1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "classfile/metadataOnStackMark.hpp"
  27 #include "classfile/stringTable.hpp"
  28 #include "code/codeCache.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "gc/g1/bufferingOopClosure.hpp"
  31 #include "gc/g1/concurrentG1Refine.hpp"
  32 #include "gc/g1/concurrentG1RefineThread.hpp"
  33 #include "gc/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc/g1/g1AllocRegion.inline.hpp"
  35 #include "gc/g1/g1CollectedHeap.inline.hpp"
  36 #include "gc/g1/g1CollectorPolicy.hpp"
  37 #include "gc/g1/g1CollectorState.hpp"
  38 #include "gc/g1/g1ErgoVerbose.hpp"
  39 #include "gc/g1/g1EvacFailure.hpp"
  40 #include "gc/g1/g1GCPhaseTimes.hpp"
  41 #include "gc/g1/g1Log.hpp"
  42 #include "gc/g1/g1MarkSweep.hpp"
  43 #include "gc/g1/g1OopClosures.inline.hpp"
  44 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  45 #include "gc/g1/g1RegionToSpaceMapper.hpp"
  46 #include "gc/g1/g1RemSet.inline.hpp"
  47 #include "gc/g1/g1RootProcessor.hpp"
  48 #include "gc/g1/g1StringDedup.hpp"
  49 #include "gc/g1/g1YCTypes.hpp"
  50 #include "gc/g1/heapRegion.inline.hpp"
  51 #include "gc/g1/heapRegionRemSet.hpp"
  52 #include "gc/g1/heapRegionSet.inline.hpp"
  53 #include "gc/g1/suspendibleThreadSet.hpp"
  54 #include "gc/g1/vm_operations_g1.hpp"
  55 #include "gc/shared/gcHeapSummary.hpp"
  56 #include "gc/shared/gcLocker.inline.hpp"
  57 #include "gc/shared/gcTimer.hpp"
  58 #include "gc/shared/gcTrace.hpp"
  59 #include "gc/shared/gcTraceTime.hpp"
  60 #include "gc/shared/generationSpec.hpp"
  61 #include "gc/shared/isGCActiveMark.hpp"
  62 #include "gc/shared/referenceProcessor.hpp"
  63 #include "gc/shared/taskqueue.inline.hpp"
  64 #include "memory/allocation.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "oops/oop.inline.hpp"
  67 #include "runtime/atomic.inline.hpp"
  68 #include "runtime/orderAccess.inline.hpp"
  69 #include "runtime/vmThread.hpp"
  70 #include "utilities/globalDefinitions.hpp"
  71 #include "utilities/stack.inline.hpp"
  72 
  73 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  74 
  75 // turn it on so that the contents of the young list (scan-only /
  76 // to-be-collected) are printed at "strategic" points before / during
  77 // / after the collection --- this is useful for debugging
  78 #define YOUNG_LIST_VERBOSE 0
  79 // CURRENT STATUS
  80 // This file is under construction.  Search for "FIXME".
  81 
  82 // INVARIANTS/NOTES
  83 //
  84 // All allocation activity covered by the G1CollectedHeap interface is
  85 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  86 // and allocate_new_tlab, which are the "entry" points to the
  87 // allocation code from the rest of the JVM.  (Note that this does not
  88 // apply to TLAB allocation, which is not part of this interface: it
  89 // is done by clients of this interface.)
  90 
  91 // Local to this file.
  92 
  93 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  94   bool _concurrent;
  95 public:
  96   RefineCardTableEntryClosure() : _concurrent(true) { }
  97 
  98   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
  99     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 100     // This path is executed by the concurrent refine or mutator threads,
 101     // concurrently, and so we do not care if card_ptr contains references
 102     // that point into the collection set.
 103     assert(!oops_into_cset, "should be");
 104 
 105     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 106       // Caller will actually yield.
 107       return false;
 108     }
 109     // Otherwise, we finished successfully; return true.
 110     return true;
 111   }
 112 
 113   void set_concurrent(bool b) { _concurrent = b; }
 114 };
 115 
 116 
 117 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 118  private:
 119   size_t _num_processed;
 120 
 121  public:
 122   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 123 
 124   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 125     *card_ptr = CardTableModRefBS::dirty_card_val();
 126     _num_processed++;
 127     return true;
 128   }
 129 
 130   size_t num_processed() const { return _num_processed; }
 131 };
 132 
 133 YoungList::YoungList(G1CollectedHeap* g1h) :
 134     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 135     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 136   guarantee(check_list_empty(false), "just making sure...");
 137 }
 138 
 139 void YoungList::push_region(HeapRegion *hr) {
 140   assert(!hr->is_young(), "should not already be young");
 141   assert(hr->get_next_young_region() == NULL, "cause it should!");
 142 
 143   hr->set_next_young_region(_head);
 144   _head = hr;
 145 
 146   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 147   ++_length;
 148 }
 149 
 150 void YoungList::add_survivor_region(HeapRegion* hr) {
 151   assert(hr->is_survivor(), "should be flagged as survivor region");
 152   assert(hr->get_next_young_region() == NULL, "cause it should!");
 153 
 154   hr->set_next_young_region(_survivor_head);
 155   if (_survivor_head == NULL) {
 156     _survivor_tail = hr;
 157   }
 158   _survivor_head = hr;
 159   ++_survivor_length;
 160 }
 161 
 162 void YoungList::empty_list(HeapRegion* list) {
 163   while (list != NULL) {
 164     HeapRegion* next = list->get_next_young_region();
 165     list->set_next_young_region(NULL);
 166     list->uninstall_surv_rate_group();
 167     // This is called before a Full GC and all the non-empty /
 168     // non-humongous regions at the end of the Full GC will end up as
 169     // old anyway.
 170     list->set_old();
 171     list = next;
 172   }
 173 }
 174 
 175 void YoungList::empty_list() {
 176   assert(check_list_well_formed(), "young list should be well formed");
 177 
 178   empty_list(_head);
 179   _head = NULL;
 180   _length = 0;
 181 
 182   empty_list(_survivor_head);
 183   _survivor_head = NULL;
 184   _survivor_tail = NULL;
 185   _survivor_length = 0;
 186 
 187   _last_sampled_rs_lengths = 0;
 188 
 189   assert(check_list_empty(false), "just making sure...");
 190 }
 191 
 192 bool YoungList::check_list_well_formed() {
 193   bool ret = true;
 194 
 195   uint length = 0;
 196   HeapRegion* curr = _head;
 197   HeapRegion* last = NULL;
 198   while (curr != NULL) {
 199     if (!curr->is_young()) {
 200       gclog_or_tty->print_cr("### YOUNG REGION " PTR_FORMAT "-" PTR_FORMAT " "
 201                              "incorrectly tagged (y: %d, surv: %d)",
 202                              p2i(curr->bottom()), p2i(curr->end()),
 203                              curr->is_young(), curr->is_survivor());
 204       ret = false;
 205     }
 206     ++length;
 207     last = curr;
 208     curr = curr->get_next_young_region();
 209   }
 210   ret = ret && (length == _length);
 211 
 212   if (!ret) {
 213     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 214     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 215                            length, _length);
 216   }
 217 
 218   return ret;
 219 }
 220 
 221 bool YoungList::check_list_empty(bool check_sample) {
 222   bool ret = true;
 223 
 224   if (_length != 0) {
 225     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 226                   _length);
 227     ret = false;
 228   }
 229   if (check_sample && _last_sampled_rs_lengths != 0) {
 230     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 231     ret = false;
 232   }
 233   if (_head != NULL) {
 234     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 235     ret = false;
 236   }
 237   if (!ret) {
 238     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 239   }
 240 
 241   return ret;
 242 }
 243 
 244 void
 245 YoungList::rs_length_sampling_init() {
 246   _sampled_rs_lengths = 0;
 247   _curr               = _head;
 248 }
 249 
 250 bool
 251 YoungList::rs_length_sampling_more() {
 252   return _curr != NULL;
 253 }
 254 
 255 void
 256 YoungList::rs_length_sampling_next() {
 257   assert( _curr != NULL, "invariant" );
 258   size_t rs_length = _curr->rem_set()->occupied();
 259 
 260   _sampled_rs_lengths += rs_length;
 261 
 262   // The current region may not yet have been added to the
 263   // incremental collection set (it gets added when it is
 264   // retired as the current allocation region).
 265   if (_curr->in_collection_set()) {
 266     // Update the collection set policy information for this region
 267     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 268   }
 269 
 270   _curr = _curr->get_next_young_region();
 271   if (_curr == NULL) {
 272     _last_sampled_rs_lengths = _sampled_rs_lengths;
 273     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 274   }
 275 }
 276 
 277 void
 278 YoungList::reset_auxilary_lists() {
 279   guarantee( is_empty(), "young list should be empty" );
 280   assert(check_list_well_formed(), "young list should be well formed");
 281 
 282   // Add survivor regions to SurvRateGroup.
 283   _g1h->g1_policy()->note_start_adding_survivor_regions();
 284   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 285 
 286   int young_index_in_cset = 0;
 287   for (HeapRegion* curr = _survivor_head;
 288        curr != NULL;
 289        curr = curr->get_next_young_region()) {
 290     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 291 
 292     // The region is a non-empty survivor so let's add it to
 293     // the incremental collection set for the next evacuation
 294     // pause.
 295     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 296     young_index_in_cset += 1;
 297   }
 298   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 299   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 300 
 301   _head   = _survivor_head;
 302   _length = _survivor_length;
 303   if (_survivor_head != NULL) {
 304     assert(_survivor_tail != NULL, "cause it shouldn't be");
 305     assert(_survivor_length > 0, "invariant");
 306     _survivor_tail->set_next_young_region(NULL);
 307   }
 308 
 309   // Don't clear the survivor list handles until the start of
 310   // the next evacuation pause - we need it in order to re-tag
 311   // the survivor regions from this evacuation pause as 'young'
 312   // at the start of the next.
 313 
 314   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 315 
 316   assert(check_list_well_formed(), "young list should be well formed");
 317 }
 318 
 319 void YoungList::print() {
 320   HeapRegion* lists[] = {_head,   _survivor_head};
 321   const char* names[] = {"YOUNG", "SURVIVOR"};
 322 
 323   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 324     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 325     HeapRegion *curr = lists[list];
 326     if (curr == NULL)
 327       gclog_or_tty->print_cr("  empty");
 328     while (curr != NULL) {
 329       gclog_or_tty->print_cr("  " HR_FORMAT ", P: " PTR_FORMAT ", N: " PTR_FORMAT ", age: %4d",
 330                              HR_FORMAT_PARAMS(curr),
 331                              p2i(curr->prev_top_at_mark_start()),
 332                              p2i(curr->next_top_at_mark_start()),
 333                              curr->age_in_surv_rate_group_cond());
 334       curr = curr->get_next_young_region();
 335     }
 336   }
 337 
 338   gclog_or_tty->cr();
 339 }
 340 
 341 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 342   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 343 }
 344 
 345 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 346   // The from card cache is not the memory that is actually committed. So we cannot
 347   // take advantage of the zero_filled parameter.
 348   reset_from_card_cache(start_idx, num_regions);
 349 }
 350 
 351 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 352 {
 353   // Claim the right to put the region on the dirty cards region list
 354   // by installing a self pointer.
 355   HeapRegion* next = hr->get_next_dirty_cards_region();
 356   if (next == NULL) {
 357     HeapRegion* res = (HeapRegion*)
 358       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 359                           NULL);
 360     if (res == NULL) {
 361       HeapRegion* head;
 362       do {
 363         // Put the region to the dirty cards region list.
 364         head = _dirty_cards_region_list;
 365         next = (HeapRegion*)
 366           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 367         if (next == head) {
 368           assert(hr->get_next_dirty_cards_region() == hr,
 369                  "hr->get_next_dirty_cards_region() != hr");
 370           if (next == NULL) {
 371             // The last region in the list points to itself.
 372             hr->set_next_dirty_cards_region(hr);
 373           } else {
 374             hr->set_next_dirty_cards_region(next);
 375           }
 376         }
 377       } while (next != head);
 378     }
 379   }
 380 }
 381 
 382 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 383 {
 384   HeapRegion* head;
 385   HeapRegion* hr;
 386   do {
 387     head = _dirty_cards_region_list;
 388     if (head == NULL) {
 389       return NULL;
 390     }
 391     HeapRegion* new_head = head->get_next_dirty_cards_region();
 392     if (head == new_head) {
 393       // The last region.
 394       new_head = NULL;
 395     }
 396     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 397                                           head);
 398   } while (hr != head);
 399   assert(hr != NULL, "invariant");
 400   hr->set_next_dirty_cards_region(NULL);
 401   return hr;
 402 }
 403 
 404 // Returns true if the reference points to an object that
 405 // can move in an incremental collection.
 406 bool G1CollectedHeap::is_scavengable(const void* p) {
 407   HeapRegion* hr = heap_region_containing(p);
 408   return !hr->is_pinned();
 409 }
 410 
 411 // Private methods.
 412 
 413 HeapRegion*
 414 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 415   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 416   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 417     if (!_secondary_free_list.is_empty()) {
 418       if (G1ConcRegionFreeingVerbose) {
 419         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 420                                "secondary_free_list has %u entries",
 421                                _secondary_free_list.length());
 422       }
 423       // It looks as if there are free regions available on the
 424       // secondary_free_list. Let's move them to the free_list and try
 425       // again to allocate from it.
 426       append_secondary_free_list();
 427 
 428       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 429              "empty we should have moved at least one entry to the free_list");
 430       HeapRegion* res = _hrm.allocate_free_region(is_old);
 431       if (G1ConcRegionFreeingVerbose) {
 432         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 433                                "allocated " HR_FORMAT " from secondary_free_list",
 434                                HR_FORMAT_PARAMS(res));
 435       }
 436       return res;
 437     }
 438 
 439     // Wait here until we get notified either when (a) there are no
 440     // more free regions coming or (b) some regions have been moved on
 441     // the secondary_free_list.
 442     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 443   }
 444 
 445   if (G1ConcRegionFreeingVerbose) {
 446     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 447                            "could not allocate from secondary_free_list");
 448   }
 449   return NULL;
 450 }
 451 
 452 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 453   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 454          "the only time we use this to allocate a humongous region is "
 455          "when we are allocating a single humongous region");
 456 
 457   HeapRegion* res;
 458   if (G1StressConcRegionFreeing) {
 459     if (!_secondary_free_list.is_empty()) {
 460       if (G1ConcRegionFreeingVerbose) {
 461         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 462                                "forced to look at the secondary_free_list");
 463       }
 464       res = new_region_try_secondary_free_list(is_old);
 465       if (res != NULL) {
 466         return res;
 467       }
 468     }
 469   }
 470 
 471   res = _hrm.allocate_free_region(is_old);
 472 
 473   if (res == NULL) {
 474     if (G1ConcRegionFreeingVerbose) {
 475       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 476                              "res == NULL, trying the secondary_free_list");
 477     }
 478     res = new_region_try_secondary_free_list(is_old);
 479   }
 480   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 481     // Currently, only attempts to allocate GC alloc regions set
 482     // do_expand to true. So, we should only reach here during a
 483     // safepoint. If this assumption changes we might have to
 484     // reconsider the use of _expand_heap_after_alloc_failure.
 485     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 486 
 487     ergo_verbose1(ErgoHeapSizing,
 488                   "attempt heap expansion",
 489                   ergo_format_reason("region allocation request failed")
 490                   ergo_format_byte("allocation request"),
 491                   word_size * HeapWordSize);
 492     if (expand(word_size * HeapWordSize)) {
 493       // Given that expand() succeeded in expanding the heap, and we
 494       // always expand the heap by an amount aligned to the heap
 495       // region size, the free list should in theory not be empty.
 496       // In either case allocate_free_region() will check for NULL.
 497       res = _hrm.allocate_free_region(is_old);
 498     } else {
 499       _expand_heap_after_alloc_failure = false;
 500     }
 501   }
 502   return res;
 503 }
 504 
 505 HeapWord*
 506 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 507                                                            uint num_regions,
 508                                                            size_t word_size,
 509                                                            AllocationContext_t context) {
 510   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 511   assert(is_humongous(word_size), "word_size should be humongous");
 512   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 513 
 514   // Index of last region in the series + 1.
 515   uint last = first + num_regions;
 516 
 517   // We need to initialize the region(s) we just discovered. This is
 518   // a bit tricky given that it can happen concurrently with
 519   // refinement threads refining cards on these regions and
 520   // potentially wanting to refine the BOT as they are scanning
 521   // those cards (this can happen shortly after a cleanup; see CR
 522   // 6991377). So we have to set up the region(s) carefully and in
 523   // a specific order.
 524 
 525   // The word size sum of all the regions we will allocate.
 526   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 527   assert(word_size <= word_size_sum, "sanity");
 528 
 529   // This will be the "starts humongous" region.
 530   HeapRegion* first_hr = region_at(first);
 531   // The header of the new object will be placed at the bottom of
 532   // the first region.
 533   HeapWord* new_obj = first_hr->bottom();
 534   // This will be the new end of the first region in the series that
 535   // should also match the end of the last region in the series.
 536   HeapWord* new_end = new_obj + word_size_sum;
 537   // This will be the new top of the first region that will reflect
 538   // this allocation.
 539   HeapWord* new_top = new_obj + word_size;
 540 
 541   // First, we need to zero the header of the space that we will be
 542   // allocating. When we update top further down, some refinement
 543   // threads might try to scan the region. By zeroing the header we
 544   // ensure that any thread that will try to scan the region will
 545   // come across the zero klass word and bail out.
 546   //
 547   // NOTE: It would not have been correct to have used
 548   // CollectedHeap::fill_with_object() and make the space look like
 549   // an int array. The thread that is doing the allocation will
 550   // later update the object header to a potentially different array
 551   // type and, for a very short period of time, the klass and length
 552   // fields will be inconsistent. This could cause a refinement
 553   // thread to calculate the object size incorrectly.
 554   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 555 
 556   // We will set up the first region as "starts humongous". This
 557   // will also update the BOT covering all the regions to reflect
 558   // that there is a single object that starts at the bottom of the
 559   // first region.
 560   first_hr->set_starts_humongous(new_top, new_end);
 561   first_hr->set_allocation_context(context);
 562   // Then, if there are any, we will set up the "continues
 563   // humongous" regions.
 564   HeapRegion* hr = NULL;
 565   for (uint i = first + 1; i < last; ++i) {
 566     hr = region_at(i);
 567     hr->set_continues_humongous(first_hr);
 568     hr->set_allocation_context(context);
 569   }
 570   // If we have "continues humongous" regions (hr != NULL), then the
 571   // end of the last one should match new_end.
 572   assert(hr == NULL || hr->end() == new_end, "sanity");
 573 
 574   // Up to this point no concurrent thread would have been able to
 575   // do any scanning on any region in this series. All the top
 576   // fields still point to bottom, so the intersection between
 577   // [bottom,top] and [card_start,card_end] will be empty. Before we
 578   // update the top fields, we'll do a storestore to make sure that
 579   // no thread sees the update to top before the zeroing of the
 580   // object header and the BOT initialization.
 581   OrderAccess::storestore();
 582 
 583   // Now that the BOT and the object header have been initialized,
 584   // we can update top of the "starts humongous" region.
 585   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 586          "new_top should be in this region");
 587   first_hr->set_top(new_top);
 588   if (_hr_printer.is_active()) {
 589     HeapWord* bottom = first_hr->bottom();
 590     HeapWord* end = first_hr->orig_end();
 591     if ((first + 1) == last) {
 592       // the series has a single humongous region
 593       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 594     } else {
 595       // the series has more than one humongous regions
 596       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 597     }
 598   }
 599 
 600   // Now, we will update the top fields of the "continues humongous"
 601   // regions. The reason we need to do this is that, otherwise,
 602   // these regions would look empty and this will confuse parts of
 603   // G1. For example, the code that looks for a consecutive number
 604   // of empty regions will consider them empty and try to
 605   // re-allocate them. We can extend is_empty() to also include
 606   // !is_continues_humongous(), but it is easier to just update the top
 607   // fields here. The way we set top for all regions (i.e., top ==
 608   // end for all regions but the last one, top == new_top for the
 609   // last one) is actually used when we will free up the humongous
 610   // region in free_humongous_region().
 611   hr = NULL;
 612   for (uint i = first + 1; i < last; ++i) {
 613     hr = region_at(i);
 614     if ((i + 1) == last) {
 615       // last continues humongous region
 616       assert(hr->bottom() < new_top && new_top <= hr->end(),
 617              "new_top should fall on this region");
 618       hr->set_top(new_top);
 619       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 620     } else {
 621       // not last one
 622       assert(new_top > hr->end(), "new_top should be above this region");
 623       hr->set_top(hr->end());
 624       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 625     }
 626   }
 627   // If we have continues humongous regions (hr != NULL), then the
 628   // end of the last one should match new_end and its top should
 629   // match new_top.
 630   assert(hr == NULL ||
 631          (hr->end() == new_end && hr->top() == new_top), "sanity");
 632   check_bitmaps("Humongous Region Allocation", first_hr);
 633 
 634   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 635   _allocator->increase_used(first_hr->used());
 636   _humongous_set.add(first_hr);
 637 
 638   return new_obj;
 639 }
 640 
 641 // If could fit into free regions w/o expansion, try.
 642 // Otherwise, if can expand, do so.
 643 // Otherwise, if using ex regions might help, try with ex given back.
 644 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 645   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 646 
 647   verify_region_sets_optional();
 648 
 649   uint first = G1_NO_HRM_INDEX;
 650   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 651 
 652   if (obj_regions == 1) {
 653     // Only one region to allocate, try to use a fast path by directly allocating
 654     // from the free lists. Do not try to expand here, we will potentially do that
 655     // later.
 656     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 657     if (hr != NULL) {
 658       first = hr->hrm_index();
 659     }
 660   } else {
 661     // We can't allocate humongous regions spanning more than one region while
 662     // cleanupComplete() is running, since some of the regions we find to be
 663     // empty might not yet be added to the free list. It is not straightforward
 664     // to know in which list they are on so that we can remove them. We only
 665     // need to do this if we need to allocate more than one region to satisfy the
 666     // current humongous allocation request. If we are only allocating one region
 667     // we use the one-region region allocation code (see above), that already
 668     // potentially waits for regions from the secondary free list.
 669     wait_while_free_regions_coming();
 670     append_secondary_free_list_if_not_empty_with_lock();
 671 
 672     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 673     // are lucky enough to find some.
 674     first = _hrm.find_contiguous_only_empty(obj_regions);
 675     if (first != G1_NO_HRM_INDEX) {
 676       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 677     }
 678   }
 679 
 680   if (first == G1_NO_HRM_INDEX) {
 681     // Policy: We could not find enough regions for the humongous object in the
 682     // free list. Look through the heap to find a mix of free and uncommitted regions.
 683     // If so, try expansion.
 684     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 685     if (first != G1_NO_HRM_INDEX) {
 686       // We found something. Make sure these regions are committed, i.e. expand
 687       // the heap. Alternatively we could do a defragmentation GC.
 688       ergo_verbose1(ErgoHeapSizing,
 689                     "attempt heap expansion",
 690                     ergo_format_reason("humongous allocation request failed")
 691                     ergo_format_byte("allocation request"),
 692                     word_size * HeapWordSize);
 693 
 694       _hrm.expand_at(first, obj_regions);
 695       g1_policy()->record_new_heap_size(num_regions());
 696 
 697 #ifdef ASSERT
 698       for (uint i = first; i < first + obj_regions; ++i) {
 699         HeapRegion* hr = region_at(i);
 700         assert(hr->is_free(), "sanity");
 701         assert(hr->is_empty(), "sanity");
 702         assert(is_on_master_free_list(hr), "sanity");
 703       }
 704 #endif
 705       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 706     } else {
 707       // Policy: Potentially trigger a defragmentation GC.
 708     }
 709   }
 710 
 711   HeapWord* result = NULL;
 712   if (first != G1_NO_HRM_INDEX) {
 713     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 714                                                        word_size, context);
 715     assert(result != NULL, "it should always return a valid result");
 716 
 717     // A successful humongous object allocation changes the used space
 718     // information of the old generation so we need to recalculate the
 719     // sizes and update the jstat counters here.
 720     g1mm()->update_sizes();
 721   }
 722 
 723   verify_region_sets_optional();
 724 
 725   return result;
 726 }
 727 
 728 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 729   assert_heap_not_locked_and_not_at_safepoint();
 730   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 731 
 732   uint dummy_gc_count_before;
 733   uint dummy_gclocker_retry_count = 0;
 734   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 735 }
 736 
 737 HeapWord*
 738 G1CollectedHeap::mem_allocate(size_t word_size,
 739                               bool*  gc_overhead_limit_was_exceeded) {
 740   assert_heap_not_locked_and_not_at_safepoint();
 741 
 742   // Loop until the allocation is satisfied, or unsatisfied after GC.
 743   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 744     uint gc_count_before;
 745 
 746     HeapWord* result = NULL;
 747     if (!is_humongous(word_size)) {
 748       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 749     } else {
 750       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 751     }
 752     if (result != NULL) {
 753       return result;
 754     }
 755 
 756     // Create the garbage collection operation...
 757     VM_G1CollectForAllocation op(gc_count_before, word_size);
 758     op.set_allocation_context(AllocationContext::current());
 759 
 760     // ...and get the VM thread to execute it.
 761     VMThread::execute(&op);
 762 
 763     if (op.prologue_succeeded() && op.pause_succeeded()) {
 764       // If the operation was successful we'll return the result even
 765       // if it is NULL. If the allocation attempt failed immediately
 766       // after a Full GC, it's unlikely we'll be able to allocate now.
 767       HeapWord* result = op.result();
 768       if (result != NULL && !is_humongous(word_size)) {
 769         // Allocations that take place on VM operations do not do any
 770         // card dirtying and we have to do it here. We only have to do
 771         // this for non-humongous allocations, though.
 772         dirty_young_block(result, word_size);
 773       }
 774       return result;
 775     } else {
 776       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 777         return NULL;
 778       }
 779       assert(op.result() == NULL,
 780              "the result should be NULL if the VM op did not succeed");
 781     }
 782 
 783     // Give a warning if we seem to be looping forever.
 784     if ((QueuedAllocationWarningCount > 0) &&
 785         (try_count % QueuedAllocationWarningCount == 0)) {
 786       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 787     }
 788   }
 789 
 790   ShouldNotReachHere();
 791   return NULL;
 792 }
 793 
 794 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 795                                                    AllocationContext_t context,
 796                                                    uint* gc_count_before_ret,
 797                                                    uint* gclocker_retry_count_ret) {
 798   // Make sure you read the note in attempt_allocation_humongous().
 799 
 800   assert_heap_not_locked_and_not_at_safepoint();
 801   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 802          "be called for humongous allocation requests");
 803 
 804   // We should only get here after the first-level allocation attempt
 805   // (attempt_allocation()) failed to allocate.
 806 
 807   // We will loop until a) we manage to successfully perform the
 808   // allocation or b) we successfully schedule a collection which
 809   // fails to perform the allocation. b) is the only case when we'll
 810   // return NULL.
 811   HeapWord* result = NULL;
 812   for (int try_count = 1; /* we'll return */; try_count += 1) {
 813     bool should_try_gc;
 814     uint gc_count_before;
 815 
 816     {
 817       MutexLockerEx x(Heap_lock);
 818       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 819                                                                                     false /* bot_updates */);
 820       if (result != NULL) {
 821         return result;
 822       }
 823 
 824       // If we reach here, attempt_allocation_locked() above failed to
 825       // allocate a new region. So the mutator alloc region should be NULL.
 826       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 827 
 828       if (GC_locker::is_active_and_needs_gc()) {
 829         if (g1_policy()->can_expand_young_list()) {
 830           // No need for an ergo verbose message here,
 831           // can_expand_young_list() does this when it returns true.
 832           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 833                                                                                        false /* bot_updates */);
 834           if (result != NULL) {
 835             return result;
 836           }
 837         }
 838         should_try_gc = false;
 839       } else {
 840         // The GCLocker may not be active but the GCLocker initiated
 841         // GC may not yet have been performed (GCLocker::needs_gc()
 842         // returns true). In this case we do not try this GC and
 843         // wait until the GCLocker initiated GC is performed, and
 844         // then retry the allocation.
 845         if (GC_locker::needs_gc()) {
 846           should_try_gc = false;
 847         } else {
 848           // Read the GC count while still holding the Heap_lock.
 849           gc_count_before = total_collections();
 850           should_try_gc = true;
 851         }
 852       }
 853     }
 854 
 855     if (should_try_gc) {
 856       bool succeeded;
 857       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 858                                    GCCause::_g1_inc_collection_pause);
 859       if (result != NULL) {
 860         assert(succeeded, "only way to get back a non-NULL result");
 861         return result;
 862       }
 863 
 864       if (succeeded) {
 865         // If we get here we successfully scheduled a collection which
 866         // failed to allocate. No point in trying to allocate
 867         // further. We'll just return NULL.
 868         MutexLockerEx x(Heap_lock);
 869         *gc_count_before_ret = total_collections();
 870         return NULL;
 871       }
 872     } else {
 873       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 874         MutexLockerEx x(Heap_lock);
 875         *gc_count_before_ret = total_collections();
 876         return NULL;
 877       }
 878       // The GCLocker is either active or the GCLocker initiated
 879       // GC has not yet been performed. Stall until it is and
 880       // then retry the allocation.
 881       GC_locker::stall_until_clear();
 882       (*gclocker_retry_count_ret) += 1;
 883     }
 884 
 885     // We can reach here if we were unsuccessful in scheduling a
 886     // collection (because another thread beat us to it) or if we were
 887     // stalled due to the GC locker. In either can we should retry the
 888     // allocation attempt in case another thread successfully
 889     // performed a collection and reclaimed enough space. We do the
 890     // first attempt (without holding the Heap_lock) here and the
 891     // follow-on attempt will be at the start of the next loop
 892     // iteration (after taking the Heap_lock).
 893     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 894                                                                            false /* bot_updates */);
 895     if (result != NULL) {
 896       return result;
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::attempt_allocation_slow() "
 903               "retries %d times", try_count);
 904     }
 905   }
 906 
 907   ShouldNotReachHere();
 908   return NULL;
 909 }
 910 
 911 void G1CollectedHeap::begin_archive_alloc_range() {
 912   assert_at_safepoint(true /* should_be_vm_thread */);
 913   if (_archive_allocator == NULL) {
 914     _archive_allocator = G1ArchiveAllocator::create_allocator(this);
 915   }
 916 }
 917 
 918 bool G1CollectedHeap::is_archive_alloc_too_large(size_t word_size) {
 919   // Allocations in archive regions cannot be of a size that would be considered
 920   // humongous even for a minimum-sized region, because G1 region sizes/boundaries
 921   // may be different at archive-restore time.
 922   return word_size >= humongous_threshold_for(HeapRegion::min_region_size_in_words());
 923 }
 924 
 925 HeapWord* G1CollectedHeap::archive_mem_allocate(size_t word_size) {
 926   assert_at_safepoint(true /* should_be_vm_thread */);
 927   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 928   if (is_archive_alloc_too_large(word_size)) {
 929     return NULL;
 930   }
 931   return _archive_allocator->archive_mem_allocate(word_size);
 932 }
 933 
 934 void G1CollectedHeap::end_archive_alloc_range(GrowableArray<MemRegion>* ranges,
 935                                               size_t end_alignment_in_bytes) {
 936   assert_at_safepoint(true /* should_be_vm_thread */);
 937   assert(_archive_allocator != NULL, "_archive_allocator not initialized");
 938 
 939   // Call complete_archive to do the real work, filling in the MemRegion
 940   // array with the archive regions.
 941   _archive_allocator->complete_archive(ranges, end_alignment_in_bytes);
 942   delete _archive_allocator;
 943   _archive_allocator = NULL;
 944 }
 945 
 946 bool G1CollectedHeap::check_archive_addresses(MemRegion* ranges, size_t count) {
 947   assert(ranges != NULL, "MemRegion array NULL");
 948   assert(count != 0, "No MemRegions provided");
 949   MemRegion reserved = _hrm.reserved();
 950   for (size_t i = 0; i < count; i++) {
 951     if (!reserved.contains(ranges[i].start()) || !reserved.contains(ranges[i].last())) {
 952       return false;
 953     }
 954   }
 955   return true;
 956 }
 957 
 958 bool G1CollectedHeap::alloc_archive_regions(MemRegion* ranges, size_t count) {
 959   assert(ranges != NULL, "MemRegion array NULL");
 960   assert(count != 0, "No MemRegions provided");
 961   MutexLockerEx x(Heap_lock);
 962 
 963   MemRegion reserved = _hrm.reserved();
 964   HeapWord* prev_last_addr = NULL;
 965   HeapRegion* prev_last_region = NULL;
 966 
 967   // Temporarily disable pretouching of heap pages. This interface is used
 968   // when mmap'ing archived heap data in, so pre-touching is wasted.
 969   FlagSetting fs(AlwaysPreTouch, false);
 970 
 971   // Enable archive object checking in G1MarkSweep. We have to let it know
 972   // about each archive range, so that objects in those ranges aren't marked.
 973   G1MarkSweep::enable_archive_object_check();
 974 
 975   // For each specified MemRegion range, allocate the corresponding G1
 976   // regions and mark them as archive regions. We expect the ranges in
 977   // ascending starting address order, without overlap.
 978   for (size_t i = 0; i < count; i++) {
 979     MemRegion curr_range = ranges[i];
 980     HeapWord* start_address = curr_range.start();
 981     size_t word_size = curr_range.word_size();
 982     HeapWord* last_address = curr_range.last();
 983     size_t commits = 0;
 984 
 985     guarantee(reserved.contains(start_address) && reserved.contains(last_address),
 986               err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
 987               p2i(start_address), p2i(last_address)));
 988     guarantee(start_address > prev_last_addr,
 989               err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
 990               p2i(start_address), p2i(prev_last_addr)));
 991     prev_last_addr = last_address;
 992 
 993     // Check for ranges that start in the same G1 region in which the previous
 994     // range ended, and adjust the start address so we don't try to allocate
 995     // the same region again. If the current range is entirely within that
 996     // region, skip it, just adjusting the recorded top.
 997     HeapRegion* start_region = _hrm.addr_to_region(start_address);
 998     if ((prev_last_region != NULL) && (start_region == prev_last_region)) {
 999       start_address = start_region->end();
1000       if (start_address > last_address) {
1001         _allocator->increase_used(word_size * HeapWordSize);
1002         start_region->set_top(last_address + 1);
1003         continue;
1004       }
1005       start_region->set_top(start_address);
1006       curr_range = MemRegion(start_address, last_address + 1);
1007       start_region = _hrm.addr_to_region(start_address);
1008     }
1009 
1010     // Perform the actual region allocation, exiting if it fails.
1011     // Then note how much new space we have allocated.
1012     if (!_hrm.allocate_containing_regions(curr_range, &commits)) {
1013       return false;
1014     }
1015     _allocator->increase_used(word_size * HeapWordSize);
1016     if (commits != 0) {
1017       ergo_verbose1(ErgoHeapSizing,
1018                     "attempt heap expansion",
1019                     ergo_format_reason("allocate archive regions")
1020                     ergo_format_byte("total size"),
1021                     HeapRegion::GrainWords * HeapWordSize * commits);
1022     }
1023 
1024     // Mark each G1 region touched by the range as archive, add it to the old set,
1025     // and set the allocation context and top.
1026     HeapRegion* curr_region = _hrm.addr_to_region(start_address);
1027     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1028     prev_last_region = last_region;
1029 
1030     while (curr_region != NULL) {
1031       assert(curr_region->is_empty() && !curr_region->is_pinned(),
1032              err_msg("Region already in use (index %u)", curr_region->hrm_index()));
1033       _hr_printer.alloc(curr_region, G1HRPrinter::Archive);
1034       curr_region->set_allocation_context(AllocationContext::system());
1035       curr_region->set_archive();
1036       _old_set.add(curr_region);
1037       if (curr_region != last_region) {
1038         curr_region->set_top(curr_region->end());
1039         curr_region = _hrm.next_region_in_heap(curr_region);
1040       } else {
1041         curr_region->set_top(last_address + 1);
1042         curr_region = NULL;
1043       }
1044     }
1045 
1046     // Notify mark-sweep of the archive range.
1047     G1MarkSweep::mark_range_archive(curr_range);
1048   }
1049   return true;
1050 }
1051 
1052 void G1CollectedHeap::fill_archive_regions(MemRegion* ranges, size_t count) {
1053   assert(ranges != NULL, "MemRegion array NULL");
1054   assert(count != 0, "No MemRegions provided");
1055   MemRegion reserved = _hrm.reserved();
1056   HeapWord *prev_last_addr = NULL;
1057   HeapRegion* prev_last_region = NULL;
1058 
1059   // For each MemRegion, create filler objects, if needed, in the G1 regions
1060   // that contain the address range. The address range actually within the
1061   // MemRegion will not be modified. That is assumed to have been initialized
1062   // elsewhere, probably via an mmap of archived heap data.
1063   MutexLockerEx x(Heap_lock);
1064   for (size_t i = 0; i < count; i++) {
1065     HeapWord* start_address = ranges[i].start();
1066     HeapWord* last_address = ranges[i].last();
1067 
1068     assert(reserved.contains(start_address) && reserved.contains(last_address),
1069            err_msg("MemRegion outside of heap [" PTR_FORMAT ", " PTR_FORMAT "]",
1070                    p2i(start_address), p2i(last_address)));
1071     assert(start_address > prev_last_addr,
1072            err_msg("Ranges not in ascending order: " PTR_FORMAT " <= " PTR_FORMAT ,
1073                    p2i(start_address), p2i(prev_last_addr)));
1074 
1075     HeapRegion* start_region = _hrm.addr_to_region(start_address);
1076     HeapRegion* last_region = _hrm.addr_to_region(last_address);
1077     HeapWord* bottom_address = start_region->bottom();
1078 
1079     // Check for a range beginning in the same region in which the
1080     // previous one ended.
1081     if (start_region == prev_last_region) {
1082       bottom_address = prev_last_addr + 1;
1083     }
1084 
1085     // Verify that the regions were all marked as archive regions by
1086     // alloc_archive_regions.
1087     HeapRegion* curr_region = start_region;
1088     while (curr_region != NULL) {
1089       guarantee(curr_region->is_archive(),
1090                 err_msg("Expected archive region at index %u", curr_region->hrm_index()));
1091       if (curr_region != last_region) {
1092         curr_region = _hrm.next_region_in_heap(curr_region);
1093       } else {
1094         curr_region = NULL;
1095       }
1096     }
1097 
1098     prev_last_addr = last_address;
1099     prev_last_region = last_region;
1100 
1101     // Fill the memory below the allocated range with dummy object(s),
1102     // if the region bottom does not match the range start, or if the previous
1103     // range ended within the same G1 region, and there is a gap.
1104     if (start_address != bottom_address) {
1105       size_t fill_size = pointer_delta(start_address, bottom_address);
1106       G1CollectedHeap::fill_with_objects(bottom_address, fill_size);
1107       _allocator->increase_used(fill_size * HeapWordSize);
1108     }
1109   }
1110 }
1111 
1112 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1113                                                         uint* gc_count_before_ret,
1114                                                         uint* gclocker_retry_count_ret) {
1115   // The structure of this method has a lot of similarities to
1116   // attempt_allocation_slow(). The reason these two were not merged
1117   // into a single one is that such a method would require several "if
1118   // allocation is not humongous do this, otherwise do that"
1119   // conditional paths which would obscure its flow. In fact, an early
1120   // version of this code did use a unified method which was harder to
1121   // follow and, as a result, it had subtle bugs that were hard to
1122   // track down. So keeping these two methods separate allows each to
1123   // be more readable. It will be good to keep these two in sync as
1124   // much as possible.
1125 
1126   assert_heap_not_locked_and_not_at_safepoint();
1127   assert(is_humongous(word_size), "attempt_allocation_humongous() "
1128          "should only be called for humongous allocations");
1129 
1130   // Humongous objects can exhaust the heap quickly, so we should check if we
1131   // need to start a marking cycle at each humongous object allocation. We do
1132   // the check before we do the actual allocation. The reason for doing it
1133   // before the allocation is that we avoid having to keep track of the newly
1134   // allocated memory while we do a GC.
1135   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1136                                            word_size)) {
1137     collect(GCCause::_g1_humongous_allocation);
1138   }
1139 
1140   // We will loop until a) we manage to successfully perform the
1141   // allocation or b) we successfully schedule a collection which
1142   // fails to perform the allocation. b) is the only case when we'll
1143   // return NULL.
1144   HeapWord* result = NULL;
1145   for (int try_count = 1; /* we'll return */; try_count += 1) {
1146     bool should_try_gc;
1147     uint gc_count_before;
1148 
1149     {
1150       MutexLockerEx x(Heap_lock);
1151 
1152       // Given that humongous objects are not allocated in young
1153       // regions, we'll first try to do the allocation without doing a
1154       // collection hoping that there's enough space in the heap.
1155       result = humongous_obj_allocate(word_size, AllocationContext::current());
1156       if (result != NULL) {
1157         return result;
1158       }
1159 
1160       if (GC_locker::is_active_and_needs_gc()) {
1161         should_try_gc = false;
1162       } else {
1163          // The GCLocker may not be active but the GCLocker initiated
1164         // GC may not yet have been performed (GCLocker::needs_gc()
1165         // returns true). In this case we do not try this GC and
1166         // wait until the GCLocker initiated GC is performed, and
1167         // then retry the allocation.
1168         if (GC_locker::needs_gc()) {
1169           should_try_gc = false;
1170         } else {
1171           // Read the GC count while still holding the Heap_lock.
1172           gc_count_before = total_collections();
1173           should_try_gc = true;
1174         }
1175       }
1176     }
1177 
1178     if (should_try_gc) {
1179       // If we failed to allocate the humongous object, we should try to
1180       // do a collection pause (if we're allowed) in case it reclaims
1181       // enough space for the allocation to succeed after the pause.
1182 
1183       bool succeeded;
1184       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1185                                    GCCause::_g1_humongous_allocation);
1186       if (result != NULL) {
1187         assert(succeeded, "only way to get back a non-NULL result");
1188         return result;
1189       }
1190 
1191       if (succeeded) {
1192         // If we get here we successfully scheduled a collection which
1193         // failed to allocate. No point in trying to allocate
1194         // further. We'll just return NULL.
1195         MutexLockerEx x(Heap_lock);
1196         *gc_count_before_ret = total_collections();
1197         return NULL;
1198       }
1199     } else {
1200       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1201         MutexLockerEx x(Heap_lock);
1202         *gc_count_before_ret = total_collections();
1203         return NULL;
1204       }
1205       // The GCLocker is either active or the GCLocker initiated
1206       // GC has not yet been performed. Stall until it is and
1207       // then retry the allocation.
1208       GC_locker::stall_until_clear();
1209       (*gclocker_retry_count_ret) += 1;
1210     }
1211 
1212     // We can reach here if we were unsuccessful in scheduling a
1213     // collection (because another thread beat us to it) or if we were
1214     // stalled due to the GC locker. In either can we should retry the
1215     // allocation attempt in case another thread successfully
1216     // performed a collection and reclaimed enough space.  Give a
1217     // warning if we seem to be looping forever.
1218 
1219     if ((QueuedAllocationWarningCount > 0) &&
1220         (try_count % QueuedAllocationWarningCount == 0)) {
1221       warning("G1CollectedHeap::attempt_allocation_humongous() "
1222               "retries %d times", try_count);
1223     }
1224   }
1225 
1226   ShouldNotReachHere();
1227   return NULL;
1228 }
1229 
1230 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1231                                                            AllocationContext_t context,
1232                                                            bool expect_null_mutator_alloc_region) {
1233   assert_at_safepoint(true /* should_be_vm_thread */);
1234   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1235                                              !expect_null_mutator_alloc_region,
1236          "the current alloc region was unexpectedly found to be non-NULL");
1237 
1238   if (!is_humongous(word_size)) {
1239     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1240                                                       false /* bot_updates */);
1241   } else {
1242     HeapWord* result = humongous_obj_allocate(word_size, context);
1243     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1244       collector_state()->set_initiate_conc_mark_if_possible(true);
1245     }
1246     return result;
1247   }
1248 
1249   ShouldNotReachHere();
1250 }
1251 
1252 class PostMCRemSetClearClosure: public HeapRegionClosure {
1253   G1CollectedHeap* _g1h;
1254   ModRefBarrierSet* _mr_bs;
1255 public:
1256   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1257     _g1h(g1h), _mr_bs(mr_bs) {}
1258 
1259   bool doHeapRegion(HeapRegion* r) {
1260     HeapRegionRemSet* hrrs = r->rem_set();
1261 
1262     if (r->is_continues_humongous()) {
1263       // We'll assert that the strong code root list and RSet is empty
1264       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1265       assert(hrrs->occupied() == 0, "RSet should be empty");
1266       return false;
1267     }
1268 
1269     _g1h->reset_gc_time_stamps(r);
1270     hrrs->clear();
1271     // You might think here that we could clear just the cards
1272     // corresponding to the used region.  But no: if we leave a dirty card
1273     // in a region we might allocate into, then it would prevent that card
1274     // from being enqueued, and cause it to be missed.
1275     // Re: the performance cost: we shouldn't be doing full GC anyway!
1276     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1277 
1278     return false;
1279   }
1280 };
1281 
1282 void G1CollectedHeap::clear_rsets_post_compaction() {
1283   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1284   heap_region_iterate(&rs_clear);
1285 }
1286 
1287 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1288   G1CollectedHeap*   _g1h;
1289   UpdateRSOopClosure _cl;
1290 public:
1291   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, uint worker_i = 0) :
1292     _cl(g1->g1_rem_set(), worker_i),
1293     _g1h(g1)
1294   { }
1295 
1296   bool doHeapRegion(HeapRegion* r) {
1297     if (!r->is_continues_humongous()) {
1298       _cl.set_from(r);
1299       r->oop_iterate(&_cl);
1300     }
1301     return false;
1302   }
1303 };
1304 
1305 class ParRebuildRSTask: public AbstractGangTask {
1306   G1CollectedHeap* _g1;
1307   HeapRegionClaimer _hrclaimer;
1308 
1309 public:
1310   ParRebuildRSTask(G1CollectedHeap* g1) :
1311       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1312 
1313   void work(uint worker_id) {
1314     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1315     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1316   }
1317 };
1318 
1319 class PostCompactionPrinterClosure: public HeapRegionClosure {
1320 private:
1321   G1HRPrinter* _hr_printer;
1322 public:
1323   bool doHeapRegion(HeapRegion* hr) {
1324     assert(!hr->is_young(), "not expecting to find young regions");
1325     if (hr->is_free()) {
1326       // We only generate output for non-empty regions.
1327     } else if (hr->is_starts_humongous()) {
1328       if (hr->region_num() == 1) {
1329         // single humongous region
1330         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1331       } else {
1332         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1333       }
1334     } else if (hr->is_continues_humongous()) {
1335       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1336     } else if (hr->is_archive()) {
1337       _hr_printer->post_compaction(hr, G1HRPrinter::Archive);
1338     } else if (hr->is_old()) {
1339       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1340     } else {
1341       ShouldNotReachHere();
1342     }
1343     return false;
1344   }
1345 
1346   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1347     : _hr_printer(hr_printer) { }
1348 };
1349 
1350 void G1CollectedHeap::print_hrm_post_compaction() {
1351   PostCompactionPrinterClosure cl(hr_printer());
1352   heap_region_iterate(&cl);
1353 }
1354 
1355 bool G1CollectedHeap::do_collection(bool explicit_gc,
1356                                     bool clear_all_soft_refs,
1357                                     size_t word_size) {
1358   assert_at_safepoint(true /* should_be_vm_thread */);
1359 
1360   if (GC_locker::check_active_before_gc()) {
1361     return false;
1362   }
1363 
1364   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1365   gc_timer->register_gc_start();
1366 
1367   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1368   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1369 
1370   SvcGCMarker sgcm(SvcGCMarker::FULL);
1371   ResourceMark rm;
1372 
1373   G1Log::update_level();
1374   print_heap_before_gc();
1375   trace_heap_before_gc(gc_tracer);
1376 
1377   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1378 
1379   verify_region_sets_optional();
1380 
1381   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1382                            collector_policy()->should_clear_all_soft_refs();
1383 
1384   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1385 
1386   {
1387     IsGCActiveMark x;
1388 
1389     // Timing
1390     assert(!GCCause::is_user_requested_gc(gc_cause()) || explicit_gc, "invariant");
1391     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1392 
1393     {
1394       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1395       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1396       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1397 
1398       g1_policy()->record_full_collection_start();
1399 
1400       // Note: When we have a more flexible GC logging framework that
1401       // allows us to add optional attributes to a GC log record we
1402       // could consider timing and reporting how long we wait in the
1403       // following two methods.
1404       wait_while_free_regions_coming();
1405       // If we start the compaction before the CM threads finish
1406       // scanning the root regions we might trip them over as we'll
1407       // be moving objects / updating references. So let's wait until
1408       // they are done. By telling them to abort, they should complete
1409       // early.
1410       _cm->root_regions()->abort();
1411       _cm->root_regions()->wait_until_scan_finished();
1412       append_secondary_free_list_if_not_empty_with_lock();
1413 
1414       gc_prologue(true);
1415       increment_total_collections(true /* full gc */);
1416       increment_old_marking_cycles_started();
1417 
1418       assert(used() == recalculate_used(), "Should be equal");
1419 
1420       verify_before_gc();
1421 
1422       check_bitmaps("Full GC Start");
1423       pre_full_gc_dump(gc_timer);
1424 
1425       COMPILER2_PRESENT(DerivedPointerTable::clear());
1426 
1427       // Disable discovery and empty the discovered lists
1428       // for the CM ref processor.
1429       ref_processor_cm()->disable_discovery();
1430       ref_processor_cm()->abandon_partial_discovery();
1431       ref_processor_cm()->verify_no_references_recorded();
1432 
1433       // Abandon current iterations of concurrent marking and concurrent
1434       // refinement, if any are in progress. We have to do this before
1435       // wait_until_scan_finished() below.
1436       concurrent_mark()->abort();
1437 
1438       // Make sure we'll choose a new allocation region afterwards.
1439       _allocator->release_mutator_alloc_region();
1440       _allocator->abandon_gc_alloc_regions();
1441       g1_rem_set()->cleanupHRRS();
1442 
1443       // We should call this after we retire any currently active alloc
1444       // regions so that all the ALLOC / RETIRE events are generated
1445       // before the start GC event.
1446       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1447 
1448       // We may have added regions to the current incremental collection
1449       // set between the last GC or pause and now. We need to clear the
1450       // incremental collection set and then start rebuilding it afresh
1451       // after this full GC.
1452       abandon_collection_set(g1_policy()->inc_cset_head());
1453       g1_policy()->clear_incremental_cset();
1454       g1_policy()->stop_incremental_cset_building();
1455 
1456       tear_down_region_sets(false /* free_list_only */);
1457       collector_state()->set_gcs_are_young(true);
1458 
1459       // See the comments in g1CollectedHeap.hpp and
1460       // G1CollectedHeap::ref_processing_init() about
1461       // how reference processing currently works in G1.
1462 
1463       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1464       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1465 
1466       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1467       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1468 
1469       ref_processor_stw()->enable_discovery();
1470       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1471 
1472       // Do collection work
1473       {
1474         HandleMark hm;  // Discard invalid handles created during gc
1475         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1476       }
1477 
1478       assert(num_free_regions() == 0, "we should not have added any free regions");
1479       rebuild_region_sets(false /* free_list_only */);
1480 
1481       // Enqueue any discovered reference objects that have
1482       // not been removed from the discovered lists.
1483       ref_processor_stw()->enqueue_discovered_references();
1484 
1485       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1486 
1487       MemoryService::track_memory_usage();
1488 
1489       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1490       ref_processor_stw()->verify_no_references_recorded();
1491 
1492       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1493       ClassLoaderDataGraph::purge();
1494       MetaspaceAux::verify_metrics();
1495 
1496       // Note: since we've just done a full GC, concurrent
1497       // marking is no longer active. Therefore we need not
1498       // re-enable reference discovery for the CM ref processor.
1499       // That will be done at the start of the next marking cycle.
1500       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1501       ref_processor_cm()->verify_no_references_recorded();
1502 
1503       reset_gc_time_stamp();
1504       // Since everything potentially moved, we will clear all remembered
1505       // sets, and clear all cards.  Later we will rebuild remembered
1506       // sets. We will also reset the GC time stamps of the regions.
1507       clear_rsets_post_compaction();
1508       check_gc_time_stamps();
1509 
1510       // Resize the heap if necessary.
1511       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1512 
1513       if (_hr_printer.is_active()) {
1514         // We should do this after we potentially resize the heap so
1515         // that all the COMMIT / UNCOMMIT events are generated before
1516         // the end GC event.
1517 
1518         print_hrm_post_compaction();
1519         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1520       }
1521 
1522       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1523       if (hot_card_cache->use_cache()) {
1524         hot_card_cache->reset_card_counts();
1525         hot_card_cache->reset_hot_cache();
1526       }
1527 
1528       // Rebuild remembered sets of all regions.
1529       uint n_workers =
1530         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1531                                                 workers()->active_workers(),
1532                                                 Threads::number_of_non_daemon_threads());
1533       workers()->set_active_workers(n_workers);
1534 
1535       ParRebuildRSTask rebuild_rs_task(this);
1536       workers()->run_task(&rebuild_rs_task);
1537 
1538       // Rebuild the strong code root lists for each region
1539       rebuild_strong_code_roots();
1540 
1541       if (true) { // FIXME
1542         MetaspaceGC::compute_new_size();
1543       }
1544 
1545 #ifdef TRACESPINNING
1546       ParallelTaskTerminator::print_termination_counts();
1547 #endif
1548 
1549       // Discard all rset updates
1550       JavaThread::dirty_card_queue_set().abandon_logs();
1551       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1552 
1553       _young_list->reset_sampled_info();
1554       // At this point there should be no regions in the
1555       // entire heap tagged as young.
1556       assert(check_young_list_empty(true /* check_heap */),
1557              "young list should be empty at this point");
1558 
1559       // Update the number of full collections that have been completed.
1560       increment_old_marking_cycles_completed(false /* concurrent */);
1561 
1562       _hrm.verify_optional();
1563       verify_region_sets_optional();
1564 
1565       verify_after_gc();
1566 
1567       // Clear the previous marking bitmap, if needed for bitmap verification.
1568       // Note we cannot do this when we clear the next marking bitmap in
1569       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1570       // objects marked during a full GC against the previous bitmap.
1571       // But we need to clear it before calling check_bitmaps below since
1572       // the full GC has compacted objects and updated TAMS but not updated
1573       // the prev bitmap.
1574       if (G1VerifyBitmaps) {
1575         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1576       }
1577       check_bitmaps("Full GC End");
1578 
1579       // Start a new incremental collection set for the next pause
1580       assert(g1_policy()->collection_set() == NULL, "must be");
1581       g1_policy()->start_incremental_cset_building();
1582 
1583       clear_cset_fast_test();
1584 
1585       _allocator->init_mutator_alloc_region();
1586 
1587       g1_policy()->record_full_collection_end();
1588 
1589       if (G1Log::fine()) {
1590         g1_policy()->print_heap_transition();
1591       }
1592 
1593       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1594       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1595       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1596       // before any GC notifications are raised.
1597       g1mm()->update_sizes();
1598 
1599       gc_epilogue(true);
1600     }
1601 
1602     if (G1Log::finer()) {
1603       g1_policy()->print_detailed_heap_transition(true /* full */);
1604     }
1605 
1606     print_heap_after_gc();
1607     trace_heap_after_gc(gc_tracer);
1608 
1609     post_full_gc_dump(gc_timer);
1610 
1611     gc_timer->register_gc_end();
1612     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1613   }
1614 
1615   return true;
1616 }
1617 
1618 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1619   // do_collection() will return whether it succeeded in performing
1620   // the GC. Currently, there is no facility on the
1621   // do_full_collection() API to notify the caller than the collection
1622   // did not succeed (e.g., because it was locked out by the GC
1623   // locker). So, right now, we'll ignore the return value.
1624   bool dummy = do_collection(true,                /* explicit_gc */
1625                              clear_all_soft_refs,
1626                              0                    /* word_size */);
1627 }
1628 
1629 // This code is mostly copied from TenuredGeneration.
1630 void
1631 G1CollectedHeap::
1632 resize_if_necessary_after_full_collection(size_t word_size) {
1633   // Include the current allocation, if any, and bytes that will be
1634   // pre-allocated to support collections, as "used".
1635   const size_t used_after_gc = used();
1636   const size_t capacity_after_gc = capacity();
1637   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1638 
1639   // This is enforced in arguments.cpp.
1640   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1641          "otherwise the code below doesn't make sense");
1642 
1643   // We don't have floating point command-line arguments
1644   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1645   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1646   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1647   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1648 
1649   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1650   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1651 
1652   // We have to be careful here as these two calculations can overflow
1653   // 32-bit size_t's.
1654   double used_after_gc_d = (double) used_after_gc;
1655   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1656   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1657 
1658   // Let's make sure that they are both under the max heap size, which
1659   // by default will make them fit into a size_t.
1660   double desired_capacity_upper_bound = (double) max_heap_size;
1661   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1662                                     desired_capacity_upper_bound);
1663   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1664                                     desired_capacity_upper_bound);
1665 
1666   // We can now safely turn them into size_t's.
1667   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1668   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1669 
1670   // This assert only makes sense here, before we adjust them
1671   // with respect to the min and max heap size.
1672   assert(minimum_desired_capacity <= maximum_desired_capacity,
1673          err_msg("minimum_desired_capacity = " SIZE_FORMAT ", "
1674                  "maximum_desired_capacity = " SIZE_FORMAT,
1675                  minimum_desired_capacity, maximum_desired_capacity));
1676 
1677   // Should not be greater than the heap max size. No need to adjust
1678   // it with respect to the heap min size as it's a lower bound (i.e.,
1679   // we'll try to make the capacity larger than it, not smaller).
1680   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1681   // Should not be less than the heap min size. No need to adjust it
1682   // with respect to the heap max size as it's an upper bound (i.e.,
1683   // we'll try to make the capacity smaller than it, not greater).
1684   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1685 
1686   if (capacity_after_gc < minimum_desired_capacity) {
1687     // Don't expand unless it's significant
1688     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1689     ergo_verbose4(ErgoHeapSizing,
1690                   "attempt heap expansion",
1691                   ergo_format_reason("capacity lower than "
1692                                      "min desired capacity after Full GC")
1693                   ergo_format_byte("capacity")
1694                   ergo_format_byte("occupancy")
1695                   ergo_format_byte_perc("min desired capacity"),
1696                   capacity_after_gc, used_after_gc,
1697                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1698     expand(expand_bytes);
1699 
1700     // No expansion, now see if we want to shrink
1701   } else if (capacity_after_gc > maximum_desired_capacity) {
1702     // Capacity too large, compute shrinking size
1703     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1704     ergo_verbose4(ErgoHeapSizing,
1705                   "attempt heap shrinking",
1706                   ergo_format_reason("capacity higher than "
1707                                      "max desired capacity after Full GC")
1708                   ergo_format_byte("capacity")
1709                   ergo_format_byte("occupancy")
1710                   ergo_format_byte_perc("max desired capacity"),
1711                   capacity_after_gc, used_after_gc,
1712                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1713     shrink(shrink_bytes);
1714   }
1715 }
1716 
1717 
1718 HeapWord*
1719 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1720                                            AllocationContext_t context,
1721                                            bool* succeeded) {
1722   assert_at_safepoint(true /* should_be_vm_thread */);
1723 
1724   *succeeded = true;
1725   // Let's attempt the allocation first.
1726   HeapWord* result =
1727     attempt_allocation_at_safepoint(word_size,
1728                                     context,
1729                                     false /* expect_null_mutator_alloc_region */);
1730   if (result != NULL) {
1731     assert(*succeeded, "sanity");
1732     return result;
1733   }
1734 
1735   // In a G1 heap, we're supposed to keep allocation from failing by
1736   // incremental pauses.  Therefore, at least for now, we'll favor
1737   // expansion over collection.  (This might change in the future if we can
1738   // do something smarter than full collection to satisfy a failed alloc.)
1739   result = expand_and_allocate(word_size, context);
1740   if (result != NULL) {
1741     assert(*succeeded, "sanity");
1742     return result;
1743   }
1744 
1745   // Expansion didn't work, we'll try to do a Full GC.
1746   bool gc_succeeded = do_collection(false, /* explicit_gc */
1747                                     false, /* clear_all_soft_refs */
1748                                     word_size);
1749   if (!gc_succeeded) {
1750     *succeeded = false;
1751     return NULL;
1752   }
1753 
1754   // Retry the allocation
1755   result = attempt_allocation_at_safepoint(word_size,
1756                                            context,
1757                                            true /* expect_null_mutator_alloc_region */);
1758   if (result != NULL) {
1759     assert(*succeeded, "sanity");
1760     return result;
1761   }
1762 
1763   // Then, try a Full GC that will collect all soft references.
1764   gc_succeeded = do_collection(false, /* explicit_gc */
1765                                true,  /* clear_all_soft_refs */
1766                                word_size);
1767   if (!gc_succeeded) {
1768     *succeeded = false;
1769     return NULL;
1770   }
1771 
1772   // Retry the allocation once more
1773   result = attempt_allocation_at_safepoint(word_size,
1774                                            context,
1775                                            true /* expect_null_mutator_alloc_region */);
1776   if (result != NULL) {
1777     assert(*succeeded, "sanity");
1778     return result;
1779   }
1780 
1781   assert(!collector_policy()->should_clear_all_soft_refs(),
1782          "Flag should have been handled and cleared prior to this point");
1783 
1784   // What else?  We might try synchronous finalization later.  If the total
1785   // space available is large enough for the allocation, then a more
1786   // complete compaction phase than we've tried so far might be
1787   // appropriate.
1788   assert(*succeeded, "sanity");
1789   return NULL;
1790 }
1791 
1792 // Attempting to expand the heap sufficiently
1793 // to support an allocation of the given "word_size".  If
1794 // successful, perform the allocation and return the address of the
1795 // allocated block, or else "NULL".
1796 
1797 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1798   assert_at_safepoint(true /* should_be_vm_thread */);
1799 
1800   verify_region_sets_optional();
1801 
1802   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1803   ergo_verbose1(ErgoHeapSizing,
1804                 "attempt heap expansion",
1805                 ergo_format_reason("allocation request failed")
1806                 ergo_format_byte("allocation request"),
1807                 word_size * HeapWordSize);
1808   if (expand(expand_bytes)) {
1809     _hrm.verify_optional();
1810     verify_region_sets_optional();
1811     return attempt_allocation_at_safepoint(word_size,
1812                                            context,
1813                                            false /* expect_null_mutator_alloc_region */);
1814   }
1815   return NULL;
1816 }
1817 
1818 bool G1CollectedHeap::expand(size_t expand_bytes) {
1819   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1820   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1821                                        HeapRegion::GrainBytes);
1822   ergo_verbose2(ErgoHeapSizing,
1823                 "expand the heap",
1824                 ergo_format_byte("requested expansion amount")
1825                 ergo_format_byte("attempted expansion amount"),
1826                 expand_bytes, aligned_expand_bytes);
1827 
1828   if (is_maximal_no_gc()) {
1829     ergo_verbose0(ErgoHeapSizing,
1830                       "did not expand the heap",
1831                       ergo_format_reason("heap already fully expanded"));
1832     return false;
1833   }
1834 
1835   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1836   assert(regions_to_expand > 0, "Must expand by at least one region");
1837 
1838   uint expanded_by = _hrm.expand_by(regions_to_expand);
1839 
1840   if (expanded_by > 0) {
1841     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1842     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1843     g1_policy()->record_new_heap_size(num_regions());
1844   } else {
1845     ergo_verbose0(ErgoHeapSizing,
1846                   "did not expand the heap",
1847                   ergo_format_reason("heap expansion operation failed"));
1848     // The expansion of the virtual storage space was unsuccessful.
1849     // Let's see if it was because we ran out of swap.
1850     if (G1ExitOnExpansionFailure &&
1851         _hrm.available() >= regions_to_expand) {
1852       // We had head room...
1853       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1854     }
1855   }
1856   return regions_to_expand > 0;
1857 }
1858 
1859 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1860   size_t aligned_shrink_bytes =
1861     ReservedSpace::page_align_size_down(shrink_bytes);
1862   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1863                                          HeapRegion::GrainBytes);
1864   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1865 
1866   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1867   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1868 
1869   ergo_verbose3(ErgoHeapSizing,
1870                 "shrink the heap",
1871                 ergo_format_byte("requested shrinking amount")
1872                 ergo_format_byte("aligned shrinking amount")
1873                 ergo_format_byte("attempted shrinking amount"),
1874                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1875   if (num_regions_removed > 0) {
1876     g1_policy()->record_new_heap_size(num_regions());
1877   } else {
1878     ergo_verbose0(ErgoHeapSizing,
1879                   "did not shrink the heap",
1880                   ergo_format_reason("heap shrinking operation failed"));
1881   }
1882 }
1883 
1884 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1885   verify_region_sets_optional();
1886 
1887   // We should only reach here at the end of a Full GC which means we
1888   // should not not be holding to any GC alloc regions. The method
1889   // below will make sure of that and do any remaining clean up.
1890   _allocator->abandon_gc_alloc_regions();
1891 
1892   // Instead of tearing down / rebuilding the free lists here, we
1893   // could instead use the remove_all_pending() method on free_list to
1894   // remove only the ones that we need to remove.
1895   tear_down_region_sets(true /* free_list_only */);
1896   shrink_helper(shrink_bytes);
1897   rebuild_region_sets(true /* free_list_only */);
1898 
1899   _hrm.verify_optional();
1900   verify_region_sets_optional();
1901 }
1902 
1903 // Public methods.
1904 
1905 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1906 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1907 #endif // _MSC_VER
1908 
1909 
1910 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1911   CollectedHeap(),
1912   _g1_policy(policy_),
1913   _dirty_card_queue_set(false),
1914   _into_cset_dirty_card_queue_set(false),
1915   _is_alive_closure_cm(this),
1916   _is_alive_closure_stw(this),
1917   _ref_processor_cm(NULL),
1918   _ref_processor_stw(NULL),
1919   _bot_shared(NULL),
1920   _cg1r(NULL),
1921   _g1mm(NULL),
1922   _refine_cte_cl(NULL),
1923   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1924   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1925   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1926   _humongous_reclaim_candidates(),
1927   _has_humongous_reclaim_candidates(false),
1928   _archive_allocator(NULL),
1929   _free_regions_coming(false),
1930   _young_list(new YoungList(this)),
1931   _gc_time_stamp(0),
1932   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1933   _old_plab_stats(OldPLABSize, PLABWeight),
1934   _expand_heap_after_alloc_failure(true),
1935   _surviving_young_words(NULL),
1936   _old_marking_cycles_started(0),
1937   _old_marking_cycles_completed(0),
1938   _heap_summary_sent(false),
1939   _in_cset_fast_test(),
1940   _dirty_cards_region_list(NULL),
1941   _worker_cset_start_region(NULL),
1942   _worker_cset_start_region_time_stamp(NULL),
1943   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1944   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1945   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1946   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1947 
1948   _workers = new FlexibleWorkGang("GC Thread", ParallelGCThreads,
1949                           /* are_GC_task_threads */true,
1950                           /* are_ConcurrentGC_threads */false);
1951   _workers->initialize_workers();
1952 
1953   _allocator = G1Allocator::create_allocator(this);
1954   _humongous_object_threshold_in_words = humongous_threshold_for(HeapRegion::GrainWords);
1955 
1956   // Override the default _filler_array_max_size so that no humongous filler
1957   // objects are created.
1958   _filler_array_max_size = _humongous_object_threshold_in_words;
1959 
1960   uint n_queues = ParallelGCThreads;
1961   _task_queues = new RefToScanQueueSet(n_queues);
1962 
1963   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1964   assert(n_rem_sets > 0, "Invariant.");
1965 
1966   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1967   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1968   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1969 
1970   for (uint i = 0; i < n_queues; i++) {
1971     RefToScanQueue* q = new RefToScanQueue();
1972     q->initialize();
1973     _task_queues->register_queue(i, q);
1974     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1975   }
1976   clear_cset_start_regions();
1977 
1978   // Initialize the G1EvacuationFailureALot counters and flags.
1979   NOT_PRODUCT(reset_evacuation_should_fail();)
1980 
1981   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1982 }
1983 
1984 G1RegionToSpaceMapper* G1CollectedHeap::create_aux_memory_mapper(const char* description,
1985                                                                  size_t size,
1986                                                                  size_t translation_factor) {
1987   size_t preferred_page_size = os::page_size_for_region_unaligned(size, 1);
1988   // Allocate a new reserved space, preferring to use large pages.
1989   ReservedSpace rs(size, preferred_page_size);
1990   G1RegionToSpaceMapper* result  =
1991     G1RegionToSpaceMapper::create_mapper(rs,
1992                                          size,
1993                                          rs.alignment(),
1994                                          HeapRegion::GrainBytes,
1995                                          translation_factor,
1996                                          mtGC);
1997   if (TracePageSizes) {
1998     gclog_or_tty->print_cr("G1 '%s': pg_sz=" SIZE_FORMAT " base=" PTR_FORMAT " size=" SIZE_FORMAT " alignment=" SIZE_FORMAT " reqsize=" SIZE_FORMAT,
1999                            description, preferred_page_size, p2i(rs.base()), rs.size(), rs.alignment(), size);
2000   }
2001   return result;
2002 }
2003 
2004 jint G1CollectedHeap::initialize() {
2005   CollectedHeap::pre_initialize();
2006   os::enable_vtime();
2007 
2008   G1Log::init();
2009 
2010   // Necessary to satisfy locking discipline assertions.
2011 
2012   MutexLocker x(Heap_lock);
2013 
2014   // We have to initialize the printer before committing the heap, as
2015   // it will be used then.
2016   _hr_printer.set_active(G1PrintHeapRegions);
2017 
2018   // While there are no constraints in the GC code that HeapWordSize
2019   // be any particular value, there are multiple other areas in the
2020   // system which believe this to be true (e.g. oop->object_size in some
2021   // cases incorrectly returns the size in wordSize units rather than
2022   // HeapWordSize).
2023   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2024 
2025   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2026   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2027   size_t heap_alignment = collector_policy()->heap_alignment();
2028 
2029   // Ensure that the sizes are properly aligned.
2030   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2031   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2032   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2033 
2034   _refine_cte_cl = new RefineCardTableEntryClosure();
2035 
2036   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
2037 
2038   // Reserve the maximum.
2039 
2040   // When compressed oops are enabled, the preferred heap base
2041   // is calculated by subtracting the requested size from the
2042   // 32Gb boundary and using the result as the base address for
2043   // heap reservation. If the requested size is not aligned to
2044   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2045   // into the ReservedHeapSpace constructor) then the actual
2046   // base of the reserved heap may end up differing from the
2047   // address that was requested (i.e. the preferred heap base).
2048   // If this happens then we could end up using a non-optimal
2049   // compressed oops mode.
2050 
2051   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2052                                                  heap_alignment);
2053 
2054   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
2055 
2056   // Create the barrier set for the entire reserved region.
2057   G1SATBCardTableLoggingModRefBS* bs
2058     = new G1SATBCardTableLoggingModRefBS(reserved_region());
2059   bs->initialize();
2060   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
2061   set_barrier_set(bs);
2062 
2063   // Also create a G1 rem set.
2064   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2065 
2066   // Carve out the G1 part of the heap.
2067 
2068   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
2069   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
2070   G1RegionToSpaceMapper* heap_storage =
2071     G1RegionToSpaceMapper::create_mapper(g1_rs,
2072                                          g1_rs.size(),
2073                                          page_size,
2074                                          HeapRegion::GrainBytes,
2075                                          1,
2076                                          mtJavaHeap);
2077   os::trace_page_sizes("G1 Heap", collector_policy()->min_heap_byte_size(),
2078                        max_byte_size, page_size,
2079                        heap_rs.base(),
2080                        heap_rs.size());
2081   heap_storage->set_mapping_changed_listener(&_listener);
2082 
2083   // Create storage for the BOT, card table, card counts table (hot card cache) and the bitmaps.
2084   G1RegionToSpaceMapper* bot_storage =
2085     create_aux_memory_mapper("Block offset table",
2086                              G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize),
2087                              G1BlockOffsetSharedArray::heap_map_factor());
2088 
2089   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
2090   G1RegionToSpaceMapper* cardtable_storage =
2091     create_aux_memory_mapper("Card table",
2092                              G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize),
2093                              G1SATBCardTableLoggingModRefBS::heap_map_factor());
2094 
2095   G1RegionToSpaceMapper* card_counts_storage =
2096     create_aux_memory_mapper("Card counts table",
2097                              G1CardCounts::compute_size(g1_rs.size() / HeapWordSize),
2098                              G1CardCounts::heap_map_factor());
2099 
2100   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
2101   G1RegionToSpaceMapper* prev_bitmap_storage =
2102     create_aux_memory_mapper("Prev Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2103   G1RegionToSpaceMapper* next_bitmap_storage =
2104     create_aux_memory_mapper("Next Bitmap", bitmap_size, CMBitMap::heap_map_factor());
2105 
2106   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
2107   g1_barrier_set()->initialize(cardtable_storage);
2108    // Do later initialization work for concurrent refinement.
2109   _cg1r->init(card_counts_storage);
2110 
2111   // 6843694 - ensure that the maximum region index can fit
2112   // in the remembered set structures.
2113   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2114   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2115 
2116   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2117   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2118   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2119             "too many cards per region");
2120 
2121   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2122 
2123   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
2124 
2125   {
2126     HeapWord* start = _hrm.reserved().start();
2127     HeapWord* end = _hrm.reserved().end();
2128     size_t granularity = HeapRegion::GrainBytes;
2129 
2130     _in_cset_fast_test.initialize(start, end, granularity);
2131     _humongous_reclaim_candidates.initialize(start, end, granularity);
2132   }
2133 
2134   // Create the ConcurrentMark data structure and thread.
2135   // (Must do this late, so that "max_regions" is defined.)
2136   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
2137   if (_cm == NULL || !_cm->completed_initialization()) {
2138     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2139     return JNI_ENOMEM;
2140   }
2141   _cmThread = _cm->cmThread();
2142 
2143   // Initialize the from_card cache structure of HeapRegionRemSet.
2144   HeapRegionRemSet::init_heap(max_regions());
2145 
2146   // Now expand into the initial heap size.
2147   if (!expand(init_byte_size)) {
2148     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2149     return JNI_ENOMEM;
2150   }
2151 
2152   // Perform any initialization actions delegated to the policy.
2153   g1_policy()->init();
2154 
2155   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2156                                                SATB_Q_FL_lock,
2157                                                G1SATBProcessCompletedThreshold,
2158                                                Shared_SATB_Q_lock);
2159 
2160   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2161                                                 DirtyCardQ_CBL_mon,
2162                                                 DirtyCardQ_FL_lock,
2163                                                 concurrent_g1_refine()->yellow_zone(),
2164                                                 concurrent_g1_refine()->red_zone(),
2165                                                 Shared_DirtyCardQ_lock);
2166 
2167   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2168                                     DirtyCardQ_CBL_mon,
2169                                     DirtyCardQ_FL_lock,
2170                                     -1, // never trigger processing
2171                                     -1, // no limit on length
2172                                     Shared_DirtyCardQ_lock,
2173                                     &JavaThread::dirty_card_queue_set());
2174 
2175   // Initialize the card queue set used to hold cards containing
2176   // references into the collection set.
2177   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2178                                              DirtyCardQ_CBL_mon,
2179                                              DirtyCardQ_FL_lock,
2180                                              -1, // never trigger processing
2181                                              -1, // no limit on length
2182                                              Shared_DirtyCardQ_lock,
2183                                              &JavaThread::dirty_card_queue_set());
2184 
2185   // Here we allocate the dummy HeapRegion that is required by the
2186   // G1AllocRegion class.
2187   HeapRegion* dummy_region = _hrm.get_dummy_region();
2188 
2189   // We'll re-use the same region whether the alloc region will
2190   // require BOT updates or not and, if it doesn't, then a non-young
2191   // region will complain that it cannot support allocations without
2192   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2193   dummy_region->set_eden();
2194   // Make sure it's full.
2195   dummy_region->set_top(dummy_region->end());
2196   G1AllocRegion::setup(this, dummy_region);
2197 
2198   _allocator->init_mutator_alloc_region();
2199 
2200   // Do create of the monitoring and management support so that
2201   // values in the heap have been properly initialized.
2202   _g1mm = new G1MonitoringSupport(this);
2203 
2204   G1StringDedup::initialize();
2205 
2206   _preserved_objs = NEW_C_HEAP_ARRAY(OopAndMarkOopStack, ParallelGCThreads, mtGC);
2207   for (uint i = 0; i < ParallelGCThreads; i++) {
2208     new (&_preserved_objs[i]) OopAndMarkOopStack();
2209   }
2210 
2211   return JNI_OK;
2212 }
2213 
2214 void G1CollectedHeap::stop() {
2215   // Stop all concurrent threads. We do this to make sure these threads
2216   // do not continue to execute and access resources (e.g. gclog_or_tty)
2217   // that are destroyed during shutdown.
2218   _cg1r->stop();
2219   _cmThread->stop();
2220   if (G1StringDedup::is_enabled()) {
2221     G1StringDedup::stop();
2222   }
2223 }
2224 
2225 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2226   return HeapRegion::max_region_size();
2227 }
2228 
2229 void G1CollectedHeap::post_initialize() {
2230   CollectedHeap::post_initialize();
2231   ref_processing_init();
2232 }
2233 
2234 void G1CollectedHeap::ref_processing_init() {
2235   // Reference processing in G1 currently works as follows:
2236   //
2237   // * There are two reference processor instances. One is
2238   //   used to record and process discovered references
2239   //   during concurrent marking; the other is used to
2240   //   record and process references during STW pauses
2241   //   (both full and incremental).
2242   // * Both ref processors need to 'span' the entire heap as
2243   //   the regions in the collection set may be dotted around.
2244   //
2245   // * For the concurrent marking ref processor:
2246   //   * Reference discovery is enabled at initial marking.
2247   //   * Reference discovery is disabled and the discovered
2248   //     references processed etc during remarking.
2249   //   * Reference discovery is MT (see below).
2250   //   * Reference discovery requires a barrier (see below).
2251   //   * Reference processing may or may not be MT
2252   //     (depending on the value of ParallelRefProcEnabled
2253   //     and ParallelGCThreads).
2254   //   * A full GC disables reference discovery by the CM
2255   //     ref processor and abandons any entries on it's
2256   //     discovered lists.
2257   //
2258   // * For the STW processor:
2259   //   * Non MT discovery is enabled at the start of a full GC.
2260   //   * Processing and enqueueing during a full GC is non-MT.
2261   //   * During a full GC, references are processed after marking.
2262   //
2263   //   * Discovery (may or may not be MT) is enabled at the start
2264   //     of an incremental evacuation pause.
2265   //   * References are processed near the end of a STW evacuation pause.
2266   //   * For both types of GC:
2267   //     * Discovery is atomic - i.e. not concurrent.
2268   //     * Reference discovery will not need a barrier.
2269 
2270   MemRegion mr = reserved_region();
2271 
2272   // Concurrent Mark ref processor
2273   _ref_processor_cm =
2274     new ReferenceProcessor(mr,    // span
2275                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2276                                 // mt processing
2277                            ParallelGCThreads,
2278                                 // degree of mt processing
2279                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2280                                 // mt discovery
2281                            MAX2(ParallelGCThreads, ConcGCThreads),
2282                                 // degree of mt discovery
2283                            false,
2284                                 // Reference discovery is not atomic
2285                            &_is_alive_closure_cm);
2286                                 // is alive closure
2287                                 // (for efficiency/performance)
2288 
2289   // STW ref processor
2290   _ref_processor_stw =
2291     new ReferenceProcessor(mr,    // span
2292                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2293                                 // mt processing
2294                            ParallelGCThreads,
2295                                 // degree of mt processing
2296                            (ParallelGCThreads > 1),
2297                                 // mt discovery
2298                            ParallelGCThreads,
2299                                 // degree of mt discovery
2300                            true,
2301                                 // Reference discovery is atomic
2302                            &_is_alive_closure_stw);
2303                                 // is alive closure
2304                                 // (for efficiency/performance)
2305 }
2306 
2307 size_t G1CollectedHeap::capacity() const {
2308   return _hrm.length() * HeapRegion::GrainBytes;
2309 }
2310 
2311 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2312   assert(!hr->is_continues_humongous(), "pre-condition");
2313   hr->reset_gc_time_stamp();
2314   if (hr->is_starts_humongous()) {
2315     uint first_index = hr->hrm_index() + 1;
2316     uint last_index = hr->last_hc_index();
2317     for (uint i = first_index; i < last_index; i += 1) {
2318       HeapRegion* chr = region_at(i);
2319       assert(chr->is_continues_humongous(), "sanity");
2320       chr->reset_gc_time_stamp();
2321     }
2322   }
2323 }
2324 
2325 #ifndef PRODUCT
2326 
2327 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2328 private:
2329   unsigned _gc_time_stamp;
2330   bool _failures;
2331 
2332 public:
2333   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2334     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2335 
2336   virtual bool doHeapRegion(HeapRegion* hr) {
2337     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2338     if (_gc_time_stamp != region_gc_time_stamp) {
2339       gclog_or_tty->print_cr("Region " HR_FORMAT " has GC time stamp = %d, "
2340                              "expected %d", HR_FORMAT_PARAMS(hr),
2341                              region_gc_time_stamp, _gc_time_stamp);
2342       _failures = true;
2343     }
2344     return false;
2345   }
2346 
2347   bool failures() { return _failures; }
2348 };
2349 
2350 void G1CollectedHeap::check_gc_time_stamps() {
2351   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2352   heap_region_iterate(&cl);
2353   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2354 }
2355 #endif // PRODUCT
2356 
2357 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2358                                                  DirtyCardQueue* into_cset_dcq,
2359                                                  bool concurrent,
2360                                                  uint worker_i) {
2361   // Clean cards in the hot card cache
2362   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2363   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2364 
2365   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2366   size_t n_completed_buffers = 0;
2367   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2368     n_completed_buffers++;
2369   }
2370   g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::UpdateRS, worker_i, n_completed_buffers);
2371   dcqs.clear_n_completed_buffers();
2372   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2373 }
2374 
2375 
2376 // Computes the sum of the storage used by the various regions.
2377 size_t G1CollectedHeap::used() const {
2378   size_t result = _allocator->used();
2379   if (_archive_allocator != NULL) {
2380     result += _archive_allocator->used();
2381   }
2382   return result;
2383 }
2384 
2385 size_t G1CollectedHeap::used_unlocked() const {
2386   return _allocator->used_unlocked();
2387 }
2388 
2389 class SumUsedClosure: public HeapRegionClosure {
2390   size_t _used;
2391 public:
2392   SumUsedClosure() : _used(0) {}
2393   bool doHeapRegion(HeapRegion* r) {
2394     if (!r->is_continues_humongous()) {
2395       _used += r->used();
2396     }
2397     return false;
2398   }
2399   size_t result() { return _used; }
2400 };
2401 
2402 size_t G1CollectedHeap::recalculate_used() const {
2403   double recalculate_used_start = os::elapsedTime();
2404 
2405   SumUsedClosure blk;
2406   heap_region_iterate(&blk);
2407 
2408   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2409   return blk.result();
2410 }
2411 
2412 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2413   switch (cause) {
2414     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2415     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2416     case GCCause::_dcmd_gc_run:             return ExplicitGCInvokesConcurrent;
2417     case GCCause::_g1_humongous_allocation: return true;
2418     case GCCause::_update_allocation_context_stats_inc: return true;
2419     case GCCause::_wb_conc_mark:            return true;
2420     default:                                return false;
2421   }
2422 }
2423 
2424 #ifndef PRODUCT
2425 void G1CollectedHeap::allocate_dummy_regions() {
2426   // Let's fill up most of the region
2427   size_t word_size = HeapRegion::GrainWords - 1024;
2428   // And as a result the region we'll allocate will be humongous.
2429   guarantee(is_humongous(word_size), "sanity");
2430 
2431   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2432     // Let's use the existing mechanism for the allocation
2433     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2434                                                  AllocationContext::system());
2435     if (dummy_obj != NULL) {
2436       MemRegion mr(dummy_obj, word_size);
2437       CollectedHeap::fill_with_object(mr);
2438     } else {
2439       // If we can't allocate once, we probably cannot allocate
2440       // again. Let's get out of the loop.
2441       break;
2442     }
2443   }
2444 }
2445 #endif // !PRODUCT
2446 
2447 void G1CollectedHeap::increment_old_marking_cycles_started() {
2448   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2449     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2450     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2451     _old_marking_cycles_started, _old_marking_cycles_completed));
2452 
2453   _old_marking_cycles_started++;
2454 }
2455 
2456 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2457   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2458 
2459   // We assume that if concurrent == true, then the caller is a
2460   // concurrent thread that was joined the Suspendible Thread
2461   // Set. If there's ever a cheap way to check this, we should add an
2462   // assert here.
2463 
2464   // Given that this method is called at the end of a Full GC or of a
2465   // concurrent cycle, and those can be nested (i.e., a Full GC can
2466   // interrupt a concurrent cycle), the number of full collections
2467   // completed should be either one (in the case where there was no
2468   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2469   // behind the number of full collections started.
2470 
2471   // This is the case for the inner caller, i.e. a Full GC.
2472   assert(concurrent ||
2473          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2474          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2475          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2476                  "is inconsistent with _old_marking_cycles_completed = %u",
2477                  _old_marking_cycles_started, _old_marking_cycles_completed));
2478 
2479   // This is the case for the outer caller, i.e. the concurrent cycle.
2480   assert(!concurrent ||
2481          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2482          err_msg("for outer caller (concurrent cycle): "
2483                  "_old_marking_cycles_started = %u "
2484                  "is inconsistent with _old_marking_cycles_completed = %u",
2485                  _old_marking_cycles_started, _old_marking_cycles_completed));
2486 
2487   _old_marking_cycles_completed += 1;
2488 
2489   // We need to clear the "in_progress" flag in the CM thread before
2490   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2491   // is set) so that if a waiter requests another System.gc() it doesn't
2492   // incorrectly see that a marking cycle is still in progress.
2493   if (concurrent) {
2494     _cmThread->set_idle();
2495   }
2496 
2497   // This notify_all() will ensure that a thread that called
2498   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2499   // and it's waiting for a full GC to finish will be woken up. It is
2500   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2501   FullGCCount_lock->notify_all();
2502 }
2503 
2504 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2505   collector_state()->set_concurrent_cycle_started(true);
2506   _gc_timer_cm->register_gc_start(start_time);
2507 
2508   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2509   trace_heap_before_gc(_gc_tracer_cm);
2510 }
2511 
2512 void G1CollectedHeap::register_concurrent_cycle_end() {
2513   if (collector_state()->concurrent_cycle_started()) {
2514     if (_cm->has_aborted()) {
2515       _gc_tracer_cm->report_concurrent_mode_failure();
2516     }
2517 
2518     _gc_timer_cm->register_gc_end();
2519     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2520 
2521     // Clear state variables to prepare for the next concurrent cycle.
2522      collector_state()->set_concurrent_cycle_started(false);
2523     _heap_summary_sent = false;
2524   }
2525 }
2526 
2527 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2528   if (collector_state()->concurrent_cycle_started()) {
2529     // This function can be called when:
2530     //  the cleanup pause is run
2531     //  the concurrent cycle is aborted before the cleanup pause.
2532     //  the concurrent cycle is aborted after the cleanup pause,
2533     //   but before the concurrent cycle end has been registered.
2534     // Make sure that we only send the heap information once.
2535     if (!_heap_summary_sent) {
2536       trace_heap_after_gc(_gc_tracer_cm);
2537       _heap_summary_sent = true;
2538     }
2539   }
2540 }
2541 
2542 void G1CollectedHeap::collect(GCCause::Cause cause) {
2543   assert_heap_not_locked();
2544 
2545   uint gc_count_before;
2546   uint old_marking_count_before;
2547   uint full_gc_count_before;
2548   bool retry_gc;
2549 
2550   do {
2551     retry_gc = false;
2552 
2553     {
2554       MutexLocker ml(Heap_lock);
2555 
2556       // Read the GC count while holding the Heap_lock
2557       gc_count_before = total_collections();
2558       full_gc_count_before = total_full_collections();
2559       old_marking_count_before = _old_marking_cycles_started;
2560     }
2561 
2562     if (should_do_concurrent_full_gc(cause)) {
2563       // Schedule an initial-mark evacuation pause that will start a
2564       // concurrent cycle. We're setting word_size to 0 which means that
2565       // we are not requesting a post-GC allocation.
2566       VM_G1IncCollectionPause op(gc_count_before,
2567                                  0,     /* word_size */
2568                                  true,  /* should_initiate_conc_mark */
2569                                  g1_policy()->max_pause_time_ms(),
2570                                  cause);
2571       op.set_allocation_context(AllocationContext::current());
2572 
2573       VMThread::execute(&op);
2574       if (!op.pause_succeeded()) {
2575         if (old_marking_count_before == _old_marking_cycles_started) {
2576           retry_gc = op.should_retry_gc();
2577         } else {
2578           // A Full GC happened while we were trying to schedule the
2579           // initial-mark GC. No point in starting a new cycle given
2580           // that the whole heap was collected anyway.
2581         }
2582 
2583         if (retry_gc) {
2584           if (GC_locker::is_active_and_needs_gc()) {
2585             GC_locker::stall_until_clear();
2586           }
2587         }
2588       }
2589     } else {
2590       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2591           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2592 
2593         // Schedule a standard evacuation pause. We're setting word_size
2594         // to 0 which means that we are not requesting a post-GC allocation.
2595         VM_G1IncCollectionPause op(gc_count_before,
2596                                    0,     /* word_size */
2597                                    false, /* should_initiate_conc_mark */
2598                                    g1_policy()->max_pause_time_ms(),
2599                                    cause);
2600         VMThread::execute(&op);
2601       } else {
2602         // Schedule a Full GC.
2603         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2604         VMThread::execute(&op);
2605       }
2606     }
2607   } while (retry_gc);
2608 }
2609 
2610 bool G1CollectedHeap::is_in(const void* p) const {
2611   if (_hrm.reserved().contains(p)) {
2612     // Given that we know that p is in the reserved space,
2613     // heap_region_containing_raw() should successfully
2614     // return the containing region.
2615     HeapRegion* hr = heap_region_containing_raw(p);
2616     return hr->is_in(p);
2617   } else {
2618     return false;
2619   }
2620 }
2621 
2622 #ifdef ASSERT
2623 bool G1CollectedHeap::is_in_exact(const void* p) const {
2624   bool contains = reserved_region().contains(p);
2625   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2626   if (contains && available) {
2627     return true;
2628   } else {
2629     return false;
2630   }
2631 }
2632 #endif
2633 
2634 // Iteration functions.
2635 
2636 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2637 
2638 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2639   ExtendedOopClosure* _cl;
2640 public:
2641   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2642   bool doHeapRegion(HeapRegion* r) {
2643     if (!r->is_continues_humongous()) {
2644       r->oop_iterate(_cl);
2645     }
2646     return false;
2647   }
2648 };
2649 
2650 // Iterates an ObjectClosure over all objects within a HeapRegion.
2651 
2652 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2653   ObjectClosure* _cl;
2654 public:
2655   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2656   bool doHeapRegion(HeapRegion* r) {
2657     if (!r->is_continues_humongous()) {
2658       r->object_iterate(_cl);
2659     }
2660     return false;
2661   }
2662 };
2663 
2664 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2665   IterateObjectClosureRegionClosure blk(cl);
2666   heap_region_iterate(&blk);
2667 }
2668 
2669 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2670   _hrm.iterate(cl);
2671 }
2672 
2673 void
2674 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2675                                          uint worker_id,
2676                                          HeapRegionClaimer *hrclaimer,
2677                                          bool concurrent) const {
2678   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2679 }
2680 
2681 // Clear the cached CSet starting regions and (more importantly)
2682 // the time stamps. Called when we reset the GC time stamp.
2683 void G1CollectedHeap::clear_cset_start_regions() {
2684   assert(_worker_cset_start_region != NULL, "sanity");
2685   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2686 
2687   for (uint i = 0; i < ParallelGCThreads; i++) {
2688     _worker_cset_start_region[i] = NULL;
2689     _worker_cset_start_region_time_stamp[i] = 0;
2690   }
2691 }
2692 
2693 // Given the id of a worker, obtain or calculate a suitable
2694 // starting region for iterating over the current collection set.
2695 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2696   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2697 
2698   HeapRegion* result = NULL;
2699   unsigned gc_time_stamp = get_gc_time_stamp();
2700 
2701   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2702     // Cached starting region for current worker was set
2703     // during the current pause - so it's valid.
2704     // Note: the cached starting heap region may be NULL
2705     // (when the collection set is empty).
2706     result = _worker_cset_start_region[worker_i];
2707     assert(result == NULL || result->in_collection_set(), "sanity");
2708     return result;
2709   }
2710 
2711   // The cached entry was not valid so let's calculate
2712   // a suitable starting heap region for this worker.
2713 
2714   // We want the parallel threads to start their collection
2715   // set iteration at different collection set regions to
2716   // avoid contention.
2717   // If we have:
2718   //          n collection set regions
2719   //          p threads
2720   // Then thread t will start at region floor ((t * n) / p)
2721 
2722   result = g1_policy()->collection_set();
2723   uint cs_size = g1_policy()->cset_region_length();
2724   uint active_workers = workers()->active_workers();
2725 
2726   uint end_ind   = (cs_size * worker_i) / active_workers;
2727   uint start_ind = 0;
2728 
2729   if (worker_i > 0 &&
2730       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2731     // Previous workers starting region is valid
2732     // so let's iterate from there
2733     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2734     result = _worker_cset_start_region[worker_i - 1];
2735   }
2736 
2737   for (uint i = start_ind; i < end_ind; i++) {
2738     result = result->next_in_collection_set();
2739   }
2740 
2741   // Note: the calculated starting heap region may be NULL
2742   // (when the collection set is empty).
2743   assert(result == NULL || result->in_collection_set(), "sanity");
2744   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2745          "should be updated only once per pause");
2746   _worker_cset_start_region[worker_i] = result;
2747   OrderAccess::storestore();
2748   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2749   return result;
2750 }
2751 
2752 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2753   HeapRegion* r = g1_policy()->collection_set();
2754   while (r != NULL) {
2755     HeapRegion* next = r->next_in_collection_set();
2756     if (cl->doHeapRegion(r)) {
2757       cl->incomplete();
2758       return;
2759     }
2760     r = next;
2761   }
2762 }
2763 
2764 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2765                                                   HeapRegionClosure *cl) {
2766   if (r == NULL) {
2767     // The CSet is empty so there's nothing to do.
2768     return;
2769   }
2770 
2771   assert(r->in_collection_set(),
2772          "Start region must be a member of the collection set.");
2773   HeapRegion* cur = r;
2774   while (cur != NULL) {
2775     HeapRegion* next = cur->next_in_collection_set();
2776     if (cl->doHeapRegion(cur) && false) {
2777       cl->incomplete();
2778       return;
2779     }
2780     cur = next;
2781   }
2782   cur = g1_policy()->collection_set();
2783   while (cur != r) {
2784     HeapRegion* next = cur->next_in_collection_set();
2785     if (cl->doHeapRegion(cur) && false) {
2786       cl->incomplete();
2787       return;
2788     }
2789     cur = next;
2790   }
2791 }
2792 
2793 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2794   HeapRegion* result = _hrm.next_region_in_heap(from);
2795   while (result != NULL && result->is_pinned()) {
2796     result = _hrm.next_region_in_heap(result);
2797   }
2798   return result;
2799 }
2800 
2801 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2802   HeapRegion* hr = heap_region_containing(addr);
2803   return hr->block_start(addr);
2804 }
2805 
2806 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2807   HeapRegion* hr = heap_region_containing(addr);
2808   return hr->block_size(addr);
2809 }
2810 
2811 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2812   HeapRegion* hr = heap_region_containing(addr);
2813   return hr->block_is_obj(addr);
2814 }
2815 
2816 bool G1CollectedHeap::supports_tlab_allocation() const {
2817   return true;
2818 }
2819 
2820 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2821   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2822 }
2823 
2824 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2825   return young_list()->eden_used_bytes();
2826 }
2827 
2828 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2829 // must be smaller than the humongous object limit.
2830 size_t G1CollectedHeap::max_tlab_size() const {
2831   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2832 }
2833 
2834 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2835   // Return the remaining space in the cur alloc region, but not less than
2836   // the min TLAB size.
2837 
2838   // Also, this value can be at most the humongous object threshold,
2839   // since we can't allow tlabs to grow big enough to accommodate
2840   // humongous objects.
2841 
2842   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2843   size_t max_tlab = max_tlab_size() * wordSize;
2844   if (hr == NULL) {
2845     return max_tlab;
2846   } else {
2847     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2848   }
2849 }
2850 
2851 size_t G1CollectedHeap::max_capacity() const {
2852   return _hrm.reserved().byte_size();
2853 }
2854 
2855 jlong G1CollectedHeap::millis_since_last_gc() {
2856   // assert(false, "NYI");
2857   return 0;
2858 }
2859 
2860 void G1CollectedHeap::prepare_for_verify() {
2861   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2862     ensure_parsability(false);
2863   }
2864   g1_rem_set()->prepare_for_verify();
2865 }
2866 
2867 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2868                                               VerifyOption vo) {
2869   switch (vo) {
2870   case VerifyOption_G1UsePrevMarking:
2871     return hr->obj_allocated_since_prev_marking(obj);
2872   case VerifyOption_G1UseNextMarking:
2873     return hr->obj_allocated_since_next_marking(obj);
2874   case VerifyOption_G1UseMarkWord:
2875     return false;
2876   default:
2877     ShouldNotReachHere();
2878   }
2879   return false; // keep some compilers happy
2880 }
2881 
2882 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2883   switch (vo) {
2884   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2885   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2886   case VerifyOption_G1UseMarkWord:    return NULL;
2887   default:                            ShouldNotReachHere();
2888   }
2889   return NULL; // keep some compilers happy
2890 }
2891 
2892 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2893   switch (vo) {
2894   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2895   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2896   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2897   default:                            ShouldNotReachHere();
2898   }
2899   return false; // keep some compilers happy
2900 }
2901 
2902 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2903   switch (vo) {
2904   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2905   case VerifyOption_G1UseNextMarking: return "NTAMS";
2906   case VerifyOption_G1UseMarkWord:    return "NONE";
2907   default:                            ShouldNotReachHere();
2908   }
2909   return NULL; // keep some compilers happy
2910 }
2911 
2912 class VerifyRootsClosure: public OopClosure {
2913 private:
2914   G1CollectedHeap* _g1h;
2915   VerifyOption     _vo;
2916   bool             _failures;
2917 public:
2918   // _vo == UsePrevMarking -> use "prev" marking information,
2919   // _vo == UseNextMarking -> use "next" marking information,
2920   // _vo == UseMarkWord    -> use mark word from object header.
2921   VerifyRootsClosure(VerifyOption vo) :
2922     _g1h(G1CollectedHeap::heap()),
2923     _vo(vo),
2924     _failures(false) { }
2925 
2926   bool failures() { return _failures; }
2927 
2928   template <class T> void do_oop_nv(T* p) {
2929     T heap_oop = oopDesc::load_heap_oop(p);
2930     if (!oopDesc::is_null(heap_oop)) {
2931       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2932       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2933         gclog_or_tty->print_cr("Root location " PTR_FORMAT " "
2934                                "points to dead obj " PTR_FORMAT, p2i(p), p2i(obj));
2935         if (_vo == VerifyOption_G1UseMarkWord) {
2936           gclog_or_tty->print_cr("  Mark word: " INTPTR_FORMAT, (intptr_t)obj->mark());
2937         }
2938         obj->print_on(gclog_or_tty);
2939         _failures = true;
2940       }
2941     }
2942   }
2943 
2944   void do_oop(oop* p)       { do_oop_nv(p); }
2945   void do_oop(narrowOop* p) { do_oop_nv(p); }
2946 };
2947 
2948 class G1VerifyCodeRootOopClosure: public OopClosure {
2949   G1CollectedHeap* _g1h;
2950   OopClosure* _root_cl;
2951   nmethod* _nm;
2952   VerifyOption _vo;
2953   bool _failures;
2954 
2955   template <class T> void do_oop_work(T* p) {
2956     // First verify that this root is live
2957     _root_cl->do_oop(p);
2958 
2959     if (!G1VerifyHeapRegionCodeRoots) {
2960       // We're not verifying the code roots attached to heap region.
2961       return;
2962     }
2963 
2964     // Don't check the code roots during marking verification in a full GC
2965     if (_vo == VerifyOption_G1UseMarkWord) {
2966       return;
2967     }
2968 
2969     // Now verify that the current nmethod (which contains p) is
2970     // in the code root list of the heap region containing the
2971     // object referenced by p.
2972 
2973     T heap_oop = oopDesc::load_heap_oop(p);
2974     if (!oopDesc::is_null(heap_oop)) {
2975       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2976 
2977       // Now fetch the region containing the object
2978       HeapRegion* hr = _g1h->heap_region_containing(obj);
2979       HeapRegionRemSet* hrrs = hr->rem_set();
2980       // Verify that the strong code root list for this region
2981       // contains the nmethod
2982       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2983         gclog_or_tty->print_cr("Code root location " PTR_FORMAT " "
2984                                "from nmethod " PTR_FORMAT " not in strong "
2985                                "code roots for region [" PTR_FORMAT "," PTR_FORMAT ")",
2986                                p2i(p), p2i(_nm), p2i(hr->bottom()), p2i(hr->end()));
2987         _failures = true;
2988       }
2989     }
2990   }
2991 
2992 public:
2993   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2994     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2995 
2996   void do_oop(oop* p) { do_oop_work(p); }
2997   void do_oop(narrowOop* p) { do_oop_work(p); }
2998 
2999   void set_nmethod(nmethod* nm) { _nm = nm; }
3000   bool failures() { return _failures; }
3001 };
3002 
3003 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3004   G1VerifyCodeRootOopClosure* _oop_cl;
3005 
3006 public:
3007   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3008     _oop_cl(oop_cl) {}
3009 
3010   void do_code_blob(CodeBlob* cb) {
3011     nmethod* nm = cb->as_nmethod_or_null();
3012     if (nm != NULL) {
3013       _oop_cl->set_nmethod(nm);
3014       nm->oops_do(_oop_cl);
3015     }
3016   }
3017 };
3018 
3019 class YoungRefCounterClosure : public OopClosure {
3020   G1CollectedHeap* _g1h;
3021   int              _count;
3022  public:
3023   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3024   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3025   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3026 
3027   int count() { return _count; }
3028   void reset_count() { _count = 0; };
3029 };
3030 
3031 class VerifyKlassClosure: public KlassClosure {
3032   YoungRefCounterClosure _young_ref_counter_closure;
3033   OopClosure *_oop_closure;
3034  public:
3035   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3036   void do_klass(Klass* k) {
3037     k->oops_do(_oop_closure);
3038 
3039     _young_ref_counter_closure.reset_count();
3040     k->oops_do(&_young_ref_counter_closure);
3041     if (_young_ref_counter_closure.count() > 0) {
3042       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", p2i(k)));
3043     }
3044   }
3045 };
3046 
3047 class VerifyLivenessOopClosure: public OopClosure {
3048   G1CollectedHeap* _g1h;
3049   VerifyOption _vo;
3050 public:
3051   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3052     _g1h(g1h), _vo(vo)
3053   { }
3054   void do_oop(narrowOop *p) { do_oop_work(p); }
3055   void do_oop(      oop *p) { do_oop_work(p); }
3056 
3057   template <class T> void do_oop_work(T *p) {
3058     oop obj = oopDesc::load_decode_heap_oop(p);
3059     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3060               "Dead object referenced by a not dead object");
3061   }
3062 };
3063 
3064 class VerifyObjsInRegionClosure: public ObjectClosure {
3065 private:
3066   G1CollectedHeap* _g1h;
3067   size_t _live_bytes;
3068   HeapRegion *_hr;
3069   VerifyOption _vo;
3070 public:
3071   // _vo == UsePrevMarking -> use "prev" marking information,
3072   // _vo == UseNextMarking -> use "next" marking information,
3073   // _vo == UseMarkWord    -> use mark word from object header.
3074   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3075     : _live_bytes(0), _hr(hr), _vo(vo) {
3076     _g1h = G1CollectedHeap::heap();
3077   }
3078   void do_object(oop o) {
3079     VerifyLivenessOopClosure isLive(_g1h, _vo);
3080     assert(o != NULL, "Huh?");
3081     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3082       // If the object is alive according to the mark word,
3083       // then verify that the marking information agrees.
3084       // Note we can't verify the contra-positive of the
3085       // above: if the object is dead (according to the mark
3086       // word), it may not be marked, or may have been marked
3087       // but has since became dead, or may have been allocated
3088       // since the last marking.
3089       if (_vo == VerifyOption_G1UseMarkWord) {
3090         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3091       }
3092 
3093       o->oop_iterate_no_header(&isLive);
3094       if (!_hr->obj_allocated_since_prev_marking(o)) {
3095         size_t obj_size = o->size();    // Make sure we don't overflow
3096         _live_bytes += (obj_size * HeapWordSize);
3097       }
3098     }
3099   }
3100   size_t live_bytes() { return _live_bytes; }
3101 };
3102 
3103 class VerifyArchiveOopClosure: public OopClosure {
3104 public:
3105   VerifyArchiveOopClosure(HeapRegion *hr) { }
3106   void do_oop(narrowOop *p) { do_oop_work(p); }
3107   void do_oop(      oop *p) { do_oop_work(p); }
3108 
3109   template <class T> void do_oop_work(T *p) {
3110     oop obj = oopDesc::load_decode_heap_oop(p);
3111     guarantee(obj == NULL || G1MarkSweep::in_archive_range(obj),
3112               err_msg("Archive object at " PTR_FORMAT " references a non-archive object at " PTR_FORMAT,
3113                       p2i(p), p2i(obj)));
3114   }
3115 };
3116 
3117 class VerifyArchiveRegionClosure: public ObjectClosure {
3118 public:
3119   VerifyArchiveRegionClosure(HeapRegion *hr) { }
3120   // Verify that all object pointers are to archive regions.
3121   void do_object(oop o) {
3122     VerifyArchiveOopClosure checkOop(NULL);
3123     assert(o != NULL, "Should not be here for NULL oops");
3124     o->oop_iterate_no_header(&checkOop);
3125   }
3126 };
3127 
3128 class VerifyRegionClosure: public HeapRegionClosure {
3129 private:
3130   bool             _par;
3131   VerifyOption     _vo;
3132   bool             _failures;
3133 public:
3134   // _vo == UsePrevMarking -> use "prev" marking information,
3135   // _vo == UseNextMarking -> use "next" marking information,
3136   // _vo == UseMarkWord    -> use mark word from object header.
3137   VerifyRegionClosure(bool par, VerifyOption vo)
3138     : _par(par),
3139       _vo(vo),
3140       _failures(false) {}
3141 
3142   bool failures() {
3143     return _failures;
3144   }
3145 
3146   bool doHeapRegion(HeapRegion* r) {
3147     // For archive regions, verify there are no heap pointers to
3148     // non-pinned regions. For all others, verify liveness info.
3149     if (r->is_archive()) {
3150       VerifyArchiveRegionClosure verify_oop_pointers(r);
3151       r->object_iterate(&verify_oop_pointers);
3152       return true;
3153     }
3154     if (!r->is_continues_humongous()) {
3155       bool failures = false;
3156       r->verify(_vo, &failures);
3157       if (failures) {
3158         _failures = true;
3159       } else {
3160         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3161         r->object_iterate(&not_dead_yet_cl);
3162         if (_vo != VerifyOption_G1UseNextMarking) {
3163           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3164             gclog_or_tty->print_cr("[" PTR_FORMAT "," PTR_FORMAT "] "
3165                                    "max_live_bytes " SIZE_FORMAT " "
3166                                    "< calculated " SIZE_FORMAT,
3167                                    p2i(r->bottom()), p2i(r->end()),
3168                                    r->max_live_bytes(),
3169                                  not_dead_yet_cl.live_bytes());
3170             _failures = true;
3171           }
3172         } else {
3173           // When vo == UseNextMarking we cannot currently do a sanity
3174           // check on the live bytes as the calculation has not been
3175           // finalized yet.
3176         }
3177       }
3178     }
3179     return false; // stop the region iteration if we hit a failure
3180   }
3181 };
3182 
3183 // This is the task used for parallel verification of the heap regions
3184 
3185 class G1ParVerifyTask: public AbstractGangTask {
3186 private:
3187   G1CollectedHeap*  _g1h;
3188   VerifyOption      _vo;
3189   bool              _failures;
3190   HeapRegionClaimer _hrclaimer;
3191 
3192 public:
3193   // _vo == UsePrevMarking -> use "prev" marking information,
3194   // _vo == UseNextMarking -> use "next" marking information,
3195   // _vo == UseMarkWord    -> use mark word from object header.
3196   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3197       AbstractGangTask("Parallel verify task"),
3198       _g1h(g1h),
3199       _vo(vo),
3200       _failures(false),
3201       _hrclaimer(g1h->workers()->active_workers()) {}
3202 
3203   bool failures() {
3204     return _failures;
3205   }
3206 
3207   void work(uint worker_id) {
3208     HandleMark hm;
3209     VerifyRegionClosure blk(true, _vo);
3210     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3211     if (blk.failures()) {
3212       _failures = true;
3213     }
3214   }
3215 };
3216 
3217 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3218   if (SafepointSynchronize::is_at_safepoint()) {
3219     assert(Thread::current()->is_VM_thread(),
3220            "Expected to be executed serially by the VM thread at this point");
3221 
3222     if (!silent) { gclog_or_tty->print("Roots "); }
3223     VerifyRootsClosure rootsCl(vo);
3224     VerifyKlassClosure klassCl(this, &rootsCl);
3225     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3226 
3227     // We apply the relevant closures to all the oops in the
3228     // system dictionary, class loader data graph, the string table
3229     // and the nmethods in the code cache.
3230     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3231     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3232 
3233     {
3234       G1RootProcessor root_processor(this, 1);
3235       root_processor.process_all_roots(&rootsCl,
3236                                        &cldCl,
3237                                        &blobsCl);
3238     }
3239 
3240     bool failures = rootsCl.failures() || codeRootsCl.failures();
3241 
3242     if (vo != VerifyOption_G1UseMarkWord) {
3243       // If we're verifying during a full GC then the region sets
3244       // will have been torn down at the start of the GC. Therefore
3245       // verifying the region sets will fail. So we only verify
3246       // the region sets when not in a full GC.
3247       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3248       verify_region_sets();
3249     }
3250 
3251     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3252     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3253 
3254       G1ParVerifyTask task(this, vo);
3255       workers()->run_task(&task);
3256       if (task.failures()) {
3257         failures = true;
3258       }
3259 
3260     } else {
3261       VerifyRegionClosure blk(false, vo);
3262       heap_region_iterate(&blk);
3263       if (blk.failures()) {
3264         failures = true;
3265       }
3266     }
3267 
3268     if (G1StringDedup::is_enabled()) {
3269       if (!silent) gclog_or_tty->print("StrDedup ");
3270       G1StringDedup::verify();
3271     }
3272 
3273     if (failures) {
3274       gclog_or_tty->print_cr("Heap:");
3275       // It helps to have the per-region information in the output to
3276       // help us track down what went wrong. This is why we call
3277       // print_extended_on() instead of print_on().
3278       print_extended_on(gclog_or_tty);
3279       gclog_or_tty->cr();
3280       gclog_or_tty->flush();
3281     }
3282     guarantee(!failures, "there should not have been any failures");
3283   } else {
3284     if (!silent) {
3285       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3286       if (G1StringDedup::is_enabled()) {
3287         gclog_or_tty->print(", StrDedup");
3288       }
3289       gclog_or_tty->print(") ");
3290     }
3291   }
3292 }
3293 
3294 void G1CollectedHeap::verify(bool silent) {
3295   verify(silent, VerifyOption_G1UsePrevMarking);
3296 }
3297 
3298 double G1CollectedHeap::verify(bool guard, const char* msg) {
3299   double verify_time_ms = 0.0;
3300 
3301   if (guard && total_collections() >= VerifyGCStartAt) {
3302     double verify_start = os::elapsedTime();
3303     HandleMark hm;  // Discard invalid handles created during verification
3304     prepare_for_verify();
3305     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3306     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3307   }
3308 
3309   return verify_time_ms;
3310 }
3311 
3312 void G1CollectedHeap::verify_before_gc() {
3313   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3314   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3315 }
3316 
3317 void G1CollectedHeap::verify_after_gc() {
3318   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3319   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3320 }
3321 
3322 class PrintRegionClosure: public HeapRegionClosure {
3323   outputStream* _st;
3324 public:
3325   PrintRegionClosure(outputStream* st) : _st(st) {}
3326   bool doHeapRegion(HeapRegion* r) {
3327     r->print_on(_st);
3328     return false;
3329   }
3330 };
3331 
3332 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3333                                        const HeapRegion* hr,
3334                                        const VerifyOption vo) const {
3335   switch (vo) {
3336   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3337   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3338   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked() && !hr->is_archive();
3339   default:                            ShouldNotReachHere();
3340   }
3341   return false; // keep some compilers happy
3342 }
3343 
3344 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3345                                        const VerifyOption vo) const {
3346   switch (vo) {
3347   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3348   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3349   case VerifyOption_G1UseMarkWord: {
3350     HeapRegion* hr = _hrm.addr_to_region((HeapWord*)obj);
3351     return !obj->is_gc_marked() && !hr->is_archive();
3352   }
3353   default:                            ShouldNotReachHere();
3354   }
3355   return false; // keep some compilers happy
3356 }
3357 
3358 void G1CollectedHeap::print_on(outputStream* st) const {
3359   st->print(" %-20s", "garbage-first heap");
3360   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3361             capacity()/K, used_unlocked()/K);
3362   st->print(" [" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT ")",
3363             p2i(_hrm.reserved().start()),
3364             p2i(_hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords),
3365             p2i(_hrm.reserved().end()));
3366   st->cr();
3367   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3368   uint young_regions = _young_list->length();
3369   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3370             (size_t) young_regions * HeapRegion::GrainBytes / K);
3371   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3372   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3373             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3374   st->cr();
3375   MetaspaceAux::print_on(st);
3376 }
3377 
3378 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3379   print_on(st);
3380 
3381   // Print the per-region information.
3382   st->cr();
3383   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3384                "HS=humongous(starts), HC=humongous(continues), "
3385                "CS=collection set, F=free, A=archive, TS=gc time stamp, "
3386                "PTAMS=previous top-at-mark-start, "
3387                "NTAMS=next top-at-mark-start)");
3388   PrintRegionClosure blk(st);
3389   heap_region_iterate(&blk);
3390 }
3391 
3392 void G1CollectedHeap::print_on_error(outputStream* st) const {
3393   this->CollectedHeap::print_on_error(st);
3394 
3395   if (_cm != NULL) {
3396     st->cr();
3397     _cm->print_on_error(st);
3398   }
3399 }
3400 
3401 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3402   workers()->print_worker_threads_on(st);
3403   _cmThread->print_on(st);
3404   st->cr();
3405   _cm->print_worker_threads_on(st);
3406   _cg1r->print_worker_threads_on(st);
3407   if (G1StringDedup::is_enabled()) {
3408     G1StringDedup::print_worker_threads_on(st);
3409   }
3410 }
3411 
3412 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3413   workers()->threads_do(tc);
3414   tc->do_thread(_cmThread);
3415   _cg1r->threads_do(tc);
3416   if (G1StringDedup::is_enabled()) {
3417     G1StringDedup::threads_do(tc);
3418   }
3419 }
3420 
3421 void G1CollectedHeap::print_tracing_info() const {
3422   // We'll overload this to mean "trace GC pause statistics."
3423   if (TraceYoungGenTime || TraceOldGenTime) {
3424     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3425     // to that.
3426     g1_policy()->print_tracing_info();
3427   }
3428   if (G1SummarizeRSetStats) {
3429     g1_rem_set()->print_summary_info();
3430   }
3431   if (G1SummarizeConcMark) {
3432     concurrent_mark()->print_summary_info();
3433   }
3434   g1_policy()->print_yg_surv_rate_info();
3435 }
3436 
3437 #ifndef PRODUCT
3438 // Helpful for debugging RSet issues.
3439 
3440 class PrintRSetsClosure : public HeapRegionClosure {
3441 private:
3442   const char* _msg;
3443   size_t _occupied_sum;
3444 
3445 public:
3446   bool doHeapRegion(HeapRegion* r) {
3447     HeapRegionRemSet* hrrs = r->rem_set();
3448     size_t occupied = hrrs->occupied();
3449     _occupied_sum += occupied;
3450 
3451     gclog_or_tty->print_cr("Printing RSet for region " HR_FORMAT,
3452                            HR_FORMAT_PARAMS(r));
3453     if (occupied == 0) {
3454       gclog_or_tty->print_cr("  RSet is empty");
3455     } else {
3456       hrrs->print();
3457     }
3458     gclog_or_tty->print_cr("----------");
3459     return false;
3460   }
3461 
3462   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3463     gclog_or_tty->cr();
3464     gclog_or_tty->print_cr("========================================");
3465     gclog_or_tty->print_cr("%s", msg);
3466     gclog_or_tty->cr();
3467   }
3468 
3469   ~PrintRSetsClosure() {
3470     gclog_or_tty->print_cr("Occupied Sum: " SIZE_FORMAT, _occupied_sum);
3471     gclog_or_tty->print_cr("========================================");
3472     gclog_or_tty->cr();
3473   }
3474 };
3475 
3476 void G1CollectedHeap::print_cset_rsets() {
3477   PrintRSetsClosure cl("Printing CSet RSets");
3478   collection_set_iterate(&cl);
3479 }
3480 
3481 void G1CollectedHeap::print_all_rsets() {
3482   PrintRSetsClosure cl("Printing All RSets");;
3483   heap_region_iterate(&cl);
3484 }
3485 #endif // PRODUCT
3486 
3487 G1HeapSummary G1CollectedHeap::create_g1_heap_summary() {
3488   YoungList* young_list = heap()->young_list();
3489 
3490   size_t eden_used_bytes = young_list->eden_used_bytes();
3491   size_t survivor_used_bytes = young_list->survivor_used_bytes();
3492 
3493   size_t eden_capacity_bytes =
3494     (g1_policy()->young_list_target_length() * HeapRegion::GrainBytes) - survivor_used_bytes;
3495 
3496   VirtualSpaceSummary heap_summary = create_heap_space_summary();
3497   return G1HeapSummary(heap_summary, used(), eden_used_bytes, eden_capacity_bytes, survivor_used_bytes);
3498 }
3499 
3500 void G1CollectedHeap::trace_heap(GCWhen::Type when, const GCTracer* gc_tracer) {
3501   const G1HeapSummary& heap_summary = create_g1_heap_summary();
3502   gc_tracer->report_gc_heap_summary(when, heap_summary);
3503 
3504   const MetaspaceSummary& metaspace_summary = create_metaspace_summary();
3505   gc_tracer->report_metaspace_summary(when, metaspace_summary);
3506 }
3507 
3508 
3509 G1CollectedHeap* G1CollectedHeap::heap() {
3510   CollectedHeap* heap = Universe::heap();
3511   assert(heap != NULL, "Uninitialized access to G1CollectedHeap::heap()");
3512   assert(heap->kind() == CollectedHeap::G1CollectedHeap, "Not a G1CollectedHeap");
3513   return (G1CollectedHeap*)heap;
3514 }
3515 
3516 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3517   // always_do_update_barrier = false;
3518   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3519   // Fill TLAB's and such
3520   accumulate_statistics_all_tlabs();
3521   ensure_parsability(true);
3522 
3523   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3524       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3525     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3526   }
3527 }
3528 
3529 void G1CollectedHeap::gc_epilogue(bool full) {
3530 
3531   if (G1SummarizeRSetStats &&
3532       (G1SummarizeRSetStatsPeriod > 0) &&
3533       // we are at the end of the GC. Total collections has already been increased.
3534       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3535     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3536   }
3537 
3538   // FIXME: what is this about?
3539   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3540   // is set.
3541   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3542                         "derived pointer present"));
3543   // always_do_update_barrier = true;
3544 
3545   resize_all_tlabs();
3546   allocation_context_stats().update(full);
3547 
3548   // We have just completed a GC. Update the soft reference
3549   // policy with the new heap occupancy
3550   Universe::update_heap_info_at_gc();
3551 }
3552 
3553 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3554                                                uint gc_count_before,
3555                                                bool* succeeded,
3556                                                GCCause::Cause gc_cause) {
3557   assert_heap_not_locked_and_not_at_safepoint();
3558   g1_policy()->record_stop_world_start();
3559   VM_G1IncCollectionPause op(gc_count_before,
3560                              word_size,
3561                              false, /* should_initiate_conc_mark */
3562                              g1_policy()->max_pause_time_ms(),
3563                              gc_cause);
3564 
3565   op.set_allocation_context(AllocationContext::current());
3566   VMThread::execute(&op);
3567 
3568   HeapWord* result = op.result();
3569   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3570   assert(result == NULL || ret_succeeded,
3571          "the result should be NULL if the VM did not succeed");
3572   *succeeded = ret_succeeded;
3573 
3574   assert_heap_not_locked();
3575   return result;
3576 }
3577 
3578 void
3579 G1CollectedHeap::doConcurrentMark() {
3580   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3581   if (!_cmThread->in_progress()) {
3582     _cmThread->set_started();
3583     CGC_lock->notify();
3584   }
3585 }
3586 
3587 size_t G1CollectedHeap::pending_card_num() {
3588   size_t extra_cards = 0;
3589   JavaThread *curr = Threads::first();
3590   while (curr != NULL) {
3591     DirtyCardQueue& dcq = curr->dirty_card_queue();
3592     extra_cards += dcq.size();
3593     curr = curr->next();
3594   }
3595   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3596   size_t buffer_size = dcqs.buffer_size();
3597   size_t buffer_num = dcqs.completed_buffers_num();
3598 
3599   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3600   // in bytes - not the number of 'entries'. We need to convert
3601   // into a number of cards.
3602   return (buffer_size * buffer_num + extra_cards) / oopSize;
3603 }
3604 
3605 size_t G1CollectedHeap::cards_scanned() {
3606   return g1_rem_set()->cardsScanned();
3607 }
3608 
3609 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3610  private:
3611   size_t _total_humongous;
3612   size_t _candidate_humongous;
3613 
3614   DirtyCardQueue _dcq;
3615 
3616   // We don't nominate objects with many remembered set entries, on
3617   // the assumption that such objects are likely still live.
3618   bool is_remset_small(HeapRegion* region) const {
3619     HeapRegionRemSet* const rset = region->rem_set();
3620     return G1EagerReclaimHumongousObjectsWithStaleRefs
3621       ? rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)
3622       : rset->is_empty();
3623   }
3624 
3625   bool is_typeArray_region(HeapRegion* region) const {
3626     return oop(region->bottom())->is_typeArray();
3627   }
3628 
3629   bool humongous_region_is_candidate(G1CollectedHeap* heap, HeapRegion* region) const {
3630     assert(region->is_starts_humongous(), "Must start a humongous object");
3631 
3632     // Candidate selection must satisfy the following constraints
3633     // while concurrent marking is in progress:
3634     //
3635     // * In order to maintain SATB invariants, an object must not be
3636     // reclaimed if it was allocated before the start of marking and
3637     // has not had its references scanned.  Such an object must have
3638     // its references (including type metadata) scanned to ensure no
3639     // live objects are missed by the marking process.  Objects
3640     // allocated after the start of concurrent marking don't need to
3641     // be scanned.
3642     //
3643     // * An object must not be reclaimed if it is on the concurrent
3644     // mark stack.  Objects allocated after the start of concurrent
3645     // marking are never pushed on the mark stack.
3646     //
3647     // Nominating only objects allocated after the start of concurrent
3648     // marking is sufficient to meet both constraints.  This may miss
3649     // some objects that satisfy the constraints, but the marking data
3650     // structures don't support efficiently performing the needed
3651     // additional tests or scrubbing of the mark stack.
3652     //
3653     // However, we presently only nominate is_typeArray() objects.
3654     // A humongous object containing references induces remembered
3655     // set entries on other regions.  In order to reclaim such an
3656     // object, those remembered sets would need to be cleaned up.
3657     //
3658     // We also treat is_typeArray() objects specially, allowing them
3659     // to be reclaimed even if allocated before the start of
3660     // concurrent mark.  For this we rely on mark stack insertion to
3661     // exclude is_typeArray() objects, preventing reclaiming an object
3662     // that is in the mark stack.  We also rely on the metadata for
3663     // such objects to be built-in and so ensured to be kept live.
3664     // Frequent allocation and drop of large binary blobs is an
3665     // important use case for eager reclaim, and this special handling
3666     // may reduce needed headroom.
3667 
3668     return is_typeArray_region(region) && is_remset_small(region);
3669   }
3670 
3671  public:
3672   RegisterHumongousWithInCSetFastTestClosure()
3673   : _total_humongous(0),
3674     _candidate_humongous(0),
3675     _dcq(&JavaThread::dirty_card_queue_set()) {
3676   }
3677 
3678   virtual bool doHeapRegion(HeapRegion* r) {
3679     if (!r->is_starts_humongous()) {
3680       return false;
3681     }
3682     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3683 
3684     bool is_candidate = humongous_region_is_candidate(g1h, r);
3685     uint rindex = r->hrm_index();
3686     g1h->set_humongous_reclaim_candidate(rindex, is_candidate);
3687     if (is_candidate) {
3688       _candidate_humongous++;
3689       g1h->register_humongous_region_with_cset(rindex);
3690       // Is_candidate already filters out humongous object with large remembered sets.
3691       // If we have a humongous object with a few remembered sets, we simply flush these
3692       // remembered set entries into the DCQS. That will result in automatic
3693       // re-evaluation of their remembered set entries during the following evacuation
3694       // phase.
3695       if (!r->rem_set()->is_empty()) {
3696         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3697                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3698         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3699         HeapRegionRemSetIterator hrrs(r->rem_set());
3700         size_t card_index;
3701         while (hrrs.has_next(card_index)) {
3702           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3703           // The remembered set might contain references to already freed
3704           // regions. Filter out such entries to avoid failing card table
3705           // verification.
3706           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3707             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3708               *card_ptr = CardTableModRefBS::dirty_card_val();
3709               _dcq.enqueue(card_ptr);
3710             }
3711           }
3712         }
3713         r->rem_set()->clear_locked();
3714       }
3715       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3716     }
3717     _total_humongous++;
3718 
3719     return false;
3720   }
3721 
3722   size_t total_humongous() const { return _total_humongous; }
3723   size_t candidate_humongous() const { return _candidate_humongous; }
3724 
3725   void flush_rem_set_entries() { _dcq.flush(); }
3726 };
3727 
3728 void G1CollectedHeap::register_humongous_regions_with_cset() {
3729   if (!G1EagerReclaimHumongousObjects) {
3730     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3731     return;
3732   }
3733   double time = os::elapsed_counter();
3734 
3735   // Collect reclaim candidate information and register candidates with cset.
3736   RegisterHumongousWithInCSetFastTestClosure cl;
3737   heap_region_iterate(&cl);
3738 
3739   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3740   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3741                                                                   cl.total_humongous(),
3742                                                                   cl.candidate_humongous());
3743   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3744 
3745   // Finally flush all remembered set entries to re-check into the global DCQS.
3746   cl.flush_rem_set_entries();
3747 }
3748 
3749 void
3750 G1CollectedHeap::setup_surviving_young_words() {
3751   assert(_surviving_young_words == NULL, "pre-condition");
3752   uint array_length = g1_policy()->young_cset_region_length();
3753   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3754   if (_surviving_young_words == NULL) {
3755     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3756                           "Not enough space for young surv words summary.");
3757   }
3758   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3759 #ifdef ASSERT
3760   for (uint i = 0;  i < array_length; ++i) {
3761     assert( _surviving_young_words[i] == 0, "memset above" );
3762   }
3763 #endif // !ASSERT
3764 }
3765 
3766 void
3767 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3768   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3769   uint array_length = g1_policy()->young_cset_region_length();
3770   for (uint i = 0; i < array_length; ++i) {
3771     _surviving_young_words[i] += surv_young_words[i];
3772   }
3773 }
3774 
3775 void
3776 G1CollectedHeap::cleanup_surviving_young_words() {
3777   guarantee( _surviving_young_words != NULL, "pre-condition" );
3778   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3779   _surviving_young_words = NULL;
3780 }
3781 
3782 #ifdef ASSERT
3783 class VerifyCSetClosure: public HeapRegionClosure {
3784 public:
3785   bool doHeapRegion(HeapRegion* hr) {
3786     // Here we check that the CSet region's RSet is ready for parallel
3787     // iteration. The fields that we'll verify are only manipulated
3788     // when the region is part of a CSet and is collected. Afterwards,
3789     // we reset these fields when we clear the region's RSet (when the
3790     // region is freed) so they are ready when the region is
3791     // re-allocated. The only exception to this is if there's an
3792     // evacuation failure and instead of freeing the region we leave
3793     // it in the heap. In that case, we reset these fields during
3794     // evacuation failure handling.
3795     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3796 
3797     // Here's a good place to add any other checks we'd like to
3798     // perform on CSet regions.
3799     return false;
3800   }
3801 };
3802 #endif // ASSERT
3803 
3804 uint G1CollectedHeap::num_task_queues() const {
3805   return _task_queues->size();
3806 }
3807 
3808 #if TASKQUEUE_STATS
3809 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3810   st->print_raw_cr("GC Task Stats");
3811   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3812   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3813 }
3814 
3815 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3816   print_taskqueue_stats_hdr(st);
3817 
3818   TaskQueueStats totals;
3819   const uint n = num_task_queues();
3820   for (uint i = 0; i < n; ++i) {
3821     st->print("%3u ", i); task_queue(i)->stats.print(st); st->cr();
3822     totals += task_queue(i)->stats;
3823   }
3824   st->print_raw("tot "); totals.print(st); st->cr();
3825 
3826   DEBUG_ONLY(totals.verify());
3827 }
3828 
3829 void G1CollectedHeap::reset_taskqueue_stats() {
3830   const uint n = num_task_queues();
3831   for (uint i = 0; i < n; ++i) {
3832     task_queue(i)->stats.reset();
3833   }
3834 }
3835 #endif // TASKQUEUE_STATS
3836 
3837 void G1CollectedHeap::log_gc_header() {
3838   if (!G1Log::fine()) {
3839     return;
3840   }
3841 
3842   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3843 
3844   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3845     .append(collector_state()->gcs_are_young() ? "(young)" : "(mixed)")
3846     .append(collector_state()->during_initial_mark_pause() ? " (initial-mark)" : "");
3847 
3848   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3849 }
3850 
3851 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3852   if (!G1Log::fine()) {
3853     return;
3854   }
3855 
3856   if (G1Log::finer()) {
3857     if (evacuation_failed()) {
3858       gclog_or_tty->print(" (to-space exhausted)");
3859     }
3860     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3861     g1_policy()->phase_times()->note_gc_end();
3862     g1_policy()->phase_times()->print(pause_time_sec);
3863     g1_policy()->print_detailed_heap_transition();
3864   } else {
3865     if (evacuation_failed()) {
3866       gclog_or_tty->print("--");
3867     }
3868     g1_policy()->print_heap_transition();
3869     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3870   }
3871   gclog_or_tty->flush();
3872 }
3873 
3874 void G1CollectedHeap::wait_for_root_region_scanning() {
3875   double scan_wait_start = os::elapsedTime();
3876   // We have to wait until the CM threads finish scanning the
3877   // root regions as it's the only way to ensure that all the
3878   // objects on them have been correctly scanned before we start
3879   // moving them during the GC.
3880   bool waited = _cm->root_regions()->wait_until_scan_finished();
3881   double wait_time_ms = 0.0;
3882   if (waited) {
3883     double scan_wait_end = os::elapsedTime();
3884     wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3885   }
3886   g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3887 }
3888 
3889 bool
3890 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3891   assert_at_safepoint(true /* should_be_vm_thread */);
3892   guarantee(!is_gc_active(), "collection is not reentrant");
3893 
3894   if (GC_locker::check_active_before_gc()) {
3895     return false;
3896   }
3897 
3898   _gc_timer_stw->register_gc_start();
3899 
3900   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3901 
3902   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3903   ResourceMark rm;
3904 
3905   wait_for_root_region_scanning();
3906 
3907   G1Log::update_level();
3908   print_heap_before_gc();
3909   trace_heap_before_gc(_gc_tracer_stw);
3910 
3911   verify_region_sets_optional();
3912   verify_dirty_young_regions();
3913 
3914   // This call will decide whether this pause is an initial-mark
3915   // pause. If it is, during_initial_mark_pause() will return true
3916   // for the duration of this pause.
3917   g1_policy()->decide_on_conc_mark_initiation();
3918 
3919   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3920   assert(!collector_state()->during_initial_mark_pause() ||
3921           collector_state()->gcs_are_young(), "sanity");
3922 
3923   // We also do not allow mixed GCs during marking.
3924   assert(!collector_state()->mark_in_progress() || collector_state()->gcs_are_young(), "sanity");
3925 
3926   // Record whether this pause is an initial mark. When the current
3927   // thread has completed its logging output and it's safe to signal
3928   // the CM thread, the flag's value in the policy has been reset.
3929   bool should_start_conc_mark = collector_state()->during_initial_mark_pause();
3930 
3931   // Inner scope for scope based logging, timers, and stats collection
3932   {
3933     EvacuationInfo evacuation_info;
3934 
3935     if (collector_state()->during_initial_mark_pause()) {
3936       // We are about to start a marking cycle, so we increment the
3937       // full collection counter.
3938       increment_old_marking_cycles_started();
3939       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3940     }
3941 
3942     _gc_tracer_stw->report_yc_type(collector_state()->yc_type());
3943 
3944     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3945 
3946     uint active_workers = AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
3947                                                                   workers()->active_workers(),
3948                                                                   Threads::number_of_non_daemon_threads());
3949     workers()->set_active_workers(active_workers);
3950 
3951     double pause_start_sec = os::elapsedTime();
3952     g1_policy()->phase_times()->note_gc_start(active_workers, collector_state()->mark_in_progress());
3953     log_gc_header();
3954 
3955     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3956     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3957 
3958     // If the secondary_free_list is not empty, append it to the
3959     // free_list. No need to wait for the cleanup operation to finish;
3960     // the region allocation code will check the secondary_free_list
3961     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3962     // set, skip this step so that the region allocation code has to
3963     // get entries from the secondary_free_list.
3964     if (!G1StressConcRegionFreeing) {
3965       append_secondary_free_list_if_not_empty_with_lock();
3966     }
3967 
3968     assert(check_young_list_well_formed(), "young list should be well formed");
3969 
3970     // Don't dynamically change the number of GC threads this early.  A value of
3971     // 0 is used to indicate serial work.  When parallel work is done,
3972     // it will be set.
3973 
3974     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3975       IsGCActiveMark x;
3976 
3977       gc_prologue(false);
3978       increment_total_collections(false /* full gc */);
3979       increment_gc_time_stamp();
3980 
3981       verify_before_gc();
3982 
3983       check_bitmaps("GC Start");
3984 
3985       COMPILER2_PRESENT(DerivedPointerTable::clear());
3986 
3987       // Please see comment in g1CollectedHeap.hpp and
3988       // G1CollectedHeap::ref_processing_init() to see how
3989       // reference processing currently works in G1.
3990 
3991       // Enable discovery in the STW reference processor
3992       ref_processor_stw()->enable_discovery();
3993 
3994       {
3995         // We want to temporarily turn off discovery by the
3996         // CM ref processor, if necessary, and turn it back on
3997         // on again later if we do. Using a scoped
3998         // NoRefDiscovery object will do this.
3999         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4000 
4001         // Forget the current alloc region (we might even choose it to be part
4002         // of the collection set!).
4003         _allocator->release_mutator_alloc_region();
4004 
4005         // We should call this after we retire the mutator alloc
4006         // region(s) so that all the ALLOC / RETIRE events are generated
4007         // before the start GC event.
4008         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4009 
4010         // This timing is only used by the ergonomics to handle our pause target.
4011         // It is unclear why this should not include the full pause. We will
4012         // investigate this in CR 7178365.
4013         //
4014         // Preserving the old comment here if that helps the investigation:
4015         //
4016         // The elapsed time induced by the start time below deliberately elides
4017         // the possible verification above.
4018         double sample_start_time_sec = os::elapsedTime();
4019 
4020 #if YOUNG_LIST_VERBOSE
4021         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4022         _young_list->print();
4023         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4024 #endif // YOUNG_LIST_VERBOSE
4025 
4026         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4027 
4028 #if YOUNG_LIST_VERBOSE
4029         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4030         _young_list->print();
4031 #endif // YOUNG_LIST_VERBOSE
4032 
4033         if (collector_state()->during_initial_mark_pause()) {
4034           concurrent_mark()->checkpointRootsInitialPre();
4035         }
4036 
4037 #if YOUNG_LIST_VERBOSE
4038         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4039         _young_list->print();
4040         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4041 #endif // YOUNG_LIST_VERBOSE
4042 
4043         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4044 
4045         register_humongous_regions_with_cset();
4046 
4047         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
4048 
4049         _cm->note_start_of_gc();
4050         // We call this after finalize_cset() to
4051         // ensure that the CSet has been finalized.
4052         _cm->verify_no_cset_oops();
4053 
4054         if (_hr_printer.is_active()) {
4055           HeapRegion* hr = g1_policy()->collection_set();
4056           while (hr != NULL) {
4057             _hr_printer.cset(hr);
4058             hr = hr->next_in_collection_set();
4059           }
4060         }
4061 
4062 #ifdef ASSERT
4063         VerifyCSetClosure cl;
4064         collection_set_iterate(&cl);
4065 #endif // ASSERT
4066 
4067         setup_surviving_young_words();
4068 
4069         // Initialize the GC alloc regions.
4070         _allocator->init_gc_alloc_regions(evacuation_info);
4071 
4072         // Actually do the work...
4073         evacuate_collection_set(evacuation_info);
4074 
4075         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4076 
4077         eagerly_reclaim_humongous_regions();
4078 
4079         g1_policy()->clear_collection_set();
4080 
4081         cleanup_surviving_young_words();
4082 
4083         // Start a new incremental collection set for the next pause.
4084         g1_policy()->start_incremental_cset_building();
4085 
4086         clear_cset_fast_test();
4087 
4088         _young_list->reset_sampled_info();
4089 
4090         // Don't check the whole heap at this point as the
4091         // GC alloc regions from this pause have been tagged
4092         // as survivors and moved on to the survivor list.
4093         // Survivor regions will fail the !is_young() check.
4094         assert(check_young_list_empty(false /* check_heap */),
4095           "young list should be empty");
4096 
4097 #if YOUNG_LIST_VERBOSE
4098         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4099         _young_list->print();
4100 #endif // YOUNG_LIST_VERBOSE
4101 
4102         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4103                                              _young_list->first_survivor_region(),
4104                                              _young_list->last_survivor_region());
4105 
4106         _young_list->reset_auxilary_lists();
4107 
4108         if (evacuation_failed()) {
4109           _allocator->set_used(recalculate_used());
4110           if (_archive_allocator != NULL) {
4111             _archive_allocator->clear_used();
4112           }
4113           for (uint i = 0; i < ParallelGCThreads; i++) {
4114             if (_evacuation_failed_info_array[i].has_failed()) {
4115               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4116             }
4117           }
4118         } else {
4119           // The "used" of the the collection set have already been subtracted
4120           // when they were freed.  Add in the bytes evacuated.
4121           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
4122         }
4123 
4124         if (collector_state()->during_initial_mark_pause()) {
4125           // We have to do this before we notify the CM threads that
4126           // they can start working to make sure that all the
4127           // appropriate initialization is done on the CM object.
4128           concurrent_mark()->checkpointRootsInitialPost();
4129           collector_state()->set_mark_in_progress(true);
4130           // Note that we don't actually trigger the CM thread at
4131           // this point. We do that later when we're sure that
4132           // the current thread has completed its logging output.
4133         }
4134 
4135         allocate_dummy_regions();
4136 
4137 #if YOUNG_LIST_VERBOSE
4138         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4139         _young_list->print();
4140         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4141 #endif // YOUNG_LIST_VERBOSE
4142 
4143         _allocator->init_mutator_alloc_region();
4144 
4145         {
4146           size_t expand_bytes = g1_policy()->expansion_amount();
4147           if (expand_bytes > 0) {
4148             size_t bytes_before = capacity();
4149             // No need for an ergo verbose message here,
4150             // expansion_amount() does this when it returns a value > 0.
4151             if (!expand(expand_bytes)) {
4152               // We failed to expand the heap. Cannot do anything about it.
4153             }
4154           }
4155         }
4156 
4157         // We redo the verification but now wrt to the new CSet which
4158         // has just got initialized after the previous CSet was freed.
4159         _cm->verify_no_cset_oops();
4160         _cm->note_end_of_gc();
4161 
4162         // This timing is only used by the ergonomics to handle our pause target.
4163         // It is unclear why this should not include the full pause. We will
4164         // investigate this in CR 7178365.
4165         double sample_end_time_sec = os::elapsedTime();
4166         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4167         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4168 
4169         MemoryService::track_memory_usage();
4170 
4171         // In prepare_for_verify() below we'll need to scan the deferred
4172         // update buffers to bring the RSets up-to-date if
4173         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4174         // the update buffers we'll probably need to scan cards on the
4175         // regions we just allocated to (i.e., the GC alloc
4176         // regions). However, during the last GC we called
4177         // set_saved_mark() on all the GC alloc regions, so card
4178         // scanning might skip the [saved_mark_word()...top()] area of
4179         // those regions (i.e., the area we allocated objects into
4180         // during the last GC). But it shouldn't. Given that
4181         // saved_mark_word() is conditional on whether the GC time stamp
4182         // on the region is current or not, by incrementing the GC time
4183         // stamp here we invalidate all the GC time stamps on all the
4184         // regions and saved_mark_word() will simply return top() for
4185         // all the regions. This is a nicer way of ensuring this rather
4186         // than iterating over the regions and fixing them. In fact, the
4187         // GC time stamp increment here also ensures that
4188         // saved_mark_word() will return top() between pauses, i.e.,
4189         // during concurrent refinement. So we don't need the
4190         // is_gc_active() check to decided which top to use when
4191         // scanning cards (see CR 7039627).
4192         increment_gc_time_stamp();
4193 
4194         verify_after_gc();
4195         check_bitmaps("GC End");
4196 
4197         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4198         ref_processor_stw()->verify_no_references_recorded();
4199 
4200         // CM reference discovery will be re-enabled if necessary.
4201       }
4202 
4203       // We should do this after we potentially expand the heap so
4204       // that all the COMMIT events are generated before the end GC
4205       // event, and after we retire the GC alloc regions so that all
4206       // RETIRE events are generated before the end GC event.
4207       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4208 
4209 #ifdef TRACESPINNING
4210       ParallelTaskTerminator::print_termination_counts();
4211 #endif
4212 
4213       gc_epilogue(false);
4214     }
4215 
4216     // Print the remainder of the GC log output.
4217     log_gc_footer(os::elapsedTime() - pause_start_sec);
4218 
4219     // It is not yet to safe to tell the concurrent mark to
4220     // start as we have some optional output below. We don't want the
4221     // output from the concurrent mark thread interfering with this
4222     // logging output either.
4223 
4224     _hrm.verify_optional();
4225     verify_region_sets_optional();
4226 
4227     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4228     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4229 
4230     print_heap_after_gc();
4231     trace_heap_after_gc(_gc_tracer_stw);
4232 
4233     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4234     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4235     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4236     // before any GC notifications are raised.
4237     g1mm()->update_sizes();
4238 
4239     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4240     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4241     _gc_timer_stw->register_gc_end();
4242     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4243   }
4244   // It should now be safe to tell the concurrent mark thread to start
4245   // without its logging output interfering with the logging output
4246   // that came from the pause.
4247 
4248   if (should_start_conc_mark) {
4249     // CAUTION: after the doConcurrentMark() call below,
4250     // the concurrent marking thread(s) could be running
4251     // concurrently with us. Make sure that anything after
4252     // this point does not assume that we are the only GC thread
4253     // running. Note: of course, the actual marking work will
4254     // not start until the safepoint itself is released in
4255     // SuspendibleThreadSet::desynchronize().
4256     doConcurrentMark();
4257   }
4258 
4259   return true;
4260 }
4261 
4262 void G1CollectedHeap::remove_self_forwarding_pointers() {
4263   double remove_self_forwards_start = os::elapsedTime();
4264 
4265   G1ParRemoveSelfForwardPtrsTask rsfp_task;
4266   workers()->run_task(&rsfp_task);
4267 
4268   // Now restore saved marks, if any.
4269   for (uint i = 0; i < ParallelGCThreads; i++) {
4270     OopAndMarkOopStack& cur = _preserved_objs[i];
4271     while (!cur.is_empty()) {
4272       OopAndMarkOop elem = cur.pop();
4273       elem.set_mark();
4274     }
4275     cur.clear(true);
4276   }
4277 
4278   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4279 }
4280 
4281 void G1CollectedHeap::preserve_mark_during_evac_failure(uint queue_num, oop obj, markOop m) {
4282   if (!_evacuation_failed) {
4283     _evacuation_failed = true;
4284   }
4285 
4286   _evacuation_failed_info_array[queue_num].register_copy_failure(obj->size());
4287 
4288   // We want to call the "for_promotion_failure" version only in the
4289   // case of a promotion failure.
4290   if (m->must_be_preserved_for_promotion_failure(obj)) {
4291     OopAndMarkOop elem(obj, m);
4292     _preserved_objs[queue_num].push(elem);
4293   }
4294 }
4295 
4296 void G1ParCopyHelper::mark_object(oop obj) {
4297   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4298 
4299   // We know that the object is not moving so it's safe to read its size.
4300   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4301 }
4302 
4303 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4304   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4305   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4306   assert(from_obj != to_obj, "should not be self-forwarded");
4307 
4308   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4309   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4310 
4311   // The object might be in the process of being copied by another
4312   // worker so we cannot trust that its to-space image is
4313   // well-formed. So we have to read its size from its from-space
4314   // image which we know should not be changing.
4315   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4316 }
4317 
4318 template <class T>
4319 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4320   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4321     _scanned_klass->record_modified_oops();
4322   }
4323 }
4324 
4325 template <G1Barrier barrier, G1Mark do_mark_object>
4326 template <class T>
4327 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4328   T heap_oop = oopDesc::load_heap_oop(p);
4329 
4330   if (oopDesc::is_null(heap_oop)) {
4331     return;
4332   }
4333 
4334   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4335 
4336   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4337 
4338   const InCSetState state = _g1->in_cset_state(obj);
4339   if (state.is_in_cset()) {
4340     oop forwardee;
4341     markOop m = obj->mark();
4342     if (m->is_marked()) {
4343       forwardee = (oop) m->decode_pointer();
4344     } else {
4345       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4346     }
4347     assert(forwardee != NULL, "forwardee should not be NULL");
4348     oopDesc::encode_store_heap_oop(p, forwardee);
4349     if (do_mark_object != G1MarkNone && forwardee != obj) {
4350       // If the object is self-forwarded we don't need to explicitly
4351       // mark it, the evacuation failure protocol will do so.
4352       mark_forwarded_object(obj, forwardee);
4353     }
4354 
4355     if (barrier == G1BarrierKlass) {
4356       do_klass_barrier(p, forwardee);
4357     }
4358   } else {
4359     if (state.is_humongous()) {
4360       _g1->set_humongous_is_live(obj);
4361     }
4362     // The object is not in collection set. If we're a root scanning
4363     // closure during an initial mark pause then attempt to mark the object.
4364     if (do_mark_object == G1MarkFromRoot) {
4365       mark_object(obj);
4366     }
4367   }
4368 }
4369 
4370 class G1ParEvacuateFollowersClosure : public VoidClosure {
4371 protected:
4372   G1CollectedHeap*              _g1h;
4373   G1ParScanThreadState*         _par_scan_state;
4374   RefToScanQueueSet*            _queues;
4375   ParallelTaskTerminator*       _terminator;
4376 
4377   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4378   RefToScanQueueSet*      queues()         { return _queues; }
4379   ParallelTaskTerminator* terminator()     { return _terminator; }
4380 
4381 public:
4382   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4383                                 G1ParScanThreadState* par_scan_state,
4384                                 RefToScanQueueSet* queues,
4385                                 ParallelTaskTerminator* terminator)
4386     : _g1h(g1h), _par_scan_state(par_scan_state),
4387       _queues(queues), _terminator(terminator) {}
4388 
4389   void do_void();
4390 
4391 private:
4392   inline bool offer_termination();
4393 };
4394 
4395 bool G1ParEvacuateFollowersClosure::offer_termination() {
4396   G1ParScanThreadState* const pss = par_scan_state();
4397   pss->start_term_time();
4398   const bool res = terminator()->offer_termination();
4399   pss->end_term_time();
4400   return res;
4401 }
4402 
4403 void G1ParEvacuateFollowersClosure::do_void() {
4404   G1ParScanThreadState* const pss = par_scan_state();
4405   pss->trim_queue();
4406   do {
4407     pss->steal_and_trim_queue(queues());
4408   } while (!offer_termination());
4409 }
4410 
4411 class G1KlassScanClosure : public KlassClosure {
4412  G1ParCopyHelper* _closure;
4413  bool             _process_only_dirty;
4414  int              _count;
4415  public:
4416   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4417       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4418   void do_klass(Klass* klass) {
4419     // If the klass has not been dirtied we know that there's
4420     // no references into  the young gen and we can skip it.
4421    if (!_process_only_dirty || klass->has_modified_oops()) {
4422       // Clean the klass since we're going to scavenge all the metadata.
4423       klass->clear_modified_oops();
4424 
4425       // Tell the closure that this klass is the Klass to scavenge
4426       // and is the one to dirty if oops are left pointing into the young gen.
4427       _closure->set_scanned_klass(klass);
4428 
4429       klass->oops_do(_closure);
4430 
4431       _closure->set_scanned_klass(NULL);
4432     }
4433     _count++;
4434   }
4435 };
4436 
4437 class G1ParTask : public AbstractGangTask {
4438 protected:
4439   G1CollectedHeap*       _g1h;
4440   RefToScanQueueSet      *_queues;
4441   G1RootProcessor*       _root_processor;
4442   ParallelTaskTerminator _terminator;
4443   uint _n_workers;
4444 
4445   Mutex _stats_lock;
4446   Mutex* stats_lock() { return &_stats_lock; }
4447 
4448 public:
4449   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues, G1RootProcessor* root_processor, uint n_workers)
4450     : AbstractGangTask("G1 collection"),
4451       _g1h(g1h),
4452       _queues(task_queues),
4453       _root_processor(root_processor),
4454       _terminator(n_workers, _queues),
4455       _n_workers(n_workers),
4456       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4457   {}
4458 
4459   RefToScanQueueSet* queues() { return _queues; }
4460 
4461   RefToScanQueue *work_queue(int i) {
4462     return queues()->queue(i);
4463   }
4464 
4465   ParallelTaskTerminator* terminator() { return &_terminator; }
4466 
4467   // Helps out with CLD processing.
4468   //
4469   // During InitialMark we need to:
4470   // 1) Scavenge all CLDs for the young GC.
4471   // 2) Mark all objects directly reachable from strong CLDs.
4472   template <G1Mark do_mark_object>
4473   class G1CLDClosure : public CLDClosure {
4474     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4475     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4476     G1KlassScanClosure                                _klass_in_cld_closure;
4477     bool                                              _claim;
4478 
4479    public:
4480     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4481                  bool only_young, bool claim)
4482         : _oop_closure(oop_closure),
4483           _oop_in_klass_closure(oop_closure->g1(),
4484                                 oop_closure->pss(),
4485                                 oop_closure->rp()),
4486           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4487           _claim(claim) {
4488 
4489     }
4490 
4491     void do_cld(ClassLoaderData* cld) {
4492       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4493     }
4494   };
4495 
4496   void work(uint worker_id) {
4497     if (worker_id >= _n_workers) return;  // no work needed this round
4498 
4499     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerStart, worker_id, os::elapsedTime());
4500 
4501     {
4502       ResourceMark rm;
4503       HandleMark   hm;
4504 
4505       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4506 
4507       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4508 
4509       bool only_young = _g1h->collector_state()->gcs_are_young();
4510 
4511       // Non-IM young GC.
4512       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4513       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4514                                                                                only_young, // Only process dirty klasses.
4515                                                                                false);     // No need to claim CLDs.
4516       // IM young GC.
4517       //    Strong roots closures.
4518       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4519       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4520                                                                                false, // Process all klasses.
4521                                                                                true); // Need to claim CLDs.
4522       //    Weak roots closures.
4523       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4524       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4525                                                                                     false, // Process all klasses.
4526                                                                                     true); // Need to claim CLDs.
4527 
4528       OopClosure* strong_root_cl;
4529       OopClosure* weak_root_cl;
4530       CLDClosure* strong_cld_cl;
4531       CLDClosure* weak_cld_cl;
4532 
4533       bool trace_metadata = false;
4534 
4535       if (_g1h->collector_state()->during_initial_mark_pause()) {
4536         // We also need to mark copied objects.
4537         strong_root_cl = &scan_mark_root_cl;
4538         strong_cld_cl  = &scan_mark_cld_cl;
4539         if (ClassUnloadingWithConcurrentMark) {
4540           weak_root_cl = &scan_mark_weak_root_cl;
4541           weak_cld_cl  = &scan_mark_weak_cld_cl;
4542           trace_metadata = true;
4543         } else {
4544           weak_root_cl = &scan_mark_root_cl;
4545           weak_cld_cl  = &scan_mark_cld_cl;
4546         }
4547       } else {
4548         strong_root_cl = &scan_only_root_cl;
4549         weak_root_cl   = &scan_only_root_cl;
4550         strong_cld_cl  = &scan_only_cld_cl;
4551         weak_cld_cl    = &scan_only_cld_cl;
4552       }
4553 
4554       pss.start_strong_roots();
4555 
4556       _root_processor->evacuate_roots(strong_root_cl,
4557                                       weak_root_cl,
4558                                       strong_cld_cl,
4559                                       weak_cld_cl,
4560                                       trace_metadata,
4561                                       worker_id);
4562 
4563       G1ParPushHeapRSClosure push_heap_rs_cl(_g1h, &pss);
4564       _root_processor->scan_remembered_sets(&push_heap_rs_cl,
4565                                             weak_root_cl,
4566                                             worker_id);
4567       pss.end_strong_roots();
4568 
4569       {
4570         double start = os::elapsedTime();
4571         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4572         evac.do_void();
4573         double elapsed_sec = os::elapsedTime() - start;
4574         double term_sec = pss.term_time();
4575         _g1h->g1_policy()->phase_times()->add_time_secs(G1GCPhaseTimes::ObjCopy, worker_id, elapsed_sec - term_sec);
4576         _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::Termination, worker_id, term_sec);
4577         _g1h->g1_policy()->phase_times()->record_thread_work_item(G1GCPhaseTimes::Termination, worker_id, pss.term_attempts());
4578       }
4579       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4580       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4581 
4582       if (PrintTerminationStats) {
4583         MutexLocker x(stats_lock());
4584         pss.print_termination_stats(worker_id);
4585       }
4586 
4587       assert(pss.queue_is_empty(), "should be empty");
4588 
4589       // Close the inner scope so that the ResourceMark and HandleMark
4590       // destructors are executed here and are included as part of the
4591       // "GC Worker Time".
4592     }
4593     _g1h->g1_policy()->phase_times()->record_time_secs(G1GCPhaseTimes::GCWorkerEnd, worker_id, os::elapsedTime());
4594   }
4595 };
4596 
4597 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4598 private:
4599   BoolObjectClosure* _is_alive;
4600   int _initial_string_table_size;
4601   int _initial_symbol_table_size;
4602 
4603   bool  _process_strings;
4604   int _strings_processed;
4605   int _strings_removed;
4606 
4607   bool  _process_symbols;
4608   int _symbols_processed;
4609   int _symbols_removed;
4610 
4611 public:
4612   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4613     AbstractGangTask("String/Symbol Unlinking"),
4614     _is_alive(is_alive),
4615     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4616     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4617 
4618     _initial_string_table_size = StringTable::the_table()->table_size();
4619     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4620     if (process_strings) {
4621       StringTable::clear_parallel_claimed_index();
4622     }
4623     if (process_symbols) {
4624       SymbolTable::clear_parallel_claimed_index();
4625     }
4626   }
4627 
4628   ~G1StringSymbolTableUnlinkTask() {
4629     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4630               err_msg("claim value %d after unlink less than initial string table size %d",
4631                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4632     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4633               err_msg("claim value %d after unlink less than initial symbol table size %d",
4634                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4635 
4636     if (G1TraceStringSymbolTableScrubbing) {
4637       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4638                              "strings: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed, "
4639                              "symbols: " SIZE_FORMAT " processed, " SIZE_FORMAT " removed",
4640                              strings_processed(), strings_removed(),
4641                              symbols_processed(), symbols_removed());
4642     }
4643   }
4644 
4645   void work(uint worker_id) {
4646     int strings_processed = 0;
4647     int strings_removed = 0;
4648     int symbols_processed = 0;
4649     int symbols_removed = 0;
4650     if (_process_strings) {
4651       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4652       Atomic::add(strings_processed, &_strings_processed);
4653       Atomic::add(strings_removed, &_strings_removed);
4654     }
4655     if (_process_symbols) {
4656       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4657       Atomic::add(symbols_processed, &_symbols_processed);
4658       Atomic::add(symbols_removed, &_symbols_removed);
4659     }
4660   }
4661 
4662   size_t strings_processed() const { return (size_t)_strings_processed; }
4663   size_t strings_removed()   const { return (size_t)_strings_removed; }
4664 
4665   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4666   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4667 };
4668 
4669 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4670 private:
4671   static Monitor* _lock;
4672 
4673   BoolObjectClosure* const _is_alive;
4674   const bool               _unloading_occurred;
4675   const uint               _num_workers;
4676 
4677   // Variables used to claim nmethods.
4678   nmethod* _first_nmethod;
4679   volatile nmethod* _claimed_nmethod;
4680 
4681   // The list of nmethods that need to be processed by the second pass.
4682   volatile nmethod* _postponed_list;
4683   volatile uint     _num_entered_barrier;
4684 
4685  public:
4686   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4687       _is_alive(is_alive),
4688       _unloading_occurred(unloading_occurred),
4689       _num_workers(num_workers),
4690       _first_nmethod(NULL),
4691       _claimed_nmethod(NULL),
4692       _postponed_list(NULL),
4693       _num_entered_barrier(0)
4694   {
4695     nmethod::increase_unloading_clock();
4696     // Get first alive nmethod
4697     NMethodIterator iter = NMethodIterator();
4698     if(iter.next_alive()) {
4699       _first_nmethod = iter.method();
4700     }
4701     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4702   }
4703 
4704   ~G1CodeCacheUnloadingTask() {
4705     CodeCache::verify_clean_inline_caches();
4706 
4707     CodeCache::set_needs_cache_clean(false);
4708     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4709 
4710     CodeCache::verify_icholder_relocations();
4711   }
4712 
4713  private:
4714   void add_to_postponed_list(nmethod* nm) {
4715       nmethod* old;
4716       do {
4717         old = (nmethod*)_postponed_list;
4718         nm->set_unloading_next(old);
4719       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4720   }
4721 
4722   void clean_nmethod(nmethod* nm) {
4723     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4724 
4725     if (postponed) {
4726       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4727       add_to_postponed_list(nm);
4728     }
4729 
4730     // Mark that this thread has been cleaned/unloaded.
4731     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4732     nm->set_unloading_clock(nmethod::global_unloading_clock());
4733   }
4734 
4735   void clean_nmethod_postponed(nmethod* nm) {
4736     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4737   }
4738 
4739   static const int MaxClaimNmethods = 16;
4740 
4741   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4742     nmethod* first;
4743     NMethodIterator last;
4744 
4745     do {
4746       *num_claimed_nmethods = 0;
4747 
4748       first = (nmethod*)_claimed_nmethod;
4749       last = NMethodIterator(first);
4750 
4751       if (first != NULL) {
4752 
4753         for (int i = 0; i < MaxClaimNmethods; i++) {
4754           if (!last.next_alive()) {
4755             break;
4756           }
4757           claimed_nmethods[i] = last.method();
4758           (*num_claimed_nmethods)++;
4759         }
4760       }
4761 
4762     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4763   }
4764 
4765   nmethod* claim_postponed_nmethod() {
4766     nmethod* claim;
4767     nmethod* next;
4768 
4769     do {
4770       claim = (nmethod*)_postponed_list;
4771       if (claim == NULL) {
4772         return NULL;
4773       }
4774 
4775       next = claim->unloading_next();
4776 
4777     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4778 
4779     return claim;
4780   }
4781 
4782  public:
4783   // Mark that we're done with the first pass of nmethod cleaning.
4784   void barrier_mark(uint worker_id) {
4785     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4786     _num_entered_barrier++;
4787     if (_num_entered_barrier == _num_workers) {
4788       ml.notify_all();
4789     }
4790   }
4791 
4792   // See if we have to wait for the other workers to
4793   // finish their first-pass nmethod cleaning work.
4794   void barrier_wait(uint worker_id) {
4795     if (_num_entered_barrier < _num_workers) {
4796       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4797       while (_num_entered_barrier < _num_workers) {
4798           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4799       }
4800     }
4801   }
4802 
4803   // Cleaning and unloading of nmethods. Some work has to be postponed
4804   // to the second pass, when we know which nmethods survive.
4805   void work_first_pass(uint worker_id) {
4806     // The first nmethods is claimed by the first worker.
4807     if (worker_id == 0 && _first_nmethod != NULL) {
4808       clean_nmethod(_first_nmethod);
4809       _first_nmethod = NULL;
4810     }
4811 
4812     int num_claimed_nmethods;
4813     nmethod* claimed_nmethods[MaxClaimNmethods];
4814 
4815     while (true) {
4816       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4817 
4818       if (num_claimed_nmethods == 0) {
4819         break;
4820       }
4821 
4822       for (int i = 0; i < num_claimed_nmethods; i++) {
4823         clean_nmethod(claimed_nmethods[i]);
4824       }
4825     }
4826   }
4827 
4828   void work_second_pass(uint worker_id) {
4829     nmethod* nm;
4830     // Take care of postponed nmethods.
4831     while ((nm = claim_postponed_nmethod()) != NULL) {
4832       clean_nmethod_postponed(nm);
4833     }
4834   }
4835 };
4836 
4837 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4838 
4839 class G1KlassCleaningTask : public StackObj {
4840   BoolObjectClosure*                      _is_alive;
4841   volatile jint                           _clean_klass_tree_claimed;
4842   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4843 
4844  public:
4845   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4846       _is_alive(is_alive),
4847       _clean_klass_tree_claimed(0),
4848       _klass_iterator() {
4849   }
4850 
4851  private:
4852   bool claim_clean_klass_tree_task() {
4853     if (_clean_klass_tree_claimed) {
4854       return false;
4855     }
4856 
4857     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4858   }
4859 
4860   InstanceKlass* claim_next_klass() {
4861     Klass* klass;
4862     do {
4863       klass =_klass_iterator.next_klass();
4864     } while (klass != NULL && !klass->oop_is_instance());
4865 
4866     return (InstanceKlass*)klass;
4867   }
4868 
4869 public:
4870 
4871   void clean_klass(InstanceKlass* ik) {
4872     ik->clean_implementors_list(_is_alive);
4873     ik->clean_method_data(_is_alive);
4874 
4875     // G1 specific cleanup work that has
4876     // been moved here to be done in parallel.
4877     ik->clean_dependent_nmethods();
4878   }
4879 
4880   void work() {
4881     ResourceMark rm;
4882 
4883     // One worker will clean the subklass/sibling klass tree.
4884     if (claim_clean_klass_tree_task()) {
4885       Klass::clean_subklass_tree(_is_alive);
4886     }
4887 
4888     // All workers will help cleaning the classes,
4889     InstanceKlass* klass;
4890     while ((klass = claim_next_klass()) != NULL) {
4891       clean_klass(klass);
4892     }
4893   }
4894 };
4895 
4896 // To minimize the remark pause times, the tasks below are done in parallel.
4897 class G1ParallelCleaningTask : public AbstractGangTask {
4898 private:
4899   G1StringSymbolTableUnlinkTask _string_symbol_task;
4900   G1CodeCacheUnloadingTask      _code_cache_task;
4901   G1KlassCleaningTask           _klass_cleaning_task;
4902 
4903 public:
4904   // The constructor is run in the VMThread.
4905   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
4906       AbstractGangTask("Parallel Cleaning"),
4907       _string_symbol_task(is_alive, process_strings, process_symbols),
4908       _code_cache_task(num_workers, is_alive, unloading_occurred),
4909       _klass_cleaning_task(is_alive) {
4910   }
4911 
4912   // The parallel work done by all worker threads.
4913   void work(uint worker_id) {
4914     // Do first pass of code cache cleaning.
4915     _code_cache_task.work_first_pass(worker_id);
4916 
4917     // Let the threads mark that the first pass is done.
4918     _code_cache_task.barrier_mark(worker_id);
4919 
4920     // Clean the Strings and Symbols.
4921     _string_symbol_task.work(worker_id);
4922 
4923     // Wait for all workers to finish the first code cache cleaning pass.
4924     _code_cache_task.barrier_wait(worker_id);
4925 
4926     // Do the second code cache cleaning work, which realize on
4927     // the liveness information gathered during the first pass.
4928     _code_cache_task.work_second_pass(worker_id);
4929 
4930     // Clean all klasses that were not unloaded.
4931     _klass_cleaning_task.work();
4932   }
4933 };
4934 
4935 
4936 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
4937                                         bool process_strings,
4938                                         bool process_symbols,
4939                                         bool class_unloading_occurred) {
4940   uint n_workers = workers()->active_workers();
4941 
4942   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
4943                                         n_workers, class_unloading_occurred);
4944   workers()->run_task(&g1_unlink_task);
4945 }
4946 
4947 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
4948                                                      bool process_strings, bool process_symbols) {
4949   {
4950     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
4951     workers()->run_task(&g1_unlink_task);
4952   }
4953 
4954   if (G1StringDedup::is_enabled()) {
4955     G1StringDedup::unlink(is_alive);
4956   }
4957 }
4958 
4959 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
4960  private:
4961   DirtyCardQueueSet* _queue;
4962  public:
4963   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
4964 
4965   virtual void work(uint worker_id) {
4966     G1GCPhaseTimes* phase_times = G1CollectedHeap::heap()->g1_policy()->phase_times();
4967     G1GCParPhaseTimesTracker x(phase_times, G1GCPhaseTimes::RedirtyCards, worker_id);
4968 
4969     RedirtyLoggedCardTableEntryClosure cl;
4970     _queue->par_apply_closure_to_all_completed_buffers(&cl);
4971 
4972     phase_times->record_thread_work_item(G1GCPhaseTimes::RedirtyCards, worker_id, cl.num_processed());
4973   }
4974 };
4975 
4976 void G1CollectedHeap::redirty_logged_cards() {
4977   double redirty_logged_cards_start = os::elapsedTime();
4978 
4979   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
4980   dirty_card_queue_set().reset_for_par_iteration();
4981   workers()->run_task(&redirty_task);
4982 
4983   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
4984   dcq.merge_bufferlists(&dirty_card_queue_set());
4985   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
4986 
4987   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
4988 }
4989 
4990 // Weak Reference Processing support
4991 
4992 // An always "is_alive" closure that is used to preserve referents.
4993 // If the object is non-null then it's alive.  Used in the preservation
4994 // of referent objects that are pointed to by reference objects
4995 // discovered by the CM ref processor.
4996 class G1AlwaysAliveClosure: public BoolObjectClosure {
4997   G1CollectedHeap* _g1;
4998 public:
4999   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5000   bool do_object_b(oop p) {
5001     if (p != NULL) {
5002       return true;
5003     }
5004     return false;
5005   }
5006 };
5007 
5008 bool G1STWIsAliveClosure::do_object_b(oop p) {
5009   // An object is reachable if it is outside the collection set,
5010   // or is inside and copied.
5011   return !_g1->obj_in_cs(p) || p->is_forwarded();
5012 }
5013 
5014 // Non Copying Keep Alive closure
5015 class G1KeepAliveClosure: public OopClosure {
5016   G1CollectedHeap* _g1;
5017 public:
5018   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5019   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5020   void do_oop(oop* p) {
5021     oop obj = *p;
5022     assert(obj != NULL, "the caller should have filtered out NULL values");
5023 
5024     const InCSetState cset_state = _g1->in_cset_state(obj);
5025     if (!cset_state.is_in_cset_or_humongous()) {
5026       return;
5027     }
5028     if (cset_state.is_in_cset()) {
5029       assert( obj->is_forwarded(), "invariant" );
5030       *p = obj->forwardee();
5031     } else {
5032       assert(!obj->is_forwarded(), "invariant" );
5033       assert(cset_state.is_humongous(),
5034              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5035       _g1->set_humongous_is_live(obj);
5036     }
5037   }
5038 };
5039 
5040 // Copying Keep Alive closure - can be called from both
5041 // serial and parallel code as long as different worker
5042 // threads utilize different G1ParScanThreadState instances
5043 // and different queues.
5044 
5045 class G1CopyingKeepAliveClosure: public OopClosure {
5046   G1CollectedHeap*         _g1h;
5047   OopClosure*              _copy_non_heap_obj_cl;
5048   G1ParScanThreadState*    _par_scan_state;
5049 
5050 public:
5051   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5052                             OopClosure* non_heap_obj_cl,
5053                             G1ParScanThreadState* pss):
5054     _g1h(g1h),
5055     _copy_non_heap_obj_cl(non_heap_obj_cl),
5056     _par_scan_state(pss)
5057   {}
5058 
5059   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5060   virtual void do_oop(      oop* p) { do_oop_work(p); }
5061 
5062   template <class T> void do_oop_work(T* p) {
5063     oop obj = oopDesc::load_decode_heap_oop(p);
5064 
5065     if (_g1h->is_in_cset_or_humongous(obj)) {
5066       // If the referent object has been forwarded (either copied
5067       // to a new location or to itself in the event of an
5068       // evacuation failure) then we need to update the reference
5069       // field and, if both reference and referent are in the G1
5070       // heap, update the RSet for the referent.
5071       //
5072       // If the referent has not been forwarded then we have to keep
5073       // it alive by policy. Therefore we have copy the referent.
5074       //
5075       // If the reference field is in the G1 heap then we can push
5076       // on the PSS queue. When the queue is drained (after each
5077       // phase of reference processing) the object and it's followers
5078       // will be copied, the reference field set to point to the
5079       // new location, and the RSet updated. Otherwise we need to
5080       // use the the non-heap or metadata closures directly to copy
5081       // the referent object and update the pointer, while avoiding
5082       // updating the RSet.
5083 
5084       if (_g1h->is_in_g1_reserved(p)) {
5085         _par_scan_state->push_on_queue(p);
5086       } else {
5087         assert(!Metaspace::contains((const void*)p),
5088                err_msg("Unexpectedly found a pointer from metadata: " PTR_FORMAT, p2i(p)));
5089         _copy_non_heap_obj_cl->do_oop(p);
5090       }
5091     }
5092   }
5093 };
5094 
5095 // Serial drain queue closure. Called as the 'complete_gc'
5096 // closure for each discovered list in some of the
5097 // reference processing phases.
5098 
5099 class G1STWDrainQueueClosure: public VoidClosure {
5100 protected:
5101   G1CollectedHeap* _g1h;
5102   G1ParScanThreadState* _par_scan_state;
5103 
5104   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5105 
5106 public:
5107   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5108     _g1h(g1h),
5109     _par_scan_state(pss)
5110   { }
5111 
5112   void do_void() {
5113     G1ParScanThreadState* const pss = par_scan_state();
5114     pss->trim_queue();
5115   }
5116 };
5117 
5118 // Parallel Reference Processing closures
5119 
5120 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5121 // processing during G1 evacuation pauses.
5122 
5123 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5124 private:
5125   G1CollectedHeap*   _g1h;
5126   RefToScanQueueSet* _queues;
5127   FlexibleWorkGang*  _workers;
5128   uint               _active_workers;
5129 
5130 public:
5131   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5132                            FlexibleWorkGang* workers,
5133                            RefToScanQueueSet *task_queues,
5134                            uint n_workers) :
5135     _g1h(g1h),
5136     _queues(task_queues),
5137     _workers(workers),
5138     _active_workers(n_workers)
5139   {
5140     assert(n_workers > 0, "shouldn't call this otherwise");
5141   }
5142 
5143   // Executes the given task using concurrent marking worker threads.
5144   virtual void execute(ProcessTask& task);
5145   virtual void execute(EnqueueTask& task);
5146 };
5147 
5148 // Gang task for possibly parallel reference processing
5149 
5150 class G1STWRefProcTaskProxy: public AbstractGangTask {
5151   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5152   ProcessTask&     _proc_task;
5153   G1CollectedHeap* _g1h;
5154   RefToScanQueueSet *_task_queues;
5155   ParallelTaskTerminator* _terminator;
5156 
5157 public:
5158   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5159                      G1CollectedHeap* g1h,
5160                      RefToScanQueueSet *task_queues,
5161                      ParallelTaskTerminator* terminator) :
5162     AbstractGangTask("Process reference objects in parallel"),
5163     _proc_task(proc_task),
5164     _g1h(g1h),
5165     _task_queues(task_queues),
5166     _terminator(terminator)
5167   {}
5168 
5169   virtual void work(uint worker_id) {
5170     // The reference processing task executed by a single worker.
5171     ResourceMark rm;
5172     HandleMark   hm;
5173 
5174     G1STWIsAliveClosure is_alive(_g1h);
5175 
5176     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5177 
5178     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5179 
5180     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5181 
5182     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5183 
5184     if (_g1h->collector_state()->during_initial_mark_pause()) {
5185       // We also need to mark copied objects.
5186       copy_non_heap_cl = &copy_mark_non_heap_cl;
5187     }
5188 
5189     // Keep alive closure.
5190     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5191 
5192     // Complete GC closure
5193     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5194 
5195     // Call the reference processing task's work routine.
5196     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5197 
5198     // Note we cannot assert that the refs array is empty here as not all
5199     // of the processing tasks (specifically phase2 - pp2_work) execute
5200     // the complete_gc closure (which ordinarily would drain the queue) so
5201     // the queue may not be empty.
5202   }
5203 };
5204 
5205 // Driver routine for parallel reference processing.
5206 // Creates an instance of the ref processing gang
5207 // task and has the worker threads execute it.
5208 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5209   assert(_workers != NULL, "Need parallel worker threads.");
5210 
5211   ParallelTaskTerminator terminator(_active_workers, _queues);
5212   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5213 
5214   _workers->run_task(&proc_task_proxy);
5215 }
5216 
5217 // Gang task for parallel reference enqueueing.
5218 
5219 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5220   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5221   EnqueueTask& _enq_task;
5222 
5223 public:
5224   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5225     AbstractGangTask("Enqueue reference objects in parallel"),
5226     _enq_task(enq_task)
5227   { }
5228 
5229   virtual void work(uint worker_id) {
5230     _enq_task.work(worker_id);
5231   }
5232 };
5233 
5234 // Driver routine for parallel reference enqueueing.
5235 // Creates an instance of the ref enqueueing gang
5236 // task and has the worker threads execute it.
5237 
5238 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5239   assert(_workers != NULL, "Need parallel worker threads.");
5240 
5241   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5242 
5243   _workers->run_task(&enq_task_proxy);
5244 }
5245 
5246 // End of weak reference support closures
5247 
5248 // Abstract task used to preserve (i.e. copy) any referent objects
5249 // that are in the collection set and are pointed to by reference
5250 // objects discovered by the CM ref processor.
5251 
5252 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5253 protected:
5254   G1CollectedHeap* _g1h;
5255   RefToScanQueueSet      *_queues;
5256   ParallelTaskTerminator _terminator;
5257   uint _n_workers;
5258 
5259 public:
5260   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h, uint workers, RefToScanQueueSet *task_queues) :
5261     AbstractGangTask("ParPreserveCMReferents"),
5262     _g1h(g1h),
5263     _queues(task_queues),
5264     _terminator(workers, _queues),
5265     _n_workers(workers)
5266   { }
5267 
5268   void work(uint worker_id) {
5269     ResourceMark rm;
5270     HandleMark   hm;
5271 
5272     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5273     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5274 
5275     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5276 
5277     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5278 
5279     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5280 
5281     if (_g1h->collector_state()->during_initial_mark_pause()) {
5282       // We also need to mark copied objects.
5283       copy_non_heap_cl = &copy_mark_non_heap_cl;
5284     }
5285 
5286     // Is alive closure
5287     G1AlwaysAliveClosure always_alive(_g1h);
5288 
5289     // Copying keep alive closure. Applied to referent objects that need
5290     // to be copied.
5291     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5292 
5293     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5294 
5295     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5296     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5297 
5298     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5299     // So this must be true - but assert just in case someone decides to
5300     // change the worker ids.
5301     assert(worker_id < limit, "sanity");
5302     assert(!rp->discovery_is_atomic(), "check this code");
5303 
5304     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5305     for (uint idx = worker_id; idx < limit; idx += stride) {
5306       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5307 
5308       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5309       while (iter.has_next()) {
5310         // Since discovery is not atomic for the CM ref processor, we
5311         // can see some null referent objects.
5312         iter.load_ptrs(DEBUG_ONLY(true));
5313         oop ref = iter.obj();
5314 
5315         // This will filter nulls.
5316         if (iter.is_referent_alive()) {
5317           iter.make_referent_alive();
5318         }
5319         iter.move_to_next();
5320       }
5321     }
5322 
5323     // Drain the queue - which may cause stealing
5324     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5325     drain_queue.do_void();
5326     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5327     assert(pss.queue_is_empty(), "should be");
5328   }
5329 };
5330 
5331 // Weak Reference processing during an evacuation pause (part 1).
5332 void G1CollectedHeap::process_discovered_references() {
5333   double ref_proc_start = os::elapsedTime();
5334 
5335   ReferenceProcessor* rp = _ref_processor_stw;
5336   assert(rp->discovery_enabled(), "should have been enabled");
5337 
5338   // Any reference objects, in the collection set, that were 'discovered'
5339   // by the CM ref processor should have already been copied (either by
5340   // applying the external root copy closure to the discovered lists, or
5341   // by following an RSet entry).
5342   //
5343   // But some of the referents, that are in the collection set, that these
5344   // reference objects point to may not have been copied: the STW ref
5345   // processor would have seen that the reference object had already
5346   // been 'discovered' and would have skipped discovering the reference,
5347   // but would not have treated the reference object as a regular oop.
5348   // As a result the copy closure would not have been applied to the
5349   // referent object.
5350   //
5351   // We need to explicitly copy these referent objects - the references
5352   // will be processed at the end of remarking.
5353   //
5354   // We also need to do this copying before we process the reference
5355   // objects discovered by the STW ref processor in case one of these
5356   // referents points to another object which is also referenced by an
5357   // object discovered by the STW ref processor.
5358 
5359   uint no_of_gc_workers = workers()->active_workers();
5360 
5361   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5362                                                  no_of_gc_workers,
5363                                                  _task_queues);
5364 
5365   workers()->run_task(&keep_cm_referents);
5366 
5367   // Closure to test whether a referent is alive.
5368   G1STWIsAliveClosure is_alive(this);
5369 
5370   // Even when parallel reference processing is enabled, the processing
5371   // of JNI refs is serial and performed serially by the current thread
5372   // rather than by a worker. The following PSS will be used for processing
5373   // JNI refs.
5374 
5375   // Use only a single queue for this PSS.
5376   G1ParScanThreadState            pss(this, 0, NULL);
5377   assert(pss.queue_is_empty(), "pre-condition");
5378 
5379   // We do not embed a reference processor in the copying/scanning
5380   // closures while we're actually processing the discovered
5381   // reference objects.
5382 
5383   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5384 
5385   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5386 
5387   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5388 
5389   if (collector_state()->during_initial_mark_pause()) {
5390     // We also need to mark copied objects.
5391     copy_non_heap_cl = &copy_mark_non_heap_cl;
5392   }
5393 
5394   // Keep alive closure.
5395   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5396 
5397   // Serial Complete GC closure
5398   G1STWDrainQueueClosure drain_queue(this, &pss);
5399 
5400   // Setup the soft refs policy...
5401   rp->setup_policy(false);
5402 
5403   ReferenceProcessorStats stats;
5404   if (!rp->processing_is_mt()) {
5405     // Serial reference processing...
5406     stats = rp->process_discovered_references(&is_alive,
5407                                               &keep_alive,
5408                                               &drain_queue,
5409                                               NULL,
5410                                               _gc_timer_stw,
5411                                               _gc_tracer_stw->gc_id());
5412   } else {
5413     // Parallel reference processing
5414     assert(rp->num_q() == no_of_gc_workers, "sanity");
5415     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5416 
5417     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5418     stats = rp->process_discovered_references(&is_alive,
5419                                               &keep_alive,
5420                                               &drain_queue,
5421                                               &par_task_executor,
5422                                               _gc_timer_stw,
5423                                               _gc_tracer_stw->gc_id());
5424   }
5425 
5426   _gc_tracer_stw->report_gc_reference_stats(stats);
5427 
5428   // We have completed copying any necessary live referent objects.
5429   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5430 
5431   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5432   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5433 }
5434 
5435 // Weak Reference processing during an evacuation pause (part 2).
5436 void G1CollectedHeap::enqueue_discovered_references() {
5437   double ref_enq_start = os::elapsedTime();
5438 
5439   ReferenceProcessor* rp = _ref_processor_stw;
5440   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5441 
5442   // Now enqueue any remaining on the discovered lists on to
5443   // the pending list.
5444   if (!rp->processing_is_mt()) {
5445     // Serial reference processing...
5446     rp->enqueue_discovered_references();
5447   } else {
5448     // Parallel reference enqueueing
5449 
5450     uint n_workers = workers()->active_workers();
5451 
5452     assert(rp->num_q() == n_workers, "sanity");
5453     assert(n_workers <= rp->max_num_q(), "sanity");
5454 
5455     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, n_workers);
5456     rp->enqueue_discovered_references(&par_task_executor);
5457   }
5458 
5459   rp->verify_no_references_recorded();
5460   assert(!rp->discovery_enabled(), "should have been disabled");
5461 
5462   // FIXME
5463   // CM's reference processing also cleans up the string and symbol tables.
5464   // Should we do that here also? We could, but it is a serial operation
5465   // and could significantly increase the pause time.
5466 
5467   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5468   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5469 }
5470 
5471 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5472   _expand_heap_after_alloc_failure = true;
5473   _evacuation_failed = false;
5474 
5475   // Should G1EvacuationFailureALot be in effect for this GC?
5476   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5477 
5478   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5479 
5480   // Disable the hot card cache.
5481   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5482   hot_card_cache->reset_hot_cache_claimed_index();
5483   hot_card_cache->set_use_cache(false);
5484 
5485   const uint n_workers = workers()->active_workers();
5486 
5487   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5488   double start_par_time_sec = os::elapsedTime();
5489   double end_par_time_sec;
5490 
5491   {
5492     G1RootProcessor root_processor(this, n_workers);
5493     G1ParTask g1_par_task(this, _task_queues, &root_processor, n_workers);
5494     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5495     if (collector_state()->during_initial_mark_pause()) {
5496       ClassLoaderDataGraph::clear_claimed_marks();
5497     }
5498 
5499     // The individual threads will set their evac-failure closures.
5500     if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5501 
5502     workers()->run_task(&g1_par_task);
5503     end_par_time_sec = os::elapsedTime();
5504 
5505     // Closing the inner scope will execute the destructor
5506     // for the G1RootProcessor object. We record the current
5507     // elapsed time before closing the scope so that time
5508     // taken for the destructor is NOT included in the
5509     // reported parallel time.
5510   }
5511 
5512   G1GCPhaseTimes* phase_times = g1_policy()->phase_times();
5513 
5514   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5515   phase_times->record_par_time(par_time_ms);
5516 
5517   double code_root_fixup_time_ms =
5518         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5519   phase_times->record_code_root_fixup_time(code_root_fixup_time_ms);
5520 
5521   // Process any discovered reference objects - we have
5522   // to do this _before_ we retire the GC alloc regions
5523   // as we may have to copy some 'reachable' referent
5524   // objects (and their reachable sub-graphs) that were
5525   // not copied during the pause.
5526   process_discovered_references();
5527 
5528   if (G1StringDedup::is_enabled()) {
5529     double fixup_start = os::elapsedTime();
5530 
5531     G1STWIsAliveClosure is_alive(this);
5532     G1KeepAliveClosure keep_alive(this);
5533     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive, true, phase_times);
5534 
5535     double fixup_time_ms = (os::elapsedTime() - fixup_start) * 1000.0;
5536     phase_times->record_string_dedup_fixup_time(fixup_time_ms);
5537   }
5538 
5539   _allocator->release_gc_alloc_regions(evacuation_info);
5540   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5541 
5542   // Reset and re-enable the hot card cache.
5543   // Note the counts for the cards in the regions in the
5544   // collection set are reset when the collection set is freed.
5545   hot_card_cache->reset_hot_cache();
5546   hot_card_cache->set_use_cache(true);
5547 
5548   purge_code_root_memory();
5549 
5550   if (evacuation_failed()) {
5551     remove_self_forwarding_pointers();
5552 
5553     // Reset the G1EvacuationFailureALot counters and flags
5554     // Note: the values are reset only when an actual
5555     // evacuation failure occurs.
5556     NOT_PRODUCT(reset_evacuation_should_fail();)
5557   }
5558 
5559   // Enqueue any remaining references remaining on the STW
5560   // reference processor's discovered lists. We need to do
5561   // this after the card table is cleaned (and verified) as
5562   // the act of enqueueing entries on to the pending list
5563   // will log these updates (and dirty their associated
5564   // cards). We need these updates logged to update any
5565   // RSets.
5566   enqueue_discovered_references();
5567 
5568   redirty_logged_cards();
5569   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5570 }
5571 
5572 void G1CollectedHeap::free_region(HeapRegion* hr,
5573                                   FreeRegionList* free_list,
5574                                   bool par,
5575                                   bool locked) {
5576   assert(!hr->is_free(), "the region should not be free");
5577   assert(!hr->is_empty(), "the region should not be empty");
5578   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5579   assert(free_list != NULL, "pre-condition");
5580 
5581   if (G1VerifyBitmaps) {
5582     MemRegion mr(hr->bottom(), hr->end());
5583     concurrent_mark()->clearRangePrevBitmap(mr);
5584   }
5585 
5586   // Clear the card counts for this region.
5587   // Note: we only need to do this if the region is not young
5588   // (since we don't refine cards in young regions).
5589   if (!hr->is_young()) {
5590     _cg1r->hot_card_cache()->reset_card_counts(hr);
5591   }
5592   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5593   free_list->add_ordered(hr);
5594 }
5595 
5596 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5597                                      FreeRegionList* free_list,
5598                                      bool par) {
5599   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5600   assert(free_list != NULL, "pre-condition");
5601 
5602   size_t hr_capacity = hr->capacity();
5603   // We need to read this before we make the region non-humongous,
5604   // otherwise the information will be gone.
5605   uint last_index = hr->last_hc_index();
5606   hr->clear_humongous();
5607   free_region(hr, free_list, par);
5608 
5609   uint i = hr->hrm_index() + 1;
5610   while (i < last_index) {
5611     HeapRegion* curr_hr = region_at(i);
5612     assert(curr_hr->is_continues_humongous(), "invariant");
5613     curr_hr->clear_humongous();
5614     free_region(curr_hr, free_list, par);
5615     i += 1;
5616   }
5617 }
5618 
5619 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5620                                        const HeapRegionSetCount& humongous_regions_removed) {
5621   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5622     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5623     _old_set.bulk_remove(old_regions_removed);
5624     _humongous_set.bulk_remove(humongous_regions_removed);
5625   }
5626 
5627 }
5628 
5629 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5630   assert(list != NULL, "list can't be null");
5631   if (!list->is_empty()) {
5632     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5633     _hrm.insert_list_into_free_list(list);
5634   }
5635 }
5636 
5637 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5638   _allocator->decrease_used(bytes);
5639 }
5640 
5641 class G1ParCleanupCTTask : public AbstractGangTask {
5642   G1SATBCardTableModRefBS* _ct_bs;
5643   G1CollectedHeap* _g1h;
5644   HeapRegion* volatile _su_head;
5645 public:
5646   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5647                      G1CollectedHeap* g1h) :
5648     AbstractGangTask("G1 Par Cleanup CT Task"),
5649     _ct_bs(ct_bs), _g1h(g1h) { }
5650 
5651   void work(uint worker_id) {
5652     HeapRegion* r;
5653     while (r = _g1h->pop_dirty_cards_region()) {
5654       clear_cards(r);
5655     }
5656   }
5657 
5658   void clear_cards(HeapRegion* r) {
5659     // Cards of the survivors should have already been dirtied.
5660     if (!r->is_survivor()) {
5661       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5662     }
5663   }
5664 };
5665 
5666 #ifndef PRODUCT
5667 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5668   G1CollectedHeap* _g1h;
5669   G1SATBCardTableModRefBS* _ct_bs;
5670 public:
5671   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5672     : _g1h(g1h), _ct_bs(ct_bs) { }
5673   virtual bool doHeapRegion(HeapRegion* r) {
5674     if (r->is_survivor()) {
5675       _g1h->verify_dirty_region(r);
5676     } else {
5677       _g1h->verify_not_dirty_region(r);
5678     }
5679     return false;
5680   }
5681 };
5682 
5683 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5684   // All of the region should be clean.
5685   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5686   MemRegion mr(hr->bottom(), hr->end());
5687   ct_bs->verify_not_dirty_region(mr);
5688 }
5689 
5690 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5691   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5692   // dirty allocated blocks as they allocate them. The thread that
5693   // retires each region and replaces it with a new one will do a
5694   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5695   // not dirty that area (one less thing to have to do while holding
5696   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5697   // is dirty.
5698   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5699   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5700   if (hr->is_young()) {
5701     ct_bs->verify_g1_young_region(mr);
5702   } else {
5703     ct_bs->verify_dirty_region(mr);
5704   }
5705 }
5706 
5707 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5708   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5709   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5710     verify_dirty_region(hr);
5711   }
5712 }
5713 
5714 void G1CollectedHeap::verify_dirty_young_regions() {
5715   verify_dirty_young_list(_young_list->first_region());
5716 }
5717 
5718 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5719                                                HeapWord* tams, HeapWord* end) {
5720   guarantee(tams <= end,
5721             err_msg("tams: " PTR_FORMAT " end: " PTR_FORMAT, p2i(tams), p2i(end)));
5722   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5723   if (result < end) {
5724     gclog_or_tty->cr();
5725     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: " PTR_FORMAT,
5726                            bitmap_name, p2i(result));
5727     gclog_or_tty->print_cr("## %s tams: " PTR_FORMAT " end: " PTR_FORMAT,
5728                            bitmap_name, p2i(tams), p2i(end));
5729     return false;
5730   }
5731   return true;
5732 }
5733 
5734 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5735   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5736   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5737 
5738   HeapWord* bottom = hr->bottom();
5739   HeapWord* ptams  = hr->prev_top_at_mark_start();
5740   HeapWord* ntams  = hr->next_top_at_mark_start();
5741   HeapWord* end    = hr->end();
5742 
5743   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5744 
5745   bool res_n = true;
5746   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5747   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5748   // if we happen to be in that state.
5749   if (collector_state()->mark_in_progress() || !_cmThread->in_progress()) {
5750     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5751   }
5752   if (!res_p || !res_n) {
5753     gclog_or_tty->print_cr("#### Bitmap verification failed for " HR_FORMAT,
5754                            HR_FORMAT_PARAMS(hr));
5755     gclog_or_tty->print_cr("#### Caller: %s", caller);
5756     return false;
5757   }
5758   return true;
5759 }
5760 
5761 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5762   if (!G1VerifyBitmaps) return;
5763 
5764   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5765 }
5766 
5767 class G1VerifyBitmapClosure : public HeapRegionClosure {
5768 private:
5769   const char* _caller;
5770   G1CollectedHeap* _g1h;
5771   bool _failures;
5772 
5773 public:
5774   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5775     _caller(caller), _g1h(g1h), _failures(false) { }
5776 
5777   bool failures() { return _failures; }
5778 
5779   virtual bool doHeapRegion(HeapRegion* hr) {
5780     if (hr->is_continues_humongous()) return false;
5781 
5782     bool result = _g1h->verify_bitmaps(_caller, hr);
5783     if (!result) {
5784       _failures = true;
5785     }
5786     return false;
5787   }
5788 };
5789 
5790 void G1CollectedHeap::check_bitmaps(const char* caller) {
5791   if (!G1VerifyBitmaps) return;
5792 
5793   G1VerifyBitmapClosure cl(caller, this);
5794   heap_region_iterate(&cl);
5795   guarantee(!cl.failures(), "bitmap verification");
5796 }
5797 
5798 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5799  private:
5800   bool _failures;
5801  public:
5802   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5803 
5804   virtual bool doHeapRegion(HeapRegion* hr) {
5805     uint i = hr->hrm_index();
5806     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5807     if (hr->is_humongous()) {
5808       if (hr->in_collection_set()) {
5809         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5810         _failures = true;
5811         return true;
5812       }
5813       if (cset_state.is_in_cset()) {
5814         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5815         _failures = true;
5816         return true;
5817       }
5818       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
5819         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
5820         _failures = true;
5821         return true;
5822       }
5823     } else {
5824       if (cset_state.is_humongous()) {
5825         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
5826         _failures = true;
5827         return true;
5828       }
5829       if (hr->in_collection_set() != cset_state.is_in_cset()) {
5830         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
5831                                hr->in_collection_set(), cset_state.value(), i);
5832         _failures = true;
5833         return true;
5834       }
5835       if (cset_state.is_in_cset()) {
5836         if (hr->is_young() != (cset_state.is_young())) {
5837           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
5838                                  hr->is_young(), cset_state.value(), i);
5839           _failures = true;
5840           return true;
5841         }
5842         if (hr->is_old() != (cset_state.is_old())) {
5843           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
5844                                  hr->is_old(), cset_state.value(), i);
5845           _failures = true;
5846           return true;
5847         }
5848       }
5849     }
5850     return false;
5851   }
5852 
5853   bool failures() const { return _failures; }
5854 };
5855 
5856 bool G1CollectedHeap::check_cset_fast_test() {
5857   G1CheckCSetFastTableClosure cl;
5858   _hrm.iterate(&cl);
5859   return !cl.failures();
5860 }
5861 #endif // PRODUCT
5862 
5863 void G1CollectedHeap::cleanUpCardTable() {
5864   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5865   double start = os::elapsedTime();
5866 
5867   {
5868     // Iterate over the dirty cards region list.
5869     G1ParCleanupCTTask cleanup_task(ct_bs, this);
5870 
5871     workers()->run_task(&cleanup_task);
5872 #ifndef PRODUCT
5873     if (G1VerifyCTCleanup || VerifyAfterGC) {
5874       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
5875       heap_region_iterate(&cleanup_verifier);
5876     }
5877 #endif
5878   }
5879 
5880   double elapsed = os::elapsedTime() - start;
5881   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
5882 }
5883 
5884 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
5885   size_t pre_used = 0;
5886   FreeRegionList local_free_list("Local List for CSet Freeing");
5887 
5888   double young_time_ms     = 0.0;
5889   double non_young_time_ms = 0.0;
5890 
5891   // Since the collection set is a superset of the the young list,
5892   // all we need to do to clear the young list is clear its
5893   // head and length, and unlink any young regions in the code below
5894   _young_list->clear();
5895 
5896   G1CollectorPolicy* policy = g1_policy();
5897 
5898   double start_sec = os::elapsedTime();
5899   bool non_young = true;
5900 
5901   HeapRegion* cur = cs_head;
5902   int age_bound = -1;
5903   size_t rs_lengths = 0;
5904 
5905   while (cur != NULL) {
5906     assert(!is_on_master_free_list(cur), "sanity");
5907     if (non_young) {
5908       if (cur->is_young()) {
5909         double end_sec = os::elapsedTime();
5910         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5911         non_young_time_ms += elapsed_ms;
5912 
5913         start_sec = os::elapsedTime();
5914         non_young = false;
5915       }
5916     } else {
5917       if (!cur->is_young()) {
5918         double end_sec = os::elapsedTime();
5919         double elapsed_ms = (end_sec - start_sec) * 1000.0;
5920         young_time_ms += elapsed_ms;
5921 
5922         start_sec = os::elapsedTime();
5923         non_young = true;
5924       }
5925     }
5926 
5927     rs_lengths += cur->rem_set()->occupied_locked();
5928 
5929     HeapRegion* next = cur->next_in_collection_set();
5930     assert(cur->in_collection_set(), "bad CS");
5931     cur->set_next_in_collection_set(NULL);
5932     clear_in_cset(cur);
5933 
5934     if (cur->is_young()) {
5935       int index = cur->young_index_in_cset();
5936       assert(index != -1, "invariant");
5937       assert((uint) index < policy->young_cset_region_length(), "invariant");
5938       size_t words_survived = _surviving_young_words[index];
5939       cur->record_surv_words_in_group(words_survived);
5940 
5941       // At this point the we have 'popped' cur from the collection set
5942       // (linked via next_in_collection_set()) but it is still in the
5943       // young list (linked via next_young_region()). Clear the
5944       // _next_young_region field.
5945       cur->set_next_young_region(NULL);
5946     } else {
5947       int index = cur->young_index_in_cset();
5948       assert(index == -1, "invariant");
5949     }
5950 
5951     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
5952             (!cur->is_young() && cur->young_index_in_cset() == -1),
5953             "invariant" );
5954 
5955     if (!cur->evacuation_failed()) {
5956       MemRegion used_mr = cur->used_region();
5957 
5958       // And the region is empty.
5959       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
5960       pre_used += cur->used();
5961       free_region(cur, &local_free_list, false /* par */, true /* locked */);
5962     } else {
5963       cur->uninstall_surv_rate_group();
5964       if (cur->is_young()) {
5965         cur->set_young_index_in_cset(-1);
5966       }
5967       cur->set_evacuation_failed(false);
5968       // The region is now considered to be old.
5969       cur->set_old();
5970       _old_set.add(cur);
5971       evacuation_info.increment_collectionset_used_after(cur->used());
5972     }
5973     cur = next;
5974   }
5975 
5976   evacuation_info.set_regions_freed(local_free_list.length());
5977   policy->record_max_rs_lengths(rs_lengths);
5978   policy->cset_regions_freed();
5979 
5980   double end_sec = os::elapsedTime();
5981   double elapsed_ms = (end_sec - start_sec) * 1000.0;
5982 
5983   if (non_young) {
5984     non_young_time_ms += elapsed_ms;
5985   } else {
5986     young_time_ms += elapsed_ms;
5987   }
5988 
5989   prepend_to_freelist(&local_free_list);
5990   decrement_summary_bytes(pre_used);
5991   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
5992   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
5993 }
5994 
5995 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
5996  private:
5997   FreeRegionList* _free_region_list;
5998   HeapRegionSet* _proxy_set;
5999   HeapRegionSetCount _humongous_regions_removed;
6000   size_t _freed_bytes;
6001  public:
6002 
6003   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6004     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6005   }
6006 
6007   virtual bool doHeapRegion(HeapRegion* r) {
6008     if (!r->is_starts_humongous()) {
6009       return false;
6010     }
6011 
6012     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6013 
6014     oop obj = (oop)r->bottom();
6015     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6016 
6017     // The following checks whether the humongous object is live are sufficient.
6018     // The main additional check (in addition to having a reference from the roots
6019     // or the young gen) is whether the humongous object has a remembered set entry.
6020     //
6021     // A humongous object cannot be live if there is no remembered set for it
6022     // because:
6023     // - there can be no references from within humongous starts regions referencing
6024     // the object because we never allocate other objects into them.
6025     // (I.e. there are no intra-region references that may be missed by the
6026     // remembered set)
6027     // - as soon there is a remembered set entry to the humongous starts region
6028     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6029     // until the end of a concurrent mark.
6030     //
6031     // It is not required to check whether the object has been found dead by marking
6032     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6033     // all objects allocated during that time are considered live.
6034     // SATB marking is even more conservative than the remembered set.
6035     // So if at this point in the collection there is no remembered set entry,
6036     // nobody has a reference to it.
6037     // At the start of collection we flush all refinement logs, and remembered sets
6038     // are completely up-to-date wrt to references to the humongous object.
6039     //
6040     // Other implementation considerations:
6041     // - never consider object arrays at this time because they would pose
6042     // considerable effort for cleaning up the the remembered sets. This is
6043     // required because stale remembered sets might reference locations that
6044     // are currently allocated into.
6045     uint region_idx = r->hrm_index();
6046     if (!g1h->is_humongous_reclaim_candidate(region_idx) ||
6047         !r->rem_set()->is_empty()) {
6048 
6049       if (G1TraceEagerReclaimHumongousObjects) {
6050         gclog_or_tty->print_cr("Live humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6051                                region_idx,
6052                                (size_t)obj->size() * HeapWordSize,
6053                                p2i(r->bottom()),
6054                                r->region_num(),
6055                                r->rem_set()->occupied(),
6056                                r->rem_set()->strong_code_roots_list_length(),
6057                                next_bitmap->isMarked(r->bottom()),
6058                                g1h->is_humongous_reclaim_candidate(region_idx),
6059                                obj->is_typeArray()
6060                               );
6061       }
6062 
6063       return false;
6064     }
6065 
6066     guarantee(obj->is_typeArray(),
6067               err_msg("Only eagerly reclaiming type arrays is supported, but the object "
6068                       PTR_FORMAT " is not.",
6069                       p2i(r->bottom())));
6070 
6071     if (G1TraceEagerReclaimHumongousObjects) {
6072       gclog_or_tty->print_cr("Dead humongous region %u size " SIZE_FORMAT " start " PTR_FORMAT " length %u with remset " SIZE_FORMAT " code roots " SIZE_FORMAT " is marked %d reclaim candidate %d type array %d",
6073                              region_idx,
6074                              (size_t)obj->size() * HeapWordSize,
6075                              p2i(r->bottom()),
6076                              r->region_num(),
6077                              r->rem_set()->occupied(),
6078                              r->rem_set()->strong_code_roots_list_length(),
6079                              next_bitmap->isMarked(r->bottom()),
6080                              g1h->is_humongous_reclaim_candidate(region_idx),
6081                              obj->is_typeArray()
6082                             );
6083     }
6084     // Need to clear mark bit of the humongous object if already set.
6085     if (next_bitmap->isMarked(r->bottom())) {
6086       next_bitmap->clear(r->bottom());
6087     }
6088     _freed_bytes += r->used();
6089     r->set_containing_set(NULL);
6090     _humongous_regions_removed.increment(1u, r->capacity());
6091     g1h->free_humongous_region(r, _free_region_list, false);
6092 
6093     return false;
6094   }
6095 
6096   HeapRegionSetCount& humongous_free_count() {
6097     return _humongous_regions_removed;
6098   }
6099 
6100   size_t bytes_freed() const {
6101     return _freed_bytes;
6102   }
6103 
6104   size_t humongous_reclaimed() const {
6105     return _humongous_regions_removed.length();
6106   }
6107 };
6108 
6109 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6110   assert_at_safepoint(true);
6111 
6112   if (!G1EagerReclaimHumongousObjects ||
6113       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6114     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6115     return;
6116   }
6117 
6118   double start_time = os::elapsedTime();
6119 
6120   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6121 
6122   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6123   heap_region_iterate(&cl);
6124 
6125   HeapRegionSetCount empty_set;
6126   remove_from_old_sets(empty_set, cl.humongous_free_count());
6127 
6128   G1HRPrinter* hrp = hr_printer();
6129   if (hrp->is_active()) {
6130     FreeRegionListIterator iter(&local_cleanup_list);
6131     while (iter.more_available()) {
6132       HeapRegion* hr = iter.get_next();
6133       hrp->cleanup(hr);
6134     }
6135   }
6136 
6137   prepend_to_freelist(&local_cleanup_list);
6138   decrement_summary_bytes(cl.bytes_freed());
6139 
6140   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6141                                                                     cl.humongous_reclaimed());
6142 }
6143 
6144 // This routine is similar to the above but does not record
6145 // any policy statistics or update free lists; we are abandoning
6146 // the current incremental collection set in preparation of a
6147 // full collection. After the full GC we will start to build up
6148 // the incremental collection set again.
6149 // This is only called when we're doing a full collection
6150 // and is immediately followed by the tearing down of the young list.
6151 
6152 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6153   HeapRegion* cur = cs_head;
6154 
6155   while (cur != NULL) {
6156     HeapRegion* next = cur->next_in_collection_set();
6157     assert(cur->in_collection_set(), "bad CS");
6158     cur->set_next_in_collection_set(NULL);
6159     clear_in_cset(cur);
6160     cur->set_young_index_in_cset(-1);
6161     cur = next;
6162   }
6163 }
6164 
6165 void G1CollectedHeap::set_free_regions_coming() {
6166   if (G1ConcRegionFreeingVerbose) {
6167     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6168                            "setting free regions coming");
6169   }
6170 
6171   assert(!free_regions_coming(), "pre-condition");
6172   _free_regions_coming = true;
6173 }
6174 
6175 void G1CollectedHeap::reset_free_regions_coming() {
6176   assert(free_regions_coming(), "pre-condition");
6177 
6178   {
6179     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6180     _free_regions_coming = false;
6181     SecondaryFreeList_lock->notify_all();
6182   }
6183 
6184   if (G1ConcRegionFreeingVerbose) {
6185     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6186                            "reset free regions coming");
6187   }
6188 }
6189 
6190 void G1CollectedHeap::wait_while_free_regions_coming() {
6191   // Most of the time we won't have to wait, so let's do a quick test
6192   // first before we take the lock.
6193   if (!free_regions_coming()) {
6194     return;
6195   }
6196 
6197   if (G1ConcRegionFreeingVerbose) {
6198     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6199                            "waiting for free regions");
6200   }
6201 
6202   {
6203     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6204     while (free_regions_coming()) {
6205       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6206     }
6207   }
6208 
6209   if (G1ConcRegionFreeingVerbose) {
6210     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6211                            "done waiting for free regions");
6212   }
6213 }
6214 
6215 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6216   _young_list->push_region(hr);
6217 }
6218 
6219 class NoYoungRegionsClosure: public HeapRegionClosure {
6220 private:
6221   bool _success;
6222 public:
6223   NoYoungRegionsClosure() : _success(true) { }
6224   bool doHeapRegion(HeapRegion* r) {
6225     if (r->is_young()) {
6226       gclog_or_tty->print_cr("Region [" PTR_FORMAT ", " PTR_FORMAT ") tagged as young",
6227                              p2i(r->bottom()), p2i(r->end()));
6228       _success = false;
6229     }
6230     return false;
6231   }
6232   bool success() { return _success; }
6233 };
6234 
6235 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6236   bool ret = _young_list->check_list_empty(check_sample);
6237 
6238   if (check_heap) {
6239     NoYoungRegionsClosure closure;
6240     heap_region_iterate(&closure);
6241     ret = ret && closure.success();
6242   }
6243 
6244   return ret;
6245 }
6246 
6247 class TearDownRegionSetsClosure : public HeapRegionClosure {
6248 private:
6249   HeapRegionSet *_old_set;
6250 
6251 public:
6252   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6253 
6254   bool doHeapRegion(HeapRegion* r) {
6255     if (r->is_old()) {
6256       _old_set->remove(r);
6257     } else {
6258       // We ignore free regions, we'll empty the free list afterwards.
6259       // We ignore young regions, we'll empty the young list afterwards.
6260       // We ignore humongous regions, we're not tearing down the
6261       // humongous regions set.
6262       assert(r->is_free() || r->is_young() || r->is_humongous(),
6263              "it cannot be another type");
6264     }
6265     return false;
6266   }
6267 
6268   ~TearDownRegionSetsClosure() {
6269     assert(_old_set->is_empty(), "post-condition");
6270   }
6271 };
6272 
6273 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6274   assert_at_safepoint(true /* should_be_vm_thread */);
6275 
6276   if (!free_list_only) {
6277     TearDownRegionSetsClosure cl(&_old_set);
6278     heap_region_iterate(&cl);
6279 
6280     // Note that emptying the _young_list is postponed and instead done as
6281     // the first step when rebuilding the regions sets again. The reason for
6282     // this is that during a full GC string deduplication needs to know if
6283     // a collected region was young or old when the full GC was initiated.
6284   }
6285   _hrm.remove_all_free_regions();
6286 }
6287 
6288 class RebuildRegionSetsClosure : public HeapRegionClosure {
6289 private:
6290   bool            _free_list_only;
6291   HeapRegionSet*   _old_set;
6292   HeapRegionManager*   _hrm;
6293   size_t          _total_used;
6294 
6295 public:
6296   RebuildRegionSetsClosure(bool free_list_only,
6297                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6298     _free_list_only(free_list_only),
6299     _old_set(old_set), _hrm(hrm), _total_used(0) {
6300     assert(_hrm->num_free_regions() == 0, "pre-condition");
6301     if (!free_list_only) {
6302       assert(_old_set->is_empty(), "pre-condition");
6303     }
6304   }
6305 
6306   bool doHeapRegion(HeapRegion* r) {
6307     if (r->is_continues_humongous()) {
6308       return false;
6309     }
6310 
6311     if (r->is_empty()) {
6312       // Add free regions to the free list
6313       r->set_free();
6314       r->set_allocation_context(AllocationContext::system());
6315       _hrm->insert_into_free_list(r);
6316     } else if (!_free_list_only) {
6317       assert(!r->is_young(), "we should not come across young regions");
6318 
6319       if (r->is_humongous()) {
6320         // We ignore humongous regions. We left the humongous set unchanged.
6321       } else {
6322         // Objects that were compacted would have ended up on regions
6323         // that were previously old or free.  Archive regions (which are
6324         // old) will not have been touched.
6325         assert(r->is_free() || r->is_old(), "invariant");
6326         // We now consider them old, so register as such. Leave
6327         // archive regions set that way, however, while still adding
6328         // them to the old set.
6329         if (!r->is_archive()) {
6330           r->set_old();
6331         }
6332         _old_set->add(r);
6333       }
6334       _total_used += r->used();
6335     }
6336 
6337     return false;
6338   }
6339 
6340   size_t total_used() {
6341     return _total_used;
6342   }
6343 };
6344 
6345 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6346   assert_at_safepoint(true /* should_be_vm_thread */);
6347 
6348   if (!free_list_only) {
6349     _young_list->empty_list();
6350   }
6351 
6352   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6353   heap_region_iterate(&cl);
6354 
6355   if (!free_list_only) {
6356     _allocator->set_used(cl.total_used());
6357     if (_archive_allocator != NULL) {
6358       _archive_allocator->clear_used();
6359     }
6360   }
6361   assert(_allocator->used_unlocked() == recalculate_used(),
6362          err_msg("inconsistent _allocator->used_unlocked(), "
6363                  "value: " SIZE_FORMAT " recalculated: " SIZE_FORMAT,
6364                  _allocator->used_unlocked(), recalculate_used()));
6365 }
6366 
6367 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6368   _refine_cte_cl->set_concurrent(concurrent);
6369 }
6370 
6371 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6372   HeapRegion* hr = heap_region_containing(p);
6373   return hr->is_in(p);
6374 }
6375 
6376 // Methods for the mutator alloc region
6377 
6378 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6379                                                       bool force) {
6380   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6381   assert(!force || g1_policy()->can_expand_young_list(),
6382          "if force is true we should be able to expand the young list");
6383   bool young_list_full = g1_policy()->is_young_list_full();
6384   if (force || !young_list_full) {
6385     HeapRegion* new_alloc_region = new_region(word_size,
6386                                               false /* is_old */,
6387                                               false /* do_expand */);
6388     if (new_alloc_region != NULL) {
6389       set_region_short_lived_locked(new_alloc_region);
6390       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6391       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6392       return new_alloc_region;
6393     }
6394   }
6395   return NULL;
6396 }
6397 
6398 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6399                                                   size_t allocated_bytes) {
6400   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6401   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6402 
6403   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6404   _allocator->increase_used(allocated_bytes);
6405   _hr_printer.retire(alloc_region);
6406   // We update the eden sizes here, when the region is retired,
6407   // instead of when it's allocated, since this is the point that its
6408   // used space has been recored in _summary_bytes_used.
6409   g1mm()->update_eden_size();
6410 }
6411 
6412 // Methods for the GC alloc regions
6413 
6414 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6415                                                  uint count,
6416                                                  InCSetState dest) {
6417   assert(FreeList_lock->owned_by_self(), "pre-condition");
6418 
6419   if (count < g1_policy()->max_regions(dest)) {
6420     const bool is_survivor = (dest.is_young());
6421     HeapRegion* new_alloc_region = new_region(word_size,
6422                                               !is_survivor,
6423                                               true /* do_expand */);
6424     if (new_alloc_region != NULL) {
6425       // We really only need to do this for old regions given that we
6426       // should never scan survivors. But it doesn't hurt to do it
6427       // for survivors too.
6428       new_alloc_region->record_timestamp();
6429       if (is_survivor) {
6430         new_alloc_region->set_survivor();
6431         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6432         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6433       } else {
6434         new_alloc_region->set_old();
6435         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6436         check_bitmaps("Old Region Allocation", new_alloc_region);
6437       }
6438       bool during_im = collector_state()->during_initial_mark_pause();
6439       new_alloc_region->note_start_of_copying(during_im);
6440       return new_alloc_region;
6441     }
6442   }
6443   return NULL;
6444 }
6445 
6446 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6447                                              size_t allocated_bytes,
6448                                              InCSetState dest) {
6449   bool during_im = collector_state()->during_initial_mark_pause();
6450   alloc_region->note_end_of_copying(during_im);
6451   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6452   if (dest.is_young()) {
6453     young_list()->add_survivor_region(alloc_region);
6454   } else {
6455     _old_set.add(alloc_region);
6456   }
6457   _hr_printer.retire(alloc_region);
6458 }
6459 
6460 HeapRegion* G1CollectedHeap::alloc_highest_free_region() {
6461   bool expanded = false;
6462   uint index = _hrm.find_highest_free(&expanded);
6463 
6464   if (index != G1_NO_HRM_INDEX) {
6465     if (expanded) {
6466       ergo_verbose1(ErgoHeapSizing,
6467                     "attempt heap expansion",
6468                     ergo_format_reason("requested address range outside heap bounds")
6469                     ergo_format_byte("region size"),
6470                     HeapRegion::GrainWords * HeapWordSize);
6471     }
6472     _hrm.allocate_free_regions_starting_at(index, 1);
6473     return region_at(index);
6474   }
6475   return NULL;
6476 }
6477 
6478 
6479 // Heap region set verification
6480 
6481 class VerifyRegionListsClosure : public HeapRegionClosure {
6482 private:
6483   HeapRegionSet*   _old_set;
6484   HeapRegionSet*   _humongous_set;
6485   HeapRegionManager*   _hrm;
6486 
6487 public:
6488   HeapRegionSetCount _old_count;
6489   HeapRegionSetCount _humongous_count;
6490   HeapRegionSetCount _free_count;
6491 
6492   VerifyRegionListsClosure(HeapRegionSet* old_set,
6493                            HeapRegionSet* humongous_set,
6494                            HeapRegionManager* hrm) :
6495     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6496     _old_count(), _humongous_count(), _free_count(){ }
6497 
6498   bool doHeapRegion(HeapRegion* hr) {
6499     if (hr->is_continues_humongous()) {
6500       return false;
6501     }
6502 
6503     if (hr->is_young()) {
6504       // TODO
6505     } else if (hr->is_starts_humongous()) {
6506       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6507       _humongous_count.increment(1u, hr->capacity());
6508     } else if (hr->is_empty()) {
6509       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6510       _free_count.increment(1u, hr->capacity());
6511     } else if (hr->is_old()) {
6512       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6513       _old_count.increment(1u, hr->capacity());
6514     } else {
6515       // There are no other valid region types. Check for one invalid
6516       // one we can identify: pinned without old or humongous set.
6517       assert(!hr->is_pinned(), err_msg("Heap region %u is pinned but not old (archive) or humongous.", hr->hrm_index()));
6518       ShouldNotReachHere();
6519     }
6520     return false;
6521   }
6522 
6523   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6524     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6525     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6526         old_set->total_capacity_bytes(), _old_count.capacity()));
6527 
6528     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6529     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6530         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6531 
6532     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6533     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6534         free_list->total_capacity_bytes(), _free_count.capacity()));
6535   }
6536 };
6537 
6538 void G1CollectedHeap::verify_region_sets() {
6539   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6540 
6541   // First, check the explicit lists.
6542   _hrm.verify();
6543   {
6544     // Given that a concurrent operation might be adding regions to
6545     // the secondary free list we have to take the lock before
6546     // verifying it.
6547     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6548     _secondary_free_list.verify_list();
6549   }
6550 
6551   // If a concurrent region freeing operation is in progress it will
6552   // be difficult to correctly attributed any free regions we come
6553   // across to the correct free list given that they might belong to
6554   // one of several (free_list, secondary_free_list, any local lists,
6555   // etc.). So, if that's the case we will skip the rest of the
6556   // verification operation. Alternatively, waiting for the concurrent
6557   // operation to complete will have a non-trivial effect on the GC's
6558   // operation (no concurrent operation will last longer than the
6559   // interval between two calls to verification) and it might hide
6560   // any issues that we would like to catch during testing.
6561   if (free_regions_coming()) {
6562     return;
6563   }
6564 
6565   // Make sure we append the secondary_free_list on the free_list so
6566   // that all free regions we will come across can be safely
6567   // attributed to the free_list.
6568   append_secondary_free_list_if_not_empty_with_lock();
6569 
6570   // Finally, make sure that the region accounting in the lists is
6571   // consistent with what we see in the heap.
6572 
6573   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6574   heap_region_iterate(&cl);
6575   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6576 }
6577 
6578 // Optimized nmethod scanning
6579 
6580 class RegisterNMethodOopClosure: public OopClosure {
6581   G1CollectedHeap* _g1h;
6582   nmethod* _nm;
6583 
6584   template <class T> void do_oop_work(T* p) {
6585     T heap_oop = oopDesc::load_heap_oop(p);
6586     if (!oopDesc::is_null(heap_oop)) {
6587       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6588       HeapRegion* hr = _g1h->heap_region_containing(obj);
6589       assert(!hr->is_continues_humongous(),
6590              err_msg("trying to add code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6591                      " starting at " HR_FORMAT,
6592                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6593 
6594       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6595       hr->add_strong_code_root_locked(_nm);
6596     }
6597   }
6598 
6599 public:
6600   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6601     _g1h(g1h), _nm(nm) {}
6602 
6603   void do_oop(oop* p)       { do_oop_work(p); }
6604   void do_oop(narrowOop* p) { do_oop_work(p); }
6605 };
6606 
6607 class UnregisterNMethodOopClosure: public OopClosure {
6608   G1CollectedHeap* _g1h;
6609   nmethod* _nm;
6610 
6611   template <class T> void do_oop_work(T* p) {
6612     T heap_oop = oopDesc::load_heap_oop(p);
6613     if (!oopDesc::is_null(heap_oop)) {
6614       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6615       HeapRegion* hr = _g1h->heap_region_containing(obj);
6616       assert(!hr->is_continues_humongous(),
6617              err_msg("trying to remove code root " PTR_FORMAT " in continuation of humongous region " HR_FORMAT
6618                      " starting at " HR_FORMAT,
6619                      p2i(_nm), HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6620 
6621       hr->remove_strong_code_root(_nm);
6622     }
6623   }
6624 
6625 public:
6626   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6627     _g1h(g1h), _nm(nm) {}
6628 
6629   void do_oop(oop* p)       { do_oop_work(p); }
6630   void do_oop(narrowOop* p) { do_oop_work(p); }
6631 };
6632 
6633 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6634   CollectedHeap::register_nmethod(nm);
6635 
6636   guarantee(nm != NULL, "sanity");
6637   RegisterNMethodOopClosure reg_cl(this, nm);
6638   nm->oops_do(&reg_cl);
6639 }
6640 
6641 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6642   CollectedHeap::unregister_nmethod(nm);
6643 
6644   guarantee(nm != NULL, "sanity");
6645   UnregisterNMethodOopClosure reg_cl(this, nm);
6646   nm->oops_do(&reg_cl, true);
6647 }
6648 
6649 void G1CollectedHeap::purge_code_root_memory() {
6650   double purge_start = os::elapsedTime();
6651   G1CodeRootSet::purge();
6652   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6653   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6654 }
6655 
6656 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6657   G1CollectedHeap* _g1h;
6658 
6659 public:
6660   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6661     _g1h(g1h) {}
6662 
6663   void do_code_blob(CodeBlob* cb) {
6664     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6665     if (nm == NULL) {
6666       return;
6667     }
6668 
6669     if (ScavengeRootsInCode) {
6670       _g1h->register_nmethod(nm);
6671     }
6672   }
6673 };
6674 
6675 void G1CollectedHeap::rebuild_strong_code_roots() {
6676   RebuildStrongCodeRootClosure blob_cl(this);
6677   CodeCache::blobs_do(&blob_cl);
6678 }