1 /*
   2  * Copyright (c) 1997, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // Must be at least Windows 2000 or XP to use IsDebuggerPresent
  26 #define _WIN32_WINNT 0x500
  27 
  28 // no precompiled headers
  29 #include "classfile/classLoader.hpp"
  30 #include "classfile/systemDictionary.hpp"
  31 #include "classfile/vmSymbols.hpp"
  32 #include "code/icBuffer.hpp"
  33 #include "code/vtableStubs.hpp"
  34 #include "compiler/compileBroker.hpp"
  35 #include "compiler/disassembler.hpp"
  36 #include "interpreter/interpreter.hpp"
  37 #include "jvm_windows.h"
  38 #include "memory/allocation.inline.hpp"
  39 #include "memory/filemap.hpp"
  40 #include "mutex_windows.inline.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "os_share_windows.hpp"
  43 #include "prims/jniFastGetField.hpp"
  44 #include "prims/jvm.h"
  45 #include "prims/jvm_misc.hpp"
  46 #include "runtime/arguments.hpp"
  47 #include "runtime/extendedPC.hpp"
  48 #include "runtime/globals.hpp"
  49 #include "runtime/interfaceSupport.hpp"
  50 #include "runtime/java.hpp"
  51 #include "runtime/javaCalls.hpp"
  52 #include "runtime/mutexLocker.hpp"
  53 #include "runtime/objectMonitor.hpp"
  54 #include "runtime/osThread.hpp"
  55 #include "runtime/perfMemory.hpp"
  56 #include "runtime/sharedRuntime.hpp"
  57 #include "runtime/statSampler.hpp"
  58 #include "runtime/stubRoutines.hpp"
  59 #include "runtime/thread.inline.hpp"
  60 #include "runtime/threadCritical.hpp"
  61 #include "runtime/timer.hpp"
  62 #include "services/attachListener.hpp"
  63 #include "services/memTracker.hpp"
  64 #include "services/runtimeService.hpp"
  65 #include "utilities/decoder.hpp"
  66 #include "utilities/defaultStream.hpp"
  67 #include "utilities/events.hpp"
  68 #include "utilities/growableArray.hpp"
  69 #include "utilities/vmError.hpp"
  70 
  71 #ifdef _DEBUG
  72 #include <crtdbg.h>
  73 #endif
  74 
  75 
  76 #include <windows.h>
  77 #include <sys/types.h>
  78 #include <sys/stat.h>
  79 #include <sys/timeb.h>
  80 #include <objidl.h>
  81 #include <shlobj.h>
  82 
  83 #include <malloc.h>
  84 #include <signal.h>
  85 #include <direct.h>
  86 #include <errno.h>
  87 #include <fcntl.h>
  88 #include <io.h>
  89 #include <process.h>              // For _beginthreadex(), _endthreadex()
  90 #include <imagehlp.h>             // For os::dll_address_to_function_name
  91 /* for enumerating dll libraries */
  92 #include <vdmdbg.h>
  93 
  94 // for timer info max values which include all bits
  95 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
  96 
  97 // For DLL loading/load error detection
  98 // Values of PE COFF
  99 #define IMAGE_FILE_PTR_TO_SIGNATURE 0x3c
 100 #define IMAGE_FILE_SIGNATURE_LENGTH 4
 101 
 102 static HANDLE main_process;
 103 static HANDLE main_thread;
 104 static int    main_thread_id;
 105 
 106 static FILETIME process_creation_time;
 107 static FILETIME process_exit_time;
 108 static FILETIME process_user_time;
 109 static FILETIME process_kernel_time;
 110 
 111 #ifdef _M_IA64
 112 #define __CPU__ ia64
 113 #elif _M_AMD64
 114 #define __CPU__ amd64
 115 #else
 116 #define __CPU__ i486
 117 #endif
 118 
 119 // save DLL module handle, used by GetModuleFileName
 120 
 121 HINSTANCE vm_lib_handle;
 122 
 123 BOOL WINAPI DllMain(HINSTANCE hinst, DWORD reason, LPVOID reserved) {
 124   switch (reason) {
 125     case DLL_PROCESS_ATTACH:
 126       vm_lib_handle = hinst;
 127       if(ForceTimeHighResolution)
 128         timeBeginPeriod(1L);
 129       break;
 130     case DLL_PROCESS_DETACH:
 131       if(ForceTimeHighResolution)
 132         timeEndPeriod(1L);
 133       break;
 134     default:
 135       break;
 136   }
 137   return true;
 138 }
 139 
 140 static inline double fileTimeAsDouble(FILETIME* time) {
 141   const double high  = (double) ((unsigned int) ~0);
 142   const double split = 10000000.0;
 143   double result = (time->dwLowDateTime / split) +
 144                    time->dwHighDateTime * (high/split);
 145   return result;
 146 }
 147 
 148 // Implementation of os
 149 
 150 bool os::getenv(const char* name, char* buffer, int len) {
 151  int result = GetEnvironmentVariable(name, buffer, len);
 152  return result > 0 && result < len;
 153 }
 154 
 155 
 156 // No setuid programs under Windows.
 157 bool os::have_special_privileges() {
 158   return false;
 159 }
 160 
 161 
 162 // This method is  a periodic task to check for misbehaving JNI applications
 163 // under CheckJNI, we can add any periodic checks here.
 164 // For Windows at the moment does nothing
 165 void os::run_periodic_checks() {
 166   return;
 167 }
 168 
 169 #ifndef _WIN64
 170 // previous UnhandledExceptionFilter, if there is one
 171 static LPTOP_LEVEL_EXCEPTION_FILTER prev_uef_handler = NULL;
 172 
 173 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo);
 174 #endif
 175 void os::init_system_properties_values() {
 176   /* sysclasspath, java_home, dll_dir */
 177   {
 178       char *home_path;
 179       char *dll_path;
 180       char *pslash;
 181       char *bin = "\\bin";
 182       char home_dir[MAX_PATH];
 183 
 184       if (!getenv("_ALT_JAVA_HOME_DIR", home_dir, MAX_PATH)) {
 185           os::jvm_path(home_dir, sizeof(home_dir));
 186           // Found the full path to jvm.dll.
 187           // Now cut the path to <java_home>/jre if we can.
 188           *(strrchr(home_dir, '\\')) = '\0';  /* get rid of \jvm.dll */
 189           pslash = strrchr(home_dir, '\\');
 190           if (pslash != NULL) {
 191               *pslash = '\0';                 /* get rid of \{client|server} */
 192               pslash = strrchr(home_dir, '\\');
 193               if (pslash != NULL)
 194                   *pslash = '\0';             /* get rid of \bin */
 195           }
 196       }
 197 
 198       home_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + 1, mtInternal);
 199       if (home_path == NULL)
 200           return;
 201       strcpy(home_path, home_dir);
 202       Arguments::set_java_home(home_path);
 203 
 204       dll_path = NEW_C_HEAP_ARRAY(char, strlen(home_dir) + strlen(bin) + 1, mtInternal);
 205       if (dll_path == NULL)
 206           return;
 207       strcpy(dll_path, home_dir);
 208       strcat(dll_path, bin);
 209       Arguments::set_dll_dir(dll_path);
 210 
 211       if (!set_boot_path('\\', ';'))
 212           return;
 213   }
 214 
 215   /* library_path */
 216   #define EXT_DIR "\\lib\\ext"
 217   #define BIN_DIR "\\bin"
 218   #define PACKAGE_DIR "\\Sun\\Java"
 219   {
 220     /* Win32 library search order (See the documentation for LoadLibrary):
 221      *
 222      * 1. The directory from which application is loaded.
 223      * 2. The system wide Java Extensions directory (Java only)
 224      * 3. System directory (GetSystemDirectory)
 225      * 4. Windows directory (GetWindowsDirectory)
 226      * 5. The PATH environment variable
 227      * 6. The current directory
 228      */
 229 
 230     char *library_path;
 231     char tmp[MAX_PATH];
 232     char *path_str = ::getenv("PATH");
 233 
 234     library_path = NEW_C_HEAP_ARRAY(char, MAX_PATH * 5 + sizeof(PACKAGE_DIR) +
 235         sizeof(BIN_DIR) + (path_str ? strlen(path_str) : 0) + 10, mtInternal);
 236 
 237     library_path[0] = '\0';
 238 
 239     GetModuleFileName(NULL, tmp, sizeof(tmp));
 240     *(strrchr(tmp, '\\')) = '\0';
 241     strcat(library_path, tmp);
 242 
 243     GetWindowsDirectory(tmp, sizeof(tmp));
 244     strcat(library_path, ";");
 245     strcat(library_path, tmp);
 246     strcat(library_path, PACKAGE_DIR BIN_DIR);
 247 
 248     GetSystemDirectory(tmp, sizeof(tmp));
 249     strcat(library_path, ";");
 250     strcat(library_path, tmp);
 251 
 252     GetWindowsDirectory(tmp, sizeof(tmp));
 253     strcat(library_path, ";");
 254     strcat(library_path, tmp);
 255 
 256     if (path_str) {
 257         strcat(library_path, ";");
 258         strcat(library_path, path_str);
 259     }
 260 
 261     strcat(library_path, ";.");
 262 
 263     Arguments::set_library_path(library_path);
 264     FREE_C_HEAP_ARRAY(char, library_path, mtInternal);
 265   }
 266 
 267   /* Default extensions directory */
 268   {
 269     char path[MAX_PATH];
 270     char buf[2 * MAX_PATH + 2 * sizeof(EXT_DIR) + sizeof(PACKAGE_DIR) + 1];
 271     GetWindowsDirectory(path, MAX_PATH);
 272     sprintf(buf, "%s%s;%s%s%s", Arguments::get_java_home(), EXT_DIR,
 273         path, PACKAGE_DIR, EXT_DIR);
 274     Arguments::set_ext_dirs(buf);
 275   }
 276   #undef EXT_DIR
 277   #undef BIN_DIR
 278   #undef PACKAGE_DIR
 279 
 280   /* Default endorsed standards directory. */
 281   {
 282     #define ENDORSED_DIR "\\lib\\endorsed"
 283     size_t len = strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR);
 284     char * buf = NEW_C_HEAP_ARRAY(char, len, mtInternal);
 285     sprintf(buf, "%s%s", Arguments::get_java_home(), ENDORSED_DIR);
 286     Arguments::set_endorsed_dirs(buf);
 287     #undef ENDORSED_DIR
 288   }
 289 
 290 #ifndef _WIN64
 291   // set our UnhandledExceptionFilter and save any previous one
 292   prev_uef_handler = SetUnhandledExceptionFilter(Handle_FLT_Exception);
 293 #endif
 294 
 295   // Done
 296   return;
 297 }
 298 
 299 void os::breakpoint() {
 300   DebugBreak();
 301 }
 302 
 303 // Invoked from the BREAKPOINT Macro
 304 extern "C" void breakpoint() {
 305   os::breakpoint();
 306 }
 307 
 308 /*
 309  * RtlCaptureStackBackTrace Windows API may not exist prior to Windows XP.
 310  * So far, this method is only used by Native Memory Tracking, which is
 311  * only supported on Windows XP or later.
 312  */
 313 address os::get_caller_pc(int n) {
 314 #ifdef _NMT_NOINLINE_
 315   n ++;
 316 #endif
 317   address pc;
 318   if (os::Kernel32Dll::RtlCaptureStackBackTrace(n + 1, 1, (PVOID*)&pc, NULL) == 1) {
 319     return pc;
 320   }
 321   return NULL;
 322 }
 323 
 324 
 325 // os::current_stack_base()
 326 //
 327 //   Returns the base of the stack, which is the stack's
 328 //   starting address.  This function must be called
 329 //   while running on the stack of the thread being queried.
 330 
 331 address os::current_stack_base() {
 332   MEMORY_BASIC_INFORMATION minfo;
 333   address stack_bottom;
 334   size_t stack_size;
 335 
 336   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 337   stack_bottom =  (address)minfo.AllocationBase;
 338   stack_size = minfo.RegionSize;
 339 
 340   // Add up the sizes of all the regions with the same
 341   // AllocationBase.
 342   while( 1 )
 343   {
 344     VirtualQuery(stack_bottom+stack_size, &minfo, sizeof(minfo));
 345     if ( stack_bottom == (address)minfo.AllocationBase )
 346       stack_size += minfo.RegionSize;
 347     else
 348       break;
 349   }
 350 
 351 #ifdef _M_IA64
 352   // IA64 has memory and register stacks
 353   //
 354   // This is the stack layout you get on NT/IA64 if you specify 1MB stack limit
 355   // at thread creation (1MB backing store growing upwards, 1MB memory stack
 356   // growing downwards, 2MB summed up)
 357   //
 358   // ...
 359   // ------- top of stack (high address) -----
 360   // |
 361   // |      1MB
 362   // |      Backing Store (Register Stack)
 363   // |
 364   // |         / \
 365   // |          |
 366   // |          |
 367   // |          |
 368   // ------------------------ stack base -----
 369   // |      1MB
 370   // |      Memory Stack
 371   // |
 372   // |          |
 373   // |          |
 374   // |          |
 375   // |         \ /
 376   // |
 377   // ----- bottom of stack (low address) -----
 378   // ...
 379 
 380   stack_size = stack_size / 2;
 381 #endif
 382   return stack_bottom + stack_size;
 383 }
 384 
 385 size_t os::current_stack_size() {
 386   size_t sz;
 387   MEMORY_BASIC_INFORMATION minfo;
 388   VirtualQuery(&minfo, &minfo, sizeof(minfo));
 389   sz = (size_t)os::current_stack_base() - (size_t)minfo.AllocationBase;
 390   return sz;
 391 }
 392 
 393 struct tm* os::localtime_pd(const time_t* clock, struct tm* res) {
 394   const struct tm* time_struct_ptr = localtime(clock);
 395   if (time_struct_ptr != NULL) {
 396     *res = *time_struct_ptr;
 397     return res;
 398   }
 399   return NULL;
 400 }
 401 
 402 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo);
 403 
 404 // Thread start routine for all new Java threads
 405 static unsigned __stdcall java_start(Thread* thread) {
 406   // Try to randomize the cache line index of hot stack frames.
 407   // This helps when threads of the same stack traces evict each other's
 408   // cache lines. The threads can be either from the same JVM instance, or
 409   // from different JVM instances. The benefit is especially true for
 410   // processors with hyperthreading technology.
 411   static int counter = 0;
 412   int pid = os::current_process_id();
 413   _alloca(((pid ^ counter++) & 7) * 128);
 414 
 415   OSThread* osthr = thread->osthread();
 416   assert(osthr->get_state() == RUNNABLE, "invalid os thread state");
 417 
 418   if (UseNUMA) {
 419     int lgrp_id = os::numa_get_group_id();
 420     if (lgrp_id != -1) {
 421       thread->set_lgrp_id(lgrp_id);
 422     }
 423   }
 424 
 425 
 426   // Install a win32 structured exception handler around every thread created
 427   // by VM, so VM can genrate error dump when an exception occurred in non-
 428   // Java thread (e.g. VM thread).
 429   __try {
 430      thread->run();
 431   } __except(topLevelExceptionFilter(
 432              (_EXCEPTION_POINTERS*)_exception_info())) {
 433       // Nothing to do.
 434   }
 435 
 436   // One less thread is executing
 437   // When the VMThread gets here, the main thread may have already exited
 438   // which frees the CodeHeap containing the Atomic::add code
 439   if (thread != VMThread::vm_thread() && VMThread::vm_thread() != NULL) {
 440     Atomic::dec_ptr((intptr_t*)&os::win32::_os_thread_count);
 441   }
 442 
 443   return 0;
 444 }
 445 
 446 static OSThread* create_os_thread(Thread* thread, HANDLE thread_handle, int thread_id) {
 447   // Allocate the OSThread object
 448   OSThread* osthread = new OSThread(NULL, NULL);
 449   if (osthread == NULL) return NULL;
 450 
 451   // Initialize support for Java interrupts
 452   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 453   if (interrupt_event == NULL) {
 454     delete osthread;
 455     return NULL;
 456   }
 457   osthread->set_interrupt_event(interrupt_event);
 458 
 459   // Store info on the Win32 thread into the OSThread
 460   osthread->set_thread_handle(thread_handle);
 461   osthread->set_thread_id(thread_id);
 462 
 463   if (UseNUMA) {
 464     int lgrp_id = os::numa_get_group_id();
 465     if (lgrp_id != -1) {
 466       thread->set_lgrp_id(lgrp_id);
 467     }
 468   }
 469 
 470   // Initial thread state is INITIALIZED, not SUSPENDED
 471   osthread->set_state(INITIALIZED);
 472 
 473   return osthread;
 474 }
 475 
 476 
 477 bool os::create_attached_thread(JavaThread* thread) {
 478 #ifdef ASSERT
 479   thread->verify_not_published();
 480 #endif
 481   HANDLE thread_h;
 482   if (!DuplicateHandle(main_process, GetCurrentThread(), GetCurrentProcess(),
 483                        &thread_h, THREAD_ALL_ACCESS, false, 0)) {
 484     fatal("DuplicateHandle failed\n");
 485   }
 486   OSThread* osthread = create_os_thread(thread, thread_h,
 487                                         (int)current_thread_id());
 488   if (osthread == NULL) {
 489      return false;
 490   }
 491 
 492   // Initial thread state is RUNNABLE
 493   osthread->set_state(RUNNABLE);
 494 
 495   thread->set_osthread(osthread);
 496   return true;
 497 }
 498 
 499 bool os::create_main_thread(JavaThread* thread) {
 500 #ifdef ASSERT
 501   thread->verify_not_published();
 502 #endif
 503   if (_starting_thread == NULL) {
 504     _starting_thread = create_os_thread(thread, main_thread, main_thread_id);
 505      if (_starting_thread == NULL) {
 506         return false;
 507      }
 508   }
 509 
 510   // The primordial thread is runnable from the start)
 511   _starting_thread->set_state(RUNNABLE);
 512 
 513   thread->set_osthread(_starting_thread);
 514   return true;
 515 }
 516 
 517 // Allocate and initialize a new OSThread
 518 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 519   unsigned thread_id;
 520 
 521   // Allocate the OSThread object
 522   OSThread* osthread = new OSThread(NULL, NULL);
 523   if (osthread == NULL) {
 524     return false;
 525   }
 526 
 527   // Initialize support for Java interrupts
 528   HANDLE interrupt_event = CreateEvent(NULL, true, false, NULL);
 529   if (interrupt_event == NULL) {
 530     delete osthread;
 531     return NULL;
 532   }
 533   osthread->set_interrupt_event(interrupt_event);
 534   osthread->set_interrupted(false);
 535 
 536   thread->set_osthread(osthread);
 537 
 538   if (stack_size == 0) {
 539     switch (thr_type) {
 540     case os::java_thread:
 541       // Java threads use ThreadStackSize which default value can be changed with the flag -Xss
 542       if (JavaThread::stack_size_at_create() > 0)
 543         stack_size = JavaThread::stack_size_at_create();
 544       break;
 545     case os::compiler_thread:
 546       if (CompilerThreadStackSize > 0) {
 547         stack_size = (size_t)(CompilerThreadStackSize * K);
 548         break;
 549       } // else fall through:
 550         // use VMThreadStackSize if CompilerThreadStackSize is not defined
 551     case os::vm_thread:
 552     case os::pgc_thread:
 553     case os::cgc_thread:
 554     case os::watcher_thread:
 555       if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 556       break;
 557     }
 558   }
 559 
 560   // Create the Win32 thread
 561   //
 562   // Contrary to what MSDN document says, "stack_size" in _beginthreadex()
 563   // does not specify stack size. Instead, it specifies the size of
 564   // initially committed space. The stack size is determined by
 565   // PE header in the executable. If the committed "stack_size" is larger
 566   // than default value in the PE header, the stack is rounded up to the
 567   // nearest multiple of 1MB. For example if the launcher has default
 568   // stack size of 320k, specifying any size less than 320k does not
 569   // affect the actual stack size at all, it only affects the initial
 570   // commitment. On the other hand, specifying 'stack_size' larger than
 571   // default value may cause significant increase in memory usage, because
 572   // not only the stack space will be rounded up to MB, but also the
 573   // entire space is committed upfront.
 574   //
 575   // Finally Windows XP added a new flag 'STACK_SIZE_PARAM_IS_A_RESERVATION'
 576   // for CreateThread() that can treat 'stack_size' as stack size. However we
 577   // are not supposed to call CreateThread() directly according to MSDN
 578   // document because JVM uses C runtime library. The good news is that the
 579   // flag appears to work with _beginthredex() as well.
 580 
 581 #ifndef STACK_SIZE_PARAM_IS_A_RESERVATION
 582 #define STACK_SIZE_PARAM_IS_A_RESERVATION  (0x10000)
 583 #endif
 584 
 585   HANDLE thread_handle =
 586     (HANDLE)_beginthreadex(NULL,
 587                            (unsigned)stack_size,
 588                            (unsigned (__stdcall *)(void*)) java_start,
 589                            thread,
 590                            CREATE_SUSPENDED | STACK_SIZE_PARAM_IS_A_RESERVATION,
 591                            &thread_id);
 592   if (thread_handle == NULL) {
 593     // perhaps STACK_SIZE_PARAM_IS_A_RESERVATION is not supported, try again
 594     // without the flag.
 595     thread_handle =
 596     (HANDLE)_beginthreadex(NULL,
 597                            (unsigned)stack_size,
 598                            (unsigned (__stdcall *)(void*)) java_start,
 599                            thread,
 600                            CREATE_SUSPENDED,
 601                            &thread_id);
 602   }
 603   if (thread_handle == NULL) {
 604     // Need to clean up stuff we've allocated so far
 605     CloseHandle(osthread->interrupt_event());
 606     thread->set_osthread(NULL);
 607     delete osthread;
 608     return NULL;
 609   }
 610 
 611   Atomic::inc_ptr((intptr_t*)&os::win32::_os_thread_count);
 612 
 613   // Store info on the Win32 thread into the OSThread
 614   osthread->set_thread_handle(thread_handle);
 615   osthread->set_thread_id(thread_id);
 616 
 617   // Initial thread state is INITIALIZED, not SUSPENDED
 618   osthread->set_state(INITIALIZED);
 619 
 620   // The thread is returned suspended (in state INITIALIZED), and is started higher up in the call chain
 621   return true;
 622 }
 623 
 624 
 625 // Free Win32 resources related to the OSThread
 626 void os::free_thread(OSThread* osthread) {
 627   assert(osthread != NULL, "osthread not set");
 628   CloseHandle(osthread->thread_handle());
 629   CloseHandle(osthread->interrupt_event());
 630   delete osthread;
 631 }
 632 
 633 
 634 static int    has_performance_count = 0;
 635 static jlong first_filetime;
 636 static jlong initial_performance_count;
 637 static jlong performance_frequency;
 638 
 639 
 640 jlong as_long(LARGE_INTEGER x) {
 641   jlong result = 0; // initialization to avoid warning
 642   set_high(&result, x.HighPart);
 643   set_low(&result,  x.LowPart);
 644   return result;
 645 }
 646 
 647 
 648 jlong os::elapsed_counter() {
 649   LARGE_INTEGER count;
 650   if (has_performance_count) {
 651     QueryPerformanceCounter(&count);
 652     return as_long(count) - initial_performance_count;
 653   } else {
 654     FILETIME wt;
 655     GetSystemTimeAsFileTime(&wt);
 656     return (jlong_from(wt.dwHighDateTime, wt.dwLowDateTime) - first_filetime);
 657   }
 658 }
 659 
 660 
 661 jlong os::elapsed_frequency() {
 662   if (has_performance_count) {
 663     return performance_frequency;
 664   } else {
 665    // the FILETIME time is the number of 100-nanosecond intervals since January 1,1601.
 666    return 10000000;
 667   }
 668 }
 669 
 670 
 671 julong os::available_memory() {
 672   return win32::available_memory();
 673 }
 674 
 675 julong os::win32::available_memory() {
 676   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
 677   // value if total memory is larger than 4GB
 678   MEMORYSTATUSEX ms;
 679   ms.dwLength = sizeof(ms);
 680   GlobalMemoryStatusEx(&ms);
 681 
 682   return (julong)ms.ullAvailPhys;
 683 }
 684 
 685 julong os::physical_memory() {
 686   return win32::physical_memory();
 687 }
 688 
 689 bool os::has_allocatable_memory_limit(julong* limit) {
 690   MEMORYSTATUSEX ms;
 691   ms.dwLength = sizeof(ms);
 692   GlobalMemoryStatusEx(&ms);
 693 #ifdef _LP64
 694   *limit = (julong)ms.ullAvailVirtual;
 695   return true;
 696 #else
 697   // Limit to 1400m because of the 2gb address space wall
 698   *limit = MIN2((julong)1400*M, (julong)ms.ullAvailVirtual);
 699   return true;
 700 #endif
 701 }
 702 
 703 // VC6 lacks DWORD_PTR
 704 #if _MSC_VER < 1300
 705 typedef UINT_PTR DWORD_PTR;
 706 #endif
 707 
 708 int os::active_processor_count() {
 709   DWORD_PTR lpProcessAffinityMask = 0;
 710   DWORD_PTR lpSystemAffinityMask = 0;
 711   int proc_count = processor_count();
 712   if (proc_count <= sizeof(UINT_PTR) * BitsPerByte &&
 713       GetProcessAffinityMask(GetCurrentProcess(), &lpProcessAffinityMask, &lpSystemAffinityMask)) {
 714     // Nof active processors is number of bits in process affinity mask
 715     int bitcount = 0;
 716     while (lpProcessAffinityMask != 0) {
 717       lpProcessAffinityMask = lpProcessAffinityMask & (lpProcessAffinityMask-1);
 718       bitcount++;
 719     }
 720     return bitcount;
 721   } else {
 722     return proc_count;
 723   }
 724 }
 725 
 726 void os::set_native_thread_name(const char *name) {
 727   // Not yet implemented.
 728   return;
 729 }
 730 
 731 bool os::distribute_processes(uint length, uint* distribution) {
 732   // Not yet implemented.
 733   return false;
 734 }
 735 
 736 bool os::bind_to_processor(uint processor_id) {
 737   // Not yet implemented.
 738   return false;
 739 }
 740 
 741 static void initialize_performance_counter() {
 742   LARGE_INTEGER count;
 743   if (QueryPerformanceFrequency(&count)) {
 744     has_performance_count = 1;
 745     performance_frequency = as_long(count);
 746     QueryPerformanceCounter(&count);
 747     initial_performance_count = as_long(count);
 748   } else {
 749     has_performance_count = 0;
 750     FILETIME wt;
 751     GetSystemTimeAsFileTime(&wt);
 752     first_filetime = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 753   }
 754 }
 755 
 756 
 757 double os::elapsedTime() {
 758   return (double) elapsed_counter() / (double) elapsed_frequency();
 759 }
 760 
 761 
 762 // Windows format:
 763 //   The FILETIME structure is a 64-bit value representing the number of 100-nanosecond intervals since January 1, 1601.
 764 // Java format:
 765 //   Java standards require the number of milliseconds since 1/1/1970
 766 
 767 // Constant offset - calculated using offset()
 768 static jlong  _offset   = 116444736000000000;
 769 // Fake time counter for reproducible results when debugging
 770 static jlong  fake_time = 0;
 771 
 772 #ifdef ASSERT
 773 // Just to be safe, recalculate the offset in debug mode
 774 static jlong _calculated_offset = 0;
 775 static int   _has_calculated_offset = 0;
 776 
 777 jlong offset() {
 778   if (_has_calculated_offset) return _calculated_offset;
 779   SYSTEMTIME java_origin;
 780   java_origin.wYear          = 1970;
 781   java_origin.wMonth         = 1;
 782   java_origin.wDayOfWeek     = 0; // ignored
 783   java_origin.wDay           = 1;
 784   java_origin.wHour          = 0;
 785   java_origin.wMinute        = 0;
 786   java_origin.wSecond        = 0;
 787   java_origin.wMilliseconds  = 0;
 788   FILETIME jot;
 789   if (!SystemTimeToFileTime(&java_origin, &jot)) {
 790     fatal(err_msg("Error = %d\nWindows error", GetLastError()));
 791   }
 792   _calculated_offset = jlong_from(jot.dwHighDateTime, jot.dwLowDateTime);
 793   _has_calculated_offset = 1;
 794   assert(_calculated_offset == _offset, "Calculated and constant time offsets must be equal");
 795   return _calculated_offset;
 796 }
 797 #else
 798 jlong offset() {
 799   return _offset;
 800 }
 801 #endif
 802 
 803 jlong windows_to_java_time(FILETIME wt) {
 804   jlong a = jlong_from(wt.dwHighDateTime, wt.dwLowDateTime);
 805   return (a - offset()) / 10000;
 806 }
 807 
 808 FILETIME java_to_windows_time(jlong l) {
 809   jlong a = (l * 10000) + offset();
 810   FILETIME result;
 811   result.dwHighDateTime = high(a);
 812   result.dwLowDateTime  = low(a);
 813   return result;
 814 }
 815 
 816 bool os::supports_vtime() { return true; }
 817 bool os::enable_vtime() { return false; }
 818 bool os::vtime_enabled() { return false; }
 819 
 820 double os::elapsedVTime() {
 821   FILETIME created;
 822   FILETIME exited;
 823   FILETIME kernel;
 824   FILETIME user;
 825   if (GetThreadTimes(GetCurrentThread(), &created, &exited, &kernel, &user) != 0) {
 826     // the resolution of windows_to_java_time() should be sufficient (ms)
 827     return (double) (windows_to_java_time(kernel) + windows_to_java_time(user)) / MILLIUNITS;
 828   } else {
 829     return elapsedTime();
 830   }
 831 }
 832 
 833 jlong os::javaTimeMillis() {
 834   if (UseFakeTimers) {
 835     return fake_time++;
 836   } else {
 837     FILETIME wt;
 838     GetSystemTimeAsFileTime(&wt);
 839     return windows_to_java_time(wt);
 840   }
 841 }
 842 
 843 jlong os::javaTimeNanos() {
 844   if (!has_performance_count) {
 845     return javaTimeMillis() * NANOSECS_PER_MILLISEC; // the best we can do.
 846   } else {
 847     LARGE_INTEGER current_count;
 848     QueryPerformanceCounter(&current_count);
 849     double current = as_long(current_count);
 850     double freq = performance_frequency;
 851     jlong time = (jlong)((current/freq) * NANOSECS_PER_SEC);
 852     return time;
 853   }
 854 }
 855 
 856 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
 857   if (!has_performance_count) {
 858     // javaTimeMillis() doesn't have much percision,
 859     // but it is not going to wrap -- so all 64 bits
 860     info_ptr->max_value = ALL_64_BITS;
 861 
 862     // this is a wall clock timer, so may skip
 863     info_ptr->may_skip_backward = true;
 864     info_ptr->may_skip_forward = true;
 865   } else {
 866     jlong freq = performance_frequency;
 867     if (freq < NANOSECS_PER_SEC) {
 868       // the performance counter is 64 bits and we will
 869       // be multiplying it -- so no wrap in 64 bits
 870       info_ptr->max_value = ALL_64_BITS;
 871     } else if (freq > NANOSECS_PER_SEC) {
 872       // use the max value the counter can reach to
 873       // determine the max value which could be returned
 874       julong max_counter = (julong)ALL_64_BITS;
 875       info_ptr->max_value = (jlong)(max_counter / (freq / NANOSECS_PER_SEC));
 876     } else {
 877       // the performance counter is 64 bits and we will
 878       // be using it directly -- so no wrap in 64 bits
 879       info_ptr->max_value = ALL_64_BITS;
 880     }
 881 
 882     // using a counter, so no skipping
 883     info_ptr->may_skip_backward = false;
 884     info_ptr->may_skip_forward = false;
 885   }
 886   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
 887 }
 888 
 889 char* os::local_time_string(char *buf, size_t buflen) {
 890   SYSTEMTIME st;
 891   GetLocalTime(&st);
 892   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
 893                st.wYear, st.wMonth, st.wDay, st.wHour, st.wMinute, st.wSecond);
 894   return buf;
 895 }
 896 
 897 bool os::getTimesSecs(double* process_real_time,
 898                      double* process_user_time,
 899                      double* process_system_time) {
 900   HANDLE h_process = GetCurrentProcess();
 901   FILETIME create_time, exit_time, kernel_time, user_time;
 902   BOOL result = GetProcessTimes(h_process,
 903                                &create_time,
 904                                &exit_time,
 905                                &kernel_time,
 906                                &user_time);
 907   if (result != 0) {
 908     FILETIME wt;
 909     GetSystemTimeAsFileTime(&wt);
 910     jlong rtc_millis = windows_to_java_time(wt);
 911     jlong user_millis = windows_to_java_time(user_time);
 912     jlong system_millis = windows_to_java_time(kernel_time);
 913     *process_real_time = ((double) rtc_millis) / ((double) MILLIUNITS);
 914     *process_user_time = ((double) user_millis) / ((double) MILLIUNITS);
 915     *process_system_time = ((double) system_millis) / ((double) MILLIUNITS);
 916     return true;
 917   } else {
 918     return false;
 919   }
 920 }
 921 
 922 void os::shutdown() {
 923 
 924   // allow PerfMemory to attempt cleanup of any persistent resources
 925   perfMemory_exit();
 926 
 927   // flush buffered output, finish log files
 928   ostream_abort();
 929 
 930   // Check for abort hook
 931   abort_hook_t abort_hook = Arguments::abort_hook();
 932   if (abort_hook != NULL) {
 933     abort_hook();
 934   }
 935 }
 936 
 937 
 938 static BOOL  (WINAPI *_MiniDumpWriteDump)  ( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 939                                             PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION);
 940 
 941 void os::check_or_create_dump(void* exceptionRecord, void* contextRecord, char* buffer, size_t bufferSize) {
 942   HINSTANCE dbghelp;
 943   EXCEPTION_POINTERS ep;
 944   MINIDUMP_EXCEPTION_INFORMATION mei;
 945   MINIDUMP_EXCEPTION_INFORMATION* pmei;
 946 
 947   HANDLE hProcess = GetCurrentProcess();
 948   DWORD processId = GetCurrentProcessId();
 949   HANDLE dumpFile;
 950   MINIDUMP_TYPE dumpType;
 951   static const char* cwd;
 952 
 953 // Default is to always create dump for debug builds, on product builds only dump on server versions of Windows.
 954 #ifndef ASSERT
 955   // If running on a client version of Windows and user has not explicitly enabled dumping
 956   if (!os::win32::is_windows_server() && !CreateMinidumpOnCrash) {
 957     VMError::report_coredump_status("Minidumps are not enabled by default on client versions of Windows", false);
 958     return;
 959     // If running on a server version of Windows and user has explictly disabled dumping
 960   } else if (os::win32::is_windows_server() && !FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 961     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 962     return;
 963   }
 964 #else
 965   if (!FLAG_IS_DEFAULT(CreateMinidumpOnCrash) && !CreateMinidumpOnCrash) {
 966     VMError::report_coredump_status("Minidump has been disabled from the command line", false);
 967     return;
 968   }
 969 #endif
 970 
 971   dbghelp = os::win32::load_Windows_dll("DBGHELP.DLL", NULL, 0);
 972 
 973   if (dbghelp == NULL) {
 974     VMError::report_coredump_status("Failed to load dbghelp.dll", false);
 975     return;
 976   }
 977 
 978   _MiniDumpWriteDump = CAST_TO_FN_PTR(
 979     BOOL(WINAPI *)( HANDLE, DWORD, HANDLE, MINIDUMP_TYPE, PMINIDUMP_EXCEPTION_INFORMATION,
 980     PMINIDUMP_USER_STREAM_INFORMATION, PMINIDUMP_CALLBACK_INFORMATION),
 981     GetProcAddress(dbghelp, "MiniDumpWriteDump"));
 982 
 983   if (_MiniDumpWriteDump == NULL) {
 984     VMError::report_coredump_status("Failed to find MiniDumpWriteDump() in module dbghelp.dll", false);
 985     return;
 986   }
 987 
 988   dumpType = (MINIDUMP_TYPE)(MiniDumpWithFullMemory | MiniDumpWithHandleData);
 989 
 990 // Older versions of dbghelp.h doesn't contain all the dumptypes we want, dbghelp.h with
 991 // API_VERSION_NUMBER 11 or higher contains the ones we want though
 992 #if API_VERSION_NUMBER >= 11
 993   dumpType = (MINIDUMP_TYPE)(dumpType | MiniDumpWithFullMemoryInfo | MiniDumpWithThreadInfo |
 994     MiniDumpWithUnloadedModules);
 995 #endif
 996 
 997   cwd = get_current_directory(NULL, 0);
 998   jio_snprintf(buffer, bufferSize, "%s\\hs_err_pid%u.mdmp",cwd, current_process_id());
 999   dumpFile = CreateFile(buffer, GENERIC_WRITE, 0, NULL, CREATE_ALWAYS, FILE_ATTRIBUTE_NORMAL, NULL);
1000 
1001   if (dumpFile == INVALID_HANDLE_VALUE) {
1002     VMError::report_coredump_status("Failed to create file for dumping", false);
1003     return;
1004   }
1005   if (exceptionRecord != NULL && contextRecord != NULL) {
1006     ep.ContextRecord = (PCONTEXT) contextRecord;
1007     ep.ExceptionRecord = (PEXCEPTION_RECORD) exceptionRecord;
1008 
1009     mei.ThreadId = GetCurrentThreadId();
1010     mei.ExceptionPointers = &ep;
1011     pmei = &mei;
1012   } else {
1013     pmei = NULL;
1014   }
1015 
1016 
1017   // Older versions of dbghelp.dll (the one shipped with Win2003 for example) may not support all
1018   // the dump types we really want. If first call fails, lets fall back to just use MiniDumpWithFullMemory then.
1019   if (_MiniDumpWriteDump(hProcess, processId, dumpFile, dumpType, pmei, NULL, NULL) == false &&
1020       _MiniDumpWriteDump(hProcess, processId, dumpFile, (MINIDUMP_TYPE)MiniDumpWithFullMemory, pmei, NULL, NULL) == false) {
1021         DWORD error = GetLastError();
1022         LPTSTR msgbuf = NULL;
1023 
1024         if (FormatMessage(FORMAT_MESSAGE_ALLOCATE_BUFFER |
1025                       FORMAT_MESSAGE_FROM_SYSTEM |
1026                       FORMAT_MESSAGE_IGNORE_INSERTS,
1027                       NULL, error, 0, (LPTSTR)&msgbuf, 0, NULL) != 0) {
1028 
1029           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x: %s)", error, msgbuf);
1030           LocalFree(msgbuf);
1031         } else {
1032           // Call to FormatMessage failed, just include the result from GetLastError
1033           jio_snprintf(buffer, bufferSize, "Call to MiniDumpWriteDump() failed (Error 0x%x)", error);
1034         }
1035         VMError::report_coredump_status(buffer, false);
1036   } else {
1037     VMError::report_coredump_status(buffer, true);
1038   }
1039 
1040   CloseHandle(dumpFile);
1041 }
1042 
1043 
1044 
1045 void os::abort(bool dump_core)
1046 {
1047   os::shutdown();
1048   // no core dump on Windows
1049   ::exit(1);
1050 }
1051 
1052 // Die immediately, no exit hook, no abort hook, no cleanup.
1053 void os::die() {
1054   _exit(-1);
1055 }
1056 
1057 // Directory routines copied from src/win32/native/java/io/dirent_md.c
1058 //  * dirent_md.c       1.15 00/02/02
1059 //
1060 // The declarations for DIR and struct dirent are in jvm_win32.h.
1061 
1062 /* Caller must have already run dirname through JVM_NativePath, which removes
1063    duplicate slashes and converts all instances of '/' into '\\'. */
1064 
1065 DIR *
1066 os::opendir(const char *dirname)
1067 {
1068     assert(dirname != NULL, "just checking");   // hotspot change
1069     DIR *dirp = (DIR *)malloc(sizeof(DIR), mtInternal);
1070     DWORD fattr;                                // hotspot change
1071     char alt_dirname[4] = { 0, 0, 0, 0 };
1072 
1073     if (dirp == 0) {
1074         errno = ENOMEM;
1075         return 0;
1076     }
1077 
1078     /*
1079      * Win32 accepts "\" in its POSIX stat(), but refuses to treat it
1080      * as a directory in FindFirstFile().  We detect this case here and
1081      * prepend the current drive name.
1082      */
1083     if (dirname[1] == '\0' && dirname[0] == '\\') {
1084         alt_dirname[0] = _getdrive() + 'A' - 1;
1085         alt_dirname[1] = ':';
1086         alt_dirname[2] = '\\';
1087         alt_dirname[3] = '\0';
1088         dirname = alt_dirname;
1089     }
1090 
1091     dirp->path = (char *)malloc(strlen(dirname) + 5, mtInternal);
1092     if (dirp->path == 0) {
1093         free(dirp, mtInternal);
1094         errno = ENOMEM;
1095         return 0;
1096     }
1097     strcpy(dirp->path, dirname);
1098 
1099     fattr = GetFileAttributes(dirp->path);
1100     if (fattr == 0xffffffff) {
1101         free(dirp->path, mtInternal);
1102         free(dirp, mtInternal);
1103         errno = ENOENT;
1104         return 0;
1105     } else if ((fattr & FILE_ATTRIBUTE_DIRECTORY) == 0) {
1106         free(dirp->path, mtInternal);
1107         free(dirp, mtInternal);
1108         errno = ENOTDIR;
1109         return 0;
1110     }
1111 
1112     /* Append "*.*", or possibly "\\*.*", to path */
1113     if (dirp->path[1] == ':'
1114         && (dirp->path[2] == '\0'
1115             || (dirp->path[2] == '\\' && dirp->path[3] == '\0'))) {
1116         /* No '\\' needed for cases like "Z:" or "Z:\" */
1117         strcat(dirp->path, "*.*");
1118     } else {
1119         strcat(dirp->path, "\\*.*");
1120     }
1121 
1122     dirp->handle = FindFirstFile(dirp->path, &dirp->find_data);
1123     if (dirp->handle == INVALID_HANDLE_VALUE) {
1124         if (GetLastError() != ERROR_FILE_NOT_FOUND) {
1125             free(dirp->path, mtInternal);
1126             free(dirp, mtInternal);
1127             errno = EACCES;
1128             return 0;
1129         }
1130     }
1131     return dirp;
1132 }
1133 
1134 /* parameter dbuf unused on Windows */
1135 
1136 struct dirent *
1137 os::readdir(DIR *dirp, dirent *dbuf)
1138 {
1139     assert(dirp != NULL, "just checking");      // hotspot change
1140     if (dirp->handle == INVALID_HANDLE_VALUE) {
1141         return 0;
1142     }
1143 
1144     strcpy(dirp->dirent.d_name, dirp->find_data.cFileName);
1145 
1146     if (!FindNextFile(dirp->handle, &dirp->find_data)) {
1147         if (GetLastError() == ERROR_INVALID_HANDLE) {
1148             errno = EBADF;
1149             return 0;
1150         }
1151         FindClose(dirp->handle);
1152         dirp->handle = INVALID_HANDLE_VALUE;
1153     }
1154 
1155     return &dirp->dirent;
1156 }
1157 
1158 int
1159 os::closedir(DIR *dirp)
1160 {
1161     assert(dirp != NULL, "just checking");      // hotspot change
1162     if (dirp->handle != INVALID_HANDLE_VALUE) {
1163         if (!FindClose(dirp->handle)) {
1164             errno = EBADF;
1165             return -1;
1166         }
1167         dirp->handle = INVALID_HANDLE_VALUE;
1168     }
1169     free(dirp->path, mtInternal);
1170     free(dirp, mtInternal);
1171     return 0;
1172 }
1173 
1174 // This must be hard coded because it's the system's temporary
1175 // directory not the java application's temp directory, ala java.io.tmpdir.
1176 const char* os::get_temp_directory() {
1177   static char path_buf[MAX_PATH];
1178   if (GetTempPath(MAX_PATH, path_buf)>0)
1179     return path_buf;
1180   else{
1181     path_buf[0]='\0';
1182     return path_buf;
1183   }
1184 }
1185 
1186 static bool file_exists(const char* filename) {
1187   if (filename == NULL || strlen(filename) == 0) {
1188     return false;
1189   }
1190   return GetFileAttributes(filename) != INVALID_FILE_ATTRIBUTES;
1191 }
1192 
1193 bool os::dll_build_name(char *buffer, size_t buflen,
1194                         const char* pname, const char* fname) {
1195   bool retval = false;
1196   const size_t pnamelen = pname ? strlen(pname) : 0;
1197   const char c = (pnamelen > 0) ? pname[pnamelen-1] : 0;
1198 
1199   // Return error on buffer overflow.
1200   if (pnamelen + strlen(fname) + 10 > buflen) {
1201     return retval;
1202   }
1203 
1204   if (pnamelen == 0) {
1205     jio_snprintf(buffer, buflen, "%s.dll", fname);
1206     retval = true;
1207   } else if (c == ':' || c == '\\') {
1208     jio_snprintf(buffer, buflen, "%s%s.dll", pname, fname);
1209     retval = true;
1210   } else if (strchr(pname, *os::path_separator()) != NULL) {
1211     int n;
1212     char** pelements = split_path(pname, &n);
1213     if (pelements == NULL) {
1214       return false;
1215     }
1216     for (int i = 0 ; i < n ; i++) {
1217       char* path = pelements[i];
1218       // Really shouldn't be NULL, but check can't hurt
1219       size_t plen = (path == NULL) ? 0 : strlen(path);
1220       if (plen == 0) {
1221         continue; // skip the empty path values
1222       }
1223       const char lastchar = path[plen - 1];
1224       if (lastchar == ':' || lastchar == '\\') {
1225         jio_snprintf(buffer, buflen, "%s%s.dll", path, fname);
1226       } else {
1227         jio_snprintf(buffer, buflen, "%s\\%s.dll", path, fname);
1228       }
1229       if (file_exists(buffer)) {
1230         retval = true;
1231         break;
1232       }
1233     }
1234     // release the storage
1235     for (int i = 0 ; i < n ; i++) {
1236       if (pelements[i] != NULL) {
1237         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1238       }
1239     }
1240     if (pelements != NULL) {
1241       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1242     }
1243   } else {
1244     jio_snprintf(buffer, buflen, "%s\\%s.dll", pname, fname);
1245     retval = true;
1246   }
1247   return retval;
1248 }
1249 
1250 // Needs to be in os specific directory because windows requires another
1251 // header file <direct.h>
1252 const char* os::get_current_directory(char *buf, size_t buflen) {
1253   int n = static_cast<int>(buflen);
1254   if (buflen > INT_MAX)  n = INT_MAX;
1255   return _getcwd(buf, n);
1256 }
1257 
1258 //-----------------------------------------------------------
1259 // Helper functions for fatal error handler
1260 #ifdef _WIN64
1261 // Helper routine which returns true if address in
1262 // within the NTDLL address space.
1263 //
1264 static bool _addr_in_ntdll( address addr )
1265 {
1266   HMODULE hmod;
1267   MODULEINFO minfo;
1268 
1269   hmod = GetModuleHandle("NTDLL.DLL");
1270   if ( hmod == NULL ) return false;
1271   if ( !os::PSApiDll::GetModuleInformation( GetCurrentProcess(), hmod,
1272                                &minfo, sizeof(MODULEINFO)) )
1273     return false;
1274 
1275   if ( (addr >= minfo.lpBaseOfDll) &&
1276        (addr < (address)((uintptr_t)minfo.lpBaseOfDll + (uintptr_t)minfo.SizeOfImage)))
1277     return true;
1278   else
1279     return false;
1280 }
1281 #endif
1282 
1283 
1284 // Enumerate all modules for a given process ID
1285 //
1286 // Notice that Windows 95/98/Me and Windows NT/2000/XP have
1287 // different API for doing this. We use PSAPI.DLL on NT based
1288 // Windows and ToolHelp on 95/98/Me.
1289 
1290 // Callback function that is called by enumerate_modules() on
1291 // every DLL module.
1292 // Input parameters:
1293 //    int       pid,
1294 //    char*     module_file_name,
1295 //    address   module_base_addr,
1296 //    unsigned  module_size,
1297 //    void*     param
1298 typedef int (*EnumModulesCallbackFunc)(int, char *, address, unsigned, void *);
1299 
1300 // enumerate_modules for Windows NT, using PSAPI
1301 static int _enumerate_modules_winnt( int pid, EnumModulesCallbackFunc func, void * param)
1302 {
1303   HANDLE   hProcess ;
1304 
1305 # define MAX_NUM_MODULES 128
1306   HMODULE     modules[MAX_NUM_MODULES];
1307   static char filename[ MAX_PATH ];
1308   int         result = 0;
1309 
1310   if (!os::PSApiDll::PSApiAvailable()) {
1311     return 0;
1312   }
1313 
1314   hProcess = OpenProcess(PROCESS_QUERY_INFORMATION | PROCESS_VM_READ,
1315                          FALSE, pid ) ;
1316   if (hProcess == NULL) return 0;
1317 
1318   DWORD size_needed;
1319   if (!os::PSApiDll::EnumProcessModules(hProcess, modules,
1320                            sizeof(modules), &size_needed)) {
1321       CloseHandle( hProcess );
1322       return 0;
1323   }
1324 
1325   // number of modules that are currently loaded
1326   int num_modules = size_needed / sizeof(HMODULE);
1327 
1328   for (int i = 0; i < MIN2(num_modules, MAX_NUM_MODULES); i++) {
1329     // Get Full pathname:
1330     if(!os::PSApiDll::GetModuleFileNameEx(hProcess, modules[i],
1331                              filename, sizeof(filename))) {
1332         filename[0] = '\0';
1333     }
1334 
1335     MODULEINFO modinfo;
1336     if (!os::PSApiDll::GetModuleInformation(hProcess, modules[i],
1337                                &modinfo, sizeof(modinfo))) {
1338         modinfo.lpBaseOfDll = NULL;
1339         modinfo.SizeOfImage = 0;
1340     }
1341 
1342     // Invoke callback function
1343     result = func(pid, filename, (address)modinfo.lpBaseOfDll,
1344                   modinfo.SizeOfImage, param);
1345     if (result) break;
1346   }
1347 
1348   CloseHandle( hProcess ) ;
1349   return result;
1350 }
1351 
1352 
1353 // enumerate_modules for Windows 95/98/ME, using TOOLHELP
1354 static int _enumerate_modules_windows( int pid, EnumModulesCallbackFunc func, void *param)
1355 {
1356   HANDLE                hSnapShot ;
1357   static MODULEENTRY32  modentry ;
1358   int                   result = 0;
1359 
1360   if (!os::Kernel32Dll::HelpToolsAvailable()) {
1361     return 0;
1362   }
1363 
1364   // Get a handle to a Toolhelp snapshot of the system
1365   hSnapShot = os::Kernel32Dll::CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid ) ;
1366   if( hSnapShot == INVALID_HANDLE_VALUE ) {
1367       return FALSE ;
1368   }
1369 
1370   // iterate through all modules
1371   modentry.dwSize = sizeof(MODULEENTRY32) ;
1372   bool not_done = os::Kernel32Dll::Module32First( hSnapShot, &modentry ) != 0;
1373 
1374   while( not_done ) {
1375     // invoke the callback
1376     result=func(pid, modentry.szExePath, (address)modentry.modBaseAddr,
1377                 modentry.modBaseSize, param);
1378     if (result) break;
1379 
1380     modentry.dwSize = sizeof(MODULEENTRY32) ;
1381     not_done = os::Kernel32Dll::Module32Next( hSnapShot, &modentry ) != 0;
1382   }
1383 
1384   CloseHandle(hSnapShot);
1385   return result;
1386 }
1387 
1388 int enumerate_modules( int pid, EnumModulesCallbackFunc func, void * param )
1389 {
1390   // Get current process ID if caller doesn't provide it.
1391   if (!pid) pid = os::current_process_id();
1392 
1393   if (os::win32::is_nt()) return _enumerate_modules_winnt  (pid, func, param);
1394   else                    return _enumerate_modules_windows(pid, func, param);
1395 }
1396 
1397 struct _modinfo {
1398    address addr;
1399    char*   full_path;   // point to a char buffer
1400    int     buflen;      // size of the buffer
1401    address base_addr;
1402 };
1403 
1404 static int _locate_module_by_addr(int pid, char * mod_fname, address base_addr,
1405                                   unsigned size, void * param) {
1406    struct _modinfo *pmod = (struct _modinfo *)param;
1407    if (!pmod) return -1;
1408 
1409    if (base_addr     <= pmod->addr &&
1410        base_addr+size > pmod->addr) {
1411      // if a buffer is provided, copy path name to the buffer
1412      if (pmod->full_path) {
1413        jio_snprintf(pmod->full_path, pmod->buflen, "%s", mod_fname);
1414      }
1415      pmod->base_addr = base_addr;
1416      return 1;
1417    }
1418    return 0;
1419 }
1420 
1421 bool os::dll_address_to_library_name(address addr, char* buf,
1422                                      int buflen, int* offset) {
1423   // buf is not optional, but offset is optional
1424   assert(buf != NULL, "sanity check");
1425 
1426 // NOTE: the reason we don't use SymGetModuleInfo() is it doesn't always
1427 //       return the full path to the DLL file, sometimes it returns path
1428 //       to the corresponding PDB file (debug info); sometimes it only
1429 //       returns partial path, which makes life painful.
1430 
1431   struct _modinfo mi;
1432   mi.addr      = addr;
1433   mi.full_path = buf;
1434   mi.buflen    = buflen;
1435   int pid = os::current_process_id();
1436   if (enumerate_modules(pid, _locate_module_by_addr, (void *)&mi)) {
1437     // buf already contains path name
1438     if (offset) *offset = addr - mi.base_addr;
1439     return true;
1440   }
1441 
1442   buf[0] = '\0';
1443   if (offset) *offset = -1;
1444   return false;
1445 }
1446 
1447 bool os::dll_address_to_function_name(address addr, char *buf,
1448                                       int buflen, int *offset) {
1449   // buf is not optional, but offset is optional
1450   assert(buf != NULL, "sanity check");
1451 
1452   if (Decoder::decode(addr, buf, buflen, offset)) {
1453     return true;
1454   }
1455   if (offset != NULL)  *offset  = -1;
1456   buf[0] = '\0';
1457   return false;
1458 }
1459 
1460 // save the start and end address of jvm.dll into param[0] and param[1]
1461 static int _locate_jvm_dll(int pid, char* mod_fname, address base_addr,
1462                     unsigned size, void * param) {
1463    if (!param) return -1;
1464 
1465    if (base_addr     <= (address)_locate_jvm_dll &&
1466        base_addr+size > (address)_locate_jvm_dll) {
1467          ((address*)param)[0] = base_addr;
1468          ((address*)param)[1] = base_addr + size;
1469          return 1;
1470    }
1471    return 0;
1472 }
1473 
1474 address vm_lib_location[2];    // start and end address of jvm.dll
1475 
1476 // check if addr is inside jvm.dll
1477 bool os::address_is_in_vm(address addr) {
1478   if (!vm_lib_location[0] || !vm_lib_location[1]) {
1479     int pid = os::current_process_id();
1480     if (!enumerate_modules(pid, _locate_jvm_dll, (void *)vm_lib_location)) {
1481       assert(false, "Can't find jvm module.");
1482       return false;
1483     }
1484   }
1485 
1486   return (vm_lib_location[0] <= addr) && (addr < vm_lib_location[1]);
1487 }
1488 
1489 // print module info; param is outputStream*
1490 static int _print_module(int pid, char* fname, address base,
1491                          unsigned size, void* param) {
1492    if (!param) return -1;
1493 
1494    outputStream* st = (outputStream*)param;
1495 
1496    address end_addr = base + size;
1497    st->print(PTR_FORMAT " - " PTR_FORMAT " \t%s\n", base, end_addr, fname);
1498    return 0;
1499 }
1500 
1501 // Loads .dll/.so and
1502 // in case of error it checks if .dll/.so was built for the
1503 // same architecture as Hotspot is running on
1504 void * os::dll_load(const char *name, char *ebuf, int ebuflen)
1505 {
1506   void * result = LoadLibrary(name);
1507   if (result != NULL)
1508   {
1509     return result;
1510   }
1511 
1512   DWORD errcode = GetLastError();
1513   if (errcode == ERROR_MOD_NOT_FOUND) {
1514     strncpy(ebuf, "Can't find dependent libraries", ebuflen-1);
1515     ebuf[ebuflen-1]='\0';
1516     return NULL;
1517   }
1518 
1519   // Parsing dll below
1520   // If we can read dll-info and find that dll was built
1521   // for an architecture other than Hotspot is running in
1522   // - then print to buffer "DLL was built for a different architecture"
1523   // else call os::lasterror to obtain system error message
1524 
1525   // Read system error message into ebuf
1526   // It may or may not be overwritten below (in the for loop and just above)
1527   lasterror(ebuf, (size_t) ebuflen);
1528   ebuf[ebuflen-1]='\0';
1529   int file_descriptor=::open(name, O_RDONLY | O_BINARY, 0);
1530   if (file_descriptor<0)
1531   {
1532     return NULL;
1533   }
1534 
1535   uint32_t signature_offset;
1536   uint16_t lib_arch=0;
1537   bool failed_to_get_lib_arch=
1538   (
1539     //Go to position 3c in the dll
1540     (os::seek_to_file_offset(file_descriptor,IMAGE_FILE_PTR_TO_SIGNATURE)<0)
1541     ||
1542     // Read loacation of signature
1543     (sizeof(signature_offset)!=
1544       (os::read(file_descriptor, (void*)&signature_offset,sizeof(signature_offset))))
1545     ||
1546     //Go to COFF File Header in dll
1547     //that is located after"signature" (4 bytes long)
1548     (os::seek_to_file_offset(file_descriptor,
1549       signature_offset+IMAGE_FILE_SIGNATURE_LENGTH)<0)
1550     ||
1551     //Read field that contains code of architecture
1552     // that dll was build for
1553     (sizeof(lib_arch)!=
1554       (os::read(file_descriptor, (void*)&lib_arch,sizeof(lib_arch))))
1555   );
1556 
1557   ::close(file_descriptor);
1558   if (failed_to_get_lib_arch)
1559   {
1560     // file i/o error - report os::lasterror(...) msg
1561     return NULL;
1562   }
1563 
1564   typedef struct
1565   {
1566     uint16_t arch_code;
1567     char* arch_name;
1568   } arch_t;
1569 
1570   static const arch_t arch_array[]={
1571     {IMAGE_FILE_MACHINE_I386,      (char*)"IA 32"},
1572     {IMAGE_FILE_MACHINE_AMD64,     (char*)"AMD 64"},
1573     {IMAGE_FILE_MACHINE_IA64,      (char*)"IA 64"}
1574   };
1575   #if   (defined _M_IA64)
1576     static const uint16_t running_arch=IMAGE_FILE_MACHINE_IA64;
1577   #elif (defined _M_AMD64)
1578     static const uint16_t running_arch=IMAGE_FILE_MACHINE_AMD64;
1579   #elif (defined _M_IX86)
1580     static const uint16_t running_arch=IMAGE_FILE_MACHINE_I386;
1581   #else
1582     #error Method os::dll_load requires that one of following \
1583            is defined :_M_IA64,_M_AMD64 or _M_IX86
1584   #endif
1585 
1586 
1587   // Obtain a string for printf operation
1588   // lib_arch_str shall contain string what platform this .dll was built for
1589   // running_arch_str shall string contain what platform Hotspot was built for
1590   char *running_arch_str=NULL,*lib_arch_str=NULL;
1591   for (unsigned int i=0;i<ARRAY_SIZE(arch_array);i++)
1592   {
1593     if (lib_arch==arch_array[i].arch_code)
1594       lib_arch_str=arch_array[i].arch_name;
1595     if (running_arch==arch_array[i].arch_code)
1596       running_arch_str=arch_array[i].arch_name;
1597   }
1598 
1599   assert(running_arch_str,
1600     "Didn't find runing architecture code in arch_array");
1601 
1602   // If the architure is right
1603   // but some other error took place - report os::lasterror(...) msg
1604   if (lib_arch == running_arch)
1605   {
1606     return NULL;
1607   }
1608 
1609   if (lib_arch_str!=NULL)
1610   {
1611     ::_snprintf(ebuf, ebuflen-1,
1612       "Can't load %s-bit .dll on a %s-bit platform",
1613       lib_arch_str,running_arch_str);
1614   }
1615   else
1616   {
1617     // don't know what architecture this dll was build for
1618     ::_snprintf(ebuf, ebuflen-1,
1619       "Can't load this .dll (machine code=0x%x) on a %s-bit platform",
1620       lib_arch,running_arch_str);
1621   }
1622 
1623   return NULL;
1624 }
1625 
1626 
1627 void os::print_dll_info(outputStream *st) {
1628    int pid = os::current_process_id();
1629    st->print_cr("Dynamic libraries:");
1630    enumerate_modules(pid, _print_module, (void *)st);
1631 }
1632 
1633 void os::print_os_info_brief(outputStream* st) {
1634   os::print_os_info(st);
1635 }
1636 
1637 void os::print_os_info(outputStream* st) {
1638   st->print("OS:");
1639 
1640   os::win32::print_windows_version(st);
1641 }
1642 
1643 void os::win32::print_windows_version(outputStream* st) {
1644   OSVERSIONINFOEX osvi;
1645   SYSTEM_INFO si;
1646 
1647   ZeroMemory(&osvi, sizeof(OSVERSIONINFOEX));
1648   osvi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
1649 
1650   if (!GetVersionEx((OSVERSIONINFO *)&osvi)) {
1651     st->print_cr("N/A");
1652     return;
1653   }
1654 
1655   int os_vers = osvi.dwMajorVersion * 1000 + osvi.dwMinorVersion;
1656 
1657   ZeroMemory(&si, sizeof(SYSTEM_INFO));
1658   if (os_vers >= 5002) {
1659     // Retrieve SYSTEM_INFO from GetNativeSystemInfo call so that we could
1660     // find out whether we are running on 64 bit processor or not.
1661     if (os::Kernel32Dll::GetNativeSystemInfoAvailable()) {
1662       os::Kernel32Dll::GetNativeSystemInfo(&si);
1663     } else {
1664       GetSystemInfo(&si);
1665     }
1666   }
1667 
1668   if (osvi.dwPlatformId == VER_PLATFORM_WIN32_NT) {
1669     switch (os_vers) {
1670     case 3051: st->print(" Windows NT 3.51"); break;
1671     case 4000: st->print(" Windows NT 4.0"); break;
1672     case 5000: st->print(" Windows 2000"); break;
1673     case 5001: st->print(" Windows XP"); break;
1674     case 5002:
1675       if (osvi.wProductType == VER_NT_WORKSTATION &&
1676           si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1677         st->print(" Windows XP x64 Edition");
1678       } else {
1679         st->print(" Windows Server 2003 family");
1680       }
1681       break;
1682 
1683     case 6000:
1684       if (osvi.wProductType == VER_NT_WORKSTATION) {
1685         st->print(" Windows Vista");
1686       } else {
1687         st->print(" Windows Server 2008");
1688       }
1689       break;
1690 
1691     case 6001:
1692       if (osvi.wProductType == VER_NT_WORKSTATION) {
1693         st->print(" Windows 7");
1694       } else {
1695         st->print(" Windows Server 2008 R2");
1696       }
1697       break;
1698 
1699     case 6002:
1700       if (osvi.wProductType == VER_NT_WORKSTATION) {
1701         st->print(" Windows 8");
1702       } else {
1703         st->print(" Windows Server 2012");
1704       }
1705       break;
1706 
1707     case 6003:
1708       if (osvi.wProductType == VER_NT_WORKSTATION) {
1709         st->print(" Windows 8.1");
1710       } else {
1711         st->print(" Windows Server 2012 R2");
1712       }
1713       break;
1714 
1715     default: // future os
1716       // Unrecognized windows, print out its major and minor versions
1717       st->print(" Windows NT %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1718     }
1719   } else {
1720     switch (os_vers) {
1721     case 4000: st->print(" Windows 95"); break;
1722     case 4010: st->print(" Windows 98"); break;
1723     case 4090: st->print(" Windows Me"); break;
1724     default: // future windows, print out its major and minor versions
1725       st->print(" Windows %d.%d", osvi.dwMajorVersion, osvi.dwMinorVersion);
1726     }
1727   }
1728 
1729   if (os_vers >= 6000 && si.wProcessorArchitecture == PROCESSOR_ARCHITECTURE_AMD64) {
1730     st->print(" , 64 bit");
1731   }
1732 
1733   st->print(" Build %d", osvi.dwBuildNumber);
1734   st->print(" %s", osvi.szCSDVersion);           // service pack
1735   st->cr();
1736 }
1737 
1738 void os::pd_print_cpu_info(outputStream* st) {
1739   // Nothing to do for now.
1740 }
1741 
1742 void os::print_memory_info(outputStream* st) {
1743   st->print("Memory:");
1744   st->print(" %dk page", os::vm_page_size()>>10);
1745 
1746   // Use GlobalMemoryStatusEx() because GlobalMemoryStatus() may return incorrect
1747   // value if total memory is larger than 4GB
1748   MEMORYSTATUSEX ms;
1749   ms.dwLength = sizeof(ms);
1750   GlobalMemoryStatusEx(&ms);
1751 
1752   st->print(", physical %uk", os::physical_memory() >> 10);
1753   st->print("(%uk free)", os::available_memory() >> 10);
1754 
1755   st->print(", swap %uk", ms.ullTotalPageFile >> 10);
1756   st->print("(%uk free)", ms.ullAvailPageFile >> 10);
1757   st->cr();
1758 }
1759 
1760 void os::print_siginfo(outputStream *st, void *siginfo) {
1761   EXCEPTION_RECORD* er = (EXCEPTION_RECORD*)siginfo;
1762   st->print("siginfo:");
1763   st->print(" ExceptionCode=0x%x", er->ExceptionCode);
1764 
1765   if (er->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
1766       er->NumberParameters >= 2) {
1767       switch (er->ExceptionInformation[0]) {
1768       case 0: st->print(", reading address"); break;
1769       case 1: st->print(", writing address"); break;
1770       default: st->print(", ExceptionInformation=" INTPTR_FORMAT,
1771                             er->ExceptionInformation[0]);
1772       }
1773       st->print(" " INTPTR_FORMAT, er->ExceptionInformation[1]);
1774   } else if (er->ExceptionCode == EXCEPTION_IN_PAGE_ERROR &&
1775              er->NumberParameters >= 2 && UseSharedSpaces) {
1776     FileMapInfo* mapinfo = FileMapInfo::current_info();
1777     if (mapinfo->is_in_shared_space((void*)er->ExceptionInformation[1])) {
1778       st->print("\n\nError accessing class data sharing archive."       \
1779                 " Mapped file inaccessible during execution, "          \
1780                 " possible disk/network problem.");
1781     }
1782   } else {
1783     int num = er->NumberParameters;
1784     if (num > 0) {
1785       st->print(", ExceptionInformation=");
1786       for (int i = 0; i < num; i++) {
1787         st->print(INTPTR_FORMAT " ", er->ExceptionInformation[i]);
1788       }
1789     }
1790   }
1791   st->cr();
1792 }
1793 
1794 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
1795   // do nothing
1796 }
1797 
1798 static char saved_jvm_path[MAX_PATH] = {0};
1799 
1800 // Find the full path to the current module, jvm.dll
1801 void os::jvm_path(char *buf, jint buflen) {
1802   // Error checking.
1803   if (buflen < MAX_PATH) {
1804     assert(false, "must use a large-enough buffer");
1805     buf[0] = '\0';
1806     return;
1807   }
1808   // Lazy resolve the path to current module.
1809   if (saved_jvm_path[0] != 0) {
1810     strcpy(buf, saved_jvm_path);
1811     return;
1812   }
1813 
1814   buf[0] = '\0';
1815   if (Arguments::created_by_gamma_launcher()) {
1816      // Support for the gamma launcher. Check for an
1817      // JAVA_HOME environment variable
1818      // and fix up the path so it looks like
1819      // libjvm.so is installed there (append a fake suffix
1820      // hotspot/libjvm.so).
1821      char* java_home_var = ::getenv("JAVA_HOME");
1822      if (java_home_var != NULL && java_home_var[0] != 0) {
1823 
1824         strncpy(buf, java_home_var, buflen);
1825 
1826         // determine if this is a legacy image or modules image
1827         // modules image doesn't have "jre" subdirectory
1828         size_t len = strlen(buf);
1829         char* jrebin_p = buf + len;
1830         jio_snprintf(jrebin_p, buflen-len, "\\jre\\bin\\");
1831         if (0 != _access(buf, 0)) {
1832           jio_snprintf(jrebin_p, buflen-len, "\\bin\\");
1833         }
1834         len = strlen(buf);
1835         jio_snprintf(buf + len, buflen-len, "hotspot\\jvm.dll");
1836      }
1837   }
1838 
1839   if(buf[0] == '\0') {
1840   GetModuleFileName(vm_lib_handle, buf, buflen);
1841   }
1842   strcpy(saved_jvm_path, buf);
1843 }
1844 
1845 
1846 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
1847 #ifndef _WIN64
1848   st->print("_");
1849 #endif
1850 }
1851 
1852 
1853 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
1854 #ifndef _WIN64
1855   st->print("@%d", args_size  * sizeof(int));
1856 #endif
1857 }
1858 
1859 // This method is a copy of JDK's sysGetLastErrorString
1860 // from src/windows/hpi/src/system_md.c
1861 
1862 size_t os::lasterror(char* buf, size_t len) {
1863   DWORD errval;
1864 
1865   if ((errval = GetLastError()) != 0) {
1866     // DOS error
1867     size_t n = (size_t)FormatMessage(
1868           FORMAT_MESSAGE_FROM_SYSTEM|FORMAT_MESSAGE_IGNORE_INSERTS,
1869           NULL,
1870           errval,
1871           0,
1872           buf,
1873           (DWORD)len,
1874           NULL);
1875     if (n > 3) {
1876       // Drop final '.', CR, LF
1877       if (buf[n - 1] == '\n') n--;
1878       if (buf[n - 1] == '\r') n--;
1879       if (buf[n - 1] == '.') n--;
1880       buf[n] = '\0';
1881     }
1882     return n;
1883   }
1884 
1885   if (errno != 0) {
1886     // C runtime error that has no corresponding DOS error code
1887     const char* s = strerror(errno);
1888     size_t n = strlen(s);
1889     if (n >= len) n = len - 1;
1890     strncpy(buf, s, n);
1891     buf[n] = '\0';
1892     return n;
1893   }
1894 
1895   return 0;
1896 }
1897 
1898 int os::get_last_error() {
1899   DWORD error = GetLastError();
1900   if (error == 0)
1901     error = errno;
1902   return (int)error;
1903 }
1904 
1905 // sun.misc.Signal
1906 // NOTE that this is a workaround for an apparent kernel bug where if
1907 // a signal handler for SIGBREAK is installed then that signal handler
1908 // takes priority over the console control handler for CTRL_CLOSE_EVENT.
1909 // See bug 4416763.
1910 static void (*sigbreakHandler)(int) = NULL;
1911 
1912 static void UserHandler(int sig, void *siginfo, void *context) {
1913   os::signal_notify(sig);
1914   // We need to reinstate the signal handler each time...
1915   os::signal(sig, (void*)UserHandler);
1916 }
1917 
1918 void* os::user_handler() {
1919   return (void*) UserHandler;
1920 }
1921 
1922 void* os::signal(int signal_number, void* handler) {
1923   if ((signal_number == SIGBREAK) && (!ReduceSignalUsage)) {
1924     void (*oldHandler)(int) = sigbreakHandler;
1925     sigbreakHandler = (void (*)(int)) handler;
1926     return (void*) oldHandler;
1927   } else {
1928     return (void*)::signal(signal_number, (void (*)(int))handler);
1929   }
1930 }
1931 
1932 void os::signal_raise(int signal_number) {
1933   raise(signal_number);
1934 }
1935 
1936 // The Win32 C runtime library maps all console control events other than ^C
1937 // into SIGBREAK, which makes it impossible to distinguish ^BREAK from close,
1938 // logoff, and shutdown events.  We therefore install our own console handler
1939 // that raises SIGTERM for the latter cases.
1940 //
1941 static BOOL WINAPI consoleHandler(DWORD event) {
1942   switch(event) {
1943     case CTRL_C_EVENT:
1944       if (is_error_reported()) {
1945         // Ctrl-C is pressed during error reporting, likely because the error
1946         // handler fails to abort. Let VM die immediately.
1947         os::die();
1948       }
1949 
1950       os::signal_raise(SIGINT);
1951       return TRUE;
1952       break;
1953     case CTRL_BREAK_EVENT:
1954       if (sigbreakHandler != NULL) {
1955         (*sigbreakHandler)(SIGBREAK);
1956       }
1957       return TRUE;
1958       break;
1959     case CTRL_LOGOFF_EVENT: {
1960       // Don't terminate JVM if it is running in a non-interactive session,
1961       // such as a service process.
1962       USEROBJECTFLAGS flags;
1963       HANDLE handle = GetProcessWindowStation();
1964       if (handle != NULL &&
1965           GetUserObjectInformation(handle, UOI_FLAGS, &flags,
1966             sizeof( USEROBJECTFLAGS), NULL)) {
1967         // If it is a non-interactive session, let next handler to deal
1968         // with it.
1969         if ((flags.dwFlags & WSF_VISIBLE) == 0) {
1970           return FALSE;
1971         }
1972       }
1973     }
1974     case CTRL_CLOSE_EVENT:
1975     case CTRL_SHUTDOWN_EVENT:
1976       os::signal_raise(SIGTERM);
1977       return TRUE;
1978       break;
1979     default:
1980       break;
1981   }
1982   return FALSE;
1983 }
1984 
1985 /*
1986  * The following code is moved from os.cpp for making this
1987  * code platform specific, which it is by its very nature.
1988  */
1989 
1990 // Return maximum OS signal used + 1 for internal use only
1991 // Used as exit signal for signal_thread
1992 int os::sigexitnum_pd(){
1993   return NSIG;
1994 }
1995 
1996 // a counter for each possible signal value, including signal_thread exit signal
1997 static volatile jint pending_signals[NSIG+1] = { 0 };
1998 static HANDLE sig_sem = NULL;
1999 
2000 void os::signal_init_pd() {
2001   // Initialize signal structures
2002   memset((void*)pending_signals, 0, sizeof(pending_signals));
2003 
2004   sig_sem = ::CreateSemaphore(NULL, 0, NSIG+1, NULL);
2005 
2006   // Programs embedding the VM do not want it to attempt to receive
2007   // events like CTRL_LOGOFF_EVENT, which are used to implement the
2008   // shutdown hooks mechanism introduced in 1.3.  For example, when
2009   // the VM is run as part of a Windows NT service (i.e., a servlet
2010   // engine in a web server), the correct behavior is for any console
2011   // control handler to return FALSE, not TRUE, because the OS's
2012   // "final" handler for such events allows the process to continue if
2013   // it is a service (while terminating it if it is not a service).
2014   // To make this behavior uniform and the mechanism simpler, we
2015   // completely disable the VM's usage of these console events if -Xrs
2016   // (=ReduceSignalUsage) is specified.  This means, for example, that
2017   // the CTRL-BREAK thread dump mechanism is also disabled in this
2018   // case.  See bugs 4323062, 4345157, and related bugs.
2019 
2020   if (!ReduceSignalUsage) {
2021     // Add a CTRL-C handler
2022     SetConsoleCtrlHandler(consoleHandler, TRUE);
2023   }
2024 }
2025 
2026 void os::signal_notify(int signal_number) {
2027   BOOL ret;
2028   if (sig_sem != NULL) {
2029     Atomic::inc(&pending_signals[signal_number]);
2030     ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2031     assert(ret != 0, "ReleaseSemaphore() failed");
2032   }
2033 }
2034 
2035 static int check_pending_signals(bool wait_for_signal) {
2036   DWORD ret;
2037   while (true) {
2038     for (int i = 0; i < NSIG + 1; i++) {
2039       jint n = pending_signals[i];
2040       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2041         return i;
2042       }
2043     }
2044     if (!wait_for_signal) {
2045       return -1;
2046     }
2047 
2048     JavaThread *thread = JavaThread::current();
2049 
2050     ThreadBlockInVM tbivm(thread);
2051 
2052     bool threadIsSuspended;
2053     do {
2054       thread->set_suspend_equivalent();
2055       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2056       ret = ::WaitForSingleObject(sig_sem, INFINITE);
2057       assert(ret == WAIT_OBJECT_0, "WaitForSingleObject() failed");
2058 
2059       // were we externally suspended while we were waiting?
2060       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2061       if (threadIsSuspended) {
2062         //
2063         // The semaphore has been incremented, but while we were waiting
2064         // another thread suspended us. We don't want to continue running
2065         // while suspended because that would surprise the thread that
2066         // suspended us.
2067         //
2068         ret = ::ReleaseSemaphore(sig_sem, 1, NULL);
2069         assert(ret != 0, "ReleaseSemaphore() failed");
2070 
2071         thread->java_suspend_self();
2072       }
2073     } while (threadIsSuspended);
2074   }
2075 }
2076 
2077 int os::signal_lookup() {
2078   return check_pending_signals(false);
2079 }
2080 
2081 int os::signal_wait() {
2082   return check_pending_signals(true);
2083 }
2084 
2085 // Implicit OS exception handling
2086 
2087 LONG Handle_Exception(struct _EXCEPTION_POINTERS* exceptionInfo, address handler) {
2088   JavaThread* thread = JavaThread::current();
2089   // Save pc in thread
2090 #ifdef _M_IA64
2091   // Do not blow up if no thread info available.
2092   if (thread) {
2093     // Saving PRECISE pc (with slot information) in thread.
2094     uint64_t precise_pc = (uint64_t) exceptionInfo->ExceptionRecord->ExceptionAddress;
2095     // Convert precise PC into "Unix" format
2096     precise_pc = (precise_pc & 0xFFFFFFFFFFFFFFF0) | ((precise_pc & 0xF) >> 2);
2097     thread->set_saved_exception_pc((address)precise_pc);
2098   }
2099   // Set pc to handler
2100   exceptionInfo->ContextRecord->StIIP = (DWORD64)handler;
2101   // Clear out psr.ri (= Restart Instruction) in order to continue
2102   // at the beginning of the target bundle.
2103   exceptionInfo->ContextRecord->StIPSR &= 0xFFFFF9FFFFFFFFFF;
2104   assert(((DWORD64)handler & 0xF) == 0, "Target address must point to the beginning of a bundle!");
2105 #elif _M_AMD64
2106   // Do not blow up if no thread info available.
2107   if (thread) {
2108     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Rip);
2109   }
2110   // Set pc to handler
2111   exceptionInfo->ContextRecord->Rip = (DWORD64)handler;
2112 #else
2113   // Do not blow up if no thread info available.
2114   if (thread) {
2115     thread->set_saved_exception_pc((address)(DWORD_PTR)exceptionInfo->ContextRecord->Eip);
2116   }
2117   // Set pc to handler
2118   exceptionInfo->ContextRecord->Eip = (DWORD)(DWORD_PTR)handler;
2119 #endif
2120 
2121   // Continue the execution
2122   return EXCEPTION_CONTINUE_EXECUTION;
2123 }
2124 
2125 
2126 // Used for PostMortemDump
2127 extern "C" void safepoints();
2128 extern "C" void find(int x);
2129 extern "C" void events();
2130 
2131 // According to Windows API documentation, an illegal instruction sequence should generate
2132 // the 0xC000001C exception code. However, real world experience shows that occasionnaly
2133 // the execution of an illegal instruction can generate the exception code 0xC000001E. This
2134 // seems to be an undocumented feature of Win NT 4.0 (and probably other Windows systems).
2135 
2136 #define EXCEPTION_ILLEGAL_INSTRUCTION_2 0xC000001E
2137 
2138 // From "Execution Protection in the Windows Operating System" draft 0.35
2139 // Once a system header becomes available, the "real" define should be
2140 // included or copied here.
2141 #define EXCEPTION_INFO_EXEC_VIOLATION 0x08
2142 
2143 // Handle NAT Bit consumption on IA64.
2144 #ifdef _M_IA64
2145 #define EXCEPTION_REG_NAT_CONSUMPTION    STATUS_REG_NAT_CONSUMPTION
2146 #endif
2147 
2148 // Windows Vista/2008 heap corruption check
2149 #define EXCEPTION_HEAP_CORRUPTION        0xC0000374
2150 
2151 #define def_excpt(val) #val, val
2152 
2153 struct siglabel {
2154   char *name;
2155   int   number;
2156 };
2157 
2158 // All Visual C++ exceptions thrown from code generated by the Microsoft Visual
2159 // C++ compiler contain this error code. Because this is a compiler-generated
2160 // error, the code is not listed in the Win32 API header files.
2161 // The code is actually a cryptic mnemonic device, with the initial "E"
2162 // standing for "exception" and the final 3 bytes (0x6D7363) representing the
2163 // ASCII values of "msc".
2164 
2165 #define EXCEPTION_UNCAUGHT_CXX_EXCEPTION    0xE06D7363
2166 
2167 
2168 struct siglabel exceptlabels[] = {
2169     def_excpt(EXCEPTION_ACCESS_VIOLATION),
2170     def_excpt(EXCEPTION_DATATYPE_MISALIGNMENT),
2171     def_excpt(EXCEPTION_BREAKPOINT),
2172     def_excpt(EXCEPTION_SINGLE_STEP),
2173     def_excpt(EXCEPTION_ARRAY_BOUNDS_EXCEEDED),
2174     def_excpt(EXCEPTION_FLT_DENORMAL_OPERAND),
2175     def_excpt(EXCEPTION_FLT_DIVIDE_BY_ZERO),
2176     def_excpt(EXCEPTION_FLT_INEXACT_RESULT),
2177     def_excpt(EXCEPTION_FLT_INVALID_OPERATION),
2178     def_excpt(EXCEPTION_FLT_OVERFLOW),
2179     def_excpt(EXCEPTION_FLT_STACK_CHECK),
2180     def_excpt(EXCEPTION_FLT_UNDERFLOW),
2181     def_excpt(EXCEPTION_INT_DIVIDE_BY_ZERO),
2182     def_excpt(EXCEPTION_INT_OVERFLOW),
2183     def_excpt(EXCEPTION_PRIV_INSTRUCTION),
2184     def_excpt(EXCEPTION_IN_PAGE_ERROR),
2185     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION),
2186     def_excpt(EXCEPTION_ILLEGAL_INSTRUCTION_2),
2187     def_excpt(EXCEPTION_NONCONTINUABLE_EXCEPTION),
2188     def_excpt(EXCEPTION_STACK_OVERFLOW),
2189     def_excpt(EXCEPTION_INVALID_DISPOSITION),
2190     def_excpt(EXCEPTION_GUARD_PAGE),
2191     def_excpt(EXCEPTION_INVALID_HANDLE),
2192     def_excpt(EXCEPTION_UNCAUGHT_CXX_EXCEPTION),
2193     def_excpt(EXCEPTION_HEAP_CORRUPTION),
2194 #ifdef _M_IA64
2195     def_excpt(EXCEPTION_REG_NAT_CONSUMPTION),
2196 #endif
2197     NULL, 0
2198 };
2199 
2200 const char* os::exception_name(int exception_code, char *buf, size_t size) {
2201   for (int i = 0; exceptlabels[i].name != NULL; i++) {
2202     if (exceptlabels[i].number == exception_code) {
2203        jio_snprintf(buf, size, "%s", exceptlabels[i].name);
2204        return buf;
2205     }
2206   }
2207 
2208   return NULL;
2209 }
2210 
2211 //-----------------------------------------------------------------------------
2212 LONG Handle_IDiv_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2213   // handle exception caused by idiv; should only happen for -MinInt/-1
2214   // (division by zero is handled explicitly)
2215 #ifdef _M_IA64
2216   assert(0, "Fix Handle_IDiv_Exception");
2217 #elif _M_AMD64
2218   PCONTEXT ctx = exceptionInfo->ContextRecord;
2219   address pc = (address)ctx->Rip;
2220   assert(pc[0] == 0xF7, "not an idiv opcode");
2221   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2222   assert(ctx->Rax == min_jint, "unexpected idiv exception");
2223   // set correct result values and continue after idiv instruction
2224   ctx->Rip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2225   ctx->Rax = (DWORD)min_jint;      // result
2226   ctx->Rdx = (DWORD)0;             // remainder
2227   // Continue the execution
2228 #else
2229   PCONTEXT ctx = exceptionInfo->ContextRecord;
2230   address pc = (address)ctx->Eip;
2231   assert(pc[0] == 0xF7, "not an idiv opcode");
2232   assert((pc[1] & ~0x7) == 0xF8, "cannot handle non-register operands");
2233   assert(ctx->Eax == min_jint, "unexpected idiv exception");
2234   // set correct result values and continue after idiv instruction
2235   ctx->Eip = (DWORD)pc + 2;        // idiv reg, reg  is 2 bytes
2236   ctx->Eax = (DWORD)min_jint;      // result
2237   ctx->Edx = (DWORD)0;             // remainder
2238   // Continue the execution
2239 #endif
2240   return EXCEPTION_CONTINUE_EXECUTION;
2241 }
2242 
2243 #ifndef  _WIN64
2244 //-----------------------------------------------------------------------------
2245 LONG WINAPI Handle_FLT_Exception(struct _EXCEPTION_POINTERS* exceptionInfo) {
2246   // handle exception caused by native method modifying control word
2247   PCONTEXT ctx = exceptionInfo->ContextRecord;
2248   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2249 
2250   switch (exception_code) {
2251     case EXCEPTION_FLT_DENORMAL_OPERAND:
2252     case EXCEPTION_FLT_DIVIDE_BY_ZERO:
2253     case EXCEPTION_FLT_INEXACT_RESULT:
2254     case EXCEPTION_FLT_INVALID_OPERATION:
2255     case EXCEPTION_FLT_OVERFLOW:
2256     case EXCEPTION_FLT_STACK_CHECK:
2257     case EXCEPTION_FLT_UNDERFLOW:
2258       jint fp_control_word = (* (jint*) StubRoutines::addr_fpu_cntrl_wrd_std());
2259       if (fp_control_word != ctx->FloatSave.ControlWord) {
2260         // Restore FPCW and mask out FLT exceptions
2261         ctx->FloatSave.ControlWord = fp_control_word | 0xffffffc0;
2262         // Mask out pending FLT exceptions
2263         ctx->FloatSave.StatusWord &=  0xffffff00;
2264         return EXCEPTION_CONTINUE_EXECUTION;
2265       }
2266   }
2267 
2268   if (prev_uef_handler != NULL) {
2269     // We didn't handle this exception so pass it to the previous
2270     // UnhandledExceptionFilter.
2271     return (prev_uef_handler)(exceptionInfo);
2272   }
2273 
2274   return EXCEPTION_CONTINUE_SEARCH;
2275 }
2276 #else //_WIN64
2277 /*
2278   On Windows, the mxcsr control bits are non-volatile across calls
2279   See also CR 6192333
2280   If EXCEPTION_FLT_* happened after some native method modified
2281   mxcsr - it is not a jvm fault.
2282   However should we decide to restore of mxcsr after a faulty
2283   native method we can uncomment following code
2284       jint MxCsr = INITIAL_MXCSR;
2285         // we can't use StubRoutines::addr_mxcsr_std()
2286         // because in Win64 mxcsr is not saved there
2287       if (MxCsr != ctx->MxCsr) {
2288         ctx->MxCsr = MxCsr;
2289         return EXCEPTION_CONTINUE_EXECUTION;
2290       }
2291 
2292 */
2293 #endif //_WIN64
2294 
2295 
2296 // Fatal error reporting is single threaded so we can make this a
2297 // static and preallocated.  If it's more than MAX_PATH silently ignore
2298 // it.
2299 static char saved_error_file[MAX_PATH] = {0};
2300 
2301 void os::set_error_file(const char *logfile) {
2302   if (strlen(logfile) <= MAX_PATH) {
2303     strncpy(saved_error_file, logfile, MAX_PATH);
2304   }
2305 }
2306 
2307 static inline void report_error(Thread* t, DWORD exception_code,
2308                                 address addr, void* siginfo, void* context) {
2309   VMError err(t, exception_code, addr, siginfo, context);
2310   err.report_and_die();
2311 
2312   // If UseOsErrorReporting, this will return here and save the error file
2313   // somewhere where we can find it in the minidump.
2314 }
2315 
2316 //-----------------------------------------------------------------------------
2317 LONG WINAPI topLevelExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2318   if (InterceptOSException) return EXCEPTION_CONTINUE_SEARCH;
2319   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2320 #ifdef _M_IA64
2321   // On Itanium, we need the "precise pc", which has the slot number coded
2322   // into the least 4 bits: 0000=slot0, 0100=slot1, 1000=slot2 (Windows format).
2323   address pc = (address) exceptionInfo->ExceptionRecord->ExceptionAddress;
2324   // Convert the pc to "Unix format", which has the slot number coded
2325   // into the least 2 bits: 0000=slot0, 0001=slot1, 0010=slot2
2326   // This is needed for IA64 because "relocation" / "implicit null check" / "poll instruction"
2327   // information is saved in the Unix format.
2328   address pc_unix_format = (address) ((((uint64_t)pc) & 0xFFFFFFFFFFFFFFF0) | ((((uint64_t)pc) & 0xF) >> 2));
2329 #elif _M_AMD64
2330   address pc = (address) exceptionInfo->ContextRecord->Rip;
2331 #else
2332   address pc = (address) exceptionInfo->ContextRecord->Eip;
2333 #endif
2334   Thread* t = ThreadLocalStorage::get_thread_slow();          // slow & steady
2335 
2336   // Handle SafeFetch32 and SafeFetchN exceptions.
2337   if (StubRoutines::is_safefetch_fault(pc)) {
2338     return Handle_Exception(exceptionInfo, StubRoutines::continuation_for_safefetch_fault(pc));
2339   }
2340 
2341 #ifndef _WIN64
2342   // Execution protection violation - win32 running on AMD64 only
2343   // Handled first to avoid misdiagnosis as a "normal" access violation;
2344   // This is safe to do because we have a new/unique ExceptionInformation
2345   // code for this condition.
2346   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2347     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2348     int exception_subcode = (int) exceptionRecord->ExceptionInformation[0];
2349     address addr = (address) exceptionRecord->ExceptionInformation[1];
2350 
2351     if (exception_subcode == EXCEPTION_INFO_EXEC_VIOLATION) {
2352       int page_size = os::vm_page_size();
2353 
2354       // Make sure the pc and the faulting address are sane.
2355       //
2356       // If an instruction spans a page boundary, and the page containing
2357       // the beginning of the instruction is executable but the following
2358       // page is not, the pc and the faulting address might be slightly
2359       // different - we still want to unguard the 2nd page in this case.
2360       //
2361       // 15 bytes seems to be a (very) safe value for max instruction size.
2362       bool pc_is_near_addr =
2363         (pointer_delta((void*) addr, (void*) pc, sizeof(char)) < 15);
2364       bool instr_spans_page_boundary =
2365         (align_size_down((intptr_t) pc ^ (intptr_t) addr,
2366                          (intptr_t) page_size) > 0);
2367 
2368       if (pc == addr || (pc_is_near_addr && instr_spans_page_boundary)) {
2369         static volatile address last_addr =
2370           (address) os::non_memory_address_word();
2371 
2372         // In conservative mode, don't unguard unless the address is in the VM
2373         if (UnguardOnExecutionViolation > 0 && addr != last_addr &&
2374             (UnguardOnExecutionViolation > 1 || os::address_is_in_vm(addr))) {
2375 
2376           // Set memory to RWX and retry
2377           address page_start =
2378             (address) align_size_down((intptr_t) addr, (intptr_t) page_size);
2379           bool res = os::protect_memory((char*) page_start, page_size,
2380                                         os::MEM_PROT_RWX);
2381 
2382           if (PrintMiscellaneous && Verbose) {
2383             char buf[256];
2384             jio_snprintf(buf, sizeof(buf), "Execution protection violation "
2385                          "at " INTPTR_FORMAT
2386                          ", unguarding " INTPTR_FORMAT ": %s", addr,
2387                          page_start, (res ? "success" : strerror(errno)));
2388             tty->print_raw_cr(buf);
2389           }
2390 
2391           // Set last_addr so if we fault again at the same address, we don't
2392           // end up in an endless loop.
2393           //
2394           // There are two potential complications here.  Two threads trapping
2395           // at the same address at the same time could cause one of the
2396           // threads to think it already unguarded, and abort the VM.  Likely
2397           // very rare.
2398           //
2399           // The other race involves two threads alternately trapping at
2400           // different addresses and failing to unguard the page, resulting in
2401           // an endless loop.  This condition is probably even more unlikely
2402           // than the first.
2403           //
2404           // Although both cases could be avoided by using locks or thread
2405           // local last_addr, these solutions are unnecessary complication:
2406           // this handler is a best-effort safety net, not a complete solution.
2407           // It is disabled by default and should only be used as a workaround
2408           // in case we missed any no-execute-unsafe VM code.
2409 
2410           last_addr = addr;
2411 
2412           return EXCEPTION_CONTINUE_EXECUTION;
2413         }
2414       }
2415 
2416       // Last unguard failed or not unguarding
2417       tty->print_raw_cr("Execution protection violation");
2418       report_error(t, exception_code, addr, exceptionInfo->ExceptionRecord,
2419                    exceptionInfo->ContextRecord);
2420       return EXCEPTION_CONTINUE_SEARCH;
2421     }
2422   }
2423 #endif // _WIN64
2424 
2425   // Check to see if we caught the safepoint code in the
2426   // process of write protecting the memory serialization page.
2427   // It write enables the page immediately after protecting it
2428   // so just return.
2429   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
2430     JavaThread* thread = (JavaThread*) t;
2431     PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2432     address addr = (address) exceptionRecord->ExceptionInformation[1];
2433     if ( os::is_memory_serialize_page(thread, addr) ) {
2434       // Block current thread until the memory serialize page permission restored.
2435       os::block_on_serialize_page_trap();
2436       return EXCEPTION_CONTINUE_EXECUTION;
2437     }
2438   }
2439 
2440   if (t != NULL && t->is_Java_thread()) {
2441     JavaThread* thread = (JavaThread*) t;
2442     bool in_java = thread->thread_state() == _thread_in_Java;
2443 
2444     // Handle potential stack overflows up front.
2445     if (exception_code == EXCEPTION_STACK_OVERFLOW) {
2446       if (os::uses_stack_guard_pages()) {
2447 #ifdef _M_IA64
2448         // Use guard page for register stack.
2449         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2450         address addr = (address) exceptionRecord->ExceptionInformation[1];
2451         // Check for a register stack overflow on Itanium
2452         if (thread->addr_inside_register_stack_red_zone(addr)) {
2453           // Fatal red zone violation happens if the Java program
2454           // catches a StackOverflow error and does so much processing
2455           // that it runs beyond the unprotected yellow guard zone. As
2456           // a result, we are out of here.
2457           fatal("ERROR: Unrecoverable stack overflow happened. JVM will exit.");
2458         } else if(thread->addr_inside_register_stack(addr)) {
2459           // Disable the yellow zone which sets the state that
2460           // we've got a stack overflow problem.
2461           if (thread->stack_yellow_zone_enabled()) {
2462             thread->disable_stack_yellow_zone();
2463           }
2464           // Give us some room to process the exception.
2465           thread->disable_register_stack_guard();
2466           // Tracing with +Verbose.
2467           if (Verbose) {
2468             tty->print_cr("SOF Compiled Register Stack overflow at " INTPTR_FORMAT " (SIGSEGV)", pc);
2469             tty->print_cr("Register Stack access at " INTPTR_FORMAT, addr);
2470             tty->print_cr("Register Stack base " INTPTR_FORMAT, thread->register_stack_base());
2471             tty->print_cr("Register Stack [" INTPTR_FORMAT "," INTPTR_FORMAT "]",
2472                           thread->register_stack_base(),
2473                           thread->register_stack_base() + thread->stack_size());
2474           }
2475 
2476           // Reguard the permanent register stack red zone just to be sure.
2477           // We saw Windows silently disabling this without telling us.
2478           thread->enable_register_stack_red_zone();
2479 
2480           return Handle_Exception(exceptionInfo,
2481             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2482         }
2483 #endif
2484         if (thread->stack_yellow_zone_enabled()) {
2485           // Yellow zone violation.  The o/s has unprotected the first yellow
2486           // zone page for us.  Note:  must call disable_stack_yellow_zone to
2487           // update the enabled status, even if the zone contains only one page.
2488           thread->disable_stack_yellow_zone();
2489           // If not in java code, return and hope for the best.
2490           return in_java ? Handle_Exception(exceptionInfo,
2491             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW))
2492             :  EXCEPTION_CONTINUE_EXECUTION;
2493         } else {
2494           // Fatal red zone violation.
2495           thread->disable_stack_red_zone();
2496           tty->print_raw_cr("An unrecoverable stack overflow has occurred.");
2497           report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2498                        exceptionInfo->ContextRecord);
2499           return EXCEPTION_CONTINUE_SEARCH;
2500         }
2501       } else if (in_java) {
2502         // JVM-managed guard pages cannot be used on win95/98.  The o/s provides
2503         // a one-time-only guard page, which it has released to us.  The next
2504         // stack overflow on this thread will result in an ACCESS_VIOLATION.
2505         return Handle_Exception(exceptionInfo,
2506           SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2507       } else {
2508         // Can only return and hope for the best.  Further stack growth will
2509         // result in an ACCESS_VIOLATION.
2510         return EXCEPTION_CONTINUE_EXECUTION;
2511       }
2512     } else if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2513       // Either stack overflow or null pointer exception.
2514       if (in_java) {
2515         PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2516         address addr = (address) exceptionRecord->ExceptionInformation[1];
2517         address stack_end = thread->stack_base() - thread->stack_size();
2518         if (addr < stack_end && addr >= stack_end - os::vm_page_size()) {
2519           // Stack overflow.
2520           assert(!os::uses_stack_guard_pages(),
2521             "should be caught by red zone code above.");
2522           return Handle_Exception(exceptionInfo,
2523             SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::STACK_OVERFLOW));
2524         }
2525         //
2526         // Check for safepoint polling and implicit null
2527         // We only expect null pointers in the stubs (vtable)
2528         // the rest are checked explicitly now.
2529         //
2530         CodeBlob* cb = CodeCache::find_blob(pc);
2531         if (cb != NULL) {
2532           if (os::is_poll_address(addr)) {
2533             address stub = SharedRuntime::get_poll_stub(pc);
2534             return Handle_Exception(exceptionInfo, stub);
2535           }
2536         }
2537         {
2538 #ifdef _WIN64
2539           //
2540           // If it's a legal stack address map the entire region in
2541           //
2542           PEXCEPTION_RECORD exceptionRecord = exceptionInfo->ExceptionRecord;
2543           address addr = (address) exceptionRecord->ExceptionInformation[1];
2544           if (addr > thread->stack_yellow_zone_base() && addr < thread->stack_base() ) {
2545                   addr = (address)((uintptr_t)addr &
2546                          (~((uintptr_t)os::vm_page_size() - (uintptr_t)1)));
2547                   os::commit_memory((char *)addr, thread->stack_base() - addr,
2548                                     !ExecMem);
2549                   return EXCEPTION_CONTINUE_EXECUTION;
2550           }
2551           else
2552 #endif
2553           {
2554             // Null pointer exception.
2555 #ifdef _M_IA64
2556             // Process implicit null checks in compiled code. Note: Implicit null checks
2557             // can happen even if "ImplicitNullChecks" is disabled, e.g. in vtable stubs.
2558             if (CodeCache::contains((void*) pc_unix_format) && !MacroAssembler::needs_explicit_null_check((intptr_t) addr)) {
2559               CodeBlob *cb = CodeCache::find_blob_unsafe(pc_unix_format);
2560               // Handle implicit null check in UEP method entry
2561               if (cb && (cb->is_frame_complete_at(pc) ||
2562                          (cb->is_nmethod() && ((nmethod *)cb)->inlinecache_check_contains(pc)))) {
2563                 if (Verbose) {
2564                   intptr_t *bundle_start = (intptr_t*) ((intptr_t) pc_unix_format & 0xFFFFFFFFFFFFFFF0);
2565                   tty->print_cr("trap: null_check at " INTPTR_FORMAT " (SIGSEGV)", pc_unix_format);
2566                   tty->print_cr("      to addr " INTPTR_FORMAT, addr);
2567                   tty->print_cr("      bundle is " INTPTR_FORMAT " (high), " INTPTR_FORMAT " (low)",
2568                                 *(bundle_start + 1), *bundle_start);
2569                 }
2570                 return Handle_Exception(exceptionInfo,
2571                   SharedRuntime::continuation_for_implicit_exception(thread, pc_unix_format, SharedRuntime::IMPLICIT_NULL));
2572               }
2573             }
2574 
2575             // Implicit null checks were processed above.  Hence, we should not reach
2576             // here in the usual case => die!
2577             if (Verbose) tty->print_raw_cr("Access violation, possible null pointer exception");
2578             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2579                          exceptionInfo->ContextRecord);
2580             return EXCEPTION_CONTINUE_SEARCH;
2581 
2582 #else // !IA64
2583 
2584             // Windows 98 reports faulting addresses incorrectly
2585             if (!MacroAssembler::needs_explicit_null_check((intptr_t)addr) ||
2586                 !os::win32::is_nt()) {
2587               address stub = SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_NULL);
2588               if (stub != NULL) return Handle_Exception(exceptionInfo, stub);
2589             }
2590             report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2591                          exceptionInfo->ContextRecord);
2592             return EXCEPTION_CONTINUE_SEARCH;
2593 #endif
2594           }
2595         }
2596       }
2597 
2598 #ifdef _WIN64
2599       // Special care for fast JNI field accessors.
2600       // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks
2601       // in and the heap gets shrunk before the field access.
2602       if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2603         address addr = JNI_FastGetField::find_slowcase_pc(pc);
2604         if (addr != (address)-1) {
2605           return Handle_Exception(exceptionInfo, addr);
2606         }
2607       }
2608 #endif
2609 
2610       // Stack overflow or null pointer exception in native code.
2611       report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2612                    exceptionInfo->ContextRecord);
2613       return EXCEPTION_CONTINUE_SEARCH;
2614     } // /EXCEPTION_ACCESS_VIOLATION
2615     // - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
2616 #if defined _M_IA64
2617     else if ((exception_code == EXCEPTION_ILLEGAL_INSTRUCTION ||
2618               exception_code == EXCEPTION_ILLEGAL_INSTRUCTION_2)) {
2619       M37 handle_wrong_method_break(0, NativeJump::HANDLE_WRONG_METHOD, PR0);
2620 
2621       // Compiled method patched to be non entrant? Following conditions must apply:
2622       // 1. must be first instruction in bundle
2623       // 2. must be a break instruction with appropriate code
2624       if((((uint64_t) pc & 0x0F) == 0) &&
2625          (((IPF_Bundle*) pc)->get_slot0() == handle_wrong_method_break.bits())) {
2626         return Handle_Exception(exceptionInfo,
2627                                 (address)SharedRuntime::get_handle_wrong_method_stub());
2628       }
2629     } // /EXCEPTION_ILLEGAL_INSTRUCTION
2630 #endif
2631 
2632 
2633     if (in_java) {
2634       switch (exception_code) {
2635       case EXCEPTION_INT_DIVIDE_BY_ZERO:
2636         return Handle_Exception(exceptionInfo, SharedRuntime::continuation_for_implicit_exception(thread, pc, SharedRuntime::IMPLICIT_DIVIDE_BY_ZERO));
2637 
2638       case EXCEPTION_INT_OVERFLOW:
2639         return Handle_IDiv_Exception(exceptionInfo);
2640 
2641       } // switch
2642     }
2643 #ifndef _WIN64
2644     if (((thread->thread_state() == _thread_in_Java) ||
2645         (thread->thread_state() == _thread_in_native)) &&
2646         exception_code != EXCEPTION_UNCAUGHT_CXX_EXCEPTION)
2647     {
2648       LONG result=Handle_FLT_Exception(exceptionInfo);
2649       if (result==EXCEPTION_CONTINUE_EXECUTION) return result;
2650     }
2651 #endif //_WIN64
2652   }
2653 
2654   if (exception_code != EXCEPTION_BREAKPOINT) {
2655     report_error(t, exception_code, pc, exceptionInfo->ExceptionRecord,
2656                  exceptionInfo->ContextRecord);
2657   }
2658   return EXCEPTION_CONTINUE_SEARCH;
2659 }
2660 
2661 #ifndef _WIN64
2662 // Special care for fast JNI accessors.
2663 // jni_fast_Get<Primitive>Field can trap at certain pc's if a GC kicks in and
2664 // the heap gets shrunk before the field access.
2665 // Need to install our own structured exception handler since native code may
2666 // install its own.
2667 LONG WINAPI fastJNIAccessorExceptionFilter(struct _EXCEPTION_POINTERS* exceptionInfo) {
2668   DWORD exception_code = exceptionInfo->ExceptionRecord->ExceptionCode;
2669   if (exception_code == EXCEPTION_ACCESS_VIOLATION) {
2670     address pc = (address) exceptionInfo->ContextRecord->Eip;
2671     address addr = JNI_FastGetField::find_slowcase_pc(pc);
2672     if (addr != (address)-1) {
2673       return Handle_Exception(exceptionInfo, addr);
2674     }
2675   }
2676   return EXCEPTION_CONTINUE_SEARCH;
2677 }
2678 
2679 #define DEFINE_FAST_GETFIELD(Return,Fieldname,Result) \
2680 Return JNICALL jni_fast_Get##Result##Field_wrapper(JNIEnv *env, jobject obj, jfieldID fieldID) { \
2681   __try { \
2682     return (*JNI_FastGetField::jni_fast_Get##Result##Field_fp)(env, obj, fieldID); \
2683   } __except(fastJNIAccessorExceptionFilter((_EXCEPTION_POINTERS*)_exception_info())) { \
2684   } \
2685   return 0; \
2686 }
2687 
2688 DEFINE_FAST_GETFIELD(jboolean, bool,   Boolean)
2689 DEFINE_FAST_GETFIELD(jbyte,    byte,   Byte)
2690 DEFINE_FAST_GETFIELD(jchar,    char,   Char)
2691 DEFINE_FAST_GETFIELD(jshort,   short,  Short)
2692 DEFINE_FAST_GETFIELD(jint,     int,    Int)
2693 DEFINE_FAST_GETFIELD(jlong,    long,   Long)
2694 DEFINE_FAST_GETFIELD(jfloat,   float,  Float)
2695 DEFINE_FAST_GETFIELD(jdouble,  double, Double)
2696 
2697 address os::win32::fast_jni_accessor_wrapper(BasicType type) {
2698   switch (type) {
2699     case T_BOOLEAN: return (address)jni_fast_GetBooleanField_wrapper;
2700     case T_BYTE:    return (address)jni_fast_GetByteField_wrapper;
2701     case T_CHAR:    return (address)jni_fast_GetCharField_wrapper;
2702     case T_SHORT:   return (address)jni_fast_GetShortField_wrapper;
2703     case T_INT:     return (address)jni_fast_GetIntField_wrapper;
2704     case T_LONG:    return (address)jni_fast_GetLongField_wrapper;
2705     case T_FLOAT:   return (address)jni_fast_GetFloatField_wrapper;
2706     case T_DOUBLE:  return (address)jni_fast_GetDoubleField_wrapper;
2707     default:        ShouldNotReachHere();
2708   }
2709   return (address)-1;
2710 }
2711 #endif
2712 
2713 #ifndef PRODUCT
2714 void os::win32::call_test_func_with_wrapper(void (*funcPtr)(void)) {
2715   // Install a win32 structured exception handler around the test
2716   // function call so the VM can generate an error dump if needed.
2717   __try {
2718     (*funcPtr)();
2719   } __except(topLevelExceptionFilter(
2720              (_EXCEPTION_POINTERS*)_exception_info())) {
2721     // Nothing to do.
2722   }
2723 }
2724 #endif
2725 
2726 // Virtual Memory
2727 
2728 int os::vm_page_size() { return os::win32::vm_page_size(); }
2729 int os::vm_allocation_granularity() {
2730   return os::win32::vm_allocation_granularity();
2731 }
2732 
2733 // Windows large page support is available on Windows 2003. In order to use
2734 // large page memory, the administrator must first assign additional privilege
2735 // to the user:
2736 //   + select Control Panel -> Administrative Tools -> Local Security Policy
2737 //   + select Local Policies -> User Rights Assignment
2738 //   + double click "Lock pages in memory", add users and/or groups
2739 //   + reboot
2740 // Note the above steps are needed for administrator as well, as administrators
2741 // by default do not have the privilege to lock pages in memory.
2742 //
2743 // Note about Windows 2003: although the API supports committing large page
2744 // memory on a page-by-page basis and VirtualAlloc() returns success under this
2745 // scenario, I found through experiment it only uses large page if the entire
2746 // memory region is reserved and committed in a single VirtualAlloc() call.
2747 // This makes Windows large page support more or less like Solaris ISM, in
2748 // that the entire heap must be committed upfront. This probably will change
2749 // in the future, if so the code below needs to be revisited.
2750 
2751 #ifndef MEM_LARGE_PAGES
2752 #define MEM_LARGE_PAGES 0x20000000
2753 #endif
2754 
2755 static HANDLE    _hProcess;
2756 static HANDLE    _hToken;
2757 
2758 // Container for NUMA node list info
2759 class NUMANodeListHolder {
2760 private:
2761   int *_numa_used_node_list;  // allocated below
2762   int _numa_used_node_count;
2763 
2764   void free_node_list() {
2765     if (_numa_used_node_list != NULL) {
2766       FREE_C_HEAP_ARRAY(int, _numa_used_node_list, mtInternal);
2767     }
2768   }
2769 
2770 public:
2771   NUMANodeListHolder() {
2772     _numa_used_node_count = 0;
2773     _numa_used_node_list = NULL;
2774     // do rest of initialization in build routine (after function pointers are set up)
2775   }
2776 
2777   ~NUMANodeListHolder() {
2778     free_node_list();
2779   }
2780 
2781   bool build() {
2782     DWORD_PTR proc_aff_mask;
2783     DWORD_PTR sys_aff_mask;
2784     if (!GetProcessAffinityMask(GetCurrentProcess(), &proc_aff_mask, &sys_aff_mask)) return false;
2785     ULONG highest_node_number;
2786     if (!os::Kernel32Dll::GetNumaHighestNodeNumber(&highest_node_number)) return false;
2787     free_node_list();
2788     _numa_used_node_list = NEW_C_HEAP_ARRAY(int, highest_node_number + 1, mtInternal);
2789     for (unsigned int i = 0; i <= highest_node_number; i++) {
2790       ULONGLONG proc_mask_numa_node;
2791       if (!os::Kernel32Dll::GetNumaNodeProcessorMask(i, &proc_mask_numa_node)) return false;
2792       if ((proc_aff_mask & proc_mask_numa_node)!=0) {
2793         _numa_used_node_list[_numa_used_node_count++] = i;
2794       }
2795     }
2796     return (_numa_used_node_count > 1);
2797   }
2798 
2799   int get_count() {return _numa_used_node_count;}
2800   int get_node_list_entry(int n) {
2801     // for indexes out of range, returns -1
2802     return (n < _numa_used_node_count ? _numa_used_node_list[n] : -1);
2803   }
2804 
2805 } numa_node_list_holder;
2806 
2807 
2808 
2809 static size_t _large_page_size = 0;
2810 
2811 static bool resolve_functions_for_large_page_init() {
2812   return os::Kernel32Dll::GetLargePageMinimumAvailable() &&
2813     os::Advapi32Dll::AdvapiAvailable();
2814 }
2815 
2816 static bool request_lock_memory_privilege() {
2817   _hProcess = OpenProcess(PROCESS_QUERY_INFORMATION, FALSE,
2818                                 os::current_process_id());
2819 
2820   LUID luid;
2821   if (_hProcess != NULL &&
2822       os::Advapi32Dll::OpenProcessToken(_hProcess, TOKEN_ADJUST_PRIVILEGES, &_hToken) &&
2823       os::Advapi32Dll::LookupPrivilegeValue(NULL, "SeLockMemoryPrivilege", &luid)) {
2824 
2825     TOKEN_PRIVILEGES tp;
2826     tp.PrivilegeCount = 1;
2827     tp.Privileges[0].Luid = luid;
2828     tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;
2829 
2830     // AdjustTokenPrivileges() may return TRUE even when it couldn't change the
2831     // privilege. Check GetLastError() too. See MSDN document.
2832     if (os::Advapi32Dll::AdjustTokenPrivileges(_hToken, false, &tp, sizeof(tp), NULL, NULL) &&
2833         (GetLastError() == ERROR_SUCCESS)) {
2834       return true;
2835     }
2836   }
2837 
2838   return false;
2839 }
2840 
2841 static void cleanup_after_large_page_init() {
2842   if (_hProcess) CloseHandle(_hProcess);
2843   _hProcess = NULL;
2844   if (_hToken) CloseHandle(_hToken);
2845   _hToken = NULL;
2846 }
2847 
2848 static bool numa_interleaving_init() {
2849   bool success = false;
2850   bool use_numa_interleaving_specified = !FLAG_IS_DEFAULT(UseNUMAInterleaving);
2851 
2852   // print a warning if UseNUMAInterleaving flag is specified on command line
2853   bool warn_on_failure = use_numa_interleaving_specified;
2854 # define WARN(msg) if (warn_on_failure) { warning(msg); }
2855 
2856   // NUMAInterleaveGranularity cannot be less than vm_allocation_granularity (or _large_page_size if using large pages)
2857   size_t min_interleave_granularity = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2858   NUMAInterleaveGranularity = align_size_up(NUMAInterleaveGranularity, min_interleave_granularity);
2859 
2860   if (os::Kernel32Dll::NumaCallsAvailable()) {
2861     if (numa_node_list_holder.build()) {
2862       if (PrintMiscellaneous && Verbose) {
2863         tty->print("NUMA UsedNodeCount=%d, namely ", numa_node_list_holder.get_count());
2864         for (int i = 0; i < numa_node_list_holder.get_count(); i++) {
2865           tty->print("%d ", numa_node_list_holder.get_node_list_entry(i));
2866         }
2867         tty->print("\n");
2868       }
2869       success = true;
2870     } else {
2871       WARN("Process does not cover multiple NUMA nodes.");
2872     }
2873   } else {
2874     WARN("NUMA Interleaving is not supported by the operating system.");
2875   }
2876   if (!success) {
2877     if (use_numa_interleaving_specified) WARN("...Ignoring UseNUMAInterleaving flag.");
2878   }
2879   return success;
2880 #undef WARN
2881 }
2882 
2883 // this routine is used whenever we need to reserve a contiguous VA range
2884 // but we need to make separate VirtualAlloc calls for each piece of the range
2885 // Reasons for doing this:
2886 //  * UseLargePagesIndividualAllocation was set (normally only needed on WS2003 but possible to be set otherwise)
2887 //  * UseNUMAInterleaving requires a separate node for each piece
2888 static char* allocate_pages_individually(size_t bytes, char* addr, DWORD flags, DWORD prot,
2889                                          bool should_inject_error=false) {
2890   char * p_buf;
2891   // note: at setup time we guaranteed that NUMAInterleaveGranularity was aligned up to a page size
2892   size_t page_size = UseLargePages ? _large_page_size : os::vm_allocation_granularity();
2893   size_t chunk_size = UseNUMAInterleaving ? NUMAInterleaveGranularity : page_size;
2894 
2895   // first reserve enough address space in advance since we want to be
2896   // able to break a single contiguous virtual address range into multiple
2897   // large page commits but WS2003 does not allow reserving large page space
2898   // so we just use 4K pages for reserve, this gives us a legal contiguous
2899   // address space. then we will deallocate that reservation, and re alloc
2900   // using large pages
2901   const size_t size_of_reserve = bytes + chunk_size;
2902   if (bytes > size_of_reserve) {
2903     // Overflowed.
2904     return NULL;
2905   }
2906   p_buf = (char *) VirtualAlloc(addr,
2907                                 size_of_reserve,  // size of Reserve
2908                                 MEM_RESERVE,
2909                                 PAGE_READWRITE);
2910   // If reservation failed, return NULL
2911   if (p_buf == NULL) return NULL;
2912   MemTracker::record_virtual_memory_reserve((address)p_buf, size_of_reserve, mtNone, CALLER_PC);
2913   os::release_memory(p_buf, bytes + chunk_size);
2914 
2915   // we still need to round up to a page boundary (in case we are using large pages)
2916   // but not to a chunk boundary (in case InterleavingGranularity doesn't align with page size)
2917   // instead we handle this in the bytes_to_rq computation below
2918   p_buf = (char *) align_size_up((size_t)p_buf, page_size);
2919 
2920   // now go through and allocate one chunk at a time until all bytes are
2921   // allocated
2922   size_t  bytes_remaining = bytes;
2923   // An overflow of align_size_up() would have been caught above
2924   // in the calculation of size_of_reserve.
2925   char * next_alloc_addr = p_buf;
2926   HANDLE hProc = GetCurrentProcess();
2927 
2928 #ifdef ASSERT
2929   // Variable for the failure injection
2930   long ran_num = os::random();
2931   size_t fail_after = ran_num % bytes;
2932 #endif
2933 
2934   int count=0;
2935   while (bytes_remaining) {
2936     // select bytes_to_rq to get to the next chunk_size boundary
2937 
2938     size_t bytes_to_rq = MIN2(bytes_remaining, chunk_size - ((size_t)next_alloc_addr % chunk_size));
2939     // Note allocate and commit
2940     char * p_new;
2941 
2942 #ifdef ASSERT
2943     bool inject_error_now = should_inject_error && (bytes_remaining <= fail_after);
2944 #else
2945     const bool inject_error_now = false;
2946 #endif
2947 
2948     if (inject_error_now) {
2949       p_new = NULL;
2950     } else {
2951       if (!UseNUMAInterleaving) {
2952         p_new = (char *) VirtualAlloc(next_alloc_addr,
2953                                       bytes_to_rq,
2954                                       flags,
2955                                       prot);
2956       } else {
2957         // get the next node to use from the used_node_list
2958         assert(numa_node_list_holder.get_count() > 0, "Multiple NUMA nodes expected");
2959         DWORD node = numa_node_list_holder.get_node_list_entry(count % numa_node_list_holder.get_count());
2960         p_new = (char *)os::Kernel32Dll::VirtualAllocExNuma(hProc,
2961                                                             next_alloc_addr,
2962                                                             bytes_to_rq,
2963                                                             flags,
2964                                                             prot,
2965                                                             node);
2966       }
2967     }
2968 
2969     if (p_new == NULL) {
2970       // Free any allocated pages
2971       if (next_alloc_addr > p_buf) {
2972         // Some memory was committed so release it.
2973         size_t bytes_to_release = bytes - bytes_remaining;
2974         // NMT has yet to record any individual blocks, so it
2975         // need to create a dummy 'reserve' record to match
2976         // the release.
2977         MemTracker::record_virtual_memory_reserve((address)p_buf,
2978           bytes_to_release, mtNone, CALLER_PC);
2979         os::release_memory(p_buf, bytes_to_release);
2980       }
2981 #ifdef ASSERT
2982       if (should_inject_error) {
2983         if (TracePageSizes && Verbose) {
2984           tty->print_cr("Reserving pages individually failed.");
2985         }
2986       }
2987 #endif
2988       return NULL;
2989     }
2990 
2991     bytes_remaining -= bytes_to_rq;
2992     next_alloc_addr += bytes_to_rq;
2993     count++;
2994   }
2995   // Although the memory is allocated individually, it is returned as one.
2996   // NMT records it as one block.
2997   address pc = CALLER_PC;
2998   if ((flags & MEM_COMMIT) != 0) {
2999     MemTracker::record_virtual_memory_reserve_and_commit((address)p_buf, bytes, mtNone, pc);
3000   } else {
3001     MemTracker::record_virtual_memory_reserve((address)p_buf, bytes, mtNone, pc);
3002   }
3003 
3004   // made it this far, success
3005   return p_buf;
3006 }
3007 
3008 
3009 
3010 void os::large_page_init() {
3011   if (!UseLargePages) return;
3012 
3013   // print a warning if any large page related flag is specified on command line
3014   bool warn_on_failure = !FLAG_IS_DEFAULT(UseLargePages) ||
3015                          !FLAG_IS_DEFAULT(LargePageSizeInBytes);
3016   bool success = false;
3017 
3018 # define WARN(msg) if (warn_on_failure) { warning(msg); }
3019   if (resolve_functions_for_large_page_init()) {
3020     if (request_lock_memory_privilege()) {
3021       size_t s = os::Kernel32Dll::GetLargePageMinimum();
3022       if (s) {
3023 #if defined(IA32) || defined(AMD64)
3024         if (s > 4*M || LargePageSizeInBytes > 4*M) {
3025           WARN("JVM cannot use large pages bigger than 4mb.");
3026         } else {
3027 #endif
3028           if (LargePageSizeInBytes && LargePageSizeInBytes % s == 0) {
3029             _large_page_size = LargePageSizeInBytes;
3030           } else {
3031             _large_page_size = s;
3032           }
3033           success = true;
3034 #if defined(IA32) || defined(AMD64)
3035         }
3036 #endif
3037       } else {
3038         WARN("Large page is not supported by the processor.");
3039       }
3040     } else {
3041       WARN("JVM cannot use large page memory because it does not have enough privilege to lock pages in memory.");
3042     }
3043   } else {
3044     WARN("Large page is not supported by the operating system.");
3045   }
3046 #undef WARN
3047 
3048   const size_t default_page_size = (size_t) vm_page_size();
3049   if (success && _large_page_size > default_page_size) {
3050     _page_sizes[0] = _large_page_size;
3051     _page_sizes[1] = default_page_size;
3052     _page_sizes[2] = 0;
3053   }
3054 
3055   cleanup_after_large_page_init();
3056   UseLargePages = success;
3057 }
3058 
3059 // On win32, one cannot release just a part of reserved memory, it's an
3060 // all or nothing deal.  When we split a reservation, we must break the
3061 // reservation into two reservations.
3062 void os::pd_split_reserved_memory(char *base, size_t size, size_t split,
3063                               bool realloc) {
3064   if (size > 0) {
3065     release_memory(base, size);
3066     if (realloc) {
3067       reserve_memory(split, base);
3068     }
3069     if (size != split) {
3070       reserve_memory(size - split, base + split);
3071     }
3072   }
3073 }
3074 
3075 // Multiple threads can race in this code but it's not possible to unmap small sections of
3076 // virtual space to get requested alignment, like posix-like os's.
3077 // Windows prevents multiple thread from remapping over each other so this loop is thread-safe.
3078 char* os::reserve_memory_aligned(size_t size, size_t alignment) {
3079   assert((alignment & (os::vm_allocation_granularity() - 1)) == 0,
3080       "Alignment must be a multiple of allocation granularity (page size)");
3081   assert((size & (alignment -1)) == 0, "size must be 'alignment' aligned");
3082 
3083   size_t extra_size = size + alignment;
3084   assert(extra_size >= size, "overflow, size is too large to allow alignment");
3085 
3086   char* aligned_base = NULL;
3087 
3088   do {
3089     char* extra_base = os::reserve_memory(extra_size, NULL, alignment);
3090     if (extra_base == NULL) {
3091       return NULL;
3092     }
3093     // Do manual alignment
3094     aligned_base = (char*) align_size_up((uintptr_t) extra_base, alignment);
3095 
3096     os::release_memory(extra_base, extra_size);
3097 
3098     aligned_base = os::reserve_memory(size, aligned_base);
3099 
3100   } while (aligned_base == NULL);
3101 
3102   return aligned_base;
3103 }
3104 
3105 char* os::pd_reserve_memory(size_t bytes, char* addr, size_t alignment_hint) {
3106   assert((size_t)addr % os::vm_allocation_granularity() == 0,
3107          "reserve alignment");
3108   assert(bytes % os::vm_allocation_granularity() == 0, "reserve block size");
3109   char* res;
3110   // note that if UseLargePages is on, all the areas that require interleaving
3111   // will go thru reserve_memory_special rather than thru here.
3112   bool use_individual = (UseNUMAInterleaving && !UseLargePages);
3113   if (!use_individual) {
3114     res = (char*)VirtualAlloc(addr, bytes, MEM_RESERVE, PAGE_READWRITE);
3115   } else {
3116     elapsedTimer reserveTimer;
3117     if( Verbose && PrintMiscellaneous ) reserveTimer.start();
3118     // in numa interleaving, we have to allocate pages individually
3119     // (well really chunks of NUMAInterleaveGranularity size)
3120     res = allocate_pages_individually(bytes, addr, MEM_RESERVE, PAGE_READWRITE);
3121     if (res == NULL) {
3122       warning("NUMA page allocation failed");
3123     }
3124     if( Verbose && PrintMiscellaneous ) {
3125       reserveTimer.stop();
3126       tty->print_cr("reserve_memory of %Ix bytes took " JLONG_FORMAT " ms (" JLONG_FORMAT " ticks)", bytes,
3127                     reserveTimer.milliseconds(), reserveTimer.ticks());
3128     }
3129   }
3130   assert(res == NULL || addr == NULL || addr == res,
3131          "Unexpected address from reserve.");
3132 
3133   return res;
3134 }
3135 
3136 // Reserve memory at an arbitrary address, only if that area is
3137 // available (and not reserved for something else).
3138 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3139   // Windows os::reserve_memory() fails of the requested address range is
3140   // not avilable.
3141   return reserve_memory(bytes, requested_addr);
3142 }
3143 
3144 size_t os::large_page_size() {
3145   return _large_page_size;
3146 }
3147 
3148 bool os::can_commit_large_page_memory() {
3149   // Windows only uses large page memory when the entire region is reserved
3150   // and committed in a single VirtualAlloc() call. This may change in the
3151   // future, but with Windows 2003 it's not possible to commit on demand.
3152   return false;
3153 }
3154 
3155 bool os::can_execute_large_page_memory() {
3156   return true;
3157 }
3158 
3159 char* os::reserve_memory_special(size_t bytes, size_t alignment, char* addr, bool exec) {
3160   assert(UseLargePages, "only for large pages");
3161 
3162   if (!is_size_aligned(bytes, os::large_page_size()) || alignment > os::large_page_size()) {
3163     return NULL; // Fallback to small pages.
3164   }
3165 
3166   const DWORD prot = exec ? PAGE_EXECUTE_READWRITE : PAGE_READWRITE;
3167   const DWORD flags = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3168 
3169   // with large pages, there are two cases where we need to use Individual Allocation
3170   // 1) the UseLargePagesIndividualAllocation flag is set (set by default on WS2003)
3171   // 2) NUMA Interleaving is enabled, in which case we use a different node for each page
3172   if (UseLargePagesIndividualAllocation || UseNUMAInterleaving) {
3173     if (TracePageSizes && Verbose) {
3174        tty->print_cr("Reserving large pages individually.");
3175     }
3176     char * p_buf = allocate_pages_individually(bytes, addr, flags, prot, LargePagesIndividualAllocationInjectError);
3177     if (p_buf == NULL) {
3178       // give an appropriate warning message
3179       if (UseNUMAInterleaving) {
3180         warning("NUMA large page allocation failed, UseLargePages flag ignored");
3181       }
3182       if (UseLargePagesIndividualAllocation) {
3183         warning("Individually allocated large pages failed, "
3184                 "use -XX:-UseLargePagesIndividualAllocation to turn off");
3185       }
3186       return NULL;
3187     }
3188 
3189     return p_buf;
3190 
3191   } else {
3192     // normal policy just allocate it all at once
3193     DWORD flag = MEM_RESERVE | MEM_COMMIT | MEM_LARGE_PAGES;
3194     char * res = (char *)VirtualAlloc(NULL, bytes, flag, prot);
3195     if (res != NULL) {
3196       address pc = CALLER_PC;
3197       MemTracker::record_virtual_memory_reserve_and_commit((address)res, bytes, mtNone, pc);
3198     }
3199 
3200     return res;
3201   }
3202 }
3203 
3204 bool os::release_memory_special(char* base, size_t bytes) {
3205   assert(base != NULL, "Sanity check");
3206   return release_memory(base, bytes);
3207 }
3208 
3209 void os::print_statistics() {
3210 }
3211 
3212 static void warn_fail_commit_memory(char* addr, size_t bytes, bool exec) {
3213   int err = os::get_last_error();
3214   char buf[256];
3215   size_t buf_len = os::lasterror(buf, sizeof(buf));
3216   warning("INFO: os::commit_memory(" PTR_FORMAT ", " SIZE_FORMAT
3217           ", %d) failed; error='%s' (DOS error/errno=%d)", addr, bytes,
3218           exec, buf_len != 0 ? buf : "<no_error_string>", err);
3219 }
3220 
3221 bool os::pd_commit_memory(char* addr, size_t bytes, bool exec) {
3222   if (bytes == 0) {
3223     // Don't bother the OS with noops.
3224     return true;
3225   }
3226   assert((size_t) addr % os::vm_page_size() == 0, "commit on page boundaries");
3227   assert(bytes % os::vm_page_size() == 0, "commit in page-sized chunks");
3228   // Don't attempt to print anything if the OS call fails. We're
3229   // probably low on resources, so the print itself may cause crashes.
3230 
3231   // unless we have NUMAInterleaving enabled, the range of a commit
3232   // is always within a reserve covered by a single VirtualAlloc
3233   // in that case we can just do a single commit for the requested size
3234   if (!UseNUMAInterleaving) {
3235     if (VirtualAlloc(addr, bytes, MEM_COMMIT, PAGE_READWRITE) == NULL) {
3236       NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3237       return false;
3238     }
3239     if (exec) {
3240       DWORD oldprot;
3241       // Windows doc says to use VirtualProtect to get execute permissions
3242       if (!VirtualProtect(addr, bytes, PAGE_EXECUTE_READWRITE, &oldprot)) {
3243         NOT_PRODUCT(warn_fail_commit_memory(addr, bytes, exec);)
3244         return false;
3245       }
3246     }
3247     return true;
3248   } else {
3249 
3250     // when NUMAInterleaving is enabled, the commit might cover a range that
3251     // came from multiple VirtualAlloc reserves (using allocate_pages_individually).
3252     // VirtualQuery can help us determine that.  The RegionSize that VirtualQuery
3253     // returns represents the number of bytes that can be committed in one step.
3254     size_t bytes_remaining = bytes;
3255     char * next_alloc_addr = addr;
3256     while (bytes_remaining > 0) {
3257       MEMORY_BASIC_INFORMATION alloc_info;
3258       VirtualQuery(next_alloc_addr, &alloc_info, sizeof(alloc_info));
3259       size_t bytes_to_rq = MIN2(bytes_remaining, (size_t)alloc_info.RegionSize);
3260       if (VirtualAlloc(next_alloc_addr, bytes_to_rq, MEM_COMMIT,
3261                        PAGE_READWRITE) == NULL) {
3262         NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3263                                             exec);)
3264         return false;
3265       }
3266       if (exec) {
3267         DWORD oldprot;
3268         if (!VirtualProtect(next_alloc_addr, bytes_to_rq,
3269                             PAGE_EXECUTE_READWRITE, &oldprot)) {
3270           NOT_PRODUCT(warn_fail_commit_memory(next_alloc_addr, bytes_to_rq,
3271                                               exec);)
3272           return false;
3273         }
3274       }
3275       bytes_remaining -= bytes_to_rq;
3276       next_alloc_addr += bytes_to_rq;
3277     }
3278   }
3279   // if we made it this far, return true
3280   return true;
3281 }
3282 
3283 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
3284                        bool exec) {
3285   // alignment_hint is ignored on this OS
3286   return pd_commit_memory(addr, size, exec);
3287 }
3288 
3289 void os::pd_commit_memory_or_exit(char* addr, size_t size, bool exec,
3290                                   const char* mesg) {
3291   assert(mesg != NULL, "mesg must be specified");
3292   if (!pd_commit_memory(addr, size, exec)) {
3293     warn_fail_commit_memory(addr, size, exec);
3294     vm_exit_out_of_memory(size, OOM_MMAP_ERROR, mesg);
3295   }
3296 }
3297 
3298 void os::pd_commit_memory_or_exit(char* addr, size_t size,
3299                                   size_t alignment_hint, bool exec,
3300                                   const char* mesg) {
3301   // alignment_hint is ignored on this OS
3302   pd_commit_memory_or_exit(addr, size, exec, mesg);
3303 }
3304 
3305 bool os::pd_uncommit_memory(char* addr, size_t bytes) {
3306   if (bytes == 0) {
3307     // Don't bother the OS with noops.
3308     return true;
3309   }
3310   assert((size_t) addr % os::vm_page_size() == 0, "uncommit on page boundaries");
3311   assert(bytes % os::vm_page_size() == 0, "uncommit in page-sized chunks");
3312   return (VirtualFree(addr, bytes, MEM_DECOMMIT) != 0);
3313 }
3314 
3315 bool os::pd_release_memory(char* addr, size_t bytes) {
3316   return VirtualFree(addr, 0, MEM_RELEASE) != 0;
3317 }
3318 
3319 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
3320   return os::commit_memory(addr, size, !ExecMem);
3321 }
3322 
3323 bool os::remove_stack_guard_pages(char* addr, size_t size) {
3324   return os::uncommit_memory(addr, size);
3325 }
3326 
3327 // Set protections specified
3328 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
3329                         bool is_committed) {
3330   unsigned int p = 0;
3331   switch (prot) {
3332   case MEM_PROT_NONE: p = PAGE_NOACCESS; break;
3333   case MEM_PROT_READ: p = PAGE_READONLY; break;
3334   case MEM_PROT_RW:   p = PAGE_READWRITE; break;
3335   case MEM_PROT_RWX:  p = PAGE_EXECUTE_READWRITE; break;
3336   default:
3337     ShouldNotReachHere();
3338   }
3339 
3340   DWORD old_status;
3341 
3342   // Strange enough, but on Win32 one can change protection only for committed
3343   // memory, not a big deal anyway, as bytes less or equal than 64K
3344   if (!is_committed) {
3345     commit_memory_or_exit(addr, bytes, prot == MEM_PROT_RWX,
3346                           "cannot commit protection page");
3347   }
3348   // One cannot use os::guard_memory() here, as on Win32 guard page
3349   // have different (one-shot) semantics, from MSDN on PAGE_GUARD:
3350   //
3351   // Pages in the region become guard pages. Any attempt to access a guard page
3352   // causes the system to raise a STATUS_GUARD_PAGE exception and turn off
3353   // the guard page status. Guard pages thus act as a one-time access alarm.
3354   return VirtualProtect(addr, bytes, p, &old_status) != 0;
3355 }
3356 
3357 bool os::guard_memory(char* addr, size_t bytes) {
3358   DWORD old_status;
3359   return VirtualProtect(addr, bytes, PAGE_READWRITE | PAGE_GUARD, &old_status) != 0;
3360 }
3361 
3362 bool os::unguard_memory(char* addr, size_t bytes) {
3363   DWORD old_status;
3364   return VirtualProtect(addr, bytes, PAGE_READWRITE, &old_status) != 0;
3365 }
3366 
3367 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3368 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) { }
3369 void os::numa_make_global(char *addr, size_t bytes)    { }
3370 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint)    { }
3371 bool os::numa_topology_changed()                       { return false; }
3372 size_t os::numa_get_groups_num()                       { return MAX2(numa_node_list_holder.get_count(), 1); }
3373 int os::numa_get_group_id()                            { return 0; }
3374 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
3375   if (numa_node_list_holder.get_count() == 0 && size > 0) {
3376     // Provide an answer for UMA systems
3377     ids[0] = 0;
3378     return 1;
3379   } else {
3380     // check for size bigger than actual groups_num
3381     size = MIN2(size, numa_get_groups_num());
3382     for (int i = 0; i < (int)size; i++) {
3383       ids[i] = numa_node_list_holder.get_node_list_entry(i);
3384     }
3385     return size;
3386   }
3387 }
3388 
3389 bool os::get_page_info(char *start, page_info* info) {
3390   return false;
3391 }
3392 
3393 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
3394   return end;
3395 }
3396 
3397 char* os::non_memory_address_word() {
3398   // Must never look like an address returned by reserve_memory,
3399   // even in its subfields (as defined by the CPU immediate fields,
3400   // if the CPU splits constants across multiple instructions).
3401   return (char*)-1;
3402 }
3403 
3404 #define MAX_ERROR_COUNT 100
3405 #define SYS_THREAD_ERROR 0xffffffffUL
3406 
3407 void os::pd_start_thread(Thread* thread) {
3408   DWORD ret = ResumeThread(thread->osthread()->thread_handle());
3409   // Returns previous suspend state:
3410   // 0:  Thread was not suspended
3411   // 1:  Thread is running now
3412   // >1: Thread is still suspended.
3413   assert(ret != SYS_THREAD_ERROR, "StartThread failed"); // should propagate back
3414 }
3415 
3416 class HighResolutionInterval : public CHeapObj<mtThread> {
3417   // The default timer resolution seems to be 10 milliseconds.
3418   // (Where is this written down?)
3419   // If someone wants to sleep for only a fraction of the default,
3420   // then we set the timer resolution down to 1 millisecond for
3421   // the duration of their interval.
3422   // We carefully set the resolution back, since otherwise we
3423   // seem to incur an overhead (3%?) that we don't need.
3424   // CONSIDER: if ms is small, say 3, then we should run with a high resolution time.
3425   // Buf if ms is large, say 500, or 503, we should avoid the call to timeBeginPeriod().
3426   // Alternatively, we could compute the relative error (503/500 = .6%) and only use
3427   // timeBeginPeriod() if the relative error exceeded some threshold.
3428   // timeBeginPeriod() has been linked to problems with clock drift on win32 systems and
3429   // to decreased efficiency related to increased timer "tick" rates.  We want to minimize
3430   // (a) calls to timeBeginPeriod() and timeEndPeriod() and (b) time spent with high
3431   // resolution timers running.
3432 private:
3433     jlong resolution;
3434 public:
3435   HighResolutionInterval(jlong ms) {
3436     resolution = ms % 10L;
3437     if (resolution != 0) {
3438       MMRESULT result = timeBeginPeriod(1L);
3439     }
3440   }
3441   ~HighResolutionInterval() {
3442     if (resolution != 0) {
3443       MMRESULT result = timeEndPeriod(1L);
3444     }
3445     resolution = 0L;
3446   }
3447 };
3448 
3449 int os::sleep(Thread* thread, jlong ms, bool interruptable) {
3450   jlong limit = (jlong) MAXDWORD;
3451 
3452   while(ms > limit) {
3453     int res;
3454     if ((res = sleep(thread, limit, interruptable)) != OS_TIMEOUT)
3455       return res;
3456     ms -= limit;
3457   }
3458 
3459   assert(thread == Thread::current(),  "thread consistency check");
3460   OSThread* osthread = thread->osthread();
3461   OSThreadWaitState osts(osthread, false /* not Object.wait() */);
3462   int result;
3463   if (interruptable) {
3464     assert(thread->is_Java_thread(), "must be java thread");
3465     JavaThread *jt = (JavaThread *) thread;
3466     ThreadBlockInVM tbivm(jt);
3467 
3468     jt->set_suspend_equivalent();
3469     // cleared by handle_special_suspend_equivalent_condition() or
3470     // java_suspend_self() via check_and_wait_while_suspended()
3471 
3472     HANDLE events[1];
3473     events[0] = osthread->interrupt_event();
3474     HighResolutionInterval *phri=NULL;
3475     if(!ForceTimeHighResolution)
3476       phri = new HighResolutionInterval( ms );
3477     if (WaitForMultipleObjects(1, events, FALSE, (DWORD)ms) == WAIT_TIMEOUT) {
3478       result = OS_TIMEOUT;
3479     } else {
3480       ResetEvent(osthread->interrupt_event());
3481       osthread->set_interrupted(false);
3482       result = OS_INTRPT;
3483     }
3484     delete phri; //if it is NULL, harmless
3485 
3486     // were we externally suspended while we were waiting?
3487     jt->check_and_wait_while_suspended();
3488   } else {
3489     assert(!thread->is_Java_thread(), "must not be java thread");
3490     Sleep((long) ms);
3491     result = OS_TIMEOUT;
3492   }
3493   return result;
3494 }
3495 
3496 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3497 void os::infinite_sleep() {
3498   while (true) {    // sleep forever ...
3499     Sleep(100000);  // ... 100 seconds at a time
3500   }
3501 }
3502 
3503 typedef BOOL (WINAPI * STTSignature)(void) ;
3504 
3505 os::YieldResult os::NakedYield() {
3506   // Use either SwitchToThread() or Sleep(0)
3507   // Consider passing back the return value from SwitchToThread().
3508   if (os::Kernel32Dll::SwitchToThreadAvailable()) {
3509     return SwitchToThread() ? os::YIELD_SWITCHED : os::YIELD_NONEREADY ;
3510   } else {
3511     Sleep(0);
3512   }
3513   return os::YIELD_UNKNOWN ;
3514 }
3515 
3516 void os::yield() {  os::NakedYield(); }
3517 
3518 void os::yield_all(int attempts) {
3519   // Yields to all threads, including threads with lower priorities
3520   Sleep(1);
3521 }
3522 
3523 // Win32 only gives you access to seven real priorities at a time,
3524 // so we compress Java's ten down to seven.  It would be better
3525 // if we dynamically adjusted relative priorities.
3526 
3527 int os::java_to_os_priority[CriticalPriority + 1] = {
3528   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3529   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3530   THREAD_PRIORITY_LOWEST,                       // 2
3531   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3532   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3533   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3534   THREAD_PRIORITY_NORMAL,                       // 6
3535   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3536   THREAD_PRIORITY_ABOVE_NORMAL,                 // 8
3537   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3538   THREAD_PRIORITY_HIGHEST,                      // 10 MaxPriority
3539   THREAD_PRIORITY_HIGHEST                       // 11 CriticalPriority
3540 };
3541 
3542 int prio_policy1[CriticalPriority + 1] = {
3543   THREAD_PRIORITY_IDLE,                         // 0  Entry should never be used
3544   THREAD_PRIORITY_LOWEST,                       // 1  MinPriority
3545   THREAD_PRIORITY_LOWEST,                       // 2
3546   THREAD_PRIORITY_BELOW_NORMAL,                 // 3
3547   THREAD_PRIORITY_BELOW_NORMAL,                 // 4
3548   THREAD_PRIORITY_NORMAL,                       // 5  NormPriority
3549   THREAD_PRIORITY_ABOVE_NORMAL,                 // 6
3550   THREAD_PRIORITY_ABOVE_NORMAL,                 // 7
3551   THREAD_PRIORITY_HIGHEST,                      // 8
3552   THREAD_PRIORITY_HIGHEST,                      // 9  NearMaxPriority
3553   THREAD_PRIORITY_TIME_CRITICAL,                // 10 MaxPriority
3554   THREAD_PRIORITY_TIME_CRITICAL                 // 11 CriticalPriority
3555 };
3556 
3557 static int prio_init() {
3558   // If ThreadPriorityPolicy is 1, switch tables
3559   if (ThreadPriorityPolicy == 1) {
3560     int i;
3561     for (i = 0; i < CriticalPriority + 1; i++) {
3562       os::java_to_os_priority[i] = prio_policy1[i];
3563     }
3564   }
3565   if (UseCriticalJavaThreadPriority) {
3566     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority] ;
3567   }
3568   return 0;
3569 }
3570 
3571 OSReturn os::set_native_priority(Thread* thread, int priority) {
3572   if (!UseThreadPriorities) return OS_OK;
3573   bool ret = SetThreadPriority(thread->osthread()->thread_handle(), priority) != 0;
3574   return ret ? OS_OK : OS_ERR;
3575 }
3576 
3577 OSReturn os::get_native_priority(const Thread* const thread, int* priority_ptr) {
3578   if ( !UseThreadPriorities ) {
3579     *priority_ptr = java_to_os_priority[NormPriority];
3580     return OS_OK;
3581   }
3582   int os_prio = GetThreadPriority(thread->osthread()->thread_handle());
3583   if (os_prio == THREAD_PRIORITY_ERROR_RETURN) {
3584     assert(false, "GetThreadPriority failed");
3585     return OS_ERR;
3586   }
3587   *priority_ptr = os_prio;
3588   return OS_OK;
3589 }
3590 
3591 
3592 // Hint to the underlying OS that a task switch would not be good.
3593 // Void return because it's a hint and can fail.
3594 void os::hint_no_preempt() {}
3595 
3596 void os::interrupt(Thread* thread) {
3597   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3598          "possibility of dangling Thread pointer");
3599 
3600   OSThread* osthread = thread->osthread();
3601   osthread->set_interrupted(true);
3602   // More than one thread can get here with the same value of osthread,
3603   // resulting in multiple notifications.  We do, however, want the store
3604   // to interrupted() to be visible to other threads before we post
3605   // the interrupt event.
3606   OrderAccess::release();
3607   SetEvent(osthread->interrupt_event());
3608   // For JSR166:  unpark after setting status
3609   if (thread->is_Java_thread())
3610     ((JavaThread*)thread)->parker()->unpark();
3611 
3612   ParkEvent * ev = thread->_ParkEvent ;
3613   if (ev != NULL) ev->unpark() ;
3614 
3615 }
3616 
3617 
3618 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3619   assert(!thread->is_Java_thread() || Thread::current() == thread || Threads_lock->owned_by_self(),
3620          "possibility of dangling Thread pointer");
3621 
3622   OSThread* osthread = thread->osthread();
3623   bool interrupted = osthread->interrupted();
3624   // There is no synchronization between the setting of the interrupt
3625   // and it being cleared here. It is critical - see 6535709 - that
3626   // we only clear the interrupt state, and reset the interrupt event,
3627   // if we are going to report that we were indeed interrupted - else
3628   // an interrupt can be "lost", leading to spurious wakeups or lost wakeups
3629   // depending on the timing
3630   if (interrupted && clear_interrupted) {
3631     osthread->set_interrupted(false);
3632     ResetEvent(osthread->interrupt_event());
3633   } // Otherwise leave the interrupted state alone
3634 
3635   return interrupted;
3636 }
3637 
3638 // Get's a pc (hint) for a running thread. Currently used only for profiling.
3639 ExtendedPC os::get_thread_pc(Thread* thread) {
3640   CONTEXT context;
3641   context.ContextFlags = CONTEXT_CONTROL;
3642   HANDLE handle = thread->osthread()->thread_handle();
3643 #ifdef _M_IA64
3644   assert(0, "Fix get_thread_pc");
3645   return ExtendedPC(NULL);
3646 #else
3647   if (GetThreadContext(handle, &context)) {
3648 #ifdef _M_AMD64
3649     return ExtendedPC((address) context.Rip);
3650 #else
3651     return ExtendedPC((address) context.Eip);
3652 #endif
3653   } else {
3654     return ExtendedPC(NULL);
3655   }
3656 #endif
3657 }
3658 
3659 // GetCurrentThreadId() returns DWORD
3660 intx os::current_thread_id()          { return GetCurrentThreadId(); }
3661 
3662 static int _initial_pid = 0;
3663 
3664 int os::current_process_id()
3665 {
3666   return (_initial_pid ? _initial_pid : _getpid());
3667 }
3668 
3669 int    os::win32::_vm_page_size       = 0;
3670 int    os::win32::_vm_allocation_granularity = 0;
3671 int    os::win32::_processor_type     = 0;
3672 // Processor level is not available on non-NT systems, use vm_version instead
3673 int    os::win32::_processor_level    = 0;
3674 julong os::win32::_physical_memory    = 0;
3675 size_t os::win32::_default_stack_size = 0;
3676 
3677          intx os::win32::_os_thread_limit    = 0;
3678 volatile intx os::win32::_os_thread_count    = 0;
3679 
3680 bool   os::win32::_is_nt              = false;
3681 bool   os::win32::_is_windows_2003    = false;
3682 bool   os::win32::_is_windows_server  = false;
3683 
3684 void os::win32::initialize_system_info() {
3685   SYSTEM_INFO si;
3686   GetSystemInfo(&si);
3687   _vm_page_size    = si.dwPageSize;
3688   _vm_allocation_granularity = si.dwAllocationGranularity;
3689   _processor_type  = si.dwProcessorType;
3690   _processor_level = si.wProcessorLevel;
3691   set_processor_count(si.dwNumberOfProcessors);
3692 
3693   MEMORYSTATUSEX ms;
3694   ms.dwLength = sizeof(ms);
3695 
3696   // also returns dwAvailPhys (free physical memory bytes), dwTotalVirtual, dwAvailVirtual,
3697   // dwMemoryLoad (% of memory in use)
3698   GlobalMemoryStatusEx(&ms);
3699   _physical_memory = ms.ullTotalPhys;
3700 
3701   OSVERSIONINFOEX oi;
3702   oi.dwOSVersionInfoSize = sizeof(OSVERSIONINFOEX);
3703   GetVersionEx((OSVERSIONINFO*)&oi);
3704   switch(oi.dwPlatformId) {
3705     case VER_PLATFORM_WIN32_WINDOWS: _is_nt = false; break;
3706     case VER_PLATFORM_WIN32_NT:
3707       _is_nt = true;
3708       {
3709         int os_vers = oi.dwMajorVersion * 1000 + oi.dwMinorVersion;
3710         if (os_vers == 5002) {
3711           _is_windows_2003 = true;
3712         }
3713         if (oi.wProductType == VER_NT_DOMAIN_CONTROLLER ||
3714           oi.wProductType == VER_NT_SERVER) {
3715             _is_windows_server = true;
3716         }
3717       }
3718       break;
3719     default: fatal("Unknown platform");
3720   }
3721 
3722   _default_stack_size = os::current_stack_size();
3723   assert(_default_stack_size > (size_t) _vm_page_size, "invalid stack size");
3724   assert((_default_stack_size & (_vm_page_size - 1)) == 0,
3725     "stack size not a multiple of page size");
3726 
3727   initialize_performance_counter();
3728 
3729   // Win95/Win98 scheduler bug work-around. The Win95/98 scheduler is
3730   // known to deadlock the system, if the VM issues to thread operations with
3731   // a too high frequency, e.g., such as changing the priorities.
3732   // The 6000 seems to work well - no deadlocks has been notices on the test
3733   // programs that we have seen experience this problem.
3734   if (!os::win32::is_nt()) {
3735     StarvationMonitorInterval = 6000;
3736   }
3737 }
3738 
3739 
3740 HINSTANCE os::win32::load_Windows_dll(const char* name, char *ebuf, int ebuflen) {
3741   char path[MAX_PATH];
3742   DWORD size;
3743   DWORD pathLen = (DWORD)sizeof(path);
3744   HINSTANCE result = NULL;
3745 
3746   // only allow library name without path component
3747   assert(strchr(name, '\\') == NULL, "path not allowed");
3748   assert(strchr(name, ':') == NULL, "path not allowed");
3749   if (strchr(name, '\\') != NULL || strchr(name, ':') != NULL) {
3750     jio_snprintf(ebuf, ebuflen,
3751       "Invalid parameter while calling os::win32::load_windows_dll(): cannot take path: %s", name);
3752     return NULL;
3753   }
3754 
3755   // search system directory
3756   if ((size = GetSystemDirectory(path, pathLen)) > 0) {
3757     strcat(path, "\\");
3758     strcat(path, name);
3759     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3760       return result;
3761     }
3762   }
3763 
3764   // try Windows directory
3765   if ((size = GetWindowsDirectory(path, pathLen)) > 0) {
3766     strcat(path, "\\");
3767     strcat(path, name);
3768     if ((result = (HINSTANCE)os::dll_load(path, ebuf, ebuflen)) != NULL) {
3769       return result;
3770     }
3771   }
3772 
3773   jio_snprintf(ebuf, ebuflen,
3774     "os::win32::load_windows_dll() cannot load %s from system directories.", name);
3775   return NULL;
3776 }
3777 
3778 void os::win32::setmode_streams() {
3779   _setmode(_fileno(stdin), _O_BINARY);
3780   _setmode(_fileno(stdout), _O_BINARY);
3781   _setmode(_fileno(stderr), _O_BINARY);
3782 }
3783 
3784 
3785 bool os::is_debugger_attached() {
3786   return IsDebuggerPresent() ? true : false;
3787 }
3788 
3789 
3790 void os::wait_for_keypress_at_exit(void) {
3791   if (PauseAtExit) {
3792     fprintf(stderr, "Press any key to continue...\n");
3793     fgetc(stdin);
3794   }
3795 }
3796 
3797 
3798 int os::message_box(const char* title, const char* message) {
3799   int result = MessageBox(NULL, message, title,
3800                           MB_YESNO | MB_ICONERROR | MB_SYSTEMMODAL | MB_DEFAULT_DESKTOP_ONLY);
3801   return result == IDYES;
3802 }
3803 
3804 int os::allocate_thread_local_storage() {
3805   return TlsAlloc();
3806 }
3807 
3808 
3809 void os::free_thread_local_storage(int index) {
3810   TlsFree(index);
3811 }
3812 
3813 
3814 void os::thread_local_storage_at_put(int index, void* value) {
3815   TlsSetValue(index, value);
3816   assert(thread_local_storage_at(index) == value, "Just checking");
3817 }
3818 
3819 
3820 void* os::thread_local_storage_at(int index) {
3821   return TlsGetValue(index);
3822 }
3823 
3824 
3825 #ifndef PRODUCT
3826 #ifndef _WIN64
3827 // Helpers to check whether NX protection is enabled
3828 int nx_exception_filter(_EXCEPTION_POINTERS *pex) {
3829   if (pex->ExceptionRecord->ExceptionCode == EXCEPTION_ACCESS_VIOLATION &&
3830       pex->ExceptionRecord->NumberParameters > 0 &&
3831       pex->ExceptionRecord->ExceptionInformation[0] ==
3832       EXCEPTION_INFO_EXEC_VIOLATION) {
3833     return EXCEPTION_EXECUTE_HANDLER;
3834   }
3835   return EXCEPTION_CONTINUE_SEARCH;
3836 }
3837 
3838 void nx_check_protection() {
3839   // If NX is enabled we'll get an exception calling into code on the stack
3840   char code[] = { (char)0xC3 }; // ret
3841   void *code_ptr = (void *)code;
3842   __try {
3843     __asm call code_ptr
3844   } __except(nx_exception_filter((_EXCEPTION_POINTERS*)_exception_info())) {
3845     tty->print_raw_cr("NX protection detected.");
3846   }
3847 }
3848 #endif // _WIN64
3849 #endif // PRODUCT
3850 
3851 // this is called _before_ the global arguments have been parsed
3852 void os::init(void) {
3853   _initial_pid = _getpid();
3854 
3855   init_random(1234567);
3856 
3857   win32::initialize_system_info();
3858   win32::setmode_streams();
3859   init_page_sizes((size_t) win32::vm_page_size());
3860 
3861   // For better scalability on MP systems (must be called after initialize_system_info)
3862 #ifndef PRODUCT
3863   if (is_MP()) {
3864     NoYieldsInMicrolock = true;
3865   }
3866 #endif
3867   // This may be overridden later when argument processing is done.
3868   FLAG_SET_ERGO(bool, UseLargePagesIndividualAllocation,
3869     os::win32::is_windows_2003());
3870 
3871   // Initialize main_process and main_thread
3872   main_process = GetCurrentProcess();  // Remember main_process is a pseudo handle
3873  if (!DuplicateHandle(main_process, GetCurrentThread(), main_process,
3874                        &main_thread, THREAD_ALL_ACCESS, false, 0)) {
3875     fatal("DuplicateHandle failed\n");
3876   }
3877   main_thread_id = (int) GetCurrentThreadId();
3878 }
3879 
3880 // To install functions for atexit processing
3881 extern "C" {
3882   static void perfMemory_exit_helper() {
3883     perfMemory_exit();
3884   }
3885 }
3886 
3887 static jint initSock();
3888 
3889 // this is called _after_ the global arguments have been parsed
3890 jint os::init_2(void) {
3891   // Allocate a single page and mark it as readable for safepoint polling
3892   address polling_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READONLY);
3893   guarantee( polling_page != NULL, "Reserve Failed for polling page");
3894 
3895   address return_page  = (address)VirtualAlloc(polling_page, os::vm_page_size(), MEM_COMMIT, PAGE_READONLY);
3896   guarantee( return_page != NULL, "Commit Failed for polling page");
3897 
3898   os::set_polling_page( polling_page );
3899 
3900 #ifndef PRODUCT
3901   if( Verbose && PrintMiscellaneous )
3902     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
3903 #endif
3904 
3905   if (!UseMembar) {
3906     address mem_serialize_page = (address)VirtualAlloc(NULL, os::vm_page_size(), MEM_RESERVE, PAGE_READWRITE);
3907     guarantee( mem_serialize_page != NULL, "Reserve Failed for memory serialize page");
3908 
3909     return_page  = (address)VirtualAlloc(mem_serialize_page, os::vm_page_size(), MEM_COMMIT, PAGE_READWRITE);
3910     guarantee( return_page != NULL, "Commit Failed for memory serialize page");
3911 
3912     os::set_memory_serialize_page( mem_serialize_page );
3913 
3914 #ifndef PRODUCT
3915     if(Verbose && PrintMiscellaneous)
3916       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
3917 #endif
3918   }
3919 
3920   os::large_page_init();
3921 
3922   // Setup Windows Exceptions
3923 
3924   // for debugging float code generation bugs
3925   if (ForceFloatExceptions) {
3926 #ifndef  _WIN64
3927     static long fp_control_word = 0;
3928     __asm { fstcw fp_control_word }
3929     // see Intel PPro Manual, Vol. 2, p 7-16
3930     const long precision = 0x20;
3931     const long underflow = 0x10;
3932     const long overflow  = 0x08;
3933     const long zero_div  = 0x04;
3934     const long denorm    = 0x02;
3935     const long invalid   = 0x01;
3936     fp_control_word |= invalid;
3937     __asm { fldcw fp_control_word }
3938 #endif
3939   }
3940 
3941   // If stack_commit_size is 0, windows will reserve the default size,
3942   // but only commit a small portion of it.
3943   size_t stack_commit_size = round_to(ThreadStackSize*K, os::vm_page_size());
3944   size_t default_reserve_size = os::win32::default_stack_size();
3945   size_t actual_reserve_size = stack_commit_size;
3946   if (stack_commit_size < default_reserve_size) {
3947     // If stack_commit_size == 0, we want this too
3948     actual_reserve_size = default_reserve_size;
3949   }
3950 
3951   // Check minimum allowable stack size for thread creation and to initialize
3952   // the java system classes, including StackOverflowError - depends on page
3953   // size.  Add a page for compiler2 recursion in main thread.
3954   // Add in 2*BytesPerWord times page size to account for VM stack during
3955   // class initialization depending on 32 or 64 bit VM.
3956   size_t min_stack_allowed =
3957             (size_t)(StackYellowPages+StackRedPages+StackShadowPages+
3958             2*BytesPerWord COMPILER2_PRESENT(+1)) * os::vm_page_size();
3959   if (actual_reserve_size < min_stack_allowed) {
3960     tty->print_cr("\nThe stack size specified is too small, "
3961                   "Specify at least %dk",
3962                   min_stack_allowed / K);
3963     return JNI_ERR;
3964   }
3965 
3966   JavaThread::set_stack_size_at_create(stack_commit_size);
3967 
3968   // Calculate theoretical max. size of Threads to guard gainst artifical
3969   // out-of-memory situations, where all available address-space has been
3970   // reserved by thread stacks.
3971   assert(actual_reserve_size != 0, "Must have a stack");
3972 
3973   // Calculate the thread limit when we should start doing Virtual Memory
3974   // banging. Currently when the threads will have used all but 200Mb of space.
3975   //
3976   // TODO: consider performing a similar calculation for commit size instead
3977   // as reserve size, since on a 64-bit platform we'll run into that more
3978   // often than running out of virtual memory space.  We can use the
3979   // lower value of the two calculations as the os_thread_limit.
3980   size_t max_address_space = ((size_t)1 << (BitsPerWord - 1)) - (200 * K * K);
3981   win32::_os_thread_limit = (intx)(max_address_space / actual_reserve_size);
3982 
3983   // at exit methods are called in the reverse order of their registration.
3984   // there is no limit to the number of functions registered. atexit does
3985   // not set errno.
3986 
3987   if (PerfAllowAtExitRegistration) {
3988     // only register atexit functions if PerfAllowAtExitRegistration is set.
3989     // atexit functions can be delayed until process exit time, which
3990     // can be problematic for embedded VM situations. Embedded VMs should
3991     // call DestroyJavaVM() to assure that VM resources are released.
3992 
3993     // note: perfMemory_exit_helper atexit function may be removed in
3994     // the future if the appropriate cleanup code can be added to the
3995     // VM_Exit VMOperation's doit method.
3996     if (atexit(perfMemory_exit_helper) != 0) {
3997       warning("os::init_2 atexit(perfMemory_exit_helper) failed");
3998     }
3999   }
4000 
4001 #ifndef _WIN64
4002   // Print something if NX is enabled (win32 on AMD64)
4003   NOT_PRODUCT(if (PrintMiscellaneous && Verbose) nx_check_protection());
4004 #endif
4005 
4006   // initialize thread priority policy
4007   prio_init();
4008 
4009   if (UseNUMA && !ForceNUMA) {
4010     UseNUMA = false; // We don't fully support this yet
4011   }
4012 
4013   if (UseNUMAInterleaving) {
4014     // first check whether this Windows OS supports VirtualAllocExNuma, if not ignore this flag
4015     bool success = numa_interleaving_init();
4016     if (!success) UseNUMAInterleaving = false;
4017   }
4018 
4019   if (initSock() != JNI_OK) {
4020     return JNI_ERR;
4021   }
4022 
4023   return JNI_OK;
4024 }
4025 
4026 void os::init_3(void) {
4027   return;
4028 }
4029 
4030 // Mark the polling page as unreadable
4031 void os::make_polling_page_unreadable(void) {
4032   DWORD old_status;
4033   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_NOACCESS, &old_status) )
4034     fatal("Could not disable polling page");
4035 };
4036 
4037 // Mark the polling page as readable
4038 void os::make_polling_page_readable(void) {
4039   DWORD old_status;
4040   if( !VirtualProtect((char *)_polling_page, os::vm_page_size(), PAGE_READONLY, &old_status) )
4041     fatal("Could not enable polling page");
4042 };
4043 
4044 
4045 int os::stat(const char *path, struct stat *sbuf) {
4046   char pathbuf[MAX_PATH];
4047   if (strlen(path) > MAX_PATH - 1) {
4048     errno = ENAMETOOLONG;
4049     return -1;
4050   }
4051   os::native_path(strcpy(pathbuf, path));
4052   int ret = ::stat(pathbuf, sbuf);
4053   if (sbuf != NULL && UseUTCFileTimestamp) {
4054     // Fix for 6539723.  st_mtime returned from stat() is dependent on
4055     // the system timezone and so can return different values for the
4056     // same file if/when daylight savings time changes.  This adjustment
4057     // makes sure the same timestamp is returned regardless of the TZ.
4058     //
4059     // See:
4060     // http://msdn.microsoft.com/library/
4061     //   default.asp?url=/library/en-us/sysinfo/base/
4062     //   time_zone_information_str.asp
4063     // and
4064     // http://msdn.microsoft.com/library/default.asp?url=
4065     //   /library/en-us/sysinfo/base/settimezoneinformation.asp
4066     //
4067     // NOTE: there is a insidious bug here:  If the timezone is changed
4068     // after the call to stat() but before 'GetTimeZoneInformation()', then
4069     // the adjustment we do here will be wrong and we'll return the wrong
4070     // value (which will likely end up creating an invalid class data
4071     // archive).  Absent a better API for this, or some time zone locking
4072     // mechanism, we'll have to live with this risk.
4073     TIME_ZONE_INFORMATION tz;
4074     DWORD tzid = GetTimeZoneInformation(&tz);
4075     int daylightBias =
4076       (tzid == TIME_ZONE_ID_DAYLIGHT) ?  tz.DaylightBias : tz.StandardBias;
4077     sbuf->st_mtime += (tz.Bias + daylightBias) * 60;
4078   }
4079   return ret;
4080 }
4081 
4082 
4083 #define FT2INT64(ft) \
4084   ((jlong)((jlong)(ft).dwHighDateTime << 32 | (julong)(ft).dwLowDateTime))
4085 
4086 
4087 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4088 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4089 // of a thread.
4090 //
4091 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4092 // the fast estimate available on the platform.
4093 
4094 // current_thread_cpu_time() is not optimized for Windows yet
4095 jlong os::current_thread_cpu_time() {
4096   // return user + sys since the cost is the same
4097   return os::thread_cpu_time(Thread::current(), true /* user+sys */);
4098 }
4099 
4100 jlong os::thread_cpu_time(Thread* thread) {
4101   // consistent with what current_thread_cpu_time() returns.
4102   return os::thread_cpu_time(thread, true /* user+sys */);
4103 }
4104 
4105 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4106   return os::thread_cpu_time(Thread::current(), user_sys_cpu_time);
4107 }
4108 
4109 jlong os::thread_cpu_time(Thread* thread, bool user_sys_cpu_time) {
4110   // This code is copy from clasic VM -> hpi::sysThreadCPUTime
4111   // If this function changes, os::is_thread_cpu_time_supported() should too
4112   if (os::win32::is_nt()) {
4113     FILETIME CreationTime;
4114     FILETIME ExitTime;
4115     FILETIME KernelTime;
4116     FILETIME UserTime;
4117 
4118     if ( GetThreadTimes(thread->osthread()->thread_handle(),
4119                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4120       return -1;
4121     else
4122       if (user_sys_cpu_time) {
4123         return (FT2INT64(UserTime) + FT2INT64(KernelTime)) * 100;
4124       } else {
4125         return FT2INT64(UserTime) * 100;
4126       }
4127   } else {
4128     return (jlong) timeGetTime() * 1000000;
4129   }
4130 }
4131 
4132 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4133   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4134   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4135   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4136   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4137 }
4138 
4139 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4140   info_ptr->max_value = ALL_64_BITS;        // the max value -- all 64 bits
4141   info_ptr->may_skip_backward = false;      // GetThreadTimes returns absolute time
4142   info_ptr->may_skip_forward = false;       // GetThreadTimes returns absolute time
4143   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;   // user+system time is returned
4144 }
4145 
4146 bool os::is_thread_cpu_time_supported() {
4147   // see os::thread_cpu_time
4148   if (os::win32::is_nt()) {
4149     FILETIME CreationTime;
4150     FILETIME ExitTime;
4151     FILETIME KernelTime;
4152     FILETIME UserTime;
4153 
4154     if ( GetThreadTimes(GetCurrentThread(),
4155                     &CreationTime, &ExitTime, &KernelTime, &UserTime) == 0)
4156       return false;
4157     else
4158       return true;
4159   } else {
4160     return false;
4161   }
4162 }
4163 
4164 // Windows does't provide a loadavg primitive so this is stubbed out for now.
4165 // It does have primitives (PDH API) to get CPU usage and run queue length.
4166 // "\\Processor(_Total)\\% Processor Time", "\\System\\Processor Queue Length"
4167 // If we wanted to implement loadavg on Windows, we have a few options:
4168 //
4169 // a) Query CPU usage and run queue length and "fake" an answer by
4170 //    returning the CPU usage if it's under 100%, and the run queue
4171 //    length otherwise.  It turns out that querying is pretty slow
4172 //    on Windows, on the order of 200 microseconds on a fast machine.
4173 //    Note that on the Windows the CPU usage value is the % usage
4174 //    since the last time the API was called (and the first call
4175 //    returns 100%), so we'd have to deal with that as well.
4176 //
4177 // b) Sample the "fake" answer using a sampling thread and store
4178 //    the answer in a global variable.  The call to loadavg would
4179 //    just return the value of the global, avoiding the slow query.
4180 //
4181 // c) Sample a better answer using exponential decay to smooth the
4182 //    value.  This is basically the algorithm used by UNIX kernels.
4183 //
4184 // Note that sampling thread starvation could affect both (b) and (c).
4185 int os::loadavg(double loadavg[], int nelem) {
4186   return -1;
4187 }
4188 
4189 
4190 // DontYieldALot=false by default: dutifully perform all yields as requested by JVM_Yield()
4191 bool os::dont_yield() {
4192   return DontYieldALot;
4193 }
4194 
4195 // This method is a slightly reworked copy of JDK's sysOpen
4196 // from src/windows/hpi/src/sys_api_md.c
4197 
4198 int os::open(const char *path, int oflag, int mode) {
4199   char pathbuf[MAX_PATH];
4200 
4201   if (strlen(path) > MAX_PATH - 1) {
4202     errno = ENAMETOOLONG;
4203           return -1;
4204   }
4205   os::native_path(strcpy(pathbuf, path));
4206   return ::open(pathbuf, oflag | O_BINARY | O_NOINHERIT, mode);
4207 }
4208 
4209 FILE* os::open(int fd, const char* mode) {
4210   return ::_fdopen(fd, mode);
4211 }
4212 
4213 // Is a (classpath) directory empty?
4214 bool os::dir_is_empty(const char* path) {
4215   WIN32_FIND_DATA fd;
4216   HANDLE f = FindFirstFile(path, &fd);
4217   if (f == INVALID_HANDLE_VALUE) {
4218     return true;
4219   }
4220   FindClose(f);
4221   return false;
4222 }
4223 
4224 // create binary file, rewriting existing file if required
4225 int os::create_binary_file(const char* path, bool rewrite_existing) {
4226   int oflags = _O_CREAT | _O_WRONLY | _O_BINARY;
4227   if (!rewrite_existing) {
4228     oflags |= _O_EXCL;
4229   }
4230   return ::open(path, oflags, _S_IREAD | _S_IWRITE);
4231 }
4232 
4233 // return current position of file pointer
4234 jlong os::current_file_offset(int fd) {
4235   return (jlong)::_lseeki64(fd, (__int64)0L, SEEK_CUR);
4236 }
4237 
4238 // move file pointer to the specified offset
4239 jlong os::seek_to_file_offset(int fd, jlong offset) {
4240   return (jlong)::_lseeki64(fd, (__int64)offset, SEEK_SET);
4241 }
4242 
4243 
4244 jlong os::lseek(int fd, jlong offset, int whence) {
4245   return (jlong) ::_lseeki64(fd, offset, whence);
4246 }
4247 
4248 // This method is a slightly reworked copy of JDK's sysNativePath
4249 // from src/windows/hpi/src/path_md.c
4250 
4251 /* Convert a pathname to native format.  On win32, this involves forcing all
4252    separators to be '\\' rather than '/' (both are legal inputs, but Win95
4253    sometimes rejects '/') and removing redundant separators.  The input path is
4254    assumed to have been converted into the character encoding used by the local
4255    system.  Because this might be a double-byte encoding, care is taken to
4256    treat double-byte lead characters correctly.
4257 
4258    This procedure modifies the given path in place, as the result is never
4259    longer than the original.  There is no error return; this operation always
4260    succeeds. */
4261 char * os::native_path(char *path) {
4262   char *src = path, *dst = path, *end = path;
4263   char *colon = NULL;           /* If a drive specifier is found, this will
4264                                         point to the colon following the drive
4265                                         letter */
4266 
4267   /* Assumption: '/', '\\', ':', and drive letters are never lead bytes */
4268   assert(((!::IsDBCSLeadByte('/'))
4269     && (!::IsDBCSLeadByte('\\'))
4270     && (!::IsDBCSLeadByte(':'))),
4271     "Illegal lead byte");
4272 
4273   /* Check for leading separators */
4274 #define isfilesep(c) ((c) == '/' || (c) == '\\')
4275   while (isfilesep(*src)) {
4276     src++;
4277   }
4278 
4279   if (::isalpha(*src) && !::IsDBCSLeadByte(*src) && src[1] == ':') {
4280     /* Remove leading separators if followed by drive specifier.  This
4281       hack is necessary to support file URLs containing drive
4282       specifiers (e.g., "file://c:/path").  As a side effect,
4283       "/c:/path" can be used as an alternative to "c:/path". */
4284     *dst++ = *src++;
4285     colon = dst;
4286     *dst++ = ':';
4287     src++;
4288   } else {
4289     src = path;
4290     if (isfilesep(src[0]) && isfilesep(src[1])) {
4291       /* UNC pathname: Retain first separator; leave src pointed at
4292          second separator so that further separators will be collapsed
4293          into the second separator.  The result will be a pathname
4294          beginning with "\\\\" followed (most likely) by a host name. */
4295       src = dst = path + 1;
4296       path[0] = '\\';     /* Force first separator to '\\' */
4297     }
4298   }
4299 
4300   end = dst;
4301 
4302   /* Remove redundant separators from remainder of path, forcing all
4303       separators to be '\\' rather than '/'. Also, single byte space
4304       characters are removed from the end of the path because those
4305       are not legal ending characters on this operating system.
4306   */
4307   while (*src != '\0') {
4308     if (isfilesep(*src)) {
4309       *dst++ = '\\'; src++;
4310       while (isfilesep(*src)) src++;
4311       if (*src == '\0') {
4312         /* Check for trailing separator */
4313         end = dst;
4314         if (colon == dst - 2) break;                      /* "z:\\" */
4315         if (dst == path + 1) break;                       /* "\\" */
4316         if (dst == path + 2 && isfilesep(path[0])) {
4317           /* "\\\\" is not collapsed to "\\" because "\\\\" marks the
4318             beginning of a UNC pathname.  Even though it is not, by
4319             itself, a valid UNC pathname, we leave it as is in order
4320             to be consistent with the path canonicalizer as well
4321             as the win32 APIs, which treat this case as an invalid
4322             UNC pathname rather than as an alias for the root
4323             directory of the current drive. */
4324           break;
4325         }
4326         end = --dst;  /* Path does not denote a root directory, so
4327                                     remove trailing separator */
4328         break;
4329       }
4330       end = dst;
4331     } else {
4332       if (::IsDBCSLeadByte(*src)) { /* Copy a double-byte character */
4333         *dst++ = *src++;
4334         if (*src) *dst++ = *src++;
4335         end = dst;
4336       } else {         /* Copy a single-byte character */
4337         char c = *src++;
4338         *dst++ = c;
4339         /* Space is not a legal ending character */
4340         if (c != ' ') end = dst;
4341       }
4342     }
4343   }
4344 
4345   *end = '\0';
4346 
4347   /* For "z:", add "." to work around a bug in the C runtime library */
4348   if (colon == dst - 1) {
4349           path[2] = '.';
4350           path[3] = '\0';
4351   }
4352 
4353   return path;
4354 }
4355 
4356 // This code is a copy of JDK's sysSetLength
4357 // from src/windows/hpi/src/sys_api_md.c
4358 
4359 int os::ftruncate(int fd, jlong length) {
4360   HANDLE h = (HANDLE)::_get_osfhandle(fd);
4361   long high = (long)(length >> 32);
4362   DWORD ret;
4363 
4364   if (h == (HANDLE)(-1)) {
4365     return -1;
4366   }
4367 
4368   ret = ::SetFilePointer(h, (long)(length), &high, FILE_BEGIN);
4369   if ((ret == 0xFFFFFFFF) && (::GetLastError() != NO_ERROR)) {
4370       return -1;
4371   }
4372 
4373   if (::SetEndOfFile(h) == FALSE) {
4374     return -1;
4375   }
4376 
4377   return 0;
4378 }
4379 
4380 
4381 // This code is a copy of JDK's sysSync
4382 // from src/windows/hpi/src/sys_api_md.c
4383 // except for the legacy workaround for a bug in Win 98
4384 
4385 int os::fsync(int fd) {
4386   HANDLE handle = (HANDLE)::_get_osfhandle(fd);
4387 
4388   if ( (!::FlushFileBuffers(handle)) &&
4389          (GetLastError() != ERROR_ACCESS_DENIED) ) {
4390     /* from winerror.h */
4391     return -1;
4392   }
4393   return 0;
4394 }
4395 
4396 static int nonSeekAvailable(int, long *);
4397 static int stdinAvailable(int, long *);
4398 
4399 #define S_ISCHR(mode)   (((mode) & _S_IFCHR) == _S_IFCHR)
4400 #define S_ISFIFO(mode)  (((mode) & _S_IFIFO) == _S_IFIFO)
4401 
4402 // This code is a copy of JDK's sysAvailable
4403 // from src/windows/hpi/src/sys_api_md.c
4404 
4405 int os::available(int fd, jlong *bytes) {
4406   jlong cur, end;
4407   struct _stati64 stbuf64;
4408 
4409   if (::_fstati64(fd, &stbuf64) >= 0) {
4410     int mode = stbuf64.st_mode;
4411     if (S_ISCHR(mode) || S_ISFIFO(mode)) {
4412       int ret;
4413       long lpbytes;
4414       if (fd == 0) {
4415         ret = stdinAvailable(fd, &lpbytes);
4416       } else {
4417         ret = nonSeekAvailable(fd, &lpbytes);
4418       }
4419       (*bytes) = (jlong)(lpbytes);
4420       return ret;
4421     }
4422     if ((cur = ::_lseeki64(fd, 0L, SEEK_CUR)) == -1) {
4423       return FALSE;
4424     } else if ((end = ::_lseeki64(fd, 0L, SEEK_END)) == -1) {
4425       return FALSE;
4426     } else if (::_lseeki64(fd, cur, SEEK_SET) == -1) {
4427       return FALSE;
4428     }
4429     *bytes = end - cur;
4430     return TRUE;
4431   } else {
4432     return FALSE;
4433   }
4434 }
4435 
4436 // This code is a copy of JDK's nonSeekAvailable
4437 // from src/windows/hpi/src/sys_api_md.c
4438 
4439 static int nonSeekAvailable(int fd, long *pbytes) {
4440   /* This is used for available on non-seekable devices
4441     * (like both named and anonymous pipes, such as pipes
4442     *  connected to an exec'd process).
4443     * Standard Input is a special case.
4444     *
4445     */
4446   HANDLE han;
4447 
4448   if ((han = (HANDLE) ::_get_osfhandle(fd)) == (HANDLE)(-1)) {
4449     return FALSE;
4450   }
4451 
4452   if (! ::PeekNamedPipe(han, NULL, 0, NULL, (LPDWORD)pbytes, NULL)) {
4453         /* PeekNamedPipe fails when at EOF.  In that case we
4454          * simply make *pbytes = 0 which is consistent with the
4455          * behavior we get on Solaris when an fd is at EOF.
4456          * The only alternative is to raise an Exception,
4457          * which isn't really warranted.
4458          */
4459     if (::GetLastError() != ERROR_BROKEN_PIPE) {
4460       return FALSE;
4461     }
4462     *pbytes = 0;
4463   }
4464   return TRUE;
4465 }
4466 
4467 #define MAX_INPUT_EVENTS 2000
4468 
4469 // This code is a copy of JDK's stdinAvailable
4470 // from src/windows/hpi/src/sys_api_md.c
4471 
4472 static int stdinAvailable(int fd, long *pbytes) {
4473   HANDLE han;
4474   DWORD numEventsRead = 0;      /* Number of events read from buffer */
4475   DWORD numEvents = 0;  /* Number of events in buffer */
4476   DWORD i = 0;          /* Loop index */
4477   DWORD curLength = 0;  /* Position marker */
4478   DWORD actualLength = 0;       /* Number of bytes readable */
4479   BOOL error = FALSE;         /* Error holder */
4480   INPUT_RECORD *lpBuffer;     /* Pointer to records of input events */
4481 
4482   if ((han = ::GetStdHandle(STD_INPUT_HANDLE)) == INVALID_HANDLE_VALUE) {
4483         return FALSE;
4484   }
4485 
4486   /* Construct an array of input records in the console buffer */
4487   error = ::GetNumberOfConsoleInputEvents(han, &numEvents);
4488   if (error == 0) {
4489     return nonSeekAvailable(fd, pbytes);
4490   }
4491 
4492   /* lpBuffer must fit into 64K or else PeekConsoleInput fails */
4493   if (numEvents > MAX_INPUT_EVENTS) {
4494     numEvents = MAX_INPUT_EVENTS;
4495   }
4496 
4497   lpBuffer = (INPUT_RECORD *)os::malloc(numEvents * sizeof(INPUT_RECORD), mtInternal);
4498   if (lpBuffer == NULL) {
4499     return FALSE;
4500   }
4501 
4502   error = ::PeekConsoleInput(han, lpBuffer, numEvents, &numEventsRead);
4503   if (error == 0) {
4504     os::free(lpBuffer, mtInternal);
4505     return FALSE;
4506   }
4507 
4508   /* Examine input records for the number of bytes available */
4509   for(i=0; i<numEvents; i++) {
4510     if (lpBuffer[i].EventType == KEY_EVENT) {
4511 
4512       KEY_EVENT_RECORD *keyRecord = (KEY_EVENT_RECORD *)
4513                                       &(lpBuffer[i].Event);
4514       if (keyRecord->bKeyDown == TRUE) {
4515         CHAR *keyPressed = (CHAR *) &(keyRecord->uChar);
4516         curLength++;
4517         if (*keyPressed == '\r') {
4518           actualLength = curLength;
4519         }
4520       }
4521     }
4522   }
4523 
4524   if(lpBuffer != NULL) {
4525     os::free(lpBuffer, mtInternal);
4526   }
4527 
4528   *pbytes = (long) actualLength;
4529   return TRUE;
4530 }
4531 
4532 // Map a block of memory.
4533 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4534                      char *addr, size_t bytes, bool read_only,
4535                      bool allow_exec) {
4536   HANDLE hFile;
4537   char* base;
4538 
4539   hFile = CreateFile(file_name, GENERIC_READ, FILE_SHARE_READ, NULL,
4540                      OPEN_EXISTING, FILE_ATTRIBUTE_NORMAL, NULL);
4541   if (hFile == NULL) {
4542     if (PrintMiscellaneous && Verbose) {
4543       DWORD err = GetLastError();
4544       tty->print_cr("CreateFile() failed: GetLastError->%ld.", err);
4545     }
4546     return NULL;
4547   }
4548 
4549   if (allow_exec) {
4550     // CreateFileMapping/MapViewOfFileEx can't map executable memory
4551     // unless it comes from a PE image (which the shared archive is not.)
4552     // Even VirtualProtect refuses to give execute access to mapped memory
4553     // that was not previously executable.
4554     //
4555     // Instead, stick the executable region in anonymous memory.  Yuck.
4556     // Penalty is that ~4 pages will not be shareable - in the future
4557     // we might consider DLLizing the shared archive with a proper PE
4558     // header so that mapping executable + sharing is possible.
4559 
4560     base = (char*) VirtualAlloc(addr, bytes, MEM_COMMIT | MEM_RESERVE,
4561                                 PAGE_READWRITE);
4562     if (base == NULL) {
4563       if (PrintMiscellaneous && Verbose) {
4564         DWORD err = GetLastError();
4565         tty->print_cr("VirtualAlloc() failed: GetLastError->%ld.", err);
4566       }
4567       CloseHandle(hFile);
4568       return NULL;
4569     }
4570 
4571     DWORD bytes_read;
4572     OVERLAPPED overlapped;
4573     overlapped.Offset = (DWORD)file_offset;
4574     overlapped.OffsetHigh = 0;
4575     overlapped.hEvent = NULL;
4576     // ReadFile guarantees that if the return value is true, the requested
4577     // number of bytes were read before returning.
4578     bool res = ReadFile(hFile, base, (DWORD)bytes, &bytes_read, &overlapped) != 0;
4579     if (!res) {
4580       if (PrintMiscellaneous && Verbose) {
4581         DWORD err = GetLastError();
4582         tty->print_cr("ReadFile() failed: GetLastError->%ld.", err);
4583       }
4584       release_memory(base, bytes);
4585       CloseHandle(hFile);
4586       return NULL;
4587     }
4588   } else {
4589     HANDLE hMap = CreateFileMapping(hFile, NULL, PAGE_WRITECOPY, 0, 0,
4590                                     NULL /*file_name*/);
4591     if (hMap == NULL) {
4592       if (PrintMiscellaneous && Verbose) {
4593         DWORD err = GetLastError();
4594         tty->print_cr("CreateFileMapping() failed: GetLastError->%ld.", err);
4595       }
4596       CloseHandle(hFile);
4597       return NULL;
4598     }
4599 
4600     DWORD access = read_only ? FILE_MAP_READ : FILE_MAP_COPY;
4601     base = (char*)MapViewOfFileEx(hMap, access, 0, (DWORD)file_offset,
4602                                   (DWORD)bytes, addr);
4603     if (base == NULL) {
4604       if (PrintMiscellaneous && Verbose) {
4605         DWORD err = GetLastError();
4606         tty->print_cr("MapViewOfFileEx() failed: GetLastError->%ld.", err);
4607       }
4608       CloseHandle(hMap);
4609       CloseHandle(hFile);
4610       return NULL;
4611     }
4612 
4613     if (CloseHandle(hMap) == 0) {
4614       if (PrintMiscellaneous && Verbose) {
4615         DWORD err = GetLastError();
4616         tty->print_cr("CloseHandle(hMap) failed: GetLastError->%ld.", err);
4617       }
4618       CloseHandle(hFile);
4619       return base;
4620     }
4621   }
4622 
4623   if (allow_exec) {
4624     DWORD old_protect;
4625     DWORD exec_access = read_only ? PAGE_EXECUTE_READ : PAGE_EXECUTE_READWRITE;
4626     bool res = VirtualProtect(base, bytes, exec_access, &old_protect) != 0;
4627 
4628     if (!res) {
4629       if (PrintMiscellaneous && Verbose) {
4630         DWORD err = GetLastError();
4631         tty->print_cr("VirtualProtect() failed: GetLastError->%ld.", err);
4632       }
4633       // Don't consider this a hard error, on IA32 even if the
4634       // VirtualProtect fails, we should still be able to execute
4635       CloseHandle(hFile);
4636       return base;
4637     }
4638   }
4639 
4640   if (CloseHandle(hFile) == 0) {
4641     if (PrintMiscellaneous && Verbose) {
4642       DWORD err = GetLastError();
4643       tty->print_cr("CloseHandle(hFile) failed: GetLastError->%ld.", err);
4644     }
4645     return base;
4646   }
4647 
4648   return base;
4649 }
4650 
4651 
4652 // Remap a block of memory.
4653 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4654                        char *addr, size_t bytes, bool read_only,
4655                        bool allow_exec) {
4656   // This OS does not allow existing memory maps to be remapped so we
4657   // have to unmap the memory before we remap it.
4658   if (!os::unmap_memory(addr, bytes)) {
4659     return NULL;
4660   }
4661 
4662   // There is a very small theoretical window between the unmap_memory()
4663   // call above and the map_memory() call below where a thread in native
4664   // code may be able to access an address that is no longer mapped.
4665 
4666   return os::map_memory(fd, file_name, file_offset, addr, bytes,
4667            read_only, allow_exec);
4668 }
4669 
4670 
4671 // Unmap a block of memory.
4672 // Returns true=success, otherwise false.
4673 
4674 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4675   BOOL result = UnmapViewOfFile(addr);
4676   if (result == 0) {
4677     if (PrintMiscellaneous && Verbose) {
4678       DWORD err = GetLastError();
4679       tty->print_cr("UnmapViewOfFile() failed: GetLastError->%ld.", err);
4680     }
4681     return false;
4682   }
4683   return true;
4684 }
4685 
4686 void os::pause() {
4687   char filename[MAX_PATH];
4688   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4689     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4690   } else {
4691     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4692   }
4693 
4694   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4695   if (fd != -1) {
4696     struct stat buf;
4697     ::close(fd);
4698     while (::stat(filename, &buf) == 0) {
4699       Sleep(100);
4700     }
4701   } else {
4702     jio_fprintf(stderr,
4703       "Could not open pause file '%s', continuing immediately.\n", filename);
4704   }
4705 }
4706 
4707 os::WatcherThreadCrashProtection::WatcherThreadCrashProtection() {
4708   assert(Thread::current()->is_Watcher_thread(), "Must be WatcherThread");
4709 }
4710 
4711 /*
4712  * See the caveats for this class in os_windows.hpp
4713  * Protects the callback call so that raised OS EXCEPTIONS causes a jump back
4714  * into this method and returns false. If no OS EXCEPTION was raised, returns
4715  * true.
4716  * The callback is supposed to provide the method that should be protected.
4717  */
4718 bool os::WatcherThreadCrashProtection::call(os::CrashProtectionCallback& cb) {
4719   assert(Thread::current()->is_Watcher_thread(), "Only for WatcherThread");
4720   assert(!WatcherThread::watcher_thread()->has_crash_protection(),
4721       "crash_protection already set?");
4722 
4723   bool success = true;
4724   __try {
4725     WatcherThread::watcher_thread()->set_crash_protection(this);
4726     cb.call();
4727   } __except(EXCEPTION_EXECUTE_HANDLER) {
4728     // only for protection, nothing to do
4729     success = false;
4730   }
4731   WatcherThread::watcher_thread()->set_crash_protection(NULL);
4732   return success;
4733 }
4734 
4735 // An Event wraps a win32 "CreateEvent" kernel handle.
4736 //
4737 // We have a number of choices regarding "CreateEvent" win32 handle leakage:
4738 //
4739 // 1:  When a thread dies return the Event to the EventFreeList, clear the ParkHandle
4740 //     field, and call CloseHandle() on the win32 event handle.  Unpark() would
4741 //     need to be modified to tolerate finding a NULL (invalid) win32 event handle.
4742 //     In addition, an unpark() operation might fetch the handle field, but the
4743 //     event could recycle between the fetch and the SetEvent() operation.
4744 //     SetEvent() would either fail because the handle was invalid, or inadvertently work,
4745 //     as the win32 handle value had been recycled.  In an ideal world calling SetEvent()
4746 //     on an stale but recycled handle would be harmless, but in practice this might
4747 //     confuse other non-Sun code, so it's not a viable approach.
4748 //
4749 // 2:  Once a win32 event handle is associated with an Event, it remains associated
4750 //     with the Event.  The event handle is never closed.  This could be construed
4751 //     as handle leakage, but only up to the maximum # of threads that have been extant
4752 //     at any one time.  This shouldn't be an issue, as windows platforms typically
4753 //     permit a process to have hundreds of thousands of open handles.
4754 //
4755 // 3:  Same as (1), but periodically, at stop-the-world time, rundown the EventFreeList
4756 //     and release unused handles.
4757 //
4758 // 4:  Add a CRITICAL_SECTION to the Event to protect LD+SetEvent from LD;ST(null);CloseHandle.
4759 //     It's not clear, however, that we wouldn't be trading one type of leak for another.
4760 //
4761 // 5.  Use an RCU-like mechanism (Read-Copy Update).
4762 //     Or perhaps something similar to Maged Michael's "Hazard pointers".
4763 //
4764 // We use (2).
4765 //
4766 // TODO-FIXME:
4767 // 1.  Reconcile Doug's JSR166 j.u.c park-unpark with the objectmonitor implementation.
4768 // 2.  Consider wrapping the WaitForSingleObject(Ex) calls in SEH try/finally blocks
4769 //     to recover from (or at least detect) the dreaded Windows 841176 bug.
4770 // 3.  Collapse the interrupt_event, the JSR166 parker event, and the objectmonitor ParkEvent
4771 //     into a single win32 CreateEvent() handle.
4772 //
4773 // _Event transitions in park()
4774 //   -1 => -1 : illegal
4775 //    1 =>  0 : pass - return immediately
4776 //    0 => -1 : block
4777 //
4778 // _Event serves as a restricted-range semaphore :
4779 //    -1 : thread is blocked
4780 //     0 : neutral  - thread is running or ready
4781 //     1 : signaled - thread is running or ready
4782 //
4783 // Another possible encoding of _Event would be
4784 // with explicit "PARKED" and "SIGNALED" bits.
4785 
4786 int os::PlatformEvent::park (jlong Millis) {
4787     guarantee (_ParkHandle != NULL , "Invariant") ;
4788     guarantee (Millis > 0          , "Invariant") ;
4789     int v ;
4790 
4791     // CONSIDER: defer assigning a CreateEvent() handle to the Event until
4792     // the initial park() operation.
4793 
4794     for (;;) {
4795         v = _Event ;
4796         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4797     }
4798     guarantee ((v == 0) || (v == 1), "invariant") ;
4799     if (v != 0) return OS_OK ;
4800 
4801     // Do this the hard way by blocking ...
4802     // TODO: consider a brief spin here, gated on the success of recent
4803     // spin attempts by this thread.
4804     //
4805     // We decompose long timeouts into series of shorter timed waits.
4806     // Evidently large timo values passed in WaitForSingleObject() are problematic on some
4807     // versions of Windows.  See EventWait() for details.  This may be superstition.  Or not.
4808     // We trust the WAIT_TIMEOUT indication and don't track the elapsed wait time
4809     // with os::javaTimeNanos().  Furthermore, we assume that spurious returns from
4810     // ::WaitForSingleObject() caused by latent ::setEvent() operations will tend
4811     // to happen early in the wait interval.  Specifically, after a spurious wakeup (rv ==
4812     // WAIT_OBJECT_0 but _Event is still < 0) we don't bother to recompute Millis to compensate
4813     // for the already waited time.  This policy does not admit any new outcomes.
4814     // In the future, however, we might want to track the accumulated wait time and
4815     // adjust Millis accordingly if we encounter a spurious wakeup.
4816 
4817     const int MAXTIMEOUT = 0x10000000 ;
4818     DWORD rv = WAIT_TIMEOUT ;
4819     while (_Event < 0 && Millis > 0) {
4820        DWORD prd = Millis ;     // set prd = MAX (Millis, MAXTIMEOUT)
4821        if (Millis > MAXTIMEOUT) {
4822           prd = MAXTIMEOUT ;
4823        }
4824        rv = ::WaitForSingleObject (_ParkHandle, prd) ;
4825        assert (rv == WAIT_OBJECT_0 || rv == WAIT_TIMEOUT, "WaitForSingleObject failed") ;
4826        if (rv == WAIT_TIMEOUT) {
4827            Millis -= prd ;
4828        }
4829     }
4830     v = _Event ;
4831     _Event = 0 ;
4832     // see comment at end of os::PlatformEvent::park() below:
4833     OrderAccess::fence() ;
4834     // If we encounter a nearly simultanous timeout expiry and unpark()
4835     // we return OS_OK indicating we awoke via unpark().
4836     // Implementor's license -- returning OS_TIMEOUT would be equally valid, however.
4837     return (v >= 0) ? OS_OK : OS_TIMEOUT ;
4838 }
4839 
4840 void os::PlatformEvent::park () {
4841     guarantee (_ParkHandle != NULL, "Invariant") ;
4842     // Invariant: Only the thread associated with the Event/PlatformEvent
4843     // may call park().
4844     int v ;
4845     for (;;) {
4846         v = _Event ;
4847         if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
4848     }
4849     guarantee ((v == 0) || (v == 1), "invariant") ;
4850     if (v != 0) return ;
4851 
4852     // Do this the hard way by blocking ...
4853     // TODO: consider a brief spin here, gated on the success of recent
4854     // spin attempts by this thread.
4855     while (_Event < 0) {
4856        DWORD rv = ::WaitForSingleObject (_ParkHandle, INFINITE) ;
4857        assert (rv == WAIT_OBJECT_0, "WaitForSingleObject failed") ;
4858     }
4859 
4860     // Usually we'll find _Event == 0 at this point, but as
4861     // an optional optimization we clear it, just in case can
4862     // multiple unpark() operations drove _Event up to 1.
4863     _Event = 0 ;
4864     OrderAccess::fence() ;
4865     guarantee (_Event >= 0, "invariant") ;
4866 }
4867 
4868 void os::PlatformEvent::unpark() {
4869   guarantee (_ParkHandle != NULL, "Invariant") ;
4870 
4871   // Transitions for _Event:
4872   //    0 :=> 1
4873   //    1 :=> 1
4874   //   -1 :=> either 0 or 1; must signal target thread
4875   //          That is, we can safely transition _Event from -1 to either
4876   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
4877   //          unpark() calls.
4878   // See also: "Semaphores in Plan 9" by Mullender & Cox
4879   //
4880   // Note: Forcing a transition from "-1" to "1" on an unpark() means
4881   // that it will take two back-to-back park() calls for the owning
4882   // thread to block. This has the benefit of forcing a spurious return
4883   // from the first park() call after an unpark() call which will help
4884   // shake out uses of park() and unpark() without condition variables.
4885 
4886   if (Atomic::xchg(1, &_Event) >= 0) return;
4887 
4888   ::SetEvent(_ParkHandle);
4889 }
4890 
4891 
4892 // JSR166
4893 // -------------------------------------------------------
4894 
4895 /*
4896  * The Windows implementation of Park is very straightforward: Basic
4897  * operations on Win32 Events turn out to have the right semantics to
4898  * use them directly. We opportunistically resuse the event inherited
4899  * from Monitor.
4900  */
4901 
4902 
4903 void Parker::park(bool isAbsolute, jlong time) {
4904   guarantee (_ParkEvent != NULL, "invariant") ;
4905   // First, demultiplex/decode time arguments
4906   if (time < 0) { // don't wait
4907     return;
4908   }
4909   else if (time == 0 && !isAbsolute) {
4910     time = INFINITE;
4911   }
4912   else if  (isAbsolute) {
4913     time -= os::javaTimeMillis(); // convert to relative time
4914     if (time <= 0) // already elapsed
4915       return;
4916   }
4917   else { // relative
4918     time /= 1000000; // Must coarsen from nanos to millis
4919     if (time == 0)   // Wait for the minimal time unit if zero
4920       time = 1;
4921   }
4922 
4923   JavaThread* thread = (JavaThread*)(Thread::current());
4924   assert(thread->is_Java_thread(), "Must be JavaThread");
4925   JavaThread *jt = (JavaThread *)thread;
4926 
4927   // Don't wait if interrupted or already triggered
4928   if (Thread::is_interrupted(thread, false) ||
4929     WaitForSingleObject(_ParkEvent, 0) == WAIT_OBJECT_0) {
4930     ResetEvent(_ParkEvent);
4931     return;
4932   }
4933   else {
4934     ThreadBlockInVM tbivm(jt);
4935     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
4936     jt->set_suspend_equivalent();
4937 
4938     WaitForSingleObject(_ParkEvent,  time);
4939     ResetEvent(_ParkEvent);
4940 
4941     // If externally suspended while waiting, re-suspend
4942     if (jt->handle_special_suspend_equivalent_condition()) {
4943       jt->java_suspend_self();
4944     }
4945   }
4946 }
4947 
4948 void Parker::unpark() {
4949   guarantee (_ParkEvent != NULL, "invariant") ;
4950   SetEvent(_ParkEvent);
4951 }
4952 
4953 // Run the specified command in a separate process. Return its exit value,
4954 // or -1 on failure (e.g. can't create a new process).
4955 int os::fork_and_exec(char* cmd) {
4956   STARTUPINFO si;
4957   PROCESS_INFORMATION pi;
4958 
4959   memset(&si, 0, sizeof(si));
4960   si.cb = sizeof(si);
4961   memset(&pi, 0, sizeof(pi));
4962   BOOL rslt = CreateProcess(NULL,   // executable name - use command line
4963                             cmd,    // command line
4964                             NULL,   // process security attribute
4965                             NULL,   // thread security attribute
4966                             TRUE,   // inherits system handles
4967                             0,      // no creation flags
4968                             NULL,   // use parent's environment block
4969                             NULL,   // use parent's starting directory
4970                             &si,    // (in) startup information
4971                             &pi);   // (out) process information
4972 
4973   if (rslt) {
4974     // Wait until child process exits.
4975     WaitForSingleObject(pi.hProcess, INFINITE);
4976 
4977     DWORD exit_code;
4978     GetExitCodeProcess(pi.hProcess, &exit_code);
4979 
4980     // Close process and thread handles.
4981     CloseHandle(pi.hProcess);
4982     CloseHandle(pi.hThread);
4983 
4984     return (int)exit_code;
4985   } else {
4986     return -1;
4987   }
4988 }
4989 
4990 //--------------------------------------------------------------------------------------------------
4991 // Non-product code
4992 
4993 static int mallocDebugIntervalCounter = 0;
4994 static int mallocDebugCounter = 0;
4995 bool os::check_heap(bool force) {
4996   if (++mallocDebugCounter < MallocVerifyStart && !force) return true;
4997   if (++mallocDebugIntervalCounter >= MallocVerifyInterval || force) {
4998     // Note: HeapValidate executes two hardware breakpoints when it finds something
4999     // wrong; at these points, eax contains the address of the offending block (I think).
5000     // To get to the exlicit error message(s) below, just continue twice.
5001     HANDLE heap = GetProcessHeap();
5002     { HeapLock(heap);
5003       PROCESS_HEAP_ENTRY phe;
5004       phe.lpData = NULL;
5005       while (HeapWalk(heap, &phe) != 0) {
5006         if ((phe.wFlags & PROCESS_HEAP_ENTRY_BUSY) &&
5007             !HeapValidate(heap, 0, phe.lpData)) {
5008           tty->print_cr("C heap has been corrupted (time: %d allocations)", mallocDebugCounter);
5009           tty->print_cr("corrupted block near address %#x, length %d", phe.lpData, phe.cbData);
5010           fatal("corrupted C heap");
5011         }
5012       }
5013       DWORD err = GetLastError();
5014       if (err != ERROR_NO_MORE_ITEMS && err != ERROR_CALL_NOT_IMPLEMENTED) {
5015         fatal(err_msg("heap walk aborted with error %d", err));
5016       }
5017       HeapUnlock(heap);
5018     }
5019     mallocDebugIntervalCounter = 0;
5020   }
5021   return true;
5022 }
5023 
5024 
5025 bool os::find(address addr, outputStream* st) {
5026   // Nothing yet
5027   return false;
5028 }
5029 
5030 LONG WINAPI os::win32::serialize_fault_filter(struct _EXCEPTION_POINTERS* e) {
5031   DWORD exception_code = e->ExceptionRecord->ExceptionCode;
5032 
5033   if ( exception_code == EXCEPTION_ACCESS_VIOLATION ) {
5034     JavaThread* thread = (JavaThread*)ThreadLocalStorage::get_thread_slow();
5035     PEXCEPTION_RECORD exceptionRecord = e->ExceptionRecord;
5036     address addr = (address) exceptionRecord->ExceptionInformation[1];
5037 
5038     if (os::is_memory_serialize_page(thread, addr))
5039       return EXCEPTION_CONTINUE_EXECUTION;
5040   }
5041 
5042   return EXCEPTION_CONTINUE_SEARCH;
5043 }
5044 
5045 // We don't build a headless jre for Windows
5046 bool os::is_headless_jre() { return false; }
5047 
5048 static jint initSock() {
5049   WSADATA wsadata;
5050 
5051   if (!os::WinSock2Dll::WinSock2Available()) {
5052     jio_fprintf(stderr, "Could not load Winsock (error: %d)\n",
5053       ::GetLastError());
5054     return JNI_ERR;
5055   }
5056 
5057   if (os::WinSock2Dll::WSAStartup(MAKEWORD(2,2), &wsadata) != 0) {
5058     jio_fprintf(stderr, "Could not initialize Winsock (error: %d)\n",
5059       ::GetLastError());
5060     return JNI_ERR;
5061   }
5062   return JNI_OK;
5063 }
5064 
5065 struct hostent* os::get_host_by_name(char* name) {
5066   return (struct hostent*)os::WinSock2Dll::gethostbyname(name);
5067 }
5068 
5069 int os::socket_close(int fd) {
5070   return ::closesocket(fd);
5071 }
5072 
5073 int os::socket_available(int fd, jint *pbytes) {
5074   int ret = ::ioctlsocket(fd, FIONREAD, (u_long*)pbytes);
5075   return (ret < 0) ? 0 : 1;
5076 }
5077 
5078 int os::socket(int domain, int type, int protocol) {
5079   return ::socket(domain, type, protocol);
5080 }
5081 
5082 int os::listen(int fd, int count) {
5083   return ::listen(fd, count);
5084 }
5085 
5086 int os::connect(int fd, struct sockaddr* him, socklen_t len) {
5087   return ::connect(fd, him, len);
5088 }
5089 
5090 int os::accept(int fd, struct sockaddr* him, socklen_t* len) {
5091   return ::accept(fd, him, len);
5092 }
5093 
5094 int os::sendto(int fd, char* buf, size_t len, uint flags,
5095                struct sockaddr* to, socklen_t tolen) {
5096 
5097   return ::sendto(fd, buf, (int)len, flags, to, tolen);
5098 }
5099 
5100 int os::recvfrom(int fd, char *buf, size_t nBytes, uint flags,
5101                  sockaddr* from, socklen_t* fromlen) {
5102 
5103   return ::recvfrom(fd, buf, (int)nBytes, flags, from, fromlen);
5104 }
5105 
5106 int os::recv(int fd, char* buf, size_t nBytes, uint flags) {
5107   return ::recv(fd, buf, (int)nBytes, flags);
5108 }
5109 
5110 int os::send(int fd, char* buf, size_t nBytes, uint flags) {
5111   return ::send(fd, buf, (int)nBytes, flags);
5112 }
5113 
5114 int os::raw_send(int fd, char* buf, size_t nBytes, uint flags) {
5115   return ::send(fd, buf, (int)nBytes, flags);
5116 }
5117 
5118 int os::timeout(int fd, long timeout) {
5119   fd_set tbl;
5120   struct timeval t;
5121 
5122   t.tv_sec  = timeout / 1000;
5123   t.tv_usec = (timeout % 1000) * 1000;
5124 
5125   tbl.fd_count    = 1;
5126   tbl.fd_array[0] = fd;
5127 
5128   return ::select(1, &tbl, 0, 0, &t);
5129 }
5130 
5131 int os::get_host_name(char* name, int namelen) {
5132   return ::gethostname(name, namelen);
5133 }
5134 
5135 int os::socket_shutdown(int fd, int howto) {
5136   return ::shutdown(fd, howto);
5137 }
5138 
5139 int os::bind(int fd, struct sockaddr* him, socklen_t len) {
5140   return ::bind(fd, him, len);
5141 }
5142 
5143 int os::get_sock_name(int fd, struct sockaddr* him, socklen_t* len) {
5144   return ::getsockname(fd, him, len);
5145 }
5146 
5147 int os::get_sock_opt(int fd, int level, int optname,
5148                      char* optval, socklen_t* optlen) {
5149   return ::getsockopt(fd, level, optname, optval, optlen);
5150 }
5151 
5152 int os::set_sock_opt(int fd, int level, int optname,
5153                      const char* optval, socklen_t optlen) {
5154   return ::setsockopt(fd, level, optname, optval, optlen);
5155 }
5156 
5157 // WINDOWS CONTEXT Flags for THREAD_SAMPLING
5158 #if defined(IA32)
5159 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT | CONTEXT_EXTENDED_REGISTERS)
5160 #elif defined (AMD64)
5161 #  define sampling_context_flags (CONTEXT_FULL | CONTEXT_FLOATING_POINT)
5162 #endif
5163 
5164 // returns true if thread could be suspended,
5165 // false otherwise
5166 static bool do_suspend(HANDLE* h) {
5167   if (h != NULL) {
5168     if (SuspendThread(*h) != ~0) {
5169       return true;
5170     }
5171   }
5172   return false;
5173 }
5174 
5175 // resume the thread
5176 // calling resume on an active thread is a no-op
5177 static void do_resume(HANDLE* h) {
5178   if (h != NULL) {
5179     ResumeThread(*h);
5180   }
5181 }
5182 
5183 // retrieve a suspend/resume context capable handle
5184 // from the tid. Caller validates handle return value.
5185 void get_thread_handle_for_extended_context(HANDLE* h, OSThread::thread_id_t tid) {
5186   if (h != NULL) {
5187     *h = OpenThread(THREAD_SUSPEND_RESUME | THREAD_GET_CONTEXT | THREAD_QUERY_INFORMATION, FALSE, tid);
5188   }
5189 }
5190 
5191 //
5192 // Thread sampling implementation
5193 //
5194 void os::SuspendedThreadTask::internal_do_task() {
5195   CONTEXT    ctxt;
5196   HANDLE     h = NULL;
5197 
5198   // get context capable handle for thread
5199   get_thread_handle_for_extended_context(&h, _thread->osthread()->thread_id());
5200 
5201   // sanity
5202   if (h == NULL || h == INVALID_HANDLE_VALUE) {
5203     return;
5204   }
5205 
5206   // suspend the thread
5207   if (do_suspend(&h)) {
5208     ctxt.ContextFlags = sampling_context_flags;
5209     // get thread context
5210     GetThreadContext(h, &ctxt);
5211     SuspendedThreadTaskContext context(_thread, &ctxt);
5212     // pass context to Thread Sampling impl
5213     do_task(context);
5214     // resume thread
5215     do_resume(&h);
5216   }
5217 
5218   // close handle
5219   CloseHandle(h);
5220 }
5221 
5222 
5223 // Kernel32 API
5224 typedef SIZE_T (WINAPI* GetLargePageMinimum_Fn)(void);
5225 typedef LPVOID (WINAPI *VirtualAllocExNuma_Fn) (HANDLE, LPVOID, SIZE_T, DWORD, DWORD, DWORD);
5226 typedef BOOL (WINAPI *GetNumaHighestNodeNumber_Fn) (PULONG);
5227 typedef BOOL (WINAPI *GetNumaNodeProcessorMask_Fn) (UCHAR, PULONGLONG);
5228 typedef USHORT (WINAPI* RtlCaptureStackBackTrace_Fn)(ULONG, ULONG, PVOID*, PULONG);
5229 
5230 GetLargePageMinimum_Fn      os::Kernel32Dll::_GetLargePageMinimum = NULL;
5231 VirtualAllocExNuma_Fn       os::Kernel32Dll::_VirtualAllocExNuma = NULL;
5232 GetNumaHighestNodeNumber_Fn os::Kernel32Dll::_GetNumaHighestNodeNumber = NULL;
5233 GetNumaNodeProcessorMask_Fn os::Kernel32Dll::_GetNumaNodeProcessorMask = NULL;
5234 RtlCaptureStackBackTrace_Fn os::Kernel32Dll::_RtlCaptureStackBackTrace = NULL;
5235 
5236 
5237 BOOL                        os::Kernel32Dll::initialized = FALSE;
5238 SIZE_T os::Kernel32Dll::GetLargePageMinimum() {
5239   assert(initialized && _GetLargePageMinimum != NULL,
5240     "GetLargePageMinimumAvailable() not yet called");
5241   return _GetLargePageMinimum();
5242 }
5243 
5244 BOOL os::Kernel32Dll::GetLargePageMinimumAvailable() {
5245   if (!initialized) {
5246     initialize();
5247   }
5248   return _GetLargePageMinimum != NULL;
5249 }
5250 
5251 BOOL os::Kernel32Dll::NumaCallsAvailable() {
5252   if (!initialized) {
5253     initialize();
5254   }
5255   return _VirtualAllocExNuma != NULL;
5256 }
5257 
5258 LPVOID os::Kernel32Dll::VirtualAllocExNuma(HANDLE hProc, LPVOID addr, SIZE_T bytes, DWORD flags, DWORD prot, DWORD node) {
5259   assert(initialized && _VirtualAllocExNuma != NULL,
5260     "NUMACallsAvailable() not yet called");
5261 
5262   return _VirtualAllocExNuma(hProc, addr, bytes, flags, prot, node);
5263 }
5264 
5265 BOOL os::Kernel32Dll::GetNumaHighestNodeNumber(PULONG ptr_highest_node_number) {
5266   assert(initialized && _GetNumaHighestNodeNumber != NULL,
5267     "NUMACallsAvailable() not yet called");
5268 
5269   return _GetNumaHighestNodeNumber(ptr_highest_node_number);
5270 }
5271 
5272 BOOL os::Kernel32Dll::GetNumaNodeProcessorMask(UCHAR node, PULONGLONG proc_mask) {
5273   assert(initialized && _GetNumaNodeProcessorMask != NULL,
5274     "NUMACallsAvailable() not yet called");
5275 
5276   return _GetNumaNodeProcessorMask(node, proc_mask);
5277 }
5278 
5279 USHORT os::Kernel32Dll::RtlCaptureStackBackTrace(ULONG FrameToSkip,
5280   ULONG FrameToCapture, PVOID* BackTrace, PULONG BackTraceHash) {
5281     if (!initialized) {
5282       initialize();
5283     }
5284 
5285     if (_RtlCaptureStackBackTrace != NULL) {
5286       return _RtlCaptureStackBackTrace(FrameToSkip, FrameToCapture,
5287         BackTrace, BackTraceHash);
5288     } else {
5289       return 0;
5290     }
5291 }
5292 
5293 void os::Kernel32Dll::initializeCommon() {
5294   if (!initialized) {
5295     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5296     assert(handle != NULL, "Just check");
5297     _GetLargePageMinimum = (GetLargePageMinimum_Fn)::GetProcAddress(handle, "GetLargePageMinimum");
5298     _VirtualAllocExNuma = (VirtualAllocExNuma_Fn)::GetProcAddress(handle, "VirtualAllocExNuma");
5299     _GetNumaHighestNodeNumber = (GetNumaHighestNodeNumber_Fn)::GetProcAddress(handle, "GetNumaHighestNodeNumber");
5300     _GetNumaNodeProcessorMask = (GetNumaNodeProcessorMask_Fn)::GetProcAddress(handle, "GetNumaNodeProcessorMask");
5301     _RtlCaptureStackBackTrace = (RtlCaptureStackBackTrace_Fn)::GetProcAddress(handle, "RtlCaptureStackBackTrace");
5302     initialized = TRUE;
5303   }
5304 }
5305 
5306 
5307 
5308 #ifndef JDK6_OR_EARLIER
5309 
5310 void os::Kernel32Dll::initialize() {
5311   initializeCommon();
5312 }
5313 
5314 
5315 // Kernel32 API
5316 inline BOOL os::Kernel32Dll::SwitchToThread() {
5317   return ::SwitchToThread();
5318 }
5319 
5320 inline BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5321   return true;
5322 }
5323 
5324   // Help tools
5325 inline BOOL os::Kernel32Dll::HelpToolsAvailable() {
5326   return true;
5327 }
5328 
5329 inline HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5330   return ::CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5331 }
5332 
5333 inline BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5334   return ::Module32First(hSnapshot, lpme);
5335 }
5336 
5337 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5338   return ::Module32Next(hSnapshot, lpme);
5339 }
5340 
5341 
5342 inline BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5343   return true;
5344 }
5345 
5346 inline void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5347   ::GetNativeSystemInfo(lpSystemInfo);
5348 }
5349 
5350 // PSAPI API
5351 inline BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5352   return ::EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5353 }
5354 
5355 inline DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5356   return ::GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5357 }
5358 
5359 inline BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5360   return ::GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5361 }
5362 
5363 inline BOOL os::PSApiDll::PSApiAvailable() {
5364   return true;
5365 }
5366 
5367 
5368 // WinSock2 API
5369 inline BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5370   return ::WSAStartup(wVersionRequested, lpWSAData);
5371 }
5372 
5373 inline struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5374   return ::gethostbyname(name);
5375 }
5376 
5377 inline BOOL os::WinSock2Dll::WinSock2Available() {
5378   return true;
5379 }
5380 
5381 // Advapi API
5382 inline BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5383    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5384    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5385      return ::AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5386        BufferLength, PreviousState, ReturnLength);
5387 }
5388 
5389 inline BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5390   PHANDLE TokenHandle) {
5391     return ::OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5392 }
5393 
5394 inline BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5395   return ::LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5396 }
5397 
5398 inline BOOL os::Advapi32Dll::AdvapiAvailable() {
5399   return true;
5400 }
5401 
5402 #else
5403 // Kernel32 API
5404 typedef BOOL (WINAPI* SwitchToThread_Fn)(void);
5405 typedef HANDLE (WINAPI* CreateToolhelp32Snapshot_Fn)(DWORD,DWORD);
5406 typedef BOOL (WINAPI* Module32First_Fn)(HANDLE,LPMODULEENTRY32);
5407 typedef BOOL (WINAPI* Module32Next_Fn)(HANDLE,LPMODULEENTRY32);
5408 typedef void (WINAPI* GetNativeSystemInfo_Fn)(LPSYSTEM_INFO);
5409 
5410 SwitchToThread_Fn           os::Kernel32Dll::_SwitchToThread = NULL;
5411 CreateToolhelp32Snapshot_Fn os::Kernel32Dll::_CreateToolhelp32Snapshot = NULL;
5412 Module32First_Fn            os::Kernel32Dll::_Module32First = NULL;
5413 Module32Next_Fn             os::Kernel32Dll::_Module32Next = NULL;
5414 GetNativeSystemInfo_Fn      os::Kernel32Dll::_GetNativeSystemInfo = NULL;
5415 
5416 void os::Kernel32Dll::initialize() {
5417   if (!initialized) {
5418     HMODULE handle = ::GetModuleHandle("Kernel32.dll");
5419     assert(handle != NULL, "Just check");
5420 
5421     _SwitchToThread = (SwitchToThread_Fn)::GetProcAddress(handle, "SwitchToThread");
5422     _CreateToolhelp32Snapshot = (CreateToolhelp32Snapshot_Fn)
5423       ::GetProcAddress(handle, "CreateToolhelp32Snapshot");
5424     _Module32First = (Module32First_Fn)::GetProcAddress(handle, "Module32First");
5425     _Module32Next = (Module32Next_Fn)::GetProcAddress(handle, "Module32Next");
5426     _GetNativeSystemInfo = (GetNativeSystemInfo_Fn)::GetProcAddress(handle, "GetNativeSystemInfo");
5427     initializeCommon();  // resolve the functions that always need resolving
5428 
5429     initialized = TRUE;
5430   }
5431 }
5432 
5433 BOOL os::Kernel32Dll::SwitchToThread() {
5434   assert(initialized && _SwitchToThread != NULL,
5435     "SwitchToThreadAvailable() not yet called");
5436   return _SwitchToThread();
5437 }
5438 
5439 
5440 BOOL os::Kernel32Dll::SwitchToThreadAvailable() {
5441   if (!initialized) {
5442     initialize();
5443   }
5444   return _SwitchToThread != NULL;
5445 }
5446 
5447 // Help tools
5448 BOOL os::Kernel32Dll::HelpToolsAvailable() {
5449   if (!initialized) {
5450     initialize();
5451   }
5452   return _CreateToolhelp32Snapshot != NULL &&
5453          _Module32First != NULL &&
5454          _Module32Next != NULL;
5455 }
5456 
5457 HANDLE os::Kernel32Dll::CreateToolhelp32Snapshot(DWORD dwFlags,DWORD th32ProcessId) {
5458   assert(initialized && _CreateToolhelp32Snapshot != NULL,
5459     "HelpToolsAvailable() not yet called");
5460 
5461   return _CreateToolhelp32Snapshot(dwFlags, th32ProcessId);
5462 }
5463 
5464 BOOL os::Kernel32Dll::Module32First(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5465   assert(initialized && _Module32First != NULL,
5466     "HelpToolsAvailable() not yet called");
5467 
5468   return _Module32First(hSnapshot, lpme);
5469 }
5470 
5471 inline BOOL os::Kernel32Dll::Module32Next(HANDLE hSnapshot,LPMODULEENTRY32 lpme) {
5472   assert(initialized && _Module32Next != NULL,
5473     "HelpToolsAvailable() not yet called");
5474 
5475   return _Module32Next(hSnapshot, lpme);
5476 }
5477 
5478 
5479 BOOL os::Kernel32Dll::GetNativeSystemInfoAvailable() {
5480   if (!initialized) {
5481     initialize();
5482   }
5483   return _GetNativeSystemInfo != NULL;
5484 }
5485 
5486 void os::Kernel32Dll::GetNativeSystemInfo(LPSYSTEM_INFO lpSystemInfo) {
5487   assert(initialized && _GetNativeSystemInfo != NULL,
5488     "GetNativeSystemInfoAvailable() not yet called");
5489 
5490   _GetNativeSystemInfo(lpSystemInfo);
5491 }
5492 
5493 // PSAPI API
5494 
5495 
5496 typedef BOOL (WINAPI *EnumProcessModules_Fn)(HANDLE, HMODULE *, DWORD, LPDWORD);
5497 typedef BOOL (WINAPI *GetModuleFileNameEx_Fn)(HANDLE, HMODULE, LPTSTR, DWORD);;
5498 typedef BOOL (WINAPI *GetModuleInformation_Fn)(HANDLE, HMODULE, LPMODULEINFO, DWORD);
5499 
5500 EnumProcessModules_Fn   os::PSApiDll::_EnumProcessModules = NULL;
5501 GetModuleFileNameEx_Fn  os::PSApiDll::_GetModuleFileNameEx = NULL;
5502 GetModuleInformation_Fn os::PSApiDll::_GetModuleInformation = NULL;
5503 BOOL                    os::PSApiDll::initialized = FALSE;
5504 
5505 void os::PSApiDll::initialize() {
5506   if (!initialized) {
5507     HMODULE handle = os::win32::load_Windows_dll("PSAPI.DLL", NULL, 0);
5508     if (handle != NULL) {
5509       _EnumProcessModules = (EnumProcessModules_Fn)::GetProcAddress(handle,
5510         "EnumProcessModules");
5511       _GetModuleFileNameEx = (GetModuleFileNameEx_Fn)::GetProcAddress(handle,
5512         "GetModuleFileNameExA");
5513       _GetModuleInformation = (GetModuleInformation_Fn)::GetProcAddress(handle,
5514         "GetModuleInformation");
5515     }
5516     initialized = TRUE;
5517   }
5518 }
5519 
5520 
5521 
5522 BOOL os::PSApiDll::EnumProcessModules(HANDLE hProcess, HMODULE *lpModule, DWORD cb, LPDWORD lpcbNeeded) {
5523   assert(initialized && _EnumProcessModules != NULL,
5524     "PSApiAvailable() not yet called");
5525   return _EnumProcessModules(hProcess, lpModule, cb, lpcbNeeded);
5526 }
5527 
5528 DWORD os::PSApiDll::GetModuleFileNameEx(HANDLE hProcess, HMODULE hModule, LPTSTR lpFilename, DWORD nSize) {
5529   assert(initialized && _GetModuleFileNameEx != NULL,
5530     "PSApiAvailable() not yet called");
5531   return _GetModuleFileNameEx(hProcess, hModule, lpFilename, nSize);
5532 }
5533 
5534 BOOL os::PSApiDll::GetModuleInformation(HANDLE hProcess, HMODULE hModule, LPMODULEINFO lpmodinfo, DWORD cb) {
5535   assert(initialized && _GetModuleInformation != NULL,
5536     "PSApiAvailable() not yet called");
5537   return _GetModuleInformation(hProcess, hModule, lpmodinfo, cb);
5538 }
5539 
5540 BOOL os::PSApiDll::PSApiAvailable() {
5541   if (!initialized) {
5542     initialize();
5543   }
5544   return _EnumProcessModules != NULL &&
5545     _GetModuleFileNameEx != NULL &&
5546     _GetModuleInformation != NULL;
5547 }
5548 
5549 
5550 // WinSock2 API
5551 typedef int (PASCAL FAR* WSAStartup_Fn)(WORD, LPWSADATA);
5552 typedef struct hostent *(PASCAL FAR *gethostbyname_Fn)(...);
5553 
5554 WSAStartup_Fn    os::WinSock2Dll::_WSAStartup = NULL;
5555 gethostbyname_Fn os::WinSock2Dll::_gethostbyname = NULL;
5556 BOOL             os::WinSock2Dll::initialized = FALSE;
5557 
5558 void os::WinSock2Dll::initialize() {
5559   if (!initialized) {
5560     HMODULE handle = os::win32::load_Windows_dll("ws2_32.dll", NULL, 0);
5561     if (handle != NULL) {
5562       _WSAStartup = (WSAStartup_Fn)::GetProcAddress(handle, "WSAStartup");
5563       _gethostbyname = (gethostbyname_Fn)::GetProcAddress(handle, "gethostbyname");
5564     }
5565     initialized = TRUE;
5566   }
5567 }
5568 
5569 
5570 BOOL os::WinSock2Dll::WSAStartup(WORD wVersionRequested, LPWSADATA lpWSAData) {
5571   assert(initialized && _WSAStartup != NULL,
5572     "WinSock2Available() not yet called");
5573   return _WSAStartup(wVersionRequested, lpWSAData);
5574 }
5575 
5576 struct hostent* os::WinSock2Dll::gethostbyname(const char *name) {
5577   assert(initialized && _gethostbyname != NULL,
5578     "WinSock2Available() not yet called");
5579   return _gethostbyname(name);
5580 }
5581 
5582 BOOL os::WinSock2Dll::WinSock2Available() {
5583   if (!initialized) {
5584     initialize();
5585   }
5586   return _WSAStartup != NULL &&
5587     _gethostbyname != NULL;
5588 }
5589 
5590 typedef BOOL (WINAPI *AdjustTokenPrivileges_Fn)(HANDLE, BOOL, PTOKEN_PRIVILEGES, DWORD, PTOKEN_PRIVILEGES, PDWORD);
5591 typedef BOOL (WINAPI *OpenProcessToken_Fn)(HANDLE, DWORD, PHANDLE);
5592 typedef BOOL (WINAPI *LookupPrivilegeValue_Fn)(LPCTSTR, LPCTSTR, PLUID);
5593 
5594 AdjustTokenPrivileges_Fn os::Advapi32Dll::_AdjustTokenPrivileges = NULL;
5595 OpenProcessToken_Fn      os::Advapi32Dll::_OpenProcessToken = NULL;
5596 LookupPrivilegeValue_Fn  os::Advapi32Dll::_LookupPrivilegeValue = NULL;
5597 BOOL                     os::Advapi32Dll::initialized = FALSE;
5598 
5599 void os::Advapi32Dll::initialize() {
5600   if (!initialized) {
5601     HMODULE handle = os::win32::load_Windows_dll("advapi32.dll", NULL, 0);
5602     if (handle != NULL) {
5603       _AdjustTokenPrivileges = (AdjustTokenPrivileges_Fn)::GetProcAddress(handle,
5604         "AdjustTokenPrivileges");
5605       _OpenProcessToken = (OpenProcessToken_Fn)::GetProcAddress(handle,
5606         "OpenProcessToken");
5607       _LookupPrivilegeValue = (LookupPrivilegeValue_Fn)::GetProcAddress(handle,
5608         "LookupPrivilegeValueA");
5609     }
5610     initialized = TRUE;
5611   }
5612 }
5613 
5614 BOOL os::Advapi32Dll::AdjustTokenPrivileges(HANDLE TokenHandle,
5615    BOOL DisableAllPrivileges, PTOKEN_PRIVILEGES NewState, DWORD BufferLength,
5616    PTOKEN_PRIVILEGES PreviousState, PDWORD ReturnLength) {
5617    assert(initialized && _AdjustTokenPrivileges != NULL,
5618      "AdvapiAvailable() not yet called");
5619    return _AdjustTokenPrivileges(TokenHandle, DisableAllPrivileges, NewState,
5620        BufferLength, PreviousState, ReturnLength);
5621 }
5622 
5623 BOOL os::Advapi32Dll::OpenProcessToken(HANDLE ProcessHandle, DWORD DesiredAccess,
5624   PHANDLE TokenHandle) {
5625    assert(initialized && _OpenProcessToken != NULL,
5626      "AdvapiAvailable() not yet called");
5627     return _OpenProcessToken(ProcessHandle, DesiredAccess, TokenHandle);
5628 }
5629 
5630 BOOL os::Advapi32Dll::LookupPrivilegeValue(LPCTSTR lpSystemName, LPCTSTR lpName, PLUID lpLuid) {
5631    assert(initialized && _LookupPrivilegeValue != NULL,
5632      "AdvapiAvailable() not yet called");
5633   return _LookupPrivilegeValue(lpSystemName, lpName, lpLuid);
5634 }
5635 
5636 BOOL os::Advapi32Dll::AdvapiAvailable() {
5637   if (!initialized) {
5638     initialize();
5639   }
5640   return _AdjustTokenPrivileges != NULL &&
5641     _OpenProcessToken != NULL &&
5642     _LookupPrivilegeValue != NULL;
5643 }
5644 
5645 #endif
5646 
5647 #ifndef PRODUCT
5648 void TestReserveMemorySpecial_test() {
5649   // No tests available for this platform
5650 }
5651 #endif