1 /*
   2  * Copyright (c) 2001, 2012, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc_implementation/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  30 #include "gc_implementation/g1/heapRegion.inline.hpp"
  31 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  32 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  33 #include "memory/genOopClosures.inline.hpp"
  34 #include "memory/iterator.hpp"
  35 #include "oops/oop.inline.hpp"
  36 
  37 int    HeapRegion::LogOfHRGrainBytes = 0;
  38 int    HeapRegion::LogOfHRGrainWords = 0;
  39 size_t HeapRegion::GrainBytes        = 0;
  40 size_t HeapRegion::GrainWords        = 0;
  41 size_t HeapRegion::CardsPerRegion    = 0;
  42 
  43 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  44                                  HeapRegion* hr, ExtendedOopClosure* cl,
  45                                  CardTableModRefBS::PrecisionStyle precision,
  46                                  FilterKind fk) :
  47   ContiguousSpaceDCTOC(hr, cl, precision, NULL),
  48   _hr(hr), _fk(fk), _g1(g1) { }
  49 
  50 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  51                                                    OopClosure* oc) :
  52   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  53 
  54 template<class ClosureType>
  55 HeapWord* walk_mem_region_loop(ClosureType* cl, G1CollectedHeap* g1h,
  56                                HeapRegion* hr,
  57                                HeapWord* cur, HeapWord* top) {
  58   oop cur_oop = oop(cur);
  59   int oop_size = cur_oop->size();
  60   HeapWord* next_obj = cur + oop_size;
  61   while (next_obj < top) {
  62     // Keep filtering the remembered set.
  63     if (!g1h->is_obj_dead(cur_oop, hr)) {
  64       // Bottom lies entirely below top, so we can call the
  65       // non-memRegion version of oop_iterate below.
  66       cur_oop->oop_iterate(cl);
  67     }
  68     cur = next_obj;
  69     cur_oop = oop(cur);
  70     oop_size = cur_oop->size();
  71     next_obj = cur + oop_size;
  72   }
  73   return cur;
  74 }
  75 
  76 void HeapRegionDCTOC::walk_mem_region_with_cl(MemRegion mr,
  77                                               HeapWord* bottom,
  78                                               HeapWord* top,
  79                                               ExtendedOopClosure* cl) {
  80   G1CollectedHeap* g1h = _g1;
  81   int oop_size;
  82   ExtendedOopClosure* cl2 = NULL;
  83 
  84   FilterIntoCSClosure intoCSFilt(this, g1h, cl);
  85   FilterOutOfRegionClosure outOfRegionFilt(_hr, cl);
  86 
  87   switch (_fk) {
  88   case NoFilterKind:          cl2 = cl; break;
  89   case IntoCSFilterKind:      cl2 = &intoCSFilt; break;
  90   case OutOfRegionFilterKind: cl2 = &outOfRegionFilt; break;
  91   default:                    ShouldNotReachHere();
  92   }
  93 
  94   // Start filtering what we add to the remembered set. If the object is
  95   // not considered dead, either because it is marked (in the mark bitmap)
  96   // or it was allocated after marking finished, then we add it. Otherwise
  97   // we can safely ignore the object.
  98   if (!g1h->is_obj_dead(oop(bottom), _hr)) {
  99     oop_size = oop(bottom)->oop_iterate(cl2, mr);
 100   } else {
 101     oop_size = oop(bottom)->size();
 102   }
 103 
 104   bottom += oop_size;
 105 
 106   if (bottom < top) {
 107     // We replicate the loop below for several kinds of possible filters.
 108     switch (_fk) {
 109     case NoFilterKind:
 110       bottom = walk_mem_region_loop(cl, g1h, _hr, bottom, top);
 111       break;
 112 
 113     case IntoCSFilterKind: {
 114       FilterIntoCSClosure filt(this, g1h, cl);
 115       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 116       break;
 117     }
 118 
 119     case OutOfRegionFilterKind: {
 120       FilterOutOfRegionClosure filt(_hr, cl);
 121       bottom = walk_mem_region_loop(&filt, g1h, _hr, bottom, top);
 122       break;
 123     }
 124 
 125     default:
 126       ShouldNotReachHere();
 127     }
 128 
 129     // Last object. Need to do dead-obj filtering here too.
 130     if (!g1h->is_obj_dead(oop(bottom), _hr)) {
 131       oop(bottom)->oop_iterate(cl2, mr);
 132     }
 133   }
 134 }
 135 
 136 // Minimum region size; we won't go lower than that.
 137 // We might want to decrease this in the future, to deal with small
 138 // heaps a bit more efficiently.
 139 #define MIN_REGION_SIZE  (      1024 * 1024 )
 140 
 141 // Maximum region size; we don't go higher than that. There's a good
 142 // reason for having an upper bound. We don't want regions to get too
 143 // large, otherwise cleanup's effectiveness would decrease as there
 144 // will be fewer opportunities to find totally empty regions after
 145 // marking.
 146 #define MAX_REGION_SIZE  ( 32 * 1024 * 1024 )
 147 
 148 // The automatic region size calculation will try to have around this
 149 // many regions in the heap (based on the min heap size).
 150 #define TARGET_REGION_NUMBER          2048
 151 
 152 void HeapRegion::setup_heap_region_size(uintx min_heap_size) {
 153   // region_size in bytes
 154   uintx region_size = G1HeapRegionSize;
 155   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 156     // We base the automatic calculation on the min heap size. This
 157     // can be problematic if the spread between min and max is quite
 158     // wide, imagine -Xms128m -Xmx32g. But, if we decided it based on
 159     // the max size, the region size might be way too large for the
 160     // min size. Either way, some users might have to set the region
 161     // size manually for some -Xms / -Xmx combos.
 162 
 163     region_size = MAX2(min_heap_size / TARGET_REGION_NUMBER,
 164                        (uintx) MIN_REGION_SIZE);
 165   }
 166 
 167   int region_size_log = log2_long((jlong) region_size);
 168   // Recalculate the region size to make sure it's a power of
 169   // 2. This means that region_size is the largest power of 2 that's
 170   // <= what we've calculated so far.
 171   region_size = ((uintx)1 << region_size_log);
 172 
 173   // Now make sure that we don't go over or under our limits.
 174   if (region_size < MIN_REGION_SIZE) {
 175     region_size = MIN_REGION_SIZE;
 176   } else if (region_size > MAX_REGION_SIZE) {
 177     region_size = MAX_REGION_SIZE;
 178   }
 179 
 180   if (region_size != G1HeapRegionSize) {
 181     // Update the flag to make sure that PrintFlagsFinal logs the correct value
 182     FLAG_SET_ERGO(uintx, G1HeapRegionSize, region_size);
 183   }
 184 
 185   // And recalculate the log.
 186   region_size_log = log2_long((jlong) region_size);
 187 
 188   // Now, set up the globals.
 189   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 190   LogOfHRGrainBytes = region_size_log;
 191 
 192   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 193   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 194 
 195   guarantee(GrainBytes == 0, "we should only set it once");
 196   // The cast to int is safe, given that we've bounded region_size by
 197   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 198   GrainBytes = (size_t)region_size;
 199 
 200   guarantee(GrainWords == 0, "we should only set it once");
 201   GrainWords = GrainBytes >> LogHeapWordSize;
 202   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 203 
 204   guarantee(CardsPerRegion == 0, "we should only set it once");
 205   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 206 }
 207 
 208 void HeapRegion::reset_after_compaction() {
 209   G1OffsetTableContigSpace::reset_after_compaction();
 210   // After a compaction the mark bitmap is invalid, so we must
 211   // treat all objects as being inside the unmarked area.
 212   zero_marked_bytes();
 213   init_top_at_mark_start();
 214 }
 215 
 216 void HeapRegion::hr_clear(bool par, bool clear_space) {
 217   assert(_humongous_type == NotHumongous,
 218          "we should have already filtered out humongous regions");
 219   assert(_humongous_start_region == NULL,
 220          "we should have already filtered out humongous regions");
 221   assert(_end == _orig_end,
 222          "we should have already filtered out humongous regions");
 223 
 224   _in_collection_set = false;
 225 
 226   set_young_index_in_cset(-1);
 227   uninstall_surv_rate_group();
 228   set_young_type(NotYoung);
 229   reset_pre_dummy_top();
 230 
 231   if (!par) {
 232     // If this is parallel, this will be done later.
 233     HeapRegionRemSet* hrrs = rem_set();
 234     hrrs->clear();
 235     _claimed = InitialClaimValue;
 236   }
 237   zero_marked_bytes();
 238 
 239   _offsets.resize(HeapRegion::GrainWords);
 240   init_top_at_mark_start();
 241   if (clear_space) clear(SpaceDecorator::Mangle);
 242 }
 243 
 244 void HeapRegion::par_clear() {
 245   assert(used() == 0, "the region should have been already cleared");
 246   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 247   HeapRegionRemSet* hrrs = rem_set();
 248   hrrs->clear();
 249   CardTableModRefBS* ct_bs =
 250                    (CardTableModRefBS*)G1CollectedHeap::heap()->barrier_set();
 251   ct_bs->clear(MemRegion(bottom(), end()));
 252 }
 253 
 254 void HeapRegion::calc_gc_efficiency() {
 255   // GC efficiency is the ratio of how much space would be
 256   // reclaimed over how long we predict it would take to reclaim it.
 257   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 258   G1CollectorPolicy* g1p = g1h->g1_policy();
 259 
 260   // Retrieve a prediction of the elapsed time for this region for
 261   // a mixed gc because the region will only be evacuated during a
 262   // mixed gc.
 263   double region_elapsed_time_ms =
 264     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 265   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 266 }
 267 
 268 void HeapRegion::set_startsHumongous(HeapWord* new_top, HeapWord* new_end) {
 269   assert(!isHumongous(), "sanity / pre-condition");
 270   assert(end() == _orig_end,
 271          "Should be normal before the humongous object allocation");
 272   assert(top() == bottom(), "should be empty");
 273   assert(bottom() <= new_top && new_top <= new_end, "pre-condition");
 274 
 275   _humongous_type = StartsHumongous;
 276   _humongous_start_region = this;
 277 
 278   set_end(new_end);
 279   _offsets.set_for_starts_humongous(new_top);
 280 }
 281 
 282 void HeapRegion::set_continuesHumongous(HeapRegion* first_hr) {
 283   assert(!isHumongous(), "sanity / pre-condition");
 284   assert(end() == _orig_end,
 285          "Should be normal before the humongous object allocation");
 286   assert(top() == bottom(), "should be empty");
 287   assert(first_hr->startsHumongous(), "pre-condition");
 288 
 289   _humongous_type = ContinuesHumongous;
 290   _humongous_start_region = first_hr;
 291 }
 292 
 293 void HeapRegion::set_notHumongous() {
 294   assert(isHumongous(), "pre-condition");
 295 
 296   if (startsHumongous()) {
 297     assert(top() <= end(), "pre-condition");
 298     set_end(_orig_end);
 299     if (top() > end()) {
 300       // at least one "continues humongous" region after it
 301       set_top(end());
 302     }
 303   } else {
 304     // continues humongous
 305     assert(end() == _orig_end, "sanity");
 306   }
 307 
 308   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 309   _humongous_type = NotHumongous;
 310   _humongous_start_region = NULL;
 311 }
 312 
 313 bool HeapRegion::claimHeapRegion(jint claimValue) {
 314   jint current = _claimed;
 315   if (current != claimValue) {
 316     jint res = Atomic::cmpxchg(claimValue, &_claimed, current);
 317     if (res == current) {
 318       return true;
 319     }
 320   }
 321   return false;
 322 }
 323 
 324 HeapWord* HeapRegion::next_block_start_careful(HeapWord* addr) {
 325   HeapWord* low = addr;
 326   HeapWord* high = end();
 327   while (low < high) {
 328     size_t diff = pointer_delta(high, low);
 329     // Must add one below to bias toward the high amount.  Otherwise, if
 330   // "high" were at the desired value, and "low" were one less, we
 331     // would not converge on "high".  This is not symmetric, because
 332     // we set "high" to a block start, which might be the right one,
 333     // which we don't do for "low".
 334     HeapWord* middle = low + (diff+1)/2;
 335     if (middle == high) return high;
 336     HeapWord* mid_bs = block_start_careful(middle);
 337     if (mid_bs < addr) {
 338       low = middle;
 339     } else {
 340       high = mid_bs;
 341     }
 342   }
 343   assert(low == high && low >= addr, "Didn't work.");
 344   return low;
 345 }
 346 
 347 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
 348 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
 349 #endif // _MSC_VER
 350 
 351 
 352 HeapRegion::HeapRegion(uint hrs_index,
 353                        G1BlockOffsetSharedArray* sharedOffsetArray,
 354                        MemRegion mr) :
 355     G1OffsetTableContigSpace(sharedOffsetArray, mr),
 356     _hrs_index(hrs_index),
 357     _humongous_type(NotHumongous), _humongous_start_region(NULL),
 358     _in_collection_set(false),
 359     _next_in_special_set(NULL), _orig_end(NULL),
 360     _claimed(InitialClaimValue), _evacuation_failed(false),
 361     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 362     _young_type(NotYoung), _next_young_region(NULL),
 363     _next_dirty_cards_region(NULL), _next(NULL), _pending_removal(false),
 364 #ifdef ASSERT
 365     _containing_set(NULL),
 366 #endif // ASSERT
 367      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 368     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 369     _predicted_bytes_to_copy(0)
 370 {
 371   _rem_set = new HeapRegionRemSet(sharedOffsetArray, this);
 372   _orig_end = mr.end();
 373   // Note that initialize() will set the start of the unmarked area of the
 374   // region.
 375   hr_clear(false /*par*/, false /*clear_space*/);
 376   set_top(bottom());
 377   set_saved_mark();
 378 
 379   assert(HeapRegionRemSet::num_par_rem_sets() > 0, "Invariant.");
 380 }
 381 
 382 CompactibleSpace* HeapRegion::next_compaction_space() const {
 383   // We're not using an iterator given that it will wrap around when
 384   // it reaches the last region and this is not what we want here.
 385   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 386   uint index = hrs_index() + 1;
 387   while (index < g1h->n_regions()) {
 388     HeapRegion* hr = g1h->region_at(index);
 389     if (!hr->isHumongous()) {
 390       return hr;
 391     }
 392     index += 1;
 393   }
 394   return NULL;
 395 }
 396 
 397 void HeapRegion::save_marks() {
 398   set_saved_mark();
 399 }
 400 
 401 void HeapRegion::oops_in_mr_iterate(MemRegion mr, ExtendedOopClosure* cl) {
 402   HeapWord* p = mr.start();
 403   HeapWord* e = mr.end();
 404   oop obj;
 405   while (p < e) {
 406     obj = oop(p);
 407     p += obj->oop_iterate(cl);
 408   }
 409   assert(p == e, "bad memregion: doesn't end on obj boundary");
 410 }
 411 
 412 #define HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN(OopClosureType, nv_suffix) \
 413 void HeapRegion::oop_since_save_marks_iterate##nv_suffix(OopClosureType* cl) { \
 414   ContiguousSpace::oop_since_save_marks_iterate##nv_suffix(cl);              \
 415 }
 416 SPECIALIZED_SINCE_SAVE_MARKS_CLOSURES(HeapRegion_OOP_SINCE_SAVE_MARKS_DEFN)
 417 
 418 
 419 void HeapRegion::oop_before_save_marks_iterate(ExtendedOopClosure* cl) {
 420   oops_in_mr_iterate(MemRegion(bottom(), saved_mark_word()), cl);
 421 }
 422 
 423 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 424                                                     bool during_conc_mark) {
 425   // We always recreate the prev marking info and we'll explicitly
 426   // mark all objects we find to be self-forwarded on the prev
 427   // bitmap. So all objects need to be below PTAMS.
 428   _prev_top_at_mark_start = top();
 429   _prev_marked_bytes = 0;
 430 
 431   if (during_initial_mark) {
 432     // During initial-mark, we'll also explicitly mark all objects
 433     // we find to be self-forwarded on the next bitmap. So all
 434     // objects need to be below NTAMS.
 435     _next_top_at_mark_start = top();
 436     _next_marked_bytes = 0;
 437   } else if (during_conc_mark) {
 438     // During concurrent mark, all objects in the CSet (including
 439     // the ones we find to be self-forwarded) are implicitly live.
 440     // So all objects need to be above NTAMS.
 441     _next_top_at_mark_start = bottom();
 442     _next_marked_bytes = 0;
 443   }
 444 }
 445 
 446 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 447                                                   bool during_conc_mark,
 448                                                   size_t marked_bytes) {
 449   assert(0 <= marked_bytes && marked_bytes <= used(),
 450          err_msg("marked: "SIZE_FORMAT" used: "SIZE_FORMAT,
 451                  marked_bytes, used()));
 452   _prev_marked_bytes = marked_bytes;
 453 }
 454 
 455 HeapWord*
 456 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 457                                                  ObjectClosure* cl) {
 458   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 459   // We used to use "block_start_careful" here.  But we're actually happy
 460   // to update the BOT while we do this...
 461   HeapWord* cur = block_start(mr.start());
 462   mr = mr.intersection(used_region());
 463   if (mr.is_empty()) return NULL;
 464   // Otherwise, find the obj that extends onto mr.start().
 465 
 466   assert(cur <= mr.start()
 467          && (oop(cur)->klass_or_null() == NULL ||
 468              cur + oop(cur)->size() > mr.start()),
 469          "postcondition of block_start");
 470   oop obj;
 471   while (cur < mr.end()) {
 472     obj = oop(cur);
 473     if (obj->klass_or_null() == NULL) {
 474       // Ran into an unparseable point.
 475       return cur;
 476     } else if (!g1h->is_obj_dead(obj)) {
 477       cl->do_object(obj);
 478     }
 479     if (cl->abort()) return cur;
 480     // The check above must occur before the operation below, since an
 481     // abort might invalidate the "size" operation.
 482     cur += obj->size();
 483   }
 484   return NULL;
 485 }
 486 
 487 HeapWord*
 488 HeapRegion::
 489 oops_on_card_seq_iterate_careful(MemRegion mr,
 490                                  FilterOutOfRegionClosure* cl,
 491                                  bool filter_young,
 492                                  jbyte* card_ptr) {
 493   // Currently, we should only have to clean the card if filter_young
 494   // is true and vice versa.
 495   if (filter_young) {
 496     assert(card_ptr != NULL, "pre-condition");
 497   } else {
 498     assert(card_ptr == NULL, "pre-condition");
 499   }
 500   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 501 
 502   // If we're within a stop-world GC, then we might look at a card in a
 503   // GC alloc region that extends onto a GC LAB, which may not be
 504   // parseable.  Stop such at the "saved_mark" of the region.
 505   if (g1h->is_gc_active()) {
 506     mr = mr.intersection(used_region_at_save_marks());
 507   } else {
 508     mr = mr.intersection(used_region());
 509   }
 510   if (mr.is_empty()) return NULL;
 511   // Otherwise, find the obj that extends onto mr.start().
 512 
 513   // The intersection of the incoming mr (for the card) and the
 514   // allocated part of the region is non-empty. This implies that
 515   // we have actually allocated into this region. The code in
 516   // G1CollectedHeap.cpp that allocates a new region sets the
 517   // is_young tag on the region before allocating. Thus we
 518   // safely know if this region is young.
 519   if (is_young() && filter_young) {
 520     return NULL;
 521   }
 522 
 523   assert(!is_young(), "check value of filter_young");
 524 
 525   // We can only clean the card here, after we make the decision that
 526   // the card is not young. And we only clean the card if we have been
 527   // asked to (i.e., card_ptr != NULL).
 528   if (card_ptr != NULL) {
 529     *card_ptr = CardTableModRefBS::clean_card_val();
 530     // We must complete this write before we do any of the reads below.
 531     OrderAccess::storeload();
 532   }
 533 
 534   // Cache the boundaries of the memory region in some const locals
 535   HeapWord* const start = mr.start();
 536   HeapWord* const end = mr.end();
 537 
 538   // We used to use "block_start_careful" here.  But we're actually happy
 539   // to update the BOT while we do this...
 540   HeapWord* cur = block_start(start);
 541   assert(cur <= start, "Postcondition");
 542 
 543   oop obj;
 544 
 545   HeapWord* next = cur;
 546   while (next <= start) {
 547     cur = next;
 548     obj = oop(cur);
 549     if (obj->klass_or_null() == NULL) {
 550       // Ran into an unparseable point.
 551       return cur;
 552     }
 553     // Otherwise...
 554     next = (cur + obj->size());
 555   }
 556 
 557   // If we finish the above loop...We have a parseable object that
 558   // begins on or before the start of the memory region, and ends
 559   // inside or spans the entire region.
 560 
 561   assert(obj == oop(cur), "sanity");
 562   assert(cur <= start &&
 563          obj->klass_or_null() != NULL &&
 564          (cur + obj->size()) > start,
 565          "Loop postcondition");
 566 
 567   if (!g1h->is_obj_dead(obj)) {
 568     obj->oop_iterate(cl, mr);
 569   }
 570 
 571   while (cur < end) {
 572     obj = oop(cur);
 573     if (obj->klass_or_null() == NULL) {
 574       // Ran into an unparseable point.
 575       return cur;
 576     };
 577 
 578     // Otherwise:
 579     next = (cur + obj->size());
 580 
 581     if (!g1h->is_obj_dead(obj)) {
 582       if (next < end || !obj->is_objArray()) {
 583         // This object either does not span the MemRegion
 584         // boundary, or if it does it's not an array.
 585         // Apply closure to whole object.
 586         obj->oop_iterate(cl);
 587       } else {
 588         // This obj is an array that spans the boundary.
 589         // Stop at the boundary.
 590         obj->oop_iterate(cl, mr);
 591       }
 592     }
 593     cur = next;
 594   }
 595   return NULL;
 596 }
 597 
 598 // Code roots support
 599 
 600 void HeapRegion::add_strong_code_root(nmethod* nm) {
 601   HeapRegionRemSet* hrrs = rem_set();
 602   hrrs->add_strong_code_root(nm);
 603 }
 604 
 605 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 606   HeapRegionRemSet* hrrs = rem_set();
 607   hrrs->remove_strong_code_root(nm);
 608 }
 609 
 610 void HeapRegion::migrate_strong_code_roots() {
 611   assert(in_collection_set(), "only collection set regions");
 612   assert(!isHumongous(), "not humongous regions");
 613 
 614   HeapRegionRemSet* hrrs = rem_set();
 615   hrrs->migrate_strong_code_roots();
 616 }
 617 
 618 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 619   HeapRegionRemSet* hrrs = rem_set();
 620   hrrs->strong_code_roots_do(blk);
 621 }
 622 
 623 class VerifyStrongCodeRootOopClosure: public OopClosure {
 624   const HeapRegion* _hr;
 625   nmethod* _nm;
 626   bool _failures;
 627   bool _has_oops_in_region;
 628 
 629   template <class T> void do_oop_work(T* p) {
 630     T heap_oop = oopDesc::load_heap_oop(p);
 631     if (!oopDesc::is_null(heap_oop)) {
 632       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 633 
 634       // Note: not all the oops embedded in the nmethod are in the
 635       // current region. We only look at those which are.
 636       if (_hr->is_in(obj)) {
 637         // Object is in the region. Check that its less than top
 638         if (_hr->top() <= (HeapWord*)obj) {
 639           // Object is above top
 640           gclog_or_tty->print_cr("Object "PTR_FORMAT" in region "
 641                                  "["PTR_FORMAT", "PTR_FORMAT") is above "
 642                                  "top "PTR_FORMAT,
 643                                  obj, _hr->bottom(), _hr->end(), _hr->top());
 644           _failures = true;
 645           return;
 646         }
 647         // Nmethod has at least one oop in the current region
 648         _has_oops_in_region = true;
 649       }
 650     }
 651   }
 652 
 653 public:
 654   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 655     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 656 
 657   void do_oop(narrowOop* p) { do_oop_work(p); }
 658   void do_oop(oop* p)       { do_oop_work(p); }
 659 
 660   bool failures()           { return _failures; }
 661   bool has_oops_in_region() { return _has_oops_in_region; }
 662 };
 663 
 664 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 665   const HeapRegion* _hr;
 666   bool _failures;
 667 public:
 668   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 669     _hr(hr), _failures(false) {}
 670 
 671   void do_code_blob(CodeBlob* cb) {
 672     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 673     if (nm != NULL) {
 674       // Verify that the nemthod is live
 675       if (!nm->is_alive()) {
 676         gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has dead nmethod "
 677                                PTR_FORMAT" in its strong code roots",
 678                                _hr->bottom(), _hr->end(), nm);
 679         _failures = true;
 680       } else {
 681         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 682         nm->oops_do(&oop_cl);
 683         if (!oop_cl.has_oops_in_region()) {
 684           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has nmethod "
 685                                  PTR_FORMAT" in its strong code roots "
 686                                  "with no pointers into region",
 687                                  _hr->bottom(), _hr->end(), nm);
 688           _failures = true;
 689         } else if (oop_cl.failures()) {
 690           gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] has other "
 691                                  "failures for nmethod "PTR_FORMAT,
 692                                  _hr->bottom(), _hr->end(), nm);
 693           _failures = true;
 694         }
 695       }
 696     }
 697   }
 698 
 699   bool failures()       { return _failures; }
 700 };
 701 
 702 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 703   if (!G1VerifyHeapRegionCodeRoots) {
 704     // We're not verifying code roots.
 705     return;
 706   }
 707   if (vo == VerifyOption_G1UseMarkWord) {
 708     // Marking verification during a full GC is performed after class
 709     // unloading, code cache unloading, etc so the strong code roots
 710     // attached to each heap region are in an inconsistent state. They won't
 711     // be consistent until the strong code roots are rebuilt after the
 712     // actual GC. Skip verifying the strong code roots in this particular
 713     // time.
 714     assert(VerifyDuringGC, "only way to get here");
 715     return;
 716   }
 717 
 718   HeapRegionRemSet* hrrs = rem_set();
 719   int strong_code_roots_length = hrrs->strong_code_roots_list_length();
 720 
 721   // if this region is empty then there should be no entries
 722   // on its strong code root list
 723   if (is_empty()) {
 724     if (strong_code_roots_length > 0) {
 725       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is empty "
 726                              "but has "INT32_FORMAT" code root entries",
 727                              bottom(), end(), strong_code_roots_length);
 728       *failures = true;
 729     }
 730     return;
 731   }
 732 
 733   // An H-region should have an empty strong code root list
 734   if (isHumongous()) {
 735     if (strong_code_roots_length > 0) {
 736       gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
 737                              "but has "INT32_FORMAT" code root entries",
 738                              bottom(), end(), strong_code_roots_length);
 739       *failures = true;
 740     }
 741     return;
 742   }
 743 
 744   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 745   strong_code_roots_do(&cb_cl);
 746 
 747   if (cb_cl.failures()) {
 748     *failures = true;
 749   }
 750 }
 751 
 752 void HeapRegion::print() const { print_on(gclog_or_tty); }
 753 void HeapRegion::print_on(outputStream* st) const {
 754   if (isHumongous()) {
 755     if (startsHumongous())
 756       st->print(" HS");
 757     else
 758       st->print(" HC");
 759   } else {
 760     st->print("   ");
 761   }
 762   if (in_collection_set())
 763     st->print(" CS");
 764   else
 765     st->print("   ");
 766   if (is_young())
 767     st->print(is_survivor() ? " SU" : " Y ");
 768   else
 769     st->print("   ");
 770   if (is_empty())
 771     st->print(" F");
 772   else
 773     st->print("  ");
 774   st->print(" TS %5d", _gc_time_stamp);
 775   st->print(" PTAMS "PTR_FORMAT" NTAMS "PTR_FORMAT,
 776             prev_top_at_mark_start(), next_top_at_mark_start());
 777   G1OffsetTableContigSpace::print_on(st);
 778 }
 779 
 780 class VerifyLiveClosure: public OopClosure {
 781 private:
 782   G1CollectedHeap* _g1h;
 783   CardTableModRefBS* _bs;
 784   oop _containing_obj;
 785   bool _failures;
 786   int _n_failures;
 787   VerifyOption _vo;
 788 public:
 789   // _vo == UsePrevMarking -> use "prev" marking information,
 790   // _vo == UseNextMarking -> use "next" marking information,
 791   // _vo == UseMarkWord    -> use mark word from object header.
 792   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 793     _g1h(g1h), _bs(NULL), _containing_obj(NULL),
 794     _failures(false), _n_failures(0), _vo(vo)
 795   {
 796     BarrierSet* bs = _g1h->barrier_set();
 797     if (bs->is_a(BarrierSet::CardTableModRef))
 798       _bs = (CardTableModRefBS*)bs;
 799   }
 800 
 801   void set_containing_obj(oop obj) {
 802     _containing_obj = obj;
 803   }
 804 
 805   bool failures() { return _failures; }
 806   int n_failures() { return _n_failures; }
 807 
 808   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 809   virtual void do_oop(      oop* p) { do_oop_work(p); }
 810 
 811   void print_object(outputStream* out, oop obj) {
 812 #ifdef PRODUCT
 813     Klass* k = obj->klass();
 814     const char* class_name = InstanceKlass::cast(k)->external_name();
 815     out->print_cr("class name %s", class_name);
 816 #else // PRODUCT
 817     obj->print_on(out);
 818 #endif // PRODUCT
 819   }
 820 
 821   template <class T>
 822   void do_oop_work(T* p) {
 823     assert(_containing_obj != NULL, "Precondition");
 824     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 825            "Precondition");
 826     T heap_oop = oopDesc::load_heap_oop(p);
 827     if (!oopDesc::is_null(heap_oop)) {
 828       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 829       bool failed = false;
 830       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 831         MutexLockerEx x(ParGCRareEvent_lock,
 832                         Mutex::_no_safepoint_check_flag);
 833 
 834         if (!_failures) {
 835           gclog_or_tty->print_cr("");
 836           gclog_or_tty->print_cr("----------");
 837         }
 838         if (!_g1h->is_in_closed_subset(obj)) {
 839           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 840           gclog_or_tty->print_cr("Field "PTR_FORMAT
 841                                  " of live obj "PTR_FORMAT" in region "
 842                                  "["PTR_FORMAT", "PTR_FORMAT")",
 843                                  p, (void*) _containing_obj,
 844                                  from->bottom(), from->end());
 845           print_object(gclog_or_tty, _containing_obj);
 846           gclog_or_tty->print_cr("points to obj "PTR_FORMAT" not in the heap",
 847                                  (void*) obj);
 848         } else {
 849           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 850           HeapRegion* to   = _g1h->heap_region_containing((HeapWord*)obj);
 851           gclog_or_tty->print_cr("Field "PTR_FORMAT
 852                                  " of live obj "PTR_FORMAT" in region "
 853                                  "["PTR_FORMAT", "PTR_FORMAT")",
 854                                  p, (void*) _containing_obj,
 855                                  from->bottom(), from->end());
 856           print_object(gclog_or_tty, _containing_obj);
 857           gclog_or_tty->print_cr("points to dead obj "PTR_FORMAT" in region "
 858                                  "["PTR_FORMAT", "PTR_FORMAT")",
 859                                  (void*) obj, to->bottom(), to->end());
 860           print_object(gclog_or_tty, obj);
 861         }
 862         gclog_or_tty->print_cr("----------");
 863         gclog_or_tty->flush();
 864         _failures = true;
 865         failed = true;
 866         _n_failures++;
 867       }
 868 
 869       if (!_g1h->full_collection() || G1VerifyRSetsDuringFullGC) {
 870         HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 871         HeapRegion* to   = _g1h->heap_region_containing(obj);
 872         if (from != NULL && to != NULL &&
 873             from != to &&
 874             !to->isHumongous()) {
 875           jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 876           jbyte cv_field = *_bs->byte_for_const(p);
 877           const jbyte dirty = CardTableModRefBS::dirty_card_val();
 878 
 879           bool is_bad = !(from->is_young()
 880                           || to->rem_set()->contains_reference(p)
 881                           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 882                               (_containing_obj->is_objArray() ?
 883                                   cv_field == dirty
 884                                : cv_obj == dirty || cv_field == dirty));
 885           if (is_bad) {
 886             MutexLockerEx x(ParGCRareEvent_lock,
 887                             Mutex::_no_safepoint_check_flag);
 888 
 889             if (!_failures) {
 890               gclog_or_tty->print_cr("");
 891               gclog_or_tty->print_cr("----------");
 892             }
 893             gclog_or_tty->print_cr("Missing rem set entry:");
 894             gclog_or_tty->print_cr("Field "PTR_FORMAT" "
 895                                    "of obj "PTR_FORMAT", "
 896                                    "in region "HR_FORMAT,
 897                                    p, (void*) _containing_obj,
 898                                    HR_FORMAT_PARAMS(from));
 899             _containing_obj->print_on(gclog_or_tty);
 900             gclog_or_tty->print_cr("points to obj "PTR_FORMAT" "
 901                                    "in region "HR_FORMAT,
 902                                    (void*) obj,
 903                                    HR_FORMAT_PARAMS(to));
 904             obj->print_on(gclog_or_tty);
 905             gclog_or_tty->print_cr("Obj head CTE = %d, field CTE = %d.",
 906                           cv_obj, cv_field);
 907             gclog_or_tty->print_cr("----------");
 908             gclog_or_tty->flush();
 909             _failures = true;
 910             if (!failed) _n_failures++;
 911           }
 912         }
 913       }
 914     }
 915   }
 916 };
 917 
 918 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 919 // We would need a mechanism to make that code skip dead objects.
 920 
 921 void HeapRegion::verify(VerifyOption vo,
 922                         bool* failures) const {
 923   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 924   *failures = false;
 925   HeapWord* p = bottom();
 926   HeapWord* prev_p = NULL;
 927   VerifyLiveClosure vl_cl(g1, vo);
 928   bool is_humongous = isHumongous();
 929   bool do_bot_verify = !is_young();
 930   size_t object_num = 0;
 931   while (p < top()) {
 932     oop obj = oop(p);
 933     size_t obj_size = obj->size();
 934     object_num += 1;
 935 
 936     if (is_humongous != g1->isHumongous(obj_size)) {
 937       gclog_or_tty->print_cr("obj "PTR_FORMAT" is of %shumongous size ("
 938                              SIZE_FORMAT" words) in a %shumongous region",
 939                              p, g1->isHumongous(obj_size) ? "" : "non-",
 940                              obj_size, is_humongous ? "" : "non-");
 941        *failures = true;
 942        return;
 943     }
 944 
 945     // If it returns false, verify_for_object() will output the
 946     // appropriate messasge.
 947     if (do_bot_verify && !_offsets.verify_for_object(p, obj_size)) {
 948       *failures = true;
 949       return;
 950     }
 951 
 952     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 953       if (obj->is_oop()) {
 954         Klass* klass = obj->klass();
 955         if (!klass->is_metaspace_object()) {
 956           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 957                                  "not metadata", klass, obj);
 958           *failures = true;
 959           return;
 960         } else if (!klass->is_klass()) {
 961           gclog_or_tty->print_cr("klass "PTR_FORMAT" of object "PTR_FORMAT" "
 962                                  "not a klass", klass, obj);
 963           *failures = true;
 964           return;
 965         } else {
 966           vl_cl.set_containing_obj(obj);
 967           obj->oop_iterate_no_header(&vl_cl);
 968           if (vl_cl.failures()) {
 969             *failures = true;
 970           }
 971           if (G1MaxVerifyFailures >= 0 &&
 972               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 973             return;
 974           }
 975         }
 976       } else {
 977         gclog_or_tty->print_cr(PTR_FORMAT" no an oop", obj);
 978         *failures = true;
 979         return;
 980       }
 981     }
 982     prev_p = p;
 983     p += obj_size;
 984   }
 985 
 986   if (p != top()) {
 987     gclog_or_tty->print_cr("end of last object "PTR_FORMAT" "
 988                            "does not match top "PTR_FORMAT, p, top());
 989     *failures = true;
 990     return;
 991   }
 992 
 993   HeapWord* the_end = end();
 994   assert(p == top(), "it should still hold");
 995   // Do some extra BOT consistency checking for addresses in the
 996   // range [top, end). BOT look-ups in this range should yield
 997   // top. No point in doing that if top == end (there's nothing there).
 998   if (p < the_end) {
 999     // Look up top
1000     HeapWord* addr_1 = p;
1001     HeapWord* b_start_1 = _offsets.block_start_const(addr_1);
1002     if (b_start_1 != p) {
1003       gclog_or_tty->print_cr("BOT look up for top: "PTR_FORMAT" "
1004                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1005                              addr_1, b_start_1, p);
1006       *failures = true;
1007       return;
1008     }
1009 
1010     // Look up top + 1
1011     HeapWord* addr_2 = p + 1;
1012     if (addr_2 < the_end) {
1013       HeapWord* b_start_2 = _offsets.block_start_const(addr_2);
1014       if (b_start_2 != p) {
1015         gclog_or_tty->print_cr("BOT look up for top + 1: "PTR_FORMAT" "
1016                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1017                                addr_2, b_start_2, p);
1018         *failures = true;
1019         return;
1020       }
1021     }
1022 
1023     // Look up an address between top and end
1024     size_t diff = pointer_delta(the_end, p) / 2;
1025     HeapWord* addr_3 = p + diff;
1026     if (addr_3 < the_end) {
1027       HeapWord* b_start_3 = _offsets.block_start_const(addr_3);
1028       if (b_start_3 != p) {
1029         gclog_or_tty->print_cr("BOT look up for top + diff: "PTR_FORMAT" "
1030                                " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1031                                addr_3, b_start_3, p);
1032         *failures = true;
1033         return;
1034       }
1035     }
1036 
1037     // Loook up end - 1
1038     HeapWord* addr_4 = the_end - 1;
1039     HeapWord* b_start_4 = _offsets.block_start_const(addr_4);
1040     if (b_start_4 != p) {
1041       gclog_or_tty->print_cr("BOT look up for end - 1: "PTR_FORMAT" "
1042                              " yielded "PTR_FORMAT", expecting "PTR_FORMAT,
1043                              addr_4, b_start_4, p);
1044       *failures = true;
1045       return;
1046     }
1047   }
1048 
1049   if (is_humongous && object_num > 1) {
1050     gclog_or_tty->print_cr("region ["PTR_FORMAT","PTR_FORMAT"] is humongous "
1051                            "but has "SIZE_FORMAT", objects",
1052                            bottom(), end(), object_num);
1053     *failures = true;
1054     return;
1055   }
1056 
1057   verify_strong_code_roots(vo, failures);
1058 }
1059 
1060 void HeapRegion::verify() const {
1061   bool dummy = false;
1062   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
1063 }
1064 
1065 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
1066 // away eventually.
1067 
1068 void G1OffsetTableContigSpace::clear(bool mangle_space) {
1069   ContiguousSpace::clear(mangle_space);
1070   _offsets.zero_bottom_entry();
1071   _offsets.initialize_threshold();
1072 }
1073 
1074 void G1OffsetTableContigSpace::set_bottom(HeapWord* new_bottom) {
1075   Space::set_bottom(new_bottom);
1076   _offsets.set_bottom(new_bottom);
1077 }
1078 
1079 void G1OffsetTableContigSpace::set_end(HeapWord* new_end) {
1080   Space::set_end(new_end);
1081   _offsets.resize(new_end - bottom());
1082 }
1083 
1084 void G1OffsetTableContigSpace::print() const {
1085   print_short();
1086   gclog_or_tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1087                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1088                 bottom(), top(), _offsets.threshold(), end());
1089 }
1090 
1091 HeapWord* G1OffsetTableContigSpace::initialize_threshold() {
1092   return _offsets.initialize_threshold();
1093 }
1094 
1095 HeapWord* G1OffsetTableContigSpace::cross_threshold(HeapWord* start,
1096                                                     HeapWord* end) {
1097   _offsets.alloc_block(start, end);
1098   return _offsets.threshold();
1099 }
1100 
1101 HeapWord* G1OffsetTableContigSpace::saved_mark_word() const {
1102   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1103   assert( _gc_time_stamp <= g1h->get_gc_time_stamp(), "invariant" );
1104   if (_gc_time_stamp < g1h->get_gc_time_stamp())
1105     return top();
1106   else
1107     return ContiguousSpace::saved_mark_word();
1108 }
1109 
1110 void G1OffsetTableContigSpace::set_saved_mark() {
1111   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1112   unsigned curr_gc_time_stamp = g1h->get_gc_time_stamp();
1113 
1114   if (_gc_time_stamp < curr_gc_time_stamp) {
1115     // The order of these is important, as another thread might be
1116     // about to start scanning this region. If it does so after
1117     // set_saved_mark and before _gc_time_stamp = ..., then the latter
1118     // will be false, and it will pick up top() as the high water mark
1119     // of region. If it does so after _gc_time_stamp = ..., then it
1120     // will pick up the right saved_mark_word() as the high water mark
1121     // of the region. Either way, the behaviour will be correct.
1122     ContiguousSpace::set_saved_mark();
1123     OrderAccess::storestore();
1124     _gc_time_stamp = curr_gc_time_stamp;
1125     // No need to do another barrier to flush the writes above. If
1126     // this is called in parallel with other threads trying to
1127     // allocate into the region, the caller should call this while
1128     // holding a lock and when the lock is released the writes will be
1129     // flushed.
1130   }
1131 }
1132 
1133 G1OffsetTableContigSpace::
1134 G1OffsetTableContigSpace(G1BlockOffsetSharedArray* sharedOffsetArray,
1135                          MemRegion mr) :
1136   _offsets(sharedOffsetArray, mr),
1137   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1138   _gc_time_stamp(0)
1139 {
1140   _offsets.set_space(this);
1141   // false ==> we'll do the clearing if there's clearing to be done.
1142   ContiguousSpace::initialize(mr, false, SpaceDecorator::Mangle);
1143   _offsets.zero_bottom_entry();
1144   _offsets.initialize_threshold();
1145 }