1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   if (MaxHeapSize < InitialHeapSize) {
  52     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  53   }
  54     
  55   if (MetaspaceSize > MaxMetaspaceSize) {
  56     MaxMetaspaceSize = MetaspaceSize;
  57   }
  58   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
  59   // Don't increase Metaspace size limit above specified.
  60   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
  61   if (MetaspaceSize > MaxMetaspaceSize) {
  62     MetaspaceSize = MaxMetaspaceSize;
  63   }
  64 
  65   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
  66   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
  67 
  68   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  69 
  70   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  71   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  72   if (MetaspaceSize < 256*K) {
  73     vm_exit_during_initialization("Too small initial Metaspace size");
  74   }
  75 }
  76 
  77 void CollectorPolicy::initialize_size_info() {
  78   // User inputs from -mx and ms are aligned
  79   set_initial_heap_byte_size(InitialHeapSize);
  80   if (initial_heap_byte_size() == 0) {
  81     set_initial_heap_byte_size(NewSize + OldSize);
  82   }
  83   set_initial_heap_byte_size(align_size_up(_initial_heap_byte_size,
  84                                            min_alignment()));
  85 
  86   set_min_heap_byte_size(Arguments::min_heap_size());
  87   if (min_heap_byte_size() == 0) {
  88     set_min_heap_byte_size(NewSize + OldSize);
  89   }
  90   set_min_heap_byte_size(align_size_up(_min_heap_byte_size,
  91                                        min_alignment()));
  92 
  93   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
  94 
  95   // Check heap parameter properties
  96   if (initial_heap_byte_size() < M) {
  97     vm_exit_during_initialization("Too small initial heap");
  98   }
  99   // Check heap parameter properties
 100   if (min_heap_byte_size() < M) {
 101     vm_exit_during_initialization("Too small minimum heap");
 102   }
 103   if (initial_heap_byte_size() <= NewSize) {
 104      // make sure there is at least some room in old space
 105     vm_exit_during_initialization("Too small initial heap for new size specified");
 106   }
 107   if (max_heap_byte_size() < min_heap_byte_size()) {
 108     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 109   }
 110   if (initial_heap_byte_size() < min_heap_byte_size()) {
 111     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 112   }
 113   if (max_heap_byte_size() < initial_heap_byte_size()) {
 114     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 115   }
 116 
 117   if (PrintGCDetails && Verbose) {
 118     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 119       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 120       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 121   }
 122 }
 123 
 124 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 125   bool result = _should_clear_all_soft_refs;
 126   set_should_clear_all_soft_refs(false);
 127   return result;
 128 }
 129 
 130 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 131                                            int max_covered_regions) {
 132   switch (rem_set_name()) {
 133   case GenRemSet::CardTable: {
 134     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 135     return res;
 136   }
 137   default:
 138     guarantee(false, "unrecognized GenRemSet::Name");
 139     return NULL;
 140   }
 141 }
 142 
 143 void CollectorPolicy::cleared_all_soft_refs() {
 144   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 145   // have been cleared in the last collection but if the gc overhear
 146   // limit continues to be near, SoftRefs should still be cleared.
 147   if (size_policy() != NULL) {
 148     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 149   }
 150   _all_soft_refs_clear = true;
 151 }
 152 
 153 
 154 // GenCollectorPolicy methods.
 155 
 156 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 157   size_t x = base_size / (NewRatio+1);
 158   size_t new_gen_size = x > min_alignment() ?
 159                      align_size_down(x, min_alignment()) :
 160                      min_alignment();
 161   return new_gen_size;
 162 }
 163 
 164 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 165                                                  size_t maximum_size) {
 166   size_t alignment = min_alignment();
 167   size_t max_minus = maximum_size - alignment;
 168   return desired_size < max_minus ? desired_size : max_minus;
 169 }
 170 
 171 
 172 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 173                                                 size_t init_promo_size,
 174                                                 size_t init_survivor_size) {
 175   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 176   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 177                                         init_promo_size,
 178                                         init_survivor_size,
 179                                         max_gc_pause_sec,
 180                                         GCTimeRatio);
 181 }
 182 
 183 size_t GenCollectorPolicy::compute_max_alignment() {
 184   // The card marking array and the offset arrays for old generations are
 185   // committed in os pages as well. Make sure they are entirely full (to
 186   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 187   // byte entry and the os page size is 4096, the maximum heap size should
 188   // be 512*4096 = 2MB aligned.
 189   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 190 
 191   // Parallel GC does its own alignment of the generations to avoid requiring a
 192   // large page (256M on some platforms) for the permanent generation.  The
 193   // other collectors should also be updated to do their own alignment and then
 194   // this use of lcm() should be removed.
 195   if (UseLargePages && !UseParallelGC) {
 196       // in presence of large pages we have to make sure that our
 197       // alignment is large page aware
 198       alignment = lcm(os::large_page_size(), alignment);
 199   }
 200 
 201   return alignment;
 202 }
 203 
 204 void GenCollectorPolicy::initialize_flags() {
 205   // All sizes must be multiples of the generation granularity.
 206   set_min_alignment((uintx) Generation::GenGrain);
 207   set_max_alignment(compute_max_alignment());
 208   assert(max_alignment() >= min_alignment() &&
 209          max_alignment() % min_alignment() == 0,
 210          "invalid alignment constraints");
 211 
 212   CollectorPolicy::initialize_flags();
 213 
 214   // All generational heaps have a youngest gen; handle those flags here.
 215 
 216   // Adjust max size parameters
 217   if (NewSize > MaxNewSize) {
 218     MaxNewSize = NewSize;
 219   }
 220   NewSize = align_size_down(NewSize, min_alignment());
 221   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 222 
 223   // Check validity of heap flags
 224   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 225   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 226 
 227   if (NewSize < 3*min_alignment()) {
 228      // make sure there room for eden and two survivor spaces
 229     vm_exit_during_initialization("Too small new size specified");
 230   }
 231   if (SurvivorRatio < 1 || NewRatio < 1) {
 232     vm_exit_during_initialization("Invalid heap ratio specified");
 233   }
 234 }
 235 
 236 void TwoGenerationCollectorPolicy::initialize_flags() {
 237   GenCollectorPolicy::initialize_flags();
 238 
 239   OldSize = align_size_down(OldSize, min_alignment());
 240 
 241   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 242     // NewRatio will be used later to set the young generation size so we use
 243     // it to calculate how big the heap should be based on the requested OldSize
 244     // and NewRatio.
 245     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 246     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 247 
 248     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 249     MaxHeapSize = calculated_heapsize;
 250     InitialHeapSize = calculated_heapsize;
 251   }
 252   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 253 
 254   // adjust max heap size if necessary
 255   if (NewSize + OldSize > MaxHeapSize) {
 256     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 257       // somebody set a maximum heap size with the intention that we should not
 258       // exceed it. Adjust New/OldSize as necessary.
 259       uintx calculated_size = NewSize + OldSize;
 260       double shrink_factor = (double) MaxHeapSize / calculated_size;
 261       // align
 262       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 263       // OldSize is already aligned because above we aligned MaxHeapSize to
 264       // max_alignment(), and we just made sure that NewSize is aligned to
 265       // min_alignment(). In initialize_flags() we verified that max_alignment()
 266       // is a multiple of min_alignment().
 267       OldSize = MaxHeapSize - NewSize;
 268     } else {
 269       MaxHeapSize = NewSize + OldSize;
 270     }
 271   }
 272   // need to do this again
 273   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 274 
 275   always_do_update_barrier = UseConcMarkSweepGC;
 276 
 277   // Check validity of heap flags
 278   assert(OldSize     % min_alignment() == 0, "old space alignment");
 279   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 280 }
 281 
 282 // Values set on the command line win over any ergonomically
 283 // set command line parameters.
 284 // Ergonomic choice of parameters are done before this
 285 // method is called.  Values for command line parameters such as NewSize
 286 // and MaxNewSize feed those ergonomic choices into this method.
 287 // This method makes the final generation sizings consistent with
 288 // themselves and with overall heap sizings.
 289 // In the absence of explicitly set command line flags, policies
 290 // such as the use of NewRatio are used to size the generation.
 291 void GenCollectorPolicy::initialize_size_info() {
 292   CollectorPolicy::initialize_size_info();
 293 
 294   // min_alignment() is used for alignment within a generation.
 295   // There is additional alignment done down stream for some
 296   // collectors that sometimes causes unwanted rounding up of
 297   // generations sizes.
 298 
 299   // Determine maximum size of gen0
 300 
 301   size_t max_new_size = 0;
 302   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 303     if (MaxNewSize < min_alignment()) {
 304       max_new_size = min_alignment();
 305     }
 306     if (MaxNewSize >= max_heap_byte_size()) {
 307       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 308                                      min_alignment());
 309       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 310         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 311         "new generation size of " SIZE_FORMAT "k will be used.",
 312         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 313     } else {
 314       max_new_size = align_size_down(MaxNewSize, min_alignment());
 315     }
 316 
 317   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 318   // specially at this point to just use an ergonomically set
 319   // MaxNewSize to set max_new_size.  For cases with small
 320   // heaps such a policy often did not work because the MaxNewSize
 321   // was larger than the entire heap.  The interpretation given
 322   // to ergonomically set flags is that the flags are set
 323   // by different collectors for their own special needs but
 324   // are not allowed to badly shape the heap.  This allows the
 325   // different collectors to decide what's best for themselves
 326   // without having to factor in the overall heap shape.  It
 327   // can be the case in the future that the collectors would
 328   // only make "wise" ergonomics choices and this policy could
 329   // just accept those choices.  The choices currently made are
 330   // not always "wise".
 331   } else {
 332     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 333     // Bound the maximum size by NewSize below (since it historically
 334     // would have been NewSize and because the NewRatio calculation could
 335     // yield a size that is too small) and bound it by MaxNewSize above.
 336     // Ergonomics plays here by previously calculating the desired
 337     // NewSize and MaxNewSize.
 338     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 339   }
 340   assert(max_new_size > 0, "All paths should set max_new_size");
 341 
 342   // Given the maximum gen0 size, determine the initial and
 343   // minimum gen0 sizes.
 344 
 345   if (max_heap_byte_size() == min_heap_byte_size()) {
 346     // The maximum and minimum heap sizes are the same so
 347     // the generations minimum and initial must be the
 348     // same as its maximum.
 349     set_min_gen0_size(max_new_size);
 350     set_initial_gen0_size(max_new_size);
 351     set_max_gen0_size(max_new_size);
 352   } else {
 353     size_t desired_new_size = 0;
 354     if (!FLAG_IS_DEFAULT(NewSize)) {
 355       // If NewSize is set ergonomically (for example by cms), it
 356       // would make sense to use it.  If it is used, also use it
 357       // to set the initial size.  Although there is no reason
 358       // the minimum size and the initial size have to be the same,
 359       // the current implementation gets into trouble during the calculation
 360       // of the tenured generation sizes if they are different.
 361       // Note that this makes the initial size and the minimum size
 362       // generally small compared to the NewRatio calculation.
 363       _min_gen0_size = NewSize;
 364       desired_new_size = NewSize;
 365       max_new_size = MAX2(max_new_size, NewSize);
 366     } else {
 367       // For the case where NewSize is the default, use NewRatio
 368       // to size the minimum and initial generation sizes.
 369       // Use the default NewSize as the floor for these values.  If
 370       // NewRatio is overly large, the resulting sizes can be too
 371       // small.
 372       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 373                           NewSize);
 374       desired_new_size =
 375         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 376              NewSize);
 377     }
 378 
 379     assert(_min_gen0_size > 0, "Sanity check");
 380     set_initial_gen0_size(desired_new_size);
 381     set_max_gen0_size(max_new_size);
 382 
 383     // At this point the desirable initial and minimum sizes have been
 384     // determined without regard to the maximum sizes.
 385 
 386     // Bound the sizes by the corresponding overall heap sizes.
 387     set_min_gen0_size(
 388       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 389     set_initial_gen0_size(
 390       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 391     set_max_gen0_size(
 392       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 393 
 394     // At this point all three sizes have been checked against the
 395     // maximum sizes but have not been checked for consistency
 396     // among the three.
 397 
 398     // Final check min <= initial <= max
 399     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 400     set_initial_gen0_size(
 401       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 402     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 403   }
 404 
 405   if (PrintGCDetails && Verbose) {
 406     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 407       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 408       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 409   }
 410 }
 411 
 412 // Call this method during the sizing of the gen1 to make
 413 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 414 // the most freedom in sizing because it is done before the
 415 // policy for gen1 is applied.  Once gen1 policies have been applied,
 416 // there may be conflicts in the shape of the heap and this method
 417 // is used to make the needed adjustments.  The application of the
 418 // policies could be more sophisticated (iterative for example) but
 419 // keeping it simple also seems a worthwhile goal.
 420 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 421                                                      size_t* gen1_size_ptr,
 422                                                      const size_t heap_size,
 423                                                      const size_t min_gen1_size) {
 424   bool result = false;
 425 
 426   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 427     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 428         (heap_size >= min_gen1_size + min_alignment())) {
 429       // Adjust gen0 down to accommodate min_gen1_size
 430       *gen0_size_ptr = heap_size - min_gen1_size;
 431       *gen0_size_ptr =
 432         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 433              min_alignment());
 434       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 435       result = true;
 436     } else {
 437       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 438       *gen1_size_ptr =
 439         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 440                        min_alignment());
 441     }
 442   }
 443   return result;
 444 }
 445 
 446 // Minimum sizes of the generations may be different than
 447 // the initial sizes.  An inconsistently is permitted here
 448 // in the total size that can be specified explicitly by
 449 // command line specification of OldSize and NewSize and
 450 // also a command line specification of -Xms.  Issue a warning
 451 // but allow the values to pass.
 452 
 453 void TwoGenerationCollectorPolicy::initialize_size_info() {
 454   GenCollectorPolicy::initialize_size_info();
 455 
 456   // At this point the minimum, initial and maximum sizes
 457   // of the overall heap and of gen0 have been determined.
 458   // The maximum gen1 size can be determined from the maximum gen0
 459   // and maximum heap size since no explicit flags exits
 460   // for setting the gen1 maximum.
 461   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 462   _max_gen1_size =
 463     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 464          min_alignment());
 465   // If no explicit command line flag has been set for the
 466   // gen1 size, use what is left for gen1.
 467   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 468     // The user has not specified any value or ergonomics
 469     // has chosen a value (which may or may not be consistent
 470     // with the overall heap size).  In either case make
 471     // the minimum, maximum and initial sizes consistent
 472     // with the gen0 sizes and the overall heap sizes.
 473     assert(min_heap_byte_size() > _min_gen0_size,
 474       "gen0 has an unexpected minimum size");
 475     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 476     set_min_gen1_size(
 477       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 478            min_alignment()));
 479     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 480     set_initial_gen1_size(
 481       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 482            min_alignment()));
 483 
 484   } else {
 485     // It's been explicitly set on the command line.  Use the
 486     // OldSize and then determine the consequences.
 487     set_min_gen1_size(OldSize);
 488     set_initial_gen1_size(OldSize);
 489 
 490     // If the user has explicitly set an OldSize that is inconsistent
 491     // with other command line flags, issue a warning.
 492     // The generation minimums and the overall heap mimimum should
 493     // be within one heap alignment.
 494     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 495            min_heap_byte_size()) {
 496       warning("Inconsistency between minimum heap size and minimum "
 497           "generation sizes: using minimum heap = " SIZE_FORMAT,
 498           min_heap_byte_size());
 499     }
 500     if ((OldSize > _max_gen1_size)) {
 501       warning("Inconsistency between maximum heap size and maximum "
 502           "generation sizes: using maximum heap = " SIZE_FORMAT
 503           " -XX:OldSize flag is being ignored",
 504           max_heap_byte_size());
 505     }
 506     // If there is an inconsistency between the OldSize and the minimum and/or
 507     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 508     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 509                           min_heap_byte_size(), OldSize)) {
 510       if (PrintGCDetails && Verbose) {
 511         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 512               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 513               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 514       }
 515     }
 516     // Initial size
 517     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 518                          initial_heap_byte_size(), OldSize)) {
 519       if (PrintGCDetails && Verbose) {
 520         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 521           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 522           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 523       }
 524     }
 525   }
 526   // Enforce the maximum gen1 size.
 527   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 528 
 529   // Check that min gen1 <= initial gen1 <= max gen1
 530   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 531   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 532 
 533   if (PrintGCDetails && Verbose) {
 534     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 535       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 536       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 537   }
 538 }
 539 
 540 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 541                                         bool is_tlab,
 542                                         bool* gc_overhead_limit_was_exceeded) {
 543   GenCollectedHeap *gch = GenCollectedHeap::heap();
 544 
 545   debug_only(gch->check_for_valid_allocation_state());
 546   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 547 
 548   // In general gc_overhead_limit_was_exceeded should be false so
 549   // set it so here and reset it to true only if the gc time
 550   // limit is being exceeded as checked below.
 551   *gc_overhead_limit_was_exceeded = false;
 552 
 553   HeapWord* result = NULL;
 554 
 555   // Loop until the allocation is satisified,
 556   // or unsatisfied after GC.
 557   for (int try_count = 1; /* return or throw */; try_count += 1) {
 558     HandleMark hm; // discard any handles allocated in each iteration
 559 
 560     // First allocation attempt is lock-free.
 561     Generation *gen0 = gch->get_gen(0);
 562     assert(gen0->supports_inline_contig_alloc(),
 563       "Otherwise, must do alloc within heap lock");
 564     if (gen0->should_allocate(size, is_tlab)) {
 565       result = gen0->par_allocate(size, is_tlab);
 566       if (result != NULL) {
 567         assert(gch->is_in_reserved(result), "result not in heap");
 568         return result;
 569       }
 570     }
 571     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 572     {
 573       MutexLocker ml(Heap_lock);
 574       if (PrintGC && Verbose) {
 575         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 576                       " attempting locked slow path allocation");
 577       }
 578       // Note that only large objects get a shot at being
 579       // allocated in later generations.
 580       bool first_only = ! should_try_older_generation_allocation(size);
 581 
 582       result = gch->attempt_allocation(size, is_tlab, first_only);
 583       if (result != NULL) {
 584         assert(gch->is_in_reserved(result), "result not in heap");
 585         return result;
 586       }
 587 
 588       if (GC_locker::is_active_and_needs_gc()) {
 589         if (is_tlab) {
 590           return NULL;  // Caller will retry allocating individual object
 591         }
 592         if (!gch->is_maximal_no_gc()) {
 593           // Try and expand heap to satisfy request
 594           result = expand_heap_and_allocate(size, is_tlab);
 595           // result could be null if we are out of space
 596           if (result != NULL) {
 597             return result;
 598           }
 599         }
 600 
 601         // If this thread is not in a jni critical section, we stall
 602         // the requestor until the critical section has cleared and
 603         // GC allowed. When the critical section clears, a GC is
 604         // initiated by the last thread exiting the critical section; so
 605         // we retry the allocation sequence from the beginning of the loop,
 606         // rather than causing more, now probably unnecessary, GC attempts.
 607         JavaThread* jthr = JavaThread::current();
 608         if (!jthr->in_critical()) {
 609           MutexUnlocker mul(Heap_lock);
 610           // Wait for JNI critical section to be exited
 611           GC_locker::stall_until_clear();
 612           continue;
 613         } else {
 614           if (CheckJNICalls) {
 615             fatal("Possible deadlock due to allocating while"
 616                   " in jni critical section");
 617           }
 618           return NULL;
 619         }
 620       }
 621 
 622       // Read the gc count while the heap lock is held.
 623       gc_count_before = Universe::heap()->total_collections();
 624     }
 625 
 626     VM_GenCollectForAllocation op(size,
 627                                   is_tlab,
 628                                   gc_count_before);
 629     VMThread::execute(&op);
 630     if (op.prologue_succeeded()) {
 631       result = op.result();
 632       if (op.gc_locked()) {
 633          assert(result == NULL, "must be NULL if gc_locked() is true");
 634          continue;  // retry and/or stall as necessary
 635       }
 636 
 637       // Allocation has failed and a collection
 638       // has been done.  If the gc time limit was exceeded the
 639       // this time, return NULL so that an out-of-memory
 640       // will be thrown.  Clear gc_overhead_limit_exceeded
 641       // so that the overhead exceeded does not persist.
 642 
 643       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 644       const bool softrefs_clear = all_soft_refs_clear();
 645       assert(!limit_exceeded || softrefs_clear, "Should have been cleared");
 646       if (limit_exceeded && softrefs_clear) {
 647         *gc_overhead_limit_was_exceeded = true;
 648         size_policy()->set_gc_overhead_limit_exceeded(false);
 649         if (op.result() != NULL) {
 650           CollectedHeap::fill_with_object(op.result(), size);
 651         }
 652         return NULL;
 653       }
 654       assert(result == NULL || gch->is_in_reserved(result),
 655              "result not in heap");
 656       return result;
 657     }
 658 
 659     // Give a warning if we seem to be looping forever.
 660     if ((QueuedAllocationWarningCount > 0) &&
 661         (try_count % QueuedAllocationWarningCount == 0)) {
 662           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 663                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 664     }
 665   }
 666 }
 667 
 668 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 669                                                        bool   is_tlab) {
 670   GenCollectedHeap *gch = GenCollectedHeap::heap();
 671   HeapWord* result = NULL;
 672   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 673     Generation *gen = gch->get_gen(i);
 674     if (gen->should_allocate(size, is_tlab)) {
 675       result = gen->expand_and_allocate(size, is_tlab);
 676     }
 677   }
 678   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 679   return result;
 680 }
 681 
 682 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 683                                                         bool   is_tlab) {
 684   GenCollectedHeap *gch = GenCollectedHeap::heap();
 685   GCCauseSetter x(gch, GCCause::_allocation_failure);
 686   HeapWord* result = NULL;
 687 
 688   assert(size != 0, "Precondition violated");
 689   if (GC_locker::is_active_and_needs_gc()) {
 690     // GC locker is active; instead of a collection we will attempt
 691     // to expand the heap, if there's room for expansion.
 692     if (!gch->is_maximal_no_gc()) {
 693       result = expand_heap_and_allocate(size, is_tlab);
 694     }
 695     return result;   // could be null if we are out of space
 696   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 697     // Do an incremental collection.
 698     gch->do_collection(false            /* full */,
 699                        false            /* clear_all_soft_refs */,
 700                        size             /* size */,
 701                        is_tlab          /* is_tlab */,
 702                        number_of_generations() - 1 /* max_level */);
 703   } else {
 704     if (Verbose && PrintGCDetails) {
 705       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 706     }
 707     // Try a full collection; see delta for bug id 6266275
 708     // for the original code and why this has been simplified
 709     // with from-space allocation criteria modified and
 710     // such allocation moved out of the safepoint path.
 711     gch->do_collection(true             /* full */,
 712                        false            /* clear_all_soft_refs */,
 713                        size             /* size */,
 714                        is_tlab          /* is_tlab */,
 715                        number_of_generations() - 1 /* max_level */);
 716   }
 717 
 718   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 719 
 720   if (result != NULL) {
 721     assert(gch->is_in_reserved(result), "result not in heap");
 722     return result;
 723   }
 724 
 725   // OK, collection failed, try expansion.
 726   result = expand_heap_and_allocate(size, is_tlab);
 727   if (result != NULL) {
 728     return result;
 729   }
 730 
 731   // If we reach this point, we're really out of memory. Try every trick
 732   // we can to reclaim memory. Force collection of soft references. Force
 733   // a complete compaction of the heap. Any additional methods for finding
 734   // free memory should be here, especially if they are expensive. If this
 735   // attempt fails, an OOM exception will be thrown.
 736   {
 737     IntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 738 
 739     gch->do_collection(true             /* full */,
 740                        true             /* clear_all_soft_refs */,
 741                        size             /* size */,
 742                        is_tlab          /* is_tlab */,
 743                        number_of_generations() - 1 /* max_level */);
 744   }
 745 
 746   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 747   if (result != NULL) {
 748     assert(gch->is_in_reserved(result), "result not in heap");
 749     return result;
 750   }
 751 
 752   assert(!should_clear_all_soft_refs(),
 753     "Flag should have been handled and cleared prior to this point");
 754 
 755   // What else?  We might try synchronous finalization later.  If the total
 756   // space available is large enough for the allocation, then a more
 757   // complete compaction phase than we've tried so far might be
 758   // appropriate.
 759   return NULL;
 760 }
 761 
 762 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 763                                                  ClassLoaderData* loader_data,
 764                                                  size_t word_size,
 765                                                  Metaspace::MetadataType mdtype) {
 766   uint loop_count = 0;
 767   uint gc_count = 0;
 768   uint full_gc_count = 0;
 769 
 770   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 771 
 772   do {
 773     MetaWord* result = NULL;
 774     if (GC_locker::is_active_and_needs_gc()) {
 775       // If the GC_locker is active, just expand and allocate.
 776       // If that does not succeed, wait if this thread is not
 777       // in a critical section itself.
 778       result =
 779         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 780                                                                mdtype);
 781       if (result != NULL) {
 782         return result;
 783       }
 784       JavaThread* jthr = JavaThread::current();
 785       if (!jthr->in_critical()) {
 786         // Wait for JNI critical section to be exited
 787         GC_locker::stall_until_clear();
 788         // The GC invoked by the last thread leaving the critical
 789         // section will be a young collection and a full collection
 790         // is (currently) needed for unloading classes so continue
 791         // to the next iteration to get a full GC.
 792         continue;
 793       } else {
 794         if (CheckJNICalls) {
 795           fatal("Possible deadlock due to allocating while"
 796                 " in jni critical section");
 797         }
 798         return NULL;
 799       }
 800     }
 801 
 802     {  // Need lock to get self consistent gc_count's
 803       MutexLocker ml(Heap_lock);
 804       gc_count      = Universe::heap()->total_collections();
 805       full_gc_count = Universe::heap()->total_full_collections();
 806     }
 807 
 808     // Generate a VM operation
 809     VM_CollectForMetadataAllocation op(loader_data,
 810                                        word_size,
 811                                        mdtype,
 812                                        gc_count,
 813                                        full_gc_count,
 814                                        GCCause::_metadata_GC_threshold);
 815     VMThread::execute(&op);
 816 
 817     // If GC was locked out, try again.  Check
 818     // before checking success because the prologue
 819     // could have succeeded and the GC still have
 820     // been locked out.
 821     if (op.gc_locked()) {
 822       continue;
 823     }
 824 
 825     if (op.prologue_succeeded()) {
 826       return op.result();
 827     }
 828     loop_count++;
 829     if ((QueuedAllocationWarningCount > 0) &&
 830         (loop_count % QueuedAllocationWarningCount == 0)) {
 831       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 832               " size=%d", loop_count, word_size);
 833     }
 834   } while (true);  // Until a GC is done
 835 }
 836 
 837 // Return true if any of the following is true:
 838 // . the allocation won't fit into the current young gen heap
 839 // . gc locker is occupied (jni critical section)
 840 // . heap memory is tight -- the most recent previous collection
 841 //   was a full collection because a partial collection (would
 842 //   have) failed and is likely to fail again
 843 bool GenCollectorPolicy::should_try_older_generation_allocation(
 844         size_t word_size) const {
 845   GenCollectedHeap* gch = GenCollectedHeap::heap();
 846   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 847   return    (word_size > heap_word_size(gen0_capacity))
 848          || GC_locker::is_active_and_needs_gc()
 849          || gch->incremental_collection_failed();
 850 }
 851 
 852 
 853 //
 854 // MarkSweepPolicy methods
 855 //
 856 
 857 MarkSweepPolicy::MarkSweepPolicy() {
 858   initialize_all();
 859 }
 860 
 861 void MarkSweepPolicy::initialize_generations() {
 862   _generations = new GenerationSpecPtr[number_of_generations()];
 863   if (_generations == NULL)
 864     vm_exit_during_initialization("Unable to allocate gen spec");
 865 
 866   if (UseParNewGC) {
 867     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 868   } else {
 869     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 870   }
 871   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 872 
 873   if (_generations[0] == NULL || _generations[1] == NULL)
 874     vm_exit_during_initialization("Unable to allocate gen spec");
 875 }
 876 
 877 void MarkSweepPolicy::initialize_gc_policy_counters() {
 878   // initialize the policy counters - 2 collectors, 3 generations
 879   if (UseParNewGC) {
 880     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 881   } else {
 882     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 883   }
 884 }