1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 #ifdef _DEBUG
  72 #include <crtdbg.h>
  73 #endif
  74 
  75 
  76 #include <windows.h>
  77 #include <sys/types.h>
  78 #include <sys/stat.h>
  79 #include <sys/timeb.h>
  80 #include <objidl.h>
  81 #include <shlobj.h>
  82 
  83 #include <malloc.h>
  84 #include <signal.h>
  85 #include <direct.h>
  86 #include <errno.h>
  87 #include <fcntl.h>
  88 #include <io.h>
  89 #include <process.h>              // For _beginthreadex(), _endthreadex()
  90 #include <imagehlp.h>             // For os::dll_address_to_function_name
  91 /* for enumerating dll libraries */
  92 #include <vdmdbg.h>
  93 
  94 // for timer info max values which include all bits
  95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  96 
  97 // For DLL loading/load error detection
  98 // Values of PE COFF
  99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 101 
 102 static HANDLE main_process;
 103 static HANDLE main_thread;
 104 static int    main_thread_id;
 105 
 106 static FILETIME process_creation_time;
 107 static FILETIME process_exit_time;
 108 static FILETIME process_user_time;
 109 static FILETIME process_kernel_time;
 110 
 111 #ifdef _M_IA64
 112 #define __CPU__ ia64
 113 #elif _M_AMD64
 114 #define __CPU__ amd64
 115 #else
 116 #define __CPU__ i486
 117 #endif
 118 
 119 // save DLL module handle, used by GetModuleFileName
 120 
 121 HINSTANCE vm_lib_handle;
 122 
 123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 124   switch (reason) {
 125     case DLL_PROCESS_ATTACH:
 126       vm_lib_handle = hinst;
 127       if(ForceTimeHighResolution)
 128         timeBeginPeriod(1L);
 129       break;
 130     case DLL_PROCESS_DETACH:
 131       if(ForceTimeHighResolution)
 132         timeEndPeriod(1L);
 133       break;
 134     default:
 135       break;
 136   }
 137   return true;
 138 }
 139 
 140 static inline double fileTimeAsDouble(FILETIME* time) {
 141   const double high  = (double) ((unsigned int) ~0);
 142   const double split = 10000000.0;
 143   double result = (time->dwLowDateTime / split) +
 144                    time->dwHighDateTime * (high/split);
 145   return result;
 146 }
 147 
 148 // Implementation of os
 149 
 150 bool os::getenv(const char* name, char* buffer, int len) {
 151  int result = GetEnvironmentVariable(name, buffer, len);
 152  return result > 0 && result < len;
 153 }
 154 
 155 
 156 // No setuid programs under Windows.
 157 bool os::have_special_privileges() {
 158   return false;
 159 }
 160 
 161 
 162 // This method is  a periodic task to check for misbehaving JNI applications
 163 // under CheckJNI, we can add any periodic checks here.
 164 // For Windows at the moment does nothing
 165 void os::run_periodic_checks() {
 166   return;
 167 }
 168 
 169 #ifndef _WIN64
 170 // previous UnhandledExceptionFilter, if there is one
 171 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 172 
 173 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 174 #endif
 175 void os::init_system_properties_values() {
 176   /* sysclasspath, java_home, dll_dir */
 177   {
 178       char *home_path;
 179       char *dll_path;
 180       char *pslash;
 181       char *bin = "\\bin";
 182       char home_dir[MAX_PATH];
 183 
 184       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 185           os::jvm_path(home_dir, sizeof(home_dir));
 186           // Found the full path to jvm.dll.
 187           // Now cut the path to <java_home>/jre if we can.
 188           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 189           pslash = strrchr(home_dir, '\\');
 190           if (pslash != NULL) {
 191               *pslash = '\0';                 /* get rid of \{client|server} */
 192               pslash = strrchr(home_dir, '\\');
 193               if (pslash != NULL)
 194                   *pslash = '\0';             /* get rid of \bin */
 195           }
 196       }
 197 
 198       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 199       if (home_path == NULL)
 200           return;
 201       strcpy(home_path, home_dir);
 202       Arguments::set_java_home(home_path);
 203 
 204       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 205       if (dll_path == NULL)
 206           return;
 207       strcpy(dll_path, home_dir);
 208       strcat(dll_path, bin);
 209       Arguments::set_dll_dir(dll_path);
 210 
 211       if (!set_boot_path('\\', ';'))
 212           return;
 213   }
 214 
 215   /* library_path */
 216   #define EXT_DIR "\\lib\\ext"
 217   #define BIN_DIR "\\bin"
 218   #define PACKAGE_DIR "\\Sun\\Java"
 219   {
 220     /* Win32 library search order (See the documentation for LoadLibrary):
 221      *
 222      * 1. The directory from which application is loaded.
 223      * 2. The system wide Java Extensions directory (Java only)
 224      * 3. System directory (GetSystemDirectory)
 225      * 4. Windows directory (GetWindowsDirectory)
 226      * 5. The PATH environment variable
 227      * 6. The current directory
 228      */
 229 
 230     char *library_path;
 231     char tmp[MAX_PATH];
 232     char *path_str = ::getenv("PATH");
 233 
 234     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 235         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 236 
 237     library_path[0] = '\0';
 238 
 239     GetModuleFileName(NULL, tmp, sizeof(tmp));
 240     *(strrchr(tmp, '\\')) = '\0';
 241     strcat(library_path, tmp);
 242 
 243     GetWindowsDirectory(tmp, sizeof(tmp));
 244     strcat(library_path, ";");
 245     strcat(library_path, tmp);
 246     strcat(library_path, PACKAGE_DIR BIN_DIR);
 247 
 248     GetSystemDirectory(tmp, sizeof(tmp));
 249     strcat(library_path, ";");
 250     strcat(library_path, tmp);
 251 
 252     GetWindowsDirectory(tmp, sizeof(tmp));
 253     strcat(library_path, ";");
 254     strcat(library_path, tmp);
 255 
 256     if (path_str) {
 257         strcat(library_path, ";");
 258         strcat(library_path, path_str);
 259     }
 260 
 261     strcat(library_path, ";.");
 262 
 263     Arguments::set_library_path(library_path);
 264     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 265   }
 266 
 267   /* Default extensions directory */
 268   {
 269     char path[MAX_PATH];
 270     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 271     GetWindowsDirectory(path, MAX_PATH);
 272     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 273         path, PACKAGE_DIR, EXT_DIR);
 274     Arguments::set_ext_dirs(buf);
 275   }
 276   #undef EXT_DIR
 277   #undef BIN_DIR
 278   #undef PACKAGE_DIR
 279 
 280   /* Default endorsed standards directory. */
 281   {
 282     #define ENDORSED_DIR "\\lib\\endorsed"
 283     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 284     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 285     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 286     Arguments::set_endorsed_dirs(buf);
 287     #undef ENDORSED_DIR
 288   }
 289 
 290 #ifndef _WIN64
 291   // set our UnhandledExceptionFilter and save any previous one
 292   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 293 #endif
 294 
 295   // Done
 296   return;
 297 }
 298 
 299 void os::breakpoint() {
 300   DebugBreak();
 301 }
 302 
 303 // Invoked from the BREAKPOINT Macro
 304 extern "C" void breakpoint() {
 305   os::breakpoint();
 306 }
 307 
 308 /*
 309  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 310  * So far, this method is only used by Native Memory Tracking, which is
 311  * only supported on Windows XP or later.
 312  */
 313 address os::get_caller_pc(int n) {
 314 #ifdef _NMT_NOINLINE_
 315   n ++;
 316 #endif
 317   address pc;
 318   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 319     return pc;
 320   }
 321   return NULL;
 322 }
 323 
 324 
 325 // os::current_stack_base()
 326 //
 327 //   Returns the base of the stack, which is the stack's
 328 //   starting address.  This function must be called
 329 //   while running on the stack of the thread being queried.
 330 
 331 address os::current_stack_base() {
 332   MEMORY_BASIC_INFORMATION minfo;
 333   address stack_bottom;
 334   size_t stack_size;
 335 
 336   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 337   stack_bottom =  (address)minfo.AllocationBase;
 338   stack_size = minfo.RegionSize;
 339 
 340   // Add up the sizes of all the regions with the same
 341   // AllocationBase.
 342   while( 1 )
 343   {
 344     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 345     if ( stack_bottom == (address)minfo.AllocationBase )
 346       stack_size += minfo.RegionSize;
 347     else
 348       break;
 349   }
 350 
 351 #ifdef _M_IA64
 352   // IA64 has memory and register stacks
 353   //
 354   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 355   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 356   // growing downwards, 2MB summed up)
 357   //
 358   // ...
 359   // ------- top of stack (high address) -----
 360   // |
 361   // |      1MB
 362   // |      Backing Store (Register Stack)
 363   // |
 364   // |         / \
 365   // |          |
 366   // |          |
 367   // |          |
 368   // ------------------------ stack base -----
 369   // |      1MB
 370   // |      Memory Stack
 371   // |
 372   // |          |
 373   // |          |
 374   // |          |
 375   // |         \ /
 376   // |
 377   // ----- bottom of stack (low address) -----
 378   // ...
 379 
 380   stack_size = stack_size / 2;
 381 #endif
 382   return stack_bottom + stack_size;
 383 }
 384 
 385 size_t os::current_stack_size() {
 386   size_t sz;
 387   MEMORY_BASIC_INFORMATION minfo;
 388   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 389   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 390   return sz;
 391 }
 392 
 393 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 394   const struct tm* time_struct_ptr = localtime(clock);
 395   if (time_struct_ptr != NULL) {
 396     *res = *time_struct_ptr;
 397     return res;
 398   }
 399   return NULL;
 400 }
 401 
 402 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 403 
 404 // Thread start routine for all new Java threads
 405 static unsigned __stdcall java_start(Thread* thread) {
 406   // Try to randomize the cache line index of hot stack frames.
 407   // This helps when threads of the same stack traces evict each other's
 408   // cache lines. The threads can be either from the same JVM instance, or
 409   // from different JVM instances. The benefit is especially true for
 410   // processors with hyperthreading technology.
 411   static int counter = 0;
 412   int pid = os::current_process_id();
 413   _alloca(((pid ^ counter++) & 7) * 128);
 414 
 415   OSThread* osthr = thread->osthread();
 416   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 417 
 418   if (UseNUMA) {
 419     int lgrp_id = os::numa_get_group_id();
 420     if (lgrp_id != -1) {
 421       thread->set_lgrp_id(lgrp_id);
 422     }
 423   }
 424 
 425 
 426   // Install a win32 structured exception handler around every thread created
 427   // by VM, so VM can genrate error dump when an exception occurred in non-
 428   // Java thread (e.g. VM thread).
 429   __try {
 430      thread->run();
 431   } __except(topLevelExceptionFilter(
 432              (_EXCEPTION_POINTERS*)_exception_info())) {
 433       // Nothing to do.
 434   }
 435 
 436   // One less thread is executing
 437   // When the VMThread gets here, the main thread may have already exited
 438   // which frees the CodeHeap containing the Atomic::add code
 439   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 440     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 441   }
 442 
 443   return 0;
 444 }
 445 
 446 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 447   // Allocate the OSThread object
 448   OSThread* osthread = new OSThread(NULL, NULL);
 449   if (osthread == NULL) return NULL;
 450 
 451   // Initialize support for Java interrupts
 452   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 453   if (interrupt_event == NULL) {
 454     delete osthread;
 455     return NULL;
 456   }
 457   osthread->set_interrupt_event(interrupt_event);
 458 
 459   // Store info on the Win32 thread into the OSThread
 460   osthread->set_thread_handle(thread_handle);
 461   osthread->set_thread_id(thread_id);
 462 
 463   if (UseNUMA) {
 464     int lgrp_id = os::numa_get_group_id();
 465     if (lgrp_id != -1) {
 466       thread->set_lgrp_id(lgrp_id);
 467     }
 468   }
 469 
 470   // Initial thread state is INITIALIZED, not SUSPENDED
 471   osthread->set_state(INITIALIZED);
 472 
 473   return osthread;
 474 }
 475 
 476 
 477 bool os::create_attached_thread(JavaThread* thread) {
 478 #ifdef ASSERT
 479   thread->verify_not_published();
 480 #endif
 481   HANDLE thread_h;
 482   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 483                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 484     fatal("DuplicateHandle failed\n");
 485   }
 486   OSThread* osthread = create_os_thread(thread, thread_h,
 487                                         (int)current_thread_id());
 488   if (osthread == NULL) {
 489      return false;
 490   }
 491 
 492   // Initial thread state is RUNNABLE
 493   osthread->set_state(RUNNABLE);
 494 
 495   thread->set_osthread(osthread);
 496   return true;
 497 }
 498 
 499 bool os::create_main_thread(JavaThread* thread) {
 500 #ifdef ASSERT
 501   thread->verify_not_published();
 502 #endif
 503   if (_starting_thread == NULL) {
 504     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 505      if (_starting_thread == NULL) {
 506         return false;
 507      }
 508   }
 509 
 510   // The primordial thread is runnable from the start)
 511   _starting_thread->set_state(RUNNABLE);
 512 
 513   thread->set_osthread(_starting_thread);
 514   return true;
 515 }
 516 
 517 // Allocate and initialize a new OSThread
 518 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 519   unsigned thread_id;
 520 
 521   // Allocate the OSThread object
 522   OSThread* osthread = new OSThread(NULL, NULL);
 523   if (osthread == NULL) {
 524     return false;
 525   }
 526 
 527   // Initialize support for Java interrupts
 528   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 529   if (interrupt_event == NULL) {
 530     delete osthread;
 531     return NULL;
 532   }
 533   osthread->set_interrupt_event(interrupt_event);
 534   osthread->set_interrupted(false);
 535 
 536   thread->set_osthread(osthread);
 537 
 538   if (stack_size == 0) {
 539     switch (thr_type) {
 540     case os::java_thread:
 541       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 542       if (JavaThread::stack_size_at_create() > 0)
 543         stack_size = JavaThread::stack_size_at_create();
 544       break;
 545     case os::compiler_thread:
 546       if (CompilerThreadStackSize > 0) {
 547         stack_size = (size_t)(CompilerThreadStackSize * K);
 548         break;
 549       } // else fall through:
 550         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 551     case os::vm_thread:
 552     case os::pgc_thread:
 553     case os::cgc_thread:
 554     case os::watcher_thread:
 555       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 556       break;
 557     }
 558   }
 559 
 560   // Create the Win32 thread
 561   //
 562   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 563   // does not specify stack size. Instead, it specifies the size of
 564   // initially committed space. The stack size is determined by
 565   // PE header in the executable. If the committed "stack_size" is larger
 566   // than default value in the PE header, the stack is rounded up to the
 567   // nearest multiple of 1MB. For example if the launcher has default
 568   // stack size of 320k, specifying any size less than 320k does not
 569   // affect the actual stack size at all, it only affects the initial
 570   // commitment. On the other hand, specifying 'stack_size' larger than
 571   // default value may cause significant increase in memory usage, because
 572   // not only the stack space will be rounded up to MB, but also the
 573   // entire space is committed upfront.
 574   //
 575   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 576   // for CreateThread() that can treat 'stack_size' as stack size. However we
 577   // are not supposed to call CreateThread() directly according to MSDN
 578   // document because JVM uses C runtime library. The good news is that the
 579   // flag appears to work with _beginthredex() as well.
 580 
 581 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 582 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 583 #endif
 584 
 585   HANDLE thread_handle =
 586     (HANDLE)_beginthreadex(NULL,
 587                            (unsigned)stack_size,
 588                            (unsigned (__stdcall *)(void*)) java_start,
 589                            thread,
 590                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 591                            &thread_id);
 592   if (thread_handle == NULL) {
 593     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 594     // without the flag.
 595     thread_handle =
 596     (HANDLE)_beginthreadex(NULL,
 597                            (unsigned)stack_size,
 598                            (unsigned (__stdcall *)(void*)) java_start,
 599                            thread,
 600                            CREATE_SUSPENDED,
 601                            &thread_id);
 602   }
 603   if (thread_handle == NULL) {
 604     // Need to clean up stuff we've allocated so far
 605     CloseHandle(osthread->interrupt_event());
 606     thread->set_osthread(NULL);
 607     delete osthread;
 608     return NULL;
 609   }
 610 
 611   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 612 
 613   // Store info on the Win32 thread into the OSThread
 614   osthread->set_thread_handle(thread_handle);
 615   osthread->set_thread_id(thread_id);
 616 
 617   // Initial thread state is INITIALIZED, not SUSPENDED
 618   osthread->set_state(INITIALIZED);
 619 
 620   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 621   return true;
 622 }
 623 
 624 
 625 // Free Win32 resources related to the OSThread
 626 void os::free_thread(OSThread* osthread) {
 627   assert(osthread != NULL, "osthread not set");
 628   CloseHandle(osthread->thread_handle());
 629   CloseHandle(osthread->interrupt_event());
 630   delete osthread;
 631 }
 632 
 633 
 634 static int    has_performance_count = 0;
 635 static jlong first_filetime;
 636 static jlong initial_performance_count;
 637 static jlong performance_frequency;
 638 
 639 
 640 jlong as_long(LARGE_INTEGER x) {
 641   jlong result = 0; // initialization to avoid warning
 642   set_high(&result, x.HighPart);
 643   set_low(&result,  x.LowPart);
 644   return result;
 645 }
 646 
 647 
 648 jlong os::elapsed_counter() {
 649   LARGE_INTEGER count;
 650   if (has_performance_count) {
 651     QueryPerformanceCounter(&count);
 652     return as_long(count) - initial_performance_count;
 653   } else {
 654     FILETIME wt;
 655     GetSystemTimeAsFileTime(&wt);
 656     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 657   }
 658 }
 659 
 660 
 661 jlong os::elapsed_frequency() {
 662   if (has_performance_count) {
 663     return performance_frequency;
 664   } else {
 665    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 666    return 10000000;
 667   }
 668 }
 669 
 670 
 671 julong os::available_memory() {
 672   return win32::available_memory();
 673 }
 674 
 675 julong os::win32::available_memory() {
 676   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 677   // value if total memory is larger than 4GB
 678   MEMORYSTATUSEX ms;
 679   ms.dwLength = sizeof(ms);
 680   GlobalMemoryStatusEx(&ms);
 681 
 682   return (julong)ms.ullAvailPhys;
 683 }
 684 
 685 julong os::physical_memory() {
 686   return win32::physical_memory();
 687 }
 688 
 689 bool os::has_allocatable_memory_limit(julong* limit) {
 690   MEMORYSTATUSEX ms;
 691   ms.dwLength = sizeof(ms);
 692   GlobalMemoryStatusEx(&ms);
 693 #ifdef _LP64
 694   *limit = (julong)ms.ullAvailVirtual;
 695   return true;
 696 #else
 697   // Limit to 1400m because of the 2gb address space wall
 698   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 699   return true;
 700 #endif
 701 }
 702 
 703 // VC6 lacks DWORD_PTR
 704 #if _MSC_VER < 1300
 705 typedef UINT_PTR DWORD_PTR;
 706 #endif
 707 
 708 int os::active_processor_count() {
 709   DWORD_PTR lpProcessAffinityMask = 0;
 710   DWORD_PTR lpSystemAffinityMask = 0;
 711   int proc_count = processor_count();
 712   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 713       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 714     // Nof active processors is number of bits in process affinity mask
 715     int bitcount = 0;
 716     while (lpProcessAffinityMask != 0) {
 717       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 718       bitcount++;
 719     }
 720     return bitcount;
 721   } else {
 722     return proc_count;
 723   }
 724 }
 725 
 726 void os::set_native_thread_name(const char *name) {
 727   // Not yet implemented.
 728   return;
 729 }
 730 
 731 bool os::distribute_processes(uint length, uint* distribution) {
 732   // Not yet implemented.
 733   return false;
 734 }
 735 
 736 bool os::bind_to_processor(uint processor_id) {
 737   // Not yet implemented.
 738   return false;
 739 }
 740 
 741 static void initialize_performance_counter() {
 742   LARGE_INTEGER count;
 743   if (QueryPerformanceFrequency(&count)) {
 744     has_performance_count = 1;
 745     performance_frequency = as_long(count);
 746     QueryPerformanceCounter(&count);
 747     initial_performance_count = as_long(count);
 748   } else {
 749     has_performance_count = 0;
 750     FILETIME wt;
 751     GetSystemTimeAsFileTime(&wt);
 752     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 753   }
 754 }
 755 
 756 
 757 double os::elapsedTime() {
 758   return (double) elapsed_counter() / (double) elapsed_frequency();
 759 }
 760 
 761 
 762 // Windows format:
 763 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 764 // Java format:
 765 //   Java standards require the number of milliseconds since 1/1/1970
 766 
 767 // Constant offset - calculated using offset()
 768 static jlong  _offset   = 116444736000000000;
 769 // Fake time counter for reproducible results when debugging
 770 static jlong  fake_time = 0;
 771 
 772 #ifdef ASSERT
 773 // Just to be safe, recalculate the offset in debug mode
 774 static jlong _calculated_offset = 0;
 775 static int   _has_calculated_offset = 0;
 776 
 777 jlong offset() {
 778   if (_has_calculated_offset) return _calculated_offset;
 779   SYSTEMTIME java_origin;
 780   java_origin.wYear          = 1970;
 781   java_origin.wMonth         = 1;
 782   java_origin.wDayOfWeek     = 0; // ignored
 783   java_origin.wDay           = 1;
 784   java_origin.wHour          = 0;
 785   java_origin.wMinute        = 0;
 786   java_origin.wSecond        = 0;
 787   java_origin.wMilliseconds  = 0;
 788   FILETIME jot;
 789   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 790     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 791   }
 792   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 793   _has_calculated_offset = 1;
 794   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 795   return _calculated_offset;
 796 }
 797 #else
 798 jlong offset() {
 799   return _offset;
 800 }
 801 #endif
 802 
 803 jlong windows_to_java_time(FILETIME wt) {
 804   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 805   return (a - offset()) / 10000;
 806 }
 807 
 808 FILETIME java_to_windows_time(jlong l) {
 809   jlong a = (l * 10000) + offset();
 810   FILETIME result;
 811   result.dwHighDateTime = high(a);
 812   result.dwLowDateTime  = low(a);
 813   return result;
 814 }
 815 
 816 bool os::supports_vtime() { return true; }
 817 bool os::enable_vtime() { return false; }
 818 bool os::vtime_enabled() { return false; }
 819 
 820 double os::elapsedVTime() {
 821   FILETIME created;
 822   FILETIME exited;
 823   FILETIME kernel;
 824   FILETIME user;
 825   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 826     // the resolution of windows_to_java_time() should be sufficient (ms)
 827     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 828   } else {
 829     return elapsedTime();
 830   }
 831 }
 832 
 833 jlong os::javaTimeMillis() {
 834   if (UseFakeTimers) {
 835     return fake_time++;
 836   } else {
 837     FILETIME wt;
 838     GetSystemTimeAsFileTime(&wt);
 839     return windows_to_java_time(wt);
 840   }
 841 }
 842 
 843 jlong os::javaTimeNanos() {
 844   if (!has_performance_count) {
 845     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 846   } else {
 847     LARGE_INTEGER current_count;
 848     QueryPerformanceCounter(&current_count);
 849     double current = as_long(current_count);
 850     double freq = performance_frequency;
 851     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 852     return time;
 853   }
 854 }
 855 
 856 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 857   if (!has_performance_count) {
 858     // javaTimeMillis() doesn't have much percision,
 859     // but it is not going to wrap -- so all 64 bits
 860     info_ptr->max_value = ALL_64_BITS;
 861 
 862     // this is a wall clock timer, so may skip
 863     info_ptr->may_skip_backward = true;
 864     info_ptr->may_skip_forward = true;
 865   } else {
 866     jlong freq = performance_frequency;
 867     if (freq < NANOSECS_PER_SEC) {
 868       // the performance counter is 64 bits and we will
 869       // be multiplying it -- so no wrap in 64 bits
 870       info_ptr->max_value = ALL_64_BITS;
 871     } else if (freq > NANOSECS_PER_SEC) {
 872       // use the max value the counter can reach to
 873       // determine the max value which could be returned
 874       julong max_counter = (julong)ALL_64_BITS;
 875       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 876     } else {
 877       // the performance counter is 64 bits and we will
 878       // be using it directly -- so no wrap in 64 bits
 879       info_ptr->max_value = ALL_64_BITS;
 880     }
 881 
 882     // using a counter, so no skipping
 883     info_ptr->may_skip_backward = false;
 884     info_ptr->may_skip_forward = false;
 885   }
 886   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 887 }
 888 
 889 char* os::local_time_string(char *buf, size_t buflen) {
 890   SYSTEMTIME st;
 891   GetLocalTime(&st);
 892   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 893                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 894   return buf;
 895 }
 896 
 897 bool os::getTimesSecs(double* process_real_time,
 898                      double* process_user_time,
 899                      double* process_system_time) {
 900   HANDLE h_process = GetCurrentProcess();
 901   FILETIME create_time, exit_time, kernel_time, user_time;
 902   BOOL result = GetProcessTimes(h_process,
 903                                &create_time,
 904                                &exit_time,
 905                                &kernel_time,
 906                                &user_time);
 907   if (result != 0) {
 908     FILETIME wt;
 909     GetSystemTimeAsFileTime(&wt);
 910     jlong rtc_millis = windows_to_java_time(wt);
 911     jlong user_millis = windows_to_java_time(user_time);
 912     jlong system_millis = windows_to_java_time(kernel_time);
 913     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 914     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 915     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 916     return true;
 917   } else {
 918     return false;
 919   }
 920 }
 921 
 922 void os::shutdown() {
 923 
 924   // allow PerfMemory to attempt cleanup of any persistent resources
 925   perfMemory_exit();
 926 
 927   // flush buffered output, finish log files
 928   ostream_abort();
 929 
 930   // Check for abort hook
 931   abort_hook_t abort_hook = Arguments::abort_hook();
 932   if (abort_hook != NULL) {
 933     abort_hook();
 934   }
 935 }
 936 
 937 
 938 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 939                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 940 
 941 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 942   HINSTANCE dbghelp;
 943   EXCEPTION_POINTERS ep;
 944   MINIDUMP_EXCEPTION_INFORMATION mei;
 945   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 946 
 947   HANDLE hProcess = GetCurrentProcess();
 948   DWORD processId = GetCurrentProcessId();
 949   HANDLE dumpFile;
 950   MINIDUMP_TYPE dumpType;
 951   static const char* cwd;
 952 
 953 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 954 #ifndef ASSERT
 955   // If running on a client version of Windows and user has not explicitly enabled dumping
 956   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 957     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 958     return;
 959     // If running on a server version of Windows and user has explictly disabled dumping
 960   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 961     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 962     return;
 963   }
 964 #else
 965   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 966     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 967     return;
 968   }
 969 #endif
 970 
 971   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 972 
 973   if (dbghelp == NULL) {
 974     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 975     return;
 976   }
 977 
 978   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 979     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 980     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 981     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 982 
 983   if (_MiniDumpWriteDump == NULL) {
 984     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 985     return;
 986   }
 987 
 988   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 989 
 990 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 991 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 992 #if API_VERSION_NUMBER >= 11
 993   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 994     MiniDumpWithUnloadedModules);
 995 #endif
 996 
 997   cwd = get_current_directory(NULL, 0);
 998   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 999   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1000 
1001   if (dumpFile == INVALID_HANDLE_VALUE) {
1002     VMError::report_coredump_status("Failed to create file for dumping", false);
1003     return;
1004   }
1005   if (exceptionRecord != NULL && contextRecord != NULL) {
1006     ep.ContextRecord = (PCONTEXT) contextRecord;
1007     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1008 
1009     mei.ThreadId = GetCurrentThreadId();
1010     mei.ExceptionPointers = &ep;
1011     pmei = &mei;
1012   } else {
1013     pmei = NULL;
1014   }
1015 
1016 
1017   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1018   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1019   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1020       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1021         DWORD error = GetLastError();
1022         LPTSTR msgbuf = NULL;
1023 
1024         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1025                       FORMAT_MESSAGE_FROM_SYSTEM |
1026                       FORMAT_MESSAGE_IGNORE_INSERTS,
1027                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1028 
1029           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1030           LocalFree(msgbuf);
1031         } else {
1032           // Call to FormatMessage failed, just include the result from GetLastError
1033           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1034         }
1035         VMError::report_coredump_status(buffer, false);
1036   } else {
1037     VMError::report_coredump_status(buffer, true);
1038   }
1039 
1040   CloseHandle(dumpFile);
1041 }
1042 
1043 
1044 
1045 void os::abort(bool dump_core)
1046 {
1047   os::shutdown();
1048   // no core dump on Windows
1049   ::exit(1);
1050 }
1051 
1052 // Die immediately, no exit hook, no abort hook, no cleanup.
1053 void os::die() {
1054   _exit(-1);
1055 }
1056 
1057 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1058 //  * dirent_md.c       1.15 00/02/02
1059 //
1060 // The declarations for DIR and struct dirent are in jvm_win32.h.
1061 
1062 /* Caller must have already run dirname through JVM_NativePath, which removes
1063    duplicate slashes and converts all instances of '/' into '\\'. */
1064 
1065 DIR *
1066 os::opendir(const char *dirname)
1067 {
1068     assert(dirname != NULL, "just checking");   // hotspot change
1069     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1070     DWORD fattr;                                // hotspot change
1071     char alt_dirname[4] = { 0, 0, 0, 0 };
1072 
1073     if (dirp == 0) {
1074         errno = ENOMEM;
1075         return 0;
1076     }
1077 
1078     /*
1079      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1080      * as a directory in FindFirstFile().  We detect this case here and
1081      * prepend the current drive name.
1082      */
1083     if (dirname[1] == '\0' && dirname[0] == '\\') {
1084         alt_dirname[0] = _getdrive() + 'A' - 1;
1085         alt_dirname[1] = ':';
1086         alt_dirname[2] = '\\';
1087         alt_dirname[3] = '\0';
1088         dirname = alt_dirname;
1089     }
1090 
1091     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1092     if (dirp->path == 0) {
1093         free(dirp, mtInternal);
1094         errno = ENOMEM;
1095         return 0;
1096     }
1097     strcpy(dirp->path, dirname);
1098 
1099     fattr = GetFileAttributes(dirp->path);
1100     if (fattr == 0xffffffff) {
1101         free(dirp->path, mtInternal);
1102         free(dirp, mtInternal);
1103         errno = ENOENT;
1104         return 0;
1105     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1106         free(dirp->path, mtInternal);
1107         free(dirp, mtInternal);
1108         errno = ENOTDIR;
1109         return 0;
1110     }
1111 
1112     /* Append "*.*", or possibly "\\*.*", to path */
1113     if (dirp->path[1] == ':'
1114         && (dirp->path[2] == '\0'
1115             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1116         /* No '\\' needed for cases like "Z:" or "Z:\" */
1117         strcat(dirp->path, "*.*");
1118     } else {
1119         strcat(dirp->path, "\\*.*");
1120     }
1121 
1122     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1123     if (dirp->handle == INVALID_HANDLE_VALUE) {
1124         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1125             free(dirp->path, mtInternal);
1126             free(dirp, mtInternal);
1127             errno = EACCES;
1128             return 0;
1129         }
1130     }
1131     return dirp;
1132 }
1133 
1134 /* parameter dbuf unused on Windows */
1135 
1136 struct dirent *
1137 os::readdir(DIR *dirp, dirent *dbuf)
1138 {
1139     assert(dirp != NULL, "just checking");      // hotspot change
1140     if (dirp->handle == INVALID_HANDLE_VALUE) {
1141         return 0;
1142     }
1143 
1144     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1145 
1146     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1147         if (GetLastError() == ERROR_INVALID_HANDLE) {
1148             errno = EBADF;
1149             return 0;
1150         }
1151         FindClose(dirp->handle);
1152         dirp->handle = INVALID_HANDLE_VALUE;
1153     }
1154 
1155     return &dirp->dirent;
1156 }
1157 
1158 int
1159 os::closedir(DIR *dirp)
1160 {
1161     assert(dirp != NULL, "just checking");      // hotspot change
1162     if (dirp->handle != INVALID_HANDLE_VALUE) {
1163         if (!FindClose(dirp->handle)) {
1164             errno = EBADF;
1165             return -1;
1166         }
1167         dirp->handle = INVALID_HANDLE_VALUE;
1168     }
1169     free(dirp->path, mtInternal);
1170     free(dirp, mtInternal);
1171     return 0;
1172 }
1173 
1174 // This must be hard coded because it's the system's temporary
1175 // directory not the java application's temp directory, ala java.io.tmpdir.
1176 const char* os::get_temp_directory() {
1177   static char path_buf[MAX_PATH];
1178   if (GetTempPath(MAX_PATH, path_buf)>0)
1179     return path_buf;
1180   else{
1181     path_buf[0]='\0';
1182     return path_buf;
1183   }
1184 }
1185 
1186 static bool file_exists(const char* filename) {
1187   if (filename == NULL || strlen(filename) == 0) {
1188     return false;
1189   }
1190   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1191 }
1192 
1193 bool os::dll_build_name(char *buffer, size_t buflen,
1194                         const char* pname, const char* fname) {
1195   bool retval = false;
1196   const size_t pnamelen = pname ? strlen(pname) : 0;
1197   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1198 
1199   // Return error on buffer overflow.
1200   if (pnamelen + strlen(fname) + 10 > buflen) {
1201     return retval;
1202   }
1203 
1204   if (pnamelen == 0) {
1205     jio_snprintf(buffer, buflen, "%s.dll", fname);
1206     retval = true;
1207   } else if (c == ':' || c == '\\') {
1208     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1209     retval = true;
1210   } else if (strchr(pname, *os::path_separator()) != NULL) {
1211     int n;
1212     char** pelements = split_path(pname, &n);
1213     if (pelements == NULL) {
1214       return false;
1215     }
1216     for (int i = 0 ; i < n ; i++) {
1217       char* path = pelements[i];
1218       // Really shouldn't be NULL, but check can't hurt
1219       size_t plen = (path == NULL) ? 0 : strlen(path);
1220       if (plen == 0) {
1221         continue; // skip the empty path values
1222       }
1223       const char lastchar = path[plen - 1];
1224       if (lastchar == ':' || lastchar == '\\') {
1225         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1226       } else {
1227         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1228       }
1229       if (file_exists(buffer)) {
1230         retval = true;
1231         break;
1232       }
1233     }
1234     // release the storage
1235     for (int i = 0 ; i < n ; i++) {
1236       if (pelements[i] != NULL) {
1237         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1238       }
1239     }
1240     if (pelements != NULL) {
1241       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1242     }
1243   } else {
1244     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1245     retval = true;
1246   }
1247   return retval;
1248 }
1249 
1250 // Needs to be in os specific directory because windows requires another
1251 // header file <direct.h>
1252 const char* os::get_current_directory(char *buf, size_t buflen) {
1253   int n = static_cast<int>(buflen);
1254   if (buflen > INT_MAX)  n = INT_MAX;
1255   return _getcwd(buf, n);
1256 }
1257 
1258 //-----------------------------------------------------------
1259 // Helper functions for fatal error handler
1260 #ifdef _WIN64
1261 // Helper routine which returns true if address in
1262 // within the NTDLL address space.
1263 //
1264 static bool _addr_in_ntdll( address addr )
1265 {
1266   HMODULE hmod;
1267   MODULEINFO minfo;
1268 
1269   hmod = GetModuleHandle("NTDLL.DLL");
1270   if ( hmod == NULL ) return false;
1271   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1272                                &minfo, sizeof(MODULEINFO)) )
1273     return false;
1274 
1275   if ( (addr >= minfo.lpBaseOfDll) &&
1276        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1277     return true;
1278   else
1279     return false;
1280 }
1281 #endif
1282 
1283 
1284 // Enumerate all modules for a given process ID
1285 //
1286 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1287 // different API for doing this. We use PSAPI.DLL on NT based
1288 // Windows and ToolHelp on 95/98/Me.
1289 
1290 // Callback function that is called by enumerate_modules() on
1291 // every DLL module.
1292 // Input parameters:
1293 //    int       pid,
1294 //    char*     module_file_name,
1295 //    address   module_base_addr,
1296 //    unsigned  module_size,
1297 //    void*     param
1298 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1299 
1300 // enumerate_modules for Windows NT, using PSAPI
1301 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1302 {
1303   HANDLE   hProcess ;
1304 
1305 # define MAX_NUM_MODULES 128
1306   HMODULE     modules[MAX_NUM_MODULES];
1307   static char filename[ MAX_PATH ];
1308   int         result = 0;
1309 
1310   if (!os::PSApiDll::PSApiAvailable()) {
1311     return 0;
1312   }
1313 
1314   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1315                          FALSE, pid ) ;
1316   if (hProcess == NULL) return 0;
1317 
1318   DWORD size_needed;
1319   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1320                            sizeof(modules), &size_needed)) {
1321       CloseHandle( hProcess );
1322       return 0;
1323   }
1324 
1325   // number of modules that are currently loaded
1326   int num_modules = size_needed / sizeof(HMODULE);
1327 
1328   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1329     // Get Full pathname:
1330     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1331                              filename, sizeof(filename))) {
1332         filename[0] = '\0';
1333     }
1334 
1335     MODULEINFO modinfo;
1336     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1337                                &modinfo, sizeof(modinfo))) {
1338         modinfo.lpBaseOfDll = NULL;
1339         modinfo.SizeOfImage = 0;
1340     }
1341 
1342     // Invoke callback function
1343     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1344                   modinfo.SizeOfImage, param);
1345     if (result) break;
1346   }
1347 
1348   CloseHandle( hProcess ) ;
1349   return result;
1350 }
1351 
1352 
1353 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1354 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1355 {
1356   HANDLE                hSnapShot ;
1357   static MODULEENTRY32  modentry ;
1358   int                   result = 0;
1359 
1360   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1361     return 0;
1362   }
1363 
1364   // Get a handle to a Toolhelp snapshot of the system
1365   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1366   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1367       return FALSE ;
1368   }
1369 
1370   // iterate through all modules
1371   modentry.dwSize = sizeof(MODULEENTRY32) ;
1372   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1373 
1374   while( not_done ) {
1375     // invoke the callback
1376     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1377                 modentry.modBaseSize, param);
1378     if (result) break;
1379 
1380     modentry.dwSize = sizeof(MODULEENTRY32) ;
1381     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1382   }
1383 
1384   CloseHandle(hSnapShot);
1385   return result;
1386 }
1387 
1388 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1389 {
1390   // Get current process ID if caller doesn't provide it.
1391   if (!pid) pid = os::current_process_id();
1392 
1393   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1394   else                    return _enumerate_modules_windows(pid, func, param);
1395 }
1396 
1397 struct _modinfo {
1398    address addr;
1399    char*   full_path;   // point to a char buffer
1400    int     buflen;      // size of the buffer
1401    address base_addr;
1402 };
1403 
1404 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1405                                   unsigned size, void * param) {
1406    struct _modinfo *pmod = (struct _modinfo *)param;
1407    if (!pmod) return -1;
1408 
1409    if (base_addr     <= pmod->addr &&
1410        base_addr+size > pmod->addr) {
1411      // if a buffer is provided, copy path name to the buffer
1412      if (pmod->full_path) {
1413        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1414      }
1415      pmod->base_addr = base_addr;
1416      return 1;
1417    }
1418    return 0;
1419 }
1420 
1421 bool os::dll_address_to_library_name(address addr, char* buf,
1422                                      int buflen, int* offset) {
1423 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1424 //       return the full path to the DLL file, sometimes it returns path
1425 //       to the corresponding PDB file (debug info); sometimes it only
1426 //       returns partial path, which makes life painful.
1427 
1428    struct _modinfo mi;
1429    mi.addr      = addr;
1430    mi.full_path = buf;
1431    mi.buflen    = buflen;
1432    int pid = os::current_process_id();
1433    if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1434       // buf already contains path name
1435       if (offset) *offset = addr - mi.base_addr;
1436       return true;
1437    } else {
1438       if (buf) buf[0] = '\0';
1439       if (offset) *offset = -1;
1440       return false;
1441    }
1442 }
1443 
1444 bool os::dll_address_to_function_name(address addr, char *buf,
1445                                       int buflen, int *offset) {
1446   if (Decoder::decode(addr, buf, buflen, offset)) {
1447     return true;
1448   }
1449   if (offset != NULL)  *offset  = -1;
1450   if (buf != NULL) buf[0] = '\0';
1451   return false;
1452 }
1453 
1454 // save the start and end address of jvm.dll into param[0] and param[1]
1455 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1456                     unsigned size, void * param) {
1457    if (!param) return -1;
1458 
1459    if (base_addr     <= (address)_locate_jvm_dll &&
1460        base_addr+size > (address)_locate_jvm_dll) {
1461          ((address*)param)[0] = base_addr;
1462          ((address*)param)[1] = base_addr + size;
1463          return 1;
1464    }
1465    return 0;
1466 }
1467 
1468 address vm_lib_location[2];    // start and end address of jvm.dll
1469 
1470 // check if addr is inside jvm.dll
1471 bool os::address_is_in_vm(address addr) {
1472   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1473     int pid = os::current_process_id();
1474     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1475       assert(false, "Can't find jvm module.");
1476       return false;
1477     }
1478   }
1479 
1480   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1481 }
1482 
1483 // print module info; param is outputStream*
1484 static int _print_module(int pid, char* fname, address base,
1485                          unsigned size, void* param) {
1486    if (!param) return -1;
1487 
1488    outputStream* st = (outputStream*)param;
1489 
1490    address end_addr = base + size;
1491    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1492    return 0;
1493 }
1494 
1495 // Loads .dll/.so and
1496 // in case of error it checks if .dll/.so was built for the
1497 // same architecture as Hotspot is running on
1498 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1499 {
1500   void * result = LoadLibrary(name);
1501   if (result != NULL)
1502   {
1503     return result;
1504   }
1505 
1506   DWORD errcode = GetLastError();
1507   if (errcode == ERROR_MOD_NOT_FOUND) {
1508     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1509     ebuf[ebuflen-1]='\0';
1510     return NULL;
1511   }
1512 
1513   // Parsing dll below
1514   // If we can read dll-info and find that dll was built
1515   // for an architecture other than Hotspot is running in
1516   // - then print to buffer "DLL was built for a different architecture"
1517   // else call os::lasterror to obtain system error message
1518 
1519   // Read system error message into ebuf
1520   // It may or may not be overwritten below (in the for loop and just above)
1521   lasterror(ebuf, (size_t) ebuflen);
1522   ebuf[ebuflen-1]='\0';
1523   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1524   if (file_descriptor<0)
1525   {
1526     return NULL;
1527   }
1528 
1529   uint32_t signature_offset;
1530   uint16_t lib_arch=0;
1531   bool failed_to_get_lib_arch=
1532   (
1533     //Go to position 3c in the dll
1534     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1535     ||
1536     // Read loacation of signature
1537     (sizeof(signature_offset)!=
1538       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1539     ||
1540     //Go to COFF File Header in dll
1541     //that is located after"signature" (4 bytes long)
1542     (os::seek_to_file_offset(file_descriptor,
1543       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1544     ||
1545     //Read field that contains code of architecture
1546     // that dll was build for
1547     (sizeof(lib_arch)!=
1548       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1549   );
1550 
1551   ::close(file_descriptor);
1552   if (failed_to_get_lib_arch)
1553   {
1554     // file i/o error - report os::lasterror(...) msg
1555     return NULL;
1556   }
1557 
1558   typedef struct
1559   {
1560     uint16_t arch_code;
1561     char* arch_name;
1562   } arch_t;
1563 
1564   static const arch_t arch_array[]={
1565     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1566     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1567     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1568   };
1569   #if   (defined _M_IA64)
1570     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1571   #elif (defined _M_AMD64)
1572     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1573   #elif (defined _M_IX86)
1574     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1575   #else
1576     #error Method os::dll_load requires that one of following \
1577            is defined :_M_IA64,_M_AMD64 or _M_IX86
1578   #endif
1579 
1580 
1581   // Obtain a string for printf operation
1582   // lib_arch_str shall contain string what platform this .dll was built for
1583   // running_arch_str shall string contain what platform Hotspot was built for
1584   char *running_arch_str=NULL,*lib_arch_str=NULL;
1585   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1586   {
1587     if (lib_arch==arch_array[i].arch_code)
1588       lib_arch_str=arch_array[i].arch_name;
1589     if (running_arch==arch_array[i].arch_code)
1590       running_arch_str=arch_array[i].arch_name;
1591   }
1592 
1593   assert(running_arch_str,
1594     "Didn't find runing architecture code in arch_array");
1595 
1596   // If the architure is right
1597   // but some other error took place - report os::lasterror(...) msg
1598   if (lib_arch == running_arch)
1599   {
1600     return NULL;
1601   }
1602 
1603   if (lib_arch_str!=NULL)
1604   {
1605     ::_snprintf(ebuf, ebuflen-1,
1606       "Can't load %s-bit .dll on a %s-bit platform",
1607       lib_arch_str,running_arch_str);
1608   }
1609   else
1610   {
1611     // don't know what architecture this dll was build for
1612     ::_snprintf(ebuf, ebuflen-1,
1613       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1614       lib_arch,running_arch_str);
1615   }
1616 
1617   return NULL;
1618 }
1619 
1620 
1621 void os::print_dll_info(outputStream *st) {
1622    int pid = os::current_process_id();
1623    st->print_cr("Dynamic libraries:");
1624    enumerate_modules(pid, _print_module, (void *)st);
1625 }
1626 
1627 void os::print_os_info_brief(outputStream* st) {
1628   os::print_os_info(st);
1629 }
1630 
1631 void os::print_os_info(outputStream* st) {
1632   st->print("OS:");
1633 
1634   os::win32::print_windows_version(st);
1635 }
1636 
1637 void os::win32::print_windows_version(outputStream* st) {
1638   OSVERSIONINFOEX osvi;
1639   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1640   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1641 
1642   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1643     st->print_cr("N/A");
1644     return;
1645   }
1646 
1647   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1648   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1649     switch (os_vers) {
1650     case 3051: st->print(" Windows NT 3.51"); break;
1651     case 4000: st->print(" Windows NT 4.0"); break;
1652     case 5000: st->print(" Windows 2000"); break;
1653     case 5001: st->print(" Windows XP"); break;
1654     case 5002:
1655     case 6000:
1656     case 6001:
1657     case 6002: {
1658       // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1659       // find out whether we are running on 64 bit processor or not.
1660       SYSTEM_INFO si;
1661       ZeroMemory(&si, sizeof(SYSTEM_INFO));
1662         if (!os::Kernel32Dll::GetNativeSystemInfoAvailable()){
1663           GetSystemInfo(&si);
1664       } else {
1665         os::Kernel32Dll::GetNativeSystemInfo(&si);
1666       }
1667       if (os_vers == 5002) {
1668         if (osvi.wProductType == VER_NT_WORKSTATION &&
1669             si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1670           st->print(" Windows XP x64 Edition");
1671         else
1672             st->print(" Windows Server 2003 family");
1673       } else if (os_vers == 6000) {
1674         if (osvi.wProductType == VER_NT_WORKSTATION)
1675             st->print(" Windows Vista");
1676         else
1677             st->print(" Windows Server 2008");
1678         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1679             st->print(" , 64 bit");
1680       } else if (os_vers == 6001) {
1681         if (osvi.wProductType == VER_NT_WORKSTATION) {
1682             st->print(" Windows 7");
1683         } else {
1684             // Unrecognized windows, print out its major and minor versions
1685             st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1686         }
1687         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1688             st->print(" , 64 bit");
1689       } else if (os_vers == 6002) {
1690         if (osvi.wProductType == VER_NT_WORKSTATION) {
1691             st->print(" Windows 8");
1692         } else {
1693             st->print(" Windows Server 2012");
1694         }
1695         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1696             st->print(" , 64 bit");
1697       } else { // future os
1698         // Unrecognized windows, print out its major and minor versions
1699         st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1700         if (si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64)
1701             st->print(" , 64 bit");
1702       }
1703       break;
1704     }
1705     default: // future windows, print out its major and minor versions
1706       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1707     }
1708   } else {
1709     switch (os_vers) {
1710     case 4000: st->print(" Windows 95"); break;
1711     case 4010: st->print(" Windows 98"); break;
1712     case 4090: st->print(" Windows Me"); break;
1713     default: // future windows, print out its major and minor versions
1714       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1715     }
1716   }
1717   st->print(" Build %d", osvi.dwBuildNumber);
1718   st->print(" %s", osvi.szCSDVersion);           // service pack
1719   st->cr();
1720 }
1721 
1722 void os::pd_print_cpu_info(outputStream* st) {
1723   // Nothing to do for now.
1724 }
1725 
1726 void os::print_memory_info(outputStream* st) {
1727   st->print("Memory:");
1728   st->print(" %dk page", os::vm_page_size()>>10);
1729 
1730   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1731   // value if total memory is larger than 4GB
1732   MEMORYSTATUSEX ms;
1733   ms.dwLength = sizeof(ms);
1734   GlobalMemoryStatusEx(&ms);
1735 
1736   st->print(", physical %uk", os::physical_memory() >> 10);
1737   st->print("(%uk free)", os::available_memory() >> 10);
1738 
1739   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1740   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1741   st->cr();
1742 }
1743 
1744 void os::print_siginfo(outputStream *st, void *siginfo) {
1745   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1746   st->print("siginfo:");
1747   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1748 
1749   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1750       er->NumberParameters >= 2) {
1751       switch (er->ExceptionInformation[0]) {
1752       case 0: st->print(", reading address"); break;
1753       case 1: st->print(", writing address"); break;
1754       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1755                             er->ExceptionInformation[0]);
1756       }
1757       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1758   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1759              er->NumberParameters >= 2 && UseSharedSpaces) {
1760     FileMapInfo* mapinfo = FileMapInfo::current_info();
1761     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1762       st->print("\n\nError accessing class data sharing archive."       \
1763                 " Mapped file inaccessible during execution, "          \
1764                 " possible disk/network problem.");
1765     }
1766   } else {
1767     int num = er->NumberParameters;
1768     if (num > 0) {
1769       st->print(", ExceptionInformation=");
1770       for (int i = 0; i < num; i++) {
1771         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1772       }
1773     }
1774   }
1775   st->cr();
1776 }
1777 
1778 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1779   // do nothing
1780 }
1781 
1782 static char saved_jvm_path[MAX_PATH] = {0};
1783 
1784 // Find the full path to the current module, jvm.dll
1785 void os::jvm_path(char *buf, jint buflen) {
1786   // Error checking.
1787   if (buflen < MAX_PATH) {
1788     assert(false, "must use a large-enough buffer");
1789     buf[0] = '\0';
1790     return;
1791   }
1792   // Lazy resolve the path to current module.
1793   if (saved_jvm_path[0] != 0) {
1794     strcpy(buf, saved_jvm_path);
1795     return;
1796   }
1797 
1798   buf[0] = '\0';
1799   if (Arguments::created_by_gamma_launcher()) {
1800      // Support for the gamma launcher. Check for an
1801      // JAVA_HOME environment variable
1802      // and fix up the path so it looks like
1803      // libjvm.so is installed there (append a fake suffix
1804      // hotspot/libjvm.so).
1805      char* java_home_var = ::getenv("JAVA_HOME");
1806      if (java_home_var != NULL && java_home_var[0] != 0) {
1807 
1808         strncpy(buf, java_home_var, buflen);
1809 
1810         // determine if this is a legacy image or modules image
1811         // modules image doesn't have "jre" subdirectory
1812         size_t len = strlen(buf);
1813         char* jrebin_p = buf + len;
1814         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1815         if (0 != _access(buf, 0)) {
1816           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1817         }
1818         len = strlen(buf);
1819         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1820      }
1821   }
1822 
1823   if(buf[0] == '\0') {
1824   GetModuleFileName(vm_lib_handle, buf, buflen);
1825   }
1826   strcpy(saved_jvm_path, buf);
1827 }
1828 
1829 
1830 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1831 #ifndef _WIN64
1832   st->print("_");
1833 #endif
1834 }
1835 
1836 
1837 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1838 #ifndef _WIN64
1839   st->print("@%d", args_size  * sizeof(int));
1840 #endif
1841 }
1842 
1843 // This method is a copy of JDK's sysGetLastErrorString
1844 // from src/windows/hpi/src/system_md.c
1845 
1846 size_t os::lasterror(char* buf, size_t len) {
1847   DWORD errval;
1848 
1849   if ((errval = GetLastError()) != 0) {
1850     // DOS error
1851     size_t n = (size_t)FormatMessage(
1852           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1853           NULL,
1854           errval,
1855           0,
1856           buf,
1857           (DWORD)len,
1858           NULL);
1859     if (n > 3) {
1860       // Drop final '.', CR, LF
1861       if (buf[n - 1] == '\n') n--;
1862       if (buf[n - 1] == '\r') n--;
1863       if (buf[n - 1] == '.') n--;
1864       buf[n] = '\0';
1865     }
1866     return n;
1867   }
1868 
1869   if (errno != 0) {
1870     // C runtime error that has no corresponding DOS error code
1871     const char* s = strerror(errno);
1872     size_t n = strlen(s);
1873     if (n >= len) n = len - 1;
1874     strncpy(buf, s, n);
1875     buf[n] = '\0';
1876     return n;
1877   }
1878 
1879   return 0;
1880 }
1881 
1882 int os::get_last_error() {
1883   DWORD error = GetLastError();
1884   if (error == 0)
1885     error = errno;
1886   return (int)error;
1887 }
1888 
1889 // sun.misc.Signal
1890 // NOTE that this is a workaround for an apparent kernel bug where if
1891 // a signal handler for SIGBREAK is installed then that signal handler
1892 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1893 // See bug 4416763.
1894 static void (*sigbreakHandler)(int) = NULL;
1895 
1896 static void UserHandler(int sig, void *siginfo, void *context) {
1897   os::signal_notify(sig);
1898   // We need to reinstate the signal handler each time...
1899   os::signal(sig, (void*)UserHandler);
1900 }
1901 
1902 void* os::user_handler() {
1903   return (void*) UserHandler;
1904 }
1905 
1906 void* os::signal(int signal_number, void* handler) {
1907   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1908     void (*oldHandler)(int) = sigbreakHandler;
1909     sigbreakHandler = (void (*)(int)) handler;
1910     return (void*) oldHandler;
1911   } else {
1912     return (void*)::signal(signal_number, (void (*)(int))handler);
1913   }
1914 }
1915 
1916 void os::signal_raise(int signal_number) {
1917   raise(signal_number);
1918 }
1919 
1920 // The Win32 C runtime library maps all console control events other than ^C
1921 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1922 // logoff, and shutdown events.  We therefore install our own console handler
1923 // that raises SIGTERM for the latter cases.
1924 //
1925 static BOOL WINAPI consoleHandler(DWORD event) {
1926   switch(event) {
1927     case CTRL_C_EVENT:
1928       if (is_error_reported()) {
1929         // Ctrl-C is pressed during error reporting, likely because the error
1930         // handler fails to abort. Let VM die immediately.
1931         os::die();
1932       }
1933 
1934       os::signal_raise(SIGINT);
1935       return TRUE;
1936       break;
1937     case CTRL_BREAK_EVENT:
1938       if (sigbreakHandler != NULL) {
1939         (*sigbreakHandler)(SIGBREAK);
1940       }
1941       return TRUE;
1942       break;
1943     case CTRL_LOGOFF_EVENT: {
1944       // Don't terminate JVM if it is running in a non-interactive session,
1945       // such as a service process.
1946       USEROBJECTFLAGS flags;
1947       HANDLE handle = GetProcessWindowStation();
1948       if (handle != NULL &&
1949           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1950             sizeof( USEROBJECTFLAGS), NULL)) {
1951         // If it is a non-interactive session, let next handler to deal
1952         // with it.
1953         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1954           return FALSE;
1955         }
1956       }
1957     }
1958     case CTRL_CLOSE_EVENT:
1959     case CTRL_SHUTDOWN_EVENT:
1960       os::signal_raise(SIGTERM);
1961       return TRUE;
1962       break;
1963     default:
1964       break;
1965   }
1966   return FALSE;
1967 }
1968 
1969 /*
1970  * The following code is moved from os.cpp for making this
1971  * code platform specific, which it is by its very nature.
1972  */
1973 
1974 // Return maximum OS signal used + 1 for internal use only
1975 // Used as exit signal for signal_thread
1976 int os::sigexitnum_pd(){
1977   return NSIG;
1978 }
1979 
1980 // a counter for each possible signal value, including signal_thread exit signal
1981 static volatile jint pending_signals[NSIG+1] = { 0 };
1982 static HANDLE sig_sem = NULL;
1983 
1984 void os::signal_init_pd() {
1985   // Initialize signal structures
1986   memset((void*)pending_signals, 0, sizeof(pending_signals));
1987 
1988   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
1989 
1990   // Programs embedding the VM do not want it to attempt to receive
1991   // events like CTRL_LOGOFF_EVENT, which are used to implement the
1992   // shutdown hooks mechanism introduced in 1.3.  For example, when
1993   // the VM is run as part of a Windows NT service (i.e., a servlet
1994   // engine in a web server), the correct behavior is for any console
1995   // control handler to return FALSE, not TRUE, because the OS's
1996   // "final" handler for such events allows the process to continue if
1997   // it is a service (while terminating it if it is not a service).
1998   // To make this behavior uniform and the mechanism simpler, we
1999   // completely disable the VM's usage of these console events if -Xrs
2000   // (=ReduceSignalUsage) is specified.  This means, for example, that
2001   // the CTRL-BREAK thread dump mechanism is also disabled in this
2002   // case.  See bugs 4323062, 4345157, and related bugs.
2003 
2004   if (!ReduceSignalUsage) {
2005     // Add a CTRL-C handler
2006     SetConsoleCtrlHandler(consoleHandler, TRUE);
2007   }
2008 }
2009 
2010 void os::signal_notify(int signal_number) {
2011   BOOL ret;
2012   if (sig_sem != NULL) {
2013     Atomic::inc(&pending_signals[signal_number]);
2014     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2015     assert(ret != 0, "ReleaseSemaphore() failed");
2016   }
2017 }
2018 
2019 static int check_pending_signals(bool wait_for_signal) {
2020   DWORD ret;
2021   while (true) {
2022     for (int i = 0; i < NSIG + 1; i++) {
2023       jint n = pending_signals[i];
2024       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2025         return i;
2026       }
2027     }
2028     if (!wait_for_signal) {
2029       return -1;
2030     }
2031 
2032     JavaThread *thread = JavaThread::current();
2033 
2034     ThreadBlockInVM tbivm(thread);
2035 
2036     bool threadIsSuspended;
2037     do {
2038       thread->set_suspend_equivalent();
2039       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2040       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2041       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2042 
2043       // were we externally suspended while we were waiting?
2044       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2045       if (threadIsSuspended) {
2046         //
2047         // The semaphore has been incremented, but while we were waiting
2048         // another thread suspended us. We don't want to continue running
2049         // while suspended because that would surprise the thread that
2050         // suspended us.
2051         //
2052         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2053         assert(ret != 0, "ReleaseSemaphore() failed");
2054 
2055         thread->java_suspend_self();
2056       }
2057     } while (threadIsSuspended);
2058   }
2059 }
2060 
2061 int os::signal_lookup() {
2062   return check_pending_signals(false);
2063 }
2064 
2065 int os::signal_wait() {
2066   return check_pending_signals(true);
2067 }
2068 
2069 // Implicit OS exception handling
2070 
2071 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2072   JavaThread* thread = JavaThread::current();
2073   // Save pc in thread
2074 #ifdef _M_IA64
2075   // Do not blow up if no thread info available.
2076   if (thread) {
2077     // Saving PRECISE pc (with slot information) in thread.
2078     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2079     // Convert precise PC into "Unix" format
2080     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2081     thread->set_saved_exception_pc((address)precise_pc);
2082   }
2083   // Set pc to handler
2084   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2085   // Clear out psr.ri (= Restart Instruction) in order to continue
2086   // at the beginning of the target bundle.
2087   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2088   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2089 #elif _M_AMD64
2090   // Do not blow up if no thread info available.
2091   if (thread) {
2092     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2093   }
2094   // Set pc to handler
2095   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2096 #else
2097   // Do not blow up if no thread info available.
2098   if (thread) {
2099     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2100   }
2101   // Set pc to handler
2102   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2103 #endif
2104 
2105   // Continue the execution
2106   return EXCEPTION_CONTINUE_EXECUTION;
2107 }
2108 
2109 
2110 // Used for PostMortemDump
2111 extern "C" void safepoints();
2112 extern "C" void find(int x);
2113 extern "C" void events();
2114 
2115 // According to Windows API documentation, an illegal instruction sequence should generate
2116 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2117 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2118 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2119 
2120 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2121 
2122 // From "Execution Protection in the Windows Operating System" draft 0.35
2123 // Once a system header becomes available, the "real" define should be
2124 // included or copied here.
2125 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2126 
2127 // Handle NAT Bit consumption on IA64.
2128 #ifdef _M_IA64
2129 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2130 #endif
2131 
2132 // Windows Vista/2008 heap corruption check
2133 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2134 
2135 #define def_excpt(val) #val, val
2136 
2137 struct siglabel {
2138   char *name;
2139   int   number;
2140 };
2141 
2142 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2143 // C++ compiler contain this error code. Because this is a compiler-generated
2144 // error, the code is not listed in the Win32 API header files.
2145 // The code is actually a cryptic mnemonic device, with the initial "E"
2146 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2147 // ASCII values of "msc".
2148 
2149 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2150 
2151 
2152 struct siglabel exceptlabels[] = {
2153     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2154     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2155     def_excpt(EXCEPTION_BREAKPOINT),
2156     def_excpt(EXCEPTION_SINGLE_STEP),
2157     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2158     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2159     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2160     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2161     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2162     def_excpt(EXCEPTION_FLT_OVERFLOW),
2163     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2164     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2165     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2166     def_excpt(EXCEPTION_INT_OVERFLOW),
2167     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2168     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2169     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2170     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2171     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2172     def_excpt(EXCEPTION_STACK_OVERFLOW),
2173     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2174     def_excpt(EXCEPTION_GUARD_PAGE),
2175     def_excpt(EXCEPTION_INVALID_HANDLE),
2176     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2177     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2178 #ifdef _M_IA64
2179     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2180 #endif
2181     NULL, 0
2182 };
2183 
2184 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2185   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2186     if (exceptlabels[i].number == exception_code) {
2187        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2188        return buf;
2189     }
2190   }
2191 
2192   return NULL;
2193 }
2194 
2195 //-----------------------------------------------------------------------------
2196 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2197   // handle exception caused by idiv; should only happen for -MinInt/-1
2198   // (division by zero is handled explicitly)
2199 #ifdef _M_IA64
2200   assert(0, "Fix Handle_IDiv_Exception");
2201 #elif _M_AMD64
2202   PCONTEXT ctx = exceptionInfo->ContextRecord;
2203   address pc = (address)ctx->Rip;
2204   assert(pc[0] == 0xF7, "not an idiv opcode");
2205   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2206   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2207   // set correct result values and continue after idiv instruction
2208   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2209   ctx->Rax = (DWORD)min_jint;      // result
2210   ctx->Rdx = (DWORD)0;             // remainder
2211   // Continue the execution
2212 #else
2213   PCONTEXT ctx = exceptionInfo->ContextRecord;
2214   address pc = (address)ctx->Eip;
2215   assert(pc[0] == 0xF7, "not an idiv opcode");
2216   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2217   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2218   // set correct result values and continue after idiv instruction
2219   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2220   ctx->Eax = (DWORD)min_jint;      // result
2221   ctx->Edx = (DWORD)0;             // remainder
2222   // Continue the execution
2223 #endif
2224   return EXCEPTION_CONTINUE_EXECUTION;
2225 }
2226 
2227 #ifndef  _WIN64
2228 //-----------------------------------------------------------------------------
2229 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2230   // handle exception caused by native method modifying control word
2231   PCONTEXT ctx = exceptionInfo->ContextRecord;
2232   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2233 
2234   switch (exception_code) {
2235     case EXCEPTION_FLT_DENORMAL_OPERAND:
2236     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2237     case EXCEPTION_FLT_INEXACT_RESULT:
2238     case EXCEPTION_FLT_INVALID_OPERATION:
2239     case EXCEPTION_FLT_OVERFLOW:
2240     case EXCEPTION_FLT_STACK_CHECK:
2241     case EXCEPTION_FLT_UNDERFLOW:
2242       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2243       if (fp_control_word != ctx->FloatSave.ControlWord) {
2244         // Restore FPCW and mask out FLT exceptions
2245         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2246         // Mask out pending FLT exceptions
2247         ctx->FloatSave.StatusWord &=  0xffffff00;
2248         return EXCEPTION_CONTINUE_EXECUTION;
2249       }
2250   }
2251 
2252   if (prev_uef_handler != NULL) {
2253     // We didn't handle this exception so pass it to the previous
2254     // UnhandledExceptionFilter.
2255     return (prev_uef_handler)(exceptionInfo);
2256   }
2257 
2258   return EXCEPTION_CONTINUE_SEARCH;
2259 }
2260 #else //_WIN64
2261 /*
2262   On Windows, the mxcsr control bits are non-volatile across calls
2263   See also CR 6192333
2264   If EXCEPTION_FLT_* happened after some native method modified
2265   mxcsr - it is not a jvm fault.
2266   However should we decide to restore of mxcsr after a faulty
2267   native method we can uncomment following code
2268       jint MxCsr = INITIAL_MXCSR;
2269         // we can't use StubRoutines::addr_mxcsr_std()
2270         // because in Win64 mxcsr is not saved there
2271       if (MxCsr != ctx->MxCsr) {
2272         ctx->MxCsr = MxCsr;
2273         return EXCEPTION_CONTINUE_EXECUTION;
2274       }
2275 
2276 */
2277 #endif //_WIN64
2278 
2279 
2280 // Fatal error reporting is single threaded so we can make this a
2281 // static and preallocated.  If it's more than MAX_PATH silently ignore
2282 // it.
2283 static char saved_error_file[MAX_PATH] = {0};
2284 
2285 void os::set_error_file(const char *logfile) {
2286   if (strlen(logfile) <= MAX_PATH) {
2287     strncpy(saved_error_file, logfile, MAX_PATH);
2288   }
2289 }
2290 
2291 static inline void report_error(Thread* t, DWORD exception_code,
2292                                 address addr, void* siginfo, void* context) {
2293   VMError err(t, exception_code, addr, siginfo, context);
2294   err.report_and_die();
2295 
2296   // If UseOsErrorReporting, this will return here and save the error file
2297   // somewhere where we can find it in the minidump.
2298 }
2299 
2300 //-----------------------------------------------------------------------------
2301 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2302   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2303   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2304 #ifdef _M_IA64
2305   // On Itanium, we need the "precise pc", which has the slot number coded
2306   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2307   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2308   // Convert the pc to "Unix format", which has the slot number coded
2309   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2310   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2311   // information is saved in the Unix format.
2312   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2313 #elif _M_AMD64
2314   address pc = (address) exceptionInfo->ContextRecord->Rip;
2315 #else
2316   address pc = (address) exceptionInfo->ContextRecord->Eip;
2317 #endif
2318   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2319 
2320 #ifndef _WIN64
2321   // Execution protection violation - win32 running on AMD64 only
2322   // Handled first to avoid misdiagnosis as a "normal" access violation;
2323   // This is safe to do because we have a new/unique ExceptionInformation
2324   // code for this condition.
2325   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2326     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2327     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2328     address addr = (address) exceptionRecord->ExceptionInformation[1];
2329 
2330     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2331       int page_size = os::vm_page_size();
2332 
2333       // Make sure the pc and the faulting address are sane.
2334       //
2335       // If an instruction spans a page boundary, and the page containing
2336       // the beginning of the instruction is executable but the following
2337       // page is not, the pc and the faulting address might be slightly
2338       // different - we still want to unguard the 2nd page in this case.
2339       //
2340       // 15 bytes seems to be a (very) safe value for max instruction size.
2341       bool pc_is_near_addr =
2342         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2343       bool instr_spans_page_boundary =
2344         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2345                          (intptr_t) page_size) > 0);
2346 
2347       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2348         static volatile address last_addr =
2349           (address) os::non_memory_address_word();
2350 
2351         // In conservative mode, don't unguard unless the address is in the VM
2352         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2353             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2354 
2355           // Set memory to RWX and retry
2356           address page_start =
2357             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2358           bool res = os::protect_memory((char*) page_start, page_size,
2359                                         os::MEM_PROT_RWX);
2360 
2361           if (PrintMiscellaneous && Verbose) {
2362             char buf[256];
2363             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2364                          "at " INTPTR_FORMAT
2365                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2366                          page_start, (res ? "success" : strerror(errno)));
2367             tty->print_raw_cr(buf);
2368           }
2369 
2370           // Set last_addr so if we fault again at the same address, we don't
2371           // end up in an endless loop.
2372           //
2373           // There are two potential complications here.  Two threads trapping
2374           // at the same address at the same time could cause one of the
2375           // threads to think it already unguarded, and abort the VM.  Likely
2376           // very rare.
2377           //
2378           // The other race involves two threads alternately trapping at
2379           // different addresses and failing to unguard the page, resulting in
2380           // an endless loop.  This condition is probably even more unlikely
2381           // than the first.
2382           //
2383           // Although both cases could be avoided by using locks or thread
2384           // local last_addr, these solutions are unnecessary complication:
2385           // this handler is a best-effort safety net, not a complete solution.
2386           // It is disabled by default and should only be used as a workaround
2387           // in case we missed any no-execute-unsafe VM code.
2388 
2389           last_addr = addr;
2390 
2391           return EXCEPTION_CONTINUE_EXECUTION;
2392         }
2393       }
2394 
2395       // Last unguard failed or not unguarding
2396       tty->print_raw_cr("Execution protection violation");
2397       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2398                    exceptionInfo->ContextRecord);
2399       return EXCEPTION_CONTINUE_SEARCH;
2400     }
2401   }
2402 #endif // _WIN64
2403 
2404   // Check to see if we caught the safepoint code in the
2405   // process of write protecting the memory serialization page.
2406   // It write enables the page immediately after protecting it
2407   // so just return.
2408   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2409     JavaThread* thread = (JavaThread*) t;
2410     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2411     address addr = (address) exceptionRecord->ExceptionInformation[1];
2412     if ( os::is_memory_serialize_page(thread, addr) ) {
2413       // Block current thread until the memory serialize page permission restored.
2414       os::block_on_serialize_page_trap();
2415       return EXCEPTION_CONTINUE_EXECUTION;
2416     }
2417   }
2418 
2419   if (t != NULL && t->is_Java_thread()) {
2420     JavaThread* thread = (JavaThread*) t;
2421     bool in_java = thread->thread_state() == _thread_in_Java;
2422 
2423     // Handle potential stack overflows up front.
2424     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2425       if (os::uses_stack_guard_pages()) {
2426 #ifdef _M_IA64
2427         // Use guard page for register stack.
2428         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2429         address addr = (address) exceptionRecord->ExceptionInformation[1];
2430         // Check for a register stack overflow on Itanium
2431         if (thread->addr_inside_register_stack_red_zone(addr)) {
2432           // Fatal red zone violation happens if the Java program
2433           // catches a StackOverflow error and does so much processing
2434           // that it runs beyond the unprotected yellow guard zone. As
2435           // a result, we are out of here.
2436           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2437         } else if(thread->addr_inside_register_stack(addr)) {
2438           // Disable the yellow zone which sets the state that
2439           // we've got a stack overflow problem.
2440           if (thread->stack_yellow_zone_enabled()) {
2441             thread->disable_stack_yellow_zone();
2442           }
2443           // Give us some room to process the exception.
2444           thread->disable_register_stack_guard();
2445           // Tracing with +Verbose.
2446           if (Verbose) {
2447             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2448             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2449             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2450             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2451                           thread->register_stack_base(),
2452                           thread->register_stack_base() + thread->stack_size());
2453           }
2454 
2455           // Reguard the permanent register stack red zone just to be sure.
2456           // We saw Windows silently disabling this without telling us.
2457           thread->enable_register_stack_red_zone();
2458 
2459           return Handle_Exception(exceptionInfo,
2460             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2461         }
2462 #endif
2463         if (thread->stack_yellow_zone_enabled()) {
2464           // Yellow zone violation.  The o/s has unprotected the first yellow
2465           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2466           // update the enabled status, even if the zone contains only one page.
2467           thread->disable_stack_yellow_zone();
2468           // If not in java code, return and hope for the best.
2469           return in_java ? Handle_Exception(exceptionInfo,
2470             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2471             :  EXCEPTION_CONTINUE_EXECUTION;
2472         } else {
2473           // Fatal red zone violation.
2474           thread->disable_stack_red_zone();
2475           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2476           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2477                        exceptionInfo->ContextRecord);
2478           return EXCEPTION_CONTINUE_SEARCH;
2479         }
2480       } else if (in_java) {
2481         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2482         // a one-time-only guard page, which it has released to us.  The next
2483         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2484         return Handle_Exception(exceptionInfo,
2485           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2486       } else {
2487         // Can only return and hope for the best.  Further stack growth will
2488         // result in an ACCESS_VIOLATION.
2489         return EXCEPTION_CONTINUE_EXECUTION;
2490       }
2491     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2492       // Either stack overflow or null pointer exception.
2493       if (in_java) {
2494         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2495         address addr = (address) exceptionRecord->ExceptionInformation[1];
2496         address stack_end = thread->stack_base() - thread->stack_size();
2497         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2498           // Stack overflow.
2499           assert(!os::uses_stack_guard_pages(),
2500             "should be caught by red zone code above.");
2501           return Handle_Exception(exceptionInfo,
2502             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2503         }
2504         //
2505         // Check for safepoint polling and implicit null
2506         // We only expect null pointers in the stubs (vtable)
2507         // the rest are checked explicitly now.
2508         //
2509         CodeBlob* cb = CodeCache::find_blob(pc);
2510         if (cb != NULL) {
2511           if (os::is_poll_address(addr)) {
2512             address stub = SharedRuntime::get_poll_stub(pc);
2513             return Handle_Exception(exceptionInfo, stub);
2514           }
2515         }
2516         {
2517 #ifdef _WIN64
2518           //
2519           // If it's a legal stack address map the entire region in
2520           //
2521           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2522           address addr = (address) exceptionRecord->ExceptionInformation[1];
2523           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2524                   addr = (address)((uintptr_t)addr &
2525                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2526                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2527                                     false );
2528                   return EXCEPTION_CONTINUE_EXECUTION;
2529           }
2530           else
2531 #endif
2532           {
2533             // Null pointer exception.
2534 #ifdef _M_IA64
2535             // Process implicit null checks in compiled code. Note: Implicit null checks
2536             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2537             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2538               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2539               // Handle implicit null check in UEP method entry
2540               if (cb && (cb->is_frame_complete_at(pc) ||
2541                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2542                 if (Verbose) {
2543                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2544                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2545                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2546                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2547                                 *(bundle_start + 1), *bundle_start);
2548                 }
2549                 return Handle_Exception(exceptionInfo,
2550                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2551               }
2552             }
2553 
2554             // Implicit null checks were processed above.  Hence, we should not reach
2555             // here in the usual case => die!
2556             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2557             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2558                          exceptionInfo->ContextRecord);
2559             return EXCEPTION_CONTINUE_SEARCH;
2560 
2561 #else // !IA64
2562 
2563             // Windows 98 reports faulting addresses incorrectly
2564             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2565                 !os::win32::is_nt()) {
2566               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2567               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2568             }
2569             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2570                          exceptionInfo->ContextRecord);
2571             return EXCEPTION_CONTINUE_SEARCH;
2572 #endif
2573           }
2574         }
2575       }
2576 
2577 #ifdef _WIN64
2578       // Special care for fast JNI field accessors.
2579       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2580       // in and the heap gets shrunk before the field access.
2581       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2582         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2583         if (addr != (address)-1) {
2584           return Handle_Exception(exceptionInfo, addr);
2585         }
2586       }
2587 #endif
2588 
2589       // Stack overflow or null pointer exception in native code.
2590       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2591                    exceptionInfo->ContextRecord);
2592       return EXCEPTION_CONTINUE_SEARCH;
2593     } // /EXCEPTION_ACCESS_VIOLATION
2594     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2595 #if defined _M_IA64
2596     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2597               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2598       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2599 
2600       // Compiled method patched to be non entrant? Following conditions must apply:
2601       // 1. must be first instruction in bundle
2602       // 2. must be a break instruction with appropriate code
2603       if((((uint64_t) pc & 0x0F) == 0) &&
2604          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2605         return Handle_Exception(exceptionInfo,
2606                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2607       }
2608     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2609 #endif
2610 
2611 
2612     if (in_java) {
2613       switch (exception_code) {
2614       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2615         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2616 
2617       case EXCEPTION_INT_OVERFLOW:
2618         return Handle_IDiv_Exception(exceptionInfo);
2619 
2620       } // switch
2621     }
2622 #ifndef _WIN64
2623     if (((thread->thread_state() == _thread_in_Java) ||
2624         (thread->thread_state() == _thread_in_native)) &&
2625         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2626     {
2627       LONG result=Handle_FLT_Exception(exceptionInfo);
2628       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2629     }
2630 #endif //_WIN64
2631   }
2632 
2633   if (exception_code != EXCEPTION_BREAKPOINT) {
2634     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2635                  exceptionInfo->ContextRecord);
2636   }
2637   return EXCEPTION_CONTINUE_SEARCH;
2638 }
2639 
2640 #ifndef _WIN64
2641 // Special care for fast JNI accessors.
2642 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2643 // the heap gets shrunk before the field access.
2644 // Need to install our own structured exception handler since native code may
2645 // install its own.
2646 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2647   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2648   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2649     address pc = (address) exceptionInfo->ContextRecord->Eip;
2650     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2651     if (addr != (address)-1) {
2652       return Handle_Exception(exceptionInfo, addr);
2653     }
2654   }
2655   return EXCEPTION_CONTINUE_SEARCH;
2656 }
2657 
2658 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2659 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2660   __try { \
2661     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2662   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2663   } \
2664   return 0; \
2665 }
2666 
2667 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2668 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2669 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2670 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2671 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2672 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2673 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2674 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2675 
2676 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2677   switch (type) {
2678     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2679     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2680     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2681     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2682     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2683     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2684     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2685     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2686     default:        ShouldNotReachHere();
2687   }
2688   return (address)-1;
2689 }
2690 #endif
2691 
2692 // Virtual Memory
2693 
2694 int os::vm_page_size() { return os::win32::vm_page_size(); }
2695 int os::vm_allocation_granularity() {
2696   return os::win32::vm_allocation_granularity();
2697 }
2698 
2699 // Windows large page support is available on Windows 2003. In order to use
2700 // large page memory, the administrator must first assign additional privilege
2701 // to the user:
2702 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2703 //   + select Local Policies -> User Rights Assignment
2704 //   + double click "Lock pages in memory", add users and/or groups
2705 //   + reboot
2706 // Note the above steps are needed for administrator as well, as administrators
2707 // by default do not have the privilege to lock pages in memory.
2708 //
2709 // Note about Windows 2003: although the API supports committing large page
2710 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2711 // scenario, I found through experiment it only uses large page if the entire
2712 // memory region is reserved and committed in a single VirtualAlloc() call.
2713 // This makes Windows large page support more or less like Solaris ISM, in
2714 // that the entire heap must be committed upfront. This probably will change
2715 // in the future, if so the code below needs to be revisited.
2716 
2717 #ifndef MEM_LARGE_PAGES
2718 #define MEM_LARGE_PAGES 0x20000000
2719 #endif
2720 
2721 static HANDLE    _hProcess;
2722 static HANDLE    _hToken;
2723 
2724 // Container for NUMA node list info
2725 class NUMANodeListHolder {
2726 private:
2727   int *_numa_used_node_list;  // allocated below
2728   int _numa_used_node_count;
2729 
2730   void free_node_list() {
2731     if (_numa_used_node_list != NULL) {
2732       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2733     }
2734   }
2735 
2736 public:
2737   NUMANodeListHolder() {
2738     _numa_used_node_count = 0;
2739     _numa_used_node_list = NULL;
2740     // do rest of initialization in build routine (after function pointers are set up)
2741   }
2742 
2743   ~NUMANodeListHolder() {
2744     free_node_list();
2745   }
2746 
2747   bool build() {
2748     DWORD_PTR proc_aff_mask;
2749     DWORD_PTR sys_aff_mask;
2750     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2751     ULONG highest_node_number;
2752     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2753     free_node_list();
2754     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2755     for (unsigned int i = 0; i <= highest_node_number; i++) {
2756       ULONGLONG proc_mask_numa_node;
2757       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2758       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2759         _numa_used_node_list[_numa_used_node_count++] = i;
2760       }
2761     }
2762     return (_numa_used_node_count > 1);
2763   }
2764 
2765   int get_count() {return _numa_used_node_count;}
2766   int get_node_list_entry(int n) {
2767     // for indexes out of range, returns -1
2768     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2769   }
2770 
2771 } numa_node_list_holder;
2772 
2773 
2774 
2775 static size_t _large_page_size = 0;
2776 
2777 static bool resolve_functions_for_large_page_init() {
2778   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2779     os::Advapi32Dll::AdvapiAvailable();
2780 }
2781 
2782 static bool request_lock_memory_privilege() {
2783   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2784                                 os::current_process_id());
2785 
2786   LUID luid;
2787   if (_hProcess != NULL &&
2788       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2789       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2790 
2791     TOKEN_PRIVILEGES tp;
2792     tp.PrivilegeCount = 1;
2793     tp.Privileges[0].Luid = luid;
2794     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2795 
2796     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2797     // privilege. Check GetLastError() too. See MSDN document.
2798     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2799         (GetLastError() == ERROR_SUCCESS)) {
2800       return true;
2801     }
2802   }
2803 
2804   return false;
2805 }
2806 
2807 static void cleanup_after_large_page_init() {
2808   if (_hProcess) CloseHandle(_hProcess);
2809   _hProcess = NULL;
2810   if (_hToken) CloseHandle(_hToken);
2811   _hToken = NULL;
2812 }
2813 
2814 static bool numa_interleaving_init() {
2815   bool success = false;
2816   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2817 
2818   // print a warning if UseNUMAInterleaving flag is specified on command line
2819   bool warn_on_failure = use_numa_interleaving_specified;
2820 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2821 
2822   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2823   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2824   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2825 
2826   if (os::Kernel32Dll::NumaCallsAvailable()) {
2827     if (numa_node_list_holder.build()) {
2828       if (PrintMiscellaneous && Verbose) {
2829         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2830         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2831           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2832         }
2833         tty->print("\n");
2834       }
2835       success = true;
2836     } else {
2837       WARN("Process does not cover multiple NUMA nodes.");
2838     }
2839   } else {
2840     WARN("NUMA Interleaving is not supported by the operating system.");
2841   }
2842   if (!success) {
2843     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2844   }
2845   return success;
2846 #undef WARN
2847 }
2848 
2849 // this routine is used whenever we need to reserve a contiguous VA range
2850 // but we need to make separate VirtualAlloc calls for each piece of the range
2851 // Reasons for doing this:
2852 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2853 //  * UseNUMAInterleaving requires a separate node for each piece
2854 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2855                                          bool should_inject_error=false) {
2856   char * p_buf;
2857   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2858   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2859   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2860 
2861   // first reserve enough address space in advance since we want to be
2862   // able to break a single contiguous virtual address range into multiple
2863   // large page commits but WS2003 does not allow reserving large page space
2864   // so we just use 4K pages for reserve, this gives us a legal contiguous
2865   // address space. then we will deallocate that reservation, and re alloc
2866   // using large pages
2867   const size_t size_of_reserve = bytes + chunk_size;
2868   if (bytes > size_of_reserve) {
2869     // Overflowed.
2870     return NULL;
2871   }
2872   p_buf = (char *) VirtualAlloc(addr,
2873                                 size_of_reserve,  // size of Reserve
2874                                 MEM_RESERVE,
2875                                 PAGE_READWRITE);
2876   // If reservation failed, return NULL
2877   if (p_buf == NULL) return NULL;
2878   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, CALLER_PC);
2879   os::release_memory(p_buf, bytes + chunk_size);
2880 
2881   // we still need to round up to a page boundary (in case we are using large pages)
2882   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2883   // instead we handle this in the bytes_to_rq computation below
2884   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2885 
2886   // now go through and allocate one chunk at a time until all bytes are
2887   // allocated
2888   size_t  bytes_remaining = bytes;
2889   // An overflow of align_size_up() would have been caught above
2890   // in the calculation of size_of_reserve.
2891   char * next_alloc_addr = p_buf;
2892   HANDLE hProc = GetCurrentProcess();
2893 
2894 #ifdef ASSERT
2895   // Variable for the failure injection
2896   long ran_num = os::random();
2897   size_t fail_after = ran_num % bytes;
2898 #endif
2899 
2900   int count=0;
2901   while (bytes_remaining) {
2902     // select bytes_to_rq to get to the next chunk_size boundary
2903 
2904     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2905     // Note allocate and commit
2906     char * p_new;
2907 
2908 #ifdef ASSERT
2909     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2910 #else
2911     const bool inject_error_now = false;
2912 #endif
2913 
2914     if (inject_error_now) {
2915       p_new = NULL;
2916     } else {
2917       if (!UseNUMAInterleaving) {
2918         p_new = (char *) VirtualAlloc(next_alloc_addr,
2919                                       bytes_to_rq,
2920                                       flags,
2921                                       prot);
2922       } else {
2923         // get the next node to use from the used_node_list
2924         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2925         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2926         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2927                                                             next_alloc_addr,
2928                                                             bytes_to_rq,
2929                                                             flags,
2930                                                             prot,
2931                                                             node);
2932       }
2933     }
2934 
2935     if (p_new == NULL) {
2936       // Free any allocated pages
2937       if (next_alloc_addr > p_buf) {
2938         // Some memory was committed so release it.
2939         size_t bytes_to_release = bytes - bytes_remaining;
2940         // NMT has yet to record any individual blocks, so it
2941         // need to create a dummy 'reserve' record to match
2942         // the release.
2943         MemTracker::record_virtual_memory_reserve((address)p_buf,
2944           bytes_to_release, CALLER_PC);
2945         os::release_memory(p_buf, bytes_to_release);
2946       }
2947 #ifdef ASSERT
2948       if (should_inject_error) {
2949         if (TracePageSizes && Verbose) {
2950           tty->print_cr("Reserving pages individually failed.");
2951         }
2952       }
2953 #endif
2954       return NULL;
2955     }
2956 
2957     bytes_remaining -= bytes_to_rq;
2958     next_alloc_addr += bytes_to_rq;
2959     count++;
2960   }
2961   // Although the memory is allocated individually, it is returned as one.
2962   // NMT records it as one block.
2963   address pc = CALLER_PC;
2964   MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, pc);
2965   if ((flags & MEM_COMMIT) != 0) {
2966     MemTracker::record_virtual_memory_commit((address)p_buf, bytes, pc);
2967   }
2968 
2969   // made it this far, success
2970   return p_buf;
2971 }
2972 
2973 
2974 
2975 void os::large_page_init() {
2976   if (!UseLargePages) return;
2977 
2978   // print a warning if any large page related flag is specified on command line
2979   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
2980                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
2981   bool success = false;
2982 
2983 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2984   if (resolve_functions_for_large_page_init()) {
2985     if (request_lock_memory_privilege()) {
2986       size_t s = os::Kernel32Dll::GetLargePageMinimum();
2987       if (s) {
2988 #if defined(IA32) || defined(AMD64)
2989         if (s > 4*M || LargePageSizeInBytes > 4*M) {
2990           WARN("JVM cannot use large pages bigger than 4mb.");
2991         } else {
2992 #endif
2993           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
2994             _large_page_size = LargePageSizeInBytes;
2995           } else {
2996             _large_page_size = s;
2997           }
2998           success = true;
2999 #if defined(IA32) || defined(AMD64)
3000         }
3001 #endif
3002       } else {
3003         WARN("Large page is not supported by the processor.");
3004       }
3005     } else {
3006       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3007     }
3008   } else {
3009     WARN("Large page is not supported by the operating system.");
3010   }
3011 #undef WARN
3012 
3013   const size_t default_page_size = (size_t) vm_page_size();
3014   if (success && _large_page_size > default_page_size) {
3015     _page_sizes[0] = _large_page_size;
3016     _page_sizes[1] = default_page_size;
3017     _page_sizes[2] = 0;
3018   }
3019 
3020   cleanup_after_large_page_init();
3021   UseLargePages = success;
3022 }
3023 
3024 // On win32, one cannot release just a part of reserved memory, it's an
3025 // all or nothing deal.  When we split a reservation, we must break the
3026 // reservation into two reservations.
3027 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3028                               bool realloc) {
3029   if (size > 0) {
3030     release_memory(base, size);
3031     if (realloc) {
3032       reserve_memory(split, base);
3033     }
3034     if (size != split) {
3035       reserve_memory(size - split, base + split);
3036     }
3037   }
3038 }
3039 
3040 // Multiple threads can race in this code but it's not possible to unmap small sections of
3041 // virtual space to get requested alignment, like posix-like os's.
3042 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3043 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3044   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3045       "Alignment must be a multiple of allocation granularity (page size)");
3046   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3047 
3048   size_t extra_size = size + alignment;
3049   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3050 
3051   char* aligned_base = NULL;
3052 
3053   do {
3054     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3055     if (extra_base == NULL) {
3056       return NULL;
3057     }
3058     // Do manual alignment
3059     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3060 
3061     os::release_memory(extra_base, extra_size);
3062 
3063     aligned_base = os::reserve_memory(size, aligned_base);
3064 
3065   } while (aligned_base == NULL);
3066 
3067   return aligned_base;
3068 }
3069 
3070 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3071   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3072          "reserve alignment");
3073   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3074   char* res;
3075   // note that if UseLargePages is on, all the areas that require interleaving
3076   // will go thru reserve_memory_special rather than thru here.
3077   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3078   if (!use_individual) {
3079     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3080   } else {
3081     elapsedTimer reserveTimer;
3082     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3083     // in numa interleaving, we have to allocate pages individually
3084     // (well really chunks of NUMAInterleaveGranularity size)
3085     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3086     if (res == NULL) {
3087       warning("NUMA page allocation failed");
3088     }
3089     if( Verbose && PrintMiscellaneous ) {
3090       reserveTimer.stop();
3091       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3092                     reserveTimer.milliseconds(), reserveTimer.ticks());
3093     }
3094   }
3095   assert(res == NULL || addr == NULL || addr == res,
3096          "Unexpected address from reserve.");
3097 
3098   return res;
3099 }
3100 
3101 // Reserve memory at an arbitrary address, only if that area is
3102 // available (and not reserved for something else).
3103 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3104   // Windows os::reserve_memory() fails of the requested address range is
3105   // not avilable.
3106   return reserve_memory(bytes, requested_addr);
3107 }
3108 
3109 size_t os::large_page_size() {
3110   return _large_page_size;
3111 }
3112 
3113 bool os::can_commit_large_page_memory() {
3114   // Windows only uses large page memory when the entire region is reserved
3115   // and committed in a single VirtualAlloc() call. This may change in the
3116   // future, but with Windows 2003 it's not possible to commit on demand.
3117   return false;
3118 }
3119 
3120 bool os::can_execute_large_page_memory() {
3121   return true;
3122 }
3123 
3124 char* os::reserve_memory_special(size_t bytes, char* addr, bool exec) {
3125 
3126   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3127   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3128 
3129   // with large pages, there are two cases where we need to use Individual Allocation
3130   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3131   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3132   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3133     if (TracePageSizes && Verbose) {
3134        tty->print_cr("Reserving large pages individually.");
3135     }
3136     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3137     if (p_buf == NULL) {
3138       // give an appropriate warning message
3139       if (UseNUMAInterleaving) {
3140         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3141       }
3142       if (UseLargePagesIndividualAllocation) {
3143         warning("Individually allocated large pages failed, "
3144                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3145       }
3146       return NULL;
3147     }
3148 
3149     return p_buf;
3150 
3151   } else {
3152     // normal policy just allocate it all at once
3153     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3154     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
3155     if (res != NULL) {
3156       address pc = CALLER_PC;
3157       MemTracker::record_virtual_memory_reserve((address)res, bytes, pc);
3158       MemTracker::record_virtual_memory_commit((address)res, bytes, pc);
3159     }
3160 
3161     return res;
3162   }
3163 }
3164 
3165 bool os::release_memory_special(char* base, size_t bytes) {
3166   assert(base != NULL, "Sanity check");
3167   // Memory allocated via reserve_memory_special() is committed
3168   MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3169   return release_memory(base, bytes);
3170 }
3171 
3172 void os::print_statistics() {
3173 }
3174 
3175 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3176   if (bytes == 0) {
3177     // Don't bother the OS with noops.
3178     return true;
3179   }
3180   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3181   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3182   // Don't attempt to print anything if the OS call fails. We're
3183   // probably low on resources, so the print itself may cause crashes.
3184 
3185   // unless we have NUMAInterleaving enabled, the range of a commit
3186   // is always within a reserve covered by a single VirtualAlloc
3187   // in that case we can just do a single commit for the requested size
3188   if (!UseNUMAInterleaving) {
3189     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) return false;
3190     if (exec) {
3191       DWORD oldprot;
3192       // Windows doc says to use VirtualProtect to get execute permissions
3193       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) return false;
3194     }
3195     return true;
3196   } else {
3197 
3198     // when NUMAInterleaving is enabled, the commit might cover a range that
3199     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3200     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3201     // returns represents the number of bytes that can be committed in one step.
3202     size_t bytes_remaining = bytes;
3203     char * next_alloc_addr = addr;
3204     while (bytes_remaining > 0) {
3205       MEMORY_BASIC_INFORMATION alloc_info;
3206       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3207       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3208       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT, PAGE_READWRITE) == NULL)
3209         return false;
3210       if (exec) {
3211         DWORD oldprot;
3212         if (!VirtualProtect(next_alloc_addr, bytes_to_rq, PAGE_EXECUTE_READWRITE, &oldprot))
3213           return false;
3214       }
3215       bytes_remaining -= bytes_to_rq;
3216       next_alloc_addr += bytes_to_rq;
3217     }
3218   }
3219   // if we made it this far, return true
3220   return true;
3221 }
3222 
3223 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3224                        bool exec) {
3225   return commit_memory(addr, size, exec);
3226 }
3227 
3228 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3229   if (bytes == 0) {
3230     // Don't bother the OS with noops.
3231     return true;
3232   }
3233   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3234   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3235   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3236 }
3237 
3238 bool os::pd_release_memory(char* addr, size_t bytes) {
3239   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3240 }
3241 
3242 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3243   return os::commit_memory(addr, size);
3244 }
3245 
3246 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3247   return os::uncommit_memory(addr, size);
3248 }
3249 
3250 // Set protections specified
3251 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3252                         bool is_committed) {
3253   unsigned int p = 0;
3254   switch (prot) {
3255   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3256   case MEM_PROT_READ: p = PAGE_READONLY; break;
3257   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3258   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3259   default:
3260     ShouldNotReachHere();
3261   }
3262 
3263   DWORD old_status;
3264 
3265   // Strange enough, but on Win32 one can change protection only for committed
3266   // memory, not a big deal anyway, as bytes less or equal than 64K
3267   if (!is_committed && !commit_memory(addr, bytes, prot == MEM_PROT_RWX)) {
3268     fatal("cannot commit protection page");
3269   }
3270   // One cannot use os::guard_memory() here, as on Win32 guard page
3271   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3272   //
3273   // Pages in the region become guard pages. Any attempt to access a guard page
3274   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3275   // the guard page status. Guard pages thus act as a one-time access alarm.
3276   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3277 }
3278 
3279 bool os::guard_memory(char* addr, size_t bytes) {
3280   DWORD old_status;
3281   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3282 }
3283 
3284 bool os::unguard_memory(char* addr, size_t bytes) {
3285   DWORD old_status;
3286   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3287 }
3288 
3289 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3290 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3291 void os::numa_make_global(char *addr, size_t bytes)    { }
3292 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3293 bool os::numa_topology_changed()                       { return false; }
3294 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3295 int os::numa_get_group_id()                            { return 0; }
3296 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3297   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3298     // Provide an answer for UMA systems
3299     ids[0] = 0;
3300     return 1;
3301   } else {
3302     // check for size bigger than actual groups_num
3303     size = MIN2(size, numa_get_groups_num());
3304     for (int i = 0; i < (int)size; i++) {
3305       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3306     }
3307     return size;
3308   }
3309 }
3310 
3311 bool os::get_page_info(char *start, page_info* info) {
3312   return false;
3313 }
3314 
3315 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3316   return end;
3317 }
3318 
3319 char* os::non_memory_address_word() {
3320   // Must never look like an address returned by reserve_memory,
3321   // even in its subfields (as defined by the CPU immediate fields,
3322   // if the CPU splits constants across multiple instructions).
3323   return (char*)-1;
3324 }
3325 
3326 #define MAX_ERROR_COUNT 100
3327 #define SYS_THREAD_ERROR 0xffffffffUL
3328 
3329 void os::pd_start_thread(Thread* thread) {
3330   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3331   // Returns previous suspend state:
3332   // 0:  Thread was not suspended
3333   // 1:  Thread is running now
3334   // >1: Thread is still suspended.
3335   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3336 }
3337 
3338 class HighResolutionInterval : public CHeapObj<mtThread> {
3339   // The default timer resolution seems to be 10 milliseconds.
3340   // (Where is this written down?)
3341   // If someone wants to sleep for only a fraction of the default,
3342   // then we set the timer resolution down to 1 millisecond for
3343   // the duration of their interval.
3344   // We carefully set the resolution back, since otherwise we
3345   // seem to incur an overhead (3%?) that we don't need.
3346   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3347   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3348   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3349   // timeBeginPeriod() if the relative error exceeded some threshold.
3350   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3351   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3352   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3353   // resolution timers running.
3354 private:
3355     jlong resolution;
3356 public:
3357   HighResolutionInterval(jlong ms) {
3358     resolution = ms % 10L;
3359     if (resolution != 0) {
3360       MMRESULT result = timeBeginPeriod(1L);
3361     }
3362   }
3363   ~HighResolutionInterval() {
3364     if (resolution != 0) {
3365       MMRESULT result = timeEndPeriod(1L);
3366     }
3367     resolution = 0L;
3368   }
3369 };
3370 
3371 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3372   jlong limit = (jlong) MAXDWORD;
3373 
3374   while(ms > limit) {
3375     int res;
3376     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3377       return res;
3378     ms -= limit;
3379   }
3380 
3381   assert(thread == Thread::current(),  "thread consistency check");
3382   OSThread* osthread = thread->osthread();
3383   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3384   int result;
3385   if (interruptable) {
3386     assert(thread->is_Java_thread(), "must be java thread");
3387     JavaThread *jt = (JavaThread *) thread;
3388     ThreadBlockInVM tbivm(jt);
3389 
3390     jt->set_suspend_equivalent();
3391     // cleared by handle_special_suspend_equivalent_condition() or
3392     // java_suspend_self() via check_and_wait_while_suspended()
3393 
3394     HANDLE events[1];
3395     events[0] = osthread->interrupt_event();
3396     HighResolutionInterval *phri=NULL;
3397     if(!ForceTimeHighResolution)
3398       phri = new HighResolutionInterval( ms );
3399     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3400       result = OS_TIMEOUT;
3401     } else {
3402       ResetEvent(osthread->interrupt_event());
3403       osthread->set_interrupted(false);
3404       result = OS_INTRPT;
3405     }
3406     delete phri; //if it is NULL, harmless
3407 
3408     // were we externally suspended while we were waiting?
3409     jt->check_and_wait_while_suspended();
3410   } else {
3411     assert(!thread->is_Java_thread(), "must not be java thread");
3412     Sleep((long) ms);
3413     result = OS_TIMEOUT;
3414   }
3415   return result;
3416 }
3417 
3418 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3419 void os::infinite_sleep() {
3420   while (true) {    // sleep forever ...
3421     Sleep(100000);  // ... 100 seconds at a time
3422   }
3423 }
3424 
3425 typedef BOOL (WINAPI * STTSignature)(void) ;
3426 
3427 os::YieldResult os::NakedYield() {
3428   // Use either SwitchToThread() or Sleep(0)
3429   // Consider passing back the return value from SwitchToThread().
3430   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3431     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3432   } else {
3433     Sleep(0);
3434   }
3435   return os::YIELD_UNKNOWN ;
3436 }
3437 
3438 void os::yield() {  os::NakedYield(); }
3439 
3440 void os::yield_all(int attempts) {
3441   // Yields to all threads, including threads with lower priorities
3442   Sleep(1);
3443 }
3444 
3445 // Win32 only gives you access to seven real priorities at a time,
3446 // so we compress Java's ten down to seven.  It would be better
3447 // if we dynamically adjusted relative priorities.
3448 
3449 int os::java_to_os_priority[CriticalPriority + 1] = {
3450   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3451   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3452   THREAD_PRIORITY_LOWEST,                       // 2
3453   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3454   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3455   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3456   THREAD_PRIORITY_NORMAL,                       // 6
3457   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3458   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3459   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3460   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3461   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3462 };
3463 
3464 int prio_policy1[CriticalPriority + 1] = {
3465   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3466   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3467   THREAD_PRIORITY_LOWEST,                       // 2
3468   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3469   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3470   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3471   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3472   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3473   THREAD_PRIORITY_HIGHEST,                      // 8
3474   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3475   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3476   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3477 };
3478 
3479 static int prio_init() {
3480   // If ThreadPriorityPolicy is 1, switch tables
3481   if (ThreadPriorityPolicy == 1) {
3482     int i;
3483     for (i = 0; i < CriticalPriority + 1; i++) {
3484       os::java_to_os_priority[i] = prio_policy1[i];
3485     }
3486   }
3487   if (UseCriticalJavaThreadPriority) {
3488     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3489   }
3490   return 0;
3491 }
3492 
3493 OSReturn os::set_native_priority(Thread* thread, int priority) {
3494   if (!UseThreadPriorities) return OS_OK;
3495   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3496   return ret ? OS_OK : OS_ERR;
3497 }
3498 
3499 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3500   if ( !UseThreadPriorities ) {
3501     *priority_ptr = java_to_os_priority[NormPriority];
3502     return OS_OK;
3503   }
3504   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3505   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3506     assert(false, "GetThreadPriority failed");
3507     return OS_ERR;
3508   }
3509   *priority_ptr = os_prio;
3510   return OS_OK;
3511 }
3512 
3513 
3514 // Hint to the underlying OS that a task switch would not be good.
3515 // Void return because it's a hint and can fail.
3516 void os::hint_no_preempt() {}
3517 
3518 void os::interrupt(Thread* thread) {
3519   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3520          "possibility of dangling Thread pointer");
3521 
3522   OSThread* osthread = thread->osthread();
3523   osthread->set_interrupted(true);
3524   // More than one thread can get here with the same value of osthread,
3525   // resulting in multiple notifications.  We do, however, want the store
3526   // to interrupted() to be visible to other threads before we post
3527   // the interrupt event.
3528   OrderAccess::release();
3529   SetEvent(osthread->interrupt_event());
3530   // For JSR166:  unpark after setting status
3531   if (thread->is_Java_thread())
3532     ((JavaThread*)thread)->parker()->unpark();
3533 
3534   ParkEvent * ev = thread->_ParkEvent ;
3535   if (ev != NULL) ev->unpark() ;
3536 
3537 }
3538 
3539 
3540 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3541   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3542          "possibility of dangling Thread pointer");
3543 
3544   OSThread* osthread = thread->osthread();
3545   bool interrupted = osthread->interrupted();
3546   // There is no synchronization between the setting of the interrupt
3547   // and it being cleared here. It is critical - see 6535709 - that
3548   // we only clear the interrupt state, and reset the interrupt event,
3549   // if we are going to report that we were indeed interrupted - else
3550   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3551   // depending on the timing
3552   if (interrupted && clear_interrupted) {
3553     osthread->set_interrupted(false);
3554     ResetEvent(osthread->interrupt_event());
3555   } // Otherwise leave the interrupted state alone
3556 
3557   return interrupted;
3558 }
3559 
3560 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3561 ExtendedPC os::get_thread_pc(Thread* thread) {
3562   CONTEXT context;
3563   context.ContextFlags = CONTEXT_CONTROL;
3564   HANDLE handle = thread->osthread()->thread_handle();
3565 #ifdef _M_IA64
3566   assert(0, "Fix get_thread_pc");
3567   return ExtendedPC(NULL);
3568 #else
3569   if (GetThreadContext(handle, &context)) {
3570 #ifdef _M_AMD64
3571     return ExtendedPC((address) context.Rip);
3572 #else
3573     return ExtendedPC((address) context.Eip);
3574 #endif
3575   } else {
3576     return ExtendedPC(NULL);
3577   }
3578 #endif
3579 }
3580 
3581 // GetCurrentThreadId() returns DWORD
3582 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3583 
3584 static int _initial_pid = 0;
3585 
3586 int os::current_process_id()
3587 {
3588   return (_initial_pid ? _initial_pid : _getpid());
3589 }
3590 
3591 int    os::win32::_vm_page_size       = 0;
3592 int    os::win32::_vm_allocation_granularity = 0;
3593 int    os::win32::_processor_type     = 0;
3594 // Processor level is not available on non-NT systems, use vm_version instead
3595 int    os::win32::_processor_level    = 0;
3596 julong os::win32::_physical_memory    = 0;
3597 size_t os::win32::_default_stack_size = 0;
3598 
3599          intx os::win32::_os_thread_limit    = 0;
3600 volatile intx os::win32::_os_thread_count    = 0;
3601 
3602 bool   os::win32::_is_nt              = false;
3603 bool   os::win32::_is_windows_2003    = false;
3604 bool   os::win32::_is_windows_server  = false;
3605 
3606 void os::win32::initialize_system_info() {
3607   SYSTEM_INFO si;
3608   GetSystemInfo(&si);
3609   _vm_page_size    = si.dwPageSize;
3610   _vm_allocation_granularity = si.dwAllocationGranularity;
3611   _processor_type  = si.dwProcessorType;
3612   _processor_level = si.wProcessorLevel;
3613   set_processor_count(si.dwNumberOfProcessors);
3614 
3615   MEMORYSTATUSEX ms;
3616   ms.dwLength = sizeof(ms);
3617 
3618   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3619   // dwMemoryLoad (% of memory in use)
3620   GlobalMemoryStatusEx(&ms);
3621   _physical_memory = ms.ullTotalPhys;
3622 
3623   OSVERSIONINFOEX oi;
3624   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3625   GetVersionEx((OSVERSIONINFO*)&oi);
3626   switch(oi.dwPlatformId) {
3627     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3628     case VER_PLATFORM_WIN32_NT:
3629       _is_nt = true;
3630       {
3631         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3632         if (os_vers == 5002) {
3633           _is_windows_2003 = true;
3634         }
3635         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3636           oi.wProductType == VER_NT_SERVER) {
3637             _is_windows_server = true;
3638         }
3639       }
3640       break;
3641     default: fatal("Unknown platform");
3642   }
3643 
3644   _default_stack_size = os::current_stack_size();
3645   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3646   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3647     "stack size not a multiple of page size");
3648 
3649   initialize_performance_counter();
3650 
3651   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3652   // known to deadlock the system, if the VM issues to thread operations with
3653   // a too high frequency, e.g., such as changing the priorities.
3654   // The 6000 seems to work well - no deadlocks has been notices on the test
3655   // programs that we have seen experience this problem.
3656   if (!os::win32::is_nt()) {
3657     StarvationMonitorInterval = 6000;
3658   }
3659 }
3660 
3661 
3662 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3663   char path[MAX_PATH];
3664   DWORD size;
3665   DWORD pathLen = (DWORD)sizeof(path);
3666   HINSTANCE result = NULL;
3667 
3668   // only allow library name without path component
3669   assert(strchr(name, '\\') == NULL, "path not allowed");
3670   assert(strchr(name, ':') == NULL, "path not allowed");
3671   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3672     jio_snprintf(ebuf, ebuflen,
3673       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3674     return NULL;
3675   }
3676 
3677   // search system directory
3678   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3679     strcat(path, "\\");
3680     strcat(path, name);
3681     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3682       return result;
3683     }
3684   }
3685 
3686   // try Windows directory
3687   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3688     strcat(path, "\\");
3689     strcat(path, name);
3690     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3691       return result;
3692     }
3693   }
3694 
3695   jio_snprintf(ebuf, ebuflen,
3696     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3697   return NULL;
3698 }
3699 
3700 void os::win32::setmode_streams() {
3701   _setmode(_fileno(stdin), _O_BINARY);
3702   _setmode(_fileno(stdout), _O_BINARY);
3703   _setmode(_fileno(stderr), _O_BINARY);
3704 }
3705 
3706 
3707 bool os::is_debugger_attached() {
3708   return IsDebuggerPresent() ? true : false;
3709 }
3710 
3711 
3712 void os::wait_for_keypress_at_exit(void) {
3713   if (PauseAtExit) {
3714     fprintf(stderr, "Press any key to continue...\n");
3715     fgetc(stdin);
3716   }
3717 }
3718 
3719 
3720 int os::message_box(const char* title, const char* message) {
3721   int result = MessageBox(NULL, message, title,
3722                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3723   return result == IDYES;
3724 }
3725 
3726 int os::allocate_thread_local_storage() {
3727   return TlsAlloc();
3728 }
3729 
3730 
3731 void os::free_thread_local_storage(int index) {
3732   TlsFree(index);
3733 }
3734 
3735 
3736 void os::thread_local_storage_at_put(int index, void* value) {
3737   TlsSetValue(index, value);
3738   assert(thread_local_storage_at(index) == value, "Just checking");
3739 }
3740 
3741 
3742 void* os::thread_local_storage_at(int index) {
3743   return TlsGetValue(index);
3744 }
3745 
3746 
3747 #ifndef PRODUCT
3748 #ifndef _WIN64
3749 // Helpers to check whether NX protection is enabled
3750 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3751   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3752       pex->ExceptionRecord->NumberParameters > 0 &&
3753       pex->ExceptionRecord->ExceptionInformation[0] ==
3754       EXCEPTION_INFO_EXEC_VIOLATION) {
3755     return EXCEPTION_EXECUTE_HANDLER;
3756   }
3757   return EXCEPTION_CONTINUE_SEARCH;
3758 }
3759 
3760 void nx_check_protection() {
3761   // If NX is enabled we'll get an exception calling into code on the stack
3762   char code[] = { (char)0xC3 }; // ret
3763   void *code_ptr = (void *)code;
3764   __try {
3765     __asm call code_ptr
3766   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3767     tty->print_raw_cr("NX protection detected.");
3768   }
3769 }
3770 #endif // _WIN64
3771 #endif // PRODUCT
3772 
3773 // this is called _before_ the global arguments have been parsed
3774 void os::init(void) {
3775   _initial_pid = _getpid();
3776 
3777   init_random(1234567);
3778 
3779   win32::initialize_system_info();
3780   win32::setmode_streams();
3781   init_page_sizes((size_t) win32::vm_page_size());
3782 
3783   // For better scalability on MP systems (must be called after initialize_system_info)
3784 #ifndef PRODUCT
3785   if (is_MP()) {
3786     NoYieldsInMicrolock = true;
3787   }
3788 #endif
3789   // This may be overridden later when argument processing is done.
3790   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3791     os::win32::is_windows_2003());
3792 
3793   // Initialize main_process and main_thread
3794   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3795  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3796                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3797     fatal("DuplicateHandle failed\n");
3798   }
3799   main_thread_id = (int) GetCurrentThreadId();
3800 }
3801 
3802 // To install functions for atexit processing
3803 extern "C" {
3804   static void perfMemory_exit_helper() {
3805     perfMemory_exit();
3806   }
3807 }
3808 
3809 static jint initSock();
3810 
3811 // this is called _after_ the global arguments have been parsed
3812 jint os::init_2(void) {
3813   // Allocate a single page and mark it as readable for safepoint polling
3814   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3815   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3816 
3817   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3818   guarantee( return_page != NULL, "Commit Failed for polling page");
3819 
3820   os::set_polling_page( polling_page );
3821 
3822 #ifndef PRODUCT
3823   if( Verbose && PrintMiscellaneous )
3824     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3825 #endif
3826 
3827   if (!UseMembar) {
3828     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3829     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3830 
3831     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3832     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3833 
3834     os::set_memory_serialize_page( mem_serialize_page );
3835 
3836 #ifndef PRODUCT
3837     if(Verbose && PrintMiscellaneous)
3838       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3839 #endif
3840   }
3841 
3842   // Setup Windows Exceptions
3843 
3844   // for debugging float code generation bugs
3845   if (ForceFloatExceptions) {
3846 #ifndef  _WIN64
3847     static long fp_control_word = 0;
3848     __asm { fstcw fp_control_word }
3849     // see Intel PPro Manual, Vol. 2, p 7-16
3850     const long precision = 0x20;
3851     const long underflow = 0x10;
3852     const long overflow  = 0x08;
3853     const long zero_div  = 0x04;
3854     const long denorm    = 0x02;
3855     const long invalid   = 0x01;
3856     fp_control_word |= invalid;
3857     __asm { fldcw fp_control_word }
3858 #endif
3859   }
3860 
3861   // If stack_commit_size is 0, windows will reserve the default size,
3862   // but only commit a small portion of it.
3863   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3864   size_t default_reserve_size = os::win32::default_stack_size();
3865   size_t actual_reserve_size = stack_commit_size;
3866   if (stack_commit_size < default_reserve_size) {
3867     // If stack_commit_size == 0, we want this too
3868     actual_reserve_size = default_reserve_size;
3869   }
3870 
3871   // Check minimum allowable stack size for thread creation and to initialize
3872   // the java system classes, including StackOverflowError - depends on page
3873   // size.  Add a page for compiler2 recursion in main thread.
3874   // Add in 2*BytesPerWord times page size to account for VM stack during
3875   // class initialization depending on 32 or 64 bit VM.
3876   size_t min_stack_allowed =
3877             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3878             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3879   if (actual_reserve_size < min_stack_allowed) {
3880     tty->print_cr("\nThe stack size specified is too small, "
3881                   "Specify at least %dk",
3882                   min_stack_allowed / K);
3883     return JNI_ERR;
3884   }
3885 
3886   JavaThread::set_stack_size_at_create(stack_commit_size);
3887 
3888   // Calculate theoretical max. size of Threads to guard gainst artifical
3889   // out-of-memory situations, where all available address-space has been
3890   // reserved by thread stacks.
3891   assert(actual_reserve_size != 0, "Must have a stack");
3892 
3893   // Calculate the thread limit when we should start doing Virtual Memory
3894   // banging. Currently when the threads will have used all but 200Mb of space.
3895   //
3896   // TODO: consider performing a similar calculation for commit size instead
3897   // as reserve size, since on a 64-bit platform we'll run into that more
3898   // often than running out of virtual memory space.  We can use the
3899   // lower value of the two calculations as the os_thread_limit.
3900   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3901   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3902 
3903   // at exit methods are called in the reverse order of their registration.
3904   // there is no limit to the number of functions registered. atexit does
3905   // not set errno.
3906 
3907   if (PerfAllowAtExitRegistration) {
3908     // only register atexit functions if PerfAllowAtExitRegistration is set.
3909     // atexit functions can be delayed until process exit time, which
3910     // can be problematic for embedded VM situations. Embedded VMs should
3911     // call DestroyJavaVM() to assure that VM resources are released.
3912 
3913     // note: perfMemory_exit_helper atexit function may be removed in
3914     // the future if the appropriate cleanup code can be added to the
3915     // VM_Exit VMOperation's doit method.
3916     if (atexit(perfMemory_exit_helper) != 0) {
3917       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3918     }
3919   }
3920 
3921 #ifndef _WIN64
3922   // Print something if NX is enabled (win32 on AMD64)
3923   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
3924 #endif
3925 
3926   // initialize thread priority policy
3927   prio_init();
3928 
3929   if (UseNUMA && !ForceNUMA) {
3930     UseNUMA = false; // We don't fully support this yet
3931   }
3932 
3933   if (UseNUMAInterleaving) {
3934     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
3935     bool success = numa_interleaving_init();
3936     if (!success) UseNUMAInterleaving = false;
3937   }
3938 
3939   if (initSock() != JNI_OK) {
3940     return JNI_ERR;
3941   }
3942 
3943   return JNI_OK;
3944 }
3945 
3946 void os::init_3(void) {
3947   return;
3948 }
3949 
3950 // Mark the polling page as unreadable
3951 void os::make_polling_page_unreadable(void) {
3952   DWORD old_status;
3953   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
3954     fatal("Could not disable polling page");
3955 };
3956 
3957 // Mark the polling page as readable
3958 void os::make_polling_page_readable(void) {
3959   DWORD old_status;
3960   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
3961     fatal("Could not enable polling page");
3962 };
3963 
3964 
3965 int os::stat(const char *path, struct stat *sbuf) {
3966   char pathbuf[MAX_PATH];
3967   if (strlen(path) > MAX_PATH - 1) {
3968     errno = ENAMETOOLONG;
3969     return -1;
3970   }
3971   os::native_path(strcpy(pathbuf, path));
3972   int ret = ::stat(pathbuf, sbuf);
3973   if (sbuf != NULL && UseUTCFileTimestamp) {
3974     // Fix for 6539723.  st_mtime returned from stat() is dependent on
3975     // the system timezone and so can return different values for the
3976     // same file if/when daylight savings time changes.  This adjustment
3977     // makes sure the same timestamp is returned regardless of the TZ.
3978     //
3979     // See:
3980     // http://msdn.microsoft.com/library/
3981     //   default.asp?url=/library/en-us/sysinfo/base/
3982     //   time_zone_information_str.asp
3983     // and
3984     // http://msdn.microsoft.com/library/default.asp?url=
3985     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
3986     //
3987     // NOTE: there is a insidious bug here:  If the timezone is changed
3988     // after the call to stat() but before 'GetTimeZoneInformation()', then
3989     // the adjustment we do here will be wrong and we'll return the wrong
3990     // value (which will likely end up creating an invalid class data
3991     // archive).  Absent a better API for this, or some time zone locking
3992     // mechanism, we'll have to live with this risk.
3993     TIME_ZONE_INFORMATION tz;
3994     DWORD tzid = GetTimeZoneInformation(&tz);
3995     int daylightBias =
3996       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
3997     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
3998   }
3999   return ret;
4000 }
4001 
4002 
4003 #define FT2INT64(ft) \
4004   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4005 
4006 
4007 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4008 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4009 // of a thread.
4010 //
4011 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4012 // the fast estimate available on the platform.
4013 
4014 // current_thread_cpu_time() is not optimized for Windows yet
4015 jlong os::current_thread_cpu_time() {
4016   // return user + sys since the cost is the same
4017   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4018 }
4019 
4020 jlong os::thread_cpu_time(Thread* thread) {
4021   // consistent with what current_thread_cpu_time() returns.
4022   return os::thread_cpu_time(thread, true /* user+sys */);
4023 }
4024 
4025 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4026   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4027 }
4028 
4029 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4030   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4031   // If this function changes, os::is_thread_cpu_time_supported() should too
4032   if (os::win32::is_nt()) {
4033     FILETIME CreationTime;
4034     FILETIME ExitTime;
4035     FILETIME KernelTime;
4036     FILETIME UserTime;
4037 
4038     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4039                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4040       return -1;
4041     else
4042       if (user_sys_cpu_time) {
4043         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4044       } else {
4045         return FT2INT64(UserTime) * 100;
4046       }
4047   } else {
4048     return (jlong) timeGetTime() * 1000000;
4049   }
4050 }
4051 
4052 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4053   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4054   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4055   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4056   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4057 }
4058 
4059 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4060   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4061   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4062   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4063   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4064 }
4065 
4066 bool os::is_thread_cpu_time_supported() {
4067   // see os::thread_cpu_time
4068   if (os::win32::is_nt()) {
4069     FILETIME CreationTime;
4070     FILETIME ExitTime;
4071     FILETIME KernelTime;
4072     FILETIME UserTime;
4073 
4074     if ( GetThreadTimes(GetCurrentThread(),
4075                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4076       return false;
4077     else
4078       return true;
4079   } else {
4080     return false;
4081   }
4082 }
4083 
4084 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4085 // It does have primitives (PDH API) to get CPU usage and run queue length.
4086 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4087 // If we wanted to implement loadavg on Windows, we have a few options:
4088 //
4089 // a) Query CPU usage and run queue length and "fake" an answer by
4090 //    returning the CPU usage if it's under 100%, and the run queue
4091 //    length otherwise.  It turns out that querying is pretty slow
4092 //    on Windows, on the order of 200 microseconds on a fast machine.
4093 //    Note that on the Windows the CPU usage value is the % usage
4094 //    since the last time the API was called (and the first call
4095 //    returns 100%), so we'd have to deal with that as well.
4096 //
4097 // b) Sample the "fake" answer using a sampling thread and store
4098 //    the answer in a global variable.  The call to loadavg would
4099 //    just return the value of the global, avoiding the slow query.
4100 //
4101 // c) Sample a better answer using exponential decay to smooth the
4102 //    value.  This is basically the algorithm used by UNIX kernels.
4103 //
4104 // Note that sampling thread starvation could affect both (b) and (c).
4105 int os::loadavg(double loadavg[], int nelem) {
4106   return -1;
4107 }
4108 
4109 
4110 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4111 bool os::dont_yield() {
4112   return DontYieldALot;
4113 }
4114 
4115 // This method is a slightly reworked copy of JDK's sysOpen
4116 // from src/windows/hpi/src/sys_api_md.c
4117 
4118 int os::open(const char *path, int oflag, int mode) {
4119   char pathbuf[MAX_PATH];
4120 
4121   if (strlen(path) > MAX_PATH - 1) {
4122     errno = ENAMETOOLONG;
4123           return -1;
4124   }
4125   os::native_path(strcpy(pathbuf, path));
4126   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4127 }
4128 
4129 FILE* os::open(int fd, const char* mode) {
4130   return ::_fdopen(fd, mode);
4131 }
4132 
4133 // Is a (classpath) directory empty?
4134 bool os::dir_is_empty(const char* path) {
4135   WIN32_FIND_DATA fd;
4136   HANDLE f = FindFirstFile(path, &fd);
4137   if (f == INVALID_HANDLE_VALUE) {
4138     return true;
4139   }
4140   FindClose(f);
4141   return false;
4142 }
4143 
4144 // create binary file, rewriting existing file if required
4145 int os::create_binary_file(const char* path, bool rewrite_existing) {
4146   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4147   if (!rewrite_existing) {
4148     oflags |= _O_EXCL;
4149   }
4150   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4151 }
4152 
4153 // return current position of file pointer
4154 jlong os::current_file_offset(int fd) {
4155   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4156 }
4157 
4158 // move file pointer to the specified offset
4159 jlong os::seek_to_file_offset(int fd, jlong offset) {
4160   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4161 }
4162 
4163 
4164 jlong os::lseek(int fd, jlong offset, int whence) {
4165   return (jlong) ::_lseeki64(fd, offset, whence);
4166 }
4167 
4168 // This method is a slightly reworked copy of JDK's sysNativePath
4169 // from src/windows/hpi/src/path_md.c
4170 
4171 /* Convert a pathname to native format.  On win32, this involves forcing all
4172    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4173    sometimes rejects '/') and removing redundant separators.  The input path is
4174    assumed to have been converted into the character encoding used by the local
4175    system.  Because this might be a double-byte encoding, care is taken to
4176    treat double-byte lead characters correctly.
4177 
4178    This procedure modifies the given path in place, as the result is never
4179    longer than the original.  There is no error return; this operation always
4180    succeeds. */
4181 char * os::native_path(char *path) {
4182   char *src = path, *dst = path, *end = path;
4183   char *colon = NULL;           /* If a drive specifier is found, this will
4184                                         point to the colon following the drive
4185                                         letter */
4186 
4187   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4188   assert(((!::IsDBCSLeadByte('/'))
4189     && (!::IsDBCSLeadByte('\\'))
4190     && (!::IsDBCSLeadByte(':'))),
4191     "Illegal lead byte");
4192 
4193   /* Check for leading separators */
4194 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4195   while (isfilesep(*src)) {
4196     src++;
4197   }
4198 
4199   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4200     /* Remove leading separators if followed by drive specifier.  This
4201       hack is necessary to support file URLs containing drive
4202       specifiers (e.g., "file://c:/path").  As a side effect,
4203       "/c:/path" can be used as an alternative to "c:/path". */
4204     *dst++ = *src++;
4205     colon = dst;
4206     *dst++ = ':';
4207     src++;
4208   } else {
4209     src = path;
4210     if (isfilesep(src[0]) && isfilesep(src[1])) {
4211       /* UNC pathname: Retain first separator; leave src pointed at
4212          second separator so that further separators will be collapsed
4213          into the second separator.  The result will be a pathname
4214          beginning with "\\\\" followed (most likely) by a host name. */
4215       src = dst = path + 1;
4216       path[0] = '\\';     /* Force first separator to '\\' */
4217     }
4218   }
4219 
4220   end = dst;
4221 
4222   /* Remove redundant separators from remainder of path, forcing all
4223       separators to be '\\' rather than '/'. Also, single byte space
4224       characters are removed from the end of the path because those
4225       are not legal ending characters on this operating system.
4226   */
4227   while (*src != '\0') {
4228     if (isfilesep(*src)) {
4229       *dst++ = '\\'; src++;
4230       while (isfilesep(*src)) src++;
4231       if (*src == '\0') {
4232         /* Check for trailing separator */
4233         end = dst;
4234         if (colon == dst - 2) break;                      /* "z:\\" */
4235         if (dst == path + 1) break;                       /* "\\" */
4236         if (dst == path + 2 && isfilesep(path[0])) {
4237           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4238             beginning of a UNC pathname.  Even though it is not, by
4239             itself, a valid UNC pathname, we leave it as is in order
4240             to be consistent with the path canonicalizer as well
4241             as the win32 APIs, which treat this case as an invalid
4242             UNC pathname rather than as an alias for the root
4243             directory of the current drive. */
4244           break;
4245         }
4246         end = --dst;  /* Path does not denote a root directory, so
4247                                     remove trailing separator */
4248         break;
4249       }
4250       end = dst;
4251     } else {
4252       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4253         *dst++ = *src++;
4254         if (*src) *dst++ = *src++;
4255         end = dst;
4256       } else {         /* Copy a single-byte character */
4257         char c = *src++;
4258         *dst++ = c;
4259         /* Space is not a legal ending character */
4260         if (c != ' ') end = dst;
4261       }
4262     }
4263   }
4264 
4265   *end = '\0';
4266 
4267   /* For "z:", add "." to work around a bug in the C runtime library */
4268   if (colon == dst - 1) {
4269           path[2] = '.';
4270           path[3] = '\0';
4271   }
4272 
4273   return path;
4274 }
4275 
4276 // This code is a copy of JDK's sysSetLength
4277 // from src/windows/hpi/src/sys_api_md.c
4278 
4279 int os::ftruncate(int fd, jlong length) {
4280   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4281   long high = (long)(length >> 32);
4282   DWORD ret;
4283 
4284   if (h == (HANDLE)(-1)) {
4285     return -1;
4286   }
4287 
4288   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4289   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4290       return -1;
4291   }
4292 
4293   if (::SetEndOfFile(h) == FALSE) {
4294     return -1;
4295   }
4296 
4297   return 0;
4298 }
4299 
4300 
4301 // This code is a copy of JDK's sysSync
4302 // from src/windows/hpi/src/sys_api_md.c
4303 // except for the legacy workaround for a bug in Win 98
4304 
4305 int os::fsync(int fd) {
4306   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4307 
4308   if ( (!::FlushFileBuffers(handle)) &&
4309          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4310     /* from winerror.h */
4311     return -1;
4312   }
4313   return 0;
4314 }
4315 
4316 static int nonSeekAvailable(int, long *);
4317 static int stdinAvailable(int, long *);
4318 
4319 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4320 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4321 
4322 // This code is a copy of JDK's sysAvailable
4323 // from src/windows/hpi/src/sys_api_md.c
4324 
4325 int os::available(int fd, jlong *bytes) {
4326   jlong cur, end;
4327   struct _stati64 stbuf64;
4328 
4329   if (::_fstati64(fd, &stbuf64) >= 0) {
4330     int mode = stbuf64.st_mode;
4331     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4332       int ret;
4333       long lpbytes;
4334       if (fd == 0) {
4335         ret = stdinAvailable(fd, &lpbytes);
4336       } else {
4337         ret = nonSeekAvailable(fd, &lpbytes);
4338       }
4339       (*bytes) = (jlong)(lpbytes);
4340       return ret;
4341     }
4342     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4343       return FALSE;
4344     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4345       return FALSE;
4346     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4347       return FALSE;
4348     }
4349     *bytes = end - cur;
4350     return TRUE;
4351   } else {
4352     return FALSE;
4353   }
4354 }
4355 
4356 // This code is a copy of JDK's nonSeekAvailable
4357 // from src/windows/hpi/src/sys_api_md.c
4358 
4359 static int nonSeekAvailable(int fd, long *pbytes) {
4360   /* This is used for available on non-seekable devices
4361     * (like both named and anonymous pipes, such as pipes
4362     *  connected to an exec'd process).
4363     * Standard Input is a special case.
4364     *
4365     */
4366   HANDLE han;
4367 
4368   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4369     return FALSE;
4370   }
4371 
4372   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4373         /* PeekNamedPipe fails when at EOF.  In that case we
4374          * simply make *pbytes = 0 which is consistent with the
4375          * behavior we get on Solaris when an fd is at EOF.
4376          * The only alternative is to raise an Exception,
4377          * which isn't really warranted.
4378          */
4379     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4380       return FALSE;
4381     }
4382     *pbytes = 0;
4383   }
4384   return TRUE;
4385 }
4386 
4387 #define MAX_INPUT_EVENTS 2000
4388 
4389 // This code is a copy of JDK's stdinAvailable
4390 // from src/windows/hpi/src/sys_api_md.c
4391 
4392 static int stdinAvailable(int fd, long *pbytes) {
4393   HANDLE han;
4394   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4395   DWORD numEvents = 0;  /* Number of events in buffer */
4396   DWORD i = 0;          /* Loop index */
4397   DWORD curLength = 0;  /* Position marker */
4398   DWORD actualLength = 0;       /* Number of bytes readable */
4399   BOOL error = FALSE;         /* Error holder */
4400   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4401 
4402   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4403         return FALSE;
4404   }
4405 
4406   /* Construct an array of input records in the console buffer */
4407   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4408   if (error == 0) {
4409     return nonSeekAvailable(fd, pbytes);
4410   }
4411 
4412   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4413   if (numEvents > MAX_INPUT_EVENTS) {
4414     numEvents = MAX_INPUT_EVENTS;
4415   }
4416 
4417   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4418   if (lpBuffer == NULL) {
4419     return FALSE;
4420   }
4421 
4422   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4423   if (error == 0) {
4424     os::free(lpBuffer, mtInternal);
4425     return FALSE;
4426   }
4427 
4428   /* Examine input records for the number of bytes available */
4429   for(i=0; i<numEvents; i++) {
4430     if (lpBuffer[i].EventType == KEY_EVENT) {
4431 
4432       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4433                                       &(lpBuffer[i].Event);
4434       if (keyRecord->bKeyDown == TRUE) {
4435         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4436         curLength++;
4437         if (*keyPressed == '\r') {
4438           actualLength = curLength;
4439         }
4440       }
4441     }
4442   }
4443 
4444   if(lpBuffer != NULL) {
4445     os::free(lpBuffer, mtInternal);
4446   }
4447 
4448   *pbytes = (long) actualLength;
4449   return TRUE;
4450 }
4451 
4452 // Map a block of memory.
4453 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4454                      char *addr, size_t bytes, bool read_only,
4455                      bool allow_exec) {
4456   HANDLE hFile;
4457   char* base;
4458 
4459   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4460                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4461   if (hFile == NULL) {
4462     if (PrintMiscellaneous && Verbose) {
4463       DWORD err = GetLastError();
4464       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4465     }
4466     return NULL;
4467   }
4468 
4469   if (allow_exec) {
4470     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4471     // unless it comes from a PE image (which the shared archive is not.)
4472     // Even VirtualProtect refuses to give execute access to mapped memory
4473     // that was not previously executable.
4474     //
4475     // Instead, stick the executable region in anonymous memory.  Yuck.
4476     // Penalty is that ~4 pages will not be shareable - in the future
4477     // we might consider DLLizing the shared archive with a proper PE
4478     // header so that mapping executable + sharing is possible.
4479 
4480     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4481                                 PAGE_READWRITE);
4482     if (base == NULL) {
4483       if (PrintMiscellaneous && Verbose) {
4484         DWORD err = GetLastError();
4485         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4486       }
4487       CloseHandle(hFile);
4488       return NULL;
4489     }
4490 
4491     DWORD bytes_read;
4492     OVERLAPPED overlapped;
4493     overlapped.Offset = (DWORD)file_offset;
4494     overlapped.OffsetHigh = 0;
4495     overlapped.hEvent = NULL;
4496     // ReadFile guarantees that if the return value is true, the requested
4497     // number of bytes were read before returning.
4498     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4499     if (!res) {
4500       if (PrintMiscellaneous && Verbose) {
4501         DWORD err = GetLastError();
4502         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4503       }
4504       release_memory(base, bytes);
4505       CloseHandle(hFile);
4506       return NULL;
4507     }
4508   } else {
4509     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4510                                     NULL /*file_name*/);
4511     if (hMap == NULL) {
4512       if (PrintMiscellaneous && Verbose) {
4513         DWORD err = GetLastError();
4514         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4515       }
4516       CloseHandle(hFile);
4517       return NULL;
4518     }
4519 
4520     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4521     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4522                                   (DWORD)bytes, addr);
4523     if (base == NULL) {
4524       if (PrintMiscellaneous && Verbose) {
4525         DWORD err = GetLastError();
4526         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4527       }
4528       CloseHandle(hMap);
4529       CloseHandle(hFile);
4530       return NULL;
4531     }
4532 
4533     if (CloseHandle(hMap) == 0) {
4534       if (PrintMiscellaneous && Verbose) {
4535         DWORD err = GetLastError();
4536         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4537       }
4538       CloseHandle(hFile);
4539       return base;
4540     }
4541   }
4542 
4543   if (allow_exec) {
4544     DWORD old_protect;
4545     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4546     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4547 
4548     if (!res) {
4549       if (PrintMiscellaneous && Verbose) {
4550         DWORD err = GetLastError();
4551         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4552       }
4553       // Don't consider this a hard error, on IA32 even if the
4554       // VirtualProtect fails, we should still be able to execute
4555       CloseHandle(hFile);
4556       return base;
4557     }
4558   }
4559 
4560   if (CloseHandle(hFile) == 0) {
4561     if (PrintMiscellaneous && Verbose) {
4562       DWORD err = GetLastError();
4563       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4564     }
4565     return base;
4566   }
4567 
4568   return base;
4569 }
4570 
4571 
4572 // Remap a block of memory.
4573 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4574                        char *addr, size_t bytes, bool read_only,
4575                        bool allow_exec) {
4576   // This OS does not allow existing memory maps to be remapped so we
4577   // have to unmap the memory before we remap it.
4578   if (!os::unmap_memory(addr, bytes)) {
4579     return NULL;
4580   }
4581 
4582   // There is a very small theoretical window between the unmap_memory()
4583   // call above and the map_memory() call below where a thread in native
4584   // code may be able to access an address that is no longer mapped.
4585 
4586   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4587            read_only, allow_exec);
4588 }
4589 
4590 
4591 // Unmap a block of memory.
4592 // Returns true=success, otherwise false.
4593 
4594 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4595   BOOL result = UnmapViewOfFile(addr);
4596   if (result == 0) {
4597     if (PrintMiscellaneous && Verbose) {
4598       DWORD err = GetLastError();
4599       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4600     }
4601     return false;
4602   }
4603   return true;
4604 }
4605 
4606 void os::pause() {
4607   char filename[MAX_PATH];
4608   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4609     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4610   } else {
4611     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4612   }
4613 
4614   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4615   if (fd != -1) {
4616     struct stat buf;
4617     ::close(fd);
4618     while (::stat(filename, &buf) == 0) {
4619       Sleep(100);
4620     }
4621   } else {
4622     jio_fprintf(stderr,
4623       "Could not open pause file '%s', continuing immediately.\n", filename);
4624   }
4625 }
4626 
4627 // An Event wraps a win32 "CreateEvent" kernel handle.
4628 //
4629 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4630 //
4631 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4632 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4633 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4634 //     In addition, an unpark() operation might fetch the handle field, but the
4635 //     event could recycle between the fetch and the SetEvent() operation.
4636 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4637 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4638 //     on an stale but recycled handle would be harmless, but in practice this might
4639 //     confuse other non-Sun code, so it's not a viable approach.
4640 //
4641 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4642 //     with the Event.  The event handle is never closed.  This could be construed
4643 //     as handle leakage, but only up to the maximum # of threads that have been extant
4644 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4645 //     permit a process to have hundreds of thousands of open handles.
4646 //
4647 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4648 //     and release unused handles.
4649 //
4650 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4651 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4652 //
4653 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4654 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4655 //
4656 // We use (2).
4657 //
4658 // TODO-FIXME:
4659 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4660 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4661 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4662 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4663 //     into a single win32 CreateEvent() handle.
4664 //
4665 // _Event transitions in park()
4666 //   -1 => -1 : illegal
4667 //    1 =>  0 : pass - return immediately
4668 //    0 => -1 : block
4669 //
4670 // _Event serves as a restricted-range semaphore :
4671 //    -1 : thread is blocked
4672 //     0 : neutral  - thread is running or ready
4673 //     1 : signaled - thread is running or ready
4674 //
4675 // Another possible encoding of _Event would be
4676 // with explicit "PARKED" and "SIGNALED" bits.
4677 
4678 int os::PlatformEvent::park (jlong Millis) {
4679     guarantee (_ParkHandle != NULL , "Invariant") ;
4680     guarantee (Millis > 0          , "Invariant") ;
4681     int v ;
4682 
4683     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4684     // the initial park() operation.
4685 
4686     for (;;) {
4687         v = _Event ;
4688         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4689     }
4690     guarantee ((v == 0) || (v == 1), "invariant") ;
4691     if (v != 0) return OS_OK ;
4692 
4693     // Do this the hard way by blocking ...
4694     // TODO: consider a brief spin here, gated on the success of recent
4695     // spin attempts by this thread.
4696     //
4697     // We decompose long timeouts into series of shorter timed waits.
4698     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4699     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4700     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4701     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4702     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4703     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4704     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4705     // for the already waited time.  This policy does not admit any new outcomes.
4706     // In the future, however, we might want to track the accumulated wait time and
4707     // adjust Millis accordingly if we encounter a spurious wakeup.
4708 
4709     const int MAXTIMEOUT = 0x10000000 ;
4710     DWORD rv = WAIT_TIMEOUT ;
4711     while (_Event < 0 && Millis > 0) {
4712        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4713        if (Millis > MAXTIMEOUT) {
4714           prd = MAXTIMEOUT ;
4715        }
4716        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4717        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4718        if (rv == WAIT_TIMEOUT) {
4719            Millis -= prd ;
4720        }
4721     }
4722     v = _Event ;
4723     _Event = 0 ;
4724     // see comment at end of os::PlatformEvent::park() below:
4725     OrderAccess::fence() ;
4726     // If we encounter a nearly simultanous timeout expiry and unpark()
4727     // we return OS_OK indicating we awoke via unpark().
4728     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4729     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4730 }
4731 
4732 void os::PlatformEvent::park () {
4733     guarantee (_ParkHandle != NULL, "Invariant") ;
4734     // Invariant: Only the thread associated with the Event/PlatformEvent
4735     // may call park().
4736     int v ;
4737     for (;;) {
4738         v = _Event ;
4739         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4740     }
4741     guarantee ((v == 0) || (v == 1), "invariant") ;
4742     if (v != 0) return ;
4743 
4744     // Do this the hard way by blocking ...
4745     // TODO: consider a brief spin here, gated on the success of recent
4746     // spin attempts by this thread.
4747     while (_Event < 0) {
4748        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4749        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4750     }
4751 
4752     // Usually we'll find _Event == 0 at this point, but as
4753     // an optional optimization we clear it, just in case can
4754     // multiple unpark() operations drove _Event up to 1.
4755     _Event = 0 ;
4756     OrderAccess::fence() ;
4757     guarantee (_Event >= 0, "invariant") ;
4758 }
4759 
4760 void os::PlatformEvent::unpark() {
4761   guarantee (_ParkHandle != NULL, "Invariant") ;
4762 
4763   // Transitions for _Event:
4764   //    0 :=> 1
4765   //    1 :=> 1
4766   //   -1 :=> either 0 or 1; must signal target thread
4767   //          That is, we can safely transition _Event from -1 to either
4768   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4769   //          unpark() calls.
4770   // See also: "Semaphores in Plan 9" by Mullender & Cox
4771   //
4772   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4773   // that it will take two back-to-back park() calls for the owning
4774   // thread to block. This has the benefit of forcing a spurious return
4775   // from the first park() call after an unpark() call which will help
4776   // shake out uses of park() and unpark() without condition variables.
4777 
4778   if (Atomic::xchg(1, &_Event) >= 0) return;
4779 
4780   ::SetEvent(_ParkHandle);
4781 }
4782 
4783 
4784 // JSR166
4785 // -------------------------------------------------------
4786 
4787 /*
4788  * The Windows implementation of Park is very straightforward: Basic
4789  * operations on Win32 Events turn out to have the right semantics to
4790  * use them directly. We opportunistically resuse the event inherited
4791  * from Monitor.
4792  */
4793 
4794 
4795 void Parker::park(bool isAbsolute, jlong time) {
4796   guarantee (_ParkEvent != NULL, "invariant") ;
4797   // First, demultiplex/decode time arguments
4798   if (time < 0) { // don't wait
4799     return;
4800   }
4801   else if (time == 0 && !isAbsolute) {
4802     time = INFINITE;
4803   }
4804   else if  (isAbsolute) {
4805     time -= os::javaTimeMillis(); // convert to relative time
4806     if (time <= 0) // already elapsed
4807       return;
4808   }
4809   else { // relative
4810     time /= 1000000; // Must coarsen from nanos to millis
4811     if (time == 0)   // Wait for the minimal time unit if zero
4812       time = 1;
4813   }
4814 
4815   JavaThread* thread = (JavaThread*)(Thread::current());
4816   assert(thread->is_Java_thread(), "Must be JavaThread");
4817   JavaThread *jt = (JavaThread *)thread;
4818 
4819   // Don't wait if interrupted or already triggered
4820   if (Thread::is_interrupted(thread, false) ||
4821     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4822     ResetEvent(_ParkEvent);
4823     return;
4824   }
4825   else {
4826     ThreadBlockInVM tbivm(jt);
4827     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4828     jt->set_suspend_equivalent();
4829 
4830     WaitForSingleObject(_ParkEvent,  time);
4831     ResetEvent(_ParkEvent);
4832 
4833     // If externally suspended while waiting, re-suspend
4834     if (jt->handle_special_suspend_equivalent_condition()) {
4835       jt->java_suspend_self();
4836     }
4837   }
4838 }
4839 
4840 void Parker::unpark() {
4841   guarantee (_ParkEvent != NULL, "invariant") ;
4842   SetEvent(_ParkEvent);
4843 }
4844 
4845 // Run the specified command in a separate process. Return its exit value,
4846 // or -1 on failure (e.g. can't create a new process).
4847 int os::fork_and_exec(char* cmd) {
4848   STARTUPINFO si;
4849   PROCESS_INFORMATION pi;
4850 
4851   memset(&si, 0, sizeof(si));
4852   si.cb = sizeof(si);
4853   memset(&pi, 0, sizeof(pi));
4854   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4855                             cmd,    // command line
4856                             NULL,   // process security attribute
4857                             NULL,   // thread security attribute
4858                             TRUE,   // inherits system handles
4859                             0,      // no creation flags
4860                             NULL,   // use parent's environment block
4861                             NULL,   // use parent's starting directory
4862                             &si,    // (in) startup information
4863                             &pi);   // (out) process information
4864 
4865   if (rslt) {
4866     // Wait until child process exits.
4867     WaitForSingleObject(pi.hProcess, INFINITE);
4868 
4869     DWORD exit_code;
4870     GetExitCodeProcess(pi.hProcess, &exit_code);
4871 
4872     // Close process and thread handles.
4873     CloseHandle(pi.hProcess);
4874     CloseHandle(pi.hThread);
4875 
4876     return (int)exit_code;
4877   } else {
4878     return -1;
4879   }
4880 }
4881 
4882 //--------------------------------------------------------------------------------------------------
4883 // Non-product code
4884 
4885 static int mallocDebugIntervalCounter = 0;
4886 static int mallocDebugCounter = 0;
4887 bool os::check_heap(bool force) {
4888   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4889   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4890     // Note: HeapValidate executes two hardware breakpoints when it finds something
4891     // wrong; at these points, eax contains the address of the offending block (I think).
4892     // To get to the exlicit error message(s) below, just continue twice.
4893     HANDLE heap = GetProcessHeap();
4894     { HeapLock(heap);
4895       PROCESS_HEAP_ENTRY phe;
4896       phe.lpData = NULL;
4897       while (HeapWalk(heap, &phe) != 0) {
4898         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
4899             !HeapValidate(heap, 0, phe.lpData)) {
4900           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
4901           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
4902           fatal("corrupted C heap");
4903         }
4904       }
4905       DWORD err = GetLastError();
4906       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
4907         fatal(err_msg("heap walk aborted with error %d", err));
4908       }
4909       HeapUnlock(heap);
4910     }
4911     mallocDebugIntervalCounter = 0;
4912   }
4913   return true;
4914 }
4915 
4916 
4917 bool os::find(address addr, outputStream* st) {
4918   // Nothing yet
4919   return false;
4920 }
4921 
4922 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
4923   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
4924 
4925   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
4926     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
4927     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
4928     address addr = (address) exceptionRecord->ExceptionInformation[1];
4929 
4930     if (os::is_memory_serialize_page(thread, addr))
4931       return EXCEPTION_CONTINUE_EXECUTION;
4932   }
4933 
4934   return EXCEPTION_CONTINUE_SEARCH;
4935 }
4936 
4937 // We don't build a headless jre for Windows
4938 bool os::is_headless_jre() { return false; }
4939 
4940 static jint initSock() {
4941   WSADATA wsadata;
4942 
4943   if (!os::WinSock2Dll::WinSock2Available()) {
4944     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
4945       ::GetLastError());
4946     return JNI_ERR;
4947   }
4948 
4949   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
4950     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
4951       ::GetLastError());
4952     return JNI_ERR;
4953   }
4954   return JNI_OK;
4955 }
4956 
4957 struct hostent* os::get_host_by_name(char* name) {
4958   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
4959 }
4960 
4961 int os::socket_close(int fd) {
4962   return ::closesocket(fd);
4963 }
4964 
4965 int os::socket_available(int fd, jint *pbytes) {
4966   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
4967   return (ret < 0) ? 0 : 1;
4968 }
4969 
4970 int os::socket(int domain, int type, int protocol) {
4971   return ::socket(domain, type, protocol);
4972 }
4973 
4974 int os::listen(int fd, int count) {
4975   return ::listen(fd, count);
4976 }
4977 
4978 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
4979   return ::connect(fd, him, len);
4980 }
4981 
4982 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
4983   return ::accept(fd, him, len);
4984 }
4985 
4986 int os::sendto(int fd, char* buf, size_t len, uint flags,
4987                struct sockaddr* to, socklen_t tolen) {
4988 
4989   return ::sendto(fd, buf, (int)len, flags, to, tolen);
4990 }
4991 
4992 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
4993                  sockaddr* from, socklen_t* fromlen) {
4994 
4995   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
4996 }
4997 
4998 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
4999   return ::recv(fd, buf, (int)nBytes, flags);
5000 }
5001 
5002 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5003   return ::send(fd, buf, (int)nBytes, flags);
5004 }
5005 
5006 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5007   return ::send(fd, buf, (int)nBytes, flags);
5008 }
5009 
5010 int os::timeout(int fd, long timeout) {
5011   fd_set tbl;
5012   struct timeval t;
5013 
5014   t.tv_sec  = timeout / 1000;
5015   t.tv_usec = (timeout % 1000) * 1000;
5016 
5017   tbl.fd_count    = 1;
5018   tbl.fd_array[0] = fd;
5019 
5020   return ::select(1, &tbl, 0, 0, &t);
5021 }
5022 
5023 int os::get_host_name(char* name, int namelen) {
5024   return ::gethostname(name, namelen);
5025 }
5026 
5027 int os::socket_shutdown(int fd, int howto) {
5028   return ::shutdown(fd, howto);
5029 }
5030 
5031 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5032   return ::bind(fd, him, len);
5033 }
5034 
5035 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5036   return ::getsockname(fd, him, len);
5037 }
5038 
5039 int os::get_sock_opt(int fd, int level, int optname,
5040                      char* optval, socklen_t* optlen) {
5041   return ::getsockopt(fd, level, optname, optval, optlen);
5042 }
5043 
5044 int os::set_sock_opt(int fd, int level, int optname,
5045                      const char* optval, socklen_t optlen) {
5046   return ::setsockopt(fd, level, optname, optval, optlen);
5047 }
5048 
5049 
5050 // Kernel32 API
5051 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5052 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5053 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5054 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5055 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5056 
5057 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5058 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5059 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5060 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5061 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5062 
5063 
5064 BOOL                        os::Kernel32Dll::initialized = FALSE;
5065 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5066   assert(initialized && _GetLargePageMinimum != NULL,
5067     "GetLargePageMinimumAvailable() not yet called");
5068   return _GetLargePageMinimum();
5069 }
5070 
5071 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5072   if (!initialized) {
5073     initialize();
5074   }
5075   return _GetLargePageMinimum != NULL;
5076 }
5077 
5078 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5079   if (!initialized) {
5080     initialize();
5081   }
5082   return _VirtualAllocExNuma != NULL;
5083 }
5084 
5085 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5086   assert(initialized && _VirtualAllocExNuma != NULL,
5087     "NUMACallsAvailable() not yet called");
5088 
5089   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5090 }
5091 
5092 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5093   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5094     "NUMACallsAvailable() not yet called");
5095 
5096   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5097 }
5098 
5099 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5100   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5101     "NUMACallsAvailable() not yet called");
5102 
5103   return _GetNumaNodeProcessorMask(node, proc_mask);
5104 }
5105 
5106 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5107   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5108     if (!initialized) {
5109       initialize();
5110     }
5111 
5112     if (_RtlCaptureStackBackTrace != NULL) {
5113       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5114         BackTrace, BackTraceHash);
5115     } else {
5116       return 0;
5117     }
5118 }
5119 
5120 void os::Kernel32Dll::initializeCommon() {
5121   if (!initialized) {
5122     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5123     assert(handle != NULL, "Just check");
5124     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5125     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5126     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5127     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5128     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5129     initialized = TRUE;
5130   }
5131 }
5132 
5133 
5134 
5135 #ifndef JDK6_OR_EARLIER
5136 
5137 void os::Kernel32Dll::initialize() {
5138   initializeCommon();
5139 }
5140 
5141 
5142 // Kernel32 API
5143 inline BOOL os::Kernel32Dll::SwitchToThread() {
5144   return ::SwitchToThread();
5145 }
5146 
5147 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5148   return true;
5149 }
5150 
5151   // Help tools
5152 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5153   return true;
5154 }
5155 
5156 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5157   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5158 }
5159 
5160 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5161   return ::Module32First(hSnapshot, lpme);
5162 }
5163 
5164 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5165   return ::Module32Next(hSnapshot, lpme);
5166 }
5167 
5168 
5169 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5170   return true;
5171 }
5172 
5173 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5174   ::GetNativeSystemInfo(lpSystemInfo);
5175 }
5176 
5177 // PSAPI API
5178 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5179   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5180 }
5181 
5182 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5183   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5184 }
5185 
5186 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5187   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5188 }
5189 
5190 inline BOOL os::PSApiDll::PSApiAvailable() {
5191   return true;
5192 }
5193 
5194 
5195 // WinSock2 API
5196 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5197   return ::WSAStartup(wVersionRequested, lpWSAData);
5198 }
5199 
5200 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5201   return ::gethostbyname(name);
5202 }
5203 
5204 inline BOOL os::WinSock2Dll::WinSock2Available() {
5205   return true;
5206 }
5207 
5208 // Advapi API
5209 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5210    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5211    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5212      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5213        BufferLength, PreviousState, ReturnLength);
5214 }
5215 
5216 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5217   PHANDLE TokenHandle) {
5218     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5219 }
5220 
5221 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5222   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5223 }
5224 
5225 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5226   return true;
5227 }
5228 
5229 #else
5230 // Kernel32 API
5231 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5232 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5233 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5234 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5235 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5236 
5237 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5238 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5239 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5240 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5241 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5242 
5243 void os::Kernel32Dll::initialize() {
5244   if (!initialized) {
5245     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5246     assert(handle != NULL, "Just check");
5247 
5248     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5249     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5250       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5251     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5252     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5253     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5254     initializeCommon();  // resolve the functions that always need resolving
5255 
5256     initialized = TRUE;
5257   }
5258 }
5259 
5260 BOOL os::Kernel32Dll::SwitchToThread() {
5261   assert(initialized && _SwitchToThread != NULL,
5262     "SwitchToThreadAvailable() not yet called");
5263   return _SwitchToThread();
5264 }
5265 
5266 
5267 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5268   if (!initialized) {
5269     initialize();
5270   }
5271   return _SwitchToThread != NULL;
5272 }
5273 
5274 // Help tools
5275 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5276   if (!initialized) {
5277     initialize();
5278   }
5279   return _CreateToolhelp32Snapshot != NULL &&
5280          _Module32First != NULL &&
5281          _Module32Next != NULL;
5282 }
5283 
5284 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5285   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5286     "HelpToolsAvailable() not yet called");
5287 
5288   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5289 }
5290 
5291 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5292   assert(initialized && _Module32First != NULL,
5293     "HelpToolsAvailable() not yet called");
5294 
5295   return _Module32First(hSnapshot, lpme);
5296 }
5297 
5298 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5299   assert(initialized && _Module32Next != NULL,
5300     "HelpToolsAvailable() not yet called");
5301 
5302   return _Module32Next(hSnapshot, lpme);
5303 }
5304 
5305 
5306 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5307   if (!initialized) {
5308     initialize();
5309   }
5310   return _GetNativeSystemInfo != NULL;
5311 }
5312 
5313 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5314   assert(initialized && _GetNativeSystemInfo != NULL,
5315     "GetNativeSystemInfoAvailable() not yet called");
5316 
5317   _GetNativeSystemInfo(lpSystemInfo);
5318 }
5319 
5320 // PSAPI API
5321 
5322 
5323 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5324 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5325 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5326 
5327 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5328 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5329 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5330 BOOL                    os::PSApiDll::initialized = FALSE;
5331 
5332 void os::PSApiDll::initialize() {
5333   if (!initialized) {
5334     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5335     if (handle != NULL) {
5336       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5337         "EnumProcessModules");
5338       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5339         "GetModuleFileNameExA");
5340       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5341         "GetModuleInformation");
5342     }
5343     initialized = TRUE;
5344   }
5345 }
5346 
5347 
5348 
5349 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5350   assert(initialized && _EnumProcessModules != NULL,
5351     "PSApiAvailable() not yet called");
5352   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5353 }
5354 
5355 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5356   assert(initialized && _GetModuleFileNameEx != NULL,
5357     "PSApiAvailable() not yet called");
5358   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5359 }
5360 
5361 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5362   assert(initialized && _GetModuleInformation != NULL,
5363     "PSApiAvailable() not yet called");
5364   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5365 }
5366 
5367 BOOL os::PSApiDll::PSApiAvailable() {
5368   if (!initialized) {
5369     initialize();
5370   }
5371   return _EnumProcessModules != NULL &&
5372     _GetModuleFileNameEx != NULL &&
5373     _GetModuleInformation != NULL;
5374 }
5375 
5376 
5377 // WinSock2 API
5378 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5379 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5380 
5381 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5382 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5383 BOOL             os::WinSock2Dll::initialized = FALSE;
5384 
5385 void os::WinSock2Dll::initialize() {
5386   if (!initialized) {
5387     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5388     if (handle != NULL) {
5389       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5390       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5391     }
5392     initialized = TRUE;
5393   }
5394 }
5395 
5396 
5397 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5398   assert(initialized && _WSAStartup != NULL,
5399     "WinSock2Available() not yet called");
5400   return _WSAStartup(wVersionRequested, lpWSAData);
5401 }
5402 
5403 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5404   assert(initialized && _gethostbyname != NULL,
5405     "WinSock2Available() not yet called");
5406   return _gethostbyname(name);
5407 }
5408 
5409 BOOL os::WinSock2Dll::WinSock2Available() {
5410   if (!initialized) {
5411     initialize();
5412   }
5413   return _WSAStartup != NULL &&
5414     _gethostbyname != NULL;
5415 }
5416 
5417 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5418 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5419 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5420 
5421 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5422 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5423 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5424 BOOL                     os::Advapi32Dll::initialized = FALSE;
5425 
5426 void os::Advapi32Dll::initialize() {
5427   if (!initialized) {
5428     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5429     if (handle != NULL) {
5430       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5431         "AdjustTokenPrivileges");
5432       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5433         "OpenProcessToken");
5434       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5435         "LookupPrivilegeValueA");
5436     }
5437     initialized = TRUE;
5438   }
5439 }
5440 
5441 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5442    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5443    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5444    assert(initialized && _AdjustTokenPrivileges != NULL,
5445      "AdvapiAvailable() not yet called");
5446    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5447        BufferLength, PreviousState, ReturnLength);
5448 }
5449 
5450 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5451   PHANDLE TokenHandle) {
5452    assert(initialized && _OpenProcessToken != NULL,
5453      "AdvapiAvailable() not yet called");
5454     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5455 }
5456 
5457 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5458    assert(initialized && _LookupPrivilegeValue != NULL,
5459      "AdvapiAvailable() not yet called");
5460   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5461 }
5462 
5463 BOOL os::Advapi32Dll::AdvapiAvailable() {
5464   if (!initialized) {
5465     initialize();
5466   }
5467   return _AdjustTokenPrivileges != NULL &&
5468     _OpenProcessToken != NULL &&
5469     _LookupPrivilegeValue != NULL;
5470 }
5471 
5472 #endif