1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1YCTypes.hpp"
  43 #include "gc_implementation/g1/heapRegion.inline.hpp"
  44 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  45 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  46 #include "gc_implementation/g1/vm_operations_g1.hpp"
  47 #include "gc_implementation/shared/gcHeapSummary.hpp"
  48 #include "gc_implementation/shared/gcTimer.hpp"
  49 #include "gc_implementation/shared/gcTrace.hpp"
  50 #include "gc_implementation/shared/gcTraceTime.hpp"
  51 #include "gc_implementation/shared/isGCActiveMark.hpp"
  52 #include "memory/gcLocker.inline.hpp"
  53 #include "memory/genOopClosures.inline.hpp"
  54 #include "memory/generationSpec.hpp"
  55 #include "memory/referenceProcessor.hpp"
  56 #include "oops/oop.inline.hpp"
  57 #include "oops/oop.pcgc.inline.hpp"
  58 #include "runtime/vmThread.hpp"
  59 
  60 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  61 
  62 // turn it on so that the contents of the young list (scan-only /
  63 // to-be-collected) are printed at "strategic" points before / during
  64 // / after the collection --- this is useful for debugging
  65 #define YOUNG_LIST_VERBOSE 0
  66 // CURRENT STATUS
  67 // This file is under construction.  Search for "FIXME".
  68 
  69 // INVARIANTS/NOTES
  70 //
  71 // All allocation activity covered by the G1CollectedHeap interface is
  72 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  73 // and allocate_new_tlab, which are the "entry" points to the
  74 // allocation code from the rest of the JVM.  (Note that this does not
  75 // apply to TLAB allocation, which is not part of this interface: it
  76 // is done by clients of this interface.)
  77 
  78 // Notes on implementation of parallelism in different tasks.
  79 //
  80 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  81 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  82 // It does use run_task() which sets _n_workers in the task.
  83 // G1ParTask executes g1_process_strong_roots() ->
  84 // SharedHeap::process_strong_roots() which calls eventually to
  85 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  86 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  87 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  88 //
  89 
  90 // Local to this file.
  91 
  92 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  93   SuspendibleThreadSet* _sts;
  94   G1RemSet* _g1rs;
  95   ConcurrentG1Refine* _cg1r;
  96   bool _concurrent;
  97 public:
  98   RefineCardTableEntryClosure(SuspendibleThreadSet* sts,
  99                               G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _sts(sts), _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && _sts->should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0)
 129   {
 130     _g1h = G1CollectedHeap::heap();
 131     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 132     for (int i = 0; i < 256; i++) _histo[i] = 0;
 133   }
 134   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 135     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 136       _calls++;
 137       unsigned char* ujb = (unsigned char*)card_ptr;
 138       int ind = (int)(*ujb);
 139       _histo[ind]++;
 140       *card_ptr = -1;
 141     }
 142     return true;
 143   }
 144   int calls() { return _calls; }
 145   void print_histo() {
 146     gclog_or_tty->print_cr("Card table value histogram:");
 147     for (int i = 0; i < 256; i++) {
 148       if (_histo[i] != 0) {
 149         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 150       }
 151     }
 152   }
 153 };
 154 
 155 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 156   int _calls;
 157   G1CollectedHeap* _g1h;
 158   CardTableModRefBS* _ctbs;
 159 public:
 160   RedirtyLoggedCardTableEntryClosure() :
 161     _calls(0)
 162   {
 163     _g1h = G1CollectedHeap::heap();
 164     _ctbs = (CardTableModRefBS*)_g1h->barrier_set();
 165   }
 166   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 167     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 168       _calls++;
 169       *card_ptr = 0;
 170     }
 171     return true;
 172   }
 173   int calls() { return _calls; }
 174 };
 175 
 176 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
 177 public:
 178   bool do_card_ptr(jbyte* card_ptr, int worker_i) {
 179     *card_ptr = CardTableModRefBS::dirty_card_val();
 180     return true;
 181   }
 182 };
 183 
 184 YoungList::YoungList(G1CollectedHeap* g1h) :
 185     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 186     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 187   guarantee(check_list_empty(false), "just making sure...");
 188 }
 189 
 190 void YoungList::push_region(HeapRegion *hr) {
 191   assert(!hr->is_young(), "should not already be young");
 192   assert(hr->get_next_young_region() == NULL, "cause it should!");
 193 
 194   hr->set_next_young_region(_head);
 195   _head = hr;
 196 
 197   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 198   ++_length;
 199 }
 200 
 201 void YoungList::add_survivor_region(HeapRegion* hr) {
 202   assert(hr->is_survivor(), "should be flagged as survivor region");
 203   assert(hr->get_next_young_region() == NULL, "cause it should!");
 204 
 205   hr->set_next_young_region(_survivor_head);
 206   if (_survivor_head == NULL) {
 207     _survivor_tail = hr;
 208   }
 209   _survivor_head = hr;
 210   ++_survivor_length;
 211 }
 212 
 213 void YoungList::empty_list(HeapRegion* list) {
 214   while (list != NULL) {
 215     HeapRegion* next = list->get_next_young_region();
 216     list->set_next_young_region(NULL);
 217     list->uninstall_surv_rate_group();
 218     list->set_not_young();
 219     list = next;
 220   }
 221 }
 222 
 223 void YoungList::empty_list() {
 224   assert(check_list_well_formed(), "young list should be well formed");
 225 
 226   empty_list(_head);
 227   _head = NULL;
 228   _length = 0;
 229 
 230   empty_list(_survivor_head);
 231   _survivor_head = NULL;
 232   _survivor_tail = NULL;
 233   _survivor_length = 0;
 234 
 235   _last_sampled_rs_lengths = 0;
 236 
 237   assert(check_list_empty(false), "just making sure...");
 238 }
 239 
 240 bool YoungList::check_list_well_formed() {
 241   bool ret = true;
 242 
 243   uint length = 0;
 244   HeapRegion* curr = _head;
 245   HeapRegion* last = NULL;
 246   while (curr != NULL) {
 247     if (!curr->is_young()) {
 248       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 249                              "incorrectly tagged (y: %d, surv: %d)",
 250                              curr->bottom(), curr->end(),
 251                              curr->is_young(), curr->is_survivor());
 252       ret = false;
 253     }
 254     ++length;
 255     last = curr;
 256     curr = curr->get_next_young_region();
 257   }
 258   ret = ret && (length == _length);
 259 
 260   if (!ret) {
 261     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 262     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 263                            length, _length);
 264   }
 265 
 266   return ret;
 267 }
 268 
 269 bool YoungList::check_list_empty(bool check_sample) {
 270   bool ret = true;
 271 
 272   if (_length != 0) {
 273     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 274                   _length);
 275     ret = false;
 276   }
 277   if (check_sample && _last_sampled_rs_lengths != 0) {
 278     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 279     ret = false;
 280   }
 281   if (_head != NULL) {
 282     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 283     ret = false;
 284   }
 285   if (!ret) {
 286     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 287   }
 288 
 289   return ret;
 290 }
 291 
 292 void
 293 YoungList::rs_length_sampling_init() {
 294   _sampled_rs_lengths = 0;
 295   _curr               = _head;
 296 }
 297 
 298 bool
 299 YoungList::rs_length_sampling_more() {
 300   return _curr != NULL;
 301 }
 302 
 303 void
 304 YoungList::rs_length_sampling_next() {
 305   assert( _curr != NULL, "invariant" );
 306   size_t rs_length = _curr->rem_set()->occupied();
 307 
 308   _sampled_rs_lengths += rs_length;
 309 
 310   // The current region may not yet have been added to the
 311   // incremental collection set (it gets added when it is
 312   // retired as the current allocation region).
 313   if (_curr->in_collection_set()) {
 314     // Update the collection set policy information for this region
 315     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 316   }
 317 
 318   _curr = _curr->get_next_young_region();
 319   if (_curr == NULL) {
 320     _last_sampled_rs_lengths = _sampled_rs_lengths;
 321     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 322   }
 323 }
 324 
 325 void
 326 YoungList::reset_auxilary_lists() {
 327   guarantee( is_empty(), "young list should be empty" );
 328   assert(check_list_well_formed(), "young list should be well formed");
 329 
 330   // Add survivor regions to SurvRateGroup.
 331   _g1h->g1_policy()->note_start_adding_survivor_regions();
 332   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 333 
 334   int young_index_in_cset = 0;
 335   for (HeapRegion* curr = _survivor_head;
 336        curr != NULL;
 337        curr = curr->get_next_young_region()) {
 338     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 339 
 340     // The region is a non-empty survivor so let's add it to
 341     // the incremental collection set for the next evacuation
 342     // pause.
 343     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 344     young_index_in_cset += 1;
 345   }
 346   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 347   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 348 
 349   _head   = _survivor_head;
 350   _length = _survivor_length;
 351   if (_survivor_head != NULL) {
 352     assert(_survivor_tail != NULL, "cause it shouldn't be");
 353     assert(_survivor_length > 0, "invariant");
 354     _survivor_tail->set_next_young_region(NULL);
 355   }
 356 
 357   // Don't clear the survivor list handles until the start of
 358   // the next evacuation pause - we need it in order to re-tag
 359   // the survivor regions from this evacuation pause as 'young'
 360   // at the start of the next.
 361 
 362   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 363 
 364   assert(check_list_well_formed(), "young list should be well formed");
 365 }
 366 
 367 void YoungList::print() {
 368   HeapRegion* lists[] = {_head,   _survivor_head};
 369   const char* names[] = {"YOUNG", "SURVIVOR"};
 370 
 371   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 372     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 373     HeapRegion *curr = lists[list];
 374     if (curr == NULL)
 375       gclog_or_tty->print_cr("  empty");
 376     while (curr != NULL) {
 377       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 378                              HR_FORMAT_PARAMS(curr),
 379                              curr->prev_top_at_mark_start(),
 380                              curr->next_top_at_mark_start(),
 381                              curr->age_in_surv_rate_group_cond());
 382       curr = curr->get_next_young_region();
 383     }
 384   }
 385 
 386   gclog_or_tty->print_cr("");
 387 }
 388 
 389 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 390 {
 391   // Claim the right to put the region on the dirty cards region list
 392   // by installing a self pointer.
 393   HeapRegion* next = hr->get_next_dirty_cards_region();
 394   if (next == NULL) {
 395     HeapRegion* res = (HeapRegion*)
 396       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 397                           NULL);
 398     if (res == NULL) {
 399       HeapRegion* head;
 400       do {
 401         // Put the region to the dirty cards region list.
 402         head = _dirty_cards_region_list;
 403         next = (HeapRegion*)
 404           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 405         if (next == head) {
 406           assert(hr->get_next_dirty_cards_region() == hr,
 407                  "hr->get_next_dirty_cards_region() != hr");
 408           if (next == NULL) {
 409             // The last region in the list points to itself.
 410             hr->set_next_dirty_cards_region(hr);
 411           } else {
 412             hr->set_next_dirty_cards_region(next);
 413           }
 414         }
 415       } while (next != head);
 416     }
 417   }
 418 }
 419 
 420 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 421 {
 422   HeapRegion* head;
 423   HeapRegion* hr;
 424   do {
 425     head = _dirty_cards_region_list;
 426     if (head == NULL) {
 427       return NULL;
 428     }
 429     HeapRegion* new_head = head->get_next_dirty_cards_region();
 430     if (head == new_head) {
 431       // The last region.
 432       new_head = NULL;
 433     }
 434     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 435                                           head);
 436   } while (hr != head);
 437   assert(hr != NULL, "invariant");
 438   hr->set_next_dirty_cards_region(NULL);
 439   return hr;
 440 }
 441 
 442 void G1CollectedHeap::stop_conc_gc_threads() {
 443   _cg1r->stop();
 444   _cmThread->stop();
 445 }
 446 
 447 #ifdef ASSERT
 448 // A region is added to the collection set as it is retired
 449 // so an address p can point to a region which will be in the
 450 // collection set but has not yet been retired.  This method
 451 // therefore is only accurate during a GC pause after all
 452 // regions have been retired.  It is used for debugging
 453 // to check if an nmethod has references to objects that can
 454 // be move during a partial collection.  Though it can be
 455 // inaccurate, it is sufficient for G1 because the conservative
 456 // implementation of is_scavengable() for G1 will indicate that
 457 // all nmethods must be scanned during a partial collection.
 458 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 459   HeapRegion* hr = heap_region_containing(p);
 460   return hr != NULL && hr->in_collection_set();
 461 }
 462 #endif
 463 
 464 // Returns true if the reference points to an object that
 465 // can move in an incremental collection.
 466 bool G1CollectedHeap::is_scavengable(const void* p) {
 467   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 468   G1CollectorPolicy* g1p = g1h->g1_policy();
 469   HeapRegion* hr = heap_region_containing(p);
 470   if (hr == NULL) {
 471      // null
 472      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 473      return false;
 474   } else {
 475     return !hr->isHumongous();
 476   }
 477 }
 478 
 479 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 480   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 481   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
 482 
 483   // Count the dirty cards at the start.
 484   CountNonCleanMemRegionClosure count1(this);
 485   ct_bs->mod_card_iterate(&count1);
 486   int orig_count = count1.n();
 487 
 488   // First clear the logged cards.
 489   ClearLoggedCardTableEntryClosure clear;
 490   dcqs.set_closure(&clear);
 491   dcqs.apply_closure_to_all_completed_buffers();
 492   dcqs.iterate_closure_all_threads(false);
 493   clear.print_histo();
 494 
 495   // Now ensure that there's no dirty cards.
 496   CountNonCleanMemRegionClosure count2(this);
 497   ct_bs->mod_card_iterate(&count2);
 498   if (count2.n() != 0) {
 499     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 500                            count2.n(), orig_count);
 501   }
 502   guarantee(count2.n() == 0, "Card table should be clean.");
 503 
 504   RedirtyLoggedCardTableEntryClosure redirty;
 505   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 506   dcqs.apply_closure_to_all_completed_buffers();
 507   dcqs.iterate_closure_all_threads(false);
 508   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 509                          clear.calls(), orig_count);
 510   guarantee(redirty.calls() == clear.calls(),
 511             "Or else mechanism is broken.");
 512 
 513   CountNonCleanMemRegionClosure count3(this);
 514   ct_bs->mod_card_iterate(&count3);
 515   if (count3.n() != orig_count) {
 516     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 517                            orig_count, count3.n());
 518     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 519   }
 520 
 521   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 522 }
 523 
 524 // Private class members.
 525 
 526 G1CollectedHeap* G1CollectedHeap::_g1h;
 527 
 528 // Private methods.
 529 
 530 HeapRegion*
 531 G1CollectedHeap::new_region_try_secondary_free_list() {
 532   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 533   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 534     if (!_secondary_free_list.is_empty()) {
 535       if (G1ConcRegionFreeingVerbose) {
 536         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 537                                "secondary_free_list has %u entries",
 538                                _secondary_free_list.length());
 539       }
 540       // It looks as if there are free regions available on the
 541       // secondary_free_list. Let's move them to the free_list and try
 542       // again to allocate from it.
 543       append_secondary_free_list();
 544 
 545       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 546              "empty we should have moved at least one entry to the free_list");
 547       HeapRegion* res = _free_list.remove_head();
 548       if (G1ConcRegionFreeingVerbose) {
 549         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 550                                "allocated "HR_FORMAT" from secondary_free_list",
 551                                HR_FORMAT_PARAMS(res));
 552       }
 553       return res;
 554     }
 555 
 556     // Wait here until we get notified either when (a) there are no
 557     // more free regions coming or (b) some regions have been moved on
 558     // the secondary_free_list.
 559     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 560   }
 561 
 562   if (G1ConcRegionFreeingVerbose) {
 563     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 564                            "could not allocate from secondary_free_list");
 565   }
 566   return NULL;
 567 }
 568 
 569 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool do_expand) {
 570   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 571          "the only time we use this to allocate a humongous region is "
 572          "when we are allocating a single humongous region");
 573 
 574   HeapRegion* res;
 575   if (G1StressConcRegionFreeing) {
 576     if (!_secondary_free_list.is_empty()) {
 577       if (G1ConcRegionFreeingVerbose) {
 578         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 579                                "forced to look at the secondary_free_list");
 580       }
 581       res = new_region_try_secondary_free_list();
 582       if (res != NULL) {
 583         return res;
 584       }
 585     }
 586   }
 587   res = _free_list.remove_head_or_null();
 588   if (res == NULL) {
 589     if (G1ConcRegionFreeingVerbose) {
 590       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 591                              "res == NULL, trying the secondary_free_list");
 592     }
 593     res = new_region_try_secondary_free_list();
 594   }
 595   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 596     // Currently, only attempts to allocate GC alloc regions set
 597     // do_expand to true. So, we should only reach here during a
 598     // safepoint. If this assumption changes we might have to
 599     // reconsider the use of _expand_heap_after_alloc_failure.
 600     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 601 
 602     ergo_verbose1(ErgoHeapSizing,
 603                   "attempt heap expansion",
 604                   ergo_format_reason("region allocation request failed")
 605                   ergo_format_byte("allocation request"),
 606                   word_size * HeapWordSize);
 607     if (expand(word_size * HeapWordSize)) {
 608       // Given that expand() succeeded in expanding the heap, and we
 609       // always expand the heap by an amount aligned to the heap
 610       // region size, the free list should in theory not be empty. So
 611       // it would probably be OK to use remove_head(). But the extra
 612       // check for NULL is unlikely to be a performance issue here (we
 613       // just expanded the heap!) so let's just be conservative and
 614       // use remove_head_or_null().
 615       res = _free_list.remove_head_or_null();
 616     } else {
 617       _expand_heap_after_alloc_failure = false;
 618     }
 619   }
 620   return res;
 621 }
 622 
 623 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 624                                                         size_t word_size) {
 625   assert(isHumongous(word_size), "word_size should be humongous");
 626   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 627 
 628   uint first = G1_NULL_HRS_INDEX;
 629   if (num_regions == 1) {
 630     // Only one region to allocate, no need to go through the slower
 631     // path. The caller will attempt the expansion if this fails, so
 632     // let's not try to expand here too.
 633     HeapRegion* hr = new_region(word_size, false /* do_expand */);
 634     if (hr != NULL) {
 635       first = hr->hrs_index();
 636     } else {
 637       first = G1_NULL_HRS_INDEX;
 638     }
 639   } else {
 640     // We can't allocate humongous regions while cleanupComplete() is
 641     // running, since some of the regions we find to be empty might not
 642     // yet be added to the free list and it is not straightforward to
 643     // know which list they are on so that we can remove them. Note
 644     // that we only need to do this if we need to allocate more than
 645     // one region to satisfy the current humongous allocation
 646     // request. If we are only allocating one region we use the common
 647     // region allocation code (see above).
 648     wait_while_free_regions_coming();
 649     append_secondary_free_list_if_not_empty_with_lock();
 650 
 651     if (free_regions() >= num_regions) {
 652       first = _hrs.find_contiguous(num_regions);
 653       if (first != G1_NULL_HRS_INDEX) {
 654         for (uint i = first; i < first + num_regions; ++i) {
 655           HeapRegion* hr = region_at(i);
 656           assert(hr->is_empty(), "sanity");
 657           assert(is_on_master_free_list(hr), "sanity");
 658           hr->set_pending_removal(true);
 659         }
 660         _free_list.remove_all_pending(num_regions);
 661       }
 662     }
 663   }
 664   return first;
 665 }
 666 
 667 HeapWord*
 668 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 669                                                            uint num_regions,
 670                                                            size_t word_size) {
 671   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 672   assert(isHumongous(word_size), "word_size should be humongous");
 673   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 674 
 675   // Index of last region in the series + 1.
 676   uint last = first + num_regions;
 677 
 678   // We need to initialize the region(s) we just discovered. This is
 679   // a bit tricky given that it can happen concurrently with
 680   // refinement threads refining cards on these regions and
 681   // potentially wanting to refine the BOT as they are scanning
 682   // those cards (this can happen shortly after a cleanup; see CR
 683   // 6991377). So we have to set up the region(s) carefully and in
 684   // a specific order.
 685 
 686   // The word size sum of all the regions we will allocate.
 687   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 688   assert(word_size <= word_size_sum, "sanity");
 689 
 690   // This will be the "starts humongous" region.
 691   HeapRegion* first_hr = region_at(first);
 692   // The header of the new object will be placed at the bottom of
 693   // the first region.
 694   HeapWord* new_obj = first_hr->bottom();
 695   // This will be the new end of the first region in the series that
 696   // should also match the end of the last region in the series.
 697   HeapWord* new_end = new_obj + word_size_sum;
 698   // This will be the new top of the first region that will reflect
 699   // this allocation.
 700   HeapWord* new_top = new_obj + word_size;
 701 
 702   // First, we need to zero the header of the space that we will be
 703   // allocating. When we update top further down, some refinement
 704   // threads might try to scan the region. By zeroing the header we
 705   // ensure that any thread that will try to scan the region will
 706   // come across the zero klass word and bail out.
 707   //
 708   // NOTE: It would not have been correct to have used
 709   // CollectedHeap::fill_with_object() and make the space look like
 710   // an int array. The thread that is doing the allocation will
 711   // later update the object header to a potentially different array
 712   // type and, for a very short period of time, the klass and length
 713   // fields will be inconsistent. This could cause a refinement
 714   // thread to calculate the object size incorrectly.
 715   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 716 
 717   // We will set up the first region as "starts humongous". This
 718   // will also update the BOT covering all the regions to reflect
 719   // that there is a single object that starts at the bottom of the
 720   // first region.
 721   first_hr->set_startsHumongous(new_top, new_end);
 722 
 723   // Then, if there are any, we will set up the "continues
 724   // humongous" regions.
 725   HeapRegion* hr = NULL;
 726   for (uint i = first + 1; i < last; ++i) {
 727     hr = region_at(i);
 728     hr->set_continuesHumongous(first_hr);
 729   }
 730   // If we have "continues humongous" regions (hr != NULL), then the
 731   // end of the last one should match new_end.
 732   assert(hr == NULL || hr->end() == new_end, "sanity");
 733 
 734   // Up to this point no concurrent thread would have been able to
 735   // do any scanning on any region in this series. All the top
 736   // fields still point to bottom, so the intersection between
 737   // [bottom,top] and [card_start,card_end] will be empty. Before we
 738   // update the top fields, we'll do a storestore to make sure that
 739   // no thread sees the update to top before the zeroing of the
 740   // object header and the BOT initialization.
 741   OrderAccess::storestore();
 742 
 743   // Now that the BOT and the object header have been initialized,
 744   // we can update top of the "starts humongous" region.
 745   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 746          "new_top should be in this region");
 747   first_hr->set_top(new_top);
 748   if (_hr_printer.is_active()) {
 749     HeapWord* bottom = first_hr->bottom();
 750     HeapWord* end = first_hr->orig_end();
 751     if ((first + 1) == last) {
 752       // the series has a single humongous region
 753       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 754     } else {
 755       // the series has more than one humongous regions
 756       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 757     }
 758   }
 759 
 760   // Now, we will update the top fields of the "continues humongous"
 761   // regions. The reason we need to do this is that, otherwise,
 762   // these regions would look empty and this will confuse parts of
 763   // G1. For example, the code that looks for a consecutive number
 764   // of empty regions will consider them empty and try to
 765   // re-allocate them. We can extend is_empty() to also include
 766   // !continuesHumongous(), but it is easier to just update the top
 767   // fields here. The way we set top for all regions (i.e., top ==
 768   // end for all regions but the last one, top == new_top for the
 769   // last one) is actually used when we will free up the humongous
 770   // region in free_humongous_region().
 771   hr = NULL;
 772   for (uint i = first + 1; i < last; ++i) {
 773     hr = region_at(i);
 774     if ((i + 1) == last) {
 775       // last continues humongous region
 776       assert(hr->bottom() < new_top && new_top <= hr->end(),
 777              "new_top should fall on this region");
 778       hr->set_top(new_top);
 779       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 780     } else {
 781       // not last one
 782       assert(new_top > hr->end(), "new_top should be above this region");
 783       hr->set_top(hr->end());
 784       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 785     }
 786   }
 787   // If we have continues humongous regions (hr != NULL), then the
 788   // end of the last one should match new_end and its top should
 789   // match new_top.
 790   assert(hr == NULL ||
 791          (hr->end() == new_end && hr->top() == new_top), "sanity");
 792 
 793   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 794   _summary_bytes_used += first_hr->used();
 795   _humongous_set.add(first_hr);
 796 
 797   return new_obj;
 798 }
 799 
 800 // If could fit into free regions w/o expansion, try.
 801 // Otherwise, if can expand, do so.
 802 // Otherwise, if using ex regions might help, try with ex given back.
 803 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 804   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 805 
 806   verify_region_sets_optional();
 807 
 808   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 809   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 810   uint x_num = expansion_regions();
 811   uint fs = _hrs.free_suffix();
 812   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 813   if (first == G1_NULL_HRS_INDEX) {
 814     // The only thing we can do now is attempt expansion.
 815     if (fs + x_num >= num_regions) {
 816       // If the number of regions we're trying to allocate for this
 817       // object is at most the number of regions in the free suffix,
 818       // then the call to humongous_obj_allocate_find_first() above
 819       // should have succeeded and we wouldn't be here.
 820       //
 821       // We should only be trying to expand when the free suffix is
 822       // not sufficient for the object _and_ we have some expansion
 823       // room available.
 824       assert(num_regions > fs, "earlier allocation should have succeeded");
 825 
 826       ergo_verbose1(ErgoHeapSizing,
 827                     "attempt heap expansion",
 828                     ergo_format_reason("humongous allocation request failed")
 829                     ergo_format_byte("allocation request"),
 830                     word_size * HeapWordSize);
 831       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 832         // Even though the heap was expanded, it might not have
 833         // reached the desired size. So, we cannot assume that the
 834         // allocation will succeed.
 835         first = humongous_obj_allocate_find_first(num_regions, word_size);
 836       }
 837     }
 838   }
 839 
 840   HeapWord* result = NULL;
 841   if (first != G1_NULL_HRS_INDEX) {
 842     result =
 843       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 844     assert(result != NULL, "it should always return a valid result");
 845 
 846     // A successful humongous object allocation changes the used space
 847     // information of the old generation so we need to recalculate the
 848     // sizes and update the jstat counters here.
 849     g1mm()->update_sizes();
 850   }
 851 
 852   verify_region_sets_optional();
 853 
 854   return result;
 855 }
 856 
 857 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 858   assert_heap_not_locked_and_not_at_safepoint();
 859   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 860 
 861   unsigned int dummy_gc_count_before;
 862   int dummy_gclocker_retry_count = 0;
 863   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 864 }
 865 
 866 HeapWord*
 867 G1CollectedHeap::mem_allocate(size_t word_size,
 868                               bool*  gc_overhead_limit_was_exceeded) {
 869   assert_heap_not_locked_and_not_at_safepoint();
 870 
 871   // Loop until the allocation is satisfied, or unsatisfied after GC.
 872   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 873     unsigned int gc_count_before;
 874 
 875     HeapWord* result = NULL;
 876     if (!isHumongous(word_size)) {
 877       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 878     } else {
 879       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 880     }
 881     if (result != NULL) {
 882       return result;
 883     }
 884 
 885     // Create the garbage collection operation...
 886     VM_G1CollectForAllocation op(gc_count_before, word_size);
 887     // ...and get the VM thread to execute it.
 888     VMThread::execute(&op);
 889 
 890     if (op.prologue_succeeded() && op.pause_succeeded()) {
 891       // If the operation was successful we'll return the result even
 892       // if it is NULL. If the allocation attempt failed immediately
 893       // after a Full GC, it's unlikely we'll be able to allocate now.
 894       HeapWord* result = op.result();
 895       if (result != NULL && !isHumongous(word_size)) {
 896         // Allocations that take place on VM operations do not do any
 897         // card dirtying and we have to do it here. We only have to do
 898         // this for non-humongous allocations, though.
 899         dirty_young_block(result, word_size);
 900       }
 901       return result;
 902     } else {
 903       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 904         return NULL;
 905       }
 906       assert(op.result() == NULL,
 907              "the result should be NULL if the VM op did not succeed");
 908     }
 909 
 910     // Give a warning if we seem to be looping forever.
 911     if ((QueuedAllocationWarningCount > 0) &&
 912         (try_count % QueuedAllocationWarningCount == 0)) {
 913       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 914     }
 915   }
 916 
 917   ShouldNotReachHere();
 918   return NULL;
 919 }
 920 
 921 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 922                                            unsigned int *gc_count_before_ret,
 923                                            int* gclocker_retry_count_ret) {
 924   // Make sure you read the note in attempt_allocation_humongous().
 925 
 926   assert_heap_not_locked_and_not_at_safepoint();
 927   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 928          "be called for humongous allocation requests");
 929 
 930   // We should only get here after the first-level allocation attempt
 931   // (attempt_allocation()) failed to allocate.
 932 
 933   // We will loop until a) we manage to successfully perform the
 934   // allocation or b) we successfully schedule a collection which
 935   // fails to perform the allocation. b) is the only case when we'll
 936   // return NULL.
 937   HeapWord* result = NULL;
 938   for (int try_count = 1; /* we'll return */; try_count += 1) {
 939     bool should_try_gc;
 940     unsigned int gc_count_before;
 941 
 942     {
 943       MutexLockerEx x(Heap_lock);
 944 
 945       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 946                                                       false /* bot_updates */);
 947       if (result != NULL) {
 948         return result;
 949       }
 950 
 951       // If we reach here, attempt_allocation_locked() above failed to
 952       // allocate a new region. So the mutator alloc region should be NULL.
 953       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 954 
 955       if (GC_locker::is_active_and_needs_gc()) {
 956         if (g1_policy()->can_expand_young_list()) {
 957           // No need for an ergo verbose message here,
 958           // can_expand_young_list() does this when it returns true.
 959           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 960                                                       false /* bot_updates */);
 961           if (result != NULL) {
 962             return result;
 963           }
 964         }
 965         should_try_gc = false;
 966       } else {
 967         // The GCLocker may not be active but the GCLocker initiated
 968         // GC may not yet have been performed (GCLocker::needs_gc()
 969         // returns true). In this case we do not try this GC and
 970         // wait until the GCLocker initiated GC is performed, and
 971         // then retry the allocation.
 972         if (GC_locker::needs_gc()) {
 973           should_try_gc = false;
 974         } else {
 975           // Read the GC count while still holding the Heap_lock.
 976           gc_count_before = total_collections();
 977           should_try_gc = true;
 978         }
 979       }
 980     }
 981 
 982     if (should_try_gc) {
 983       bool succeeded;
 984       result = do_collection_pause(word_size, gc_count_before, &succeeded);
 985       if (result != NULL) {
 986         assert(succeeded, "only way to get back a non-NULL result");
 987         return result;
 988       }
 989 
 990       if (succeeded) {
 991         // If we get here we successfully scheduled a collection which
 992         // failed to allocate. No point in trying to allocate
 993         // further. We'll just return NULL.
 994         MutexLockerEx x(Heap_lock);
 995         *gc_count_before_ret = total_collections();
 996         return NULL;
 997       }
 998     } else {
 999       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1000         MutexLockerEx x(Heap_lock);
1001         *gc_count_before_ret = total_collections();
1002         return NULL;
1003       }
1004       // The GCLocker is either active or the GCLocker initiated
1005       // GC has not yet been performed. Stall until it is and
1006       // then retry the allocation.
1007       GC_locker::stall_until_clear();
1008       (*gclocker_retry_count_ret) += 1;
1009     }
1010 
1011     // We can reach here if we were unsuccessful in scheduling a
1012     // collection (because another thread beat us to it) or if we were
1013     // stalled due to the GC locker. In either can we should retry the
1014     // allocation attempt in case another thread successfully
1015     // performed a collection and reclaimed enough space. We do the
1016     // first attempt (without holding the Heap_lock) here and the
1017     // follow-on attempt will be at the start of the next loop
1018     // iteration (after taking the Heap_lock).
1019     result = _mutator_alloc_region.attempt_allocation(word_size,
1020                                                       false /* bot_updates */);
1021     if (result != NULL) {
1022       return result;
1023     }
1024 
1025     // Give a warning if we seem to be looping forever.
1026     if ((QueuedAllocationWarningCount > 0) &&
1027         (try_count % QueuedAllocationWarningCount == 0)) {
1028       warning("G1CollectedHeap::attempt_allocation_slow() "
1029               "retries %d times", try_count);
1030     }
1031   }
1032 
1033   ShouldNotReachHere();
1034   return NULL;
1035 }
1036 
1037 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1038                                           unsigned int * gc_count_before_ret,
1039                                           int* gclocker_retry_count_ret) {
1040   // The structure of this method has a lot of similarities to
1041   // attempt_allocation_slow(). The reason these two were not merged
1042   // into a single one is that such a method would require several "if
1043   // allocation is not humongous do this, otherwise do that"
1044   // conditional paths which would obscure its flow. In fact, an early
1045   // version of this code did use a unified method which was harder to
1046   // follow and, as a result, it had subtle bugs that were hard to
1047   // track down. So keeping these two methods separate allows each to
1048   // be more readable. It will be good to keep these two in sync as
1049   // much as possible.
1050 
1051   assert_heap_not_locked_and_not_at_safepoint();
1052   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1053          "should only be called for humongous allocations");
1054 
1055   // Humongous objects can exhaust the heap quickly, so we should check if we
1056   // need to start a marking cycle at each humongous object allocation. We do
1057   // the check before we do the actual allocation. The reason for doing it
1058   // before the allocation is that we avoid having to keep track of the newly
1059   // allocated memory while we do a GC.
1060   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1061                                            word_size)) {
1062     collect(GCCause::_g1_humongous_allocation);
1063   }
1064 
1065   // We will loop until a) we manage to successfully perform the
1066   // allocation or b) we successfully schedule a collection which
1067   // fails to perform the allocation. b) is the only case when we'll
1068   // return NULL.
1069   HeapWord* result = NULL;
1070   for (int try_count = 1; /* we'll return */; try_count += 1) {
1071     bool should_try_gc;
1072     unsigned int gc_count_before;
1073 
1074     {
1075       MutexLockerEx x(Heap_lock);
1076 
1077       // Given that humongous objects are not allocated in young
1078       // regions, we'll first try to do the allocation without doing a
1079       // collection hoping that there's enough space in the heap.
1080       result = humongous_obj_allocate(word_size);
1081       if (result != NULL) {
1082         return result;
1083       }
1084 
1085       if (GC_locker::is_active_and_needs_gc()) {
1086         should_try_gc = false;
1087       } else {
1088          // The GCLocker may not be active but the GCLocker initiated
1089         // GC may not yet have been performed (GCLocker::needs_gc()
1090         // returns true). In this case we do not try this GC and
1091         // wait until the GCLocker initiated GC is performed, and
1092         // then retry the allocation.
1093         if (GC_locker::needs_gc()) {
1094           should_try_gc = false;
1095         } else {
1096           // Read the GC count while still holding the Heap_lock.
1097           gc_count_before = total_collections();
1098           should_try_gc = true;
1099         }
1100       }
1101     }
1102 
1103     if (should_try_gc) {
1104       // If we failed to allocate the humongous object, we should try to
1105       // do a collection pause (if we're allowed) in case it reclaims
1106       // enough space for the allocation to succeed after the pause.
1107 
1108       bool succeeded;
1109       result = do_collection_pause(word_size, gc_count_before, &succeeded);
1110       if (result != NULL) {
1111         assert(succeeded, "only way to get back a non-NULL result");
1112         return result;
1113       }
1114 
1115       if (succeeded) {
1116         // If we get here we successfully scheduled a collection which
1117         // failed to allocate. No point in trying to allocate
1118         // further. We'll just return NULL.
1119         MutexLockerEx x(Heap_lock);
1120         *gc_count_before_ret = total_collections();
1121         return NULL;
1122       }
1123     } else {
1124       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1125         MutexLockerEx x(Heap_lock);
1126         *gc_count_before_ret = total_collections();
1127         return NULL;
1128       }
1129       // The GCLocker is either active or the GCLocker initiated
1130       // GC has not yet been performed. Stall until it is and
1131       // then retry the allocation.
1132       GC_locker::stall_until_clear();
1133       (*gclocker_retry_count_ret) += 1;
1134     }
1135 
1136     // We can reach here if we were unsuccessful in scheduling a
1137     // collection (because another thread beat us to it) or if we were
1138     // stalled due to the GC locker. In either can we should retry the
1139     // allocation attempt in case another thread successfully
1140     // performed a collection and reclaimed enough space.  Give a
1141     // warning if we seem to be looping forever.
1142 
1143     if ((QueuedAllocationWarningCount > 0) &&
1144         (try_count % QueuedAllocationWarningCount == 0)) {
1145       warning("G1CollectedHeap::attempt_allocation_humongous() "
1146               "retries %d times", try_count);
1147     }
1148   }
1149 
1150   ShouldNotReachHere();
1151   return NULL;
1152 }
1153 
1154 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1155                                        bool expect_null_mutator_alloc_region) {
1156   assert_at_safepoint(true /* should_be_vm_thread */);
1157   assert(_mutator_alloc_region.get() == NULL ||
1158                                              !expect_null_mutator_alloc_region,
1159          "the current alloc region was unexpectedly found to be non-NULL");
1160 
1161   if (!isHumongous(word_size)) {
1162     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1163                                                       false /* bot_updates */);
1164   } else {
1165     HeapWord* result = humongous_obj_allocate(word_size);
1166     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1167       g1_policy()->set_initiate_conc_mark_if_possible();
1168     }
1169     return result;
1170   }
1171 
1172   ShouldNotReachHere();
1173 }
1174 
1175 class PostMCRemSetClearClosure: public HeapRegionClosure {
1176   G1CollectedHeap* _g1h;
1177   ModRefBarrierSet* _mr_bs;
1178 public:
1179   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1180     _g1h(g1h), _mr_bs(mr_bs) {}
1181 
1182   bool doHeapRegion(HeapRegion* r) {
1183     HeapRegionRemSet* hrrs = r->rem_set();
1184 
1185     if (r->continuesHumongous()) {
1186       // We'll assert that the strong code root list and RSet is empty
1187       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1188       assert(hrrs->occupied() == 0, "RSet should be empty");
1189       return false;
1190     }
1191 
1192     _g1h->reset_gc_time_stamps(r);
1193     hrrs->clear();
1194     // You might think here that we could clear just the cards
1195     // corresponding to the used region.  But no: if we leave a dirty card
1196     // in a region we might allocate into, then it would prevent that card
1197     // from being enqueued, and cause it to be missed.
1198     // Re: the performance cost: we shouldn't be doing full GC anyway!
1199     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1200 
1201     return false;
1202   }
1203 };
1204 
1205 void G1CollectedHeap::clear_rsets_post_compaction() {
1206   PostMCRemSetClearClosure rs_clear(this, mr_bs());
1207   heap_region_iterate(&rs_clear);
1208 }
1209 
1210 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1211   G1CollectedHeap*   _g1h;
1212   UpdateRSOopClosure _cl;
1213   int                _worker_i;
1214 public:
1215   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1216     _cl(g1->g1_rem_set(), worker_i),
1217     _worker_i(worker_i),
1218     _g1h(g1)
1219   { }
1220 
1221   bool doHeapRegion(HeapRegion* r) {
1222     if (!r->continuesHumongous()) {
1223       _cl.set_from(r);
1224       r->oop_iterate(&_cl);
1225     }
1226     return false;
1227   }
1228 };
1229 
1230 class ParRebuildRSTask: public AbstractGangTask {
1231   G1CollectedHeap* _g1;
1232 public:
1233   ParRebuildRSTask(G1CollectedHeap* g1)
1234     : AbstractGangTask("ParRebuildRSTask"),
1235       _g1(g1)
1236   { }
1237 
1238   void work(uint worker_id) {
1239     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1240     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1241                                           _g1->workers()->active_workers(),
1242                                          HeapRegion::RebuildRSClaimValue);
1243   }
1244 };
1245 
1246 class PostCompactionPrinterClosure: public HeapRegionClosure {
1247 private:
1248   G1HRPrinter* _hr_printer;
1249 public:
1250   bool doHeapRegion(HeapRegion* hr) {
1251     assert(!hr->is_young(), "not expecting to find young regions");
1252     // We only generate output for non-empty regions.
1253     if (!hr->is_empty()) {
1254       if (!hr->isHumongous()) {
1255         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1256       } else if (hr->startsHumongous()) {
1257         if (hr->region_num() == 1) {
1258           // single humongous region
1259           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1260         } else {
1261           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1262         }
1263       } else {
1264         assert(hr->continuesHumongous(), "only way to get here");
1265         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1266       }
1267     }
1268     return false;
1269   }
1270 
1271   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1272     : _hr_printer(hr_printer) { }
1273 };
1274 
1275 void G1CollectedHeap::print_hrs_post_compaction() {
1276   PostCompactionPrinterClosure cl(hr_printer());
1277   heap_region_iterate(&cl);
1278 }
1279 
1280 bool G1CollectedHeap::do_collection(bool explicit_gc,
1281                                     bool clear_all_soft_refs,
1282                                     size_t word_size) {
1283   assert_at_safepoint(true /* should_be_vm_thread */);
1284 
1285   if (GC_locker::check_active_before_gc()) {
1286     return false;
1287   }
1288 
1289   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1290   gc_timer->register_gc_start(os::elapsed_counter());
1291 
1292   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1293   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1294 
1295   SvcGCMarker sgcm(SvcGCMarker::FULL);
1296   ResourceMark rm;
1297 
1298   print_heap_before_gc();
1299   trace_heap_before_gc(gc_tracer);
1300 
1301   size_t metadata_prev_used = MetaspaceAux::allocated_used_bytes();
1302 
1303   HRSPhaseSetter x(HRSPhaseFullGC);
1304   verify_region_sets_optional();
1305 
1306   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1307                            collector_policy()->should_clear_all_soft_refs();
1308 
1309   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1310 
1311   {
1312     IsGCActiveMark x;
1313 
1314     // Timing
1315     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1316     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1317     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1318 
1319     {
1320       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1321       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1322       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1323 
1324       double start = os::elapsedTime();
1325       g1_policy()->record_full_collection_start();
1326 
1327       // Note: When we have a more flexible GC logging framework that
1328       // allows us to add optional attributes to a GC log record we
1329       // could consider timing and reporting how long we wait in the
1330       // following two methods.
1331       wait_while_free_regions_coming();
1332       // If we start the compaction before the CM threads finish
1333       // scanning the root regions we might trip them over as we'll
1334       // be moving objects / updating references. So let's wait until
1335       // they are done. By telling them to abort, they should complete
1336       // early.
1337       _cm->root_regions()->abort();
1338       _cm->root_regions()->wait_until_scan_finished();
1339       append_secondary_free_list_if_not_empty_with_lock();
1340 
1341       gc_prologue(true);
1342       increment_total_collections(true /* full gc */);
1343       increment_old_marking_cycles_started();
1344 
1345       assert(used() == recalculate_used(), "Should be equal");
1346 
1347       verify_before_gc();
1348 
1349       pre_full_gc_dump(gc_timer);
1350 
1351       COMPILER2_PRESENT(DerivedPointerTable::clear());
1352 
1353       // Disable discovery and empty the discovered lists
1354       // for the CM ref processor.
1355       ref_processor_cm()->disable_discovery();
1356       ref_processor_cm()->abandon_partial_discovery();
1357       ref_processor_cm()->verify_no_references_recorded();
1358 
1359       // Abandon current iterations of concurrent marking and concurrent
1360       // refinement, if any are in progress. We have to do this before
1361       // wait_until_scan_finished() below.
1362       concurrent_mark()->abort();
1363 
1364       // Make sure we'll choose a new allocation region afterwards.
1365       release_mutator_alloc_region();
1366       abandon_gc_alloc_regions();
1367       g1_rem_set()->cleanupHRRS();
1368 
1369       // We should call this after we retire any currently active alloc
1370       // regions so that all the ALLOC / RETIRE events are generated
1371       // before the start GC event.
1372       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1373 
1374       // We may have added regions to the current incremental collection
1375       // set between the last GC or pause and now. We need to clear the
1376       // incremental collection set and then start rebuilding it afresh
1377       // after this full GC.
1378       abandon_collection_set(g1_policy()->inc_cset_head());
1379       g1_policy()->clear_incremental_cset();
1380       g1_policy()->stop_incremental_cset_building();
1381 
1382       tear_down_region_sets(false /* free_list_only */);
1383       g1_policy()->set_gcs_are_young(true);
1384 
1385       // See the comments in g1CollectedHeap.hpp and
1386       // G1CollectedHeap::ref_processing_init() about
1387       // how reference processing currently works in G1.
1388 
1389       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1390       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1391 
1392       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1393       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1394 
1395       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1396       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1397 
1398       // Do collection work
1399       {
1400         HandleMark hm;  // Discard invalid handles created during gc
1401         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1402       }
1403 
1404       assert(free_regions() == 0, "we should not have added any free regions");
1405       rebuild_region_sets(false /* free_list_only */);
1406 
1407       // Enqueue any discovered reference objects that have
1408       // not been removed from the discovered lists.
1409       ref_processor_stw()->enqueue_discovered_references();
1410 
1411       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1412 
1413       MemoryService::track_memory_usage();
1414 
1415       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1416       ref_processor_stw()->verify_no_references_recorded();
1417 
1418       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1419       ClassLoaderDataGraph::purge();
1420       MetaspaceAux::verify_metrics();
1421 
1422       // Note: since we've just done a full GC, concurrent
1423       // marking is no longer active. Therefore we need not
1424       // re-enable reference discovery for the CM ref processor.
1425       // That will be done at the start of the next marking cycle.
1426       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1427       ref_processor_cm()->verify_no_references_recorded();
1428 
1429       reset_gc_time_stamp();
1430       // Since everything potentially moved, we will clear all remembered
1431       // sets, and clear all cards.  Later we will rebuild remembered
1432       // sets. We will also reset the GC time stamps of the regions.
1433       clear_rsets_post_compaction();
1434       check_gc_time_stamps();
1435 
1436       // Resize the heap if necessary.
1437       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1438 
1439       if (_hr_printer.is_active()) {
1440         // We should do this after we potentially resize the heap so
1441         // that all the COMMIT / UNCOMMIT events are generated before
1442         // the end GC event.
1443 
1444         print_hrs_post_compaction();
1445         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1446       }
1447 
1448       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1449       if (hot_card_cache->use_cache()) {
1450         hot_card_cache->reset_card_counts();
1451         hot_card_cache->reset_hot_cache();
1452       }
1453 
1454       // Rebuild remembered sets of all regions.
1455       if (G1CollectedHeap::use_parallel_gc_threads()) {
1456         uint n_workers =
1457           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1458                                                   workers()->active_workers(),
1459                                                   Threads::number_of_non_daemon_threads());
1460         assert(UseDynamicNumberOfGCThreads ||
1461                n_workers == workers()->total_workers(),
1462                "If not dynamic should be using all the  workers");
1463         workers()->set_active_workers(n_workers);
1464         // Set parallel threads in the heap (_n_par_threads) only
1465         // before a parallel phase and always reset it to 0 after
1466         // the phase so that the number of parallel threads does
1467         // no get carried forward to a serial phase where there
1468         // may be code that is "possibly_parallel".
1469         set_par_threads(n_workers);
1470 
1471         ParRebuildRSTask rebuild_rs_task(this);
1472         assert(check_heap_region_claim_values(
1473                HeapRegion::InitialClaimValue), "sanity check");
1474         assert(UseDynamicNumberOfGCThreads ||
1475                workers()->active_workers() == workers()->total_workers(),
1476                "Unless dynamic should use total workers");
1477         // Use the most recent number of  active workers
1478         assert(workers()->active_workers() > 0,
1479                "Active workers not properly set");
1480         set_par_threads(workers()->active_workers());
1481         workers()->run_task(&rebuild_rs_task);
1482         set_par_threads(0);
1483         assert(check_heap_region_claim_values(
1484                HeapRegion::RebuildRSClaimValue), "sanity check");
1485         reset_heap_region_claim_values();
1486       } else {
1487         RebuildRSOutOfRegionClosure rebuild_rs(this);
1488         heap_region_iterate(&rebuild_rs);
1489       }
1490 
1491       // Rebuild the strong code root lists for each region
1492       rebuild_strong_code_roots();
1493 
1494       if (true) { // FIXME
1495         MetaspaceGC::compute_new_size();
1496       }
1497 
1498 #ifdef TRACESPINNING
1499       ParallelTaskTerminator::print_termination_counts();
1500 #endif
1501 
1502       // Discard all rset updates
1503       JavaThread::dirty_card_queue_set().abandon_logs();
1504       assert(!G1DeferredRSUpdate
1505              || (G1DeferredRSUpdate &&
1506                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1507 
1508       _young_list->reset_sampled_info();
1509       // At this point there should be no regions in the
1510       // entire heap tagged as young.
1511       assert(check_young_list_empty(true /* check_heap */),
1512              "young list should be empty at this point");
1513 
1514       // Update the number of full collections that have been completed.
1515       increment_old_marking_cycles_completed(false /* concurrent */);
1516 
1517       _hrs.verify_optional();
1518       verify_region_sets_optional();
1519 
1520       verify_after_gc();
1521 
1522       // Start a new incremental collection set for the next pause
1523       assert(g1_policy()->collection_set() == NULL, "must be");
1524       g1_policy()->start_incremental_cset_building();
1525 
1526       // Clear the _cset_fast_test bitmap in anticipation of adding
1527       // regions to the incremental collection set for the next
1528       // evacuation pause.
1529       clear_cset_fast_test();
1530 
1531       init_mutator_alloc_region();
1532 
1533       double end = os::elapsedTime();
1534       g1_policy()->record_full_collection_end();
1535 
1536       if (G1Log::fine()) {
1537         g1_policy()->print_heap_transition();
1538       }
1539 
1540       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1541       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1542       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1543       // before any GC notifications are raised.
1544       g1mm()->update_sizes();
1545 
1546       gc_epilogue(true);
1547     }
1548 
1549     if (G1Log::finer()) {
1550       g1_policy()->print_detailed_heap_transition(true /* full */);
1551     }
1552 
1553     print_heap_after_gc();
1554     trace_heap_after_gc(gc_tracer);
1555 
1556     post_full_gc_dump(gc_timer);
1557 
1558     gc_timer->register_gc_end(os::elapsed_counter());
1559     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1560   }
1561 
1562   return true;
1563 }
1564 
1565 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1566   // do_collection() will return whether it succeeded in performing
1567   // the GC. Currently, there is no facility on the
1568   // do_full_collection() API to notify the caller than the collection
1569   // did not succeed (e.g., because it was locked out by the GC
1570   // locker). So, right now, we'll ignore the return value.
1571   bool dummy = do_collection(true,                /* explicit_gc */
1572                              clear_all_soft_refs,
1573                              0                    /* word_size */);
1574 }
1575 
1576 // This code is mostly copied from TenuredGeneration.
1577 void
1578 G1CollectedHeap::
1579 resize_if_necessary_after_full_collection(size_t word_size) {
1580   assert(MinHeapFreeRatio <= MaxHeapFreeRatio, "sanity check");
1581 
1582   // Include the current allocation, if any, and bytes that will be
1583   // pre-allocated to support collections, as "used".
1584   const size_t used_after_gc = used();
1585   const size_t capacity_after_gc = capacity();
1586   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1587 
1588   // This is enforced in arguments.cpp.
1589   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1590          "otherwise the code below doesn't make sense");
1591 
1592   // We don't have floating point command-line arguments
1593   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1594   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1595   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1596   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1597 
1598   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1599   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1600 
1601   // We have to be careful here as these two calculations can overflow
1602   // 32-bit size_t's.
1603   double used_after_gc_d = (double) used_after_gc;
1604   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1605   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1606 
1607   // Let's make sure that they are both under the max heap size, which
1608   // by default will make them fit into a size_t.
1609   double desired_capacity_upper_bound = (double) max_heap_size;
1610   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1611                                     desired_capacity_upper_bound);
1612   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1613                                     desired_capacity_upper_bound);
1614 
1615   // We can now safely turn them into size_t's.
1616   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1617   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1618 
1619   // This assert only makes sense here, before we adjust them
1620   // with respect to the min and max heap size.
1621   assert(minimum_desired_capacity <= maximum_desired_capacity,
1622          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1623                  "maximum_desired_capacity = "SIZE_FORMAT,
1624                  minimum_desired_capacity, maximum_desired_capacity));
1625 
1626   // Should not be greater than the heap max size. No need to adjust
1627   // it with respect to the heap min size as it's a lower bound (i.e.,
1628   // we'll try to make the capacity larger than it, not smaller).
1629   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1630   // Should not be less than the heap min size. No need to adjust it
1631   // with respect to the heap max size as it's an upper bound (i.e.,
1632   // we'll try to make the capacity smaller than it, not greater).
1633   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1634 
1635   if (capacity_after_gc < minimum_desired_capacity) {
1636     // Don't expand unless it's significant
1637     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1638     ergo_verbose4(ErgoHeapSizing,
1639                   "attempt heap expansion",
1640                   ergo_format_reason("capacity lower than "
1641                                      "min desired capacity after Full GC")
1642                   ergo_format_byte("capacity")
1643                   ergo_format_byte("occupancy")
1644                   ergo_format_byte_perc("min desired capacity"),
1645                   capacity_after_gc, used_after_gc,
1646                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1647     expand(expand_bytes);
1648 
1649     // No expansion, now see if we want to shrink
1650   } else if (capacity_after_gc > maximum_desired_capacity) {
1651     // Capacity too large, compute shrinking size
1652     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1653     ergo_verbose4(ErgoHeapSizing,
1654                   "attempt heap shrinking",
1655                   ergo_format_reason("capacity higher than "
1656                                      "max desired capacity after Full GC")
1657                   ergo_format_byte("capacity")
1658                   ergo_format_byte("occupancy")
1659                   ergo_format_byte_perc("max desired capacity"),
1660                   capacity_after_gc, used_after_gc,
1661                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1662     shrink(shrink_bytes);
1663   }
1664 }
1665 
1666 
1667 HeapWord*
1668 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1669                                            bool* succeeded) {
1670   assert_at_safepoint(true /* should_be_vm_thread */);
1671 
1672   *succeeded = true;
1673   // Let's attempt the allocation first.
1674   HeapWord* result =
1675     attempt_allocation_at_safepoint(word_size,
1676                                  false /* expect_null_mutator_alloc_region */);
1677   if (result != NULL) {
1678     assert(*succeeded, "sanity");
1679     return result;
1680   }
1681 
1682   // In a G1 heap, we're supposed to keep allocation from failing by
1683   // incremental pauses.  Therefore, at least for now, we'll favor
1684   // expansion over collection.  (This might change in the future if we can
1685   // do something smarter than full collection to satisfy a failed alloc.)
1686   result = expand_and_allocate(word_size);
1687   if (result != NULL) {
1688     assert(*succeeded, "sanity");
1689     return result;
1690   }
1691 
1692   // Expansion didn't work, we'll try to do a Full GC.
1693   bool gc_succeeded = do_collection(false, /* explicit_gc */
1694                                     false, /* clear_all_soft_refs */
1695                                     word_size);
1696   if (!gc_succeeded) {
1697     *succeeded = false;
1698     return NULL;
1699   }
1700 
1701   // Retry the allocation
1702   result = attempt_allocation_at_safepoint(word_size,
1703                                   true /* expect_null_mutator_alloc_region */);
1704   if (result != NULL) {
1705     assert(*succeeded, "sanity");
1706     return result;
1707   }
1708 
1709   // Then, try a Full GC that will collect all soft references.
1710   gc_succeeded = do_collection(false, /* explicit_gc */
1711                                true,  /* clear_all_soft_refs */
1712                                word_size);
1713   if (!gc_succeeded) {
1714     *succeeded = false;
1715     return NULL;
1716   }
1717 
1718   // Retry the allocation once more
1719   result = attempt_allocation_at_safepoint(word_size,
1720                                   true /* expect_null_mutator_alloc_region */);
1721   if (result != NULL) {
1722     assert(*succeeded, "sanity");
1723     return result;
1724   }
1725 
1726   assert(!collector_policy()->should_clear_all_soft_refs(),
1727          "Flag should have been handled and cleared prior to this point");
1728 
1729   // What else?  We might try synchronous finalization later.  If the total
1730   // space available is large enough for the allocation, then a more
1731   // complete compaction phase than we've tried so far might be
1732   // appropriate.
1733   assert(*succeeded, "sanity");
1734   return NULL;
1735 }
1736 
1737 // Attempting to expand the heap sufficiently
1738 // to support an allocation of the given "word_size".  If
1739 // successful, perform the allocation and return the address of the
1740 // allocated block, or else "NULL".
1741 
1742 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1743   assert_at_safepoint(true /* should_be_vm_thread */);
1744 
1745   verify_region_sets_optional();
1746 
1747   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1748   ergo_verbose1(ErgoHeapSizing,
1749                 "attempt heap expansion",
1750                 ergo_format_reason("allocation request failed")
1751                 ergo_format_byte("allocation request"),
1752                 word_size * HeapWordSize);
1753   if (expand(expand_bytes)) {
1754     _hrs.verify_optional();
1755     verify_region_sets_optional();
1756     return attempt_allocation_at_safepoint(word_size,
1757                                  false /* expect_null_mutator_alloc_region */);
1758   }
1759   return NULL;
1760 }
1761 
1762 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1763                                              HeapWord* new_end) {
1764   assert(old_end != new_end, "don't call this otherwise");
1765   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1766 
1767   // Update the committed mem region.
1768   _g1_committed.set_end(new_end);
1769   // Tell the card table about the update.
1770   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1771   // Tell the BOT about the update.
1772   _bot_shared->resize(_g1_committed.word_size());
1773   // Tell the hot card cache about the update
1774   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1775 }
1776 
1777 bool G1CollectedHeap::expand(size_t expand_bytes) {
1778   size_t old_mem_size = _g1_storage.committed_size();
1779   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1780   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1781                                        HeapRegion::GrainBytes);
1782   ergo_verbose2(ErgoHeapSizing,
1783                 "expand the heap",
1784                 ergo_format_byte("requested expansion amount")
1785                 ergo_format_byte("attempted expansion amount"),
1786                 expand_bytes, aligned_expand_bytes);
1787 
1788   // First commit the memory.
1789   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1790   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1791   if (successful) {
1792     // Then propagate this update to the necessary data structures.
1793     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1794     update_committed_space(old_end, new_end);
1795 
1796     FreeRegionList expansion_list("Local Expansion List");
1797     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1798     assert(mr.start() == old_end, "post-condition");
1799     // mr might be a smaller region than what was requested if
1800     // expand_by() was unable to allocate the HeapRegion instances
1801     assert(mr.end() <= new_end, "post-condition");
1802 
1803     size_t actual_expand_bytes = mr.byte_size();
1804     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1805     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1806            "post-condition");
1807     if (actual_expand_bytes < aligned_expand_bytes) {
1808       // We could not expand _hrs to the desired size. In this case we
1809       // need to shrink the committed space accordingly.
1810       assert(mr.end() < new_end, "invariant");
1811 
1812       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1813       // First uncommit the memory.
1814       _g1_storage.shrink_by(diff_bytes);
1815       // Then propagate this update to the necessary data structures.
1816       update_committed_space(new_end, mr.end());
1817     }
1818     _free_list.add_as_tail(&expansion_list);
1819 
1820     if (_hr_printer.is_active()) {
1821       HeapWord* curr = mr.start();
1822       while (curr < mr.end()) {
1823         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1824         _hr_printer.commit(curr, curr_end);
1825         curr = curr_end;
1826       }
1827       assert(curr == mr.end(), "post-condition");
1828     }
1829     g1_policy()->record_new_heap_size(n_regions());
1830   } else {
1831     ergo_verbose0(ErgoHeapSizing,
1832                   "did not expand the heap",
1833                   ergo_format_reason("heap expansion operation failed"));
1834     // The expansion of the virtual storage space was unsuccessful.
1835     // Let's see if it was because we ran out of swap.
1836     if (G1ExitOnExpansionFailure &&
1837         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1838       // We had head room...
1839       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1840     }
1841   }
1842   return successful;
1843 }
1844 
1845 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1846   size_t old_mem_size = _g1_storage.committed_size();
1847   size_t aligned_shrink_bytes =
1848     ReservedSpace::page_align_size_down(shrink_bytes);
1849   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1850                                          HeapRegion::GrainBytes);
1851   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1852 
1853   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1854   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1855   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1856 
1857   ergo_verbose3(ErgoHeapSizing,
1858                 "shrink the heap",
1859                 ergo_format_byte("requested shrinking amount")
1860                 ergo_format_byte("aligned shrinking amount")
1861                 ergo_format_byte("attempted shrinking amount"),
1862                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1863   if (num_regions_removed > 0) {
1864     _g1_storage.shrink_by(shrunk_bytes);
1865     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1866 
1867     if (_hr_printer.is_active()) {
1868       HeapWord* curr = old_end;
1869       while (curr > new_end) {
1870         HeapWord* curr_end = curr;
1871         curr -= HeapRegion::GrainWords;
1872         _hr_printer.uncommit(curr, curr_end);
1873       }
1874     }
1875 
1876     _expansion_regions += num_regions_removed;
1877     update_committed_space(old_end, new_end);
1878     HeapRegionRemSet::shrink_heap(n_regions());
1879     g1_policy()->record_new_heap_size(n_regions());
1880   } else {
1881     ergo_verbose0(ErgoHeapSizing,
1882                   "did not shrink the heap",
1883                   ergo_format_reason("heap shrinking operation failed"));
1884   }
1885 }
1886 
1887 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1888   verify_region_sets_optional();
1889 
1890   // We should only reach here at the end of a Full GC which means we
1891   // should not not be holding to any GC alloc regions. The method
1892   // below will make sure of that and do any remaining clean up.
1893   abandon_gc_alloc_regions();
1894 
1895   // Instead of tearing down / rebuilding the free lists here, we
1896   // could instead use the remove_all_pending() method on free_list to
1897   // remove only the ones that we need to remove.
1898   tear_down_region_sets(true /* free_list_only */);
1899   shrink_helper(shrink_bytes);
1900   rebuild_region_sets(true /* free_list_only */);
1901 
1902   _hrs.verify_optional();
1903   verify_region_sets_optional();
1904 }
1905 
1906 // Public methods.
1907 
1908 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1909 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1910 #endif // _MSC_VER
1911 
1912 
1913 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1914   SharedHeap(policy_),
1915   _g1_policy(policy_),
1916   _dirty_card_queue_set(false),
1917   _into_cset_dirty_card_queue_set(false),
1918   _is_alive_closure_cm(this),
1919   _is_alive_closure_stw(this),
1920   _ref_processor_cm(NULL),
1921   _ref_processor_stw(NULL),
1922   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1923   _bot_shared(NULL),
1924   _evac_failure_scan_stack(NULL),
1925   _mark_in_progress(false),
1926   _cg1r(NULL), _summary_bytes_used(0),
1927   _g1mm(NULL),
1928   _refine_cte_cl(NULL),
1929   _full_collection(false),
1930   _free_list("Master Free List"),
1931   _secondary_free_list("Secondary Free List"),
1932   _old_set("Old Set"),
1933   _humongous_set("Master Humongous Set"),
1934   _free_regions_coming(false),
1935   _young_list(new YoungList(this)),
1936   _gc_time_stamp(0),
1937   _retained_old_gc_alloc_region(NULL),
1938   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1939   _old_plab_stats(OldPLABSize, PLABWeight),
1940   _expand_heap_after_alloc_failure(true),
1941   _surviving_young_words(NULL),
1942   _old_marking_cycles_started(0),
1943   _old_marking_cycles_completed(0),
1944   _concurrent_cycle_started(false),
1945   _in_cset_fast_test(NULL),
1946   _in_cset_fast_test_base(NULL),
1947   _dirty_cards_region_list(NULL),
1948   _worker_cset_start_region(NULL),
1949   _worker_cset_start_region_time_stamp(NULL),
1950   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1951   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1952   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1953   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1954 
1955   _g1h = this;
1956   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1957     vm_exit_during_initialization("Failed necessary allocation.");
1958   }
1959 
1960   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1961 
1962   int n_queues = MAX2((int)ParallelGCThreads, 1);
1963   _task_queues = new RefToScanQueueSet(n_queues);
1964 
1965   int n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1966   assert(n_rem_sets > 0, "Invariant.");
1967 
1968   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1969   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1970   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1971 
1972   for (int i = 0; i < n_queues; i++) {
1973     RefToScanQueue* q = new RefToScanQueue();
1974     q->initialize();
1975     _task_queues->register_queue(i, q);
1976     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1977   }
1978   clear_cset_start_regions();
1979 
1980   // Initialize the G1EvacuationFailureALot counters and flags.
1981   NOT_PRODUCT(reset_evacuation_should_fail();)
1982 
1983   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1984 }
1985 
1986 jint G1CollectedHeap::initialize() {
1987   CollectedHeap::pre_initialize();
1988   os::enable_vtime();
1989 
1990   G1Log::init();
1991 
1992   // Necessary to satisfy locking discipline assertions.
1993 
1994   MutexLocker x(Heap_lock);
1995 
1996   // We have to initialize the printer before committing the heap, as
1997   // it will be used then.
1998   _hr_printer.set_active(G1PrintHeapRegions);
1999 
2000   // While there are no constraints in the GC code that HeapWordSize
2001   // be any particular value, there are multiple other areas in the
2002   // system which believe this to be true (e.g. oop->object_size in some
2003   // cases incorrectly returns the size in wordSize units rather than
2004   // HeapWordSize).
2005   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
2006 
2007   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
2008   size_t max_byte_size = collector_policy()->max_heap_byte_size();
2009   size_t heap_alignment = collector_policy()->max_alignment();
2010 
2011   // Ensure that the sizes are properly aligned.
2012   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2013   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2014   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2015 
2016   _cg1r = new ConcurrentG1Refine(this);
2017 
2018   // Reserve the maximum.
2019 
2020   // When compressed oops are enabled, the preferred heap base
2021   // is calculated by subtracting the requested size from the
2022   // 32Gb boundary and using the result as the base address for
2023   // heap reservation. If the requested size is not aligned to
2024   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2025   // into the ReservedHeapSpace constructor) then the actual
2026   // base of the reserved heap may end up differing from the
2027   // address that was requested (i.e. the preferred heap base).
2028   // If this happens then we could end up using a non-optimal
2029   // compressed oops mode.
2030 
2031   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2032                                                  heap_alignment);
2033 
2034   // It is important to do this in a way such that concurrent readers can't
2035   // temporarily think something is in the heap.  (I've actually seen this
2036   // happen in asserts: DLD.)
2037   _reserved.set_word_size(0);
2038   _reserved.set_start((HeapWord*)heap_rs.base());
2039   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2040 
2041   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2042 
2043   // Create the gen rem set (and barrier set) for the entire reserved region.
2044   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2045   set_barrier_set(rem_set()->bs());
2046   if (barrier_set()->is_a(BarrierSet::ModRef)) {
2047     _mr_bs = (ModRefBarrierSet*)_barrier_set;
2048   } else {
2049     vm_exit_during_initialization("G1 requires a mod ref bs.");
2050     return JNI_ENOMEM;
2051   }
2052 
2053   // Also create a G1 rem set.
2054   if (mr_bs()->is_a(BarrierSet::CardTableModRef)) {
2055     _g1_rem_set = new G1RemSet(this, (CardTableModRefBS*)mr_bs());
2056   } else {
2057     vm_exit_during_initialization("G1 requires a cardtable mod ref bs.");
2058     return JNI_ENOMEM;
2059   }
2060 
2061   // Carve out the G1 part of the heap.
2062 
2063   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2064   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2065                            g1_rs.size()/HeapWordSize);
2066 
2067   _g1_storage.initialize(g1_rs, 0);
2068   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2069   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2070                   (HeapWord*) _g1_reserved.end(),
2071                   _expansion_regions);
2072 
2073   // Do later initialization work for concurrent refinement.
2074   _cg1r->init();
2075 
2076   // 6843694 - ensure that the maximum region index can fit
2077   // in the remembered set structures.
2078   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2079   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2080 
2081   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2082   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2083   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2084             "too many cards per region");
2085 
2086   HeapRegionSet::set_unrealistically_long_length(max_regions() + 1);
2087 
2088   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2089                                              heap_word_size(init_byte_size));
2090 
2091   _g1h = this;
2092 
2093   _in_cset_fast_test_length = max_regions();
2094   _in_cset_fast_test_base =
2095                    NEW_C_HEAP_ARRAY(bool, (size_t) _in_cset_fast_test_length, mtGC);
2096 
2097   // We're biasing _in_cset_fast_test to avoid subtracting the
2098   // beginning of the heap every time we want to index; basically
2099   // it's the same with what we do with the card table.
2100   _in_cset_fast_test = _in_cset_fast_test_base -
2101                ((uintx) _g1_reserved.start() >> HeapRegion::LogOfHRGrainBytes);
2102 
2103   // Clear the _cset_fast_test bitmap in anticipation of adding
2104   // regions to the incremental collection set for the first
2105   // evacuation pause.
2106   clear_cset_fast_test();
2107 
2108   // Create the ConcurrentMark data structure and thread.
2109   // (Must do this late, so that "max_regions" is defined.)
2110   _cm = new ConcurrentMark(this, heap_rs);
2111   if (_cm == NULL || !_cm->completed_initialization()) {
2112     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2113     return JNI_ENOMEM;
2114   }
2115   _cmThread = _cm->cmThread();
2116 
2117   // Initialize the from_card cache structure of HeapRegionRemSet.
2118   HeapRegionRemSet::init_heap(max_regions());
2119 
2120   // Now expand into the initial heap size.
2121   if (!expand(init_byte_size)) {
2122     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2123     return JNI_ENOMEM;
2124   }
2125 
2126   // Perform any initialization actions delegated to the policy.
2127   g1_policy()->init();
2128 
2129   _refine_cte_cl =
2130     new RefineCardTableEntryClosure(ConcurrentG1RefineThread::sts(),
2131                                     g1_rem_set(),
2132                                     concurrent_g1_refine());
2133   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2134 
2135   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2136                                                SATB_Q_FL_lock,
2137                                                G1SATBProcessCompletedThreshold,
2138                                                Shared_SATB_Q_lock);
2139 
2140   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2141                                                 DirtyCardQ_FL_lock,
2142                                                 concurrent_g1_refine()->yellow_zone(),
2143                                                 concurrent_g1_refine()->red_zone(),
2144                                                 Shared_DirtyCardQ_lock);
2145 
2146   if (G1DeferredRSUpdate) {
2147     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2148                                       DirtyCardQ_FL_lock,
2149                                       -1, // never trigger processing
2150                                       -1, // no limit on length
2151                                       Shared_DirtyCardQ_lock,
2152                                       &JavaThread::dirty_card_queue_set());
2153   }
2154 
2155   // Initialize the card queue set used to hold cards containing
2156   // references into the collection set.
2157   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2158                                              DirtyCardQ_FL_lock,
2159                                              -1, // never trigger processing
2160                                              -1, // no limit on length
2161                                              Shared_DirtyCardQ_lock,
2162                                              &JavaThread::dirty_card_queue_set());
2163 
2164   // In case we're keeping closure specialization stats, initialize those
2165   // counts and that mechanism.
2166   SpecializationStats::clear();
2167 
2168   // Here we allocate the dummy full region that is required by the
2169   // G1AllocRegion class. If we don't pass an address in the reserved
2170   // space here, lots of asserts fire.
2171 
2172   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2173                                              _g1_reserved.start());
2174   // We'll re-use the same region whether the alloc region will
2175   // require BOT updates or not and, if it doesn't, then a non-young
2176   // region will complain that it cannot support allocations without
2177   // BOT updates. So we'll tag the dummy region as young to avoid that.
2178   dummy_region->set_young();
2179   // Make sure it's full.
2180   dummy_region->set_top(dummy_region->end());
2181   G1AllocRegion::setup(this, dummy_region);
2182 
2183   init_mutator_alloc_region();
2184 
2185   // Do create of the monitoring and management support so that
2186   // values in the heap have been properly initialized.
2187   _g1mm = new G1MonitoringSupport(this);
2188 
2189   return JNI_OK;
2190 }
2191 
2192 void G1CollectedHeap::ref_processing_init() {
2193   // Reference processing in G1 currently works as follows:
2194   //
2195   // * There are two reference processor instances. One is
2196   //   used to record and process discovered references
2197   //   during concurrent marking; the other is used to
2198   //   record and process references during STW pauses
2199   //   (both full and incremental).
2200   // * Both ref processors need to 'span' the entire heap as
2201   //   the regions in the collection set may be dotted around.
2202   //
2203   // * For the concurrent marking ref processor:
2204   //   * Reference discovery is enabled at initial marking.
2205   //   * Reference discovery is disabled and the discovered
2206   //     references processed etc during remarking.
2207   //   * Reference discovery is MT (see below).
2208   //   * Reference discovery requires a barrier (see below).
2209   //   * Reference processing may or may not be MT
2210   //     (depending on the value of ParallelRefProcEnabled
2211   //     and ParallelGCThreads).
2212   //   * A full GC disables reference discovery by the CM
2213   //     ref processor and abandons any entries on it's
2214   //     discovered lists.
2215   //
2216   // * For the STW processor:
2217   //   * Non MT discovery is enabled at the start of a full GC.
2218   //   * Processing and enqueueing during a full GC is non-MT.
2219   //   * During a full GC, references are processed after marking.
2220   //
2221   //   * Discovery (may or may not be MT) is enabled at the start
2222   //     of an incremental evacuation pause.
2223   //   * References are processed near the end of a STW evacuation pause.
2224   //   * For both types of GC:
2225   //     * Discovery is atomic - i.e. not concurrent.
2226   //     * Reference discovery will not need a barrier.
2227 
2228   SharedHeap::ref_processing_init();
2229   MemRegion mr = reserved_region();
2230 
2231   // Concurrent Mark ref processor
2232   _ref_processor_cm =
2233     new ReferenceProcessor(mr,    // span
2234                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2235                                 // mt processing
2236                            (int) ParallelGCThreads,
2237                                 // degree of mt processing
2238                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2239                                 // mt discovery
2240                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2241                                 // degree of mt discovery
2242                            false,
2243                                 // Reference discovery is not atomic
2244                            &_is_alive_closure_cm,
2245                                 // is alive closure
2246                                 // (for efficiency/performance)
2247                            true);
2248                                 // Setting next fields of discovered
2249                                 // lists requires a barrier.
2250 
2251   // STW ref processor
2252   _ref_processor_stw =
2253     new ReferenceProcessor(mr,    // span
2254                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2255                                 // mt processing
2256                            MAX2((int)ParallelGCThreads, 1),
2257                                 // degree of mt processing
2258                            (ParallelGCThreads > 1),
2259                                 // mt discovery
2260                            MAX2((int)ParallelGCThreads, 1),
2261                                 // degree of mt discovery
2262                            true,
2263                                 // Reference discovery is atomic
2264                            &_is_alive_closure_stw,
2265                                 // is alive closure
2266                                 // (for efficiency/performance)
2267                            false);
2268                                 // Setting next fields of discovered
2269                                 // lists requires a barrier.
2270 }
2271 
2272 size_t G1CollectedHeap::capacity() const {
2273   return _g1_committed.byte_size();
2274 }
2275 
2276 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2277   assert(!hr->continuesHumongous(), "pre-condition");
2278   hr->reset_gc_time_stamp();
2279   if (hr->startsHumongous()) {
2280     uint first_index = hr->hrs_index() + 1;
2281     uint last_index = hr->last_hc_index();
2282     for (uint i = first_index; i < last_index; i += 1) {
2283       HeapRegion* chr = region_at(i);
2284       assert(chr->continuesHumongous(), "sanity");
2285       chr->reset_gc_time_stamp();
2286     }
2287   }
2288 }
2289 
2290 #ifndef PRODUCT
2291 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2292 private:
2293   unsigned _gc_time_stamp;
2294   bool _failures;
2295 
2296 public:
2297   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2298     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2299 
2300   virtual bool doHeapRegion(HeapRegion* hr) {
2301     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2302     if (_gc_time_stamp != region_gc_time_stamp) {
2303       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2304                              "expected %d", HR_FORMAT_PARAMS(hr),
2305                              region_gc_time_stamp, _gc_time_stamp);
2306       _failures = true;
2307     }
2308     return false;
2309   }
2310 
2311   bool failures() { return _failures; }
2312 };
2313 
2314 void G1CollectedHeap::check_gc_time_stamps() {
2315   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2316   heap_region_iterate(&cl);
2317   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2318 }
2319 #endif // PRODUCT
2320 
2321 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2322                                                  DirtyCardQueue* into_cset_dcq,
2323                                                  bool concurrent,
2324                                                  int worker_i) {
2325   // Clean cards in the hot card cache
2326   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2327   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2328 
2329   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2330   int n_completed_buffers = 0;
2331   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2332     n_completed_buffers++;
2333   }
2334   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2335   dcqs.clear_n_completed_buffers();
2336   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2337 }
2338 
2339 
2340 // Computes the sum of the storage used by the various regions.
2341 
2342 size_t G1CollectedHeap::used() const {
2343   assert(Heap_lock->owner() != NULL,
2344          "Should be owned on this thread's behalf.");
2345   size_t result = _summary_bytes_used;
2346   // Read only once in case it is set to NULL concurrently
2347   HeapRegion* hr = _mutator_alloc_region.get();
2348   if (hr != NULL)
2349     result += hr->used();
2350   return result;
2351 }
2352 
2353 size_t G1CollectedHeap::used_unlocked() const {
2354   size_t result = _summary_bytes_used;
2355   return result;
2356 }
2357 
2358 class SumUsedClosure: public HeapRegionClosure {
2359   size_t _used;
2360 public:
2361   SumUsedClosure() : _used(0) {}
2362   bool doHeapRegion(HeapRegion* r) {
2363     if (!r->continuesHumongous()) {
2364       _used += r->used();
2365     }
2366     return false;
2367   }
2368   size_t result() { return _used; }
2369 };
2370 
2371 size_t G1CollectedHeap::recalculate_used() const {
2372   SumUsedClosure blk;
2373   heap_region_iterate(&blk);
2374   return blk.result();
2375 }
2376 
2377 size_t G1CollectedHeap::unsafe_max_alloc() {
2378   if (free_regions() > 0) return HeapRegion::GrainBytes;
2379   // otherwise, is there space in the current allocation region?
2380 
2381   // We need to store the current allocation region in a local variable
2382   // here. The problem is that this method doesn't take any locks and
2383   // there may be other threads which overwrite the current allocation
2384   // region field. attempt_allocation(), for example, sets it to NULL
2385   // and this can happen *after* the NULL check here but before the call
2386   // to free(), resulting in a SIGSEGV. Note that this doesn't appear
2387   // to be a problem in the optimized build, since the two loads of the
2388   // current allocation region field are optimized away.
2389   HeapRegion* hr = _mutator_alloc_region.get();
2390   if (hr == NULL) {
2391     return 0;
2392   }
2393   return hr->free();
2394 }
2395 
2396 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2397   switch (cause) {
2398     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2399     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2400     case GCCause::_g1_humongous_allocation: return true;
2401     default:                                return false;
2402   }
2403 }
2404 
2405 #ifndef PRODUCT
2406 void G1CollectedHeap::allocate_dummy_regions() {
2407   // Let's fill up most of the region
2408   size_t word_size = HeapRegion::GrainWords - 1024;
2409   // And as a result the region we'll allocate will be humongous.
2410   guarantee(isHumongous(word_size), "sanity");
2411 
2412   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2413     // Let's use the existing mechanism for the allocation
2414     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2415     if (dummy_obj != NULL) {
2416       MemRegion mr(dummy_obj, word_size);
2417       CollectedHeap::fill_with_object(mr);
2418     } else {
2419       // If we can't allocate once, we probably cannot allocate
2420       // again. Let's get out of the loop.
2421       break;
2422     }
2423   }
2424 }
2425 #endif // !PRODUCT
2426 
2427 void G1CollectedHeap::increment_old_marking_cycles_started() {
2428   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2429     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2430     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2431     _old_marking_cycles_started, _old_marking_cycles_completed));
2432 
2433   _old_marking_cycles_started++;
2434 }
2435 
2436 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2437   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2438 
2439   // We assume that if concurrent == true, then the caller is a
2440   // concurrent thread that was joined the Suspendible Thread
2441   // Set. If there's ever a cheap way to check this, we should add an
2442   // assert here.
2443 
2444   // Given that this method is called at the end of a Full GC or of a
2445   // concurrent cycle, and those can be nested (i.e., a Full GC can
2446   // interrupt a concurrent cycle), the number of full collections
2447   // completed should be either one (in the case where there was no
2448   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2449   // behind the number of full collections started.
2450 
2451   // This is the case for the inner caller, i.e. a Full GC.
2452   assert(concurrent ||
2453          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2454          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2455          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2456                  "is inconsistent with _old_marking_cycles_completed = %u",
2457                  _old_marking_cycles_started, _old_marking_cycles_completed));
2458 
2459   // This is the case for the outer caller, i.e. the concurrent cycle.
2460   assert(!concurrent ||
2461          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2462          err_msg("for outer caller (concurrent cycle): "
2463                  "_old_marking_cycles_started = %u "
2464                  "is inconsistent with _old_marking_cycles_completed = %u",
2465                  _old_marking_cycles_started, _old_marking_cycles_completed));
2466 
2467   _old_marking_cycles_completed += 1;
2468 
2469   // We need to clear the "in_progress" flag in the CM thread before
2470   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2471   // is set) so that if a waiter requests another System.gc() it doesn't
2472   // incorrectly see that a marking cycle is still in progress.
2473   if (concurrent) {
2474     _cmThread->clear_in_progress();
2475   }
2476 
2477   // This notify_all() will ensure that a thread that called
2478   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2479   // and it's waiting for a full GC to finish will be woken up. It is
2480   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2481   FullGCCount_lock->notify_all();
2482 }
2483 
2484 void G1CollectedHeap::register_concurrent_cycle_start(jlong start_time) {
2485   _concurrent_cycle_started = true;
2486   _gc_timer_cm->register_gc_start(start_time);
2487 
2488   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2489   trace_heap_before_gc(_gc_tracer_cm);
2490 }
2491 
2492 void G1CollectedHeap::register_concurrent_cycle_end() {
2493   if (_concurrent_cycle_started) {
2494     _gc_timer_cm->register_gc_end(os::elapsed_counter());
2495 
2496     if (_cm->has_aborted()) {
2497       _gc_tracer_cm->report_concurrent_mode_failure();
2498     }
2499     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2500 
2501     _concurrent_cycle_started = false;
2502   }
2503 }
2504 
2505 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2506   if (_concurrent_cycle_started) {
2507     trace_heap_after_gc(_gc_tracer_cm);
2508   }
2509 }
2510 
2511 G1YCType G1CollectedHeap::yc_type() {
2512   bool is_young = g1_policy()->gcs_are_young();
2513   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2514   bool is_during_mark = mark_in_progress();
2515 
2516   if (is_initial_mark) {
2517     return InitialMark;
2518   } else if (is_during_mark) {
2519     return DuringMark;
2520   } else if (is_young) {
2521     return Normal;
2522   } else {
2523     return Mixed;
2524   }
2525 }
2526 
2527 void G1CollectedHeap::collect(GCCause::Cause cause) {
2528   assert_heap_not_locked();
2529 
2530   unsigned int gc_count_before;
2531   unsigned int old_marking_count_before;
2532   bool retry_gc;
2533 
2534   do {
2535     retry_gc = false;
2536 
2537     {
2538       MutexLocker ml(Heap_lock);
2539 
2540       // Read the GC count while holding the Heap_lock
2541       gc_count_before = total_collections();
2542       old_marking_count_before = _old_marking_cycles_started;
2543     }
2544 
2545     if (should_do_concurrent_full_gc(cause)) {
2546       // Schedule an initial-mark evacuation pause that will start a
2547       // concurrent cycle. We're setting word_size to 0 which means that
2548       // we are not requesting a post-GC allocation.
2549       VM_G1IncCollectionPause op(gc_count_before,
2550                                  0,     /* word_size */
2551                                  true,  /* should_initiate_conc_mark */
2552                                  g1_policy()->max_pause_time_ms(),
2553                                  cause);
2554 
2555       VMThread::execute(&op);
2556       if (!op.pause_succeeded()) {
2557         if (old_marking_count_before == _old_marking_cycles_started) {
2558           retry_gc = op.should_retry_gc();
2559         } else {
2560           // A Full GC happened while we were trying to schedule the
2561           // initial-mark GC. No point in starting a new cycle given
2562           // that the whole heap was collected anyway.
2563         }
2564 
2565         if (retry_gc) {
2566           if (GC_locker::is_active_and_needs_gc()) {
2567             GC_locker::stall_until_clear();
2568           }
2569         }
2570       }
2571     } else {
2572       if (cause == GCCause::_gc_locker
2573           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2574 
2575         // Schedule a standard evacuation pause. We're setting word_size
2576         // to 0 which means that we are not requesting a post-GC allocation.
2577         VM_G1IncCollectionPause op(gc_count_before,
2578                                    0,     /* word_size */
2579                                    false, /* should_initiate_conc_mark */
2580                                    g1_policy()->max_pause_time_ms(),
2581                                    cause);
2582         VMThread::execute(&op);
2583       } else {
2584         // Schedule a Full GC.
2585         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2586         VMThread::execute(&op);
2587       }
2588     }
2589   } while (retry_gc);
2590 }
2591 
2592 bool G1CollectedHeap::is_in(const void* p) const {
2593   if (_g1_committed.contains(p)) {
2594     // Given that we know that p is in the committed space,
2595     // heap_region_containing_raw() should successfully
2596     // return the containing region.
2597     HeapRegion* hr = heap_region_containing_raw(p);
2598     return hr->is_in(p);
2599   } else {
2600     return false;
2601   }
2602 }
2603 
2604 // Iteration functions.
2605 
2606 // Iterates an OopClosure over all ref-containing fields of objects
2607 // within a HeapRegion.
2608 
2609 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2610   MemRegion _mr;
2611   ExtendedOopClosure* _cl;
2612 public:
2613   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2614     : _mr(mr), _cl(cl) {}
2615   bool doHeapRegion(HeapRegion* r) {
2616     if (!r->continuesHumongous()) {
2617       r->oop_iterate(_cl);
2618     }
2619     return false;
2620   }
2621 };
2622 
2623 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2624   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2625   heap_region_iterate(&blk);
2626 }
2627 
2628 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2629   IterateOopClosureRegionClosure blk(mr, cl);
2630   heap_region_iterate(&blk);
2631 }
2632 
2633 // Iterates an ObjectClosure over all objects within a HeapRegion.
2634 
2635 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2636   ObjectClosure* _cl;
2637 public:
2638   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2639   bool doHeapRegion(HeapRegion* r) {
2640     if (! r->continuesHumongous()) {
2641       r->object_iterate(_cl);
2642     }
2643     return false;
2644   }
2645 };
2646 
2647 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2648   IterateObjectClosureRegionClosure blk(cl);
2649   heap_region_iterate(&blk);
2650 }
2651 
2652 // Calls a SpaceClosure on a HeapRegion.
2653 
2654 class SpaceClosureRegionClosure: public HeapRegionClosure {
2655   SpaceClosure* _cl;
2656 public:
2657   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2658   bool doHeapRegion(HeapRegion* r) {
2659     _cl->do_space(r);
2660     return false;
2661   }
2662 };
2663 
2664 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2665   SpaceClosureRegionClosure blk(cl);
2666   heap_region_iterate(&blk);
2667 }
2668 
2669 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2670   _hrs.iterate(cl);
2671 }
2672 
2673 void
2674 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2675                                                  uint worker_id,
2676                                                  uint no_of_par_workers,
2677                                                  jint claim_value) {
2678   const uint regions = n_regions();
2679   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2680                              no_of_par_workers :
2681                              1);
2682   assert(UseDynamicNumberOfGCThreads ||
2683          no_of_par_workers == workers()->total_workers(),
2684          "Non dynamic should use fixed number of workers");
2685   // try to spread out the starting points of the workers
2686   const HeapRegion* start_hr =
2687                         start_region_for_worker(worker_id, no_of_par_workers);
2688   const uint start_index = start_hr->hrs_index();
2689 
2690   // each worker will actually look at all regions
2691   for (uint count = 0; count < regions; ++count) {
2692     const uint index = (start_index + count) % regions;
2693     assert(0 <= index && index < regions, "sanity");
2694     HeapRegion* r = region_at(index);
2695     // we'll ignore "continues humongous" regions (we'll process them
2696     // when we come across their corresponding "start humongous"
2697     // region) and regions already claimed
2698     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2699       continue;
2700     }
2701     // OK, try to claim it
2702     if (r->claimHeapRegion(claim_value)) {
2703       // success!
2704       assert(!r->continuesHumongous(), "sanity");
2705       if (r->startsHumongous()) {
2706         // If the region is "starts humongous" we'll iterate over its
2707         // "continues humongous" first; in fact we'll do them
2708         // first. The order is important. In on case, calling the
2709         // closure on the "starts humongous" region might de-allocate
2710         // and clear all its "continues humongous" regions and, as a
2711         // result, we might end up processing them twice. So, we'll do
2712         // them first (notice: most closures will ignore them anyway) and
2713         // then we'll do the "starts humongous" region.
2714         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2715           HeapRegion* chr = region_at(ch_index);
2716 
2717           // if the region has already been claimed or it's not
2718           // "continues humongous" we're done
2719           if (chr->claim_value() == claim_value ||
2720               !chr->continuesHumongous()) {
2721             break;
2722           }
2723 
2724           // No one should have claimed it directly. We can given
2725           // that we claimed its "starts humongous" region.
2726           assert(chr->claim_value() != claim_value, "sanity");
2727           assert(chr->humongous_start_region() == r, "sanity");
2728 
2729           if (chr->claimHeapRegion(claim_value)) {
2730             // we should always be able to claim it; no one else should
2731             // be trying to claim this region
2732 
2733             bool res2 = cl->doHeapRegion(chr);
2734             assert(!res2, "Should not abort");
2735 
2736             // Right now, this holds (i.e., no closure that actually
2737             // does something with "continues humongous" regions
2738             // clears them). We might have to weaken it in the future,
2739             // but let's leave these two asserts here for extra safety.
2740             assert(chr->continuesHumongous(), "should still be the case");
2741             assert(chr->humongous_start_region() == r, "sanity");
2742           } else {
2743             guarantee(false, "we should not reach here");
2744           }
2745         }
2746       }
2747 
2748       assert(!r->continuesHumongous(), "sanity");
2749       bool res = cl->doHeapRegion(r);
2750       assert(!res, "Should not abort");
2751     }
2752   }
2753 }
2754 
2755 class ResetClaimValuesClosure: public HeapRegionClosure {
2756 public:
2757   bool doHeapRegion(HeapRegion* r) {
2758     r->set_claim_value(HeapRegion::InitialClaimValue);
2759     return false;
2760   }
2761 };
2762 
2763 void G1CollectedHeap::reset_heap_region_claim_values() {
2764   ResetClaimValuesClosure blk;
2765   heap_region_iterate(&blk);
2766 }
2767 
2768 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2769   ResetClaimValuesClosure blk;
2770   collection_set_iterate(&blk);
2771 }
2772 
2773 #ifdef ASSERT
2774 // This checks whether all regions in the heap have the correct claim
2775 // value. I also piggy-backed on this a check to ensure that the
2776 // humongous_start_region() information on "continues humongous"
2777 // regions is correct.
2778 
2779 class CheckClaimValuesClosure : public HeapRegionClosure {
2780 private:
2781   jint _claim_value;
2782   uint _failures;
2783   HeapRegion* _sh_region;
2784 
2785 public:
2786   CheckClaimValuesClosure(jint claim_value) :
2787     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2788   bool doHeapRegion(HeapRegion* r) {
2789     if (r->claim_value() != _claim_value) {
2790       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2791                              "claim value = %d, should be %d",
2792                              HR_FORMAT_PARAMS(r),
2793                              r->claim_value(), _claim_value);
2794       ++_failures;
2795     }
2796     if (!r->isHumongous()) {
2797       _sh_region = NULL;
2798     } else if (r->startsHumongous()) {
2799       _sh_region = r;
2800     } else if (r->continuesHumongous()) {
2801       if (r->humongous_start_region() != _sh_region) {
2802         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2803                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2804                                HR_FORMAT_PARAMS(r),
2805                                r->humongous_start_region(),
2806                                _sh_region);
2807         ++_failures;
2808       }
2809     }
2810     return false;
2811   }
2812   uint failures() { return _failures; }
2813 };
2814 
2815 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2816   CheckClaimValuesClosure cl(claim_value);
2817   heap_region_iterate(&cl);
2818   return cl.failures() == 0;
2819 }
2820 
2821 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2822 private:
2823   jint _claim_value;
2824   uint _failures;
2825 
2826 public:
2827   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2828     _claim_value(claim_value), _failures(0) { }
2829 
2830   uint failures() { return _failures; }
2831 
2832   bool doHeapRegion(HeapRegion* hr) {
2833     assert(hr->in_collection_set(), "how?");
2834     assert(!hr->isHumongous(), "H-region in CSet");
2835     if (hr->claim_value() != _claim_value) {
2836       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2837                              "claim value = %d, should be %d",
2838                              HR_FORMAT_PARAMS(hr),
2839                              hr->claim_value(), _claim_value);
2840       _failures += 1;
2841     }
2842     return false;
2843   }
2844 };
2845 
2846 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2847   CheckClaimValuesInCSetHRClosure cl(claim_value);
2848   collection_set_iterate(&cl);
2849   return cl.failures() == 0;
2850 }
2851 #endif // ASSERT
2852 
2853 // Clear the cached CSet starting regions and (more importantly)
2854 // the time stamps. Called when we reset the GC time stamp.
2855 void G1CollectedHeap::clear_cset_start_regions() {
2856   assert(_worker_cset_start_region != NULL, "sanity");
2857   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2858 
2859   int n_queues = MAX2((int)ParallelGCThreads, 1);
2860   for (int i = 0; i < n_queues; i++) {
2861     _worker_cset_start_region[i] = NULL;
2862     _worker_cset_start_region_time_stamp[i] = 0;
2863   }
2864 }
2865 
2866 // Given the id of a worker, obtain or calculate a suitable
2867 // starting region for iterating over the current collection set.
2868 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(int worker_i) {
2869   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2870 
2871   HeapRegion* result = NULL;
2872   unsigned gc_time_stamp = get_gc_time_stamp();
2873 
2874   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2875     // Cached starting region for current worker was set
2876     // during the current pause - so it's valid.
2877     // Note: the cached starting heap region may be NULL
2878     // (when the collection set is empty).
2879     result = _worker_cset_start_region[worker_i];
2880     assert(result == NULL || result->in_collection_set(), "sanity");
2881     return result;
2882   }
2883 
2884   // The cached entry was not valid so let's calculate
2885   // a suitable starting heap region for this worker.
2886 
2887   // We want the parallel threads to start their collection
2888   // set iteration at different collection set regions to
2889   // avoid contention.
2890   // If we have:
2891   //          n collection set regions
2892   //          p threads
2893   // Then thread t will start at region floor ((t * n) / p)
2894 
2895   result = g1_policy()->collection_set();
2896   if (G1CollectedHeap::use_parallel_gc_threads()) {
2897     uint cs_size = g1_policy()->cset_region_length();
2898     uint active_workers = workers()->active_workers();
2899     assert(UseDynamicNumberOfGCThreads ||
2900              active_workers == workers()->total_workers(),
2901              "Unless dynamic should use total workers");
2902 
2903     uint end_ind   = (cs_size * worker_i) / active_workers;
2904     uint start_ind = 0;
2905 
2906     if (worker_i > 0 &&
2907         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2908       // Previous workers starting region is valid
2909       // so let's iterate from there
2910       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2911       result = _worker_cset_start_region[worker_i - 1];
2912     }
2913 
2914     for (uint i = start_ind; i < end_ind; i++) {
2915       result = result->next_in_collection_set();
2916     }
2917   }
2918 
2919   // Note: the calculated starting heap region may be NULL
2920   // (when the collection set is empty).
2921   assert(result == NULL || result->in_collection_set(), "sanity");
2922   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2923          "should be updated only once per pause");
2924   _worker_cset_start_region[worker_i] = result;
2925   OrderAccess::storestore();
2926   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2927   return result;
2928 }
2929 
2930 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2931                                                      uint no_of_par_workers) {
2932   uint worker_num =
2933            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2934   assert(UseDynamicNumberOfGCThreads ||
2935          no_of_par_workers == workers()->total_workers(),
2936          "Non dynamic should use fixed number of workers");
2937   const uint start_index = n_regions() * worker_i / worker_num;
2938   return region_at(start_index);
2939 }
2940 
2941 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2942   HeapRegion* r = g1_policy()->collection_set();
2943   while (r != NULL) {
2944     HeapRegion* next = r->next_in_collection_set();
2945     if (cl->doHeapRegion(r)) {
2946       cl->incomplete();
2947       return;
2948     }
2949     r = next;
2950   }
2951 }
2952 
2953 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2954                                                   HeapRegionClosure *cl) {
2955   if (r == NULL) {
2956     // The CSet is empty so there's nothing to do.
2957     return;
2958   }
2959 
2960   assert(r->in_collection_set(),
2961          "Start region must be a member of the collection set.");
2962   HeapRegion* cur = r;
2963   while (cur != NULL) {
2964     HeapRegion* next = cur->next_in_collection_set();
2965     if (cl->doHeapRegion(cur) && false) {
2966       cl->incomplete();
2967       return;
2968     }
2969     cur = next;
2970   }
2971   cur = g1_policy()->collection_set();
2972   while (cur != r) {
2973     HeapRegion* next = cur->next_in_collection_set();
2974     if (cl->doHeapRegion(cur) && false) {
2975       cl->incomplete();
2976       return;
2977     }
2978     cur = next;
2979   }
2980 }
2981 
2982 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2983   return n_regions() > 0 ? region_at(0) : NULL;
2984 }
2985 
2986 
2987 Space* G1CollectedHeap::space_containing(const void* addr) const {
2988   Space* res = heap_region_containing(addr);
2989   return res;
2990 }
2991 
2992 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2993   Space* sp = space_containing(addr);
2994   if (sp != NULL) {
2995     return sp->block_start(addr);
2996   }
2997   return NULL;
2998 }
2999 
3000 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
3001   Space* sp = space_containing(addr);
3002   assert(sp != NULL, "block_size of address outside of heap");
3003   return sp->block_size(addr);
3004 }
3005 
3006 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
3007   Space* sp = space_containing(addr);
3008   return sp->block_is_obj(addr);
3009 }
3010 
3011 bool G1CollectedHeap::supports_tlab_allocation() const {
3012   return true;
3013 }
3014 
3015 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
3016   return HeapRegion::GrainBytes;
3017 }
3018 
3019 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3020   // Return the remaining space in the cur alloc region, but not less than
3021   // the min TLAB size.
3022 
3023   // Also, this value can be at most the humongous object threshold,
3024   // since we can't allow tlabs to grow big enough to accommodate
3025   // humongous objects.
3026 
3027   HeapRegion* hr = _mutator_alloc_region.get();
3028   size_t max_tlab_size = _humongous_object_threshold_in_words * wordSize;
3029   if (hr == NULL) {
3030     return max_tlab_size;
3031   } else {
3032     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab_size);
3033   }
3034 }
3035 
3036 size_t G1CollectedHeap::max_capacity() const {
3037   return _g1_reserved.byte_size();
3038 }
3039 
3040 jlong G1CollectedHeap::millis_since_last_gc() {
3041   // assert(false, "NYI");
3042   return 0;
3043 }
3044 
3045 void G1CollectedHeap::prepare_for_verify() {
3046   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3047     ensure_parsability(false);
3048   }
3049   g1_rem_set()->prepare_for_verify();
3050 }
3051 
3052 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3053                                               VerifyOption vo) {
3054   switch (vo) {
3055   case VerifyOption_G1UsePrevMarking:
3056     return hr->obj_allocated_since_prev_marking(obj);
3057   case VerifyOption_G1UseNextMarking:
3058     return hr->obj_allocated_since_next_marking(obj);
3059   case VerifyOption_G1UseMarkWord:
3060     return false;
3061   default:
3062     ShouldNotReachHere();
3063   }
3064   return false; // keep some compilers happy
3065 }
3066 
3067 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3068   switch (vo) {
3069   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3070   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3071   case VerifyOption_G1UseMarkWord:    return NULL;
3072   default:                            ShouldNotReachHere();
3073   }
3074   return NULL; // keep some compilers happy
3075 }
3076 
3077 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3078   switch (vo) {
3079   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3080   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3081   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3082   default:                            ShouldNotReachHere();
3083   }
3084   return false; // keep some compilers happy
3085 }
3086 
3087 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3088   switch (vo) {
3089   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3090   case VerifyOption_G1UseNextMarking: return "NTAMS";
3091   case VerifyOption_G1UseMarkWord:    return "NONE";
3092   default:                            ShouldNotReachHere();
3093   }
3094   return NULL; // keep some compilers happy
3095 }
3096 
3097 // TODO: VerifyRootsClosure extends OopsInGenClosure so that we can
3098 //       pass it as the perm_blk to SharedHeap::process_strong_roots.
3099 //       When process_strong_roots stop calling perm_blk->younger_refs_iterate
3100 //       we can change this closure to extend the simpler OopClosure.
3101 class VerifyRootsClosure: public OopsInGenClosure {
3102 private:
3103   G1CollectedHeap* _g1h;
3104   VerifyOption     _vo;
3105   bool             _failures;
3106 public:
3107   // _vo == UsePrevMarking -> use "prev" marking information,
3108   // _vo == UseNextMarking -> use "next" marking information,
3109   // _vo == UseMarkWord    -> use mark word from object header.
3110   VerifyRootsClosure(VerifyOption vo) :
3111     _g1h(G1CollectedHeap::heap()),
3112     _vo(vo),
3113     _failures(false) { }
3114 
3115   bool failures() { return _failures; }
3116 
3117   template <class T> void do_oop_nv(T* p) {
3118     T heap_oop = oopDesc::load_heap_oop(p);
3119     if (!oopDesc::is_null(heap_oop)) {
3120       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3121       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3122         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3123                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3124         if (_vo == VerifyOption_G1UseMarkWord) {
3125           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3126         }
3127         obj->print_on(gclog_or_tty);
3128         _failures = true;
3129       }
3130     }
3131   }
3132 
3133   void do_oop(oop* p)       { do_oop_nv(p); }
3134   void do_oop(narrowOop* p) { do_oop_nv(p); }
3135 };
3136 
3137 class G1VerifyCodeRootOopClosure: public OopsInGenClosure {
3138   G1CollectedHeap* _g1h;
3139   OopClosure* _root_cl;
3140   nmethod* _nm;
3141   VerifyOption _vo;
3142   bool _failures;
3143 
3144   template <class T> void do_oop_work(T* p) {
3145     // First verify that this root is live
3146     _root_cl->do_oop(p);
3147 
3148     if (!G1VerifyHeapRegionCodeRoots) {
3149       // We're not verifying the code roots attached to heap region.
3150       return;
3151     }
3152 
3153     // Don't check the code roots during marking verification in a full GC
3154     if (_vo == VerifyOption_G1UseMarkWord) {
3155       return;
3156     }
3157 
3158     // Now verify that the current nmethod (which contains p) is
3159     // in the code root list of the heap region containing the
3160     // object referenced by p.
3161 
3162     T heap_oop = oopDesc::load_heap_oop(p);
3163     if (!oopDesc::is_null(heap_oop)) {
3164       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3165 
3166       // Now fetch the region containing the object
3167       HeapRegion* hr = _g1h->heap_region_containing(obj);
3168       HeapRegionRemSet* hrrs = hr->rem_set();
3169       // Verify that the strong code root list for this region
3170       // contains the nmethod
3171       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3172         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3173                               "from nmethod "PTR_FORMAT" not in strong "
3174                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3175                               p, _nm, hr->bottom(), hr->end());
3176         _failures = true;
3177       }
3178     }
3179   }
3180 
3181 public:
3182   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3183     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3184 
3185   void do_oop(oop* p) { do_oop_work(p); }
3186   void do_oop(narrowOop* p) { do_oop_work(p); }
3187 
3188   void set_nmethod(nmethod* nm) { _nm = nm; }
3189   bool failures() { return _failures; }
3190 };
3191 
3192 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3193   G1VerifyCodeRootOopClosure* _oop_cl;
3194 
3195 public:
3196   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3197     _oop_cl(oop_cl) {}
3198 
3199   void do_code_blob(CodeBlob* cb) {
3200     nmethod* nm = cb->as_nmethod_or_null();
3201     if (nm != NULL) {
3202       _oop_cl->set_nmethod(nm);
3203       nm->oops_do(_oop_cl);
3204     }
3205   }
3206 };
3207 
3208 class YoungRefCounterClosure : public OopClosure {
3209   G1CollectedHeap* _g1h;
3210   int              _count;
3211  public:
3212   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3213   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3214   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3215 
3216   int count() { return _count; }
3217   void reset_count() { _count = 0; };
3218 };
3219 
3220 class VerifyKlassClosure: public KlassClosure {
3221   YoungRefCounterClosure _young_ref_counter_closure;
3222   OopClosure *_oop_closure;
3223  public:
3224   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3225   void do_klass(Klass* k) {
3226     k->oops_do(_oop_closure);
3227 
3228     _young_ref_counter_closure.reset_count();
3229     k->oops_do(&_young_ref_counter_closure);
3230     if (_young_ref_counter_closure.count() > 0) {
3231       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3232     }
3233   }
3234 };
3235 
3236 class VerifyLivenessOopClosure: public OopClosure {
3237   G1CollectedHeap* _g1h;
3238   VerifyOption _vo;
3239 public:
3240   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3241     _g1h(g1h), _vo(vo)
3242   { }
3243   void do_oop(narrowOop *p) { do_oop_work(p); }
3244   void do_oop(      oop *p) { do_oop_work(p); }
3245 
3246   template <class T> void do_oop_work(T *p) {
3247     oop obj = oopDesc::load_decode_heap_oop(p);
3248     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3249               "Dead object referenced by a not dead object");
3250   }
3251 };
3252 
3253 class VerifyObjsInRegionClosure: public ObjectClosure {
3254 private:
3255   G1CollectedHeap* _g1h;
3256   size_t _live_bytes;
3257   HeapRegion *_hr;
3258   VerifyOption _vo;
3259 public:
3260   // _vo == UsePrevMarking -> use "prev" marking information,
3261   // _vo == UseNextMarking -> use "next" marking information,
3262   // _vo == UseMarkWord    -> use mark word from object header.
3263   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3264     : _live_bytes(0), _hr(hr), _vo(vo) {
3265     _g1h = G1CollectedHeap::heap();
3266   }
3267   void do_object(oop o) {
3268     VerifyLivenessOopClosure isLive(_g1h, _vo);
3269     assert(o != NULL, "Huh?");
3270     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3271       // If the object is alive according to the mark word,
3272       // then verify that the marking information agrees.
3273       // Note we can't verify the contra-positive of the
3274       // above: if the object is dead (according to the mark
3275       // word), it may not be marked, or may have been marked
3276       // but has since became dead, or may have been allocated
3277       // since the last marking.
3278       if (_vo == VerifyOption_G1UseMarkWord) {
3279         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3280       }
3281 
3282       o->oop_iterate_no_header(&isLive);
3283       if (!_hr->obj_allocated_since_prev_marking(o)) {
3284         size_t obj_size = o->size();    // Make sure we don't overflow
3285         _live_bytes += (obj_size * HeapWordSize);
3286       }
3287     }
3288   }
3289   size_t live_bytes() { return _live_bytes; }
3290 };
3291 
3292 class PrintObjsInRegionClosure : public ObjectClosure {
3293   HeapRegion *_hr;
3294   G1CollectedHeap *_g1;
3295 public:
3296   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3297     _g1 = G1CollectedHeap::heap();
3298   };
3299 
3300   void do_object(oop o) {
3301     if (o != NULL) {
3302       HeapWord *start = (HeapWord *) o;
3303       size_t word_sz = o->size();
3304       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3305                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3306                           (void*) o, word_sz,
3307                           _g1->isMarkedPrev(o),
3308                           _g1->isMarkedNext(o),
3309                           _hr->obj_allocated_since_prev_marking(o));
3310       HeapWord *end = start + word_sz;
3311       HeapWord *cur;
3312       int *val;
3313       for (cur = start; cur < end; cur++) {
3314         val = (int *) cur;
3315         gclog_or_tty->print("\t "PTR_FORMAT":"PTR_FORMAT"\n", val, *val);
3316       }
3317     }
3318   }
3319 };
3320 
3321 class VerifyRegionClosure: public HeapRegionClosure {
3322 private:
3323   bool             _par;
3324   VerifyOption     _vo;
3325   bool             _failures;
3326 public:
3327   // _vo == UsePrevMarking -> use "prev" marking information,
3328   // _vo == UseNextMarking -> use "next" marking information,
3329   // _vo == UseMarkWord    -> use mark word from object header.
3330   VerifyRegionClosure(bool par, VerifyOption vo)
3331     : _par(par),
3332       _vo(vo),
3333       _failures(false) {}
3334 
3335   bool failures() {
3336     return _failures;
3337   }
3338 
3339   bool doHeapRegion(HeapRegion* r) {
3340     if (!r->continuesHumongous()) {
3341       bool failures = false;
3342       r->verify(_vo, &failures);
3343       if (failures) {
3344         _failures = true;
3345       } else {
3346         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3347         r->object_iterate(&not_dead_yet_cl);
3348         if (_vo != VerifyOption_G1UseNextMarking) {
3349           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3350             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3351                                    "max_live_bytes "SIZE_FORMAT" "
3352                                    "< calculated "SIZE_FORMAT,
3353                                    r->bottom(), r->end(),
3354                                    r->max_live_bytes(),
3355                                  not_dead_yet_cl.live_bytes());
3356             _failures = true;
3357           }
3358         } else {
3359           // When vo == UseNextMarking we cannot currently do a sanity
3360           // check on the live bytes as the calculation has not been
3361           // finalized yet.
3362         }
3363       }
3364     }
3365     return false; // stop the region iteration if we hit a failure
3366   }
3367 };
3368 
3369 // This is the task used for parallel verification of the heap regions
3370 
3371 class G1ParVerifyTask: public AbstractGangTask {
3372 private:
3373   G1CollectedHeap* _g1h;
3374   VerifyOption     _vo;
3375   bool             _failures;
3376 
3377 public:
3378   // _vo == UsePrevMarking -> use "prev" marking information,
3379   // _vo == UseNextMarking -> use "next" marking information,
3380   // _vo == UseMarkWord    -> use mark word from object header.
3381   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3382     AbstractGangTask("Parallel verify task"),
3383     _g1h(g1h),
3384     _vo(vo),
3385     _failures(false) { }
3386 
3387   bool failures() {
3388     return _failures;
3389   }
3390 
3391   void work(uint worker_id) {
3392     HandleMark hm;
3393     VerifyRegionClosure blk(true, _vo);
3394     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3395                                           _g1h->workers()->active_workers(),
3396                                           HeapRegion::ParVerifyClaimValue);
3397     if (blk.failures()) {
3398       _failures = true;
3399     }
3400   }
3401 };
3402 
3403 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3404   if (SafepointSynchronize::is_at_safepoint()) {
3405     assert(Thread::current()->is_VM_thread(),
3406            "Expected to be executed serially by the VM thread at this point");
3407 
3408     if (!silent) { gclog_or_tty->print("Roots "); }
3409     VerifyRootsClosure rootsCl(vo);
3410     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3411     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3412     VerifyKlassClosure klassCl(this, &rootsCl);
3413 
3414     // We apply the relevant closures to all the oops in the
3415     // system dictionary, the string table and the code cache.
3416     const int so = SO_AllClasses | SO_Strings | SO_CodeCache;
3417 
3418     // Need cleared claim bits for the strong roots processing
3419     ClassLoaderDataGraph::clear_claimed_marks();
3420 
3421     process_strong_roots(true,      // activate StrongRootsScope
3422                          false,     // we set "is scavenging" to false,
3423                                     // so we don't reset the dirty cards.
3424                          ScanningOption(so),  // roots scanning options
3425                          &rootsCl,
3426                          &blobsCl,
3427                          &klassCl
3428                          );
3429 
3430     bool failures = rootsCl.failures() || codeRootsCl.failures();
3431 
3432     if (vo != VerifyOption_G1UseMarkWord) {
3433       // If we're verifying during a full GC then the region sets
3434       // will have been torn down at the start of the GC. Therefore
3435       // verifying the region sets will fail. So we only verify
3436       // the region sets when not in a full GC.
3437       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3438       verify_region_sets();
3439     }
3440 
3441     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3442     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3443       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3444              "sanity check");
3445 
3446       G1ParVerifyTask task(this, vo);
3447       assert(UseDynamicNumberOfGCThreads ||
3448         workers()->active_workers() == workers()->total_workers(),
3449         "If not dynamic should be using all the workers");
3450       int n_workers = workers()->active_workers();
3451       set_par_threads(n_workers);
3452       workers()->run_task(&task);
3453       set_par_threads(0);
3454       if (task.failures()) {
3455         failures = true;
3456       }
3457 
3458       // Checks that the expected amount of parallel work was done.
3459       // The implication is that n_workers is > 0.
3460       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3461              "sanity check");
3462 
3463       reset_heap_region_claim_values();
3464 
3465       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3466              "sanity check");
3467     } else {
3468       VerifyRegionClosure blk(false, vo);
3469       heap_region_iterate(&blk);
3470       if (blk.failures()) {
3471         failures = true;
3472       }
3473     }
3474     if (!silent) gclog_or_tty->print("RemSet ");
3475     rem_set()->verify();
3476 
3477     if (failures) {
3478       gclog_or_tty->print_cr("Heap:");
3479       // It helps to have the per-region information in the output to
3480       // help us track down what went wrong. This is why we call
3481       // print_extended_on() instead of print_on().
3482       print_extended_on(gclog_or_tty);
3483       gclog_or_tty->print_cr("");
3484 #ifndef PRODUCT
3485       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3486         concurrent_mark()->print_reachable("at-verification-failure",
3487                                            vo, false /* all */);
3488       }
3489 #endif
3490       gclog_or_tty->flush();
3491     }
3492     guarantee(!failures, "there should not have been any failures");
3493   } else {
3494     if (!silent)
3495       gclog_or_tty->print("(SKIPPING roots, heapRegionSets, heapRegions, remset) ");
3496   }
3497 }
3498 
3499 void G1CollectedHeap::verify(bool silent) {
3500   verify(silent, VerifyOption_G1UsePrevMarking);
3501 }
3502 
3503 double G1CollectedHeap::verify(bool guard, const char* msg) {
3504   double verify_time_ms = 0.0;
3505 
3506   if (guard && total_collections() >= VerifyGCStartAt) {
3507     double verify_start = os::elapsedTime();
3508     HandleMark hm;  // Discard invalid handles created during verification
3509     prepare_for_verify();
3510     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3511     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3512   }
3513 
3514   return verify_time_ms;
3515 }
3516 
3517 void G1CollectedHeap::verify_before_gc() {
3518   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3519   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3520 }
3521 
3522 void G1CollectedHeap::verify_after_gc() {
3523   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3524   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3525 }
3526 
3527 class PrintRegionClosure: public HeapRegionClosure {
3528   outputStream* _st;
3529 public:
3530   PrintRegionClosure(outputStream* st) : _st(st) {}
3531   bool doHeapRegion(HeapRegion* r) {
3532     r->print_on(_st);
3533     return false;
3534   }
3535 };
3536 
3537 void G1CollectedHeap::print_on(outputStream* st) const {
3538   st->print(" %-20s", "garbage-first heap");
3539   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3540             capacity()/K, used_unlocked()/K);
3541   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3542             _g1_storage.low_boundary(),
3543             _g1_storage.high(),
3544             _g1_storage.high_boundary());
3545   st->cr();
3546   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3547   uint young_regions = _young_list->length();
3548   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3549             (size_t) young_regions * HeapRegion::GrainBytes / K);
3550   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3551   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3552             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3553   st->cr();
3554   MetaspaceAux::print_on(st);
3555 }
3556 
3557 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3558   print_on(st);
3559 
3560   // Print the per-region information.
3561   st->cr();
3562   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3563                "HS=humongous(starts), HC=humongous(continues), "
3564                "CS=collection set, F=free, TS=gc time stamp, "
3565                "PTAMS=previous top-at-mark-start, "
3566                "NTAMS=next top-at-mark-start)");
3567   PrintRegionClosure blk(st);
3568   heap_region_iterate(&blk);
3569 }
3570 
3571 void G1CollectedHeap::print_on_error(outputStream* st) const {
3572   this->CollectedHeap::print_on_error(st);
3573 
3574   if (_cm != NULL) {
3575     st->cr();
3576     _cm->print_on_error(st);
3577   }
3578 }
3579 
3580 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3581   if (G1CollectedHeap::use_parallel_gc_threads()) {
3582     workers()->print_worker_threads_on(st);
3583   }
3584   _cmThread->print_on(st);
3585   st->cr();
3586   _cm->print_worker_threads_on(st);
3587   _cg1r->print_worker_threads_on(st);
3588 }
3589 
3590 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3591   if (G1CollectedHeap::use_parallel_gc_threads()) {
3592     workers()->threads_do(tc);
3593   }
3594   tc->do_thread(_cmThread);
3595   _cg1r->threads_do(tc);
3596 }
3597 
3598 void G1CollectedHeap::print_tracing_info() const {
3599   // We'll overload this to mean "trace GC pause statistics."
3600   if (TraceGen0Time || TraceGen1Time) {
3601     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3602     // to that.
3603     g1_policy()->print_tracing_info();
3604   }
3605   if (G1SummarizeRSetStats) {
3606     g1_rem_set()->print_summary_info();
3607   }
3608   if (G1SummarizeConcMark) {
3609     concurrent_mark()->print_summary_info();
3610   }
3611   g1_policy()->print_yg_surv_rate_info();
3612   SpecializationStats::print();
3613 }
3614 
3615 #ifndef PRODUCT
3616 // Helpful for debugging RSet issues.
3617 
3618 class PrintRSetsClosure : public HeapRegionClosure {
3619 private:
3620   const char* _msg;
3621   size_t _occupied_sum;
3622 
3623 public:
3624   bool doHeapRegion(HeapRegion* r) {
3625     HeapRegionRemSet* hrrs = r->rem_set();
3626     size_t occupied = hrrs->occupied();
3627     _occupied_sum += occupied;
3628 
3629     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3630                            HR_FORMAT_PARAMS(r));
3631     if (occupied == 0) {
3632       gclog_or_tty->print_cr("  RSet is empty");
3633     } else {
3634       hrrs->print();
3635     }
3636     gclog_or_tty->print_cr("----------");
3637     return false;
3638   }
3639 
3640   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3641     gclog_or_tty->cr();
3642     gclog_or_tty->print_cr("========================================");
3643     gclog_or_tty->print_cr(msg);
3644     gclog_or_tty->cr();
3645   }
3646 
3647   ~PrintRSetsClosure() {
3648     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3649     gclog_or_tty->print_cr("========================================");
3650     gclog_or_tty->cr();
3651   }
3652 };
3653 
3654 void G1CollectedHeap::print_cset_rsets() {
3655   PrintRSetsClosure cl("Printing CSet RSets");
3656   collection_set_iterate(&cl);
3657 }
3658 
3659 void G1CollectedHeap::print_all_rsets() {
3660   PrintRSetsClosure cl("Printing All RSets");;
3661   heap_region_iterate(&cl);
3662 }
3663 #endif // PRODUCT
3664 
3665 G1CollectedHeap* G1CollectedHeap::heap() {
3666   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3667          "not a garbage-first heap");
3668   return _g1h;
3669 }
3670 
3671 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3672   // always_do_update_barrier = false;
3673   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3674   // Fill TLAB's and such
3675   ensure_parsability(true);
3676 }
3677 
3678 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3679 
3680   if (G1SummarizeRSetStats &&
3681       (G1SummarizeRSetStatsPeriod > 0) &&
3682       // we are at the end of the GC. Total collections has already been increased.
3683       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3684     g1_rem_set()->print_periodic_summary_info();
3685   }
3686 
3687   // FIXME: what is this about?
3688   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3689   // is set.
3690   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3691                         "derived pointer present"));
3692   // always_do_update_barrier = true;
3693 
3694   // We have just completed a GC. Update the soft reference
3695   // policy with the new heap occupancy
3696   Universe::update_heap_info_at_gc();
3697 }
3698 
3699 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3700                                                unsigned int gc_count_before,
3701                                                bool* succeeded) {
3702   assert_heap_not_locked_and_not_at_safepoint();
3703   g1_policy()->record_stop_world_start();
3704   VM_G1IncCollectionPause op(gc_count_before,
3705                              word_size,
3706                              false, /* should_initiate_conc_mark */
3707                              g1_policy()->max_pause_time_ms(),
3708                              GCCause::_g1_inc_collection_pause);
3709   VMThread::execute(&op);
3710 
3711   HeapWord* result = op.result();
3712   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3713   assert(result == NULL || ret_succeeded,
3714          "the result should be NULL if the VM did not succeed");
3715   *succeeded = ret_succeeded;
3716 
3717   assert_heap_not_locked();
3718   return result;
3719 }
3720 
3721 void
3722 G1CollectedHeap::doConcurrentMark() {
3723   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3724   if (!_cmThread->in_progress()) {
3725     _cmThread->set_started();
3726     CGC_lock->notify();
3727   }
3728 }
3729 
3730 size_t G1CollectedHeap::pending_card_num() {
3731   size_t extra_cards = 0;
3732   JavaThread *curr = Threads::first();
3733   while (curr != NULL) {
3734     DirtyCardQueue& dcq = curr->dirty_card_queue();
3735     extra_cards += dcq.size();
3736     curr = curr->next();
3737   }
3738   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3739   size_t buffer_size = dcqs.buffer_size();
3740   size_t buffer_num = dcqs.completed_buffers_num();
3741 
3742   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3743   // in bytes - not the number of 'entries'. We need to convert
3744   // into a number of cards.
3745   return (buffer_size * buffer_num + extra_cards) / oopSize;
3746 }
3747 
3748 size_t G1CollectedHeap::cards_scanned() {
3749   return g1_rem_set()->cardsScanned();
3750 }
3751 
3752 void
3753 G1CollectedHeap::setup_surviving_young_words() {
3754   assert(_surviving_young_words == NULL, "pre-condition");
3755   uint array_length = g1_policy()->young_cset_region_length();
3756   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3757   if (_surviving_young_words == NULL) {
3758     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3759                           "Not enough space for young surv words summary.");
3760   }
3761   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3762 #ifdef ASSERT
3763   for (uint i = 0;  i < array_length; ++i) {
3764     assert( _surviving_young_words[i] == 0, "memset above" );
3765   }
3766 #endif // !ASSERT
3767 }
3768 
3769 void
3770 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3771   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3772   uint array_length = g1_policy()->young_cset_region_length();
3773   for (uint i = 0; i < array_length; ++i) {
3774     _surviving_young_words[i] += surv_young_words[i];
3775   }
3776 }
3777 
3778 void
3779 G1CollectedHeap::cleanup_surviving_young_words() {
3780   guarantee( _surviving_young_words != NULL, "pre-condition" );
3781   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3782   _surviving_young_words = NULL;
3783 }
3784 
3785 #ifdef ASSERT
3786 class VerifyCSetClosure: public HeapRegionClosure {
3787 public:
3788   bool doHeapRegion(HeapRegion* hr) {
3789     // Here we check that the CSet region's RSet is ready for parallel
3790     // iteration. The fields that we'll verify are only manipulated
3791     // when the region is part of a CSet and is collected. Afterwards,
3792     // we reset these fields when we clear the region's RSet (when the
3793     // region is freed) so they are ready when the region is
3794     // re-allocated. The only exception to this is if there's an
3795     // evacuation failure and instead of freeing the region we leave
3796     // it in the heap. In that case, we reset these fields during
3797     // evacuation failure handling.
3798     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3799 
3800     // Here's a good place to add any other checks we'd like to
3801     // perform on CSet regions.
3802     return false;
3803   }
3804 };
3805 #endif // ASSERT
3806 
3807 #if TASKQUEUE_STATS
3808 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3809   st->print_raw_cr("GC Task Stats");
3810   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3811   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3812 }
3813 
3814 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3815   print_taskqueue_stats_hdr(st);
3816 
3817   TaskQueueStats totals;
3818   const int n = workers() != NULL ? workers()->total_workers() : 1;
3819   for (int i = 0; i < n; ++i) {
3820     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3821     totals += task_queue(i)->stats;
3822   }
3823   st->print_raw("tot "); totals.print(st); st->cr();
3824 
3825   DEBUG_ONLY(totals.verify());
3826 }
3827 
3828 void G1CollectedHeap::reset_taskqueue_stats() {
3829   const int n = workers() != NULL ? workers()->total_workers() : 1;
3830   for (int i = 0; i < n; ++i) {
3831     task_queue(i)->stats.reset();
3832   }
3833 }
3834 #endif // TASKQUEUE_STATS
3835 
3836 void G1CollectedHeap::log_gc_header() {
3837   if (!G1Log::fine()) {
3838     return;
3839   }
3840 
3841   gclog_or_tty->date_stamp(PrintGCDateStamps);
3842   gclog_or_tty->stamp(PrintGCTimeStamps);
3843 
3844   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3845     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3846     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3847 
3848   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3849 }
3850 
3851 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3852   if (!G1Log::fine()) {
3853     return;
3854   }
3855 
3856   if (G1Log::finer()) {
3857     if (evacuation_failed()) {
3858       gclog_or_tty->print(" (to-space exhausted)");
3859     }
3860     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3861     g1_policy()->phase_times()->note_gc_end();
3862     g1_policy()->phase_times()->print(pause_time_sec);
3863     g1_policy()->print_detailed_heap_transition();
3864   } else {
3865     if (evacuation_failed()) {
3866       gclog_or_tty->print("--");
3867     }
3868     g1_policy()->print_heap_transition();
3869     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3870   }
3871   gclog_or_tty->flush();
3872 }
3873 
3874 bool
3875 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3876   assert_at_safepoint(true /* should_be_vm_thread */);
3877   guarantee(!is_gc_active(), "collection is not reentrant");
3878 
3879   if (GC_locker::check_active_before_gc()) {
3880     return false;
3881   }
3882 
3883   _gc_timer_stw->register_gc_start(os::elapsed_counter());
3884 
3885   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3886 
3887   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3888   ResourceMark rm;
3889 
3890   print_heap_before_gc();
3891   trace_heap_before_gc(_gc_tracer_stw);
3892 
3893   HRSPhaseSetter x(HRSPhaseEvacuation);
3894   verify_region_sets_optional();
3895   verify_dirty_young_regions();
3896 
3897   // This call will decide whether this pause is an initial-mark
3898   // pause. If it is, during_initial_mark_pause() will return true
3899   // for the duration of this pause.
3900   g1_policy()->decide_on_conc_mark_initiation();
3901 
3902   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3903   assert(!g1_policy()->during_initial_mark_pause() ||
3904           g1_policy()->gcs_are_young(), "sanity");
3905 
3906   // We also do not allow mixed GCs during marking.
3907   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3908 
3909   // Record whether this pause is an initial mark. When the current
3910   // thread has completed its logging output and it's safe to signal
3911   // the CM thread, the flag's value in the policy has been reset.
3912   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3913 
3914   // Inner scope for scope based logging, timers, and stats collection
3915   {
3916     EvacuationInfo evacuation_info;
3917 
3918     if (g1_policy()->during_initial_mark_pause()) {
3919       // We are about to start a marking cycle, so we increment the
3920       // full collection counter.
3921       increment_old_marking_cycles_started();
3922       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3923     }
3924 
3925     _gc_tracer_stw->report_yc_type(yc_type());
3926 
3927     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3928 
3929     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3930                                 workers()->active_workers() : 1);
3931     double pause_start_sec = os::elapsedTime();
3932     g1_policy()->phase_times()->note_gc_start(active_workers);
3933     log_gc_header();
3934 
3935     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3936     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3937 
3938     // If the secondary_free_list is not empty, append it to the
3939     // free_list. No need to wait for the cleanup operation to finish;
3940     // the region allocation code will check the secondary_free_list
3941     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3942     // set, skip this step so that the region allocation code has to
3943     // get entries from the secondary_free_list.
3944     if (!G1StressConcRegionFreeing) {
3945       append_secondary_free_list_if_not_empty_with_lock();
3946     }
3947 
3948     assert(check_young_list_well_formed(), "young list should be well formed");
3949     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3950            "sanity check");
3951 
3952     // Don't dynamically change the number of GC threads this early.  A value of
3953     // 0 is used to indicate serial work.  When parallel work is done,
3954     // it will be set.
3955 
3956     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3957       IsGCActiveMark x;
3958 
3959       gc_prologue(false);
3960       increment_total_collections(false /* full gc */);
3961       increment_gc_time_stamp();
3962 
3963       verify_before_gc();
3964 
3965       COMPILER2_PRESENT(DerivedPointerTable::clear());
3966 
3967       // Please see comment in g1CollectedHeap.hpp and
3968       // G1CollectedHeap::ref_processing_init() to see how
3969       // reference processing currently works in G1.
3970 
3971       // Enable discovery in the STW reference processor
3972       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3973                                             true /*verify_no_refs*/);
3974 
3975       {
3976         // We want to temporarily turn off discovery by the
3977         // CM ref processor, if necessary, and turn it back on
3978         // on again later if we do. Using a scoped
3979         // NoRefDiscovery object will do this.
3980         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3981 
3982         // Forget the current alloc region (we might even choose it to be part
3983         // of the collection set!).
3984         release_mutator_alloc_region();
3985 
3986         // We should call this after we retire the mutator alloc
3987         // region(s) so that all the ALLOC / RETIRE events are generated
3988         // before the start GC event.
3989         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3990 
3991         // This timing is only used by the ergonomics to handle our pause target.
3992         // It is unclear why this should not include the full pause. We will
3993         // investigate this in CR 7178365.
3994         //
3995         // Preserving the old comment here if that helps the investigation:
3996         //
3997         // The elapsed time induced by the start time below deliberately elides
3998         // the possible verification above.
3999         double sample_start_time_sec = os::elapsedTime();
4000 
4001 #if YOUNG_LIST_VERBOSE
4002         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4003         _young_list->print();
4004         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4005 #endif // YOUNG_LIST_VERBOSE
4006 
4007         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4008 
4009         double scan_wait_start = os::elapsedTime();
4010         // We have to wait until the CM threads finish scanning the
4011         // root regions as it's the only way to ensure that all the
4012         // objects on them have been correctly scanned before we start
4013         // moving them during the GC.
4014         bool waited = _cm->root_regions()->wait_until_scan_finished();
4015         double wait_time_ms = 0.0;
4016         if (waited) {
4017           double scan_wait_end = os::elapsedTime();
4018           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4019         }
4020         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4021 
4022 #if YOUNG_LIST_VERBOSE
4023         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4024         _young_list->print();
4025 #endif // YOUNG_LIST_VERBOSE
4026 
4027         if (g1_policy()->during_initial_mark_pause()) {
4028           concurrent_mark()->checkpointRootsInitialPre();
4029         }
4030 
4031 #if YOUNG_LIST_VERBOSE
4032         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4033         _young_list->print();
4034         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4035 #endif // YOUNG_LIST_VERBOSE
4036 
4037         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4038 
4039         _cm->note_start_of_gc();
4040         // We should not verify the per-thread SATB buffers given that
4041         // we have not filtered them yet (we'll do so during the
4042         // GC). We also call this after finalize_cset() to
4043         // ensure that the CSet has been finalized.
4044         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4045                                  true  /* verify_enqueued_buffers */,
4046                                  false /* verify_thread_buffers */,
4047                                  true  /* verify_fingers */);
4048 
4049         if (_hr_printer.is_active()) {
4050           HeapRegion* hr = g1_policy()->collection_set();
4051           while (hr != NULL) {
4052             G1HRPrinter::RegionType type;
4053             if (!hr->is_young()) {
4054               type = G1HRPrinter::Old;
4055             } else if (hr->is_survivor()) {
4056               type = G1HRPrinter::Survivor;
4057             } else {
4058               type = G1HRPrinter::Eden;
4059             }
4060             _hr_printer.cset(hr);
4061             hr = hr->next_in_collection_set();
4062           }
4063         }
4064 
4065 #ifdef ASSERT
4066         VerifyCSetClosure cl;
4067         collection_set_iterate(&cl);
4068 #endif // ASSERT
4069 
4070         setup_surviving_young_words();
4071 
4072         // Initialize the GC alloc regions.
4073         init_gc_alloc_regions(evacuation_info);
4074 
4075         // Actually do the work...
4076         evacuate_collection_set(evacuation_info);
4077 
4078         // We do this to mainly verify the per-thread SATB buffers
4079         // (which have been filtered by now) since we didn't verify
4080         // them earlier. No point in re-checking the stacks / enqueued
4081         // buffers given that the CSet has not changed since last time
4082         // we checked.
4083         _cm->verify_no_cset_oops(false /* verify_stacks */,
4084                                  false /* verify_enqueued_buffers */,
4085                                  true  /* verify_thread_buffers */,
4086                                  true  /* verify_fingers */);
4087 
4088         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4089         g1_policy()->clear_collection_set();
4090 
4091         cleanup_surviving_young_words();
4092 
4093         // Start a new incremental collection set for the next pause.
4094         g1_policy()->start_incremental_cset_building();
4095 
4096         // Clear the _cset_fast_test bitmap in anticipation of adding
4097         // regions to the incremental collection set for the next
4098         // evacuation pause.
4099         clear_cset_fast_test();
4100 
4101         _young_list->reset_sampled_info();
4102 
4103         // Don't check the whole heap at this point as the
4104         // GC alloc regions from this pause have been tagged
4105         // as survivors and moved on to the survivor list.
4106         // Survivor regions will fail the !is_young() check.
4107         assert(check_young_list_empty(false /* check_heap */),
4108           "young list should be empty");
4109 
4110 #if YOUNG_LIST_VERBOSE
4111         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4112         _young_list->print();
4113 #endif // YOUNG_LIST_VERBOSE
4114 
4115         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4116                                              _young_list->first_survivor_region(),
4117                                              _young_list->last_survivor_region());
4118 
4119         _young_list->reset_auxilary_lists();
4120 
4121         if (evacuation_failed()) {
4122           _summary_bytes_used = recalculate_used();
4123           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4124           for (uint i = 0; i < n_queues; i++) {
4125             if (_evacuation_failed_info_array[i].has_failed()) {
4126               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4127             }
4128           }
4129         } else {
4130           // The "used" of the the collection set have already been subtracted
4131           // when they were freed.  Add in the bytes evacuated.
4132           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4133         }
4134 
4135         if (g1_policy()->during_initial_mark_pause()) {
4136           // We have to do this before we notify the CM threads that
4137           // they can start working to make sure that all the
4138           // appropriate initialization is done on the CM object.
4139           concurrent_mark()->checkpointRootsInitialPost();
4140           set_marking_started();
4141           // Note that we don't actually trigger the CM thread at
4142           // this point. We do that later when we're sure that
4143           // the current thread has completed its logging output.
4144         }
4145 
4146         allocate_dummy_regions();
4147 
4148 #if YOUNG_LIST_VERBOSE
4149         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4150         _young_list->print();
4151         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4152 #endif // YOUNG_LIST_VERBOSE
4153 
4154         init_mutator_alloc_region();
4155 
4156         {
4157           size_t expand_bytes = g1_policy()->expansion_amount();
4158           if (expand_bytes > 0) {
4159             size_t bytes_before = capacity();
4160             // No need for an ergo verbose message here,
4161             // expansion_amount() does this when it returns a value > 0.
4162             if (!expand(expand_bytes)) {
4163               // We failed to expand the heap so let's verify that
4164               // committed/uncommitted amount match the backing store
4165               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4166               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4167             }
4168           }
4169         }
4170 
4171         // We redo the verification but now wrt to the new CSet which
4172         // has just got initialized after the previous CSet was freed.
4173         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4174                                  true  /* verify_enqueued_buffers */,
4175                                  true  /* verify_thread_buffers */,
4176                                  true  /* verify_fingers */);
4177         _cm->note_end_of_gc();
4178 
4179         // This timing is only used by the ergonomics to handle our pause target.
4180         // It is unclear why this should not include the full pause. We will
4181         // investigate this in CR 7178365.
4182         double sample_end_time_sec = os::elapsedTime();
4183         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4184         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4185 
4186         MemoryService::track_memory_usage();
4187 
4188         // In prepare_for_verify() below we'll need to scan the deferred
4189         // update buffers to bring the RSets up-to-date if
4190         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4191         // the update buffers we'll probably need to scan cards on the
4192         // regions we just allocated to (i.e., the GC alloc
4193         // regions). However, during the last GC we called
4194         // set_saved_mark() on all the GC alloc regions, so card
4195         // scanning might skip the [saved_mark_word()...top()] area of
4196         // those regions (i.e., the area we allocated objects into
4197         // during the last GC). But it shouldn't. Given that
4198         // saved_mark_word() is conditional on whether the GC time stamp
4199         // on the region is current or not, by incrementing the GC time
4200         // stamp here we invalidate all the GC time stamps on all the
4201         // regions and saved_mark_word() will simply return top() for
4202         // all the regions. This is a nicer way of ensuring this rather
4203         // than iterating over the regions and fixing them. In fact, the
4204         // GC time stamp increment here also ensures that
4205         // saved_mark_word() will return top() between pauses, i.e.,
4206         // during concurrent refinement. So we don't need the
4207         // is_gc_active() check to decided which top to use when
4208         // scanning cards (see CR 7039627).
4209         increment_gc_time_stamp();
4210 
4211         verify_after_gc();
4212 
4213         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4214         ref_processor_stw()->verify_no_references_recorded();
4215 
4216         // CM reference discovery will be re-enabled if necessary.
4217       }
4218 
4219       // We should do this after we potentially expand the heap so
4220       // that all the COMMIT events are generated before the end GC
4221       // event, and after we retire the GC alloc regions so that all
4222       // RETIRE events are generated before the end GC event.
4223       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4224 
4225       if (mark_in_progress()) {
4226         concurrent_mark()->update_g1_committed();
4227       }
4228 
4229 #ifdef TRACESPINNING
4230       ParallelTaskTerminator::print_termination_counts();
4231 #endif
4232 
4233       gc_epilogue(false);
4234     }
4235 
4236     // Print the remainder of the GC log output.
4237     log_gc_footer(os::elapsedTime() - pause_start_sec);
4238 
4239     // It is not yet to safe to tell the concurrent mark to
4240     // start as we have some optional output below. We don't want the
4241     // output from the concurrent mark thread interfering with this
4242     // logging output either.
4243 
4244     _hrs.verify_optional();
4245     verify_region_sets_optional();
4246 
4247     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4248     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4249 
4250     print_heap_after_gc();
4251     trace_heap_after_gc(_gc_tracer_stw);
4252 
4253     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4254     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4255     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4256     // before any GC notifications are raised.
4257     g1mm()->update_sizes();
4258 
4259     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4260     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4261     _gc_timer_stw->register_gc_end(os::elapsed_counter());
4262     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4263   }
4264   // It should now be safe to tell the concurrent mark thread to start
4265   // without its logging output interfering with the logging output
4266   // that came from the pause.
4267 
4268   if (should_start_conc_mark) {
4269     // CAUTION: after the doConcurrentMark() call below,
4270     // the concurrent marking thread(s) could be running
4271     // concurrently with us. Make sure that anything after
4272     // this point does not assume that we are the only GC thread
4273     // running. Note: of course, the actual marking work will
4274     // not start until the safepoint itself is released in
4275     // ConcurrentGCThread::safepoint_desynchronize().
4276     doConcurrentMark();
4277   }
4278 
4279   return true;
4280 }
4281 
4282 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4283 {
4284   size_t gclab_word_size;
4285   switch (purpose) {
4286     case GCAllocForSurvived:
4287       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4288       break;
4289     case GCAllocForTenured:
4290       gclab_word_size = _old_plab_stats.desired_plab_sz();
4291       break;
4292     default:
4293       assert(false, "unknown GCAllocPurpose");
4294       gclab_word_size = _old_plab_stats.desired_plab_sz();
4295       break;
4296   }
4297 
4298   // Prevent humongous PLAB sizes for two reasons:
4299   // * PLABs are allocated using a similar paths as oops, but should
4300   //   never be in a humongous region
4301   // * Allowing humongous PLABs needlessly churns the region free lists
4302   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4303 }
4304 
4305 void G1CollectedHeap::init_mutator_alloc_region() {
4306   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4307   _mutator_alloc_region.init();
4308 }
4309 
4310 void G1CollectedHeap::release_mutator_alloc_region() {
4311   _mutator_alloc_region.release();
4312   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4313 }
4314 
4315 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4316   assert_at_safepoint(true /* should_be_vm_thread */);
4317 
4318   _survivor_gc_alloc_region.init();
4319   _old_gc_alloc_region.init();
4320   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4321   _retained_old_gc_alloc_region = NULL;
4322 
4323   // We will discard the current GC alloc region if:
4324   // a) it's in the collection set (it can happen!),
4325   // b) it's already full (no point in using it),
4326   // c) it's empty (this means that it was emptied during
4327   // a cleanup and it should be on the free list now), or
4328   // d) it's humongous (this means that it was emptied
4329   // during a cleanup and was added to the free list, but
4330   // has been subsequently used to allocate a humongous
4331   // object that may be less than the region size).
4332   if (retained_region != NULL &&
4333       !retained_region->in_collection_set() &&
4334       !(retained_region->top() == retained_region->end()) &&
4335       !retained_region->is_empty() &&
4336       !retained_region->isHumongous()) {
4337     retained_region->set_saved_mark();
4338     // The retained region was added to the old region set when it was
4339     // retired. We have to remove it now, since we don't allow regions
4340     // we allocate to in the region sets. We'll re-add it later, when
4341     // it's retired again.
4342     _old_set.remove(retained_region);
4343     bool during_im = g1_policy()->during_initial_mark_pause();
4344     retained_region->note_start_of_copying(during_im);
4345     _old_gc_alloc_region.set(retained_region);
4346     _hr_printer.reuse(retained_region);
4347     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4348   }
4349 }
4350 
4351 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4352   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4353                                          _old_gc_alloc_region.count());
4354   _survivor_gc_alloc_region.release();
4355   // If we have an old GC alloc region to release, we'll save it in
4356   // _retained_old_gc_alloc_region. If we don't
4357   // _retained_old_gc_alloc_region will become NULL. This is what we
4358   // want either way so no reason to check explicitly for either
4359   // condition.
4360   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4361 
4362   if (ResizePLAB) {
4363     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4364     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4365   }
4366 }
4367 
4368 void G1CollectedHeap::abandon_gc_alloc_regions() {
4369   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4370   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4371   _retained_old_gc_alloc_region = NULL;
4372 }
4373 
4374 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4375   _drain_in_progress = false;
4376   set_evac_failure_closure(cl);
4377   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4378 }
4379 
4380 void G1CollectedHeap::finalize_for_evac_failure() {
4381   assert(_evac_failure_scan_stack != NULL &&
4382          _evac_failure_scan_stack->length() == 0,
4383          "Postcondition");
4384   assert(!_drain_in_progress, "Postcondition");
4385   delete _evac_failure_scan_stack;
4386   _evac_failure_scan_stack = NULL;
4387 }
4388 
4389 void G1CollectedHeap::remove_self_forwarding_pointers() {
4390   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4391 
4392   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4393 
4394   if (G1CollectedHeap::use_parallel_gc_threads()) {
4395     set_par_threads();
4396     workers()->run_task(&rsfp_task);
4397     set_par_threads(0);
4398   } else {
4399     rsfp_task.work(0);
4400   }
4401 
4402   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4403 
4404   // Reset the claim values in the regions in the collection set.
4405   reset_cset_heap_region_claim_values();
4406 
4407   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4408 
4409   // Now restore saved marks, if any.
4410   assert(_objs_with_preserved_marks.size() ==
4411             _preserved_marks_of_objs.size(), "Both or none.");
4412   while (!_objs_with_preserved_marks.is_empty()) {
4413     oop obj = _objs_with_preserved_marks.pop();
4414     markOop m = _preserved_marks_of_objs.pop();
4415     obj->set_mark(m);
4416   }
4417   _objs_with_preserved_marks.clear(true);
4418   _preserved_marks_of_objs.clear(true);
4419 }
4420 
4421 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4422   _evac_failure_scan_stack->push(obj);
4423 }
4424 
4425 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4426   assert(_evac_failure_scan_stack != NULL, "precondition");
4427 
4428   while (_evac_failure_scan_stack->length() > 0) {
4429      oop obj = _evac_failure_scan_stack->pop();
4430      _evac_failure_closure->set_region(heap_region_containing(obj));
4431      obj->oop_iterate_backwards(_evac_failure_closure);
4432   }
4433 }
4434 
4435 oop
4436 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4437                                                oop old) {
4438   assert(obj_in_cs(old),
4439          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4440                  (HeapWord*) old));
4441   markOop m = old->mark();
4442   oop forward_ptr = old->forward_to_atomic(old);
4443   if (forward_ptr == NULL) {
4444     // Forward-to-self succeeded.
4445     assert(_par_scan_state != NULL, "par scan state");
4446     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4447     uint queue_num = _par_scan_state->queue_num();
4448 
4449     _evacuation_failed = true;
4450     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4451     if (_evac_failure_closure != cl) {
4452       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4453       assert(!_drain_in_progress,
4454              "Should only be true while someone holds the lock.");
4455       // Set the global evac-failure closure to the current thread's.
4456       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4457       set_evac_failure_closure(cl);
4458       // Now do the common part.
4459       handle_evacuation_failure_common(old, m);
4460       // Reset to NULL.
4461       set_evac_failure_closure(NULL);
4462     } else {
4463       // The lock is already held, and this is recursive.
4464       assert(_drain_in_progress, "This should only be the recursive case.");
4465       handle_evacuation_failure_common(old, m);
4466     }
4467     return old;
4468   } else {
4469     // Forward-to-self failed. Either someone else managed to allocate
4470     // space for this object (old != forward_ptr) or they beat us in
4471     // self-forwarding it (old == forward_ptr).
4472     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4473            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4474                    "should not be in the CSet",
4475                    (HeapWord*) old, (HeapWord*) forward_ptr));
4476     return forward_ptr;
4477   }
4478 }
4479 
4480 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4481   preserve_mark_if_necessary(old, m);
4482 
4483   HeapRegion* r = heap_region_containing(old);
4484   if (!r->evacuation_failed()) {
4485     r->set_evacuation_failed(true);
4486     _hr_printer.evac_failure(r);
4487   }
4488 
4489   push_on_evac_failure_scan_stack(old);
4490 
4491   if (!_drain_in_progress) {
4492     // prevent recursion in copy_to_survivor_space()
4493     _drain_in_progress = true;
4494     drain_evac_failure_scan_stack();
4495     _drain_in_progress = false;
4496   }
4497 }
4498 
4499 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4500   assert(evacuation_failed(), "Oversaving!");
4501   // We want to call the "for_promotion_failure" version only in the
4502   // case of a promotion failure.
4503   if (m->must_be_preserved_for_promotion_failure(obj)) {
4504     _objs_with_preserved_marks.push(obj);
4505     _preserved_marks_of_objs.push(m);
4506   }
4507 }
4508 
4509 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4510                                                   size_t word_size) {
4511   if (purpose == GCAllocForSurvived) {
4512     HeapWord* result = survivor_attempt_allocation(word_size);
4513     if (result != NULL) {
4514       return result;
4515     } else {
4516       // Let's try to allocate in the old gen in case we can fit the
4517       // object there.
4518       return old_attempt_allocation(word_size);
4519     }
4520   } else {
4521     assert(purpose ==  GCAllocForTenured, "sanity");
4522     HeapWord* result = old_attempt_allocation(word_size);
4523     if (result != NULL) {
4524       return result;
4525     } else {
4526       // Let's try to allocate in the survivors in case we can fit the
4527       // object there.
4528       return survivor_attempt_allocation(word_size);
4529     }
4530   }
4531 
4532   ShouldNotReachHere();
4533   // Trying to keep some compilers happy.
4534   return NULL;
4535 }
4536 
4537 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4538   ParGCAllocBuffer(gclab_word_size), _retired(false) { }
4539 
4540 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num)
4541   : _g1h(g1h),
4542     _refs(g1h->task_queue(queue_num)),
4543     _dcq(&g1h->dirty_card_queue_set()),
4544     _ct_bs((CardTableModRefBS*)_g1h->barrier_set()),
4545     _g1_rem(g1h->g1_rem_set()),
4546     _hash_seed(17), _queue_num(queue_num),
4547     _term_attempts(0),
4548     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4549     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4550     _age_table(false),
4551     _strong_roots_time(0), _term_time(0),
4552     _alloc_buffer_waste(0), _undo_waste(0) {
4553   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4554   // we "sacrifice" entry 0 to keep track of surviving bytes for
4555   // non-young regions (where the age is -1)
4556   // We also add a few elements at the beginning and at the end in
4557   // an attempt to eliminate cache contention
4558   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4559   uint array_length = PADDING_ELEM_NUM +
4560                       real_length +
4561                       PADDING_ELEM_NUM;
4562   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4563   if (_surviving_young_words_base == NULL)
4564     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4565                           "Not enough space for young surv histo.");
4566   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4567   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4568 
4569   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4570   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4571 
4572   _start = os::elapsedTime();
4573 }
4574 
4575 void
4576 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4577 {
4578   st->print_raw_cr("GC Termination Stats");
4579   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4580                    " ------waste (KiB)------");
4581   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4582                    "  total   alloc    undo");
4583   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4584                    " ------- ------- -------");
4585 }
4586 
4587 void
4588 G1ParScanThreadState::print_termination_stats(int i,
4589                                               outputStream* const st) const
4590 {
4591   const double elapsed_ms = elapsed_time() * 1000.0;
4592   const double s_roots_ms = strong_roots_time() * 1000.0;
4593   const double term_ms    = term_time() * 1000.0;
4594   st->print_cr("%3d %9.2f %9.2f %6.2f "
4595                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4596                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4597                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4598                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4599                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4600                alloc_buffer_waste() * HeapWordSize / K,
4601                undo_waste() * HeapWordSize / K);
4602 }
4603 
4604 #ifdef ASSERT
4605 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4606   assert(ref != NULL, "invariant");
4607   assert(UseCompressedOops, "sanity");
4608   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4609   oop p = oopDesc::load_decode_heap_oop(ref);
4610   assert(_g1h->is_in_g1_reserved(p),
4611          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4612   return true;
4613 }
4614 
4615 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4616   assert(ref != NULL, "invariant");
4617   if (has_partial_array_mask(ref)) {
4618     // Must be in the collection set--it's already been copied.
4619     oop p = clear_partial_array_mask(ref);
4620     assert(_g1h->obj_in_cs(p),
4621            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4622   } else {
4623     oop p = oopDesc::load_decode_heap_oop(ref);
4624     assert(_g1h->is_in_g1_reserved(p),
4625            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, intptr_t(p)));
4626   }
4627   return true;
4628 }
4629 
4630 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4631   if (ref.is_narrow()) {
4632     return verify_ref((narrowOop*) ref);
4633   } else {
4634     return verify_ref((oop*) ref);
4635   }
4636 }
4637 #endif // ASSERT
4638 
4639 void G1ParScanThreadState::trim_queue() {
4640   assert(_evac_cl != NULL, "not set");
4641   assert(_evac_failure_cl != NULL, "not set");
4642   assert(_partial_scan_cl != NULL, "not set");
4643 
4644   StarTask ref;
4645   do {
4646     // Drain the overflow stack first, so other threads can steal.
4647     while (refs()->pop_overflow(ref)) {
4648       deal_with_reference(ref);
4649     }
4650 
4651     while (refs()->pop_local(ref)) {
4652       deal_with_reference(ref);
4653     }
4654   } while (!refs()->is_empty());
4655 }
4656 
4657 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4658                                      G1ParScanThreadState* par_scan_state) :
4659   _g1(g1), _g1_rem(_g1->g1_rem_set()), _cm(_g1->concurrent_mark()),
4660   _par_scan_state(par_scan_state),
4661   _worker_id(par_scan_state->queue_num()),
4662   _during_initial_mark(_g1->g1_policy()->during_initial_mark_pause()),
4663   _mark_in_progress(_g1->mark_in_progress()) { }
4664 
4665 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4666 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>::mark_object(oop obj) {
4667 #ifdef ASSERT
4668   HeapRegion* hr = _g1->heap_region_containing(obj);
4669   assert(hr != NULL, "sanity");
4670   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4671 #endif // ASSERT
4672 
4673   // We know that the object is not moving so it's safe to read its size.
4674   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4675 }
4676 
4677 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4678 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4679   ::mark_forwarded_object(oop from_obj, oop to_obj) {
4680 #ifdef ASSERT
4681   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4682   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4683   assert(from_obj != to_obj, "should not be self-forwarded");
4684 
4685   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4686   assert(from_hr != NULL, "sanity");
4687   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4688 
4689   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4690   assert(to_hr != NULL, "sanity");
4691   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4692 #endif // ASSERT
4693 
4694   // The object might be in the process of being copied by another
4695   // worker so we cannot trust that its to-space image is
4696   // well-formed. So we have to read its size from its from-space
4697   // image which we know should not be changing.
4698   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4699 }
4700 
4701 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4702 oop G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4703   ::copy_to_survivor_space(oop old) {
4704   size_t word_sz = old->size();
4705   HeapRegion* from_region = _g1->heap_region_containing_raw(old);
4706   // +1 to make the -1 indexes valid...
4707   int       young_index = from_region->young_index_in_cset()+1;
4708   assert( (from_region->is_young() && young_index >  0) ||
4709          (!from_region->is_young() && young_index == 0), "invariant" );
4710   G1CollectorPolicy* g1p = _g1->g1_policy();
4711   markOop m = old->mark();
4712   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4713                                            : m->age();
4714   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4715                                                              word_sz);
4716   HeapWord* obj_ptr = _par_scan_state->allocate(alloc_purpose, word_sz);
4717 #ifndef PRODUCT
4718   // Should this evacuation fail?
4719   if (_g1->evacuation_should_fail()) {
4720     if (obj_ptr != NULL) {
4721       _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4722       obj_ptr = NULL;
4723     }
4724   }
4725 #endif // !PRODUCT
4726 
4727   if (obj_ptr == NULL) {
4728     // This will either forward-to-self, or detect that someone else has
4729     // installed a forwarding pointer.
4730     return _g1->handle_evacuation_failure_par(_par_scan_state, old);
4731   }
4732 
4733   oop obj = oop(obj_ptr);
4734 
4735   // We're going to allocate linearly, so might as well prefetch ahead.
4736   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4737 
4738   oop forward_ptr = old->forward_to_atomic(obj);
4739   if (forward_ptr == NULL) {
4740     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4741     if (g1p->track_object_age(alloc_purpose)) {
4742       // We could simply do obj->incr_age(). However, this causes a
4743       // performance issue. obj->incr_age() will first check whether
4744       // the object has a displaced mark by checking its mark word;
4745       // getting the mark word from the new location of the object
4746       // stalls. So, given that we already have the mark word and we
4747       // are about to install it anyway, it's better to increase the
4748       // age on the mark word, when the object does not have a
4749       // displaced mark word. We're not expecting many objects to have
4750       // a displaced marked word, so that case is not optimized
4751       // further (it could be...) and we simply call obj->incr_age().
4752 
4753       if (m->has_displaced_mark_helper()) {
4754         // in this case, we have to install the mark word first,
4755         // otherwise obj looks to be forwarded (the old mark word,
4756         // which contains the forward pointer, was copied)
4757         obj->set_mark(m);
4758         obj->incr_age();
4759       } else {
4760         m = m->incr_age();
4761         obj->set_mark(m);
4762       }
4763       _par_scan_state->age_table()->add(obj, word_sz);
4764     } else {
4765       obj->set_mark(m);
4766     }
4767 
4768     size_t* surv_young_words = _par_scan_state->surviving_young_words();
4769     surv_young_words[young_index] += word_sz;
4770 
4771     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4772       // We keep track of the next start index in the length field of
4773       // the to-space object. The actual length can be found in the
4774       // length field of the from-space object.
4775       arrayOop(obj)->set_length(0);
4776       oop* old_p = set_partial_array_mask(old);
4777       _par_scan_state->push_on_queue(old_p);
4778     } else {
4779       // No point in using the slower heap_region_containing() method,
4780       // given that we know obj is in the heap.
4781       _scanner.set_region(_g1->heap_region_containing_raw(obj));
4782       obj->oop_iterate_backwards(&_scanner);
4783     }
4784   } else {
4785     _par_scan_state->undo_allocation(alloc_purpose, obj_ptr, word_sz);
4786     obj = forward_ptr;
4787   }
4788   return obj;
4789 }
4790 
4791 template <class T>
4792 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4793   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4794     _scanned_klass->record_modified_oops();
4795   }
4796 }
4797 
4798 template <bool do_gen_barrier, G1Barrier barrier, bool do_mark_object>
4799 template <class T>
4800 void G1ParCopyClosure<do_gen_barrier, barrier, do_mark_object>
4801 ::do_oop_work(T* p) {
4802   oop obj = oopDesc::load_decode_heap_oop(p);
4803   assert(barrier != G1BarrierRS || obj != NULL,
4804          "Precondition: G1BarrierRS implies obj is non-NULL");
4805 
4806   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4807 
4808   // here the null check is implicit in the cset_fast_test() test
4809   if (_g1->in_cset_fast_test(obj)) {
4810     oop forwardee;
4811     if (obj->is_forwarded()) {
4812       forwardee = obj->forwardee();
4813     } else {
4814       forwardee = copy_to_survivor_space(obj);
4815     }
4816     assert(forwardee != NULL, "forwardee should not be NULL");
4817     oopDesc::encode_store_heap_oop(p, forwardee);
4818     if (do_mark_object && forwardee != obj) {
4819       // If the object is self-forwarded we don't need to explicitly
4820       // mark it, the evacuation failure protocol will do so.
4821       mark_forwarded_object(obj, forwardee);
4822     }
4823 
4824     // When scanning the RS, we only care about objs in CS.
4825     if (barrier == G1BarrierRS) {
4826       _par_scan_state->update_rs(_from, p, _worker_id);
4827     } else if (barrier == G1BarrierKlass) {
4828       do_klass_barrier(p, forwardee);
4829     }
4830   } else {
4831     // The object is not in collection set. If we're a root scanning
4832     // closure during an initial mark pause (i.e. do_mark_object will
4833     // be true) then attempt to mark the object.
4834     if (do_mark_object && _g1->is_in_g1_reserved(obj)) {
4835       mark_object(obj);
4836     }
4837   }
4838 
4839   if (barrier == G1BarrierEvac && obj != NULL) {
4840     _par_scan_state->update_rs(_from, p, _worker_id);
4841   }
4842 
4843   if (do_gen_barrier && obj != NULL) {
4844     par_do_barrier(p);
4845   }
4846 }
4847 
4848 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(oop* p);
4849 template void G1ParCopyClosure<false, G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4850 
4851 template <class T> void G1ParScanPartialArrayClosure::do_oop_nv(T* p) {
4852   assert(has_partial_array_mask(p), "invariant");
4853   oop from_obj = clear_partial_array_mask(p);
4854 
4855   assert(Universe::heap()->is_in_reserved(from_obj), "must be in heap.");
4856   assert(from_obj->is_objArray(), "must be obj array");
4857   objArrayOop from_obj_array = objArrayOop(from_obj);
4858   // The from-space object contains the real length.
4859   int length                 = from_obj_array->length();
4860 
4861   assert(from_obj->is_forwarded(), "must be forwarded");
4862   oop to_obj                 = from_obj->forwardee();
4863   assert(from_obj != to_obj, "should not be chunking self-forwarded objects");
4864   objArrayOop to_obj_array   = objArrayOop(to_obj);
4865   // We keep track of the next start index in the length field of the
4866   // to-space object.
4867   int next_index             = to_obj_array->length();
4868   assert(0 <= next_index && next_index < length,
4869          err_msg("invariant, next index: %d, length: %d", next_index, length));
4870 
4871   int start                  = next_index;
4872   int end                    = length;
4873   int remainder              = end - start;
4874   // We'll try not to push a range that's smaller than ParGCArrayScanChunk.
4875   if (remainder > 2 * ParGCArrayScanChunk) {
4876     end = start + ParGCArrayScanChunk;
4877     to_obj_array->set_length(end);
4878     // Push the remainder before we process the range in case another
4879     // worker has run out of things to do and can steal it.
4880     oop* from_obj_p = set_partial_array_mask(from_obj);
4881     _par_scan_state->push_on_queue(from_obj_p);
4882   } else {
4883     assert(length == end, "sanity");
4884     // We'll process the final range for this object. Restore the length
4885     // so that the heap remains parsable in case of evacuation failure.
4886     to_obj_array->set_length(end);
4887   }
4888   _scanner.set_region(_g1->heap_region_containing_raw(to_obj));
4889   // Process indexes [start,end). It will also process the header
4890   // along with the first chunk (i.e., the chunk with start == 0).
4891   // Note that at this point the length field of to_obj_array is not
4892   // correct given that we are using it to keep track of the next
4893   // start index. oop_iterate_range() (thankfully!) ignores the length
4894   // field and only relies on the start / end parameters.  It does
4895   // however return the size of the object which will be incorrect. So
4896   // we have to ignore it even if we wanted to use it.
4897   to_obj_array->oop_iterate_range(&_scanner, start, end);
4898 }
4899 
4900 class G1ParEvacuateFollowersClosure : public VoidClosure {
4901 protected:
4902   G1CollectedHeap*              _g1h;
4903   G1ParScanThreadState*         _par_scan_state;
4904   RefToScanQueueSet*            _queues;
4905   ParallelTaskTerminator*       _terminator;
4906 
4907   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4908   RefToScanQueueSet*      queues()         { return _queues; }
4909   ParallelTaskTerminator* terminator()     { return _terminator; }
4910 
4911 public:
4912   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4913                                 G1ParScanThreadState* par_scan_state,
4914                                 RefToScanQueueSet* queues,
4915                                 ParallelTaskTerminator* terminator)
4916     : _g1h(g1h), _par_scan_state(par_scan_state),
4917       _queues(queues), _terminator(terminator) {}
4918 
4919   void do_void();
4920 
4921 private:
4922   inline bool offer_termination();
4923 };
4924 
4925 bool G1ParEvacuateFollowersClosure::offer_termination() {
4926   G1ParScanThreadState* const pss = par_scan_state();
4927   pss->start_term_time();
4928   const bool res = terminator()->offer_termination();
4929   pss->end_term_time();
4930   return res;
4931 }
4932 
4933 void G1ParEvacuateFollowersClosure::do_void() {
4934   StarTask stolen_task;
4935   G1ParScanThreadState* const pss = par_scan_state();
4936   pss->trim_queue();
4937 
4938   do {
4939     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4940       assert(pss->verify_task(stolen_task), "sanity");
4941       if (stolen_task.is_narrow()) {
4942         pss->deal_with_reference((narrowOop*) stolen_task);
4943       } else {
4944         pss->deal_with_reference((oop*) stolen_task);
4945       }
4946 
4947       // We've just processed a reference and we might have made
4948       // available new entries on the queues. So we have to make sure
4949       // we drain the queues as necessary.
4950       pss->trim_queue();
4951     }
4952   } while (!offer_termination());
4953 
4954   pss->retire_alloc_buffers();
4955 }
4956 
4957 class G1KlassScanClosure : public KlassClosure {
4958  G1ParCopyHelper* _closure;
4959  bool             _process_only_dirty;
4960  int              _count;
4961  public:
4962   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4963       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4964   void do_klass(Klass* klass) {
4965     // If the klass has not been dirtied we know that there's
4966     // no references into  the young gen and we can skip it.
4967    if (!_process_only_dirty || klass->has_modified_oops()) {
4968       // Clean the klass since we're going to scavenge all the metadata.
4969       klass->clear_modified_oops();
4970 
4971       // Tell the closure that this klass is the Klass to scavenge
4972       // and is the one to dirty if oops are left pointing into the young gen.
4973       _closure->set_scanned_klass(klass);
4974 
4975       klass->oops_do(_closure);
4976 
4977       _closure->set_scanned_klass(NULL);
4978     }
4979     _count++;
4980   }
4981 };
4982 
4983 class G1ParTask : public AbstractGangTask {
4984 protected:
4985   G1CollectedHeap*       _g1h;
4986   RefToScanQueueSet      *_queues;
4987   ParallelTaskTerminator _terminator;
4988   uint _n_workers;
4989 
4990   Mutex _stats_lock;
4991   Mutex* stats_lock() { return &_stats_lock; }
4992 
4993   size_t getNCards() {
4994     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4995       / G1BlockOffsetSharedArray::N_bytes;
4996   }
4997 
4998 public:
4999   G1ParTask(G1CollectedHeap* g1h,
5000             RefToScanQueueSet *task_queues)
5001     : AbstractGangTask("G1 collection"),
5002       _g1h(g1h),
5003       _queues(task_queues),
5004       _terminator(0, _queues),
5005       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
5006   {}
5007 
5008   RefToScanQueueSet* queues() { return _queues; }
5009 
5010   RefToScanQueue *work_queue(int i) {
5011     return queues()->queue(i);
5012   }
5013 
5014   ParallelTaskTerminator* terminator() { return &_terminator; }
5015 
5016   virtual void set_for_termination(int active_workers) {
5017     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
5018     // in the young space (_par_seq_tasks) in the G1 heap
5019     // for SequentialSubTasksDone.
5020     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
5021     // both of which need setting by set_n_termination().
5022     _g1h->SharedHeap::set_n_termination(active_workers);
5023     _g1h->set_n_termination(active_workers);
5024     terminator()->reset_for_reuse(active_workers);
5025     _n_workers = active_workers;
5026   }
5027 
5028   void work(uint worker_id) {
5029     if (worker_id >= _n_workers) return;  // no work needed this round
5030 
5031     double start_time_ms = os::elapsedTime() * 1000.0;
5032     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5033 
5034     {
5035       ResourceMark rm;
5036       HandleMark   hm;
5037 
5038       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5039 
5040       G1ParScanThreadState            pss(_g1h, worker_id);
5041       G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, rp);
5042       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5043       G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, rp);
5044 
5045       pss.set_evac_closure(&scan_evac_cl);
5046       pss.set_evac_failure_closure(&evac_failure_cl);
5047       pss.set_partial_scan_closure(&partial_scan_cl);
5048 
5049       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5050       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5051 
5052       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5053       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5054 
5055       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5056       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5057       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5058 
5059       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5060       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5061 
5062       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5063         // We also need to mark copied objects.
5064         scan_root_cl = &scan_mark_root_cl;
5065         scan_klasses_cl = &scan_mark_klasses_cl_s;
5066       }
5067 
5068       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5069 
5070       // Don't scan the scavengable methods in the code cache as part
5071       // of strong root scanning. The code roots that point into a
5072       // region in the collection set are scanned when we scan the
5073       // region's RSet.
5074       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5075 
5076       pss.start_strong_roots();
5077       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5078                                     SharedHeap::ScanningOption(so),
5079                                     scan_root_cl,
5080                                     &push_heap_rs_cl,
5081                                     scan_klasses_cl,
5082                                     worker_id);
5083       pss.end_strong_roots();
5084 
5085       {
5086         double start = os::elapsedTime();
5087         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5088         evac.do_void();
5089         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5090         double term_ms = pss.term_time()*1000.0;
5091         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5092         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5093       }
5094       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5095       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5096 
5097       if (ParallelGCVerbose) {
5098         MutexLocker x(stats_lock());
5099         pss.print_termination_stats(worker_id);
5100       }
5101 
5102       assert(pss.refs()->is_empty(), "should be empty");
5103 
5104       // Close the inner scope so that the ResourceMark and HandleMark
5105       // destructors are executed here and are included as part of the
5106       // "GC Worker Time".
5107     }
5108 
5109     double end_time_ms = os::elapsedTime() * 1000.0;
5110     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5111   }
5112 };
5113 
5114 // *** Common G1 Evacuation Stuff
5115 
5116 // This method is run in a GC worker.
5117 
5118 void
5119 G1CollectedHeap::
5120 g1_process_strong_roots(bool is_scavenging,
5121                         ScanningOption so,
5122                         OopClosure* scan_non_heap_roots,
5123                         OopsInHeapRegionClosure* scan_rs,
5124                         G1KlassScanClosure* scan_klasses,
5125                         int worker_i) {
5126 
5127   // First scan the strong roots
5128   double ext_roots_start = os::elapsedTime();
5129   double closure_app_time_sec = 0.0;
5130 
5131   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5132 
5133   assert(so & SO_CodeCache || scan_rs != NULL, "must scan code roots somehow");
5134   // Walk the code cache/strong code roots w/o buffering, because StarTask
5135   // cannot handle unaligned oop locations.
5136   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5137 
5138   process_strong_roots(false, // no scoping; this is parallel code
5139                        is_scavenging, so,
5140                        &buf_scan_non_heap_roots,
5141                        &eager_scan_code_roots,
5142                        scan_klasses
5143                        );
5144 
5145   // Now the CM ref_processor roots.
5146   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5147     // We need to treat the discovered reference lists of the
5148     // concurrent mark ref processor as roots and keep entries
5149     // (which are added by the marking threads) on them live
5150     // until they can be processed at the end of marking.
5151     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5152   }
5153 
5154   // Finish up any enqueued closure apps (attributed as object copy time).
5155   buf_scan_non_heap_roots.done();
5156 
5157   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5158 
5159   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5160 
5161   double ext_root_time_ms =
5162     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5163 
5164   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5165 
5166   // During conc marking we have to filter the per-thread SATB buffers
5167   // to make sure we remove any oops into the CSet (which will show up
5168   // as implicitly live).
5169   double satb_filtering_ms = 0.0;
5170   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5171     if (mark_in_progress()) {
5172       double satb_filter_start = os::elapsedTime();
5173 
5174       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5175 
5176       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5177     }
5178   }
5179   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5180 
5181   // If this is an initial mark pause, and we're not scanning
5182   // the entire code cache, we need to mark the oops in the
5183   // strong code root lists for the regions that are not in
5184   // the collection set.
5185   // Note all threads participate in this set of root tasks.
5186   double mark_strong_code_roots_ms = 0.0;
5187   if (g1_policy()->during_initial_mark_pause() && !(so & SO_CodeCache)) {
5188     double mark_strong_roots_start = os::elapsedTime();
5189     mark_strong_code_roots(worker_i);
5190     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5191   }
5192   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5193 
5194   // Now scan the complement of the collection set.
5195   if (scan_rs != NULL) {
5196     g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5197   }
5198   _process_strong_tasks->all_tasks_completed();
5199 }
5200 
5201 void
5202 G1CollectedHeap::g1_process_weak_roots(OopClosure* root_closure) {
5203   CodeBlobToOopClosure roots_in_blobs(root_closure, /*do_marking=*/ false);
5204   SharedHeap::process_weak_roots(root_closure, &roots_in_blobs);
5205 }
5206 
5207 // Weak Reference Processing support
5208 
5209 // An always "is_alive" closure that is used to preserve referents.
5210 // If the object is non-null then it's alive.  Used in the preservation
5211 // of referent objects that are pointed to by reference objects
5212 // discovered by the CM ref processor.
5213 class G1AlwaysAliveClosure: public BoolObjectClosure {
5214   G1CollectedHeap* _g1;
5215 public:
5216   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5217   bool do_object_b(oop p) {
5218     if (p != NULL) {
5219       return true;
5220     }
5221     return false;
5222   }
5223 };
5224 
5225 bool G1STWIsAliveClosure::do_object_b(oop p) {
5226   // An object is reachable if it is outside the collection set,
5227   // or is inside and copied.
5228   return !_g1->obj_in_cs(p) || p->is_forwarded();
5229 }
5230 
5231 // Non Copying Keep Alive closure
5232 class G1KeepAliveClosure: public OopClosure {
5233   G1CollectedHeap* _g1;
5234 public:
5235   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5236   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5237   void do_oop(      oop* p) {
5238     oop obj = *p;
5239 
5240     if (_g1->obj_in_cs(obj)) {
5241       assert( obj->is_forwarded(), "invariant" );
5242       *p = obj->forwardee();
5243     }
5244   }
5245 };
5246 
5247 // Copying Keep Alive closure - can be called from both
5248 // serial and parallel code as long as different worker
5249 // threads utilize different G1ParScanThreadState instances
5250 // and different queues.
5251 
5252 class G1CopyingKeepAliveClosure: public OopClosure {
5253   G1CollectedHeap*         _g1h;
5254   OopClosure*              _copy_non_heap_obj_cl;
5255   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5256   G1ParScanThreadState*    _par_scan_state;
5257 
5258 public:
5259   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5260                             OopClosure* non_heap_obj_cl,
5261                             OopsInHeapRegionClosure* metadata_obj_cl,
5262                             G1ParScanThreadState* pss):
5263     _g1h(g1h),
5264     _copy_non_heap_obj_cl(non_heap_obj_cl),
5265     _copy_metadata_obj_cl(metadata_obj_cl),
5266     _par_scan_state(pss)
5267   {}
5268 
5269   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5270   virtual void do_oop(      oop* p) { do_oop_work(p); }
5271 
5272   template <class T> void do_oop_work(T* p) {
5273     oop obj = oopDesc::load_decode_heap_oop(p);
5274 
5275     if (_g1h->obj_in_cs(obj)) {
5276       // If the referent object has been forwarded (either copied
5277       // to a new location or to itself in the event of an
5278       // evacuation failure) then we need to update the reference
5279       // field and, if both reference and referent are in the G1
5280       // heap, update the RSet for the referent.
5281       //
5282       // If the referent has not been forwarded then we have to keep
5283       // it alive by policy. Therefore we have copy the referent.
5284       //
5285       // If the reference field is in the G1 heap then we can push
5286       // on the PSS queue. When the queue is drained (after each
5287       // phase of reference processing) the object and it's followers
5288       // will be copied, the reference field set to point to the
5289       // new location, and the RSet updated. Otherwise we need to
5290       // use the the non-heap or metadata closures directly to copy
5291       // the referent object and update the pointer, while avoiding
5292       // updating the RSet.
5293 
5294       if (_g1h->is_in_g1_reserved(p)) {
5295         _par_scan_state->push_on_queue(p);
5296       } else {
5297         assert(!ClassLoaderDataGraph::contains((address)p),
5298                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5299                               PTR_FORMAT, p));
5300           _copy_non_heap_obj_cl->do_oop(p);
5301         }
5302       }
5303     }
5304 };
5305 
5306 // Serial drain queue closure. Called as the 'complete_gc'
5307 // closure for each discovered list in some of the
5308 // reference processing phases.
5309 
5310 class G1STWDrainQueueClosure: public VoidClosure {
5311 protected:
5312   G1CollectedHeap* _g1h;
5313   G1ParScanThreadState* _par_scan_state;
5314 
5315   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5316 
5317 public:
5318   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5319     _g1h(g1h),
5320     _par_scan_state(pss)
5321   { }
5322 
5323   void do_void() {
5324     G1ParScanThreadState* const pss = par_scan_state();
5325     pss->trim_queue();
5326   }
5327 };
5328 
5329 // Parallel Reference Processing closures
5330 
5331 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5332 // processing during G1 evacuation pauses.
5333 
5334 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5335 private:
5336   G1CollectedHeap*   _g1h;
5337   RefToScanQueueSet* _queues;
5338   FlexibleWorkGang*  _workers;
5339   int                _active_workers;
5340 
5341 public:
5342   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5343                         FlexibleWorkGang* workers,
5344                         RefToScanQueueSet *task_queues,
5345                         int n_workers) :
5346     _g1h(g1h),
5347     _queues(task_queues),
5348     _workers(workers),
5349     _active_workers(n_workers)
5350   {
5351     assert(n_workers > 0, "shouldn't call this otherwise");
5352   }
5353 
5354   // Executes the given task using concurrent marking worker threads.
5355   virtual void execute(ProcessTask& task);
5356   virtual void execute(EnqueueTask& task);
5357 };
5358 
5359 // Gang task for possibly parallel reference processing
5360 
5361 class G1STWRefProcTaskProxy: public AbstractGangTask {
5362   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5363   ProcessTask&     _proc_task;
5364   G1CollectedHeap* _g1h;
5365   RefToScanQueueSet *_task_queues;
5366   ParallelTaskTerminator* _terminator;
5367 
5368 public:
5369   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5370                      G1CollectedHeap* g1h,
5371                      RefToScanQueueSet *task_queues,
5372                      ParallelTaskTerminator* terminator) :
5373     AbstractGangTask("Process reference objects in parallel"),
5374     _proc_task(proc_task),
5375     _g1h(g1h),
5376     _task_queues(task_queues),
5377     _terminator(terminator)
5378   {}
5379 
5380   virtual void work(uint worker_id) {
5381     // The reference processing task executed by a single worker.
5382     ResourceMark rm;
5383     HandleMark   hm;
5384 
5385     G1STWIsAliveClosure is_alive(_g1h);
5386 
5387     G1ParScanThreadState pss(_g1h, worker_id);
5388 
5389     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5390     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5391     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5392 
5393     pss.set_evac_closure(&scan_evac_cl);
5394     pss.set_evac_failure_closure(&evac_failure_cl);
5395     pss.set_partial_scan_closure(&partial_scan_cl);
5396 
5397     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5398     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5399 
5400     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5401     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5402 
5403     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5404     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5405 
5406     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5407       // We also need to mark copied objects.
5408       copy_non_heap_cl = &copy_mark_non_heap_cl;
5409       copy_metadata_cl = &copy_mark_metadata_cl;
5410     }
5411 
5412     // Keep alive closure.
5413     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5414 
5415     // Complete GC closure
5416     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5417 
5418     // Call the reference processing task's work routine.
5419     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5420 
5421     // Note we cannot assert that the refs array is empty here as not all
5422     // of the processing tasks (specifically phase2 - pp2_work) execute
5423     // the complete_gc closure (which ordinarily would drain the queue) so
5424     // the queue may not be empty.
5425   }
5426 };
5427 
5428 // Driver routine for parallel reference processing.
5429 // Creates an instance of the ref processing gang
5430 // task and has the worker threads execute it.
5431 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5432   assert(_workers != NULL, "Need parallel worker threads.");
5433 
5434   ParallelTaskTerminator terminator(_active_workers, _queues);
5435   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5436 
5437   _g1h->set_par_threads(_active_workers);
5438   _workers->run_task(&proc_task_proxy);
5439   _g1h->set_par_threads(0);
5440 }
5441 
5442 // Gang task for parallel reference enqueueing.
5443 
5444 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5445   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5446   EnqueueTask& _enq_task;
5447 
5448 public:
5449   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5450     AbstractGangTask("Enqueue reference objects in parallel"),
5451     _enq_task(enq_task)
5452   { }
5453 
5454   virtual void work(uint worker_id) {
5455     _enq_task.work(worker_id);
5456   }
5457 };
5458 
5459 // Driver routine for parallel reference enqueueing.
5460 // Creates an instance of the ref enqueueing gang
5461 // task and has the worker threads execute it.
5462 
5463 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5464   assert(_workers != NULL, "Need parallel worker threads.");
5465 
5466   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5467 
5468   _g1h->set_par_threads(_active_workers);
5469   _workers->run_task(&enq_task_proxy);
5470   _g1h->set_par_threads(0);
5471 }
5472 
5473 // End of weak reference support closures
5474 
5475 // Abstract task used to preserve (i.e. copy) any referent objects
5476 // that are in the collection set and are pointed to by reference
5477 // objects discovered by the CM ref processor.
5478 
5479 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5480 protected:
5481   G1CollectedHeap* _g1h;
5482   RefToScanQueueSet      *_queues;
5483   ParallelTaskTerminator _terminator;
5484   uint _n_workers;
5485 
5486 public:
5487   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5488     AbstractGangTask("ParPreserveCMReferents"),
5489     _g1h(g1h),
5490     _queues(task_queues),
5491     _terminator(workers, _queues),
5492     _n_workers(workers)
5493   { }
5494 
5495   void work(uint worker_id) {
5496     ResourceMark rm;
5497     HandleMark   hm;
5498 
5499     G1ParScanThreadState            pss(_g1h, worker_id);
5500     G1ParScanHeapEvacClosure        scan_evac_cl(_g1h, &pss, NULL);
5501     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5502     G1ParScanPartialArrayClosure    partial_scan_cl(_g1h, &pss, NULL);
5503 
5504     pss.set_evac_closure(&scan_evac_cl);
5505     pss.set_evac_failure_closure(&evac_failure_cl);
5506     pss.set_partial_scan_closure(&partial_scan_cl);
5507 
5508     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5509 
5510 
5511     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5512     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5513 
5514     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5515     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5516 
5517     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5518     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5519 
5520     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5521       // We also need to mark copied objects.
5522       copy_non_heap_cl = &copy_mark_non_heap_cl;
5523       copy_metadata_cl = &copy_mark_metadata_cl;
5524     }
5525 
5526     // Is alive closure
5527     G1AlwaysAliveClosure always_alive(_g1h);
5528 
5529     // Copying keep alive closure. Applied to referent objects that need
5530     // to be copied.
5531     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5532 
5533     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5534 
5535     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5536     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5537 
5538     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5539     // So this must be true - but assert just in case someone decides to
5540     // change the worker ids.
5541     assert(0 <= worker_id && worker_id < limit, "sanity");
5542     assert(!rp->discovery_is_atomic(), "check this code");
5543 
5544     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5545     for (uint idx = worker_id; idx < limit; idx += stride) {
5546       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5547 
5548       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5549       while (iter.has_next()) {
5550         // Since discovery is not atomic for the CM ref processor, we
5551         // can see some null referent objects.
5552         iter.load_ptrs(DEBUG_ONLY(true));
5553         oop ref = iter.obj();
5554 
5555         // This will filter nulls.
5556         if (iter.is_referent_alive()) {
5557           iter.make_referent_alive();
5558         }
5559         iter.move_to_next();
5560       }
5561     }
5562 
5563     // Drain the queue - which may cause stealing
5564     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5565     drain_queue.do_void();
5566     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5567     assert(pss.refs()->is_empty(), "should be");
5568   }
5569 };
5570 
5571 // Weak Reference processing during an evacuation pause (part 1).
5572 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5573   double ref_proc_start = os::elapsedTime();
5574 
5575   ReferenceProcessor* rp = _ref_processor_stw;
5576   assert(rp->discovery_enabled(), "should have been enabled");
5577 
5578   // Any reference objects, in the collection set, that were 'discovered'
5579   // by the CM ref processor should have already been copied (either by
5580   // applying the external root copy closure to the discovered lists, or
5581   // by following an RSet entry).
5582   //
5583   // But some of the referents, that are in the collection set, that these
5584   // reference objects point to may not have been copied: the STW ref
5585   // processor would have seen that the reference object had already
5586   // been 'discovered' and would have skipped discovering the reference,
5587   // but would not have treated the reference object as a regular oop.
5588   // As a result the copy closure would not have been applied to the
5589   // referent object.
5590   //
5591   // We need to explicitly copy these referent objects - the references
5592   // will be processed at the end of remarking.
5593   //
5594   // We also need to do this copying before we process the reference
5595   // objects discovered by the STW ref processor in case one of these
5596   // referents points to another object which is also referenced by an
5597   // object discovered by the STW ref processor.
5598 
5599   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5600            no_of_gc_workers == workers()->active_workers(),
5601            "Need to reset active GC workers");
5602 
5603   set_par_threads(no_of_gc_workers);
5604   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5605                                                  no_of_gc_workers,
5606                                                  _task_queues);
5607 
5608   if (G1CollectedHeap::use_parallel_gc_threads()) {
5609     workers()->run_task(&keep_cm_referents);
5610   } else {
5611     keep_cm_referents.work(0);
5612   }
5613 
5614   set_par_threads(0);
5615 
5616   // Closure to test whether a referent is alive.
5617   G1STWIsAliveClosure is_alive(this);
5618 
5619   // Even when parallel reference processing is enabled, the processing
5620   // of JNI refs is serial and performed serially by the current thread
5621   // rather than by a worker. The following PSS will be used for processing
5622   // JNI refs.
5623 
5624   // Use only a single queue for this PSS.
5625   G1ParScanThreadState pss(this, 0);
5626 
5627   // We do not embed a reference processor in the copying/scanning
5628   // closures while we're actually processing the discovered
5629   // reference objects.
5630   G1ParScanHeapEvacClosure        scan_evac_cl(this, &pss, NULL);
5631   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5632   G1ParScanPartialArrayClosure    partial_scan_cl(this, &pss, NULL);
5633 
5634   pss.set_evac_closure(&scan_evac_cl);
5635   pss.set_evac_failure_closure(&evac_failure_cl);
5636   pss.set_partial_scan_closure(&partial_scan_cl);
5637 
5638   assert(pss.refs()->is_empty(), "pre-condition");
5639 
5640   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5641   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5642 
5643   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5644   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5645 
5646   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5647   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5648 
5649   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5650     // We also need to mark copied objects.
5651     copy_non_heap_cl = &copy_mark_non_heap_cl;
5652     copy_metadata_cl = &copy_mark_metadata_cl;
5653   }
5654 
5655   // Keep alive closure.
5656   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5657 
5658   // Serial Complete GC closure
5659   G1STWDrainQueueClosure drain_queue(this, &pss);
5660 
5661   // Setup the soft refs policy...
5662   rp->setup_policy(false);
5663 
5664   ReferenceProcessorStats stats;
5665   if (!rp->processing_is_mt()) {
5666     // Serial reference processing...
5667     stats = rp->process_discovered_references(&is_alive,
5668                                               &keep_alive,
5669                                               &drain_queue,
5670                                               NULL,
5671                                               _gc_timer_stw);
5672   } else {
5673     // Parallel reference processing
5674     assert(rp->num_q() == no_of_gc_workers, "sanity");
5675     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5676 
5677     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5678     stats = rp->process_discovered_references(&is_alive,
5679                                               &keep_alive,
5680                                               &drain_queue,
5681                                               &par_task_executor,
5682                                               _gc_timer_stw);
5683   }
5684 
5685   _gc_tracer_stw->report_gc_reference_stats(stats);
5686   // We have completed copying any necessary live referent objects
5687   // (that were not copied during the actual pause) so we can
5688   // retire any active alloc buffers
5689   pss.retire_alloc_buffers();
5690   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5691 
5692   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5693   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5694 }
5695 
5696 // Weak Reference processing during an evacuation pause (part 2).
5697 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5698   double ref_enq_start = os::elapsedTime();
5699 
5700   ReferenceProcessor* rp = _ref_processor_stw;
5701   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5702 
5703   // Now enqueue any remaining on the discovered lists on to
5704   // the pending list.
5705   if (!rp->processing_is_mt()) {
5706     // Serial reference processing...
5707     rp->enqueue_discovered_references();
5708   } else {
5709     // Parallel reference enqueueing
5710 
5711     assert(no_of_gc_workers == workers()->active_workers(),
5712            "Need to reset active workers");
5713     assert(rp->num_q() == no_of_gc_workers, "sanity");
5714     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5715 
5716     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5717     rp->enqueue_discovered_references(&par_task_executor);
5718   }
5719 
5720   rp->verify_no_references_recorded();
5721   assert(!rp->discovery_enabled(), "should have been disabled");
5722 
5723   // FIXME
5724   // CM's reference processing also cleans up the string and symbol tables.
5725   // Should we do that here also? We could, but it is a serial operation
5726   // and could significantly increase the pause time.
5727 
5728   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5729   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5730 }
5731 
5732 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5733   _expand_heap_after_alloc_failure = true;
5734   _evacuation_failed = false;
5735 
5736   // Should G1EvacuationFailureALot be in effect for this GC?
5737   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5738 
5739   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5740 
5741   // Disable the hot card cache.
5742   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5743   hot_card_cache->reset_hot_cache_claimed_index();
5744   hot_card_cache->set_use_cache(false);
5745 
5746   uint n_workers;
5747   if (G1CollectedHeap::use_parallel_gc_threads()) {
5748     n_workers =
5749       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5750                                      workers()->active_workers(),
5751                                      Threads::number_of_non_daemon_threads());
5752     assert(UseDynamicNumberOfGCThreads ||
5753            n_workers == workers()->total_workers(),
5754            "If not dynamic should be using all the  workers");
5755     workers()->set_active_workers(n_workers);
5756     set_par_threads(n_workers);
5757   } else {
5758     assert(n_par_threads() == 0,
5759            "Should be the original non-parallel value");
5760     n_workers = 1;
5761   }
5762 
5763   G1ParTask g1_par_task(this, _task_queues);
5764 
5765   init_for_evac_failure(NULL);
5766 
5767   rem_set()->prepare_for_younger_refs_iterate(true);
5768 
5769   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5770   double start_par_time_sec = os::elapsedTime();
5771   double end_par_time_sec;
5772 
5773   {
5774     StrongRootsScope srs(this);
5775 
5776     if (G1CollectedHeap::use_parallel_gc_threads()) {
5777       // The individual threads will set their evac-failure closures.
5778       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5779       // These tasks use ShareHeap::_process_strong_tasks
5780       assert(UseDynamicNumberOfGCThreads ||
5781              workers()->active_workers() == workers()->total_workers(),
5782              "If not dynamic should be using all the  workers");
5783       workers()->run_task(&g1_par_task);
5784     } else {
5785       g1_par_task.set_for_termination(n_workers);
5786       g1_par_task.work(0);
5787     }
5788     end_par_time_sec = os::elapsedTime();
5789 
5790     // Closing the inner scope will execute the destructor
5791     // for the StrongRootsScope object. We record the current
5792     // elapsed time before closing the scope so that time
5793     // taken for the SRS destructor is NOT included in the
5794     // reported parallel time.
5795   }
5796 
5797   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5798   g1_policy()->phase_times()->record_par_time(par_time_ms);
5799 
5800   double code_root_fixup_time_ms =
5801         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5802   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5803 
5804   set_par_threads(0);
5805 
5806   // Process any discovered reference objects - we have
5807   // to do this _before_ we retire the GC alloc regions
5808   // as we may have to copy some 'reachable' referent
5809   // objects (and their reachable sub-graphs) that were
5810   // not copied during the pause.
5811   process_discovered_references(n_workers);
5812 
5813   // Weak root processing.
5814   {
5815     G1STWIsAliveClosure is_alive(this);
5816     G1KeepAliveClosure keep_alive(this);
5817     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5818   }
5819 
5820   release_gc_alloc_regions(n_workers, evacuation_info);
5821   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5822 
5823   // Reset and re-enable the hot card cache.
5824   // Note the counts for the cards in the regions in the
5825   // collection set are reset when the collection set is freed.
5826   hot_card_cache->reset_hot_cache();
5827   hot_card_cache->set_use_cache(true);
5828 
5829   // Migrate the strong code roots attached to each region in
5830   // the collection set. Ideally we would like to do this
5831   // after we have finished the scanning/evacuation of the
5832   // strong code roots for a particular heap region.
5833   migrate_strong_code_roots();
5834 
5835   if (g1_policy()->during_initial_mark_pause()) {
5836     // Reset the claim values set during marking the strong code roots
5837     reset_heap_region_claim_values();
5838   }
5839 
5840   finalize_for_evac_failure();
5841 
5842   if (evacuation_failed()) {
5843     remove_self_forwarding_pointers();
5844 
5845     // Reset the G1EvacuationFailureALot counters and flags
5846     // Note: the values are reset only when an actual
5847     // evacuation failure occurs.
5848     NOT_PRODUCT(reset_evacuation_should_fail();)
5849   }
5850 
5851   // Enqueue any remaining references remaining on the STW
5852   // reference processor's discovered lists. We need to do
5853   // this after the card table is cleaned (and verified) as
5854   // the act of enqueueing entries on to the pending list
5855   // will log these updates (and dirty their associated
5856   // cards). We need these updates logged to update any
5857   // RSets.
5858   enqueue_discovered_references(n_workers);
5859 
5860   if (G1DeferredRSUpdate) {
5861     RedirtyLoggedCardTableEntryFastClosure redirty;
5862     dirty_card_queue_set().set_closure(&redirty);
5863     dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5864 
5865     DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5866     dcq.merge_bufferlists(&dirty_card_queue_set());
5867     assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5868   }
5869   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5870 }
5871 
5872 void G1CollectedHeap::free_region_if_empty(HeapRegion* hr,
5873                                      size_t* pre_used,
5874                                      FreeRegionList* free_list,
5875                                      OldRegionSet* old_proxy_set,
5876                                      HumongousRegionSet* humongous_proxy_set,
5877                                      HRRSCleanupTask* hrrs_cleanup_task,
5878                                      bool par) {
5879   if (hr->used() > 0 && hr->max_live_bytes() == 0 && !hr->is_young()) {
5880     if (hr->isHumongous()) {
5881       assert(hr->startsHumongous(), "we should only see starts humongous");
5882       free_humongous_region(hr, pre_used, free_list, humongous_proxy_set, par);
5883     } else {
5884       _old_set.remove_with_proxy(hr, old_proxy_set);
5885       free_region(hr, pre_used, free_list, par);
5886     }
5887   } else {
5888     hr->rem_set()->do_cleanup_work(hrrs_cleanup_task);
5889   }
5890 }
5891 
5892 void G1CollectedHeap::free_region(HeapRegion* hr,
5893                                   size_t* pre_used,
5894                                   FreeRegionList* free_list,
5895                                   bool par) {
5896   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5897   assert(!hr->is_empty(), "the region should not be empty");
5898   assert(free_list != NULL, "pre-condition");
5899 
5900   // Clear the card counts for this region.
5901   // Note: we only need to do this if the region is not young
5902   // (since we don't refine cards in young regions).
5903   if (!hr->is_young()) {
5904     _cg1r->hot_card_cache()->reset_card_counts(hr);
5905   }
5906   *pre_used += hr->used();
5907   hr->hr_clear(par, true /* clear_space */);
5908   free_list->add_as_head(hr);
5909 }
5910 
5911 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5912                                      size_t* pre_used,
5913                                      FreeRegionList* free_list,
5914                                      HumongousRegionSet* humongous_proxy_set,
5915                                      bool par) {
5916   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5917   assert(free_list != NULL, "pre-condition");
5918   assert(humongous_proxy_set != NULL, "pre-condition");
5919 
5920   size_t hr_used = hr->used();
5921   size_t hr_capacity = hr->capacity();
5922   size_t hr_pre_used = 0;
5923   _humongous_set.remove_with_proxy(hr, humongous_proxy_set);
5924   // We need to read this before we make the region non-humongous,
5925   // otherwise the information will be gone.
5926   uint last_index = hr->last_hc_index();
5927   hr->set_notHumongous();
5928   free_region(hr, &hr_pre_used, free_list, par);
5929 
5930   uint i = hr->hrs_index() + 1;
5931   while (i < last_index) {
5932     HeapRegion* curr_hr = region_at(i);
5933     assert(curr_hr->continuesHumongous(), "invariant");
5934     curr_hr->set_notHumongous();
5935     free_region(curr_hr, &hr_pre_used, free_list, par);
5936     i += 1;
5937   }
5938   assert(hr_pre_used == hr_used,
5939          err_msg("hr_pre_used: "SIZE_FORMAT" and hr_used: "SIZE_FORMAT" "
5940                  "should be the same", hr_pre_used, hr_used));
5941   *pre_used += hr_pre_used;
5942 }
5943 
5944 void G1CollectedHeap::update_sets_after_freeing_regions(size_t pre_used,
5945                                        FreeRegionList* free_list,
5946                                        OldRegionSet* old_proxy_set,
5947                                        HumongousRegionSet* humongous_proxy_set,
5948                                        bool par) {
5949   if (pre_used > 0) {
5950     Mutex* lock = (par) ? ParGCRareEvent_lock : NULL;
5951     MutexLockerEx x(lock, Mutex::_no_safepoint_check_flag);
5952     assert(_summary_bytes_used >= pre_used,
5953            err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" "
5954                    "should be >= pre_used: "SIZE_FORMAT,
5955                    _summary_bytes_used, pre_used));
5956     _summary_bytes_used -= pre_used;
5957   }
5958   if (free_list != NULL && !free_list->is_empty()) {
5959     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5960     _free_list.add_as_head(free_list);
5961   }
5962   if (old_proxy_set != NULL && !old_proxy_set->is_empty()) {
5963     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5964     _old_set.update_from_proxy(old_proxy_set);
5965   }
5966   if (humongous_proxy_set != NULL && !humongous_proxy_set->is_empty()) {
5967     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5968     _humongous_set.update_from_proxy(humongous_proxy_set);
5969   }
5970 }
5971 
5972 class G1ParCleanupCTTask : public AbstractGangTask {
5973   CardTableModRefBS* _ct_bs;
5974   G1CollectedHeap* _g1h;
5975   HeapRegion* volatile _su_head;
5976 public:
5977   G1ParCleanupCTTask(CardTableModRefBS* ct_bs,
5978                      G1CollectedHeap* g1h) :
5979     AbstractGangTask("G1 Par Cleanup CT Task"),
5980     _ct_bs(ct_bs), _g1h(g1h) { }
5981 
5982   void work(uint worker_id) {
5983     HeapRegion* r;
5984     while (r = _g1h->pop_dirty_cards_region()) {
5985       clear_cards(r);
5986     }
5987   }
5988 
5989   void clear_cards(HeapRegion* r) {
5990     // Cards of the survivors should have already been dirtied.
5991     if (!r->is_survivor()) {
5992       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5993     }
5994   }
5995 };
5996 
5997 #ifndef PRODUCT
5998 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5999   G1CollectedHeap* _g1h;
6000   CardTableModRefBS* _ct_bs;
6001 public:
6002   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, CardTableModRefBS* ct_bs)
6003     : _g1h(g1h), _ct_bs(ct_bs) { }
6004   virtual bool doHeapRegion(HeapRegion* r) {
6005     if (r->is_survivor()) {
6006       _g1h->verify_dirty_region(r);
6007     } else {
6008       _g1h->verify_not_dirty_region(r);
6009     }
6010     return false;
6011   }
6012 };
6013 
6014 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6015   // All of the region should be clean.
6016   CardTableModRefBS* ct_bs = (CardTableModRefBS*)barrier_set();
6017   MemRegion mr(hr->bottom(), hr->end());
6018   ct_bs->verify_not_dirty_region(mr);
6019 }
6020 
6021 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6022   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6023   // dirty allocated blocks as they allocate them. The thread that
6024   // retires each region and replaces it with a new one will do a
6025   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6026   // not dirty that area (one less thing to have to do while holding
6027   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6028   // is dirty.
6029   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
6030   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6031   ct_bs->verify_dirty_region(mr);
6032 }
6033 
6034 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6035   CardTableModRefBS* ct_bs = (CardTableModRefBS*) barrier_set();
6036   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6037     verify_dirty_region(hr);
6038   }
6039 }
6040 
6041 void G1CollectedHeap::verify_dirty_young_regions() {
6042   verify_dirty_young_list(_young_list->first_region());
6043 }
6044 #endif
6045 
6046 void G1CollectedHeap::cleanUpCardTable() {
6047   CardTableModRefBS* ct_bs = (CardTableModRefBS*) (barrier_set());
6048   double start = os::elapsedTime();
6049 
6050   {
6051     // Iterate over the dirty cards region list.
6052     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6053 
6054     if (G1CollectedHeap::use_parallel_gc_threads()) {
6055       set_par_threads();
6056       workers()->run_task(&cleanup_task);
6057       set_par_threads(0);
6058     } else {
6059       while (_dirty_cards_region_list) {
6060         HeapRegion* r = _dirty_cards_region_list;
6061         cleanup_task.clear_cards(r);
6062         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6063         if (_dirty_cards_region_list == r) {
6064           // The last region.
6065           _dirty_cards_region_list = NULL;
6066         }
6067         r->set_next_dirty_cards_region(NULL);
6068       }
6069     }
6070 #ifndef PRODUCT
6071     if (G1VerifyCTCleanup || VerifyAfterGC) {
6072       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6073       heap_region_iterate(&cleanup_verifier);
6074     }
6075 #endif
6076   }
6077 
6078   double elapsed = os::elapsedTime() - start;
6079   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6080 }
6081 
6082 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6083   size_t pre_used = 0;
6084   FreeRegionList local_free_list("Local List for CSet Freeing");
6085 
6086   double young_time_ms     = 0.0;
6087   double non_young_time_ms = 0.0;
6088 
6089   // Since the collection set is a superset of the the young list,
6090   // all we need to do to clear the young list is clear its
6091   // head and length, and unlink any young regions in the code below
6092   _young_list->clear();
6093 
6094   G1CollectorPolicy* policy = g1_policy();
6095 
6096   double start_sec = os::elapsedTime();
6097   bool non_young = true;
6098 
6099   HeapRegion* cur = cs_head;
6100   int age_bound = -1;
6101   size_t rs_lengths = 0;
6102 
6103   while (cur != NULL) {
6104     assert(!is_on_master_free_list(cur), "sanity");
6105     if (non_young) {
6106       if (cur->is_young()) {
6107         double end_sec = os::elapsedTime();
6108         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6109         non_young_time_ms += elapsed_ms;
6110 
6111         start_sec = os::elapsedTime();
6112         non_young = false;
6113       }
6114     } else {
6115       if (!cur->is_young()) {
6116         double end_sec = os::elapsedTime();
6117         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6118         young_time_ms += elapsed_ms;
6119 
6120         start_sec = os::elapsedTime();
6121         non_young = true;
6122       }
6123     }
6124 
6125     rs_lengths += cur->rem_set()->occupied();
6126 
6127     HeapRegion* next = cur->next_in_collection_set();
6128     assert(cur->in_collection_set(), "bad CS");
6129     cur->set_next_in_collection_set(NULL);
6130     cur->set_in_collection_set(false);
6131 
6132     if (cur->is_young()) {
6133       int index = cur->young_index_in_cset();
6134       assert(index != -1, "invariant");
6135       assert((uint) index < policy->young_cset_region_length(), "invariant");
6136       size_t words_survived = _surviving_young_words[index];
6137       cur->record_surv_words_in_group(words_survived);
6138 
6139       // At this point the we have 'popped' cur from the collection set
6140       // (linked via next_in_collection_set()) but it is still in the
6141       // young list (linked via next_young_region()). Clear the
6142       // _next_young_region field.
6143       cur->set_next_young_region(NULL);
6144     } else {
6145       int index = cur->young_index_in_cset();
6146       assert(index == -1, "invariant");
6147     }
6148 
6149     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6150             (!cur->is_young() && cur->young_index_in_cset() == -1),
6151             "invariant" );
6152 
6153     if (!cur->evacuation_failed()) {
6154       MemRegion used_mr = cur->used_region();
6155 
6156       // And the region is empty.
6157       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6158       free_region(cur, &pre_used, &local_free_list, false /* par */);
6159     } else {
6160       cur->uninstall_surv_rate_group();
6161       if (cur->is_young()) {
6162         cur->set_young_index_in_cset(-1);
6163       }
6164       cur->set_not_young();
6165       cur->set_evacuation_failed(false);
6166       // The region is now considered to be old.
6167       _old_set.add(cur);
6168       evacuation_info.increment_collectionset_used_after(cur->used());
6169     }
6170     cur = next;
6171   }
6172 
6173   evacuation_info.set_regions_freed(local_free_list.length());
6174   policy->record_max_rs_lengths(rs_lengths);
6175   policy->cset_regions_freed();
6176 
6177   double end_sec = os::elapsedTime();
6178   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6179 
6180   if (non_young) {
6181     non_young_time_ms += elapsed_ms;
6182   } else {
6183     young_time_ms += elapsed_ms;
6184   }
6185 
6186   update_sets_after_freeing_regions(pre_used, &local_free_list,
6187                                     NULL /* old_proxy_set */,
6188                                     NULL /* humongous_proxy_set */,
6189                                     false /* par */);
6190   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6191   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6192 }
6193 
6194 // This routine is similar to the above but does not record
6195 // any policy statistics or update free lists; we are abandoning
6196 // the current incremental collection set in preparation of a
6197 // full collection. After the full GC we will start to build up
6198 // the incremental collection set again.
6199 // This is only called when we're doing a full collection
6200 // and is immediately followed by the tearing down of the young list.
6201 
6202 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6203   HeapRegion* cur = cs_head;
6204 
6205   while (cur != NULL) {
6206     HeapRegion* next = cur->next_in_collection_set();
6207     assert(cur->in_collection_set(), "bad CS");
6208     cur->set_next_in_collection_set(NULL);
6209     cur->set_in_collection_set(false);
6210     cur->set_young_index_in_cset(-1);
6211     cur = next;
6212   }
6213 }
6214 
6215 void G1CollectedHeap::set_free_regions_coming() {
6216   if (G1ConcRegionFreeingVerbose) {
6217     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6218                            "setting free regions coming");
6219   }
6220 
6221   assert(!free_regions_coming(), "pre-condition");
6222   _free_regions_coming = true;
6223 }
6224 
6225 void G1CollectedHeap::reset_free_regions_coming() {
6226   assert(free_regions_coming(), "pre-condition");
6227 
6228   {
6229     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6230     _free_regions_coming = false;
6231     SecondaryFreeList_lock->notify_all();
6232   }
6233 
6234   if (G1ConcRegionFreeingVerbose) {
6235     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6236                            "reset free regions coming");
6237   }
6238 }
6239 
6240 void G1CollectedHeap::wait_while_free_regions_coming() {
6241   // Most of the time we won't have to wait, so let's do a quick test
6242   // first before we take the lock.
6243   if (!free_regions_coming()) {
6244     return;
6245   }
6246 
6247   if (G1ConcRegionFreeingVerbose) {
6248     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6249                            "waiting for free regions");
6250   }
6251 
6252   {
6253     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6254     while (free_regions_coming()) {
6255       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6256     }
6257   }
6258 
6259   if (G1ConcRegionFreeingVerbose) {
6260     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6261                            "done waiting for free regions");
6262   }
6263 }
6264 
6265 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6266   assert(heap_lock_held_for_gc(),
6267               "the heap lock should already be held by or for this thread");
6268   _young_list->push_region(hr);
6269 }
6270 
6271 class NoYoungRegionsClosure: public HeapRegionClosure {
6272 private:
6273   bool _success;
6274 public:
6275   NoYoungRegionsClosure() : _success(true) { }
6276   bool doHeapRegion(HeapRegion* r) {
6277     if (r->is_young()) {
6278       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6279                              r->bottom(), r->end());
6280       _success = false;
6281     }
6282     return false;
6283   }
6284   bool success() { return _success; }
6285 };
6286 
6287 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6288   bool ret = _young_list->check_list_empty(check_sample);
6289 
6290   if (check_heap) {
6291     NoYoungRegionsClosure closure;
6292     heap_region_iterate(&closure);
6293     ret = ret && closure.success();
6294   }
6295 
6296   return ret;
6297 }
6298 
6299 class TearDownRegionSetsClosure : public HeapRegionClosure {
6300 private:
6301   OldRegionSet *_old_set;
6302 
6303 public:
6304   TearDownRegionSetsClosure(OldRegionSet* old_set) : _old_set(old_set) { }
6305 
6306   bool doHeapRegion(HeapRegion* r) {
6307     if (r->is_empty()) {
6308       // We ignore empty regions, we'll empty the free list afterwards
6309     } else if (r->is_young()) {
6310       // We ignore young regions, we'll empty the young list afterwards
6311     } else if (r->isHumongous()) {
6312       // We ignore humongous regions, we're not tearing down the
6313       // humongous region set
6314     } else {
6315       // The rest should be old
6316       _old_set->remove(r);
6317     }
6318     return false;
6319   }
6320 
6321   ~TearDownRegionSetsClosure() {
6322     assert(_old_set->is_empty(), "post-condition");
6323   }
6324 };
6325 
6326 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6327   assert_at_safepoint(true /* should_be_vm_thread */);
6328 
6329   if (!free_list_only) {
6330     TearDownRegionSetsClosure cl(&_old_set);
6331     heap_region_iterate(&cl);
6332 
6333     // Need to do this after the heap iteration to be able to
6334     // recognize the young regions and ignore them during the iteration.
6335     _young_list->empty_list();
6336   }
6337   _free_list.remove_all();
6338 }
6339 
6340 class RebuildRegionSetsClosure : public HeapRegionClosure {
6341 private:
6342   bool            _free_list_only;
6343   OldRegionSet*   _old_set;
6344   FreeRegionList* _free_list;
6345   size_t          _total_used;
6346 
6347 public:
6348   RebuildRegionSetsClosure(bool free_list_only,
6349                            OldRegionSet* old_set, FreeRegionList* free_list) :
6350     _free_list_only(free_list_only),
6351     _old_set(old_set), _free_list(free_list), _total_used(0) {
6352     assert(_free_list->is_empty(), "pre-condition");
6353     if (!free_list_only) {
6354       assert(_old_set->is_empty(), "pre-condition");
6355     }
6356   }
6357 
6358   bool doHeapRegion(HeapRegion* r) {
6359     if (r->continuesHumongous()) {
6360       return false;
6361     }
6362 
6363     if (r->is_empty()) {
6364       // Add free regions to the free list
6365       _free_list->add_as_tail(r);
6366     } else if (!_free_list_only) {
6367       assert(!r->is_young(), "we should not come across young regions");
6368 
6369       if (r->isHumongous()) {
6370         // We ignore humongous regions, we left the humongous set unchanged
6371       } else {
6372         // The rest should be old, add them to the old set
6373         _old_set->add(r);
6374       }
6375       _total_used += r->used();
6376     }
6377 
6378     return false;
6379   }
6380 
6381   size_t total_used() {
6382     return _total_used;
6383   }
6384 };
6385 
6386 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6387   assert_at_safepoint(true /* should_be_vm_thread */);
6388 
6389   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6390   heap_region_iterate(&cl);
6391 
6392   if (!free_list_only) {
6393     _summary_bytes_used = cl.total_used();
6394   }
6395   assert(_summary_bytes_used == recalculate_used(),
6396          err_msg("inconsistent _summary_bytes_used, "
6397                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6398                  _summary_bytes_used, recalculate_used()));
6399 }
6400 
6401 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6402   _refine_cte_cl->set_concurrent(concurrent);
6403 }
6404 
6405 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6406   HeapRegion* hr = heap_region_containing(p);
6407   if (hr == NULL) {
6408     return false;
6409   } else {
6410     return hr->is_in(p);
6411   }
6412 }
6413 
6414 // Methods for the mutator alloc region
6415 
6416 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6417                                                       bool force) {
6418   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6419   assert(!force || g1_policy()->can_expand_young_list(),
6420          "if force is true we should be able to expand the young list");
6421   bool young_list_full = g1_policy()->is_young_list_full();
6422   if (force || !young_list_full) {
6423     HeapRegion* new_alloc_region = new_region(word_size,
6424                                               false /* do_expand */);
6425     if (new_alloc_region != NULL) {
6426       set_region_short_lived_locked(new_alloc_region);
6427       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6428       return new_alloc_region;
6429     }
6430   }
6431   return NULL;
6432 }
6433 
6434 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6435                                                   size_t allocated_bytes) {
6436   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6437   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6438 
6439   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6440   _summary_bytes_used += allocated_bytes;
6441   _hr_printer.retire(alloc_region);
6442   // We update the eden sizes here, when the region is retired,
6443   // instead of when it's allocated, since this is the point that its
6444   // used space has been recored in _summary_bytes_used.
6445   g1mm()->update_eden_size();
6446 }
6447 
6448 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6449                                                     bool force) {
6450   return _g1h->new_mutator_alloc_region(word_size, force);
6451 }
6452 
6453 void G1CollectedHeap::set_par_threads() {
6454   // Don't change the number of workers.  Use the value previously set
6455   // in the workgroup.
6456   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6457   uint n_workers = workers()->active_workers();
6458   assert(UseDynamicNumberOfGCThreads ||
6459            n_workers == workers()->total_workers(),
6460       "Otherwise should be using the total number of workers");
6461   if (n_workers == 0) {
6462     assert(false, "Should have been set in prior evacuation pause.");
6463     n_workers = ParallelGCThreads;
6464     workers()->set_active_workers(n_workers);
6465   }
6466   set_par_threads(n_workers);
6467 }
6468 
6469 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6470                                        size_t allocated_bytes) {
6471   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6472 }
6473 
6474 // Methods for the GC alloc regions
6475 
6476 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6477                                                  uint count,
6478                                                  GCAllocPurpose ap) {
6479   assert(FreeList_lock->owned_by_self(), "pre-condition");
6480 
6481   if (count < g1_policy()->max_regions(ap)) {
6482     HeapRegion* new_alloc_region = new_region(word_size,
6483                                               true /* do_expand */);
6484     if (new_alloc_region != NULL) {
6485       // We really only need to do this for old regions given that we
6486       // should never scan survivors. But it doesn't hurt to do it
6487       // for survivors too.
6488       new_alloc_region->set_saved_mark();
6489       if (ap == GCAllocForSurvived) {
6490         new_alloc_region->set_survivor();
6491         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6492       } else {
6493         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6494       }
6495       bool during_im = g1_policy()->during_initial_mark_pause();
6496       new_alloc_region->note_start_of_copying(during_im);
6497       return new_alloc_region;
6498     } else {
6499       g1_policy()->note_alloc_region_limit_reached(ap);
6500     }
6501   }
6502   return NULL;
6503 }
6504 
6505 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6506                                              size_t allocated_bytes,
6507                                              GCAllocPurpose ap) {
6508   bool during_im = g1_policy()->during_initial_mark_pause();
6509   alloc_region->note_end_of_copying(during_im);
6510   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6511   if (ap == GCAllocForSurvived) {
6512     young_list()->add_survivor_region(alloc_region);
6513   } else {
6514     _old_set.add(alloc_region);
6515   }
6516   _hr_printer.retire(alloc_region);
6517 }
6518 
6519 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6520                                                        bool force) {
6521   assert(!force, "not supported for GC alloc regions");
6522   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6523 }
6524 
6525 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6526                                           size_t allocated_bytes) {
6527   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6528                                GCAllocForSurvived);
6529 }
6530 
6531 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6532                                                   bool force) {
6533   assert(!force, "not supported for GC alloc regions");
6534   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6535 }
6536 
6537 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6538                                      size_t allocated_bytes) {
6539   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6540                                GCAllocForTenured);
6541 }
6542 // Heap region set verification
6543 
6544 class VerifyRegionListsClosure : public HeapRegionClosure {
6545 private:
6546   FreeRegionList*     _free_list;
6547   OldRegionSet*       _old_set;
6548   HumongousRegionSet* _humongous_set;
6549   uint                _region_count;
6550 
6551 public:
6552   VerifyRegionListsClosure(OldRegionSet* old_set,
6553                            HumongousRegionSet* humongous_set,
6554                            FreeRegionList* free_list) :
6555     _old_set(old_set), _humongous_set(humongous_set),
6556     _free_list(free_list), _region_count(0) { }
6557 
6558   uint region_count() { return _region_count; }
6559 
6560   bool doHeapRegion(HeapRegion* hr) {
6561     _region_count += 1;
6562 
6563     if (hr->continuesHumongous()) {
6564       return false;
6565     }
6566 
6567     if (hr->is_young()) {
6568       // TODO
6569     } else if (hr->startsHumongous()) {
6570       _humongous_set->verify_next_region(hr);
6571     } else if (hr->is_empty()) {
6572       _free_list->verify_next_region(hr);
6573     } else {
6574       _old_set->verify_next_region(hr);
6575     }
6576     return false;
6577   }
6578 };
6579 
6580 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6581                                              HeapWord* bottom) {
6582   HeapWord* end = bottom + HeapRegion::GrainWords;
6583   MemRegion mr(bottom, end);
6584   assert(_g1_reserved.contains(mr), "invariant");
6585   // This might return NULL if the allocation fails
6586   return new HeapRegion(hrs_index, _bot_shared, mr);
6587 }
6588 
6589 void G1CollectedHeap::verify_region_sets() {
6590   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6591 
6592   // First, check the explicit lists.
6593   _free_list.verify();
6594   {
6595     // Given that a concurrent operation might be adding regions to
6596     // the secondary free list we have to take the lock before
6597     // verifying it.
6598     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6599     _secondary_free_list.verify();
6600   }
6601   _old_set.verify();
6602   _humongous_set.verify();
6603 
6604   // If a concurrent region freeing operation is in progress it will
6605   // be difficult to correctly attributed any free regions we come
6606   // across to the correct free list given that they might belong to
6607   // one of several (free_list, secondary_free_list, any local lists,
6608   // etc.). So, if that's the case we will skip the rest of the
6609   // verification operation. Alternatively, waiting for the concurrent
6610   // operation to complete will have a non-trivial effect on the GC's
6611   // operation (no concurrent operation will last longer than the
6612   // interval between two calls to verification) and it might hide
6613   // any issues that we would like to catch during testing.
6614   if (free_regions_coming()) {
6615     return;
6616   }
6617 
6618   // Make sure we append the secondary_free_list on the free_list so
6619   // that all free regions we will come across can be safely
6620   // attributed to the free_list.
6621   append_secondary_free_list_if_not_empty_with_lock();
6622 
6623   // Finally, make sure that the region accounting in the lists is
6624   // consistent with what we see in the heap.
6625   _old_set.verify_start();
6626   _humongous_set.verify_start();
6627   _free_list.verify_start();
6628 
6629   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6630   heap_region_iterate(&cl);
6631 
6632   _old_set.verify_end();
6633   _humongous_set.verify_end();
6634   _free_list.verify_end();
6635 }
6636 
6637 // Optimized nmethod scanning
6638 
6639 class RegisterNMethodOopClosure: public OopClosure {
6640   G1CollectedHeap* _g1h;
6641   nmethod* _nm;
6642 
6643   template <class T> void do_oop_work(T* p) {
6644     T heap_oop = oopDesc::load_heap_oop(p);
6645     if (!oopDesc::is_null(heap_oop)) {
6646       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6647       HeapRegion* hr = _g1h->heap_region_containing(obj);
6648       assert(!hr->isHumongous(), "code root in humongous region?");
6649 
6650       // HeapRegion::add_strong_code_root() avoids adding duplicate
6651       // entries but having duplicates is  OK since we "mark" nmethods
6652       // as visited when we scan the strong code root lists during the GC.
6653       hr->add_strong_code_root(_nm);
6654       assert(hr->rem_set()->strong_code_roots_list_contains(_nm), "add failed?");
6655     }
6656   }
6657 
6658 public:
6659   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6660     _g1h(g1h), _nm(nm) {}
6661 
6662   void do_oop(oop* p)       { do_oop_work(p); }
6663   void do_oop(narrowOop* p) { do_oop_work(p); }
6664 };
6665 
6666 class UnregisterNMethodOopClosure: public OopClosure {
6667   G1CollectedHeap* _g1h;
6668   nmethod* _nm;
6669 
6670   template <class T> void do_oop_work(T* p) {
6671     T heap_oop = oopDesc::load_heap_oop(p);
6672     if (!oopDesc::is_null(heap_oop)) {
6673       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6674       HeapRegion* hr = _g1h->heap_region_containing(obj);
6675       assert(!hr->isHumongous(), "code root in humongous region?");
6676       hr->remove_strong_code_root(_nm);
6677       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm), "remove failed?");
6678     }
6679   }
6680 
6681 public:
6682   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6683     _g1h(g1h), _nm(nm) {}
6684 
6685   void do_oop(oop* p)       { do_oop_work(p); }
6686   void do_oop(narrowOop* p) { do_oop_work(p); }
6687 };
6688 
6689 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6690   CollectedHeap::register_nmethod(nm);
6691 
6692   guarantee(nm != NULL, "sanity");
6693   RegisterNMethodOopClosure reg_cl(this, nm);
6694   nm->oops_do(&reg_cl);
6695 }
6696 
6697 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6698   CollectedHeap::unregister_nmethod(nm);
6699 
6700   guarantee(nm != NULL, "sanity");
6701   UnregisterNMethodOopClosure reg_cl(this, nm);
6702   nm->oops_do(&reg_cl, true);
6703 }
6704 
6705 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6706 public:
6707   bool doHeapRegion(HeapRegion *hr) {
6708     assert(!hr->isHumongous(), "humongous region in collection set?");
6709     hr->migrate_strong_code_roots();
6710     return false;
6711   }
6712 };
6713 
6714 void G1CollectedHeap::migrate_strong_code_roots() {
6715   MigrateCodeRootsHeapRegionClosure cl;
6716   double migrate_start = os::elapsedTime();
6717   collection_set_iterate(&cl);
6718   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6719   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6720 }
6721 
6722 // Mark all the code roots that point into regions *not* in the
6723 // collection set.
6724 //
6725 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6726 // walking the the code roots lists of regions not in the collection
6727 // set. Suppose we have an nmethod (M) that points to objects in two
6728 // separate regions - one in the collection set (R1) and one not (R2).
6729 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6730 // nmethod M when walking the code roots for R1. When we come to scan
6731 // the code roots for R2, we would see that M is already marked and it
6732 // would be skipped and the objects in R2 that are referenced from M
6733 // would not be evacuated.
6734 
6735 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6736 
6737   class MarkStrongCodeRootOopClosure: public OopClosure {
6738     ConcurrentMark* _cm;
6739     HeapRegion* _hr;
6740     uint _worker_id;
6741 
6742     template <class T> void do_oop_work(T* p) {
6743       T heap_oop = oopDesc::load_heap_oop(p);
6744       if (!oopDesc::is_null(heap_oop)) {
6745         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6746         // Only mark objects in the region (which is assumed
6747         // to be not in the collection set).
6748         if (_hr->is_in(obj)) {
6749           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6750         }
6751       }
6752     }
6753 
6754   public:
6755     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6756       _cm(cm), _hr(hr), _worker_id(worker_id) {
6757       assert(!_hr->in_collection_set(), "sanity");
6758     }
6759 
6760     void do_oop(narrowOop* p) { do_oop_work(p); }
6761     void do_oop(oop* p)       { do_oop_work(p); }
6762   };
6763 
6764   MarkStrongCodeRootOopClosure _oop_cl;
6765 
6766 public:
6767   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6768     _oop_cl(cm, hr, worker_id) {}
6769 
6770   void do_code_blob(CodeBlob* cb) {
6771     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6772     if (nm != NULL) {
6773       nm->oops_do(&_oop_cl);
6774     }
6775   }
6776 };
6777 
6778 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6779   G1CollectedHeap* _g1h;
6780   uint _worker_id;
6781 
6782 public:
6783   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6784     _g1h(g1h), _worker_id(worker_id) {}
6785 
6786   bool doHeapRegion(HeapRegion *hr) {
6787     HeapRegionRemSet* hrrs = hr->rem_set();
6788     if (hr->isHumongous()) {
6789       // Code roots should never be attached to a humongous region
6790       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
6791       return false;
6792     }
6793 
6794     if (hr->in_collection_set()) {
6795       // Don't mark code roots into regions in the collection set here.
6796       // They will be marked when we scan them.
6797       return false;
6798     }
6799 
6800     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6801     hr->strong_code_roots_do(&cb_cl);
6802     return false;
6803   }
6804 };
6805 
6806 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6807   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6808   if (G1CollectedHeap::use_parallel_gc_threads()) {
6809     heap_region_par_iterate_chunked(&cl,
6810                                     worker_id,
6811                                     workers()->active_workers(),
6812                                     HeapRegion::ParMarkRootClaimValue);
6813   } else {
6814     heap_region_iterate(&cl);
6815   }
6816 }
6817 
6818 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6819   G1CollectedHeap* _g1h;
6820 
6821 public:
6822   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6823     _g1h(g1h) {}
6824 
6825   void do_code_blob(CodeBlob* cb) {
6826     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6827     if (nm == NULL) {
6828       return;
6829     }
6830 
6831     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
6832       _g1h->register_nmethod(nm);
6833     }
6834   }
6835 };
6836 
6837 void G1CollectedHeap::rebuild_strong_code_roots() {
6838   RebuildStrongCodeRootClosure blob_cl(this);
6839   CodeCache::blobs_do(&blob_cl);
6840 }