1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1CollectedHeap.inline.hpp"
  27 #include "gc/g1/g1OopClosures.inline.hpp"
  28 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  29 #include "gc/g1/g1StringDedup.hpp"
  30 #include "gc/shared/taskqueue.inline.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/prefetch.inline.hpp"
  33 
  34 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
  35   : _g1h(g1h),
  36     _refs(g1h->task_queue(queue_num)),
  37     _dcq(&g1h->dirty_card_queue_set()),
  38     _ct_bs(g1h->g1_barrier_set()),
  39     _g1_rem(g1h->g1_rem_set()),
  40     _hash_seed(17), _queue_num(queue_num),
  41     _term_attempts(0),
  42     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  43     _age_table(false), _scanner(g1h, rp),
  44     _strong_roots_time(0), _term_time(0),
  45     _last_gen_is_full(false)
  46 {
  47   _scanner.set_par_scan_thread_state(this);
  48   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  49   // we "sacrifice" entry 0 to keep track of surviving bytes for
  50   // non-young regions (where the age is -1)
  51   // We also add a few elements at the beginning and at the end in
  52   // an attempt to eliminate cache contention
  53   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  54   uint array_length = PADDING_ELEM_NUM +
  55                       real_length +
  56                       PADDING_ELEM_NUM;
  57   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  58   if (_surviving_young_words_base == NULL)
  59     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  60                           "Not enough space for young surv histo.");
  61   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  62   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  63 
  64   _plab_allocator = G1PLABAllocator::create_allocator(_g1h->allocator());
  65 
  66   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  67   // The dest for Young is used when the objects are aged enough to
  68   // need to be moved to the next space.
  69   _dest[InCSetState::Young]        = InCSetState::Old;
  70   _dest[InCSetState::Old]          = InCSetState::Old;
  71 
  72   _start = os::elapsedTime();
  73 }
  74 
  75 G1ParScanThreadState::~G1ParScanThreadState() {
  76   _plab_allocator->retire_alloc_buffers();
  77   delete _plab_allocator;
  78   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  79 }
  80 
  81 void
  82 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  83 {
  84   st->print_raw_cr("GC Termination Stats");
  85   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  86                    " ------waste (KiB)------");
  87   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  88                    "  total   alloc    undo");
  89   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  90                    " ------- ------- -------");
  91 }
  92 
  93 void
  94 G1ParScanThreadState::print_termination_stats(int i,
  95                                               outputStream* const st) const
  96 {
  97   const double elapsed_ms = elapsed_time() * 1000.0;
  98   const double s_roots_ms = strong_roots_time() * 1000.0;
  99   const double term_ms    = term_time() * 1000.0;
 100   size_t alloc_buffer_waste = 0;
 101   size_t undo_waste = 0;
 102   _plab_allocator->waste(alloc_buffer_waste, undo_waste);
 103   st->print_cr("%3d %9.2f %9.2f %6.2f "
 104                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
 105                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
 106                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 107                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
 108                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
 109                alloc_buffer_waste * HeapWordSize / K,
 110                undo_waste * HeapWordSize / K);
 111 }
 112 
 113 #ifdef ASSERT
 114 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 115   assert(ref != NULL, "invariant");
 116   assert(UseCompressedOops, "sanity");
 117   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
 118   oop p = oopDesc::load_decode_heap_oop(ref);
 119   assert(_g1h->is_in_g1_reserved(p),
 120          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 121   return true;
 122 }
 123 
 124 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 125   assert(ref != NULL, "invariant");
 126   if (has_partial_array_mask(ref)) {
 127     // Must be in the collection set--it's already been copied.
 128     oop p = clear_partial_array_mask(ref);
 129     assert(_g1h->obj_in_cs(p),
 130            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 131   } else {
 132     oop p = oopDesc::load_decode_heap_oop(ref);
 133     assert(_g1h->is_in_g1_reserved(p),
 134            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 135   }
 136   return true;
 137 }
 138 
 139 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 140   if (ref.is_narrow()) {
 141     return verify_ref((narrowOop*) ref);
 142   } else {
 143     return verify_ref((oop*) ref);
 144   }
 145 }
 146 #endif // ASSERT
 147 
 148 void G1ParScanThreadState::trim_queue() {
 149   StarTask ref;
 150   do {
 151     // Drain the overflow stack first, so other threads can steal.
 152     while (_refs->pop_overflow(ref)) {
 153       dispatch_reference(ref);
 154     }
 155 
 156     while (_refs->pop_local(ref)) {
 157       dispatch_reference(ref);
 158     }
 159   } while (!_refs->is_empty());
 160 }
 161 
 162 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 163                                                       InCSetState* dest,
 164                                                       size_t word_sz,
 165                                                       AllocationContext_t const context,
 166                                                       bool previous_plab_refill_failed) {
 167   assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
 168   assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 169 
 170   // Right now we only have two types of regions (young / old) so
 171   // let's keep the logic here simple. We can generalize it when necessary.
 172   if (dest->is_young()) {
 173     bool plab_refill_in_old_failed = false;
 174     HeapWord* const obj_ptr = _plab_allocator->allocate(InCSetState::Old,
 175                                                         word_sz,
 176                                                         context,
 177                                                         &plab_refill_in_old_failed);
 178     // Make sure that we won't attempt to copy any other objects out
 179     // of a survivor region (given that apparently we cannot allocate
 180     // any new ones) to avoid coming into this slow path again and again.
 181     // Only consider failed PLAB refill here: failed inline allocations are
 182     // typically large, so not indicative of remaining space.
 183     if (previous_plab_refill_failed) {
 184       _tenuring_threshold = 0;
 185     }
 186 
 187     if (obj_ptr != NULL) {
 188       dest->set_old();
 189     } else {
 190       // We just failed to allocate in old gen. The same idea as explained above
 191       // for making survivor gen unavailable for allocation applies for old gen.
 192       _last_gen_is_full = plab_refill_in_old_failed;
 193     }
 194     return obj_ptr;
 195   } else {
 196     _last_gen_is_full = previous_plab_refill_failed;
 197     assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 198     // no other space to try.
 199     return NULL;
 200   }
 201 }
 202 
 203 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 204   if (state.is_young()) {
 205     age = !m->has_displaced_mark_helper() ? m->age()
 206                                           : m->displaced_mark_helper()->age();
 207     if (age < _tenuring_threshold) {
 208       return state;
 209     }
 210   }
 211   return dest(state);
 212 }
 213 
 214 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 215                                                  oop const old,
 216                                                  markOop const old_mark) {
 217   const size_t word_sz = old->size();
 218   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 219   // +1 to make the -1 indexes valid...
 220   const int young_index = from_region->young_index_in_cset()+1;
 221   assert( (from_region->is_young() && young_index >  0) ||
 222          (!from_region->is_young() && young_index == 0), "invariant" );
 223   const AllocationContext_t context = from_region->allocation_context();
 224 
 225   uint age = 0;
 226   InCSetState dest_state = next_state(state, old_mark, age);
 227   // The second clause is to prevent premature evacuation failure in case there
 228   // is still space in survivor, but old gen is full.
 229   if (_last_gen_is_full && dest_state.is_old()) {
 230     return handle_evacuation_failure_par(old, old_mark);
 231   }
 232   HeapWord* obj_ptr = _plab_allocator->plab_allocate(dest_state, word_sz, context);
 233 
 234   // PLAB allocations should succeed most of the time, so we'll
 235   // normally check against NULL once and that's it.
 236   if (obj_ptr == NULL) {
 237     bool plab_refill_failed = false;
 238     obj_ptr = _plab_allocator->allocate_inline_or_new_plab(dest_state, word_sz, context, &plab_refill_failed);
 239     if (obj_ptr == NULL) {
 240       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context, plab_refill_failed);
 241       if (obj_ptr == NULL) {
 242         // This will either forward-to-self, or detect that someone else has
 243         // installed a forwarding pointer.
 244         return handle_evacuation_failure_par(old, old_mark);
 245       }
 246     }
 247   }
 248 
 249   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 250   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 251 
 252 #ifndef PRODUCT
 253   // Should this evacuation fail?
 254   if (_g1h->evacuation_should_fail()) {
 255     // Doing this after all the allocation attempts also tests the
 256     // undo_allocation() method too.
 257     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 258     return handle_evacuation_failure_par(old, old_mark);
 259   }
 260 #endif // !PRODUCT
 261 
 262   // We're going to allocate linearly, so might as well prefetch ahead.
 263   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 264 
 265   const oop obj = oop(obj_ptr);
 266   const oop forward_ptr = old->forward_to_atomic(obj);
 267   if (forward_ptr == NULL) {
 268     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 269 
 270     if (dest_state.is_young()) {
 271       if (age < markOopDesc::max_age) {
 272         age++;
 273       }
 274       if (old_mark->has_displaced_mark_helper()) {
 275         // In this case, we have to install the mark word first,
 276         // otherwise obj looks to be forwarded (the old mark word,
 277         // which contains the forward pointer, was copied)
 278         obj->set_mark(old_mark);
 279         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 280         old_mark->set_displaced_mark_helper(new_mark);
 281       } else {
 282         obj->set_mark(old_mark->set_age(age));
 283       }
 284       age_table()->add(age, word_sz);
 285     } else {
 286       obj->set_mark(old_mark);
 287     }
 288 
 289     if (G1StringDedup::is_enabled()) {
 290       const bool is_from_young = state.is_young();
 291       const bool is_to_young = dest_state.is_young();
 292       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 293              "sanity");
 294       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 295              "sanity");
 296       G1StringDedup::enqueue_from_evacuation(is_from_young,
 297                                              is_to_young,
 298                                              queue_num(),
 299                                              obj);
 300     }
 301 
 302     size_t* const surv_young_words = surviving_young_words();
 303     surv_young_words[young_index] += word_sz;
 304 
 305     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 306       // We keep track of the next start index in the length field of
 307       // the to-space object. The actual length can be found in the
 308       // length field of the from-space object.
 309       arrayOop(obj)->set_length(0);
 310       oop* old_p = set_partial_array_mask(old);
 311       push_on_queue(old_p);
 312     } else {
 313       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 314       _scanner.set_region(to_region);
 315       obj->oop_iterate_backwards(&_scanner);
 316     }
 317     return obj;
 318   } else {
 319     _plab_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 320     return forward_ptr;
 321   }
 322 }
 323 
 324 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 325   assert(_g1h->obj_in_cs(old),
 326          err_msg("Object " PTR_FORMAT " should be in the CSet", p2i(old)));
 327 
 328   oop forward_ptr = old->forward_to_atomic(old);
 329   if (forward_ptr == NULL) {
 330     // Forward-to-self succeeded. We are the "owner" of the object.
 331     HeapRegion* r = _g1h->heap_region_containing(old);
 332 
 333     if (!r->evacuation_failed()) {
 334       r->set_evacuation_failed(true);
 335      _g1h->hr_printer()->evac_failure(r);
 336     }
 337 
 338     _g1h->preserve_mark_during_evac_failure(_queue_num, old, m);
 339 
 340     _scanner.set_region(r);
 341     old->oop_iterate_backwards(&_scanner);
 342 
 343     return old;
 344   } else {
 345     // Forward-to-self failed. Either someone else managed to allocate
 346     // space for this object (old != forward_ptr) or they beat us in
 347     // self-forwarding it (old == forward_ptr).
 348     assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
 349            err_msg("Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 350                    "should not be in the CSet",
 351                    p2i(old), p2i(forward_ptr)));
 352     return forward_ptr;
 353   }
 354 }
 355