1 /*
   2  * Copyright (c) 2014, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc/g1/g1CollectedHeap.inline.hpp"
  27 #include "gc/g1/g1OopClosures.inline.hpp"
  28 #include "gc/g1/g1ParScanThreadState.inline.hpp"
  29 #include "gc/g1/g1StringDedup.hpp"
  30 #include "gc/shared/taskqueue.inline.hpp"
  31 #include "oops/oop.inline.hpp"
  32 #include "runtime/prefetch.inline.hpp"
  33 
  34 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
  35   : _g1h(g1h),
  36     _refs(g1h->task_queue(queue_num)),
  37     _dcq(&g1h->dirty_card_queue_set()),
  38     _ct_bs(g1h->g1_barrier_set()),
  39     _g1_rem(g1h->g1_rem_set()),
  40     _hash_seed(17), _queue_num(queue_num),
  41     _term_attempts(0),
  42     _tenuring_threshold(g1h->g1_policy()->tenuring_threshold()),
  43     _age_table(false), _scanner(g1h, rp),
  44     _strong_roots_time(0), _term_time(0) {
  45   _scanner.set_par_scan_thread_state(this);
  46   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  47   // we "sacrifice" entry 0 to keep track of surviving bytes for
  48   // non-young regions (where the age is -1)
  49   // We also add a few elements at the beginning and at the end in
  50   // an attempt to eliminate cache contention
  51   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  52   uint array_length = PADDING_ELEM_NUM +
  53                       real_length +
  54                       PADDING_ELEM_NUM;
  55   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  56   if (_surviving_young_words_base == NULL)
  57     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  58                           "Not enough space for young surv histo.");
  59   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  60   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  61 
  62   _g1_par_allocator = G1ParGCAllocator::create_allocator(_g1h);
  63 
  64   _dest[InCSetState::NotInCSet]    = InCSetState::NotInCSet;
  65   // The dest for Young is used when the objects are aged enough to
  66   // need to be moved to the next space.
  67   _dest[InCSetState::Young]        = InCSetState::Old;
  68   _dest[InCSetState::Old]          = InCSetState::Old;
  69 
  70   _start = os::elapsedTime();
  71 }
  72 
  73 G1ParScanThreadState::~G1ParScanThreadState() {
  74   _g1_par_allocator->retire_alloc_buffers();
  75   delete _g1_par_allocator;
  76   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words_base);
  77 }
  78 
  79 void
  80 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  81 {
  82   st->print_raw_cr("GC Termination Stats");
  83   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  84                    " ------waste (KiB)------");
  85   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  86                    "  total   alloc    undo");
  87   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  88                    " ------- ------- -------");
  89 }
  90 
  91 void
  92 G1ParScanThreadState::print_termination_stats(int i,
  93                                               outputStream* const st) const
  94 {
  95   const double elapsed_ms = elapsed_time() * 1000.0;
  96   const double s_roots_ms = strong_roots_time() * 1000.0;
  97   const double term_ms    = term_time() * 1000.0;
  98   size_t alloc_buffer_waste = 0;
  99   size_t undo_waste = 0;
 100   _g1_par_allocator->waste(alloc_buffer_waste, undo_waste);
 101   st->print_cr("%3d %9.2f %9.2f %6.2f "
 102                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
 103                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
 104                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
 105                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
 106                (alloc_buffer_waste + undo_waste) * HeapWordSize / K,
 107                alloc_buffer_waste * HeapWordSize / K,
 108                undo_waste * HeapWordSize / K);
 109 }
 110 
 111 #ifdef ASSERT
 112 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 113   assert(ref != NULL, "invariant");
 114   assert(UseCompressedOops, "sanity");
 115   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
 116   oop p = oopDesc::load_decode_heap_oop(ref);
 117   assert(_g1h->is_in_g1_reserved(p),
 118          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 119   return true;
 120 }
 121 
 122 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 123   assert(ref != NULL, "invariant");
 124   if (has_partial_array_mask(ref)) {
 125     // Must be in the collection set--it's already been copied.
 126     oop p = clear_partial_array_mask(ref);
 127     assert(_g1h->obj_in_cs(p),
 128            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 129   } else {
 130     oop p = oopDesc::load_decode_heap_oop(ref);
 131     assert(_g1h->is_in_g1_reserved(p),
 132            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 133   }
 134   return true;
 135 }
 136 
 137 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 138   if (ref.is_narrow()) {
 139     return verify_ref((narrowOop*) ref);
 140   } else {
 141     return verify_ref((oop*) ref);
 142   }
 143 }
 144 #endif // ASSERT
 145 
 146 void G1ParScanThreadState::trim_queue() {
 147   StarTask ref;
 148   do {
 149     // Drain the overflow stack first, so other threads can steal.
 150     while (_refs->pop_overflow(ref)) {
 151       dispatch_reference(ref);
 152     }
 153 
 154     while (_refs->pop_local(ref)) {
 155       dispatch_reference(ref);
 156     }
 157   } while (!_refs->is_empty());
 158 }
 159 
 160 HeapWord* G1ParScanThreadState::allocate_in_next_plab(InCSetState const state,
 161                                                       InCSetState* dest,
 162                                                       size_t word_sz,
 163                                                       AllocationContext_t const context) {
 164   assert(state.is_in_cset_or_humongous(), err_msg("Unexpected state: " CSETSTATE_FORMAT, state.value()));
 165   assert(dest->is_in_cset_or_humongous(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 166 
 167   // Right now we only have two types of regions (young / old) so
 168   // let's keep the logic here simple. We can generalize it when necessary.
 169   if (dest->is_young()) {
 170     HeapWord* const obj_ptr = _g1_par_allocator->allocate(InCSetState::Old,
 171                                                           word_sz, context);
 172     if (obj_ptr == NULL) {
 173       return NULL;
 174     }
 175     // Make sure that we won't attempt to copy any other objects out
 176     // of a survivor region (given that apparently we cannot allocate
 177     // any new ones) to avoid coming into this slow path.
 178     _tenuring_threshold = 0;
 179     dest->set_old();
 180     return obj_ptr;
 181   } else {
 182     assert(dest->is_old(), err_msg("Unexpected dest: " CSETSTATE_FORMAT, dest->value()));
 183     // no other space to try.
 184     return NULL;
 185   }
 186 }
 187 
 188 InCSetState G1ParScanThreadState::next_state(InCSetState const state, markOop const m, uint& age) {
 189   if (state.is_young()) {
 190     age = !m->has_displaced_mark_helper() ? m->age()
 191                                           : m->displaced_mark_helper()->age();
 192     if (age < _tenuring_threshold) {
 193       return state;
 194     }
 195   }
 196   return dest(state);
 197 }
 198 
 199 oop G1ParScanThreadState::copy_to_survivor_space(InCSetState const state,
 200                                                  oop const old,
 201                                                  markOop const old_mark) {
 202   const size_t word_sz = old->size();
 203   HeapRegion* const from_region = _g1h->heap_region_containing_raw(old);
 204   // +1 to make the -1 indexes valid...
 205   const int young_index = from_region->young_index_in_cset()+1;
 206   assert( (from_region->is_young() && young_index >  0) ||
 207          (!from_region->is_young() && young_index == 0), "invariant" );
 208   const AllocationContext_t context = from_region->allocation_context();
 209 
 210   uint age = 0;
 211   InCSetState dest_state = next_state(state, old_mark, age);
 212   HeapWord* obj_ptr = _g1_par_allocator->plab_allocate(dest_state, word_sz, context);
 213 
 214   // PLAB allocations should succeed most of the time, so we'll
 215   // normally check against NULL once and that's it.
 216   if (obj_ptr == NULL) {
 217     obj_ptr = _g1_par_allocator->allocate_direct_or_new_plab(dest_state, word_sz, context);
 218     if (obj_ptr == NULL) {
 219       obj_ptr = allocate_in_next_plab(state, &dest_state, word_sz, context);
 220       if (obj_ptr == NULL) {
 221         // This will either forward-to-self, or detect that someone else has
 222         // installed a forwarding pointer.
 223         return handle_evacuation_failure_par(old, old_mark);
 224       }
 225     }
 226   }
 227 
 228   assert(obj_ptr != NULL, "when we get here, allocation should have succeeded");
 229   assert(_g1h->is_in_reserved(obj_ptr), "Allocated memory should be in the heap");
 230 
 231 #ifndef PRODUCT
 232   // Should this evacuation fail?
 233   if (_g1h->evacuation_should_fail()) {
 234     // Doing this after all the allocation attempts also tests the
 235     // undo_allocation() method too.
 236     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 237     return handle_evacuation_failure_par(old, old_mark);
 238   }
 239 #endif // !PRODUCT
 240 
 241   // We're going to allocate linearly, so might as well prefetch ahead.
 242   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 243 
 244   const oop obj = oop(obj_ptr);
 245   const oop forward_ptr = old->forward_to_atomic(obj);
 246   if (forward_ptr == NULL) {
 247     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 248 
 249     if (dest_state.is_young()) {
 250       if (age < markOopDesc::max_age) {
 251         age++;
 252       }
 253       if (old_mark->has_displaced_mark_helper()) {
 254         // In this case, we have to install the mark word first,
 255         // otherwise obj looks to be forwarded (the old mark word,
 256         // which contains the forward pointer, was copied)
 257         obj->set_mark(old_mark);
 258         markOop new_mark = old_mark->displaced_mark_helper()->set_age(age);
 259         old_mark->set_displaced_mark_helper(new_mark);
 260       } else {
 261         obj->set_mark(old_mark->set_age(age));
 262       }
 263       age_table()->add(age, word_sz);
 264     } else {
 265       obj->set_mark(old_mark);
 266     }
 267 
 268     if (G1StringDedup::is_enabled()) {
 269       const bool is_from_young = state.is_young();
 270       const bool is_to_young = dest_state.is_young();
 271       assert(is_from_young == _g1h->heap_region_containing_raw(old)->is_young(),
 272              "sanity");
 273       assert(is_to_young == _g1h->heap_region_containing_raw(obj)->is_young(),
 274              "sanity");
 275       G1StringDedup::enqueue_from_evacuation(is_from_young,
 276                                              is_to_young,
 277                                              queue_num(),
 278                                              obj);
 279     }
 280 
 281     size_t* const surv_young_words = surviving_young_words();
 282     surv_young_words[young_index] += word_sz;
 283 
 284     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 285       // We keep track of the next start index in the length field of
 286       // the to-space object. The actual length can be found in the
 287       // length field of the from-space object.
 288       arrayOop(obj)->set_length(0);
 289       oop* old_p = set_partial_array_mask(old);
 290       push_on_queue(old_p);
 291     } else {
 292       HeapRegion* const to_region = _g1h->heap_region_containing_raw(obj_ptr);
 293       _scanner.set_region(to_region);
 294       obj->oop_iterate_backwards(&_scanner);
 295     }
 296     return obj;
 297   } else {
 298     _g1_par_allocator->undo_allocation(dest_state, obj_ptr, word_sz, context);
 299     return forward_ptr;
 300   }
 301 }
 302 
 303 oop G1ParScanThreadState::handle_evacuation_failure_par(oop old, markOop m) {
 304   assert(_g1h->obj_in_cs(old),
 305          err_msg("Object " PTR_FORMAT " should be in the CSet", p2i(old)));
 306 
 307   oop forward_ptr = old->forward_to_atomic(old);
 308   if (forward_ptr == NULL) {
 309     // Forward-to-self succeeded. We are the "owner" of the object.
 310     HeapRegion* r = _g1h->heap_region_containing(old);
 311 
 312     if (!r->evacuation_failed()) {
 313       r->set_evacuation_failed(true);
 314      _g1h->hr_printer()->evac_failure(r);
 315     }
 316 
 317     _g1h->preserve_mark_during_evac_failure(_queue_num, old, m);
 318 
 319     _scanner.set_region(r);
 320     old->oop_iterate_backwards(&_scanner);
 321   
 322     return old;
 323   } else {
 324     // Forward-to-self failed. Either someone else managed to allocate
 325     // space for this object (old != forward_ptr) or they beat us in
 326     // self-forwarding it (old == forward_ptr).
 327     assert(old == forward_ptr || !_g1h->obj_in_cs(forward_ptr),
 328            err_msg("Object " PTR_FORMAT " forwarded to: " PTR_FORMAT " "
 329                    "should not be in the CSet",
 330                    p2i(old), p2i(forward_ptr)));
 331     return forward_ptr;
 332   }
 333 }