1 /*
   2  * Copyright (c) 2014, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1Allocator.inline.hpp"
  27 #include "gc/g1/g1CollectedHeap.inline.hpp"
  28 #include "gc/g1/g1CollectionSet.hpp"
  29 #include "gc/g1/g1OopClosures.inline.hpp"
  30 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  31 #include "gc/g1/g1RootClosures.hpp"
  32 #include "gc/g1/g1StringDedup.hpp"
  33 #include "gc/shared/gcTrace.hpp"
  34 #include "gc/shared/taskqueue.inline.hpp"
  35 #include "memory/allocation.inline.hpp"
  36 #include "oops/access.inline.hpp"
  37 #include "oops/oop.inline.hpp"
  38 #include "runtime/prefetch.inline.hpp"
  39 
  40 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint worker_id, size_t young_cset_length)
  41   : _g1h(g1h),
  42     _refs(g1h->task_queue(worker_id)),
  43     _dcq(&g1h->dirty_card_queue_set()),
  44     _ct(g1h->card_table()),
  45     _closures(NULL),
  46     _plab_allocator(NULL),
  47     _age_table(false),
  48 //  _dest
  49     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  50     _scanner(g1h, this),
  51     _hash_seed(17),
  52     _worker_id(worker_id),
  53     _stack_drain_upper_threshold(GCDrainStackTargetSize * 2 + 1),
  54     _stack_drain_lower_threshold(GCDrainStackTargetSize),
  55 //    _surviving_young_words(NULL),
  56 //    _surviving_young_words_base(NULL),
  57     _trim_ticks(),
  58     _old_gen_is_full(false)
  59 {
  60   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  61   // we "sacrifice" entry 0 to keep track of surviving bytes for
  62   // non-young regions (where the age is -1)
  63   // We also add a few elements at the beginning and at the end in
  64   // an attempt to eliminate cache contention
  65   size_t real_length = 1 + young_cset_length;
  66   size_t array_length = PADDING_ELEM_NUM +
  67                       real_length +
  68                       PADDING_ELEM_NUM;
  69   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  70   if (_surviving_young_words_base == NULL)
  71     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  72                           "Not enough space for young surv histo.");
  73   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  74   memset(_surviving_young_words, 0, real_length * sizeof(size_t));
  75 
  76   _plab_allocator = new G1PLABAllocator(_g1h->allocator());
  77 
  78   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  79   // The dest for Young is used when the objects are aged enough to
  80   // need to be moved to the next space.
  81   _dest[InCSetState::Young]        = InCSetState::Old;
  82   _dest[InCSetState::Old]          = InCSetState::Old;
  83 
  84   _closures = G1EvacuationRootClosures::create_root_closures(this, _g1h);
  85 }
  86 
  87 // Pass locally gathered statistics to global state.
  88 void G1ParScanThreadState::flush(size_t* surviving_young_words) {
  89   _dcq.flush();
  90   // Update allocation statistics.
  91   _plab_allocator->flush_and_retire_stats();
  92   _g1h->g1_policy()->record_age_table(&_age_table);
  93 
  94   uint length = _g1h->collection_set()->young_region_length();
  95   for (uint region_index = 0; region_index < length; region_index++) {
  96     surviving_young_words[region_index] += _surviving_young_words[region_index];
  97   }
  98 }
  99 
 100 G1ParScanThreadState::~G1ParScanThreadState() {
 101   delete _plab_allocator;
 102   delete _closures;
 103   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
 104 }
 105 
 106 void G1ParScanThreadState::waste(size_t& wasted, size_t& undo_wasted) {
 107   _plab_allocator->waste(wasted, undo_wasted);
 108 }
 109 
 110 #ifdef ASSERT
 111 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 112   assert(ref != NULL, "invariant");
 113   assert(UseCompressedOops, "sanity");
 114   assert(!has_partial_array_mask(ref), "ref=" PTR_FORMAT, p2i(ref));
 115   oop p = RawAccess<>::oop_load(ref);
 116   assert(_g1h->is_in_g1_reserved(p),
 117          "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 118   return true;
 119 }
 120 
 121 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 122   assert(ref != NULL, "invariant");
 123   if (has_partial_array_mask(ref)) {
 124     // Must be in the collection set--it's already been copied.
 125     oop p = clear_partial_array_mask(ref);
 126     assert(_g1h->is_in_cset(p),
 127            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 128   } else {
 129     oop p = RawAccess<>::oop_load(ref);
 130     assert(_g1h->is_in_g1_reserved(p),
 131            "ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p));
 132   }
 133   return true;
 134 }
 135 
 136 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 137   if (ref.is_narrow()) {
 138     return verify_ref((narrowOop*) ref);
 139   } else {
 140     return verify_ref((oop*) ref);
 141   }
 142 }
 143 #endif // ASSERT
 144 
 145 void G1ParScanThreadState::trim_queue() {
 146   StarTask ref;
 147   do {
 148     // Drain the overflow stack first, so other threads can steal.
 149     while (_refs->pop_overflow(ref)) {
 150       if (!_refs->try_push_to_taskqueue(ref)) {
 151         dispatch_reference(ref);
 152       }
 153     }
 154 
 155     while (_refs->pop_local(ref)) {
 156       dispatch_reference(ref);
 157     }
 158   } while (!_refs->is_empty());
 159 }
 160 
 161 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 162                                                       InCSetState* dest,
 163                                                       size_t word_sz,
 164                                                       bool previous_plab_refill_failed) {
 165   assert(state.is_in_cset_or_humongous(), "Unexpected state: " CSETSTATE_FORMAT, state.value());
 166   assert(dest->is_in_cset_or_humongous(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 167 
 168   // Right now we only have two types of regions (young / old) so
 169   // let's keep the logic here simple. We can generalize it when necessary.
 170   if (dest->is_young()) {
 171     bool plab_refill_in_old_failed = false;
 172     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 173                                                         word_sz,
 174                                                         &plab_refill_in_old_failed);
 175     // Make sure that we won't attempt to copy any other objects out
 176     // of a survivor region (given that apparently we cannot allocate
 177     // any new ones) to avoid coming into this slow path again and again.
 178     // Only consider failed PLAB refill here: failed inline allocations are
 179     // typically large, so not indicative of remaining space.
 180     if (previous_plab_refill_failed) {
 181       _tenuring_threshold = 0;
 182     }
 183 
 184     if (obj_ptr != NULL) {
 185       dest->set_old();
 186     } else {
 187       // We just failed to allocate in old gen. The same idea as explained above
 188       // for making survivor gen unavailable for allocation applies for old gen.
 189       _old_gen_is_full = plab_refill_in_old_failed;
 190     }
 191     return obj_ptr;
 192   } else {
 193     _old_gen_is_full = previous_plab_refill_failed;
 194     assert(dest->is_old(), "Unexpected dest: " CSETSTATE_FORMAT, dest->value());
 195     // no other space to try.
 196     return NULL;
 197   }
 198 }
 199 
 200 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 201   if (state.is_young()) {
 202     age = !m->has_displaced_mark_helper() ? m->age()
 203                                           : m->displaced_mark_helper()->age();
 204     if (age < _tenuring_threshold) {
 205       return state;
 206     }
 207   }
 208   return dest(state);
 209 }
 210 
 211 void G1ParScanThreadState::report_promotion_event(InCSetState const dest_state,
 212                                                   oop const old, size_t word_sz, uint age,
 213                                                   HeapWord * const obj_ptr) const {
 214   PLAB* alloc_buf = _plab_allocator->alloc_buffer(dest_state);
 215   if (alloc_buf->contains(obj_ptr)) {
 216     _g1h->_gc_tracer_stw->report_promotion_in_new_plab_event(old->klass(), word_sz, age,
 217                                                              dest_state.value() == InCSetState::Old,
 218                                                              alloc_buf->word_sz());
 219   } else {
 220     _g1h->_gc_tracer_stw->report_promotion_outside_plab_event(old->klass(), word_sz, age,
 221                                                               dest_state.value() == InCSetState::Old);
 222   }
 223 }
 224 
 225 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 226                                                  oop const old,
 227                                                  markOop const old_mark) {
 228   const size_t word_sz = old->size();
 229   HeapRegion* const from_region = _g1h->heap_region_containing(old);
 230   // +1 to make the -1 indexes valid...
 231   const int young_index = from_region->young_index_in_cset()+1;
 232   assert( (from_region->is_young() && young_index >  0) ||
 233          (!from_region->is_young() && young_index == 0), "invariant" );
 234 
 235   uint age = 0;
 236   InCSetState dest_state = next_state(state, old_mark, age);
 237   // The second clause is to prevent premature evacuation failure in case there
 238   // is still space in survivor, but old gen is full.
 239   if (_old_gen_is_full && dest_state.is_old()) {
 240     return handle_evacuation_failure_par(old, old_mark);
 241   }
 242   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz);
 243 
 244   // PLAB allocations should succeed most of the time, so we'll
 245   // normally check against NULL once and that's it.
 246   if (obj_ptr == NULL) {
 247     bool plab_refill_failed = false;
 248     obj_ptr = _plab_allocator->allocate_direct_or_new_plab(dest_state, word_sz, &plab_refill_failed);
 249     if (obj_ptr == NULL) {
 250       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, plab_refill_failed);
 251       if (obj_ptr == NULL) {
 252         // This will either forward-to-self, or detect that someone else has
 253         // installed a forwarding pointer.
 254         return handle_evacuation_failure_par(old, old_mark);
 255       }
 256     }
 257     if (_g1h->_gc_tracer_stw->should_report_promotion_events()) {
 258       // The events are checked individually as part of the actual commit
 259       report_promotion_event(dest_state, old, word_sz, age, obj_ptr);
 260     }
 261   }
 262 
 263   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 264   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 265 
 266 #ifndef PRODUCT
 267   // Should this evacuation fail?
 268   if (_g1h->evacuation_should_fail()) {
 269     // Doing this after all the allocation attempts also tests the
 270     // undo_allocation() method too.
 271     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
 272     return handle_evacuation_failure_par(old, old_mark);
 273   }
 274 #endif // !PRODUCT
 275 
 276   // We're going to allocate linearly, so might as well prefetch ahead.
 277   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 278 
 279   const oop obj = oop(obj_ptr);
 280   const oop forward_ptr = old->forward_to_atomic(obj);
 281   if (forward_ptr == NULL) {
 282     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 283 
 284     if (dest_state.is_young()) {
 285       if (age < markOopDesc::max_age) {
 286         age++;
 287       }
 288       if (old_mark->has_displaced_mark_helper()) {
 289         // In this case, we have to install the mark word first,
 290         // otherwise obj looks to be forwarded (the old mark word,
 291         // which contains the forward pointer, was copied)
 292         obj->set_mark_raw(old_mark);
 293         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 294         old_mark->set_displaced_mark_helper(new_mark);
 295       } else {
 296         obj->set_mark_raw(old_mark->set_age(age));
 297       }
 298       _age_table.add(age, word_sz);
 299     } else {
 300       obj->set_mark_raw(old_mark);
 301     }
 302 
 303     if (G1StringDedup::is_enabled()) {
 304       const bool is_from_young = state.is_young();
 305       const bool is_to_young = dest_state.is_young();
 306       assert(is_from_young == _g1h->heap_region_containing(old)->is_young(),
 307              "sanity");
 308       assert(is_to_young == _g1h->heap_region_containing(obj)->is_young(),
 309              "sanity");
 310       G1StringDedup::enqueue_from_evacuation(is_from_young,
 311                                              is_to_young,
 312                                              _worker_id,
 313                                              obj);
 314     }
 315 
 316     _surviving_young_words[young_index] += word_sz;
 317 
 318     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 319       // We keep track of the next start index in the length field of
 320       // the to-space object. The actual length can be found in the
 321       // length field of the from-space object.
 322       arrayOop(obj)->set_length(0);
 323       oop* old_p = set_partial_array_mask(old);
 324       do_oop_partial_array(old_p);
 325     } else {
 326       HeapRegion* const to_region = _g1h->heap_region_containing(obj_ptr);
 327       _scanner.set_region(to_region);
 328       obj->oop_iterate_backwards(&_scanner);
 329     }
 330     return obj;
 331   } else {
 332     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz);
 333     return forward_ptr;
 334   }
 335 }
 336 
 337 G1ParScanThreadState* G1ParScanThreadStateSet::state_for_worker(uint worker_id) {
 338   assert(worker_id < _n_workers, "out of bounds access");
 339   if (_states[worker_id] == NULL) {
 340     _states[worker_id] = new G1ParScanThreadState(_g1h, worker_id, _young_cset_length);
 341   }
 342   return _states[worker_id];
 343 }
 344 
 345 const size_t* G1ParScanThreadStateSet::surviving_young_words() const {
 346   assert(_flushed, "thread local state from the per thread states should have been flushed");
 347   return _surviving_young_words_total;
 348 }
 349 
 350 void G1ParScanThreadStateSet::flush() {
 351   assert(!_flushed, "thread local state from the per thread states should be flushed once");
 352 
 353   for (uint worker_index = 0; worker_index < _n_workers; ++worker_index) {
 354     G1ParScanThreadState* pss = _states[worker_index];
 355 
 356     if (pss == NULL) {
 357       continue;
 358     }
 359 
 360     pss->flush(_surviving_young_words_total);
 361     delete pss;
 362     _states[worker_index] = NULL;
 363   }
 364   _flushed = true;
 365 }
 366 
 367 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 368   assert(_g1h->is_in_cset(old), "Object " PTR_FORMAT " should be in the CSet", p2i(old));
 369 
 370   oop forward_ptr = old->forward_to_atomic(old);
 371   if (forward_ptr == NULL) {
 372     // Forward-to-self succeeded. We are the "owner" of the object.
 373     HeapRegion* r = _g1h->heap_region_containing(old);
 374 
 375     if (!r->evacuation_failed()) {
 376       r->set_evacuation_failed(true);
 377      _g1h->hr_printer()->evac_failure(r);
 378     }
 379 
 380     _g1h->preserve_mark_during_evac_failure(_worker_id, old, m);
 381 
 382     _scanner.set_region(r);
 383     old->oop_iterate_backwards(&_scanner);
 384 
 385     return old;
 386   } else {
 387     // Forward-to-self failed. Either someone else managed to allocate
 388     // space for this object (old != forward_ptr) or they beat us in
 389     // self-forwarding it (old == forward_ptr).
 390     assert(old == forward_ptr || !_g1h->is_in_cset(forward_ptr),
 391            "Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 392            "should not be in the CSet",
 393            p2i(old), p2i(forward_ptr));
 394     return forward_ptr;
 395   }
 396 }
 397 G1ParScanThreadStateSet::G1ParScanThreadStateSet(G1CollectedHeap* g1h, uint n_workers, size_t young_cset_length) :
 398     _g1h(g1h),
 399     _states(NEW_C_HEAP_ARRAY(G1ParScanThreadState*, n_workers, mtGC)),
 400     _surviving_young_words_total(NEW_C_HEAP_ARRAY(size_t, young_cset_length, mtGC)),
 401     _young_cset_length(young_cset_length),
 402     _n_workers(n_workers),
 403     _flushed(false) {
 404   for (uint i = 0; i < n_workers; ++i) {
 405     _states[i] = NULL;
 406   }
 407   memset(_surviving_young_words_total, 0, young_cset_length * sizeof(size_t));
 408 }
 409 
 410 G1ParScanThreadStateSet::~G1ParScanThreadStateSet() {
 411   assert(_flushed, "thread local state from the per thread states should have been flushed");
 412   FREE_C_HEAP_ARRAY(G1ParScanThreadState*, _states);
 413   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_total);
 414 }