can use the bitmap.
 815           // immediately.
 816           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 817           assert(_current == _mr.end() || is_live(_current),
 818                  "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")",
 819                  p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end()));
 820         }
 821       }
 822 
 823       void move_to_next() {
 824         _current += next()->size();
 825         move_if_below_tams();
 826       }
 827 
 828       oop next() const {
 829         oop result = oop(_current);
 830         assert(is_live(_current),
 831                "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d",
 832                p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result));
 833         return result;
 834       }
 835 
 836       bool has_next() const {
 837         return _current < _mr.end();
 838       }
 839     };
 840 
 841     // Rebuild remembered sets in the part of the region specified by mr and hr.
 842     // Objects between the bottom of the region and the TAMS are checked for liveness
 843     // using the given bitmap. Objects between TAMS and TARS are assumed to be live.
 844     // Returns the number of live words between bottom and TAMS.
 845     size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap,
 846                                      HeapWord* const top_at_mark_start,
 847                                      HeapWord* const top_at_rebuild_start,
 848                                      HeapRegion* hr,
 849                                      MemRegion mr) {
 850       size_t marked_words = 0;
 851 
 852       if (hr->is_humongous()) {
 853         oop const humongous_obj = oop(hr->humongous_start_region()->bottom());
 854         if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) {
 855           // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start);
 856           // however in case of humongous objects it is sufficient to scan the encompassing
 857           // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the
 858           // two areas will be zero sized. I.e. TAMS is either
 859           // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different
 860           // value: this would mean that TAMS points somewhere into the object.
 861           assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start,
 862                  "More than one object in the humongous region?");
 863           humongous_obj->oop_iterate(&_update_cl, mr);
 864           return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0;
 865         } else {
 866           return 0;
 867         }
 868       }
 869 
 870       for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) {
 871         oop obj = it.next();
 872         size_t scanned_size = scan_for_references(obj, mr);
 873         if ((HeapWord*)obj < top_at_mark_start) {
 874           marked_words += scanned_size;
 875         }
 876       }
 877 
 878       return marked_words * HeapWordSize;
 879     }
 880 public:
 881   G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h,
 882                                    G1ConcurrentMark* cm,
 883                                    uint worker_id) :
 884     HeapRegionClosure(),
 885     _cm(cm),
 886     _update_cl(g1h, worker_id) { }
 887 
 888     bool do_heap_region(HeapRegion* hr) {
 889       if (_cm->has_aborted()) {
 890         return true;
 891       }
 892 
 893       uint const region_idx = hr->hrm_index();
 894       DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);)
 895       assert(top_at_rebuild_start_check == NULL ||
 896              top_at_rebuild_start_check > hr->bottom(),
 897              "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)",
 898              p2i(top_at_rebuild_start_check), p2i(hr->bottom()),  region_idx, hr->get_type_str());
 899 
 900       size_t total_marked_bytes = 0;
 901       size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize;
 902 
 903       HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start();
 904 
 905       HeapWord* cur = hr->bottom();
 906       while (cur < hr->end()) {
 907         // After every iteration (yield point) we need to check whether the region's
 908         // TARS changed due to e.g. eager reclaim.
 909         HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);
 910         if (top_at_rebuild_start == NULL) {
 911           return false;
 912         }
 913 
 914         MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words));
 915         if (next_chunk.is_empty()) {
 916           break;
 917         }
 918 
 919         const Ticks start = Ticks::now();
 920         size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(),
 921                                                         top_at_mark_start,
 922                                                         top_at_rebuild_start,
 923                                                         hr,
 924                                                         next_chunk);
 925         Tickspan time = Ticks::now() - start;
 926 
 927         log_trace(gc, remset, tracking)("Rebuilt region %u "
 928                                         "live " SIZE_FORMAT " "
 929                                         "time %.3fms "
 930                                         "marked bytes " SIZE_FORMAT " "
 931                                         "bot " PTR_FORMAT " "
 932                                         "TAMS " PTR_FORMAT " "
 933                                         "TARS " PTR_FORMAT,
 934                                         region_idx,
 935                                         _cm->liveness(region_idx) * HeapWordSize,
 936                                         TicksToTimeHelper::seconds(time) * 1000.0,
 937                                         marked_bytes,
 938                                         p2i(hr->bottom()),
 939                                         p2i(top_at_mark_start),
 940                                         p2i(top_at_rebuild_start));
 941 
 942         if (marked_bytes > 0) {
 943           total_marked_bytes += marked_bytes;
 944         }
 945         cur += chunk_size_in_words;
 946 
 947         _cm->do_yield_check();
 948         if (_cm->has_aborted()) {
 949           return true;
 950         }
 951       }
 952       // In the final iteration of the loop the region might have been eagerly reclaimed.
 953       // Simply filter out those regions. We can not just use region type because there
 954       // might have already been new allocations into these regions.
 955       DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);)
 956       assert(top_at_rebuild_start == NULL ||
 957              total_marked_bytes == hr->marked_bytes(),
 958              "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " "
 959              "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")",
 960              total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(),
 961              p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start));
 962        // Abort state may have changed after the yield check.
 963       return _cm->has_aborted();
 964     }
 965   };
 966 
 967   HeapRegionClaimer _hr_claimer;
 968   G1ConcurrentMark* _cm;
 969 
 970   uint _worker_id_offset;
 971 public:
 972   G1RebuildRemSetTask(G1ConcurrentMark* cm,
 973                       uint n_workers,
 974                       uint worker_id_offset) :
 975       AbstractGangTask("G1 Rebuild Remembered Set"),
 976       _cm(cm),
 977       _hr_claimer(n_workers),
 978       _worker_id_offset(worker_id_offset) {
 979   }
 980 
 981   void work(uint worker_id) {
 982     SuspendibleThreadSetJoiner sts_join;
 983 
 984     G1CollectedHeap* g1h = G1CollectedHeap::heap();
 985 
 986     G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id);
 987     g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id);
 988   }
 989 };
 990 
 991 void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm,
 992                                WorkGang* workers,
 993                                uint worker_id_offset) {
 994   uint num_workers = workers->active_workers();
 995 
 996   G1RebuildRemSetTask cl(cm,
 997                          num_workers,
 998                          worker_id_offset);
 999   workers->run_task(&cl, num_workers);
1000 }