1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/java.hpp"
  48 #include "runtime/javaCalls.hpp"
  49 #include "runtime/mutexLocker.hpp"
  50 #include "runtime/objectMonitor.hpp"
  51 #include "runtime/osThread.hpp"
  52 #include "runtime/perfMemory.hpp"
  53 #include "runtime/sharedRuntime.hpp"
  54 #include "runtime/statSampler.hpp"
  55 #include "runtime/stubRoutines.hpp"
  56 #include "runtime/thread.inline.hpp"
  57 #include "runtime/threadCritical.hpp"
  58 #include "runtime/timer.hpp"
  59 #include "services/attachListener.hpp"
  60 #include "services/runtimeService.hpp"
  61 #include "utilities/decoder.hpp"
  62 #include "utilities/defaultStream.hpp"
  63 #include "utilities/events.hpp"
  64 #include "utilities/growableArray.hpp"
  65 #include "utilities/vmError.hpp"
  66 
  67 // put OS-includes here
  68 # include <sys/types.h>
  69 # include <sys/mman.h>
  70 # include <sys/stat.h>
  71 # include <sys/select.h>
  72 # include <pthread.h>
  73 # include <signal.h>
  74 # include <errno.h>
  75 # include <dlfcn.h>
  76 # include <stdio.h>
  77 # include <unistd.h>
  78 # include <sys/resource.h>
  79 # include <pthread.h>
  80 # include <sys/stat.h>
  81 # include <sys/time.h>
  82 # include <sys/times.h>
  83 # include <sys/utsname.h>
  84 # include <sys/socket.h>
  85 # include <sys/wait.h>
  86 # include <pwd.h>
  87 # include <poll.h>
  88 # include <semaphore.h>
  89 # include <fcntl.h>
  90 # include <string.h>
  91 # include <syscall.h>
  92 # include <sys/sysinfo.h>
  93 # include <gnu/libc-version.h>
  94 # include <sys/ipc.h>
  95 # include <sys/shm.h>
  96 # include <link.h>
  97 # include <stdint.h>
  98 # include <inttypes.h>
  99 # include <sys/ioctl.h>
 100 
 101 #define MAX_PATH    (2 * K)
 102 
 103 // for timer info max values which include all bits
 104 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 105 
 106 #define LARGEPAGES_BIT (1 << 6)
 107 ////////////////////////////////////////////////////////////////////////////////
 108 // global variables
 109 julong os::Linux::_physical_memory = 0;
 110 
 111 address   os::Linux::_initial_thread_stack_bottom = NULL;
 112 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 113 
 114 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 115 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 116 Mutex* os::Linux::_createThread_lock = NULL;
 117 pthread_t os::Linux::_main_thread;
 118 int os::Linux::_page_size = -1;
 119 bool os::Linux::_is_floating_stack = false;
 120 bool os::Linux::_is_NPTL = false;
 121 bool os::Linux::_supports_fast_thread_cpu_time = false;
 122 const char * os::Linux::_glibc_version = NULL;
 123 const char * os::Linux::_libpthread_version = NULL;
 124 
 125 static jlong initial_time_count=0;
 126 
 127 static int clock_tics_per_sec = 100;
 128 
 129 // For diagnostics to print a message once. see run_periodic_checks
 130 static sigset_t check_signal_done;
 131 static bool check_signals = true;;
 132 
 133 static pid_t _initial_pid = 0;
 134 
 135 /* Signal number used to suspend/resume a thread */
 136 
 137 /* do not use any signal number less than SIGSEGV, see 4355769 */
 138 static int SR_signum = SIGUSR2;
 139 sigset_t SR_sigset;
 140 
 141 /* Used to protect dlsym() calls */
 142 static pthread_mutex_t dl_mutex;
 143 
 144 #ifdef JAVASE_EMBEDDED
 145 class MemNotifyThread: public Thread {
 146   friend class VMStructs;
 147  public:
 148   virtual void run();
 149 
 150  private:
 151   static MemNotifyThread* _memnotify_thread;
 152   int _fd;
 153 
 154  public:
 155 
 156   // Constructor
 157   MemNotifyThread(int fd);
 158 
 159   // Tester
 160   bool is_memnotify_thread() const { return true; }
 161 
 162   // Printing
 163   char* name() const { return (char*)"Linux MemNotify Thread"; }
 164 
 165   // Returns the single instance of the MemNotifyThread
 166   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 167 
 168   // Create and start the single instance of MemNotifyThread
 169   static void start();
 170 };
 171 #endif // JAVASE_EMBEDDED
 172 
 173 // utility functions
 174 
 175 static int SR_initialize();
 176 static int SR_finalize();
 177 
 178 julong os::available_memory() {
 179   return Linux::available_memory();
 180 }
 181 
 182 julong os::Linux::available_memory() {
 183   // values in struct sysinfo are "unsigned long"
 184   struct sysinfo si;
 185   sysinfo(&si);
 186 
 187   return (julong)si.freeram * si.mem_unit;
 188 }
 189 
 190 julong os::physical_memory() {
 191   return Linux::physical_memory();
 192 }
 193 
 194 bool os::has_allocatable_memory_limit(julong& limit) {
 195   struct rlimit rlim;
 196   int getrlimit_res = getrlimit(RLIMIT_AS, &rlim);
 197   // if there was an error when calling getrlimit, assume that there is no limitation
 198   // on virtual memory.
 199   bool result;
 200   if ((getrlimit_res != 0) || (rlim.rlim_cur == RLIM_INFINITY)) {
 201     result = false;
 202   } else {
 203     limit = (julong)rlim.rlim_cur;
 204     result = true;
 205   }
 206 #ifdef _LP64
 207   return result;
 208 #else
 209   // arbitrary virtual space limit for Linux found by testing. If getrlimit
 210   // above returned a limit, bound it with this limit. Otherwise directly use
 211   // it as limit.
 212   const julong max_virtual_limit = (julong)3800*M;
 213   if (result) {
 214     limit = MIN2(limit, max_virtual_limit);
 215   } else {
 216     limit = max_virtual_limit;
 217   }
 218   if (!is_allocatable(limit)) {
 219     // See comments under solaris for alignment considerations
 220     julong reasonable_limit = (julong)2*G - 2 * os::vm_page_size();
 221     limit =  MIN2(limit, reasonable_limit);
 222   }
 223   return true;
 224 #endif
 225 }
 226 
 227 ////////////////////////////////////////////////////////////////////////////////
 228 // environment support
 229 
 230 bool os::getenv(const char* name, char* buf, int len) {
 231   const char* val = ::getenv(name);
 232   if (val != NULL && strlen(val) < (size_t)len) {
 233     strcpy(buf, val);
 234     return true;
 235   }
 236   if (len > 0) buf[0] = 0;  // return a null string
 237   return false;
 238 }
 239 
 240 
 241 // Return true if user is running as root.
 242 
 243 bool os::have_special_privileges() {
 244   static bool init = false;
 245   static bool privileges = false;
 246   if (!init) {
 247     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 248     init = true;
 249   }
 250   return privileges;
 251 }
 252 
 253 
 254 #ifndef SYS_gettid
 255 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 256 #ifdef __ia64__
 257 #define SYS_gettid 1105
 258 #elif __i386__
 259 #define SYS_gettid 224
 260 #elif __amd64__
 261 #define SYS_gettid 186
 262 #elif __sparc__
 263 #define SYS_gettid 143
 264 #else
 265 #error define gettid for the arch
 266 #endif
 267 #endif
 268 
 269 // Cpu architecture string
 270 #if   defined(ZERO)
 271 static char cpu_arch[] = ZERO_LIBARCH;
 272 #elif defined(IA64)
 273 static char cpu_arch[] = "ia64";
 274 #elif defined(IA32)
 275 static char cpu_arch[] = "i386";
 276 #elif defined(AMD64)
 277 static char cpu_arch[] = "amd64";
 278 #elif defined(ARM)
 279 static char cpu_arch[] = "arm";
 280 #elif defined(PPC)
 281 static char cpu_arch[] = "ppc";
 282 #elif defined(SPARC)
 283 #  ifdef _LP64
 284 static char cpu_arch[] = "sparcv9";
 285 #  else
 286 static char cpu_arch[] = "sparc";
 287 #  endif
 288 #else
 289 #error Add appropriate cpu_arch setting
 290 #endif
 291 
 292 
 293 // pid_t gettid()
 294 //
 295 // Returns the kernel thread id of the currently running thread. Kernel
 296 // thread id is used to access /proc.
 297 //
 298 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 299 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 300 //
 301 pid_t os::Linux::gettid() {
 302   int rslt = syscall(SYS_gettid);
 303   if (rslt == -1) {
 304      // old kernel, no NPTL support
 305      return getpid();
 306   } else {
 307      return (pid_t)rslt;
 308   }
 309 }
 310 
 311 // Most versions of linux have a bug where the number of processors are
 312 // determined by looking at the /proc file system.  In a chroot environment,
 313 // the system call returns 1.  This causes the VM to act as if it is
 314 // a single processor and elide locking (see is_MP() call).
 315 static bool unsafe_chroot_detected = false;
 316 static const char *unstable_chroot_error = "/proc file system not found.\n"
 317                      "Java may be unstable running multithreaded in a chroot "
 318                      "environment on Linux when /proc filesystem is not mounted.";
 319 
 320 void os::Linux::initialize_system_info() {
 321   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 322   if (processor_count() == 1) {
 323     pid_t pid = os::Linux::gettid();
 324     char fname[32];
 325     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 326     FILE *fp = fopen(fname, "r");
 327     if (fp == NULL) {
 328       unsafe_chroot_detected = true;
 329     } else {
 330       fclose(fp);
 331     }
 332   }
 333   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 334   assert(processor_count() > 0, "linux error");
 335 }
 336 
 337 void os::init_system_properties_values() {
 338 //  char arch[12];
 339 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 340 
 341   // The next steps are taken in the product version:
 342   //
 343   // Obtain the JAVA_HOME value from the location of libjvm.so.
 344   // This library should be located at:
 345   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 346   //
 347   // If "/jre/lib/" appears at the right place in the path, then we
 348   // assume libjvm.so is installed in a JDK and we use this path.
 349   //
 350   // Otherwise exit with message: "Could not create the Java virtual machine."
 351   //
 352   // The following extra steps are taken in the debugging version:
 353   //
 354   // If "/jre/lib/" does NOT appear at the right place in the path
 355   // instead of exit check for $JAVA_HOME environment variable.
 356   //
 357   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 358   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 359   // it looks like libjvm.so is installed there
 360   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 361   //
 362   // Otherwise exit.
 363   //
 364   // Important note: if the location of libjvm.so changes this
 365   // code needs to be changed accordingly.
 366 
 367   // The next few definitions allow the code to be verbatim:
 368 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 369 #define getenv(n) ::getenv(n)
 370 
 371 /*
 372  * See ld(1):
 373  *      The linker uses the following search paths to locate required
 374  *      shared libraries:
 375  *        1: ...
 376  *        ...
 377  *        7: The default directories, normally /lib and /usr/lib.
 378  */
 379 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 380 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 381 #else
 382 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 383 #endif
 384 
 385 #define EXTENSIONS_DIR  "/lib/ext"
 386 #define ENDORSED_DIR    "/lib/endorsed"
 387 #define REG_DIR         "/usr/java/packages"
 388 
 389   {
 390     /* sysclasspath, java_home, dll_dir */
 391     {
 392         char *home_path;
 393         char *dll_path;
 394         char *pslash;
 395         char buf[MAXPATHLEN];
 396         os::jvm_path(buf, sizeof(buf));
 397 
 398         // Found the full path to libjvm.so.
 399         // Now cut the path to <java_home>/jre if we can.
 400         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 401         pslash = strrchr(buf, '/');
 402         if (pslash != NULL)
 403             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 404         dll_path = malloc(strlen(buf) + 1);
 405         if (dll_path == NULL)
 406             return;
 407         strcpy(dll_path, buf);
 408         Arguments::set_dll_dir(dll_path);
 409 
 410         if (pslash != NULL) {
 411             pslash = strrchr(buf, '/');
 412             if (pslash != NULL) {
 413                 *pslash = '\0';       /* get rid of /<arch> */
 414                 pslash = strrchr(buf, '/');
 415                 if (pslash != NULL)
 416                     *pslash = '\0';   /* get rid of /lib */
 417             }
 418         }
 419 
 420         home_path = malloc(strlen(buf) + 1);
 421         if (home_path == NULL)
 422             return;
 423         strcpy(home_path, buf);
 424         Arguments::set_java_home(home_path);
 425 
 426         if (!set_boot_path('/', ':'))
 427             return;
 428     }
 429 
 430     /*
 431      * Where to look for native libraries
 432      *
 433      * Note: Due to a legacy implementation, most of the library path
 434      * is set in the launcher.  This was to accomodate linking restrictions
 435      * on legacy Linux implementations (which are no longer supported).
 436      * Eventually, all the library path setting will be done here.
 437      *
 438      * However, to prevent the proliferation of improperly built native
 439      * libraries, the new path component /usr/java/packages is added here.
 440      * Eventually, all the library path setting will be done here.
 441      */
 442     {
 443         char *ld_library_path;
 444 
 445         /*
 446          * Construct the invariant part of ld_library_path. Note that the
 447          * space for the colon and the trailing null are provided by the
 448          * nulls included by the sizeof operator (so actually we allocate
 449          * a byte more than necessary).
 450          */
 451         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 452             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 453         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 454 
 455         /*
 456          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 457          * should always exist (until the legacy problem cited above is
 458          * addressed).
 459          */
 460         char *v = getenv("LD_LIBRARY_PATH");
 461         if (v != NULL) {
 462             char *t = ld_library_path;
 463             /* That's +1 for the colon and +1 for the trailing '\0' */
 464             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 465             sprintf(ld_library_path, "%s:%s", v, t);
 466         }
 467         Arguments::set_library_path(ld_library_path);
 468     }
 469 
 470     /*
 471      * Extensions directories.
 472      *
 473      * Note that the space for the colon and the trailing null are provided
 474      * by the nulls included by the sizeof operator (so actually one byte more
 475      * than necessary is allocated).
 476      */
 477     {
 478         char *buf = malloc(strlen(Arguments::get_java_home()) +
 479             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 480         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 481             Arguments::get_java_home());
 482         Arguments::set_ext_dirs(buf);
 483     }
 484 
 485     /* Endorsed standards default directory. */
 486     {
 487         char * buf;
 488         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 489         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 490         Arguments::set_endorsed_dirs(buf);
 491     }
 492   }
 493 
 494 #undef malloc
 495 #undef getenv
 496 #undef EXTENSIONS_DIR
 497 #undef ENDORSED_DIR
 498 
 499   // Done
 500   return;
 501 }
 502 
 503 ////////////////////////////////////////////////////////////////////////////////
 504 // breakpoint support
 505 
 506 void os::breakpoint() {
 507   BREAKPOINT;
 508 }
 509 
 510 extern "C" void breakpoint() {
 511   // use debugger to set breakpoint here
 512 }
 513 
 514 ////////////////////////////////////////////////////////////////////////////////
 515 // signal support
 516 
 517 debug_only(static bool signal_sets_initialized = false);
 518 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 519 
 520 bool os::Linux::is_sig_ignored(int sig) {
 521       struct sigaction oact;
 522       sigaction(sig, (struct sigaction*)NULL, &oact);
 523       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 524                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 525       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 526            return true;
 527       else
 528            return false;
 529 }
 530 
 531 void os::Linux::signal_sets_init() {
 532   // Should also have an assertion stating we are still single-threaded.
 533   assert(!signal_sets_initialized, "Already initialized");
 534   // Fill in signals that are necessarily unblocked for all threads in
 535   // the VM. Currently, we unblock the following signals:
 536   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 537   //                         by -Xrs (=ReduceSignalUsage));
 538   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 539   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 540   // the dispositions or masks wrt these signals.
 541   // Programs embedding the VM that want to use the above signals for their
 542   // own purposes must, at this time, use the "-Xrs" option to prevent
 543   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 544   // (See bug 4345157, and other related bugs).
 545   // In reality, though, unblocking these signals is really a nop, since
 546   // these signals are not blocked by default.
 547   sigemptyset(&unblocked_sigs);
 548   sigemptyset(&allowdebug_blocked_sigs);
 549   sigaddset(&unblocked_sigs, SIGILL);
 550   sigaddset(&unblocked_sigs, SIGSEGV);
 551   sigaddset(&unblocked_sigs, SIGBUS);
 552   sigaddset(&unblocked_sigs, SIGFPE);
 553   sigaddset(&unblocked_sigs, SR_signum);
 554 
 555   if (!ReduceSignalUsage) {
 556    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 557       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 558       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 559    }
 560    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 561       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 562       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 563    }
 564    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 565       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 566       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 567    }
 568   }
 569   // Fill in signals that are blocked by all but the VM thread.
 570   sigemptyset(&vm_sigs);
 571   if (!ReduceSignalUsage)
 572     sigaddset(&vm_sigs, BREAK_SIGNAL);
 573   debug_only(signal_sets_initialized = true);
 574 
 575 }
 576 
 577 // These are signals that are unblocked while a thread is running Java.
 578 // (For some reason, they get blocked by default.)
 579 sigset_t* os::Linux::unblocked_signals() {
 580   assert(signal_sets_initialized, "Not initialized");
 581   return &unblocked_sigs;
 582 }
 583 
 584 // These are the signals that are blocked while a (non-VM) thread is
 585 // running Java. Only the VM thread handles these signals.
 586 sigset_t* os::Linux::vm_signals() {
 587   assert(signal_sets_initialized, "Not initialized");
 588   return &vm_sigs;
 589 }
 590 
 591 // These are signals that are blocked during cond_wait to allow debugger in
 592 sigset_t* os::Linux::allowdebug_blocked_signals() {
 593   assert(signal_sets_initialized, "Not initialized");
 594   return &allowdebug_blocked_sigs;
 595 }
 596 
 597 void os::Linux::hotspot_sigmask(Thread* thread) {
 598 
 599   //Save caller's signal mask before setting VM signal mask
 600   sigset_t caller_sigmask;
 601   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 602 
 603   OSThread* osthread = thread->osthread();
 604   osthread->set_caller_sigmask(caller_sigmask);
 605 
 606   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 607 
 608   if (!ReduceSignalUsage) {
 609     if (thread->is_VM_thread()) {
 610       // Only the VM thread handles BREAK_SIGNAL ...
 611       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 612     } else {
 613       // ... all other threads block BREAK_SIGNAL
 614       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 615     }
 616   }
 617 }
 618 
 619 //////////////////////////////////////////////////////////////////////////////
 620 // detecting pthread library
 621 
 622 void os::Linux::libpthread_init() {
 623   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 624   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 625   // generic name for earlier versions.
 626   // Define macros here so we can build HotSpot on old systems.
 627 # ifndef _CS_GNU_LIBC_VERSION
 628 # define _CS_GNU_LIBC_VERSION 2
 629 # endif
 630 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 631 # define _CS_GNU_LIBPTHREAD_VERSION 3
 632 # endif
 633 
 634   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 635   if (n > 0) {
 636      char *str = (char *)malloc(n, mtInternal);
 637      confstr(_CS_GNU_LIBC_VERSION, str, n);
 638      os::Linux::set_glibc_version(str);
 639   } else {
 640      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 641      static char _gnu_libc_version[32];
 642      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 643               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 644      os::Linux::set_glibc_version(_gnu_libc_version);
 645   }
 646 
 647   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 648   if (n > 0) {
 649      char *str = (char *)malloc(n, mtInternal);
 650      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 651      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 652      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 653      // is the case. LinuxThreads has a hard limit on max number of threads.
 654      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 655      // On the other hand, NPTL does not have such a limit, sysconf()
 656      // will return -1 and errno is not changed. Check if it is really NPTL.
 657      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 658          strstr(str, "NPTL") &&
 659          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 660        free(str);
 661        os::Linux::set_libpthread_version("linuxthreads");
 662      } else {
 663        os::Linux::set_libpthread_version(str);
 664      }
 665   } else {
 666     // glibc before 2.3.2 only has LinuxThreads.
 667     os::Linux::set_libpthread_version("linuxthreads");
 668   }
 669 
 670   if (strstr(libpthread_version(), "NPTL")) {
 671      os::Linux::set_is_NPTL();
 672   } else {
 673      os::Linux::set_is_LinuxThreads();
 674   }
 675 
 676   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 677   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 678   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 679      os::Linux::set_is_floating_stack();
 680   }
 681 }
 682 
 683 /////////////////////////////////////////////////////////////////////////////
 684 // thread stack
 685 
 686 // Force Linux kernel to expand current thread stack. If "bottom" is close
 687 // to the stack guard, caller should block all signals.
 688 //
 689 // MAP_GROWSDOWN:
 690 //   A special mmap() flag that is used to implement thread stacks. It tells
 691 //   kernel that the memory region should extend downwards when needed. This
 692 //   allows early versions of LinuxThreads to only mmap the first few pages
 693 //   when creating a new thread. Linux kernel will automatically expand thread
 694 //   stack as needed (on page faults).
 695 //
 696 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 697 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 698 //   region, it's hard to tell if the fault is due to a legitimate stack
 699 //   access or because of reading/writing non-exist memory (e.g. buffer
 700 //   overrun). As a rule, if the fault happens below current stack pointer,
 701 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 702 //   application (see Linux kernel fault.c).
 703 //
 704 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 705 //   stack overflow detection.
 706 //
 707 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 708 //   not use this flag. However, the stack of initial thread is not created
 709 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 710 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 711 //   and then attach the thread to JVM.
 712 //
 713 // To get around the problem and allow stack banging on Linux, we need to
 714 // manually expand thread stack after receiving the SIGSEGV.
 715 //
 716 // There are two ways to expand thread stack to address "bottom", we used
 717 // both of them in JVM before 1.5:
 718 //   1. adjust stack pointer first so that it is below "bottom", and then
 719 //      touch "bottom"
 720 //   2. mmap() the page in question
 721 //
 722 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 723 // if current sp is already near the lower end of page 101, and we need to
 724 // call mmap() to map page 100, it is possible that part of the mmap() frame
 725 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 726 // That will destroy the mmap() frame and cause VM to crash.
 727 //
 728 // The following code works by adjusting sp first, then accessing the "bottom"
 729 // page to force a page fault. Linux kernel will then automatically expand the
 730 // stack mapping.
 731 //
 732 // _expand_stack_to() assumes its frame size is less than page size, which
 733 // should always be true if the function is not inlined.
 734 
 735 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 736 #define NOINLINE
 737 #else
 738 #define NOINLINE __attribute__ ((noinline))
 739 #endif
 740 
 741 static void _expand_stack_to(address bottom) NOINLINE;
 742 
 743 static void _expand_stack_to(address bottom) {
 744   address sp;
 745   size_t size;
 746   volatile char *p;
 747 
 748   // Adjust bottom to point to the largest address within the same page, it
 749   // gives us a one-page buffer if alloca() allocates slightly more memory.
 750   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 751   bottom += os::Linux::page_size() - 1;
 752 
 753   // sp might be slightly above current stack pointer; if that's the case, we
 754   // will alloca() a little more space than necessary, which is OK. Don't use
 755   // os::current_stack_pointer(), as its result can be slightly below current
 756   // stack pointer, causing us to not alloca enough to reach "bottom".
 757   sp = (address)&sp;
 758 
 759   if (sp > bottom) {
 760     size = sp - bottom;
 761     p = (volatile char *)alloca(size);
 762     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 763     p[0] = '\0';
 764   }
 765 }
 766 
 767 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 768   assert(t!=NULL, "just checking");
 769   assert(t->osthread()->expanding_stack(), "expand should be set");
 770   assert(t->stack_base() != NULL, "stack_base was not initialized");
 771 
 772   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 773     sigset_t mask_all, old_sigset;
 774     sigfillset(&mask_all);
 775     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 776     _expand_stack_to(addr);
 777     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 778     return true;
 779   }
 780   return false;
 781 }
 782 
 783 //////////////////////////////////////////////////////////////////////////////
 784 // create new thread
 785 
 786 static address highest_vm_reserved_address();
 787 
 788 // check if it's safe to start a new thread
 789 static bool _thread_safety_check(Thread* thread) {
 790   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 791     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 792     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 793     //   allocated (MAP_FIXED) from high address space. Every thread stack
 794     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 795     //   it to other values if they rebuild LinuxThreads).
 796     //
 797     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 798     // the memory region has already been mmap'ed. That means if we have too
 799     // many threads and/or very large heap, eventually thread stack will
 800     // collide with heap.
 801     //
 802     // Here we try to prevent heap/stack collision by comparing current
 803     // stack bottom with the highest address that has been mmap'ed by JVM
 804     // plus a safety margin for memory maps created by native code.
 805     //
 806     // This feature can be disabled by setting ThreadSafetyMargin to 0
 807     //
 808     if (ThreadSafetyMargin > 0) {
 809       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 810 
 811       // not safe if our stack extends below the safety margin
 812       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 813     } else {
 814       return true;
 815     }
 816   } else {
 817     // Floating stack LinuxThreads or NPTL:
 818     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 819     //   there's not enough space left, pthread_create() will fail. If we come
 820     //   here, that means enough space has been reserved for stack.
 821     return true;
 822   }
 823 }
 824 
 825 // Thread start routine for all newly created threads
 826 static void *java_start(Thread *thread) {
 827   // Try to randomize the cache line index of hot stack frames.
 828   // This helps when threads of the same stack traces evict each other's
 829   // cache lines. The threads can be either from the same JVM instance, or
 830   // from different JVM instances. The benefit is especially true for
 831   // processors with hyperthreading technology.
 832   static int counter = 0;
 833   int pid = os::current_process_id();
 834   alloca(((pid ^ counter++) & 7) * 128);
 835 
 836   ThreadLocalStorage::set_thread(thread);
 837 
 838   OSThread* osthread = thread->osthread();
 839   Monitor* sync = osthread->startThread_lock();
 840 
 841   // non floating stack LinuxThreads needs extra check, see above
 842   if (!_thread_safety_check(thread)) {
 843     // notify parent thread
 844     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 845     osthread->set_state(ZOMBIE);
 846     sync->notify_all();
 847     return NULL;
 848   }
 849 
 850   // thread_id is kernel thread id (similar to Solaris LWP id)
 851   osthread->set_thread_id(os::Linux::gettid());
 852 
 853   if (UseNUMA) {
 854     int lgrp_id = os::numa_get_group_id();
 855     if (lgrp_id != -1) {
 856       thread->set_lgrp_id(lgrp_id);
 857     }
 858   }
 859   // initialize signal mask for this thread
 860   os::Linux::hotspot_sigmask(thread);
 861 
 862   // initialize floating point control register
 863   os::Linux::init_thread_fpu_state();
 864 
 865   // handshaking with parent thread
 866   {
 867     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 868 
 869     // notify parent thread
 870     osthread->set_state(INITIALIZED);
 871     sync->notify_all();
 872 
 873     // wait until os::start_thread()
 874     while (osthread->get_state() == INITIALIZED) {
 875       sync->wait(Mutex::_no_safepoint_check_flag);
 876     }
 877   }
 878 
 879   // call one more level start routine
 880   thread->run();
 881 
 882   return 0;
 883 }
 884 
 885 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 886   assert(thread->osthread() == NULL, "caller responsible");
 887 
 888   // Allocate the OSThread object
 889   OSThread* osthread = new OSThread(NULL, NULL);
 890   if (osthread == NULL) {
 891     return false;
 892   }
 893 
 894   // set the correct thread state
 895   osthread->set_thread_type(thr_type);
 896 
 897   // Initial state is ALLOCATED but not INITIALIZED
 898   osthread->set_state(ALLOCATED);
 899 
 900   thread->set_osthread(osthread);
 901 
 902   // init thread attributes
 903   pthread_attr_t attr;
 904   pthread_attr_init(&attr);
 905   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 906 
 907   // stack size
 908   if (os::Linux::supports_variable_stack_size()) {
 909     // calculate stack size if it's not specified by caller
 910     if (stack_size == 0) {
 911       stack_size = os::Linux::default_stack_size(thr_type);
 912 
 913       switch (thr_type) {
 914       case os::java_thread:
 915         // Java threads use ThreadStackSize which default value can be
 916         // changed with the flag -Xss
 917         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 918         stack_size = JavaThread::stack_size_at_create();
 919         break;
 920       case os::compiler_thread:
 921         if (CompilerThreadStackSize > 0) {
 922           stack_size = (size_t)(CompilerThreadStackSize * K);
 923           break;
 924         } // else fall through:
 925           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 926       case os::vm_thread:
 927       case os::pgc_thread:
 928       case os::cgc_thread:
 929       case os::watcher_thread:
 930         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 931         break;
 932       }
 933     }
 934 
 935     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 936     pthread_attr_setstacksize(&attr, stack_size);
 937   } else {
 938     // let pthread_create() pick the default value.
 939   }
 940 
 941   // glibc guard page
 942   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 943 
 944   ThreadState state;
 945 
 946   {
 947     // Serialize thread creation if we are running with fixed stack LinuxThreads
 948     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 949     if (lock) {
 950       os::Linux::createThread_lock()->lock_without_safepoint_check();
 951     }
 952 
 953     pthread_t tid;
 954     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 955 
 956     pthread_attr_destroy(&attr);
 957 
 958     if (ret != 0) {
 959       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 960         perror("pthread_create()");
 961       }
 962       // Need to clean up stuff we've allocated so far
 963       thread->set_osthread(NULL);
 964       delete osthread;
 965       if (lock) os::Linux::createThread_lock()->unlock();
 966       return false;
 967     }
 968 
 969     // Store pthread info into the OSThread
 970     osthread->set_pthread_id(tid);
 971 
 972     // Wait until child thread is either initialized or aborted
 973     {
 974       Monitor* sync_with_child = osthread->startThread_lock();
 975       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 976       while ((state = osthread->get_state()) == ALLOCATED) {
 977         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 978       }
 979     }
 980 
 981     if (lock) {
 982       os::Linux::createThread_lock()->unlock();
 983     }
 984   }
 985 
 986   // Aborted due to thread limit being reached
 987   if (state == ZOMBIE) {
 988       thread->set_osthread(NULL);
 989       delete osthread;
 990       return false;
 991   }
 992 
 993   // The thread is returned suspended (in state INITIALIZED),
 994   // and is started higher up in the call chain
 995   assert(state == INITIALIZED, "race condition");
 996   return true;
 997 }
 998 
 999 /////////////////////////////////////////////////////////////////////////////
1000 // attach existing thread
1001 
1002 // bootstrap the main thread
1003 bool os::create_main_thread(JavaThread* thread) {
1004   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
1005   return create_attached_thread(thread);
1006 }
1007 
1008 bool os::create_attached_thread(JavaThread* thread) {
1009 #ifdef ASSERT
1010     thread->verify_not_published();
1011 #endif
1012 
1013   // Allocate the OSThread object
1014   OSThread* osthread = new OSThread(NULL, NULL);
1015 
1016   if (osthread == NULL) {
1017     return false;
1018   }
1019 
1020   // Store pthread info into the OSThread
1021   osthread->set_thread_id(os::Linux::gettid());
1022   osthread->set_pthread_id(::pthread_self());
1023 
1024   // initialize floating point control register
1025   os::Linux::init_thread_fpu_state();
1026 
1027   // Initial thread state is RUNNABLE
1028   osthread->set_state(RUNNABLE);
1029 
1030   thread->set_osthread(osthread);
1031 
1032   if (UseNUMA) {
1033     int lgrp_id = os::numa_get_group_id();
1034     if (lgrp_id != -1) {
1035       thread->set_lgrp_id(lgrp_id);
1036     }
1037   }
1038 
1039   if (os::Linux::is_initial_thread()) {
1040     // If current thread is initial thread, its stack is mapped on demand,
1041     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1042     // the entire stack region to avoid SEGV in stack banging.
1043     // It is also useful to get around the heap-stack-gap problem on SuSE
1044     // kernel (see 4821821 for details). We first expand stack to the top
1045     // of yellow zone, then enable stack yellow zone (order is significant,
1046     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1047     // is no gap between the last two virtual memory regions.
1048 
1049     JavaThread *jt = (JavaThread *)thread;
1050     address addr = jt->stack_yellow_zone_base();
1051     assert(addr != NULL, "initialization problem?");
1052     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1053 
1054     osthread->set_expanding_stack();
1055     os::Linux::manually_expand_stack(jt, addr);
1056     osthread->clear_expanding_stack();
1057   }
1058 
1059   // initialize signal mask for this thread
1060   // and save the caller's signal mask
1061   os::Linux::hotspot_sigmask(thread);
1062 
1063   return true;
1064 }
1065 
1066 void os::pd_start_thread(Thread* thread) {
1067   OSThread * osthread = thread->osthread();
1068   assert(osthread->get_state() != INITIALIZED, "just checking");
1069   Monitor* sync_with_child = osthread->startThread_lock();
1070   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1071   sync_with_child->notify();
1072 }
1073 
1074 // Free Linux resources related to the OSThread
1075 void os::free_thread(OSThread* osthread) {
1076   assert(osthread != NULL, "osthread not set");
1077 
1078   if (Thread::current()->osthread() == osthread) {
1079     // Restore caller's signal mask
1080     sigset_t sigmask = osthread->caller_sigmask();
1081     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1082    }
1083 
1084   delete osthread;
1085 }
1086 
1087 //////////////////////////////////////////////////////////////////////////////
1088 // thread local storage
1089 
1090 int os::allocate_thread_local_storage() {
1091   pthread_key_t key;
1092   int rslt = pthread_key_create(&key, NULL);
1093   assert(rslt == 0, "cannot allocate thread local storage");
1094   return (int)key;
1095 }
1096 
1097 // Note: This is currently not used by VM, as we don't destroy TLS key
1098 // on VM exit.
1099 void os::free_thread_local_storage(int index) {
1100   int rslt = pthread_key_delete((pthread_key_t)index);
1101   assert(rslt == 0, "invalid index");
1102 }
1103 
1104 void os::thread_local_storage_at_put(int index, void* value) {
1105   int rslt = pthread_setspecific((pthread_key_t)index, value);
1106   assert(rslt == 0, "pthread_setspecific failed");
1107 }
1108 
1109 extern "C" Thread* get_thread() {
1110   return ThreadLocalStorage::thread();
1111 }
1112 
1113 //////////////////////////////////////////////////////////////////////////////
1114 // initial thread
1115 
1116 // Check if current thread is the initial thread, similar to Solaris thr_main.
1117 bool os::Linux::is_initial_thread(void) {
1118   char dummy;
1119   // If called before init complete, thread stack bottom will be null.
1120   // Can be called if fatal error occurs before initialization.
1121   if (initial_thread_stack_bottom() == NULL) return false;
1122   assert(initial_thread_stack_bottom() != NULL &&
1123          initial_thread_stack_size()   != 0,
1124          "os::init did not locate initial thread's stack region");
1125   if ((address)&dummy >= initial_thread_stack_bottom() &&
1126       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1127        return true;
1128   else return false;
1129 }
1130 
1131 // Find the virtual memory area that contains addr
1132 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1133   FILE *fp = fopen("/proc/self/maps", "r");
1134   if (fp) {
1135     address low, high;
1136     while (!feof(fp)) {
1137       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1138         if (low <= addr && addr < high) {
1139            if (vma_low)  *vma_low  = low;
1140            if (vma_high) *vma_high = high;
1141            fclose (fp);
1142            return true;
1143         }
1144       }
1145       for (;;) {
1146         int ch = fgetc(fp);
1147         if (ch == EOF || ch == (int)'\n') break;
1148       }
1149     }
1150     fclose(fp);
1151   }
1152   return false;
1153 }
1154 
1155 // Locate initial thread stack. This special handling of initial thread stack
1156 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1157 // bogus value for initial thread.
1158 void os::Linux::capture_initial_stack(size_t max_size) {
1159   // stack size is the easy part, get it from RLIMIT_STACK
1160   size_t stack_size;
1161   struct rlimit rlim;
1162   getrlimit(RLIMIT_STACK, &rlim);
1163   stack_size = rlim.rlim_cur;
1164   
1165   // 6308388: a bug in ld.so will relocate its own .data section to the
1166   //   lower end of primordial stack; reduce ulimit -s value a little bit
1167   //   so we won't install guard page on ld.so's data section.
1168   stack_size -= 2 * page_size();
1169 
1170   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1171   //   7.1, in both cases we will get 2G in return value.
1172   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1173   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1174   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1175   //   in case other parts in glibc still assumes 2M max stack size.
1176   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1177   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1178   if (stack_size > 2 * K * K IA64_ONLY(*2))
1179       stack_size = 2 * K * K IA64_ONLY(*2);
1180   // Try to figure out where the stack base (top) is. This is harder.
1181   //
1182   // When an application is started, glibc saves the initial stack pointer in
1183   // a global variable "__libc_stack_end", which is then used by system
1184   // libraries. __libc_stack_end should be pretty close to stack top. The
1185   // variable is available since the very early days. However, because it is
1186   // a private interface, it could disappear in the future.
1187   //
1188   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1189   // to __libc_stack_end, it is very close to stack top, but isn't the real
1190   // stack top. Note that /proc may not exist if VM is running as a chroot
1191   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1192   // /proc/<pid>/stat could change in the future (though unlikely).
1193   //
1194   // We try __libc_stack_end first. If that doesn't work, look for
1195   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1196   // as a hint, which should work well in most cases.
1197 
1198   uintptr_t stack_start;
1199 
1200   // try __libc_stack_end first
1201   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1202   if (p && *p) {
1203     stack_start = *p;
1204   } else {
1205     // see if we can get the start_stack field from /proc/self/stat
1206     FILE *fp;
1207     int pid;
1208     char state;
1209     int ppid;
1210     int pgrp;
1211     int session;
1212     int nr;
1213     int tpgrp;
1214     unsigned long flags;
1215     unsigned long minflt;
1216     unsigned long cminflt;
1217     unsigned long majflt;
1218     unsigned long cmajflt;
1219     unsigned long utime;
1220     unsigned long stime;
1221     long cutime;
1222     long cstime;
1223     long prio;
1224     long nice;
1225     long junk;
1226     long it_real;
1227     uintptr_t start;
1228     uintptr_t vsize;
1229     intptr_t rss;
1230     uintptr_t rsslim;
1231     uintptr_t scodes;
1232     uintptr_t ecode;
1233     int i;
1234 
1235     // Figure what the primordial thread stack base is. Code is inspired
1236     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1237     // followed by command name surrounded by parentheses, state, etc.
1238     char stat[2048];
1239     int statlen;
1240 
1241     fp = fopen("/proc/self/stat", "r");
1242     if (fp) {
1243       statlen = fread(stat, 1, 2047, fp);
1244       stat[statlen] = '\0';
1245       fclose(fp);
1246 
1247       // Skip pid and the command string. Note that we could be dealing with
1248       // weird command names, e.g. user could decide to rename java launcher
1249       // to "java 1.4.2 :)", then the stat file would look like
1250       //                1234 (java 1.4.2 :)) R ... ...
1251       // We don't really need to know the command string, just find the last
1252       // occurrence of ")" and then start parsing from there. See bug 4726580.
1253       char * s = strrchr(stat, ')');
1254 
1255       i = 0;
1256       if (s) {
1257         // Skip blank chars
1258         do s++; while (isspace(*s));
1259 
1260 #define _UFM UINTX_FORMAT
1261 #define _DFM INTX_FORMAT
1262 
1263         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1264         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1265         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1266              &state,          /* 3  %c  */
1267              &ppid,           /* 4  %d  */
1268              &pgrp,           /* 5  %d  */
1269              &session,        /* 6  %d  */
1270              &nr,             /* 7  %d  */
1271              &tpgrp,          /* 8  %d  */
1272              &flags,          /* 9  %lu  */
1273              &minflt,         /* 10 %lu  */
1274              &cminflt,        /* 11 %lu  */
1275              &majflt,         /* 12 %lu  */
1276              &cmajflt,        /* 13 %lu  */
1277              &utime,          /* 14 %lu  */
1278              &stime,          /* 15 %lu  */
1279              &cutime,         /* 16 %ld  */
1280              &cstime,         /* 17 %ld  */
1281              &prio,           /* 18 %ld  */
1282              &nice,           /* 19 %ld  */
1283              &junk,           /* 20 %ld  */
1284              &it_real,        /* 21 %ld  */
1285              &start,          /* 22 UINTX_FORMAT */
1286              &vsize,          /* 23 UINTX_FORMAT */
1287              &rss,            /* 24 INTX_FORMAT  */
1288              &rsslim,         /* 25 UINTX_FORMAT */
1289              &scodes,         /* 26 UINTX_FORMAT */
1290              &ecode,          /* 27 UINTX_FORMAT */
1291              &stack_start);   /* 28 UINTX_FORMAT */
1292       }
1293 
1294 #undef _UFM
1295 #undef _DFM
1296 
1297       if (i != 28 - 2) {
1298          assert(false, "Bad conversion from /proc/self/stat");
1299          // product mode - assume we are the initial thread, good luck in the
1300          // embedded case.
1301          warning("Can't detect initial thread stack location - bad conversion");
1302          stack_start = (uintptr_t) &rlim;
1303       }
1304     } else {
1305       // For some reason we can't open /proc/self/stat (for example, running on
1306       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1307       // most cases, so don't abort:
1308       warning("Can't detect initial thread stack location - no /proc/self/stat");
1309       stack_start = (uintptr_t) &rlim;
1310     }
1311   }
1312 
1313   // Now we have a pointer (stack_start) very close to the stack top, the
1314   // next thing to do is to figure out the exact location of stack top. We
1315   // can find out the virtual memory area that contains stack_start by
1316   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1317   // and its upper limit is the real stack top. (again, this would fail if
1318   // running inside chroot, because /proc may not exist.)
1319 
1320   uintptr_t stack_top;
1321   address low, high;
1322   if (find_vma((address)stack_start, &low, &high)) {
1323     // success, "high" is the true stack top. (ignore "low", because initial
1324     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1325     stack_top = (uintptr_t)high;
1326   } else {
1327     // failed, likely because /proc/self/maps does not exist
1328     warning("Can't detect initial thread stack location - find_vma failed");
1329     // best effort: stack_start is normally within a few pages below the real
1330     // stack top, use it as stack top, and reduce stack size so we won't put
1331     // guard page outside stack.
1332     stack_top = stack_start;
1333     stack_size -= 16 * page_size();
1334   }
1335 
1336   // stack_top could be partially down the page so align it
1337   stack_top = align_size_up(stack_top, page_size());
1338 
1339   if (max_size && stack_size > max_size) {
1340      _initial_thread_stack_size = max_size;
1341   } else {
1342      _initial_thread_stack_size = stack_size;
1343   }
1344 
1345   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1346   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1347 }
1348 
1349 ////////////////////////////////////////////////////////////////////////////////
1350 // time support
1351 
1352 // Time since start-up in seconds to a fine granularity.
1353 // Used by VMSelfDestructTimer and the MemProfiler.
1354 double os::elapsedTime() {
1355 
1356   return (double)(os::elapsed_counter()) * 0.000001;
1357 }
1358 
1359 jlong os::elapsed_counter() {
1360   timeval time;
1361   int status = gettimeofday(&time, NULL);
1362   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1363 }
1364 
1365 jlong os::elapsed_frequency() {
1366   return (1000 * 1000);
1367 }
1368 
1369 // For now, we say that linux does not support vtime.  I have no idea
1370 // whether it can actually be made to (DLD, 9/13/05).
1371 
1372 bool os::supports_vtime() { return false; }
1373 bool os::enable_vtime()   { return false; }
1374 bool os::vtime_enabled()  { return false; }
1375 double os::elapsedVTime() {
1376   // better than nothing, but not much
1377   return elapsedTime();
1378 }
1379 
1380 jlong os::javaTimeMillis() {
1381   timeval time;
1382   int status = gettimeofday(&time, NULL);
1383   assert(status != -1, "linux error");
1384   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1385 }
1386 
1387 #ifndef CLOCK_MONOTONIC
1388 #define CLOCK_MONOTONIC (1)
1389 #endif
1390 
1391 void os::Linux::clock_init() {
1392   // we do dlopen's in this particular order due to bug in linux
1393   // dynamical loader (see 6348968) leading to crash on exit
1394   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1395   if (handle == NULL) {
1396     handle = dlopen("librt.so", RTLD_LAZY);
1397   }
1398 
1399   if (handle) {
1400     int (*clock_getres_func)(clockid_t, struct timespec*) =
1401            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1402     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1403            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1404     if (clock_getres_func && clock_gettime_func) {
1405       // See if monotonic clock is supported by the kernel. Note that some
1406       // early implementations simply return kernel jiffies (updated every
1407       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1408       // for nano time (though the monotonic property is still nice to have).
1409       // It's fixed in newer kernels, however clock_getres() still returns
1410       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1411       // resolution for now. Hopefully as people move to new kernels, this
1412       // won't be a problem.
1413       struct timespec res;
1414       struct timespec tp;
1415       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1416           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1417         // yes, monotonic clock is supported
1418         _clock_gettime = clock_gettime_func;
1419       } else {
1420         // close librt if there is no monotonic clock
1421         dlclose(handle);
1422       }
1423     }
1424   }
1425 }
1426 
1427 #ifndef SYS_clock_getres
1428 
1429 #if defined(IA32) || defined(AMD64)
1430 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1431 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1432 #else
1433 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1434 #define sys_clock_getres(x,y)  -1
1435 #endif
1436 
1437 #else
1438 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1439 #endif
1440 
1441 void os::Linux::fast_thread_clock_init() {
1442   if (!UseLinuxPosixThreadCPUClocks) {
1443     return;
1444   }
1445   clockid_t clockid;
1446   struct timespec tp;
1447   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1448       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1449 
1450   // Switch to using fast clocks for thread cpu time if
1451   // the sys_clock_getres() returns 0 error code.
1452   // Note, that some kernels may support the current thread
1453   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1454   // returned by the pthread_getcpuclockid().
1455   // If the fast Posix clocks are supported then the sys_clock_getres()
1456   // must return at least tp.tv_sec == 0 which means a resolution
1457   // better than 1 sec. This is extra check for reliability.
1458 
1459   if(pthread_getcpuclockid_func &&
1460      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1461      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1462 
1463     _supports_fast_thread_cpu_time = true;
1464     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1465   }
1466 }
1467 
1468 jlong os::javaTimeNanos() {
1469   if (Linux::supports_monotonic_clock()) {
1470     struct timespec tp;
1471     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1472     assert(status == 0, "gettime error");
1473     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1474     return result;
1475   } else {
1476     timeval time;
1477     int status = gettimeofday(&time, NULL);
1478     assert(status != -1, "linux error");
1479     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1480     return 1000 * usecs;
1481   }
1482 }
1483 
1484 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1485   if (Linux::supports_monotonic_clock()) {
1486     info_ptr->max_value = ALL_64_BITS;
1487 
1488     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1489     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1490     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1491   } else {
1492     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1493     info_ptr->max_value = ALL_64_BITS;
1494 
1495     // gettimeofday is a real time clock so it skips
1496     info_ptr->may_skip_backward = true;
1497     info_ptr->may_skip_forward = true;
1498   }
1499 
1500   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1501 }
1502 
1503 // Return the real, user, and system times in seconds from an
1504 // arbitrary fixed point in the past.
1505 bool os::getTimesSecs(double* process_real_time,
1506                       double* process_user_time,
1507                       double* process_system_time) {
1508   struct tms ticks;
1509   clock_t real_ticks = times(&ticks);
1510 
1511   if (real_ticks == (clock_t) (-1)) {
1512     return false;
1513   } else {
1514     double ticks_per_second = (double) clock_tics_per_sec;
1515     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1516     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1517     *process_real_time = ((double) real_ticks) / ticks_per_second;
1518 
1519     return true;
1520   }
1521 }
1522 
1523 
1524 char * os::local_time_string(char *buf, size_t buflen) {
1525   struct tm t;
1526   time_t long_time;
1527   time(&long_time);
1528   localtime_r(&long_time, &t);
1529   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1530                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1531                t.tm_hour, t.tm_min, t.tm_sec);
1532   return buf;
1533 }
1534 
1535 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1536   return localtime_r(clock, res);
1537 }
1538 
1539 ////////////////////////////////////////////////////////////////////////////////
1540 // runtime exit support
1541 
1542 // Note: os::shutdown() might be called very early during initialization, or
1543 // called from signal handler. Before adding something to os::shutdown(), make
1544 // sure it is async-safe and can handle partially initialized VM.
1545 void os::shutdown() {
1546 
1547   // allow PerfMemory to attempt cleanup of any persistent resources
1548   perfMemory_exit();
1549 
1550   // needs to remove object in file system
1551   AttachListener::abort();
1552 
1553   // flush buffered output, finish log files
1554   ostream_abort();
1555 
1556   // Check for abort hook
1557   abort_hook_t abort_hook = Arguments::abort_hook();
1558   if (abort_hook != NULL) {
1559     abort_hook();
1560   }
1561 
1562 }
1563 
1564 // Note: os::abort() might be called very early during initialization, or
1565 // called from signal handler. Before adding something to os::abort(), make
1566 // sure it is async-safe and can handle partially initialized VM.
1567 void os::abort(bool dump_core) {
1568   os::shutdown();
1569   if (dump_core) {
1570 #ifndef PRODUCT
1571     fdStream out(defaultStream::output_fd());
1572     out.print_raw("Current thread is ");
1573     char buf[16];
1574     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1575     out.print_raw_cr(buf);
1576     out.print_raw_cr("Dumping core ...");
1577 #endif
1578     ::abort(); // dump core
1579   }
1580 
1581   ::exit(1);
1582 }
1583 
1584 // Die immediately, no exit hook, no abort hook, no cleanup.
1585 void os::die() {
1586   // _exit() on LinuxThreads only kills current thread
1587   ::abort();
1588 }
1589 
1590 // unused on linux for now.
1591 void os::set_error_file(const char *logfile) {}
1592 
1593 
1594 // This method is a copy of JDK's sysGetLastErrorString
1595 // from src/solaris/hpi/src/system_md.c
1596 
1597 size_t os::lasterror(char *buf, size_t len) {
1598 
1599   if (errno == 0)  return 0;
1600 
1601   const char *s = ::strerror(errno);
1602   size_t n = ::strlen(s);
1603   if (n >= len) {
1604     n = len - 1;
1605   }
1606   ::strncpy(buf, s, n);
1607   buf[n] = '\0';
1608   return n;
1609 }
1610 
1611 intx os::current_thread_id() { return (intx)pthread_self(); }
1612 int os::current_process_id() {
1613 
1614   // Under the old linux thread library, linux gives each thread
1615   // its own process id. Because of this each thread will return
1616   // a different pid if this method were to return the result
1617   // of getpid(2). Linux provides no api that returns the pid
1618   // of the launcher thread for the vm. This implementation
1619   // returns a unique pid, the pid of the launcher thread
1620   // that starts the vm 'process'.
1621 
1622   // Under the NPTL, getpid() returns the same pid as the
1623   // launcher thread rather than a unique pid per thread.
1624   // Use gettid() if you want the old pre NPTL behaviour.
1625 
1626   // if you are looking for the result of a call to getpid() that
1627   // returns a unique pid for the calling thread, then look at the
1628   // OSThread::thread_id() method in osThread_linux.hpp file
1629 
1630   return (int)(_initial_pid ? _initial_pid : getpid());
1631 }
1632 
1633 // DLL functions
1634 
1635 const char* os::dll_file_extension() { return ".so"; }
1636 
1637 // This must be hard coded because it's the system's temporary
1638 // directory not the java application's temp directory, ala java.io.tmpdir.
1639 const char* os::get_temp_directory() { return "/tmp"; }
1640 
1641 static bool file_exists(const char* filename) {
1642   struct stat statbuf;
1643   if (filename == NULL || strlen(filename) == 0) {
1644     return false;
1645   }
1646   return os::stat(filename, &statbuf) == 0;
1647 }
1648 
1649 bool os::dll_build_name(char* buffer, size_t buflen,
1650                         const char* pname, const char* fname) {
1651   bool retval = false;
1652   // Copied from libhpi
1653   const size_t pnamelen = pname ? strlen(pname) : 0;
1654 
1655   // Return error on buffer overflow.
1656   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1657     return retval;
1658   }
1659 
1660   if (pnamelen == 0) {
1661     snprintf(buffer, buflen, "lib%s.so", fname);
1662     retval = true;
1663   } else if (strchr(pname, *os::path_separator()) != NULL) {
1664     int n;
1665     char** pelements = split_path(pname, &n);
1666     for (int i = 0 ; i < n ; i++) {
1667       // Really shouldn't be NULL, but check can't hurt
1668       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1669         continue; // skip the empty path values
1670       }
1671       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1672       if (file_exists(buffer)) {
1673         retval = true;
1674         break;
1675       }
1676     }
1677     // release the storage
1678     for (int i = 0 ; i < n ; i++) {
1679       if (pelements[i] != NULL) {
1680         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1681       }
1682     }
1683     if (pelements != NULL) {
1684       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1685     }
1686   } else {
1687     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1688     retval = true;
1689   }
1690   return retval;
1691 }
1692 
1693 const char* os::get_current_directory(char *buf, int buflen) {
1694   return getcwd(buf, buflen);
1695 }
1696 
1697 // check if addr is inside libjvm.so
1698 bool os::address_is_in_vm(address addr) {
1699   static address libjvm_base_addr;
1700   Dl_info dlinfo;
1701 
1702   if (libjvm_base_addr == NULL) {
1703     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1704     libjvm_base_addr = (address)dlinfo.dli_fbase;
1705     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1706   }
1707 
1708   if (dladdr((void *)addr, &dlinfo)) {
1709     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1710   }
1711 
1712   return false;
1713 }
1714 
1715 bool os::dll_address_to_function_name(address addr, char *buf,
1716                                       int buflen, int *offset) {
1717   Dl_info dlinfo;
1718 
1719   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1720     if (buf != NULL) {
1721       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1722         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1723       }
1724     }
1725     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1726     return true;
1727   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1728     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1729         buf, buflen, offset, dlinfo.dli_fname)) {
1730        return true;
1731     }
1732   }
1733 
1734   if (buf != NULL) buf[0] = '\0';
1735   if (offset != NULL) *offset = -1;
1736   return false;
1737 }
1738 
1739 struct _address_to_library_name {
1740   address addr;          // input : memory address
1741   size_t  buflen;        //         size of fname
1742   char*   fname;         // output: library name
1743   address base;          //         library base addr
1744 };
1745 
1746 static int address_to_library_name_callback(struct dl_phdr_info *info,
1747                                             size_t size, void *data) {
1748   int i;
1749   bool found = false;
1750   address libbase = NULL;
1751   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1752 
1753   // iterate through all loadable segments
1754   for (i = 0; i < info->dlpi_phnum; i++) {
1755     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1756     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1757       // base address of a library is the lowest address of its loaded
1758       // segments.
1759       if (libbase == NULL || libbase > segbase) {
1760         libbase = segbase;
1761       }
1762       // see if 'addr' is within current segment
1763       if (segbase <= d->addr &&
1764           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1765         found = true;
1766       }
1767     }
1768   }
1769 
1770   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1771   // so dll_address_to_library_name() can fall through to use dladdr() which
1772   // can figure out executable name from argv[0].
1773   if (found && info->dlpi_name && info->dlpi_name[0]) {
1774     d->base = libbase;
1775     if (d->fname) {
1776       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1777     }
1778     return 1;
1779   }
1780   return 0;
1781 }
1782 
1783 bool os::dll_address_to_library_name(address addr, char* buf,
1784                                      int buflen, int* offset) {
1785   Dl_info dlinfo;
1786   struct _address_to_library_name data;
1787 
1788   // There is a bug in old glibc dladdr() implementation that it could resolve
1789   // to wrong library name if the .so file has a base address != NULL. Here
1790   // we iterate through the program headers of all loaded libraries to find
1791   // out which library 'addr' really belongs to. This workaround can be
1792   // removed once the minimum requirement for glibc is moved to 2.3.x.
1793   data.addr = addr;
1794   data.fname = buf;
1795   data.buflen = buflen;
1796   data.base = NULL;
1797   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1798 
1799   if (rslt) {
1800      // buf already contains library name
1801      if (offset) *offset = addr - data.base;
1802      return true;
1803   } else if (dladdr((void*)addr, &dlinfo)){
1804      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1805      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1806      return true;
1807   } else {
1808      if (buf) buf[0] = '\0';
1809      if (offset) *offset = -1;
1810      return false;
1811   }
1812 }
1813 
1814   // Loads .dll/.so and
1815   // in case of error it checks if .dll/.so was built for the
1816   // same architecture as Hotspot is running on
1817 
1818 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1819 {
1820   void * result= ::dlopen(filename, RTLD_LAZY);
1821   if (result != NULL) {
1822     // Successful loading
1823     return result;
1824   }
1825 
1826   Elf32_Ehdr elf_head;
1827 
1828   // Read system error message into ebuf
1829   // It may or may not be overwritten below
1830   ::strncpy(ebuf, ::dlerror(), ebuflen-1);
1831   ebuf[ebuflen-1]='\0';
1832   int diag_msg_max_length=ebuflen-strlen(ebuf);
1833   char* diag_msg_buf=ebuf+strlen(ebuf);
1834 
1835   if (diag_msg_max_length==0) {
1836     // No more space in ebuf for additional diagnostics message
1837     return NULL;
1838   }
1839 
1840 
1841   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1842 
1843   if (file_descriptor < 0) {
1844     // Can't open library, report dlerror() message
1845     return NULL;
1846   }
1847 
1848   bool failed_to_read_elf_head=
1849     (sizeof(elf_head)!=
1850         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1851 
1852   ::close(file_descriptor);
1853   if (failed_to_read_elf_head) {
1854     // file i/o error - report dlerror() msg
1855     return NULL;
1856   }
1857 
1858   typedef struct {
1859     Elf32_Half  code;         // Actual value as defined in elf.h
1860     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1861     char        elf_class;    // 32 or 64 bit
1862     char        endianess;    // MSB or LSB
1863     char*       name;         // String representation
1864   } arch_t;
1865 
1866   #ifndef EM_486
1867   #define EM_486          6               /* Intel 80486 */
1868   #endif
1869 
1870   static const arch_t arch_array[]={
1871     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1872     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1873     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1874     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1875     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1876     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1877     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1878     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1879     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1880     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1881     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1882     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1883     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1884     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1885     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1886     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1887   };
1888 
1889   #if  (defined IA32)
1890     static  Elf32_Half running_arch_code=EM_386;
1891   #elif   (defined AMD64)
1892     static  Elf32_Half running_arch_code=EM_X86_64;
1893   #elif  (defined IA64)
1894     static  Elf32_Half running_arch_code=EM_IA_64;
1895   #elif  (defined __sparc) && (defined _LP64)
1896     static  Elf32_Half running_arch_code=EM_SPARCV9;
1897   #elif  (defined __sparc) && (!defined _LP64)
1898     static  Elf32_Half running_arch_code=EM_SPARC;
1899   #elif  (defined __powerpc64__)
1900     static  Elf32_Half running_arch_code=EM_PPC64;
1901   #elif  (defined __powerpc__)
1902     static  Elf32_Half running_arch_code=EM_PPC;
1903   #elif  (defined ARM)
1904     static  Elf32_Half running_arch_code=EM_ARM;
1905   #elif  (defined S390)
1906     static  Elf32_Half running_arch_code=EM_S390;
1907   #elif  (defined ALPHA)
1908     static  Elf32_Half running_arch_code=EM_ALPHA;
1909   #elif  (defined MIPSEL)
1910     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1911   #elif  (defined PARISC)
1912     static  Elf32_Half running_arch_code=EM_PARISC;
1913   #elif  (defined MIPS)
1914     static  Elf32_Half running_arch_code=EM_MIPS;
1915   #elif  (defined M68K)
1916     static  Elf32_Half running_arch_code=EM_68K;
1917   #else
1918     #error Method os::dll_load requires that one of following is defined:\
1919          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1920   #endif
1921 
1922   // Identify compatability class for VM's architecture and library's architecture
1923   // Obtain string descriptions for architectures
1924 
1925   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1926   int running_arch_index=-1;
1927 
1928   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1929     if (running_arch_code == arch_array[i].code) {
1930       running_arch_index    = i;
1931     }
1932     if (lib_arch.code == arch_array[i].code) {
1933       lib_arch.compat_class = arch_array[i].compat_class;
1934       lib_arch.name         = arch_array[i].name;
1935     }
1936   }
1937 
1938   assert(running_arch_index != -1,
1939     "Didn't find running architecture code (running_arch_code) in arch_array");
1940   if (running_arch_index == -1) {
1941     // Even though running architecture detection failed
1942     // we may still continue with reporting dlerror() message
1943     return NULL;
1944   }
1945 
1946   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1947     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1948     return NULL;
1949   }
1950 
1951 #ifndef S390
1952   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
1953     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
1954     return NULL;
1955   }
1956 #endif // !S390
1957 
1958   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
1959     if ( lib_arch.name!=NULL ) {
1960       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1961         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
1962         lib_arch.name, arch_array[running_arch_index].name);
1963     } else {
1964       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
1965       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
1966         lib_arch.code,
1967         arch_array[running_arch_index].name);
1968     }
1969   }
1970 
1971   return NULL;
1972 }
1973 
1974 /*
1975  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
1976  * chances are you might want to run the generated bits against glibc-2.0
1977  * libdl.so, so always use locking for any version of glibc.
1978  */
1979 void* os::dll_lookup(void* handle, const char* name) {
1980   pthread_mutex_lock(&dl_mutex);
1981   void* res = dlsym(handle, name);
1982   pthread_mutex_unlock(&dl_mutex);
1983   return res;
1984 }
1985 
1986 
1987 static bool _print_ascii_file(const char* filename, outputStream* st) {
1988   int fd = ::open(filename, O_RDONLY);
1989   if (fd == -1) {
1990      return false;
1991   }
1992 
1993   char buf[32];
1994   int bytes;
1995   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
1996     st->print_raw(buf, bytes);
1997   }
1998 
1999   ::close(fd);
2000 
2001   return true;
2002 }
2003 
2004 void os::print_dll_info(outputStream *st) {
2005    st->print_cr("Dynamic libraries:");
2006 
2007    char fname[32];
2008    pid_t pid = os::Linux::gettid();
2009 
2010    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2011 
2012    if (!_print_ascii_file(fname, st)) {
2013      st->print("Can not get library information for pid = %d\n", pid);
2014    }
2015 }
2016 
2017 void os::print_os_info_brief(outputStream* st) {
2018   os::Linux::print_distro_info(st);
2019 
2020   os::Posix::print_uname_info(st);
2021 
2022   os::Linux::print_libversion_info(st);
2023 
2024 }
2025 
2026 void os::print_os_info(outputStream* st) {
2027   st->print("OS:");
2028 
2029   os::Linux::print_distro_info(st);
2030 
2031   os::Posix::print_uname_info(st);
2032 
2033   // Print warning if unsafe chroot environment detected
2034   if (unsafe_chroot_detected) {
2035     st->print("WARNING!! ");
2036     st->print_cr(unstable_chroot_error);
2037   }
2038 
2039   os::Linux::print_libversion_info(st);
2040 
2041   os::Posix::print_rlimit_info(st);
2042 
2043   os::Posix::print_load_average(st);
2044 
2045   os::Linux::print_full_memory_info(st);
2046 }
2047 
2048 // Try to identify popular distros.
2049 // Most Linux distributions have /etc/XXX-release file, which contains
2050 // the OS version string. Some have more than one /etc/XXX-release file
2051 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2052 // so the order is important.
2053 void os::Linux::print_distro_info(outputStream* st) {
2054   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2055       !_print_ascii_file("/etc/sun-release", st) &&
2056       !_print_ascii_file("/etc/redhat-release", st) &&
2057       !_print_ascii_file("/etc/SuSE-release", st) &&
2058       !_print_ascii_file("/etc/turbolinux-release", st) &&
2059       !_print_ascii_file("/etc/gentoo-release", st) &&
2060       !_print_ascii_file("/etc/debian_version", st) &&
2061       !_print_ascii_file("/etc/ltib-release", st) &&
2062       !_print_ascii_file("/etc/angstrom-version", st)) {
2063       st->print("Linux");
2064   }
2065   st->cr();
2066 }
2067 
2068 void os::Linux::print_libversion_info(outputStream* st) {
2069   // libc, pthread
2070   st->print("libc:");
2071   st->print(os::Linux::glibc_version()); st->print(" ");
2072   st->print(os::Linux::libpthread_version()); st->print(" ");
2073   if (os::Linux::is_LinuxThreads()) {
2074      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2075   }
2076   st->cr();
2077 }
2078 
2079 void os::Linux::print_full_memory_info(outputStream* st) {
2080    st->print("\n/proc/meminfo:\n");
2081    _print_ascii_file("/proc/meminfo", st);
2082    st->cr();
2083 }
2084 
2085 void os::print_memory_info(outputStream* st) {
2086 
2087   st->print("Memory:");
2088   st->print(" %dk page", os::vm_page_size()>>10);
2089 
2090   // values in struct sysinfo are "unsigned long"
2091   struct sysinfo si;
2092   sysinfo(&si);
2093 
2094   st->print(", physical " UINT64_FORMAT "k",
2095             os::physical_memory() >> 10);
2096   st->print("(" UINT64_FORMAT "k free)",
2097             os::available_memory() >> 10);
2098   st->print(", swap " UINT64_FORMAT "k",
2099             ((jlong)si.totalswap * si.mem_unit) >> 10);
2100   st->print("(" UINT64_FORMAT "k free)",
2101             ((jlong)si.freeswap * si.mem_unit) >> 10);
2102   st->cr();
2103 }
2104 
2105 void os::pd_print_cpu_info(outputStream* st) {
2106   st->print("\n/proc/cpuinfo:\n");
2107   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2108     st->print("  <Not Available>");
2109   }
2110   st->cr();
2111 }
2112 
2113 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2114 // but they're the same for all the linux arch that we support
2115 // and they're the same for solaris but there's no common place to put this.
2116 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2117                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2118                           "ILL_COPROC", "ILL_BADSTK" };
2119 
2120 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2121                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2122                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2123 
2124 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2125 
2126 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2127 
2128 void os::print_siginfo(outputStream* st, void* siginfo) {
2129   st->print("siginfo:");
2130 
2131   const int buflen = 100;
2132   char buf[buflen];
2133   siginfo_t *si = (siginfo_t*)siginfo;
2134   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2135   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2136     st->print("si_errno=%s", buf);
2137   } else {
2138     st->print("si_errno=%d", si->si_errno);
2139   }
2140   const int c = si->si_code;
2141   assert(c > 0, "unexpected si_code");
2142   switch (si->si_signo) {
2143   case SIGILL:
2144     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2145     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2146     break;
2147   case SIGFPE:
2148     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2149     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2150     break;
2151   case SIGSEGV:
2152     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2153     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2154     break;
2155   case SIGBUS:
2156     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2157     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2158     break;
2159   default:
2160     st->print(", si_code=%d", si->si_code);
2161     // no si_addr
2162   }
2163 
2164   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2165       UseSharedSpaces) {
2166     FileMapInfo* mapinfo = FileMapInfo::current_info();
2167     if (mapinfo->is_in_shared_space(si->si_addr)) {
2168       st->print("\n\nError accessing class data sharing archive."   \
2169                 " Mapped file inaccessible during execution, "      \
2170                 " possible disk/network problem.");
2171     }
2172   }
2173   st->cr();
2174 }
2175 
2176 
2177 static void print_signal_handler(outputStream* st, int sig,
2178                                  char* buf, size_t buflen);
2179 
2180 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2181   st->print_cr("Signal Handlers:");
2182   print_signal_handler(st, SIGSEGV, buf, buflen);
2183   print_signal_handler(st, SIGBUS , buf, buflen);
2184   print_signal_handler(st, SIGFPE , buf, buflen);
2185   print_signal_handler(st, SIGPIPE, buf, buflen);
2186   print_signal_handler(st, SIGXFSZ, buf, buflen);
2187   print_signal_handler(st, SIGILL , buf, buflen);
2188   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2189   print_signal_handler(st, SR_signum, buf, buflen);
2190   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2191   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2192   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2193   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2194 }
2195 
2196 static char saved_jvm_path[MAXPATHLEN] = {0};
2197 
2198 // Find the full path to the current module, libjvm.so
2199 void os::jvm_path(char *buf, jint buflen) {
2200   // Error checking.
2201   if (buflen < MAXPATHLEN) {
2202     assert(false, "must use a large-enough buffer");
2203     buf[0] = '\0';
2204     return;
2205   }
2206   // Lazy resolve the path to current module.
2207   if (saved_jvm_path[0] != 0) {
2208     strcpy(buf, saved_jvm_path);
2209     return;
2210   }
2211 
2212   char dli_fname[MAXPATHLEN];
2213   bool ret = dll_address_to_library_name(
2214                 CAST_FROM_FN_PTR(address, os::jvm_path),
2215                 dli_fname, sizeof(dli_fname), NULL);
2216   assert(ret != 0, "cannot locate libjvm");
2217   char *rp = realpath(dli_fname, buf);
2218   if (rp == NULL)
2219     return;
2220 
2221   if (Arguments::created_by_gamma_launcher()) {
2222     // Support for the gamma launcher.  Typical value for buf is
2223     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2224     // the right place in the string, then assume we are installed in a JDK and
2225     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2226     // up the path so it looks like libjvm.so is installed there (append a
2227     // fake suffix hotspot/libjvm.so).
2228     const char *p = buf + strlen(buf) - 1;
2229     for (int count = 0; p > buf && count < 5; ++count) {
2230       for (--p; p > buf && *p != '/'; --p)
2231         /* empty */ ;
2232     }
2233 
2234     if (strncmp(p, "/jre/lib/", 9) != 0) {
2235       // Look for JAVA_HOME in the environment.
2236       char* java_home_var = ::getenv("JAVA_HOME");
2237       if (java_home_var != NULL && java_home_var[0] != 0) {
2238         char* jrelib_p;
2239         int len;
2240 
2241         // Check the current module name "libjvm.so".
2242         p = strrchr(buf, '/');
2243         assert(strstr(p, "/libjvm") == p, "invalid library name");
2244 
2245         rp = realpath(java_home_var, buf);
2246         if (rp == NULL)
2247           return;
2248 
2249         // determine if this is a legacy image or modules image
2250         // modules image doesn't have "jre" subdirectory
2251         len = strlen(buf);
2252         jrelib_p = buf + len;
2253         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2254         if (0 != access(buf, F_OK)) {
2255           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2256         }
2257 
2258         if (0 == access(buf, F_OK)) {
2259           // Use current module name "libjvm.so"
2260           len = strlen(buf);
2261           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2262         } else {
2263           // Go back to path of .so
2264           rp = realpath(dli_fname, buf);
2265           if (rp == NULL)
2266             return;
2267         }
2268       }
2269     }
2270   }
2271 
2272   strcpy(saved_jvm_path, buf);
2273 }
2274 
2275 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2276   // no prefix required, not even "_"
2277 }
2278 
2279 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2280   // no suffix required
2281 }
2282 
2283 ////////////////////////////////////////////////////////////////////////////////
2284 // sun.misc.Signal support
2285 
2286 static volatile jint sigint_count = 0;
2287 
2288 static void
2289 UserHandler(int sig, void *siginfo, void *context) {
2290   // 4511530 - sem_post is serialized and handled by the manager thread. When
2291   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2292   // don't want to flood the manager thread with sem_post requests.
2293   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2294       return;
2295 
2296   // Ctrl-C is pressed during error reporting, likely because the error
2297   // handler fails to abort. Let VM die immediately.
2298   if (sig == SIGINT && is_error_reported()) {
2299      os::die();
2300   }
2301 
2302   os::signal_notify(sig);
2303 }
2304 
2305 void* os::user_handler() {
2306   return CAST_FROM_FN_PTR(void*, UserHandler);
2307 }
2308 
2309 extern "C" {
2310   typedef void (*sa_handler_t)(int);
2311   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2312 }
2313 
2314 void* os::signal(int signal_number, void* handler) {
2315   struct sigaction sigAct, oldSigAct;
2316 
2317   sigfillset(&(sigAct.sa_mask));
2318   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2319   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2320 
2321   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2322     // -1 means registration failed
2323     return (void *)-1;
2324   }
2325 
2326   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2327 }
2328 
2329 void os::signal_raise(int signal_number) {
2330   ::raise(signal_number);
2331 }
2332 
2333 /*
2334  * The following code is moved from os.cpp for making this
2335  * code platform specific, which it is by its very nature.
2336  */
2337 
2338 // Will be modified when max signal is changed to be dynamic
2339 int os::sigexitnum_pd() {
2340   return NSIG;
2341 }
2342 
2343 // a counter for each possible signal value
2344 static volatile jint pending_signals[NSIG+1] = { 0 };
2345 
2346 // Linux(POSIX) specific hand shaking semaphore.
2347 static sem_t sig_sem;
2348 
2349 void os::signal_init_pd() {
2350   // Initialize signal structures
2351   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2352 
2353   // Initialize signal semaphore
2354   ::sem_init(&sig_sem, 0, 0);
2355 }
2356 
2357 void os::signal_notify(int sig) {
2358   Atomic::inc(&pending_signals[sig]);
2359   ::sem_post(&sig_sem);
2360 }
2361 
2362 static int check_pending_signals(bool wait) {
2363   Atomic::store(0, &sigint_count);
2364   for (;;) {
2365     for (int i = 0; i < NSIG + 1; i++) {
2366       jint n = pending_signals[i];
2367       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2368         return i;
2369       }
2370     }
2371     if (!wait) {
2372       return -1;
2373     }
2374     JavaThread *thread = JavaThread::current();
2375     ThreadBlockInVM tbivm(thread);
2376 
2377     bool threadIsSuspended;
2378     do {
2379       thread->set_suspend_equivalent();
2380       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2381       ::sem_wait(&sig_sem);
2382 
2383       // were we externally suspended while we were waiting?
2384       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2385       if (threadIsSuspended) {
2386         //
2387         // The semaphore has been incremented, but while we were waiting
2388         // another thread suspended us. We don't want to continue running
2389         // while suspended because that would surprise the thread that
2390         // suspended us.
2391         //
2392         ::sem_post(&sig_sem);
2393 
2394         thread->java_suspend_self();
2395       }
2396     } while (threadIsSuspended);
2397   }
2398 }
2399 
2400 int os::signal_lookup() {
2401   return check_pending_signals(false);
2402 }
2403 
2404 int os::signal_wait() {
2405   return check_pending_signals(true);
2406 }
2407 
2408 ////////////////////////////////////////////////////////////////////////////////
2409 // Virtual Memory
2410 
2411 int os::vm_page_size() {
2412   // Seems redundant as all get out
2413   assert(os::Linux::page_size() != -1, "must call os::init");
2414   return os::Linux::page_size();
2415 }
2416 
2417 // Solaris allocates memory by pages.
2418 int os::vm_allocation_granularity() {
2419   assert(os::Linux::page_size() != -1, "must call os::init");
2420   return os::Linux::page_size();
2421 }
2422 
2423 // Rationale behind this function:
2424 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2425 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2426 //  samples for JITted code. Here we create private executable mapping over the code cache
2427 //  and then we can use standard (well, almost, as mapping can change) way to provide
2428 //  info for the reporting script by storing timestamp and location of symbol
2429 void linux_wrap_code(char* base, size_t size) {
2430   static volatile jint cnt = 0;
2431 
2432   if (!UseOprofile) {
2433     return;
2434   }
2435 
2436   char buf[PATH_MAX+1];
2437   int num = Atomic::add(1, &cnt);
2438 
2439   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2440            os::get_temp_directory(), os::current_process_id(), num);
2441   unlink(buf);
2442 
2443   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2444 
2445   if (fd != -1) {
2446     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2447     if (rv != (off_t)-1) {
2448       if (::write(fd, "", 1) == 1) {
2449         mmap(base, size,
2450              PROT_READ|PROT_WRITE|PROT_EXEC,
2451              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2452       }
2453     }
2454     ::close(fd);
2455     unlink(buf);
2456   }
2457 }
2458 
2459 // NOTE: Linux kernel does not really reserve the pages for us.
2460 //       All it does is to check if there are enough free pages
2461 //       left at the time of mmap(). This could be a potential
2462 //       problem.
2463 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2464   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2465   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2466                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2467   if (res != (uintptr_t) MAP_FAILED) {
2468     if (UseNUMAInterleaving) {
2469       numa_make_global(addr, size);
2470     }
2471     return true;
2472   }
2473   return false;
2474 }
2475 
2476 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2477 #ifndef MAP_HUGETLB
2478 #define MAP_HUGETLB 0x40000
2479 #endif
2480 
2481 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2482 #ifndef MADV_HUGEPAGE
2483 #define MADV_HUGEPAGE 14
2484 #endif
2485 
2486 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2487                        bool exec) {
2488   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2489     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2490     uintptr_t res =
2491       (uintptr_t) ::mmap(addr, size, prot,
2492                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2493                          -1, 0);
2494     if (res != (uintptr_t) MAP_FAILED) {
2495       if (UseNUMAInterleaving) {
2496         numa_make_global(addr, size);
2497       }
2498       return true;
2499     }
2500     // Fall through and try to use small pages
2501   }
2502 
2503   if (commit_memory(addr, size, exec)) {
2504     realign_memory(addr, size, alignment_hint);
2505     return true;
2506   }
2507   return false;
2508 }
2509 
2510 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2511   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2512     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2513     // be supported or the memory may already be backed by huge pages.
2514     ::madvise(addr, bytes, MADV_HUGEPAGE);
2515   }
2516 }
2517 
2518 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2519   // This method works by doing an mmap over an existing mmaping and effectively discarding
2520   // the existing pages. However it won't work for SHM-based large pages that cannot be
2521   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2522   // small pages on top of the SHM segment. This method always works for small pages, so we
2523   // allow that in any case.
2524   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2525     commit_memory(addr, bytes, alignment_hint, false);
2526   }
2527 }
2528 
2529 void os::numa_make_global(char *addr, size_t bytes) {
2530   Linux::numa_interleave_memory(addr, bytes);
2531 }
2532 
2533 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2534   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2535 }
2536 
2537 bool os::numa_topology_changed()   { return false; }
2538 
2539 size_t os::numa_get_groups_num() {
2540   int max_node = Linux::numa_max_node();
2541   return max_node > 0 ? max_node + 1 : 1;
2542 }
2543 
2544 int os::numa_get_group_id() {
2545   int cpu_id = Linux::sched_getcpu();
2546   if (cpu_id != -1) {
2547     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2548     if (lgrp_id != -1) {
2549       return lgrp_id;
2550     }
2551   }
2552   return 0;
2553 }
2554 
2555 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2556   for (size_t i = 0; i < size; i++) {
2557     ids[i] = i;
2558   }
2559   return size;
2560 }
2561 
2562 bool os::get_page_info(char *start, page_info* info) {
2563   return false;
2564 }
2565 
2566 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2567   return end;
2568 }
2569 
2570 
2571 int os::Linux::sched_getcpu_syscall(void) {
2572   unsigned int cpu;
2573   int retval = -1;
2574 
2575 #if defined(IA32)
2576 # ifndef SYS_getcpu
2577 # define SYS_getcpu 318
2578 # endif
2579   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2580 #elif defined(AMD64)
2581 // Unfortunately we have to bring all these macros here from vsyscall.h
2582 // to be able to compile on old linuxes.
2583 # define __NR_vgetcpu 2
2584 # define VSYSCALL_START (-10UL << 20)
2585 # define VSYSCALL_SIZE 1024
2586 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2587   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2588   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2589   retval = vgetcpu(&cpu, NULL, NULL);
2590 #endif
2591 
2592   return (retval == -1) ? retval : cpu;
2593 }
2594 
2595 // Something to do with the numa-aware allocator needs these symbols
2596 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2597 extern "C" JNIEXPORT void numa_error(char *where) { }
2598 extern "C" JNIEXPORT int fork1() { return fork(); }
2599 
2600 
2601 // If we are running with libnuma version > 2, then we should
2602 // be trying to use symbols with versions 1.1
2603 // If we are running with earlier version, which did not have symbol versions,
2604 // we should use the base version.
2605 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2606   void *f = dlvsym(handle, name, "libnuma_1.1");
2607   if (f == NULL) {
2608     f = dlsym(handle, name);
2609   }
2610   return f;
2611 }
2612 
2613 bool os::Linux::libnuma_init() {
2614   // sched_getcpu() should be in libc.
2615   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2616                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2617 
2618   // If it's not, try a direct syscall.
2619   if (sched_getcpu() == -1)
2620     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2621 
2622   if (sched_getcpu() != -1) { // Does it work?
2623     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2624     if (handle != NULL) {
2625       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2626                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2627       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2628                                        libnuma_dlsym(handle, "numa_max_node")));
2629       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2630                                         libnuma_dlsym(handle, "numa_available")));
2631       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2632                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2633       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2634                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2635 
2636 
2637       if (numa_available() != -1) {
2638         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2639         // Create a cpu -> node mapping
2640         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2641         rebuild_cpu_to_node_map();
2642         return true;
2643       }
2644     }
2645   }
2646   return false;
2647 }
2648 
2649 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2650 // The table is later used in get_node_by_cpu().
2651 void os::Linux::rebuild_cpu_to_node_map() {
2652   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2653                               // in libnuma (possible values are starting from 16,
2654                               // and continuing up with every other power of 2, but less
2655                               // than the maximum number of CPUs supported by kernel), and
2656                               // is a subject to change (in libnuma version 2 the requirements
2657                               // are more reasonable) we'll just hardcode the number they use
2658                               // in the library.
2659   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2660 
2661   size_t cpu_num = os::active_processor_count();
2662   size_t cpu_map_size = NCPUS / BitsPerCLong;
2663   size_t cpu_map_valid_size =
2664     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2665 
2666   cpu_to_node()->clear();
2667   cpu_to_node()->at_grow(cpu_num - 1);
2668   size_t node_num = numa_get_groups_num();
2669 
2670   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2671   for (size_t i = 0; i < node_num; i++) {
2672     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2673       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2674         if (cpu_map[j] != 0) {
2675           for (size_t k = 0; k < BitsPerCLong; k++) {
2676             if (cpu_map[j] & (1UL << k)) {
2677               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2678             }
2679           }
2680         }
2681       }
2682     }
2683   }
2684   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2685 }
2686 
2687 int os::Linux::get_node_by_cpu(int cpu_id) {
2688   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2689     return cpu_to_node()->at(cpu_id);
2690   }
2691   return -1;
2692 }
2693 
2694 GrowableArray<int>* os::Linux::_cpu_to_node;
2695 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2696 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2697 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2698 os::Linux::numa_available_func_t os::Linux::_numa_available;
2699 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2700 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2701 unsigned long* os::Linux::_numa_all_nodes;
2702 
2703 bool os::pd_uncommit_memory(char* addr, size_t size) {
2704   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2705                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2706   return res  != (uintptr_t) MAP_FAILED;
2707 }
2708 
2709 // Linux uses a growable mapping for the stack, and if the mapping for
2710 // the stack guard pages is not removed when we detach a thread the
2711 // stack cannot grow beyond the pages where the stack guard was
2712 // mapped.  If at some point later in the process the stack expands to
2713 // that point, the Linux kernel cannot expand the stack any further
2714 // because the guard pages are in the way, and a segfault occurs.
2715 //
2716 // However, it's essential not to split the stack region by unmapping
2717 // a region (leaving a hole) that's already part of the stack mapping,
2718 // so if the stack mapping has already grown beyond the guard pages at
2719 // the time we create them, we have to truncate the stack mapping.
2720 // So, we need to know the extent of the stack mapping when
2721 // create_stack_guard_pages() is called.
2722 
2723 // Find the bounds of the stack mapping.  Return true for success.
2724 //
2725 // We only need this for stacks that are growable: at the time of
2726 // writing thread stacks don't use growable mappings (i.e. those
2727 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2728 // only applies to the main thread.
2729 
2730 static
2731 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2732 
2733   char buf[128];
2734   int fd, sz;
2735 
2736   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2737     return false;
2738   }
2739 
2740   const char kw[] = "[stack]";
2741   const int kwlen = sizeof(kw)-1;
2742 
2743   // Address part of /proc/self/maps couldn't be more than 128 bytes
2744   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2745      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2746         // Extract addresses
2747         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2748            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2749            if (sp >= *bottom && sp <= *top) {
2750               ::close(fd);
2751               return true;
2752            }
2753         }
2754      }
2755   }
2756 
2757  ::close(fd);
2758   return false;
2759 }
2760 
2761 
2762 // If the (growable) stack mapping already extends beyond the point
2763 // where we're going to put our guard pages, truncate the mapping at
2764 // that point by munmap()ping it.  This ensures that when we later
2765 // munmap() the guard pages we don't leave a hole in the stack
2766 // mapping. This only affects the main/initial thread, but guard
2767 // against future OS changes
2768 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2769   uintptr_t stack_extent, stack_base;
2770   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2771   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2772       assert(os::Linux::is_initial_thread(),
2773            "growable stack in non-initial thread");
2774     if (stack_extent < (uintptr_t)addr)
2775       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2776   }
2777 
2778   return os::commit_memory(addr, size);
2779 }
2780 
2781 // If this is a growable mapping, remove the guard pages entirely by
2782 // munmap()ping them.  If not, just call uncommit_memory(). This only
2783 // affects the main/initial thread, but guard against future OS changes
2784 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2785   uintptr_t stack_extent, stack_base;
2786   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2787   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2788       assert(os::Linux::is_initial_thread(),
2789            "growable stack in non-initial thread");
2790 
2791     return ::munmap(addr, size) == 0;
2792   }
2793 
2794   return os::uncommit_memory(addr, size);
2795 }
2796 
2797 static address _highest_vm_reserved_address = NULL;
2798 
2799 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2800 // at 'requested_addr'. If there are existing memory mappings at the same
2801 // location, however, they will be overwritten. If 'fixed' is false,
2802 // 'requested_addr' is only treated as a hint, the return value may or
2803 // may not start from the requested address. Unlike Linux mmap(), this
2804 // function returns NULL to indicate failure.
2805 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2806   char * addr;
2807   int flags;
2808 
2809   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2810   if (fixed) {
2811     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2812     flags |= MAP_FIXED;
2813   }
2814 
2815   // Map uncommitted pages PROT_READ and PROT_WRITE, change access
2816   // to PROT_EXEC if executable when we commit the page.
2817   addr = (char*)::mmap(requested_addr, bytes, PROT_READ|PROT_WRITE,
2818                        flags, -1, 0);
2819 
2820   if (addr != MAP_FAILED) {
2821     // anon_mmap() should only get called during VM initialization,
2822     // don't need lock (actually we can skip locking even it can be called
2823     // from multiple threads, because _highest_vm_reserved_address is just a
2824     // hint about the upper limit of non-stack memory regions.)
2825     if ((address)addr + bytes > _highest_vm_reserved_address) {
2826       _highest_vm_reserved_address = (address)addr + bytes;
2827     }
2828   }
2829 
2830   return addr == MAP_FAILED ? NULL : addr;
2831 }
2832 
2833 // Don't update _highest_vm_reserved_address, because there might be memory
2834 // regions above addr + size. If so, releasing a memory region only creates
2835 // a hole in the address space, it doesn't help prevent heap-stack collision.
2836 //
2837 static int anon_munmap(char * addr, size_t size) {
2838   return ::munmap(addr, size) == 0;
2839 }
2840 
2841 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2842                          size_t alignment_hint) {
2843   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2844 }
2845 
2846 bool os::pd_release_memory(char* addr, size_t size) {
2847   return anon_munmap(addr, size);
2848 }
2849 
2850 static address highest_vm_reserved_address() {
2851   return _highest_vm_reserved_address;
2852 }
2853 
2854 static bool linux_mprotect(char* addr, size_t size, int prot) {
2855   // Linux wants the mprotect address argument to be page aligned.
2856   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2857 
2858   // According to SUSv3, mprotect() should only be used with mappings
2859   // established by mmap(), and mmap() always maps whole pages. Unaligned
2860   // 'addr' likely indicates problem in the VM (e.g. trying to change
2861   // protection of malloc'ed or statically allocated memory). Check the
2862   // caller if you hit this assert.
2863   assert(addr == bottom, "sanity check");
2864 
2865   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2866   return ::mprotect(bottom, size, prot) == 0;
2867 }
2868 
2869 // Set protections specified
2870 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2871                         bool is_committed) {
2872   unsigned int p = 0;
2873   switch (prot) {
2874   case MEM_PROT_NONE: p = PROT_NONE; break;
2875   case MEM_PROT_READ: p = PROT_READ; break;
2876   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2877   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2878   default:
2879     ShouldNotReachHere();
2880   }
2881   // is_committed is unused.
2882   return linux_mprotect(addr, bytes, p);
2883 }
2884 
2885 bool os::guard_memory(char* addr, size_t size) {
2886   return linux_mprotect(addr, size, PROT_NONE);
2887 }
2888 
2889 bool os::unguard_memory(char* addr, size_t size) {
2890   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2891 }
2892 
2893 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2894   bool result = false;
2895   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2896                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2897                   -1, 0);
2898 
2899   if (p != (void *) -1) {
2900     // We don't know if this really is a huge page or not.
2901     FILE *fp = fopen("/proc/self/maps", "r");
2902     if (fp) {
2903       while (!feof(fp)) {
2904         char chars[257];
2905         long x = 0;
2906         if (fgets(chars, sizeof(chars), fp)) {
2907           if (sscanf(chars, "%lx-%*x", &x) == 1
2908               && x == (long)p) {
2909             if (strstr (chars, "hugepage")) {
2910               result = true;
2911               break;
2912             }
2913           }
2914         }
2915       }
2916       fclose(fp);
2917     }
2918     munmap (p, page_size);
2919     if (result)
2920       return true;
2921   }
2922 
2923   if (warn) {
2924     warning("HugeTLBFS is not supported by the operating system.");
2925   }
2926 
2927   return result;
2928 }
2929 
2930 /*
2931 * Set the coredump_filter bits to include largepages in core dump (bit 6)
2932 *
2933 * From the coredump_filter documentation:
2934 *
2935 * - (bit 0) anonymous private memory
2936 * - (bit 1) anonymous shared memory
2937 * - (bit 2) file-backed private memory
2938 * - (bit 3) file-backed shared memory
2939 * - (bit 4) ELF header pages in file-backed private memory areas (it is
2940 *           effective only if the bit 2 is cleared)
2941 * - (bit 5) hugetlb private memory
2942 * - (bit 6) hugetlb shared memory
2943 */
2944 static void set_coredump_filter(void) {
2945   FILE *f;
2946   long cdm;
2947 
2948   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
2949     return;
2950   }
2951 
2952   if (fscanf(f, "%lx", &cdm) != 1) {
2953     fclose(f);
2954     return;
2955   }
2956 
2957   rewind(f);
2958 
2959   if ((cdm & LARGEPAGES_BIT) == 0) {
2960     cdm |= LARGEPAGES_BIT;
2961     fprintf(f, "%#lx", cdm);
2962   }
2963 
2964   fclose(f);
2965 }
2966 
2967 // Large page support
2968 
2969 static size_t _large_page_size = 0;
2970 
2971 void os::large_page_init() {
2972   if (!UseLargePages) {
2973     UseHugeTLBFS = false;
2974     UseSHM = false;
2975     return;
2976   }
2977 
2978   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
2979     // If UseLargePages is specified on the command line try both methods,
2980     // if it's default, then try only HugeTLBFS.
2981     if (FLAG_IS_DEFAULT(UseLargePages)) {
2982       UseHugeTLBFS = true;
2983     } else {
2984       UseHugeTLBFS = UseSHM = true;
2985     }
2986   }
2987 
2988   if (LargePageSizeInBytes) {
2989     _large_page_size = LargePageSizeInBytes;
2990   } else {
2991     // large_page_size on Linux is used to round up heap size. x86 uses either
2992     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
2993     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
2994     // page as large as 256M.
2995     //
2996     // Here we try to figure out page size by parsing /proc/meminfo and looking
2997     // for a line with the following format:
2998     //    Hugepagesize:     2048 kB
2999     //
3000     // If we can't determine the value (e.g. /proc is not mounted, or the text
3001     // format has been changed), we'll use the largest page size supported by
3002     // the processor.
3003 
3004 #ifndef ZERO
3005     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3006                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3007 #endif // ZERO
3008 
3009     FILE *fp = fopen("/proc/meminfo", "r");
3010     if (fp) {
3011       while (!feof(fp)) {
3012         int x = 0;
3013         char buf[16];
3014         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3015           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3016             _large_page_size = x * K;
3017             break;
3018           }
3019         } else {
3020           // skip to next line
3021           for (;;) {
3022             int ch = fgetc(fp);
3023             if (ch == EOF || ch == (int)'\n') break;
3024           }
3025         }
3026       }
3027       fclose(fp);
3028     }
3029   }
3030 
3031   // print a warning if any large page related flag is specified on command line
3032   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3033 
3034   const size_t default_page_size = (size_t)Linux::page_size();
3035   if (_large_page_size > default_page_size) {
3036     _page_sizes[0] = _large_page_size;
3037     _page_sizes[1] = default_page_size;
3038     _page_sizes[2] = 0;
3039   }
3040   UseHugeTLBFS = UseHugeTLBFS &&
3041                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3042 
3043   if (UseHugeTLBFS)
3044     UseSHM = false;
3045 
3046   UseLargePages = UseHugeTLBFS || UseSHM;
3047 
3048   set_coredump_filter();
3049 }
3050 
3051 #ifndef SHM_HUGETLB
3052 #define SHM_HUGETLB 04000
3053 #endif
3054 
3055 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3056   // "exec" is passed in but not used.  Creating the shared image for
3057   // the code cache doesn't have an SHM_X executable permission to check.
3058   assert(UseLargePages && UseSHM, "only for SHM large pages");
3059 
3060   key_t key = IPC_PRIVATE;
3061   char *addr;
3062 
3063   bool warn_on_failure = UseLargePages &&
3064                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3065                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3066                         );
3067   char msg[128];
3068 
3069   // Create a large shared memory region to attach to based on size.
3070   // Currently, size is the total size of the heap
3071   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3072   if (shmid == -1) {
3073      // Possible reasons for shmget failure:
3074      // 1. shmmax is too small for Java heap.
3075      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3076      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3077      // 2. not enough large page memory.
3078      //    > check available large pages: cat /proc/meminfo
3079      //    > increase amount of large pages:
3080      //          echo new_value > /proc/sys/vm/nr_hugepages
3081      //      Note 1: different Linux may use different name for this property,
3082      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3083      //      Note 2: it's possible there's enough physical memory available but
3084      //            they are so fragmented after a long run that they can't
3085      //            coalesce into large pages. Try to reserve large pages when
3086      //            the system is still "fresh".
3087      if (warn_on_failure) {
3088        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3089        warning(msg);
3090      }
3091      return NULL;
3092   }
3093 
3094   // attach to the region
3095   addr = (char*)shmat(shmid, req_addr, 0);
3096   int err = errno;
3097 
3098   // Remove shmid. If shmat() is successful, the actual shared memory segment
3099   // will be deleted when it's detached by shmdt() or when the process
3100   // terminates. If shmat() is not successful this will remove the shared
3101   // segment immediately.
3102   shmctl(shmid, IPC_RMID, NULL);
3103 
3104   if ((intptr_t)addr == -1) {
3105      if (warn_on_failure) {
3106        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3107        warning(msg);
3108      }
3109      return NULL;
3110   }
3111 
3112   if ((addr != NULL) && UseNUMAInterleaving) {
3113     numa_make_global(addr, bytes);
3114   }
3115 
3116   return addr;
3117 }
3118 
3119 bool os::release_memory_special(char* base, size_t bytes) {
3120   // detaching the SHM segment will also delete it, see reserve_memory_special()
3121   int rslt = shmdt(base);
3122   return rslt == 0;
3123 }
3124 
3125 size_t os::large_page_size() {
3126   return _large_page_size;
3127 }
3128 
3129 // HugeTLBFS allows application to commit large page memory on demand;
3130 // with SysV SHM the entire memory region must be allocated as shared
3131 // memory.
3132 bool os::can_commit_large_page_memory() {
3133   return UseHugeTLBFS;
3134 }
3135 
3136 bool os::can_execute_large_page_memory() {
3137   return UseHugeTLBFS;
3138 }
3139 
3140 // Reserve memory at an arbitrary address, only if that area is
3141 // available (and not reserved for something else).
3142 
3143 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3144   const int max_tries = 10;
3145   char* base[max_tries];
3146   size_t size[max_tries];
3147   const size_t gap = 0x000000;
3148 
3149   // Assert only that the size is a multiple of the page size, since
3150   // that's all that mmap requires, and since that's all we really know
3151   // about at this low abstraction level.  If we need higher alignment,
3152   // we can either pass an alignment to this method or verify alignment
3153   // in one of the methods further up the call chain.  See bug 5044738.
3154   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3155 
3156   // Repeatedly allocate blocks until the block is allocated at the
3157   // right spot. Give up after max_tries. Note that reserve_memory() will
3158   // automatically update _highest_vm_reserved_address if the call is
3159   // successful. The variable tracks the highest memory address every reserved
3160   // by JVM. It is used to detect heap-stack collision if running with
3161   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3162   // space than needed, it could confuse the collision detecting code. To
3163   // solve the problem, save current _highest_vm_reserved_address and
3164   // calculate the correct value before return.
3165   address old_highest = _highest_vm_reserved_address;
3166 
3167   // Linux mmap allows caller to pass an address as hint; give it a try first,
3168   // if kernel honors the hint then we can return immediately.
3169   char * addr = anon_mmap(requested_addr, bytes, false);
3170   if (addr == requested_addr) {
3171      return requested_addr;
3172   }
3173 
3174   if (addr != NULL) {
3175      // mmap() is successful but it fails to reserve at the requested address
3176      anon_munmap(addr, bytes);
3177   }
3178 
3179   int i;
3180   for (i = 0; i < max_tries; ++i) {
3181     base[i] = reserve_memory(bytes);
3182 
3183     if (base[i] != NULL) {
3184       // Is this the block we wanted?
3185       if (base[i] == requested_addr) {
3186         size[i] = bytes;
3187         break;
3188       }
3189 
3190       // Does this overlap the block we wanted? Give back the overlapped
3191       // parts and try again.
3192 
3193       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3194       if (top_overlap >= 0 && top_overlap < bytes) {
3195         unmap_memory(base[i], top_overlap);
3196         base[i] += top_overlap;
3197         size[i] = bytes - top_overlap;
3198       } else {
3199         size_t bottom_overlap = base[i] + bytes - requested_addr;
3200         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3201           unmap_memory(requested_addr, bottom_overlap);
3202           size[i] = bytes - bottom_overlap;
3203         } else {
3204           size[i] = bytes;
3205         }
3206       }
3207     }
3208   }
3209 
3210   // Give back the unused reserved pieces.
3211 
3212   for (int j = 0; j < i; ++j) {
3213     if (base[j] != NULL) {
3214       unmap_memory(base[j], size[j]);
3215     }
3216   }
3217 
3218   if (i < max_tries) {
3219     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3220     return requested_addr;
3221   } else {
3222     _highest_vm_reserved_address = old_highest;
3223     return NULL;
3224   }
3225 }
3226 
3227 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3228   return ::read(fd, buf, nBytes);
3229 }
3230 
3231 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3232 // Solaris uses poll(), linux uses park().
3233 // Poll() is likely a better choice, assuming that Thread.interrupt()
3234 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3235 // SIGSEGV, see 4355769.
3236 
3237 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3238   assert(thread == Thread::current(),  "thread consistency check");
3239 
3240   ParkEvent * const slp = thread->_SleepEvent ;
3241   slp->reset() ;
3242   OrderAccess::fence() ;
3243 
3244   if (interruptible) {
3245     jlong prevtime = javaTimeNanos();
3246 
3247     for (;;) {
3248       if (os::is_interrupted(thread, true)) {
3249         return OS_INTRPT;
3250       }
3251 
3252       jlong newtime = javaTimeNanos();
3253 
3254       if (newtime - prevtime < 0) {
3255         // time moving backwards, should only happen if no monotonic clock
3256         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3257         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3258       } else {
3259         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3260       }
3261 
3262       if(millis <= 0) {
3263         return OS_OK;
3264       }
3265 
3266       prevtime = newtime;
3267 
3268       {
3269         assert(thread->is_Java_thread(), "sanity check");
3270         JavaThread *jt = (JavaThread *) thread;
3271         ThreadBlockInVM tbivm(jt);
3272         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3273 
3274         jt->set_suspend_equivalent();
3275         // cleared by handle_special_suspend_equivalent_condition() or
3276         // java_suspend_self() via check_and_wait_while_suspended()
3277 
3278         slp->park(millis);
3279 
3280         // were we externally suspended while we were waiting?
3281         jt->check_and_wait_while_suspended();
3282       }
3283     }
3284   } else {
3285     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3286     jlong prevtime = javaTimeNanos();
3287 
3288     for (;;) {
3289       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3290       // the 1st iteration ...
3291       jlong newtime = javaTimeNanos();
3292 
3293       if (newtime - prevtime < 0) {
3294         // time moving backwards, should only happen if no monotonic clock
3295         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3296         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3297       } else {
3298         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3299       }
3300 
3301       if(millis <= 0) break ;
3302 
3303       prevtime = newtime;
3304       slp->park(millis);
3305     }
3306     return OS_OK ;
3307   }
3308 }
3309 
3310 int os::naked_sleep() {
3311   // %% make the sleep time an integer flag. for now use 1 millisec.
3312   return os::sleep(Thread::current(), 1, false);
3313 }
3314 
3315 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3316 void os::infinite_sleep() {
3317   while (true) {    // sleep forever ...
3318     ::sleep(100);   // ... 100 seconds at a time
3319   }
3320 }
3321 
3322 // Used to convert frequent JVM_Yield() to nops
3323 bool os::dont_yield() {
3324   return DontYieldALot;
3325 }
3326 
3327 void os::yield() {
3328   sched_yield();
3329 }
3330 
3331 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3332 
3333 void os::yield_all(int attempts) {
3334   // Yields to all threads, including threads with lower priorities
3335   // Threads on Linux are all with same priority. The Solaris style
3336   // os::yield_all() with nanosleep(1ms) is not necessary.
3337   sched_yield();
3338 }
3339 
3340 // Called from the tight loops to possibly influence time-sharing heuristics
3341 void os::loop_breaker(int attempts) {
3342   os::yield_all(attempts);
3343 }
3344 
3345 ////////////////////////////////////////////////////////////////////////////////
3346 // thread priority support
3347 
3348 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3349 // only supports dynamic priority, static priority must be zero. For real-time
3350 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3351 // However, for large multi-threaded applications, SCHED_RR is not only slower
3352 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3353 // of 5 runs - Sep 2005).
3354 //
3355 // The following code actually changes the niceness of kernel-thread/LWP. It
3356 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3357 // not the entire user process, and user level threads are 1:1 mapped to kernel
3358 // threads. It has always been the case, but could change in the future. For
3359 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3360 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3361 
3362 int os::java_to_os_priority[CriticalPriority + 1] = {
3363   19,              // 0 Entry should never be used
3364 
3365    4,              // 1 MinPriority
3366    3,              // 2
3367    2,              // 3
3368 
3369    1,              // 4
3370    0,              // 5 NormPriority
3371   -1,              // 6
3372 
3373   -2,              // 7
3374   -3,              // 8
3375   -4,              // 9 NearMaxPriority
3376 
3377   -5,              // 10 MaxPriority
3378 
3379   -5               // 11 CriticalPriority
3380 };
3381 
3382 static int prio_init() {
3383   if (ThreadPriorityPolicy == 1) {
3384     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3385     // if effective uid is not root. Perhaps, a more elegant way of doing
3386     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3387     if (geteuid() != 0) {
3388       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3389         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3390       }
3391       ThreadPriorityPolicy = 0;
3392     }
3393   }
3394   if (UseCriticalJavaThreadPriority) {
3395     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3396   }
3397   return 0;
3398 }
3399 
3400 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3401   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3402 
3403   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3404   return (ret == 0) ? OS_OK : OS_ERR;
3405 }
3406 
3407 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3408   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3409     *priority_ptr = java_to_os_priority[NormPriority];
3410     return OS_OK;
3411   }
3412 
3413   errno = 0;
3414   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3415   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3416 }
3417 
3418 // Hint to the underlying OS that a task switch would not be good.
3419 // Void return because it's a hint and can fail.
3420 void os::hint_no_preempt() {}
3421 
3422 ////////////////////////////////////////////////////////////////////////////////
3423 // suspend/resume support
3424 
3425 //  the low-level signal-based suspend/resume support is a remnant from the
3426 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3427 //  within hotspot. Now there is a single use-case for this:
3428 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3429 //      that runs in the watcher thread.
3430 //  The remaining code is greatly simplified from the more general suspension
3431 //  code that used to be used.
3432 //
3433 //  The protocol is quite simple:
3434 //  - suspend:
3435 //      - sends a signal to the target thread
3436 //      - polls the suspend state of the osthread using a yield loop
3437 //      - target thread signal handler (SR_handler) sets suspend state
3438 //        and blocks in sigsuspend until continued
3439 //  - resume:
3440 //      - sets target osthread state to continue
3441 //      - sends signal to end the sigsuspend loop in the SR_handler
3442 //
3443 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3444 //
3445 
3446 static void resume_clear_context(OSThread *osthread) {
3447   osthread->set_ucontext(NULL);
3448   osthread->set_siginfo(NULL);
3449 
3450   // notify the suspend action is completed, we have now resumed
3451   osthread->sr.clear_suspended();
3452 }
3453 
3454 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3455   osthread->set_ucontext(context);
3456   osthread->set_siginfo(siginfo);
3457 }
3458 
3459 //
3460 // Handler function invoked when a thread's execution is suspended or
3461 // resumed. We have to be careful that only async-safe functions are
3462 // called here (Note: most pthread functions are not async safe and
3463 // should be avoided.)
3464 //
3465 // Note: sigwait() is a more natural fit than sigsuspend() from an
3466 // interface point of view, but sigwait() prevents the signal hander
3467 // from being run. libpthread would get very confused by not having
3468 // its signal handlers run and prevents sigwait()'s use with the
3469 // mutex granting granting signal.
3470 //
3471 // Currently only ever called on the VMThread
3472 //
3473 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3474   // Save and restore errno to avoid confusing native code with EINTR
3475   // after sigsuspend.
3476   int old_errno = errno;
3477 
3478   Thread* thread = Thread::current();
3479   OSThread* osthread = thread->osthread();
3480   assert(thread->is_VM_thread(), "Must be VMThread");
3481   // read current suspend action
3482   int action = osthread->sr.suspend_action();
3483   if (action == os::Linux::SuspendResume::SR_SUSPEND) {
3484     suspend_save_context(osthread, siginfo, context);
3485 
3486     // Notify the suspend action is about to be completed. do_suspend()
3487     // waits until SR_SUSPENDED is set and then returns. We will wait
3488     // here for a resume signal and that completes the suspend-other
3489     // action. do_suspend/do_resume is always called as a pair from
3490     // the same thread - so there are no races
3491 
3492     // notify the caller
3493     osthread->sr.set_suspended();
3494 
3495     sigset_t suspend_set;  // signals for sigsuspend()
3496 
3497     // get current set of blocked signals and unblock resume signal
3498     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3499     sigdelset(&suspend_set, SR_signum);
3500 
3501     // wait here until we are resumed
3502     do {
3503       sigsuspend(&suspend_set);
3504       // ignore all returns until we get a resume signal
3505     } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
3506 
3507     resume_clear_context(osthread);
3508 
3509   } else {
3510     assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
3511     // nothing special to do - just leave the handler
3512   }
3513 
3514   errno = old_errno;
3515 }
3516 
3517 
3518 static int SR_initialize() {
3519   struct sigaction act;
3520   char *s;
3521   /* Get signal number to use for suspend/resume */
3522   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3523     int sig = ::strtol(s, 0, 10);
3524     if (sig > 0 || sig < _NSIG) {
3525         SR_signum = sig;
3526     }
3527   }
3528 
3529   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3530         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3531 
3532   sigemptyset(&SR_sigset);
3533   sigaddset(&SR_sigset, SR_signum);
3534 
3535   /* Set up signal handler for suspend/resume */
3536   act.sa_flags = SA_RESTART|SA_SIGINFO;
3537   act.sa_handler = (void (*)(int)) SR_handler;
3538 
3539   // SR_signum is blocked by default.
3540   // 4528190 - We also need to block pthread restart signal (32 on all
3541   // supported Linux platforms). Note that LinuxThreads need to block
3542   // this signal for all threads to work properly. So we don't have
3543   // to use hard-coded signal number when setting up the mask.
3544   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3545 
3546   if (sigaction(SR_signum, &act, 0) == -1) {
3547     return -1;
3548   }
3549 
3550   // Save signal flag
3551   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3552   return 0;
3553 }
3554 
3555 static int SR_finalize() {
3556   return 0;
3557 }
3558 
3559 
3560 // returns true on success and false on error - really an error is fatal
3561 // but this seems the normal response to library errors
3562 static bool do_suspend(OSThread* osthread) {
3563   // mark as suspended and send signal
3564   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
3565   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3566   assert_status(status == 0, status, "pthread_kill");
3567 
3568   // check status and wait until notified of suspension
3569   if (status == 0) {
3570     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3571       os::yield_all(i);
3572     }
3573     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3574     return true;
3575   }
3576   else {
3577     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3578     return false;
3579   }
3580 }
3581 
3582 static void do_resume(OSThread* osthread) {
3583   assert(osthread->sr.is_suspended(), "thread should be suspended");
3584   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
3585 
3586   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3587   assert_status(status == 0, status, "pthread_kill");
3588   // check status and wait unit notified of resumption
3589   if (status == 0) {
3590     for (int i = 0; osthread->sr.is_suspended(); i++) {
3591       os::yield_all(i);
3592     }
3593   }
3594   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3595 }
3596 
3597 ////////////////////////////////////////////////////////////////////////////////
3598 // interrupt support
3599 
3600 void os::interrupt(Thread* thread) {
3601   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3602     "possibility of dangling Thread pointer");
3603 
3604   OSThread* osthread = thread->osthread();
3605 
3606   if (!osthread->interrupted()) {
3607     osthread->set_interrupted(true);
3608     // More than one thread can get here with the same value of osthread,
3609     // resulting in multiple notifications.  We do, however, want the store
3610     // to interrupted() to be visible to other threads before we execute unpark().
3611     OrderAccess::fence();
3612     ParkEvent * const slp = thread->_SleepEvent ;
3613     if (slp != NULL) slp->unpark() ;
3614   }
3615 
3616   // For JSR166. Unpark even if interrupt status already was set
3617   if (thread->is_Java_thread())
3618     ((JavaThread*)thread)->parker()->unpark();
3619 
3620   ParkEvent * ev = thread->_ParkEvent ;
3621   if (ev != NULL) ev->unpark() ;
3622 
3623 }
3624 
3625 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3626   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3627     "possibility of dangling Thread pointer");
3628 
3629   OSThread* osthread = thread->osthread();
3630 
3631   bool interrupted = osthread->interrupted();
3632 
3633   if (interrupted && clear_interrupted) {
3634     osthread->set_interrupted(false);
3635     // consider thread->_SleepEvent->reset() ... optional optimization
3636   }
3637 
3638   return interrupted;
3639 }
3640 
3641 ///////////////////////////////////////////////////////////////////////////////////
3642 // signal handling (except suspend/resume)
3643 
3644 // This routine may be used by user applications as a "hook" to catch signals.
3645 // The user-defined signal handler must pass unrecognized signals to this
3646 // routine, and if it returns true (non-zero), then the signal handler must
3647 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3648 // routine will never retun false (zero), but instead will execute a VM panic
3649 // routine kill the process.
3650 //
3651 // If this routine returns false, it is OK to call it again.  This allows
3652 // the user-defined signal handler to perform checks either before or after
3653 // the VM performs its own checks.  Naturally, the user code would be making
3654 // a serious error if it tried to handle an exception (such as a null check
3655 // or breakpoint) that the VM was generating for its own correct operation.
3656 //
3657 // This routine may recognize any of the following kinds of signals:
3658 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3659 // It should be consulted by handlers for any of those signals.
3660 //
3661 // The caller of this routine must pass in the three arguments supplied
3662 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3663 // field of the structure passed to sigaction().  This routine assumes that
3664 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3665 //
3666 // Note that the VM will print warnings if it detects conflicting signal
3667 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3668 //
3669 extern "C" JNIEXPORT int
3670 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3671                         void* ucontext, int abort_if_unrecognized);
3672 
3673 void signalHandler(int sig, siginfo_t* info, void* uc) {
3674   assert(info != NULL && uc != NULL, "it must be old kernel");
3675   int orig_errno = errno;  // Preserve errno value over signal handler.
3676   JVM_handle_linux_signal(sig, info, uc, true);
3677   errno = orig_errno;
3678 }
3679 
3680 
3681 // This boolean allows users to forward their own non-matching signals
3682 // to JVM_handle_linux_signal, harmlessly.
3683 bool os::Linux::signal_handlers_are_installed = false;
3684 
3685 // For signal-chaining
3686 struct sigaction os::Linux::sigact[MAXSIGNUM];
3687 unsigned int os::Linux::sigs = 0;
3688 bool os::Linux::libjsig_is_loaded = false;
3689 typedef struct sigaction *(*get_signal_t)(int);
3690 get_signal_t os::Linux::get_signal_action = NULL;
3691 
3692 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3693   struct sigaction *actp = NULL;
3694 
3695   if (libjsig_is_loaded) {
3696     // Retrieve the old signal handler from libjsig
3697     actp = (*get_signal_action)(sig);
3698   }
3699   if (actp == NULL) {
3700     // Retrieve the preinstalled signal handler from jvm
3701     actp = get_preinstalled_handler(sig);
3702   }
3703 
3704   return actp;
3705 }
3706 
3707 static bool call_chained_handler(struct sigaction *actp, int sig,
3708                                  siginfo_t *siginfo, void *context) {
3709   // Call the old signal handler
3710   if (actp->sa_handler == SIG_DFL) {
3711     // It's more reasonable to let jvm treat it as an unexpected exception
3712     // instead of taking the default action.
3713     return false;
3714   } else if (actp->sa_handler != SIG_IGN) {
3715     if ((actp->sa_flags & SA_NODEFER) == 0) {
3716       // automaticlly block the signal
3717       sigaddset(&(actp->sa_mask), sig);
3718     }
3719 
3720     sa_handler_t hand;
3721     sa_sigaction_t sa;
3722     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3723     // retrieve the chained handler
3724     if (siginfo_flag_set) {
3725       sa = actp->sa_sigaction;
3726     } else {
3727       hand = actp->sa_handler;
3728     }
3729 
3730     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3731       actp->sa_handler = SIG_DFL;
3732     }
3733 
3734     // try to honor the signal mask
3735     sigset_t oset;
3736     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3737 
3738     // call into the chained handler
3739     if (siginfo_flag_set) {
3740       (*sa)(sig, siginfo, context);
3741     } else {
3742       (*hand)(sig);
3743     }
3744 
3745     // restore the signal mask
3746     pthread_sigmask(SIG_SETMASK, &oset, 0);
3747   }
3748   // Tell jvm's signal handler the signal is taken care of.
3749   return true;
3750 }
3751 
3752 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3753   bool chained = false;
3754   // signal-chaining
3755   if (UseSignalChaining) {
3756     struct sigaction *actp = get_chained_signal_action(sig);
3757     if (actp != NULL) {
3758       chained = call_chained_handler(actp, sig, siginfo, context);
3759     }
3760   }
3761   return chained;
3762 }
3763 
3764 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3765   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3766     return &sigact[sig];
3767   }
3768   return NULL;
3769 }
3770 
3771 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3772   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3773   sigact[sig] = oldAct;
3774   sigs |= (unsigned int)1 << sig;
3775 }
3776 
3777 // for diagnostic
3778 int os::Linux::sigflags[MAXSIGNUM];
3779 
3780 int os::Linux::get_our_sigflags(int sig) {
3781   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3782   return sigflags[sig];
3783 }
3784 
3785 void os::Linux::set_our_sigflags(int sig, int flags) {
3786   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3787   sigflags[sig] = flags;
3788 }
3789 
3790 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3791   // Check for overwrite.
3792   struct sigaction oldAct;
3793   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3794 
3795   void* oldhand = oldAct.sa_sigaction
3796                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3797                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3798   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3799       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3800       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3801     if (AllowUserSignalHandlers || !set_installed) {
3802       // Do not overwrite; user takes responsibility to forward to us.
3803       return;
3804     } else if (UseSignalChaining) {
3805       // save the old handler in jvm
3806       save_preinstalled_handler(sig, oldAct);
3807       // libjsig also interposes the sigaction() call below and saves the
3808       // old sigaction on it own.
3809     } else {
3810       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3811                     "%#lx for signal %d.", (long)oldhand, sig));
3812     }
3813   }
3814 
3815   struct sigaction sigAct;
3816   sigfillset(&(sigAct.sa_mask));
3817   sigAct.sa_handler = SIG_DFL;
3818   if (!set_installed) {
3819     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3820   } else {
3821     sigAct.sa_sigaction = signalHandler;
3822     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3823   }
3824   // Save flags, which are set by ours
3825   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3826   sigflags[sig] = sigAct.sa_flags;
3827 
3828   int ret = sigaction(sig, &sigAct, &oldAct);
3829   assert(ret == 0, "check");
3830 
3831   void* oldhand2  = oldAct.sa_sigaction
3832                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3833                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3834   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3835 }
3836 
3837 // install signal handlers for signals that HotSpot needs to
3838 // handle in order to support Java-level exception handling.
3839 
3840 void os::Linux::install_signal_handlers() {
3841   if (!signal_handlers_are_installed) {
3842     signal_handlers_are_installed = true;
3843 
3844     // signal-chaining
3845     typedef void (*signal_setting_t)();
3846     signal_setting_t begin_signal_setting = NULL;
3847     signal_setting_t end_signal_setting = NULL;
3848     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3849                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3850     if (begin_signal_setting != NULL) {
3851       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3852                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3853       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3854                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3855       libjsig_is_loaded = true;
3856       assert(UseSignalChaining, "should enable signal-chaining");
3857     }
3858     if (libjsig_is_loaded) {
3859       // Tell libjsig jvm is setting signal handlers
3860       (*begin_signal_setting)();
3861     }
3862 
3863     set_signal_handler(SIGSEGV, true);
3864     set_signal_handler(SIGPIPE, true);
3865     set_signal_handler(SIGBUS, true);
3866     set_signal_handler(SIGILL, true);
3867     set_signal_handler(SIGFPE, true);
3868     set_signal_handler(SIGXFSZ, true);
3869 
3870     if (libjsig_is_loaded) {
3871       // Tell libjsig jvm finishes setting signal handlers
3872       (*end_signal_setting)();
3873     }
3874 
3875     // We don't activate signal checker if libjsig is in place, we trust ourselves
3876     // and if UserSignalHandler is installed all bets are off.
3877     // Log that signal checking is off only if -verbose:jni is specified.
3878     if (CheckJNICalls) {
3879       if (libjsig_is_loaded) {
3880         if (PrintJNIResolving) {
3881           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3882         }
3883         check_signals = false;
3884       }
3885       if (AllowUserSignalHandlers) {
3886         if (PrintJNIResolving) {
3887           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3888         }
3889         check_signals = false;
3890       }
3891     }
3892   }
3893 }
3894 
3895 // This is the fastest way to get thread cpu time on Linux.
3896 // Returns cpu time (user+sys) for any thread, not only for current.
3897 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3898 // It might work on 2.6.10+ with a special kernel/glibc patch.
3899 // For reference, please, see IEEE Std 1003.1-2004:
3900 //   http://www.unix.org/single_unix_specification
3901 
3902 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
3903   struct timespec tp;
3904   int rc = os::Linux::clock_gettime(clockid, &tp);
3905   assert(rc == 0, "clock_gettime is expected to return 0 code");
3906 
3907   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
3908 }
3909 
3910 /////
3911 // glibc on Linux platform uses non-documented flag
3912 // to indicate, that some special sort of signal
3913 // trampoline is used.
3914 // We will never set this flag, and we should
3915 // ignore this flag in our diagnostic
3916 #ifdef SIGNIFICANT_SIGNAL_MASK
3917 #undef SIGNIFICANT_SIGNAL_MASK
3918 #endif
3919 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
3920 
3921 static const char* get_signal_handler_name(address handler,
3922                                            char* buf, int buflen) {
3923   int offset;
3924   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
3925   if (found) {
3926     // skip directory names
3927     const char *p1, *p2;
3928     p1 = buf;
3929     size_t len = strlen(os::file_separator());
3930     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
3931     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
3932   } else {
3933     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
3934   }
3935   return buf;
3936 }
3937 
3938 static void print_signal_handler(outputStream* st, int sig,
3939                                  char* buf, size_t buflen) {
3940   struct sigaction sa;
3941 
3942   sigaction(sig, NULL, &sa);
3943 
3944   // See comment for SIGNIFICANT_SIGNAL_MASK define
3945   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
3946 
3947   st->print("%s: ", os::exception_name(sig, buf, buflen));
3948 
3949   address handler = (sa.sa_flags & SA_SIGINFO)
3950     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
3951     : CAST_FROM_FN_PTR(address, sa.sa_handler);
3952 
3953   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
3954     st->print("SIG_DFL");
3955   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
3956     st->print("SIG_IGN");
3957   } else {
3958     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
3959   }
3960 
3961   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
3962 
3963   address rh = VMError::get_resetted_sighandler(sig);
3964   // May be, handler was resetted by VMError?
3965   if(rh != NULL) {
3966     handler = rh;
3967     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
3968   }
3969 
3970   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
3971 
3972   // Check: is it our handler?
3973   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
3974      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
3975     // It is our signal handler
3976     // check for flags, reset system-used one!
3977     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
3978       st->print(
3979                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
3980                 os::Linux::get_our_sigflags(sig));
3981     }
3982   }
3983   st->cr();
3984 }
3985 
3986 
3987 #define DO_SIGNAL_CHECK(sig) \
3988   if (!sigismember(&check_signal_done, sig)) \
3989     os::Linux::check_signal_handler(sig)
3990 
3991 // This method is a periodic task to check for misbehaving JNI applications
3992 // under CheckJNI, we can add any periodic checks here
3993 
3994 void os::run_periodic_checks() {
3995 
3996   if (check_signals == false) return;
3997 
3998   // SEGV and BUS if overridden could potentially prevent
3999   // generation of hs*.log in the event of a crash, debugging
4000   // such a case can be very challenging, so we absolutely
4001   // check the following for a good measure:
4002   DO_SIGNAL_CHECK(SIGSEGV);
4003   DO_SIGNAL_CHECK(SIGILL);
4004   DO_SIGNAL_CHECK(SIGFPE);
4005   DO_SIGNAL_CHECK(SIGBUS);
4006   DO_SIGNAL_CHECK(SIGPIPE);
4007   DO_SIGNAL_CHECK(SIGXFSZ);
4008 
4009 
4010   // ReduceSignalUsage allows the user to override these handlers
4011   // see comments at the very top and jvm_solaris.h
4012   if (!ReduceSignalUsage) {
4013     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4014     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4015     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4016     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4017   }
4018 
4019   DO_SIGNAL_CHECK(SR_signum);
4020   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4021 }
4022 
4023 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4024 
4025 static os_sigaction_t os_sigaction = NULL;
4026 
4027 void os::Linux::check_signal_handler(int sig) {
4028   char buf[O_BUFLEN];
4029   address jvmHandler = NULL;
4030 
4031 
4032   struct sigaction act;
4033   if (os_sigaction == NULL) {
4034     // only trust the default sigaction, in case it has been interposed
4035     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4036     if (os_sigaction == NULL) return;
4037   }
4038 
4039   os_sigaction(sig, (struct sigaction*)NULL, &act);
4040 
4041 
4042   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4043 
4044   address thisHandler = (act.sa_flags & SA_SIGINFO)
4045     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4046     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4047 
4048 
4049   switch(sig) {
4050   case SIGSEGV:
4051   case SIGBUS:
4052   case SIGFPE:
4053   case SIGPIPE:
4054   case SIGILL:
4055   case SIGXFSZ:
4056     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4057     break;
4058 
4059   case SHUTDOWN1_SIGNAL:
4060   case SHUTDOWN2_SIGNAL:
4061   case SHUTDOWN3_SIGNAL:
4062   case BREAK_SIGNAL:
4063     jvmHandler = (address)user_handler();
4064     break;
4065 
4066   case INTERRUPT_SIGNAL:
4067     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4068     break;
4069 
4070   default:
4071     if (sig == SR_signum) {
4072       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4073     } else {
4074       return;
4075     }
4076     break;
4077   }
4078 
4079   if (thisHandler != jvmHandler) {
4080     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4081     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4082     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4083     // No need to check this sig any longer
4084     sigaddset(&check_signal_done, sig);
4085   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4086     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4087     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4088     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4089     // No need to check this sig any longer
4090     sigaddset(&check_signal_done, sig);
4091   }
4092 
4093   // Dump all the signal
4094   if (sigismember(&check_signal_done, sig)) {
4095     print_signal_handlers(tty, buf, O_BUFLEN);
4096   }
4097 }
4098 
4099 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4100 
4101 extern bool signal_name(int signo, char* buf, size_t len);
4102 
4103 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4104   if (0 < exception_code && exception_code <= SIGRTMAX) {
4105     // signal
4106     if (!signal_name(exception_code, buf, size)) {
4107       jio_snprintf(buf, size, "SIG%d", exception_code);
4108     }
4109     return buf;
4110   } else {
4111     return NULL;
4112   }
4113 }
4114 
4115 // this is called _before_ the most of global arguments have been parsed
4116 void os::init(void) {
4117   char dummy;   /* used to get a guess on initial stack address */
4118 //  first_hrtime = gethrtime();
4119 
4120   // With LinuxThreads the JavaMain thread pid (primordial thread)
4121   // is different than the pid of the java launcher thread.
4122   // So, on Linux, the launcher thread pid is passed to the VM
4123   // via the sun.java.launcher.pid property.
4124   // Use this property instead of getpid() if it was correctly passed.
4125   // See bug 6351349.
4126   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4127 
4128   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4129 
4130   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4131 
4132   init_random(1234567);
4133 
4134   ThreadCritical::initialize();
4135 
4136   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4137   if (Linux::page_size() == -1) {
4138     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4139                   strerror(errno)));
4140   }
4141   init_page_sizes((size_t) Linux::page_size());
4142 
4143   Linux::initialize_system_info();
4144 
4145   // main_thread points to the aboriginal thread
4146   Linux::_main_thread = pthread_self();
4147 
4148   Linux::clock_init();
4149   initial_time_count = os::elapsed_counter();
4150   pthread_mutex_init(&dl_mutex, NULL);
4151 }
4152 
4153 // To install functions for atexit system call
4154 extern "C" {
4155   static void perfMemory_exit_helper() {
4156     perfMemory_exit();
4157   }
4158 }
4159 
4160 // this is called _after_ the global arguments have been parsed
4161 jint os::init_2(void)
4162 {
4163   Linux::fast_thread_clock_init();
4164 
4165   // Allocate a single page and mark it as readable for safepoint polling
4166   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4167   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4168 
4169   os::set_polling_page( polling_page );
4170 
4171 #ifndef PRODUCT
4172   if(Verbose && PrintMiscellaneous)
4173     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4174 #endif
4175 
4176   if (!UseMembar) {
4177     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4178     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4179     os::set_memory_serialize_page( mem_serialize_page );
4180 
4181 #ifndef PRODUCT
4182     if(Verbose && PrintMiscellaneous)
4183       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4184 #endif
4185   }
4186 
4187   os::large_page_init();
4188 
4189   // initialize suspend/resume support - must do this before signal_sets_init()
4190   if (SR_initialize() != 0) {
4191     perror("SR_initialize failed");
4192     return JNI_ERR;
4193   }
4194 
4195   Linux::signal_sets_init();
4196   Linux::install_signal_handlers();
4197 
4198   // Check minimum allowable stack size for thread creation and to initialize
4199   // the java system classes, including StackOverflowError - depends on page
4200   // size.  Add a page for compiler2 recursion in main thread.
4201   // Add in 2*BytesPerWord times page size to account for VM stack during
4202   // class initialization depending on 32 or 64 bit VM.
4203   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4204             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
4205                     2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::page_size());
4206 
4207   size_t threadStackSizeInBytes = ThreadStackSize * K;
4208   if (threadStackSizeInBytes != 0 &&
4209       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4210         tty->print_cr("\nThe stack size specified is too small, "
4211                       "Specify at least %dk",
4212                       os::Linux::min_stack_allowed/ K);
4213         return JNI_ERR;
4214   }
4215 
4216   // Make the stack size a multiple of the page size so that
4217   // the yellow/red zones can be guarded.
4218   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4219         vm_page_size()));
4220 
4221   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4222 
4223   Linux::libpthread_init();
4224   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4225      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4226           Linux::glibc_version(), Linux::libpthread_version(),
4227           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4228   }
4229 
4230   if (UseNUMA) {
4231     if (!Linux::libnuma_init()) {
4232       UseNUMA = false;
4233     } else {
4234       if ((Linux::numa_max_node() < 1)) {
4235         // There's only one node(they start from 0), disable NUMA.
4236         UseNUMA = false;
4237       }
4238     }
4239     // With SHM large pages we cannot uncommit a page, so there's not way
4240     // we can make the adaptive lgrp chunk resizing work. If the user specified
4241     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4242     // disable adaptive resizing.
4243     if (UseNUMA && UseLargePages && UseSHM) {
4244       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4245         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4246           UseLargePages = false;
4247         } else {
4248           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4249           UseAdaptiveSizePolicy = false;
4250           UseAdaptiveNUMAChunkSizing = false;
4251         }
4252       } else {
4253         UseNUMA = false;
4254       }
4255     }
4256     if (!UseNUMA && ForceNUMA) {
4257       UseNUMA = true;
4258     }
4259   }
4260 
4261   if (MaxFDLimit) {
4262     // set the number of file descriptors to max. print out error
4263     // if getrlimit/setrlimit fails but continue regardless.
4264     struct rlimit nbr_files;
4265     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4266     if (status != 0) {
4267       if (PrintMiscellaneous && (Verbose || WizardMode))
4268         perror("os::init_2 getrlimit failed");
4269     } else {
4270       nbr_files.rlim_cur = nbr_files.rlim_max;
4271       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4272       if (status != 0) {
4273         if (PrintMiscellaneous && (Verbose || WizardMode))
4274           perror("os::init_2 setrlimit failed");
4275       }
4276     }
4277   }
4278 
4279   // Initialize lock used to serialize thread creation (see os::create_thread)
4280   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4281 
4282   // at-exit methods are called in the reverse order of their registration.
4283   // atexit functions are called on return from main or as a result of a
4284   // call to exit(3C). There can be only 32 of these functions registered
4285   // and atexit() does not set errno.
4286 
4287   if (PerfAllowAtExitRegistration) {
4288     // only register atexit functions if PerfAllowAtExitRegistration is set.
4289     // atexit functions can be delayed until process exit time, which
4290     // can be problematic for embedded VM situations. Embedded VMs should
4291     // call DestroyJavaVM() to assure that VM resources are released.
4292 
4293     // note: perfMemory_exit_helper atexit function may be removed in
4294     // the future if the appropriate cleanup code can be added to the
4295     // VM_Exit VMOperation's doit method.
4296     if (atexit(perfMemory_exit_helper) != 0) {
4297       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4298     }
4299   }
4300 
4301   // initialize thread priority policy
4302   prio_init();
4303 
4304   return JNI_OK;
4305 }
4306 
4307 // this is called at the end of vm_initialization
4308 void os::init_3(void)
4309 {
4310 #ifdef JAVASE_EMBEDDED
4311   // Start the MemNotifyThread
4312   if (LowMemoryProtection) {
4313     MemNotifyThread::start();
4314   }
4315   return;
4316 #endif
4317 }
4318 
4319 // Mark the polling page as unreadable
4320 void os::make_polling_page_unreadable(void) {
4321   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4322     fatal("Could not disable polling page");
4323 };
4324 
4325 // Mark the polling page as readable
4326 void os::make_polling_page_readable(void) {
4327   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4328     fatal("Could not enable polling page");
4329   }
4330 };
4331 
4332 int os::active_processor_count() {
4333   // Linux doesn't yet have a (official) notion of processor sets,
4334   // so just return the number of online processors.
4335   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4336   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4337   return online_cpus;
4338 }
4339 
4340 void os::set_native_thread_name(const char *name) {
4341   // Not yet implemented.
4342   return;
4343 }
4344 
4345 bool os::distribute_processes(uint length, uint* distribution) {
4346   // Not yet implemented.
4347   return false;
4348 }
4349 
4350 bool os::bind_to_processor(uint processor_id) {
4351   // Not yet implemented.
4352   return false;
4353 }
4354 
4355 ///
4356 
4357 // Suspends the target using the signal mechanism and then grabs the PC before
4358 // resuming the target. Used by the flat-profiler only
4359 ExtendedPC os::get_thread_pc(Thread* thread) {
4360   // Make sure that it is called by the watcher for the VMThread
4361   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4362   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4363 
4364   ExtendedPC epc;
4365 
4366   OSThread* osthread = thread->osthread();
4367   if (do_suspend(osthread)) {
4368     if (osthread->ucontext() != NULL) {
4369       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4370     } else {
4371       // NULL context is unexpected, double-check this is the VMThread
4372       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4373     }
4374     do_resume(osthread);
4375   }
4376   // failure means pthread_kill failed for some reason - arguably this is
4377   // a fatal problem, but such problems are ignored elsewhere
4378 
4379   return epc;
4380 }
4381 
4382 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4383 {
4384    if (is_NPTL()) {
4385       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4386    } else {
4387       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4388       // word back to default 64bit precision if condvar is signaled. Java
4389       // wants 53bit precision.  Save and restore current value.
4390       int fpu = get_fpu_control_word();
4391       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4392       set_fpu_control_word(fpu);
4393       return status;
4394    }
4395 }
4396 
4397 ////////////////////////////////////////////////////////////////////////////////
4398 // debug support
4399 
4400 static address same_page(address x, address y) {
4401   int page_bits = -os::vm_page_size();
4402   if ((intptr_t(x) & page_bits) == (intptr_t(y) & page_bits))
4403     return x;
4404   else if (x > y)
4405     return (address)(intptr_t(y) | ~page_bits) + 1;
4406   else
4407     return (address)(intptr_t(y) & page_bits);
4408 }
4409 
4410 bool os::find(address addr, outputStream* st) {
4411   Dl_info dlinfo;
4412   memset(&dlinfo, 0, sizeof(dlinfo));
4413   if (dladdr(addr, &dlinfo)) {
4414     st->print(PTR_FORMAT ": ", addr);
4415     if (dlinfo.dli_sname != NULL) {
4416       st->print("%s+%#x", dlinfo.dli_sname,
4417                  addr - (intptr_t)dlinfo.dli_saddr);
4418     } else if (dlinfo.dli_fname) {
4419       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4420     } else {
4421       st->print("<absolute address>");
4422     }
4423     if (dlinfo.dli_fname) {
4424       st->print(" in %s", dlinfo.dli_fname);
4425     }
4426     if (dlinfo.dli_fbase) {
4427       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4428     }
4429     st->cr();
4430 
4431     if (Verbose) {
4432       // decode some bytes around the PC
4433       address begin = same_page(addr-40, addr);
4434       address end   = same_page(addr+40, addr);
4435       address       lowest = (address) dlinfo.dli_sname;
4436       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4437       if (begin < lowest)  begin = lowest;
4438       Dl_info dlinfo2;
4439       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4440           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4441         end = (address) dlinfo2.dli_saddr;
4442       Disassembler::decode(begin, end, st);
4443     }
4444     return true;
4445   }
4446   return false;
4447 }
4448 
4449 ////////////////////////////////////////////////////////////////////////////////
4450 // misc
4451 
4452 // This does not do anything on Linux. This is basically a hook for being
4453 // able to use structured exception handling (thread-local exception filters)
4454 // on, e.g., Win32.
4455 void
4456 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4457                          JavaCallArguments* args, Thread* thread) {
4458   f(value, method, args, thread);
4459 }
4460 
4461 void os::print_statistics() {
4462 }
4463 
4464 int os::message_box(const char* title, const char* message) {
4465   int i;
4466   fdStream err(defaultStream::error_fd());
4467   for (i = 0; i < 78; i++) err.print_raw("=");
4468   err.cr();
4469   err.print_raw_cr(title);
4470   for (i = 0; i < 78; i++) err.print_raw("-");
4471   err.cr();
4472   err.print_raw_cr(message);
4473   for (i = 0; i < 78; i++) err.print_raw("=");
4474   err.cr();
4475 
4476   char buf[16];
4477   // Prevent process from exiting upon "read error" without consuming all CPU
4478   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4479 
4480   return buf[0] == 'y' || buf[0] == 'Y';
4481 }
4482 
4483 int os::stat(const char *path, struct stat *sbuf) {
4484   char pathbuf[MAX_PATH];
4485   if (strlen(path) > MAX_PATH - 1) {
4486     errno = ENAMETOOLONG;
4487     return -1;
4488   }
4489   os::native_path(strcpy(pathbuf, path));
4490   return ::stat(pathbuf, sbuf);
4491 }
4492 
4493 bool os::check_heap(bool force) {
4494   return true;
4495 }
4496 
4497 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4498   return ::vsnprintf(buf, count, format, args);
4499 }
4500 
4501 // Is a (classpath) directory empty?
4502 bool os::dir_is_empty(const char* path) {
4503   DIR *dir = NULL;
4504   struct dirent *ptr;
4505 
4506   dir = opendir(path);
4507   if (dir == NULL) return true;
4508 
4509   /* Scan the directory */
4510   bool result = true;
4511   char buf[sizeof(struct dirent) + MAX_PATH];
4512   while (result && (ptr = ::readdir(dir)) != NULL) {
4513     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4514       result = false;
4515     }
4516   }
4517   closedir(dir);
4518   return result;
4519 }
4520 
4521 // This code originates from JDK's sysOpen and open64_w
4522 // from src/solaris/hpi/src/system_md.c
4523 
4524 #ifndef O_DELETE
4525 #define O_DELETE 0x10000
4526 #endif
4527 
4528 // Open a file. Unlink the file immediately after open returns
4529 // if the specified oflag has the O_DELETE flag set.
4530 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4531 
4532 int os::open(const char *path, int oflag, int mode) {
4533 
4534   if (strlen(path) > MAX_PATH - 1) {
4535     errno = ENAMETOOLONG;
4536     return -1;
4537   }
4538   int fd;
4539   int o_delete = (oflag & O_DELETE);
4540   oflag = oflag & ~O_DELETE;
4541 
4542   fd = ::open64(path, oflag, mode);
4543   if (fd == -1) return -1;
4544 
4545   //If the open succeeded, the file might still be a directory
4546   {
4547     struct stat64 buf64;
4548     int ret = ::fstat64(fd, &buf64);
4549     int st_mode = buf64.st_mode;
4550 
4551     if (ret != -1) {
4552       if ((st_mode & S_IFMT) == S_IFDIR) {
4553         errno = EISDIR;
4554         ::close(fd);
4555         return -1;
4556       }
4557     } else {
4558       ::close(fd);
4559       return -1;
4560     }
4561   }
4562 
4563     /*
4564      * All file descriptors that are opened in the JVM and not
4565      * specifically destined for a subprocess should have the
4566      * close-on-exec flag set.  If we don't set it, then careless 3rd
4567      * party native code might fork and exec without closing all
4568      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4569      * UNIXProcess.c), and this in turn might:
4570      *
4571      * - cause end-of-file to fail to be detected on some file
4572      *   descriptors, resulting in mysterious hangs, or
4573      *
4574      * - might cause an fopen in the subprocess to fail on a system
4575      *   suffering from bug 1085341.
4576      *
4577      * (Yes, the default setting of the close-on-exec flag is a Unix
4578      * design flaw)
4579      *
4580      * See:
4581      * 1085341: 32-bit stdio routines should support file descriptors >255
4582      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4583      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4584      */
4585 #ifdef FD_CLOEXEC
4586     {
4587         int flags = ::fcntl(fd, F_GETFD);
4588         if (flags != -1)
4589             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4590     }
4591 #endif
4592 
4593   if (o_delete != 0) {
4594     ::unlink(path);
4595   }
4596   return fd;
4597 }
4598 
4599 
4600 // create binary file, rewriting existing file if required
4601 int os::create_binary_file(const char* path, bool rewrite_existing) {
4602   int oflags = O_WRONLY | O_CREAT;
4603   if (!rewrite_existing) {
4604     oflags |= O_EXCL;
4605   }
4606   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4607 }
4608 
4609 // return current position of file pointer
4610 jlong os::current_file_offset(int fd) {
4611   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4612 }
4613 
4614 // move file pointer to the specified offset
4615 jlong os::seek_to_file_offset(int fd, jlong offset) {
4616   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4617 }
4618 
4619 // This code originates from JDK's sysAvailable
4620 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4621 
4622 int os::available(int fd, jlong *bytes) {
4623   jlong cur, end;
4624   int mode;
4625   struct stat64 buf64;
4626 
4627   if (::fstat64(fd, &buf64) >= 0) {
4628     mode = buf64.st_mode;
4629     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4630       /*
4631       * XXX: is the following call interruptible? If so, this might
4632       * need to go through the INTERRUPT_IO() wrapper as for other
4633       * blocking, interruptible calls in this file.
4634       */
4635       int n;
4636       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4637         *bytes = n;
4638         return 1;
4639       }
4640     }
4641   }
4642   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4643     return 0;
4644   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4645     return 0;
4646   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4647     return 0;
4648   }
4649   *bytes = end - cur;
4650   return 1;
4651 }
4652 
4653 int os::socket_available(int fd, jint *pbytes) {
4654   // Linux doc says EINTR not returned, unlike Solaris
4655   int ret = ::ioctl(fd, FIONREAD, pbytes);
4656 
4657   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4658   // is expected to return 0 on failure and 1 on success to the jdk.
4659   return (ret < 0) ? 0 : 1;
4660 }
4661 
4662 // Map a block of memory.
4663 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4664                      char *addr, size_t bytes, bool read_only,
4665                      bool allow_exec) {
4666   int prot;
4667   int flags = MAP_PRIVATE;
4668 
4669   if (read_only) {
4670     prot = PROT_READ;
4671   } else {
4672     prot = PROT_READ | PROT_WRITE;
4673   }
4674 
4675   if (allow_exec) {
4676     prot |= PROT_EXEC;
4677   }
4678 
4679   if (addr != NULL) {
4680     flags |= MAP_FIXED;
4681   }
4682 
4683   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4684                                      fd, file_offset);
4685   if (mapped_address == MAP_FAILED) {
4686     return NULL;
4687   }
4688   return mapped_address;
4689 }
4690 
4691 
4692 // Remap a block of memory.
4693 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4694                        char *addr, size_t bytes, bool read_only,
4695                        bool allow_exec) {
4696   // same as map_memory() on this OS
4697   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4698                         allow_exec);
4699 }
4700 
4701 
4702 // Unmap a block of memory.
4703 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4704   return munmap(addr, bytes) == 0;
4705 }
4706 
4707 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4708 
4709 static clockid_t thread_cpu_clockid(Thread* thread) {
4710   pthread_t tid = thread->osthread()->pthread_id();
4711   clockid_t clockid;
4712 
4713   // Get thread clockid
4714   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4715   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4716   return clockid;
4717 }
4718 
4719 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4720 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4721 // of a thread.
4722 //
4723 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4724 // the fast estimate available on the platform.
4725 
4726 jlong os::current_thread_cpu_time() {
4727   if (os::Linux::supports_fast_thread_cpu_time()) {
4728     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4729   } else {
4730     // return user + sys since the cost is the same
4731     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4732   }
4733 }
4734 
4735 jlong os::thread_cpu_time(Thread* thread) {
4736   // consistent with what current_thread_cpu_time() returns
4737   if (os::Linux::supports_fast_thread_cpu_time()) {
4738     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4739   } else {
4740     return slow_thread_cpu_time(thread, true /* user + sys */);
4741   }
4742 }
4743 
4744 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4745   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4746     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4747   } else {
4748     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4749   }
4750 }
4751 
4752 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4753   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4754     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4755   } else {
4756     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4757   }
4758 }
4759 
4760 //
4761 //  -1 on error.
4762 //
4763 
4764 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4765   static bool proc_task_unchecked = true;
4766   static const char *proc_stat_path = "/proc/%d/stat";
4767   pid_t  tid = thread->osthread()->thread_id();
4768   char *s;
4769   char stat[2048];
4770   int statlen;
4771   char proc_name[64];
4772   int count;
4773   long sys_time, user_time;
4774   char cdummy;
4775   int idummy;
4776   long ldummy;
4777   FILE *fp;
4778 
4779   // The /proc/<tid>/stat aggregates per-process usage on
4780   // new Linux kernels 2.6+ where NPTL is supported.
4781   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4782   // See bug 6328462.
4783   // There possibly can be cases where there is no directory
4784   // /proc/self/task, so we check its availability.
4785   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4786     // This is executed only once
4787     proc_task_unchecked = false;
4788     fp = fopen("/proc/self/task", "r");
4789     if (fp != NULL) {
4790       proc_stat_path = "/proc/self/task/%d/stat";
4791       fclose(fp);
4792     }
4793   }
4794 
4795   sprintf(proc_name, proc_stat_path, tid);
4796   fp = fopen(proc_name, "r");
4797   if ( fp == NULL ) return -1;
4798   statlen = fread(stat, 1, 2047, fp);
4799   stat[statlen] = '\0';
4800   fclose(fp);
4801 
4802   // Skip pid and the command string. Note that we could be dealing with
4803   // weird command names, e.g. user could decide to rename java launcher
4804   // to "java 1.4.2 :)", then the stat file would look like
4805   //                1234 (java 1.4.2 :)) R ... ...
4806   // We don't really need to know the command string, just find the last
4807   // occurrence of ")" and then start parsing from there. See bug 4726580.
4808   s = strrchr(stat, ')');
4809   if (s == NULL ) return -1;
4810 
4811   // Skip blank chars
4812   do s++; while (isspace(*s));
4813 
4814   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4815                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4816                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4817                  &user_time, &sys_time);
4818   if ( count != 13 ) return -1;
4819   if (user_sys_cpu_time) {
4820     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4821   } else {
4822     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4823   }
4824 }
4825 
4826 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4827   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4828   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4829   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4830   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4831 }
4832 
4833 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4834   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4835   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4836   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4837   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4838 }
4839 
4840 bool os::is_thread_cpu_time_supported() {
4841   return true;
4842 }
4843 
4844 // System loadavg support.  Returns -1 if load average cannot be obtained.
4845 // Linux doesn't yet have a (official) notion of processor sets,
4846 // so just return the system wide load average.
4847 int os::loadavg(double loadavg[], int nelem) {
4848   return ::getloadavg(loadavg, nelem);
4849 }
4850 
4851 void os::pause() {
4852   char filename[MAX_PATH];
4853   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4854     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4855   } else {
4856     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4857   }
4858 
4859   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4860   if (fd != -1) {
4861     struct stat buf;
4862     ::close(fd);
4863     while (::stat(filename, &buf) == 0) {
4864       (void)::poll(NULL, 0, 100);
4865     }
4866   } else {
4867     jio_fprintf(stderr,
4868       "Could not open pause file '%s', continuing immediately.\n", filename);
4869   }
4870 }
4871 
4872 
4873 // Refer to the comments in os_solaris.cpp park-unpark.
4874 //
4875 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4876 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4877 // For specifics regarding the bug see GLIBC BUGID 261237 :
4878 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4879 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4880 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4881 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4882 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4883 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4884 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4885 // of libpthread avoids the problem, but isn't practical.
4886 //
4887 // Possible remedies:
4888 //
4889 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4890 //      This is palliative and probabilistic, however.  If the thread is preempted
4891 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4892 //      than the minimum period may have passed, and the abstime may be stale (in the
4893 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4894 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4895 //
4896 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4897 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4898 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4899 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4900 //      thread.
4901 //
4902 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
4903 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
4904 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
4905 //      This also works well.  In fact it avoids kernel-level scalability impediments
4906 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
4907 //      timers in a graceful fashion.
4908 //
4909 // 4.   When the abstime value is in the past it appears that control returns
4910 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
4911 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
4912 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
4913 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
4914 //      It may be possible to avoid reinitialization by checking the return
4915 //      value from pthread_cond_timedwait().  In addition to reinitializing the
4916 //      condvar we must establish the invariant that cond_signal() is only called
4917 //      within critical sections protected by the adjunct mutex.  This prevents
4918 //      cond_signal() from "seeing" a condvar that's in the midst of being
4919 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
4920 //      desirable signal-after-unlock optimization that avoids futile context switching.
4921 //
4922 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
4923 //      structure when a condvar is used or initialized.  cond_destroy()  would
4924 //      release the helper structure.  Our reinitialize-after-timedwait fix
4925 //      put excessive stress on malloc/free and locks protecting the c-heap.
4926 //
4927 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
4928 // It may be possible to refine (4) by checking the kernel and NTPL verisons
4929 // and only enabling the work-around for vulnerable environments.
4930 
4931 // utility to compute the abstime argument to timedwait:
4932 // millis is the relative timeout time
4933 // abstime will be the absolute timeout time
4934 // TODO: replace compute_abstime() with unpackTime()
4935 
4936 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
4937   if (millis < 0)  millis = 0;
4938   struct timeval now;
4939   int status = gettimeofday(&now, NULL);
4940   assert(status == 0, "gettimeofday");
4941   jlong seconds = millis / 1000;
4942   millis %= 1000;
4943   if (seconds > 50000000) { // see man cond_timedwait(3T)
4944     seconds = 50000000;
4945   }
4946   abstime->tv_sec = now.tv_sec  + seconds;
4947   long       usec = now.tv_usec + millis * 1000;
4948   if (usec >= 1000000) {
4949     abstime->tv_sec += 1;
4950     usec -= 1000000;
4951   }
4952   abstime->tv_nsec = usec * 1000;
4953   return abstime;
4954 }
4955 
4956 
4957 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
4958 // Conceptually TryPark() should be equivalent to park(0).
4959 
4960 int os::PlatformEvent::TryPark() {
4961   for (;;) {
4962     const int v = _Event ;
4963     guarantee ((v == 0) || (v == 1), "invariant") ;
4964     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
4965   }
4966 }
4967 
4968 void os::PlatformEvent::park() {       // AKA "down()"
4969   // Invariant: Only the thread associated with the Event/PlatformEvent
4970   // may call park().
4971   // TODO: assert that _Assoc != NULL or _Assoc == Self
4972   int v ;
4973   for (;;) {
4974       v = _Event ;
4975       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4976   }
4977   guarantee (v >= 0, "invariant") ;
4978   if (v == 0) {
4979      // Do this the hard way by blocking ...
4980      int status = pthread_mutex_lock(_mutex);
4981      assert_status(status == 0, status, "mutex_lock");
4982      guarantee (_nParked == 0, "invariant") ;
4983      ++ _nParked ;
4984      while (_Event < 0) {
4985         status = pthread_cond_wait(_cond, _mutex);
4986         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
4987         // Treat this the same as if the wait was interrupted
4988         if (status == ETIME) { status = EINTR; }
4989         assert_status(status == 0 || status == EINTR, status, "cond_wait");
4990      }
4991      -- _nParked ;
4992 
4993     _Event = 0 ;
4994      status = pthread_mutex_unlock(_mutex);
4995      assert_status(status == 0, status, "mutex_unlock");
4996     // Paranoia to ensure our locked and lock-free paths interact
4997     // correctly with each other.
4998     OrderAccess::fence();
4999   }
5000   guarantee (_Event >= 0, "invariant") ;
5001 }
5002 
5003 int os::PlatformEvent::park(jlong millis) {
5004   guarantee (_nParked == 0, "invariant") ;
5005 
5006   int v ;
5007   for (;;) {
5008       v = _Event ;
5009       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5010   }
5011   guarantee (v >= 0, "invariant") ;
5012   if (v != 0) return OS_OK ;
5013 
5014   // We do this the hard way, by blocking the thread.
5015   // Consider enforcing a minimum timeout value.
5016   struct timespec abst;
5017   compute_abstime(&abst, millis);
5018 
5019   int ret = OS_TIMEOUT;
5020   int status = pthread_mutex_lock(_mutex);
5021   assert_status(status == 0, status, "mutex_lock");
5022   guarantee (_nParked == 0, "invariant") ;
5023   ++_nParked ;
5024 
5025   // Object.wait(timo) will return because of
5026   // (a) notification
5027   // (b) timeout
5028   // (c) thread.interrupt
5029   //
5030   // Thread.interrupt and object.notify{All} both call Event::set.
5031   // That is, we treat thread.interrupt as a special case of notification.
5032   // The underlying Solaris implementation, cond_timedwait, admits
5033   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5034   // JVM from making those visible to Java code.  As such, we must
5035   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5036   //
5037   // TODO: properly differentiate simultaneous notify+interrupt.
5038   // In that case, we should propagate the notify to another waiter.
5039 
5040   while (_Event < 0) {
5041     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5042     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5043       pthread_cond_destroy (_cond);
5044       pthread_cond_init (_cond, NULL) ;
5045     }
5046     assert_status(status == 0 || status == EINTR ||
5047                   status == ETIME || status == ETIMEDOUT,
5048                   status, "cond_timedwait");
5049     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5050     if (status == ETIME || status == ETIMEDOUT) break ;
5051     // We consume and ignore EINTR and spurious wakeups.
5052   }
5053   --_nParked ;
5054   if (_Event >= 0) {
5055      ret = OS_OK;
5056   }
5057   _Event = 0 ;
5058   status = pthread_mutex_unlock(_mutex);
5059   assert_status(status == 0, status, "mutex_unlock");
5060   assert (_nParked == 0, "invariant") ;
5061   // Paranoia to ensure our locked and lock-free paths interact
5062   // correctly with each other.
5063   OrderAccess::fence();
5064   return ret;
5065 }
5066 
5067 void os::PlatformEvent::unpark() {
5068   // Transitions for _Event:
5069   //    0 :=> 1
5070   //    1 :=> 1
5071   //   -1 :=> either 0 or 1; must signal target thread
5072   //          That is, we can safely transition _Event from -1 to either
5073   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5074   //          unpark() calls.
5075   // See also: "Semaphores in Plan 9" by Mullender & Cox
5076   //
5077   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5078   // that it will take two back-to-back park() calls for the owning
5079   // thread to block. This has the benefit of forcing a spurious return
5080   // from the first park() call after an unpark() call which will help
5081   // shake out uses of park() and unpark() without condition variables.
5082 
5083   if (Atomic::xchg(1, &_Event) >= 0) return;
5084 
5085   // Wait for the thread associated with the event to vacate
5086   int status = pthread_mutex_lock(_mutex);
5087   assert_status(status == 0, status, "mutex_lock");
5088   int AnyWaiters = _nParked;
5089   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5090   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5091     AnyWaiters = 0;
5092     pthread_cond_signal(_cond);
5093   }
5094   status = pthread_mutex_unlock(_mutex);
5095   assert_status(status == 0, status, "mutex_unlock");
5096   if (AnyWaiters != 0) {
5097     status = pthread_cond_signal(_cond);
5098     assert_status(status == 0, status, "cond_signal");
5099   }
5100 
5101   // Note that we signal() _after dropping the lock for "immortal" Events.
5102   // This is safe and avoids a common class of  futile wakeups.  In rare
5103   // circumstances this can cause a thread to return prematurely from
5104   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5105   // simply re-test the condition and re-park itself.
5106 }
5107 
5108 
5109 // JSR166
5110 // -------------------------------------------------------
5111 
5112 /*
5113  * The solaris and linux implementations of park/unpark are fairly
5114  * conservative for now, but can be improved. They currently use a
5115  * mutex/condvar pair, plus a a count.
5116  * Park decrements count if > 0, else does a condvar wait.  Unpark
5117  * sets count to 1 and signals condvar.  Only one thread ever waits
5118  * on the condvar. Contention seen when trying to park implies that someone
5119  * is unparking you, so don't wait. And spurious returns are fine, so there
5120  * is no need to track notifications.
5121  */
5122 
5123 #define MAX_SECS 100000000
5124 /*
5125  * This code is common to linux and solaris and will be moved to a
5126  * common place in dolphin.
5127  *
5128  * The passed in time value is either a relative time in nanoseconds
5129  * or an absolute time in milliseconds. Either way it has to be unpacked
5130  * into suitable seconds and nanoseconds components and stored in the
5131  * given timespec structure.
5132  * Given time is a 64-bit value and the time_t used in the timespec is only
5133  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5134  * overflow if times way in the future are given. Further on Solaris versions
5135  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5136  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5137  * As it will be 28 years before "now + 100000000" will overflow we can
5138  * ignore overflow and just impose a hard-limit on seconds using the value
5139  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5140  * years from "now".
5141  */
5142 
5143 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5144   assert (time > 0, "convertTime");
5145 
5146   struct timeval now;
5147   int status = gettimeofday(&now, NULL);
5148   assert(status == 0, "gettimeofday");
5149 
5150   time_t max_secs = now.tv_sec + MAX_SECS;
5151 
5152   if (isAbsolute) {
5153     jlong secs = time / 1000;
5154     if (secs > max_secs) {
5155       absTime->tv_sec = max_secs;
5156     }
5157     else {
5158       absTime->tv_sec = secs;
5159     }
5160     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5161   }
5162   else {
5163     jlong secs = time / NANOSECS_PER_SEC;
5164     if (secs >= MAX_SECS) {
5165       absTime->tv_sec = max_secs;
5166       absTime->tv_nsec = 0;
5167     }
5168     else {
5169       absTime->tv_sec = now.tv_sec + secs;
5170       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5171       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5172         absTime->tv_nsec -= NANOSECS_PER_SEC;
5173         ++absTime->tv_sec; // note: this must be <= max_secs
5174       }
5175     }
5176   }
5177   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5178   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5179   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5180   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5181 }
5182 
5183 void Parker::park(bool isAbsolute, jlong time) {
5184   // Ideally we'd do something useful while spinning, such
5185   // as calling unpackTime().
5186 
5187   // Optional fast-path check:
5188   // Return immediately if a permit is available.
5189   // We depend on Atomic::xchg() having full barrier semantics
5190   // since we are doing a lock-free update to _counter.
5191   if (Atomic::xchg(0, &_counter) > 0) return;
5192 
5193   Thread* thread = Thread::current();
5194   assert(thread->is_Java_thread(), "Must be JavaThread");
5195   JavaThread *jt = (JavaThread *)thread;
5196 
5197   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5198   // Check interrupt before trying to wait
5199   if (Thread::is_interrupted(thread, false)) {
5200     return;
5201   }
5202 
5203   // Next, demultiplex/decode time arguments
5204   timespec absTime;
5205   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5206     return;
5207   }
5208   if (time > 0) {
5209     unpackTime(&absTime, isAbsolute, time);
5210   }
5211 
5212 
5213   // Enter safepoint region
5214   // Beware of deadlocks such as 6317397.
5215   // The per-thread Parker:: mutex is a classic leaf-lock.
5216   // In particular a thread must never block on the Threads_lock while
5217   // holding the Parker:: mutex.  If safepoints are pending both the
5218   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5219   ThreadBlockInVM tbivm(jt);
5220 
5221   // Don't wait if cannot get lock since interference arises from
5222   // unblocking.  Also. check interrupt before trying wait
5223   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5224     return;
5225   }
5226 
5227   int status ;
5228   if (_counter > 0)  { // no wait needed
5229     _counter = 0;
5230     status = pthread_mutex_unlock(_mutex);
5231     assert (status == 0, "invariant") ;
5232     // Paranoia to ensure our locked and lock-free paths interact
5233     // correctly with each other and Java-level accesses.
5234     OrderAccess::fence();
5235     return;
5236   }
5237 
5238 #ifdef ASSERT
5239   // Don't catch signals while blocked; let the running threads have the signals.
5240   // (This allows a debugger to break into the running thread.)
5241   sigset_t oldsigs;
5242   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5243   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5244 #endif
5245 
5246   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5247   jt->set_suspend_equivalent();
5248   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5249 
5250   if (time == 0) {
5251     status = pthread_cond_wait (_cond, _mutex) ;
5252   } else {
5253     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5254     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5255       pthread_cond_destroy (_cond) ;
5256       pthread_cond_init    (_cond, NULL);
5257     }
5258   }
5259   assert_status(status == 0 || status == EINTR ||
5260                 status == ETIME || status == ETIMEDOUT,
5261                 status, "cond_timedwait");
5262 
5263 #ifdef ASSERT
5264   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5265 #endif
5266 
5267   _counter = 0 ;
5268   status = pthread_mutex_unlock(_mutex) ;
5269   assert_status(status == 0, status, "invariant") ;
5270   // Paranoia to ensure our locked and lock-free paths interact
5271   // correctly with each other and Java-level accesses.
5272   OrderAccess::fence();
5273 
5274   // If externally suspended while waiting, re-suspend
5275   if (jt->handle_special_suspend_equivalent_condition()) {
5276     jt->java_suspend_self();
5277   }
5278 }
5279 
5280 void Parker::unpark() {
5281   int s, status ;
5282   status = pthread_mutex_lock(_mutex);
5283   assert (status == 0, "invariant") ;
5284   s = _counter;
5285   _counter = 1;
5286   if (s < 1) {
5287      if (WorkAroundNPTLTimedWaitHang) {
5288         status = pthread_cond_signal (_cond) ;
5289         assert (status == 0, "invariant") ;
5290         status = pthread_mutex_unlock(_mutex);
5291         assert (status == 0, "invariant") ;
5292      } else {
5293         status = pthread_mutex_unlock(_mutex);
5294         assert (status == 0, "invariant") ;
5295         status = pthread_cond_signal (_cond) ;
5296         assert (status == 0, "invariant") ;
5297      }
5298   } else {
5299     pthread_mutex_unlock(_mutex);
5300     assert (status == 0, "invariant") ;
5301   }
5302 }
5303 
5304 
5305 extern char** environ;
5306 
5307 #ifndef __NR_fork
5308 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5309 #endif
5310 
5311 #ifndef __NR_execve
5312 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5313 #endif
5314 
5315 // Run the specified command in a separate process. Return its exit value,
5316 // or -1 on failure (e.g. can't fork a new process).
5317 // Unlike system(), this function can be called from signal handler. It
5318 // doesn't block SIGINT et al.
5319 int os::fork_and_exec(char* cmd) {
5320   const char * argv[4] = {"sh", "-c", cmd, NULL};
5321 
5322   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5323   // pthread_atfork handlers and reset pthread library. All we need is a
5324   // separate process to execve. Make a direct syscall to fork process.
5325   // On IA64 there's no fork syscall, we have to use fork() and hope for
5326   // the best...
5327   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5328               IA64_ONLY(fork();)
5329 
5330   if (pid < 0) {
5331     // fork failed
5332     return -1;
5333 
5334   } else if (pid == 0) {
5335     // child process
5336 
5337     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5338     // first to kill every thread on the thread list. Because this list is
5339     // not reset by fork() (see notes above), execve() will instead kill
5340     // every thread in the parent process. We know this is the only thread
5341     // in the new process, so make a system call directly.
5342     // IA64 should use normal execve() from glibc to match the glibc fork()
5343     // above.
5344     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5345     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5346 
5347     // execve failed
5348     _exit(-1);
5349 
5350   } else  {
5351     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5352     // care about the actual exit code, for now.
5353 
5354     int status;
5355 
5356     // Wait for the child process to exit.  This returns immediately if
5357     // the child has already exited. */
5358     while (waitpid(pid, &status, 0) < 0) {
5359         switch (errno) {
5360         case ECHILD: return 0;
5361         case EINTR: break;
5362         default: return -1;
5363         }
5364     }
5365 
5366     if (WIFEXITED(status)) {
5367        // The child exited normally; get its exit code.
5368        return WEXITSTATUS(status);
5369     } else if (WIFSIGNALED(status)) {
5370        // The child exited because of a signal
5371        // The best value to return is 0x80 + signal number,
5372        // because that is what all Unix shells do, and because
5373        // it allows callers to distinguish between process exit and
5374        // process death by signal.
5375        return 0x80 + WTERMSIG(status);
5376     } else {
5377        // Unknown exit code; pass it through
5378        return status;
5379     }
5380   }
5381 }
5382 
5383 // is_headless_jre()
5384 //
5385 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5386 // in order to report if we are running in a headless jre
5387 //
5388 // Since JDK8 xawt/libmawt.so was moved into the same directory
5389 // as libawt.so, and renamed libawt_xawt.so
5390 //
5391 bool os::is_headless_jre() {
5392     struct stat statbuf;
5393     char buf[MAXPATHLEN];
5394     char libmawtpath[MAXPATHLEN];
5395     const char *xawtstr  = "/xawt/libmawt.so";
5396     const char *new_xawtstr = "/libawt_xawt.so";
5397     char *p;
5398 
5399     // Get path to libjvm.so
5400     os::jvm_path(buf, sizeof(buf));
5401 
5402     // Get rid of libjvm.so
5403     p = strrchr(buf, '/');
5404     if (p == NULL) return false;
5405     else *p = '\0';
5406 
5407     // Get rid of client or server
5408     p = strrchr(buf, '/');
5409     if (p == NULL) return false;
5410     else *p = '\0';
5411 
5412     // check xawt/libmawt.so
5413     strcpy(libmawtpath, buf);
5414     strcat(libmawtpath, xawtstr);
5415     if (::stat(libmawtpath, &statbuf) == 0) return false;
5416 
5417     // check libawt_xawt.so
5418     strcpy(libmawtpath, buf);
5419     strcat(libmawtpath, new_xawtstr);
5420     if (::stat(libmawtpath, &statbuf) == 0) return false;
5421 
5422     return true;
5423 }
5424 
5425 // Get the default path to the core file
5426 // Returns the length of the string
5427 int os::get_core_path(char* buffer, size_t bufferSize) {
5428   const char* p = get_current_directory(buffer, bufferSize);
5429 
5430   if (p == NULL) {
5431     assert(p != NULL, "failed to get current directory");
5432     return 0;
5433   }
5434 
5435   return strlen(buffer);
5436 }
5437 
5438 #ifdef JAVASE_EMBEDDED
5439 //
5440 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5441 //
5442 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5443 
5444 // ctor
5445 //
5446 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5447   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5448   _fd = fd;
5449 
5450   if (os::create_thread(this, os::os_thread)) {
5451     _memnotify_thread = this;
5452     os::set_priority(this, NearMaxPriority);
5453     os::start_thread(this);
5454   }
5455 }
5456 
5457 // Where all the work gets done
5458 //
5459 void MemNotifyThread::run() {
5460   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5461 
5462   // Set up the select arguments
5463   fd_set rfds;
5464   if (_fd != -1) {
5465     FD_ZERO(&rfds);
5466     FD_SET(_fd, &rfds);
5467   }
5468 
5469   // Now wait for the mem_notify device to wake up
5470   while (1) {
5471     // Wait for the mem_notify device to signal us..
5472     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5473     if (rc == -1) {
5474       perror("select!\n");
5475       break;
5476     } else if (rc) {
5477       //ssize_t free_before = os::available_memory();
5478       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5479 
5480       // The kernel is telling us there is not much memory left...
5481       // try to do something about that
5482 
5483       // If we are not already in a GC, try one.
5484       if (!Universe::heap()->is_gc_active()) {
5485         Universe::heap()->collect(GCCause::_allocation_failure);
5486 
5487         //ssize_t free_after = os::available_memory();
5488         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5489         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5490       }
5491       // We might want to do something like the following if we find the GC's are not helping...
5492       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5493     }
5494   }
5495 }
5496 
5497 //
5498 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5499 //
5500 void MemNotifyThread::start() {
5501   int    fd;
5502   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5503   if (fd < 0) {
5504       return;
5505   }
5506 
5507   if (memnotify_thread() == NULL) {
5508     new MemNotifyThread(fd);
5509   }
5510 }
5511 #endif // JAVASE_EMBEDDED