1 /*
   2  * Copyright (c) 2001, 2018, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/dirtyCardQueue.hpp"
  27 #include "gc/g1/g1BarrierSet.hpp"
  28 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  29 #include "gc/g1/g1CardTable.inline.hpp"
  30 #include "gc/g1/g1CollectedHeap.inline.hpp"
  31 #include "gc/g1/g1ConcurrentRefine.hpp"
  32 #include "gc/g1/g1FromCardCache.hpp"
  33 #include "gc/g1/g1GCPhaseTimes.hpp"
  34 #include "gc/g1/g1HotCardCache.hpp"
  35 #include "gc/g1/g1OopClosures.inline.hpp"
  36 #include "gc/g1/g1RootClosures.hpp"
  37 #include "gc/g1/g1RemSet.hpp"
  38 #include "gc/g1/heapRegion.inline.hpp"
  39 #include "gc/g1/heapRegionManager.inline.hpp"
  40 #include "gc/g1/heapRegionRemSet.hpp"
  41 #include "gc/shared/gcTraceTime.inline.hpp"
  42 #include "gc/shared/suspendibleThreadSet.hpp"
  43 #include "memory/iterator.hpp"
  44 #include "memory/resourceArea.hpp"
  45 #include "oops/access.inline.hpp"
  46 #include "oops/oop.inline.hpp"
  47 #include "utilities/align.hpp"
  48 #include "utilities/globalDefinitions.hpp"
  49 #include "utilities/intHisto.hpp"
  50 #include "utilities/stack.inline.hpp"
  51 #include "utilities/ticks.inline.hpp"
  52 
  53 // Collects information about the overall remembered set scan progress during an evacuation.
  54 class G1RemSetScanState : public CHeapObj<mtGC> {
  55 private:
  56   class G1ClearCardTableTask : public AbstractGangTask {
  57     G1CollectedHeap* _g1h;
  58     uint* _dirty_region_list;
  59     size_t _num_dirty_regions;
  60     size_t _chunk_length;
  61 
  62     size_t volatile _cur_dirty_regions;
  63   public:
  64     G1ClearCardTableTask(G1CollectedHeap* g1h,
  65                          uint* dirty_region_list,
  66                          size_t num_dirty_regions,
  67                          size_t chunk_length) :
  68       AbstractGangTask("G1 Clear Card Table Task"),
  69       _g1h(g1h),
  70       _dirty_region_list(dirty_region_list),
  71       _num_dirty_regions(num_dirty_regions),
  72       _chunk_length(chunk_length),
  73       _cur_dirty_regions(0) {
  74 
  75       assert(chunk_length > 0, "must be");
  76     }
  77 
  78     static size_t chunk_size() { return M; }
  79 
  80     void work(uint worker_id) {
  81       while (_cur_dirty_regions < _num_dirty_regions) {
  82         size_t next = Atomic::add(_chunk_length, &_cur_dirty_regions) - _chunk_length;
  83         size_t max = MIN2(next + _chunk_length, _num_dirty_regions);
  84 
  85         for (size_t i = next; i < max; i++) {
  86           HeapRegion* r = _g1h->region_at(_dirty_region_list[i]);
  87           if (!r->is_survivor()) {
  88             r->clear_cardtable();
  89           }
  90         }
  91       }
  92     }
  93   };
  94 
  95   size_t _max_regions;
  96 
  97   // Scan progress for the remembered set of a single region. Transitions from
  98   // Unclaimed -> Claimed -> Complete.
  99   // At each of the transitions the thread that does the transition needs to perform
 100   // some special action once. This is the reason for the extra "Claimed" state.
 101   typedef jint G1RemsetIterState;
 102 
 103   static const G1RemsetIterState Unclaimed = 0; // The remembered set has not been scanned yet.
 104   static const G1RemsetIterState Claimed = 1;   // The remembered set is currently being scanned.
 105   static const G1RemsetIterState Complete = 2;  // The remembered set has been completely scanned.
 106 
 107   G1RemsetIterState volatile* _iter_states;
 108   // The current location where the next thread should continue scanning in a region's
 109   // remembered set.
 110   size_t volatile* _iter_claims;
 111 
 112   // Temporary buffer holding the regions we used to store remembered set scan duplicate
 113   // information. These are also called "dirty". Valid entries are from [0.._cur_dirty_region)
 114   uint* _dirty_region_buffer;
 115 
 116   typedef jbyte IsDirtyRegionState;
 117   static const IsDirtyRegionState Clean = 0;
 118   static const IsDirtyRegionState Dirty = 1;
 119   // Holds a flag for every region whether it is in the _dirty_region_buffer already
 120   // to avoid duplicates. Uses jbyte since there are no atomic instructions for bools.
 121   IsDirtyRegionState* _in_dirty_region_buffer;
 122   size_t _cur_dirty_region;
 123 
 124   // Creates a snapshot of the current _top values at the start of collection to
 125   // filter out card marks that we do not want to scan.
 126   class G1ResetScanTopClosure : public HeapRegionClosure {
 127   private:
 128     HeapWord** _scan_top;
 129   public:
 130     G1ResetScanTopClosure(HeapWord** scan_top) : _scan_top(scan_top) { }
 131 
 132     virtual bool do_heap_region(HeapRegion* r) {
 133       uint hrm_index = r->hrm_index();
 134       if (!r->in_collection_set() && r->is_old_or_humongous()) {
 135         _scan_top[hrm_index] = r->top();
 136       } else {
 137         _scan_top[hrm_index] = r->bottom();
 138       }
 139       return false;
 140     }
 141   };
 142 
 143   // For each region, contains the maximum top() value to be used during this garbage
 144   // collection. Subsumes common checks like filtering out everything but old and
 145   // humongous regions outside the collection set.
 146   // This is valid because we are not interested in scanning stray remembered set
 147   // entries from free or archive regions.
 148   HeapWord** _scan_top;
 149 public:
 150   G1RemSetScanState() :
 151     _max_regions(0),
 152     _iter_states(NULL),
 153     _iter_claims(NULL),
 154     _dirty_region_buffer(NULL),
 155     _in_dirty_region_buffer(NULL),
 156     _cur_dirty_region(0),
 157     _scan_top(NULL) {
 158   }
 159 
 160   ~G1RemSetScanState() {
 161     if (_iter_states != NULL) {
 162       FREE_C_HEAP_ARRAY(G1RemsetIterState, _iter_states);
 163     }
 164     if (_iter_claims != NULL) {
 165       FREE_C_HEAP_ARRAY(size_t, _iter_claims);
 166     }
 167     if (_dirty_region_buffer != NULL) {
 168       FREE_C_HEAP_ARRAY(uint, _dirty_region_buffer);
 169     }
 170     if (_in_dirty_region_buffer != NULL) {
 171       FREE_C_HEAP_ARRAY(IsDirtyRegionState, _in_dirty_region_buffer);
 172     }
 173     if (_scan_top != NULL) {
 174       FREE_C_HEAP_ARRAY(HeapWord*, _scan_top);
 175     }
 176   }
 177 
 178   void initialize(uint max_regions) {
 179     assert(_iter_states == NULL, "Must not be initialized twice");
 180     assert(_iter_claims == NULL, "Must not be initialized twice");
 181     _max_regions = max_regions;
 182     _iter_states = NEW_C_HEAP_ARRAY(G1RemsetIterState, max_regions, mtGC);
 183     _iter_claims = NEW_C_HEAP_ARRAY(size_t, max_regions, mtGC);
 184     _dirty_region_buffer = NEW_C_HEAP_ARRAY(uint, max_regions, mtGC);
 185     _in_dirty_region_buffer = NEW_C_HEAP_ARRAY(IsDirtyRegionState, max_regions, mtGC);
 186     _scan_top = NEW_C_HEAP_ARRAY(HeapWord*, max_regions, mtGC);
 187   }
 188 
 189   void reset() {
 190     for (uint i = 0; i < _max_regions; i++) {
 191       _iter_states[i] = Unclaimed;
 192     }
 193 
 194     G1ResetScanTopClosure cl(_scan_top);
 195     G1CollectedHeap::heap()->heap_region_iterate(&cl);
 196 
 197     memset((void*)_iter_claims, 0, _max_regions * sizeof(size_t));
 198     memset(_in_dirty_region_buffer, Clean, _max_regions * sizeof(IsDirtyRegionState));
 199     _cur_dirty_region = 0;
 200   }
 201 
 202   // Attempt to claim the remembered set of the region for iteration. Returns true
 203   // if this call caused the transition from Unclaimed to Claimed.
 204   inline bool claim_iter(uint region) {
 205     assert(region < _max_regions, "Tried to access invalid region %u", region);
 206     if (_iter_states[region] != Unclaimed) {
 207       return false;
 208     }
 209     G1RemsetIterState res = Atomic::cmpxchg(Claimed, &_iter_states[region], Unclaimed);
 210     return (res == Unclaimed);
 211   }
 212 
 213   // Try to atomically sets the iteration state to "complete". Returns true for the
 214   // thread that caused the transition.
 215   inline bool set_iter_complete(uint region) {
 216     if (iter_is_complete(region)) {
 217       return false;
 218     }
 219     G1RemsetIterState res = Atomic::cmpxchg(Complete, &_iter_states[region], Claimed);
 220     return (res == Claimed);
 221   }
 222 
 223   // Returns true if the region's iteration is complete.
 224   inline bool iter_is_complete(uint region) const {
 225     assert(region < _max_regions, "Tried to access invalid region %u", region);
 226     return _iter_states[region] == Complete;
 227   }
 228 
 229   // The current position within the remembered set of the given region.
 230   inline size_t iter_claimed(uint region) const {
 231     assert(region < _max_regions, "Tried to access invalid region %u", region);
 232     return _iter_claims[region];
 233   }
 234 
 235   // Claim the next block of cards within the remembered set of the region with
 236   // step size.
 237   inline size_t iter_claimed_next(uint region, size_t step) {
 238     return Atomic::add(step, &_iter_claims[region]) - step;
 239   }
 240 
 241   void add_dirty_region(uint region) {
 242     if (_in_dirty_region_buffer[region] == Dirty) {
 243       return;
 244     }
 245 
 246     bool marked_as_dirty = Atomic::cmpxchg(Dirty, &_in_dirty_region_buffer[region], Clean) == Clean;
 247     if (marked_as_dirty) {
 248       size_t allocated = Atomic::add(1u, &_cur_dirty_region) - 1;
 249       _dirty_region_buffer[allocated] = region;
 250     }
 251   }
 252 
 253   HeapWord* scan_top(uint region_idx) const {
 254     return _scan_top[region_idx];
 255   }
 256 
 257   // Clear the card table of "dirty" regions.
 258   void clear_card_table(WorkGang* workers) {
 259     if (_cur_dirty_region == 0) {
 260       return;
 261     }
 262 
 263     size_t const num_chunks = align_up(_cur_dirty_region * HeapRegion::CardsPerRegion, G1ClearCardTableTask::chunk_size()) / G1ClearCardTableTask::chunk_size();
 264     uint const num_workers = (uint)MIN2(num_chunks, (size_t)workers->active_workers());
 265     size_t const chunk_length = G1ClearCardTableTask::chunk_size() / HeapRegion::CardsPerRegion;
 266 
 267     // Iterate over the dirty cards region list.
 268     G1ClearCardTableTask cl(G1CollectedHeap::heap(), _dirty_region_buffer, _cur_dirty_region, chunk_length);
 269 
 270     log_debug(gc, ergo)("Running %s using %u workers for " SIZE_FORMAT " "
 271                         "units of work for " SIZE_FORMAT " regions.",
 272                         cl.name(), num_workers, num_chunks, _cur_dirty_region);
 273     workers->run_task(&cl, num_workers);
 274 
 275 #ifndef PRODUCT
 276     G1CollectedHeap::heap()->verifier()->verify_card_table_cleanup();
 277 #endif
 278   }
 279 };
 280 
 281 G1RemSet::G1RemSet(G1CollectedHeap* g1h,
 282                    G1CardTable* ct,
 283                    G1HotCardCache* hot_card_cache) :
 284   _g1h(g1h),
 285   _scan_state(new G1RemSetScanState()),
 286   _num_conc_refined_cards(0),
 287   _ct(ct),
 288   _g1p(_g1h->g1_policy()),
 289   _hot_card_cache(hot_card_cache),
 290   _prev_period_summary() {
 291 }
 292 
 293 G1RemSet::~G1RemSet() {
 294   if (_scan_state != NULL) {
 295     delete _scan_state;
 296   }
 297 }
 298 
 299 uint G1RemSet::num_par_rem_sets() {
 300   return DirtyCardQueueSet::num_par_ids() + G1ConcurrentRefine::max_num_threads() + MAX2(ConcGCThreads, ParallelGCThreads);
 301 }
 302 
 303 void G1RemSet::initialize(size_t capacity, uint max_regions) {
 304   G1FromCardCache::initialize(num_par_rem_sets(), max_regions);
 305   _scan_state->initialize(max_regions);
 306 }
 307 
 308 G1ScanRSForRegionClosure::G1ScanRSForRegionClosure(G1RemSetScanState* scan_state,
 309                                                    G1ScanObjsDuringScanRSClosure* scan_obj_on_card,
 310                                                    G1ParScanThreadState* pss,
 311                                                    uint worker_i) :
 312   _g1h(G1CollectedHeap::heap()),
 313   _ct(_g1h->card_table()),
 314   _pss(pss),
 315   _scan_objs_on_card_cl(scan_obj_on_card),
 316   _scan_state(scan_state),
 317   _worker_i(worker_i),
 318   _cards_claimed(0),
 319   _cards_scanned(0),
 320   _cards_skipped(0),
 321   _rem_set_root_scan_time(),
 322   _rem_set_trim_partially_time(),
 323   _strong_code_root_scan_time(),
 324   _strong_code_trim_partially_time() {
 325 }
 326 
 327 void G1ScanRSForRegionClosure::claim_card(size_t card_index, const uint region_idx_for_card){
 328   _ct->set_card_claimed(card_index);
 329   _scan_state->add_dirty_region(region_idx_for_card);
 330 }
 331 
 332 void G1ScanRSForRegionClosure::scan_card(MemRegion mr, uint region_idx_for_card) {
 333   HeapRegion* const card_region = _g1h->region_at(region_idx_for_card);
 334   _scan_objs_on_card_cl->set_region(card_region);
 335   card_region->oops_on_card_seq_iterate_careful<true>(mr, _scan_objs_on_card_cl);
 336   _scan_objs_on_card_cl->trim_queue_partially();
 337   _cards_scanned++;
 338 }
 339 
 340 void G1ScanRSForRegionClosure::scan_rem_set_roots(HeapRegion* r) {
 341   uint const region_idx = r->hrm_index();
 342 
 343   if (_scan_state->claim_iter(region_idx)) {
 344     // If we ever free the collection set concurrently, we should also
 345     // clear the card table concurrently therefore we won't need to
 346     // add regions of the collection set to the dirty cards region.
 347     _scan_state->add_dirty_region(region_idx);
 348   }
 349 
 350   // We claim cards in blocks so as to reduce the contention.
 351   size_t const block_size = G1RSetScanBlockSize;
 352 
 353   HeapRegionRemSetIterator iter(r->rem_set());
 354   size_t card_index;
 355 
 356   size_t claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 357   for (size_t current_card = 0; iter.has_next(card_index); current_card++) {
 358     if (current_card >= claimed_card_block + block_size) {
 359       claimed_card_block = _scan_state->iter_claimed_next(region_idx, block_size);
 360     }
 361     if (current_card < claimed_card_block) {
 362       _cards_skipped++;
 363       continue;
 364     }
 365     _cards_claimed++;
 366 
 367     // If the card is dirty, then G1 will scan it during Update RS.
 368     if (_ct->is_card_claimed(card_index) || _ct->is_card_dirty(card_index)) {
 369       continue;
 370     }
 371 
 372     HeapWord* const card_start = _g1h->bot()->address_for_index(card_index);
 373     uint const region_idx_for_card = _g1h->addr_to_region(card_start);
 374 
 375     assert(_g1h->region_at(region_idx_for_card)->is_in_reserved(card_start),
 376            "Card start " PTR_FORMAT " to scan outside of region %u", p2i(card_start), _g1h->region_at(region_idx_for_card)->hrm_index());
 377     HeapWord* const top = _scan_state->scan_top(region_idx_for_card);
 378     if (card_start >= top) {
 379       continue;
 380     }
 381 
 382     // We claim lazily (so races are possible but they're benign), which reduces the
 383     // number of duplicate scans (the rsets of the regions in the cset can intersect).
 384     // Claim the card after checking bounds above: the remembered set may contain
 385     // random cards into current survivor, and we would then have an incorrectly
 386     // claimed card in survivor space. Card table clear does not reset the card table
 387     // of survivor space regions.
 388     claim_card(card_index, region_idx_for_card);
 389 
 390     MemRegion const mr(card_start, MIN2(card_start + BOTConstants::N_words, top));
 391 
 392     scan_card(mr, region_idx_for_card);
 393   }
 394 }
 395 
 396 void G1ScanRSForRegionClosure::scan_strong_code_roots(HeapRegion* r) {
 397   r->strong_code_roots_do(_pss->closures()->weak_codeblobs());
 398 }
 399 
 400 bool G1ScanRSForRegionClosure::do_heap_region(HeapRegion* r) {
 401   assert(r->in_collection_set(),
 402          "Should only be called on elements of the collection set but region %u is not.",
 403          r->hrm_index());
 404   uint const region_idx = r->hrm_index();
 405 
 406   // Do an early out if we know we are complete.
 407   if (_scan_state->iter_is_complete(region_idx)) {
 408     return false;
 409   }
 410 
 411   {
 412     G1EvacPhaseWithTrimTimeTracker timer(_pss, _rem_set_root_scan_time, _rem_set_trim_partially_time);
 413     scan_rem_set_roots(r);
 414   }
 415 
 416   if (_scan_state->set_iter_complete(region_idx)) {
 417     G1EvacPhaseWithTrimTimeTracker timer(_pss, _strong_code_root_scan_time, _strong_code_trim_partially_time);
 418     // Scan the strong code root list attached to the current region
 419     scan_strong_code_roots(r);
 420   }
 421   return false;
 422 }
 423 
 424 void G1RemSet::scan_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 425   G1ScanObjsDuringScanRSClosure scan_cl(_g1h, pss);
 426   G1ScanRSForRegionClosure cl(_scan_state, &scan_cl, pss, worker_i);
 427   _g1h->collection_set_iterate_from(&cl, worker_i);
 428 
 429   G1GCPhaseTimes* p = _g1p->phase_times();
 430 
 431   p->record_time_secs(G1GCPhaseTimes::ScanRS, worker_i, TicksToTimeHelper::seconds(cl.rem_set_root_scan_time()));
 432   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, TicksToTimeHelper::seconds(cl.rem_set_trim_partially_time()));
 433 
 434   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_scanned(), G1GCPhaseTimes::ScanRSScannedCards);
 435   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_claimed(), G1GCPhaseTimes::ScanRSClaimedCards);
 436   p->record_thread_work_item(G1GCPhaseTimes::ScanRS, worker_i, cl.cards_skipped(), G1GCPhaseTimes::ScanRSSkippedCards);
 437 
 438   p->record_time_secs(G1GCPhaseTimes::CodeRoots, worker_i, TicksToTimeHelper::seconds(cl.strong_code_root_scan_time()));
 439   p->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_i, TicksToTimeHelper::seconds(cl.strong_code_root_trim_partially_time()));
 440 }
 441 
 442 // Closure used for updating rem sets. Only called during an evacuation pause.
 443 class G1RefineCardClosure: public CardTableEntryClosure {
 444   G1RemSet* _g1rs;
 445   G1ScanObjsDuringUpdateRSClosure* _update_rs_cl;
 446 
 447   size_t _cards_scanned;
 448   size_t _cards_skipped;
 449 public:
 450   G1RefineCardClosure(G1CollectedHeap* g1h, G1ScanObjsDuringUpdateRSClosure* update_rs_cl) :
 451     _g1rs(g1h->g1_rem_set()), _update_rs_cl(update_rs_cl), _cards_scanned(0), _cards_skipped(0)
 452   {}
 453 
 454   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 455     // The only time we care about recording cards that
 456     // contain references that point into the collection set
 457     // is during RSet updating within an evacuation pause.
 458     // In this case worker_i should be the id of a GC worker thread.
 459     assert(SafepointSynchronize::is_at_safepoint(), "not during an evacuation pause");
 460 
 461     bool card_scanned = _g1rs->refine_card_during_gc(card_ptr, _update_rs_cl);
 462 
 463     if (card_scanned) {
 464       _update_rs_cl->trim_queue_partially();
 465       _cards_scanned++;
 466     } else {
 467       _cards_skipped++;
 468     }
 469     return true;
 470   }
 471 
 472   size_t cards_scanned() const { return _cards_scanned; }
 473   size_t cards_skipped() const { return _cards_skipped; }
 474 };
 475 
 476 void G1RemSet::update_rem_set(G1ParScanThreadState* pss, uint worker_i) {
 477   G1GCPhaseTimes* p = _g1p->phase_times();
 478 
 479   // Apply closure to log entries in the HCC.
 480   if (G1HotCardCache::default_use_cache()) {
 481     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::ScanHCC, worker_i);
 482 
 483     G1ScanObjsDuringUpdateRSClosure scan_hcc_cl(_g1h, pss, worker_i);
 484     G1RefineCardClosure refine_card_cl(_g1h, &scan_hcc_cl);
 485     _g1h->iterate_hcc_closure(&refine_card_cl, worker_i);
 486   }
 487 
 488   // Now apply the closure to all remaining log entries.
 489   {
 490     G1EvacPhaseTimesTracker x(p, pss, G1GCPhaseTimes::UpdateRS, worker_i);
 491 
 492     G1ScanObjsDuringUpdateRSClosure update_rs_cl(_g1h, pss, worker_i);
 493     G1RefineCardClosure refine_card_cl(_g1h, &update_rs_cl);
 494     _g1h->iterate_dirty_card_closure(&refine_card_cl, worker_i);
 495 
 496     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_scanned(), G1GCPhaseTimes::UpdateRSScannedCards);
 497     p->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, refine_card_cl.cards_skipped(), G1GCPhaseTimes::UpdateRSSkippedCards);
 498   }
 499 }
 500 
 501 void G1RemSet::cleanupHRRS() {
 502   HeapRegionRemSet::cleanup();
 503 }
 504 
 505 void G1RemSet::oops_into_collection_set_do(G1ParScanThreadState* pss, uint worker_i) {
 506   update_rem_set(pss, worker_i);
 507   scan_rem_set(pss, worker_i);;
 508 }
 509 
 510 void G1RemSet::prepare_for_oops_into_collection_set_do() {
 511   DirtyCardQueueSet& dcqs = G1BarrierSet::dirty_card_queue_set();
 512   dcqs.concatenate_logs();
 513 
 514   _scan_state->reset();
 515 }
 516 
 517 void G1RemSet::cleanup_after_oops_into_collection_set_do() {
 518   G1GCPhaseTimes* phase_times = _g1h->g1_policy()->phase_times();
 519 
 520   // Set all cards back to clean.
 521   double start = os::elapsedTime();
 522   _scan_state->clear_card_table(_g1h->workers());
 523   phase_times->record_clear_ct_time((os::elapsedTime() - start) * 1000.0);
 524 }
 525 
 526 inline void check_card_ptr(jbyte* card_ptr, G1CardTable* ct) {
 527 #ifdef ASSERT
 528   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 529   assert(g1h->is_in_exact(ct->addr_for(card_ptr)),
 530          "Card at " PTR_FORMAT " index " SIZE_FORMAT " representing heap at " PTR_FORMAT " (%u) must be in committed heap",
 531          p2i(card_ptr),
 532          ct->index_for(ct->addr_for(card_ptr)),
 533          p2i(ct->addr_for(card_ptr)),
 534          g1h->addr_to_region(ct->addr_for(card_ptr)));
 535 #endif
 536 }
 537 
 538 void G1RemSet::refine_card_concurrently(jbyte* card_ptr,
 539                                         uint worker_i) {
 540   assert(!_g1h->is_gc_active(), "Only call concurrently");
 541 
 542   check_card_ptr(card_ptr, _ct);
 543 
 544   // If the card is no longer dirty, nothing to do.
 545   if (*card_ptr != G1CardTable::dirty_card_val()) {
 546     return;
 547   }
 548 
 549   // Construct the region representing the card.
 550   HeapWord* start = _ct->addr_for(card_ptr);
 551   // And find the region containing it.
 552   HeapRegion* r = _g1h->heap_region_containing(start);
 553 
 554   // This check is needed for some uncommon cases where we should
 555   // ignore the card.
 556   //
 557   // The region could be young.  Cards for young regions are
 558   // distinctly marked (set to g1_young_gen), so the post-barrier will
 559   // filter them out.  However, that marking is performed
 560   // concurrently.  A write to a young object could occur before the
 561   // card has been marked young, slipping past the filter.
 562   //
 563   // The card could be stale, because the region has been freed since
 564   // the card was recorded. In this case the region type could be
 565   // anything.  If (still) free or (reallocated) young, just ignore
 566   // it.  If (reallocated) old or humongous, the later card trimming
 567   // and additional checks in iteration may detect staleness.  At
 568   // worst, we end up processing a stale card unnecessarily.
 569   //
 570   // In the normal (non-stale) case, the synchronization between the
 571   // enqueueing of the card and processing it here will have ensured
 572   // we see the up-to-date region type here.
 573   if (!r->is_old_or_humongous()) {
 574     return;
 575   }
 576 
 577   // The result from the hot card cache insert call is either:
 578   //   * pointer to the current card
 579   //     (implying that the current card is not 'hot'),
 580   //   * null
 581   //     (meaning we had inserted the card ptr into the "hot" card cache,
 582   //     which had some headroom),
 583   //   * a pointer to a "hot" card that was evicted from the "hot" cache.
 584   //
 585 
 586   if (_hot_card_cache->use_cache()) {
 587     assert(!SafepointSynchronize::is_at_safepoint(), "sanity");
 588 
 589     const jbyte* orig_card_ptr = card_ptr;
 590     card_ptr = _hot_card_cache->insert(card_ptr);
 591     if (card_ptr == NULL) {
 592       // There was no eviction. Nothing to do.
 593       return;
 594     } else if (card_ptr != orig_card_ptr) {
 595       // Original card was inserted and an old card was evicted.
 596       start = _ct->addr_for(card_ptr);
 597       r = _g1h->heap_region_containing(start);
 598 
 599       // Check whether the region formerly in the cache should be
 600       // ignored, as discussed earlier for the original card.  The
 601       // region could have been freed while in the cache.
 602       if (!r->is_old_or_humongous()) {
 603         return;
 604       }
 605     } // Else we still have the original card.
 606   }
 607 
 608   // Trim the region designated by the card to what's been allocated
 609   // in the region.  The card could be stale, or the card could cover
 610   // (part of) an object at the end of the allocated space and extend
 611   // beyond the end of allocation.
 612 
 613   // Non-humongous objects are only allocated in the old-gen during
 614   // GC, so if region is old then top is stable.  Humongous object
 615   // allocation sets top last; if top has not yet been set, this is
 616   // a stale card and we'll end up with an empty intersection.  If
 617   // this is not a stale card, the synchronization between the
 618   // enqueuing of the card and processing it here will have ensured
 619   // we see the up-to-date top here.
 620   HeapWord* scan_limit = r->top();
 621 
 622   if (scan_limit <= start) {
 623     // If the trimmed region is empty, the card must be stale.
 624     return;
 625   }
 626 
 627   // Okay to clean and process the card now.  There are still some
 628   // stale card cases that may be detected by iteration and dealt with
 629   // as iteration failure.
 630   *const_cast<volatile jbyte*>(card_ptr) = G1CardTable::clean_card_val();
 631 
 632   // This fence serves two purposes.  First, the card must be cleaned
 633   // before processing the contents.  Second, we can't proceed with
 634   // processing until after the read of top, for synchronization with
 635   // possibly concurrent humongous object allocation.  It's okay that
 636   // reading top and reading type were racy wrto each other.  We need
 637   // both set, in any order, to proceed.
 638   OrderAccess::fence();
 639 
 640   // Don't use addr_for(card_ptr + 1) which can ask for
 641   // a card beyond the heap.
 642   HeapWord* end = start + G1CardTable::card_size_in_words;
 643   MemRegion dirty_region(start, MIN2(scan_limit, end));
 644   assert(!dirty_region.is_empty(), "sanity");
 645 
 646   G1ConcurrentRefineOopClosure conc_refine_cl(_g1h, worker_i);
 647 
 648   bool card_processed =
 649     r->oops_on_card_seq_iterate_careful<false>(dirty_region, &conc_refine_cl);
 650 
 651   // If unable to process the card then we encountered an unparsable
 652   // part of the heap (e.g. a partially allocated object) while
 653   // processing a stale card.  Despite the card being stale, redirty
 654   // and re-enqueue, because we've already cleaned the card.  Without
 655   // this we could incorrectly discard a non-stale card.
 656   if (!card_processed) {
 657     // The card might have gotten re-dirtied and re-enqueued while we
 658     // worked.  (In fact, it's pretty likely.)
 659     if (*card_ptr != G1CardTable::dirty_card_val()) {
 660       *card_ptr = G1CardTable::dirty_card_val();
 661       MutexLockerEx x(Shared_DirtyCardQ_lock,
 662                       Mutex::_no_safepoint_check_flag);
 663       DirtyCardQueue* sdcq =
 664         G1BarrierSet::dirty_card_queue_set().shared_dirty_card_queue();
 665       sdcq->enqueue(card_ptr);
 666     }
 667   } else {
 668     _num_conc_refined_cards++; // Unsynchronized update, only used for logging.
 669   }
 670 }
 671 
 672 bool G1RemSet::refine_card_during_gc(jbyte* card_ptr,
 673                                      G1ScanObjsDuringUpdateRSClosure* update_rs_cl) {
 674   assert(_g1h->is_gc_active(), "Only call during GC");
 675 
 676   check_card_ptr(card_ptr, _ct);
 677 
 678   // If the card is no longer dirty, nothing to do. This covers cards that were already
 679   // scanned as parts of the remembered sets.
 680   if (*card_ptr != G1CardTable::dirty_card_val()) {
 681     return false;
 682   }
 683 
 684   // We claim lazily (so races are possible but they're benign), which reduces the
 685   // number of potential duplicate scans (multiple threads may enqueue the same card twice).
 686   *card_ptr = G1CardTable::clean_card_val() | G1CardTable::claimed_card_val();
 687 
 688   // Construct the region representing the card.
 689   HeapWord* card_start = _ct->addr_for(card_ptr);
 690   // And find the region containing it.
 691   uint const card_region_idx = _g1h->addr_to_region(card_start);
 692 
 693   _scan_state->add_dirty_region(card_region_idx);
 694   HeapWord* scan_limit = _scan_state->scan_top(card_region_idx);
 695   if (scan_limit <= card_start) {
 696     // If the card starts above the area in the region containing objects to scan, skip it.
 697     return false;
 698   }
 699 
 700   // Don't use addr_for(card_ptr + 1) which can ask for
 701   // a card beyond the heap.
 702   HeapWord* card_end = card_start + G1CardTable::card_size_in_words;
 703   MemRegion dirty_region(card_start, MIN2(scan_limit, card_end));
 704   assert(!dirty_region.is_empty(), "sanity");
 705 
 706   HeapRegion* const card_region = _g1h->region_at(card_region_idx);
 707   update_rs_cl->set_region(card_region);
 708   bool card_processed = card_region->oops_on_card_seq_iterate_careful<true>(dirty_region, update_rs_cl);
 709   assert(card_processed, "must be");
 710   return true;
 711 }
 712 
 713 void G1RemSet::print_periodic_summary_info(const char* header, uint period_count) {
 714   if ((G1SummarizeRSetStatsPeriod > 0) && log_is_enabled(Trace, gc, remset) &&
 715       (period_count % G1SummarizeRSetStatsPeriod == 0)) {
 716 
 717     G1RemSetSummary current(this);
 718     _prev_period_summary.subtract_from(&current);
 719 
 720     Log(gc, remset) log;
 721     log.trace("%s", header);
 722     ResourceMark rm;
 723     LogStream ls(log.trace());
 724     _prev_period_summary.print_on(&ls);
 725 
 726     _prev_period_summary.set(&current);
 727   }
 728 }
 729 
 730 void G1RemSet::print_summary_info() {
 731   Log(gc, remset, exit) log;
 732   if (log.is_trace()) {
 733     log.trace(" Cumulative RS summary");
 734     G1RemSetSummary current(this);
 735     ResourceMark rm;
 736     LogStream ls(log.trace());
 737     current.print_on(&ls);
 738   }
 739 }
 740 
 741 class G1RebuildRemSetTask: public AbstractGangTask {
 742   // Aggregate the counting data that was constructed concurrently
 743   // with marking.
 744   class G1RebuildRemSetHeapRegionClosure : public HeapRegionClosure {
 745     G1ConcurrentMark* _cm;
 746     G1RebuildRemSetClosure _update_cl;
 747 
 748     // Applies _update_cl to the references of the given object, limiting objArrays
 749     // to the given MemRegion. Returns the amount of words actually scanned.
 750     size_t scan_for_references(oop const obj, MemRegion mr) {
 751       size_t const obj_size = obj->size();
 752       // All non-objArrays and objArrays completely within the mr
 753       // can be scanned without passing the mr.
 754       if (!obj->is_objArray() || mr.contains(MemRegion((HeapWord*)obj, obj_size))) {
 755         obj->oop_iterate(&_update_cl);
 756         return obj_size;
 757       }
 758       // This path is for objArrays crossing the given MemRegion. Only scan the
 759       // area within the MemRegion.
 760       obj->oop_iterate(&_update_cl, mr);
 761       return mr.intersection(MemRegion((HeapWord*)obj, obj_size)).word_size();
 762     }
 763 
 764     // A humongous object is live (with respect to the scanning) either
 765     // a) it is marked on the bitmap as such
 766     // b) its TARS is larger than TAMS, i.e. has been allocated during marking.
 767     bool is_humongous_live(oop const humongous_obj, const G1CMBitMap* const bitmap, HeapWord* tams, HeapWord* tars) const {
 768       return bitmap->is_marked(humongous_obj) || (tars > tams);
 769     }
 770 
 771     // Iterator over the live objects within the given MemRegion.
 772     class LiveObjIterator : public StackObj {
 773       const G1CMBitMap* const _bitmap;
 774       const HeapWord* _tams;
 775       const MemRegion _mr;
 776       HeapWord* _current;
 777 
 778       bool is_below_tams() const {
 779         return _current < _tams;
 780       }
 781 
 782       bool is_live(HeapWord* obj) const {
 783         return !is_below_tams() || _bitmap->is_marked(obj);
 784       }
 785 
 786       HeapWord* bitmap_limit() const {
 787         return MIN2(const_cast<HeapWord*>(_tams), _mr.end());
 788       }
 789 
 790       void move_if_below_tams() {
 791         if (is_below_tams() && has_next()) {
 792           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 793         }
 794       }
 795     public:
 796       LiveObjIterator(const G1CMBitMap* const bitmap, const HeapWord* tams, const MemRegion mr, HeapWord* first_oop_into_mr) :
 797           _bitmap(bitmap),
 798           _tams(tams),
 799           _mr(mr),
 800           _current(first_oop_into_mr) {
 801 
 802         assert(_current <= _mr.start(),
 803                "First oop " PTR_FORMAT " should extend into mr [" PTR_FORMAT ", " PTR_FORMAT ")",
 804                p2i(first_oop_into_mr), p2i(mr.start()), p2i(mr.end()));
 805 
 806         // Step to the next live object within the MemRegion if needed.
 807         if (is_live(_current)) {
 808           // Non-objArrays were scanned by the previous part of that region.
 809           if (_current < mr.start() && !oop(_current)->is_objArray()) {
 810             _current += oop(_current)->size();
 811             // We might have positioned _current on a non-live object. Reposition to the next
 812             // live one if needed.
 813             move_if_below_tams();
 814           }
 815         } else {
 816           // The object at _current can only be dead if below TAMS, so we can use the bitmap.
 817           // immediately.
 818           _current = _bitmap->get_next_marked_addr(_current, bitmap_limit());
 819           assert(_current == _mr.end() || is_live(_current),
 820                  "Current " PTR_FORMAT " should be live (%s) or beyond the end of the MemRegion (" PTR_FORMAT ")",
 821                  p2i(_current), BOOL_TO_STR(is_live(_current)), p2i(_mr.end()));
 822         }
 823       }
 824 
 825       void move_to_next() {
 826         _current += next()->size();
 827         move_if_below_tams();
 828       }
 829 
 830       oop next() const {
 831         oop result = oop(_current);
 832         assert(is_live(_current),
 833                "Object " PTR_FORMAT " must be live TAMS " PTR_FORMAT " below %d mr " PTR_FORMAT " " PTR_FORMAT " outside %d",
 834                p2i(_current), p2i(_tams), _tams > _current, p2i(_mr.start()), p2i(_mr.end()), _mr.contains(result));
 835         return result;
 836       }
 837 
 838       bool has_next() const {
 839         return _current < _mr.end();
 840       }
 841     };
 842 
 843     // Rebuild remembered sets in the part of the region specified by mr and hr.
 844     // Objects between the bottom of the region and the TAMS are checked for liveness
 845     // using the given bitmap. Objects between TAMS and TARS are assumed to be live.
 846     // Returns the number of live words between bottom and TAMS.
 847     size_t rebuild_rem_set_in_region(const G1CMBitMap* const bitmap,
 848                                      HeapWord* const top_at_mark_start,
 849                                      HeapWord* const top_at_rebuild_start,
 850                                      HeapRegion* hr,
 851                                      MemRegion mr) {
 852       size_t marked_words = 0;
 853 
 854       if (hr->is_humongous()) {
 855         oop const humongous_obj = oop(hr->humongous_start_region()->bottom());
 856         if (is_humongous_live(humongous_obj, bitmap, top_at_mark_start, top_at_rebuild_start)) {
 857           // We need to scan both [bottom, TAMS) and [TAMS, top_at_rebuild_start);
 858           // however in case of humongous objects it is sufficient to scan the encompassing
 859           // area (top_at_rebuild_start is always larger or equal to TAMS) as one of the
 860           // two areas will be zero sized. I.e. TAMS is either
 861           // the same as bottom or top(_at_rebuild_start). There is no way TAMS has a different
 862           // value: this would mean that TAMS points somewhere into the object.
 863           assert(hr->top() == top_at_mark_start || hr->top() == top_at_rebuild_start,
 864                  "More than one object in the humongous region?");
 865           humongous_obj->oop_iterate(&_update_cl, mr);
 866           return top_at_mark_start != hr->bottom() ? mr.intersection(MemRegion((HeapWord*)humongous_obj, humongous_obj->size())).byte_size() : 0;
 867         } else {
 868           return 0;
 869         }
 870       }
 871 
 872       for (LiveObjIterator it(bitmap, top_at_mark_start, mr, hr->block_start(mr.start())); it.has_next(); it.move_to_next()) {
 873         oop obj = it.next();
 874         size_t scanned_size = scan_for_references(obj, mr);
 875         if ((HeapWord*)obj < top_at_mark_start) {
 876           marked_words += scanned_size;
 877         }
 878       }
 879 
 880       return marked_words * HeapWordSize;
 881     }
 882 public:
 883   G1RebuildRemSetHeapRegionClosure(G1CollectedHeap* g1h,
 884                                    G1ConcurrentMark* cm,
 885                                    uint worker_id) :
 886     HeapRegionClosure(),
 887     _cm(cm),
 888     _update_cl(g1h, worker_id) { }
 889 
 890     bool do_heap_region(HeapRegion* hr) {
 891       if (_cm->has_aborted()) {
 892         return true;
 893       }
 894 
 895       uint const region_idx = hr->hrm_index();
 896       DEBUG_ONLY(HeapWord* const top_at_rebuild_start_check = _cm->top_at_rebuild_start(region_idx);)
 897       assert(top_at_rebuild_start_check == NULL ||
 898              top_at_rebuild_start_check > hr->bottom(),
 899              "A TARS (" PTR_FORMAT ") == bottom() (" PTR_FORMAT ") indicates the old region %u is empty (%s)",
 900              p2i(top_at_rebuild_start_check), p2i(hr->bottom()),  region_idx, hr->get_type_str());
 901 
 902       size_t total_marked_bytes = 0;
 903       size_t const chunk_size_in_words = G1RebuildRemSetChunkSize / HeapWordSize;
 904 
 905       HeapWord* const top_at_mark_start = hr->prev_top_at_mark_start();
 906 
 907       HeapWord* cur = hr->bottom();
 908       while (cur < hr->end()) {
 909         // After every iteration (yield point) we need to check whether the region's
 910         // TARS changed due to e.g. eager reclaim.
 911         HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);
 912         if (top_at_rebuild_start == NULL) {
 913           return false;
 914         }
 915 
 916         MemRegion next_chunk = MemRegion(hr->bottom(), top_at_rebuild_start).intersection(MemRegion(cur, chunk_size_in_words));
 917         if (next_chunk.is_empty()) {
 918           break;
 919         }
 920 
 921         const Ticks start = Ticks::now();
 922         size_t marked_bytes = rebuild_rem_set_in_region(_cm->prev_mark_bitmap(),
 923                                                         top_at_mark_start,
 924                                                         top_at_rebuild_start,
 925                                                         hr,
 926                                                         next_chunk);
 927         Tickspan time = Ticks::now() - start;
 928 
 929         log_trace(gc, remset, tracking)("Rebuilt region %u "
 930                                         "live " SIZE_FORMAT " "
 931                                         "time %.3fms "
 932                                         "marked bytes " SIZE_FORMAT " "
 933                                         "bot " PTR_FORMAT " "
 934                                         "TAMS " PTR_FORMAT " "
 935                                         "TARS " PTR_FORMAT,
 936                                         region_idx,
 937                                         _cm->liveness(region_idx) * HeapWordSize,
 938                                         TicksToTimeHelper::seconds(time) * 1000.0,
 939                                         marked_bytes,
 940                                         p2i(hr->bottom()),
 941                                         p2i(top_at_mark_start),
 942                                         p2i(top_at_rebuild_start));
 943 
 944         if (marked_bytes > 0) {
 945           total_marked_bytes += marked_bytes;
 946         }
 947         cur += chunk_size_in_words;
 948 
 949         _cm->do_yield_check();
 950         if (_cm->has_aborted()) {
 951           return true;
 952         }
 953       }
 954       // In the final iteration of the loop the region might have been eagerly reclaimed.
 955       // Simply filter out those regions. We can not just use region type because there
 956       // might have already been new allocations into these regions.
 957       DEBUG_ONLY(HeapWord* const top_at_rebuild_start = _cm->top_at_rebuild_start(region_idx);)
 958       assert(top_at_rebuild_start == NULL ||
 959              total_marked_bytes == hr->marked_bytes(),
 960              "Marked bytes " SIZE_FORMAT " for region %u (%s) in [bottom, TAMS) do not match calculated marked bytes " SIZE_FORMAT " "
 961              "(" PTR_FORMAT " " PTR_FORMAT " " PTR_FORMAT ")",
 962              total_marked_bytes, hr->hrm_index(), hr->get_type_str(), hr->marked_bytes(),
 963              p2i(hr->bottom()), p2i(top_at_mark_start), p2i(top_at_rebuild_start));
 964        // Abort state may have changed after the yield check.
 965       return _cm->has_aborted();
 966     }
 967   };
 968 
 969   HeapRegionClaimer _hr_claimer;
 970   G1ConcurrentMark* _cm;
 971 
 972   uint _worker_id_offset;
 973 public:
 974   G1RebuildRemSetTask(G1ConcurrentMark* cm,
 975                       uint n_workers,
 976                       uint worker_id_offset) :
 977       AbstractGangTask("G1 Rebuild Remembered Set"),
 978       _cm(cm),
 979       _hr_claimer(n_workers),
 980       _worker_id_offset(worker_id_offset) {
 981   }
 982 
 983   void work(uint worker_id) {
 984     SuspendibleThreadSetJoiner sts_join;
 985 
 986     G1CollectedHeap* g1h = G1CollectedHeap::heap();
 987 
 988     G1RebuildRemSetHeapRegionClosure cl(g1h, _cm, _worker_id_offset + worker_id);
 989     g1h->heap_region_par_iterate_from_worker_offset(&cl, &_hr_claimer, worker_id);
 990   }
 991 };
 992 
 993 void G1RemSet::rebuild_rem_set(G1ConcurrentMark* cm,
 994                                WorkGang* workers,
 995                                uint worker_id_offset) {
 996   uint num_workers = workers->active_workers();
 997 
 998   G1RebuildRemSetTask cl(cm,
 999                          num_workers,
1000                          worker_id_offset);
1001   workers->run_task(&cl, num_workers);
1002 }