1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/shared/adaptiveSizePolicy.hpp"
  27 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  28 #include "gc_implementation/shared/vmGCOperations.hpp"
  29 #include "memory/cardTableRS.hpp"
  30 #include "memory/collectorPolicy.hpp"
  31 #include "memory/gcLocker.inline.hpp"
  32 #include "memory/genCollectedHeap.hpp"
  33 #include "memory/generationSpec.hpp"
  34 #include "memory/space.hpp"
  35 #include "memory/universe.hpp"
  36 #include "runtime/arguments.hpp"
  37 #include "runtime/globals_extension.hpp"
  38 #include "runtime/handles.inline.hpp"
  39 #include "runtime/java.hpp"
  40 #include "runtime/thread.inline.hpp"
  41 #include "runtime/vmThread.hpp"
  42 #include "utilities/macros.hpp"
  43 #if INCLUDE_ALL_GCS
  44 #include "gc_implementation/concurrentMarkSweep/cmsAdaptiveSizePolicy.hpp"
  45 #include "gc_implementation/concurrentMarkSweep/cmsGCAdaptivePolicyCounters.hpp"
  46 #endif // INCLUDE_ALL_GCS
  47 
  48 // CollectorPolicy methods.
  49 
  50 void CollectorPolicy::initialize_flags() {
  51   assert(max_alignment() >= min_alignment(),
  52       err_msg("max_alignment: " SIZE_FORMAT " less than min_alignment: " SIZE_FORMAT,
  53           max_alignment(), min_alignment()));
  54   assert(max_alignment() % min_alignment() == 0,
  55       err_msg("max_alignment: " SIZE_FORMAT " not aligned by min_alignment: " SIZE_FORMAT,
  56           max_alignment(), min_alignment()));
  57 
  58   if (MaxHeapSize < InitialHeapSize) {
  59     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
  60   }
  61 
  62   if (MetaspaceSize > MaxMetaspaceSize) {
  63     MaxMetaspaceSize = MetaspaceSize;
  64   }
  65   MetaspaceSize = MAX2(min_alignment(), align_size_down_(MetaspaceSize, min_alignment()));
  66   // Don't increase Metaspace size limit above specified.
  67   MaxMetaspaceSize = align_size_down(MaxMetaspaceSize, max_alignment());
  68   if (MetaspaceSize > MaxMetaspaceSize) {
  69     MetaspaceSize = MaxMetaspaceSize;
  70   }
  71 
  72   MinMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MinMetaspaceExpansion, min_alignment()));
  73   MaxMetaspaceExpansion = MAX2(min_alignment(), align_size_down_(MaxMetaspaceExpansion, min_alignment()));
  74 
  75   MinHeapDeltaBytes = align_size_up(MinHeapDeltaBytes, min_alignment());
  76 
  77   assert(MetaspaceSize    % min_alignment() == 0, "metapace alignment");
  78   assert(MaxMetaspaceSize % max_alignment() == 0, "maximum metaspace alignment");
  79   if (MetaspaceSize < 256*K) {
  80     vm_exit_during_initialization("Too small initial Metaspace size");
  81   }
  82 }
  83 
  84 void CollectorPolicy::initialize_size_info() {
  85   // User inputs from -mx and ms must be aligned
  86   set_min_heap_byte_size(align_size_up(Arguments::min_heap_size(), min_alignment()));
  87   set_initial_heap_byte_size(align_size_up(InitialHeapSize, min_alignment()));
  88   set_max_heap_byte_size(align_size_up(MaxHeapSize, max_alignment()));
  89 
  90   // Check heap parameter properties
  91   if (initial_heap_byte_size() < M) {
  92     vm_exit_during_initialization("Too small initial heap");
  93   }
  94   // Check heap parameter properties
  95   if (min_heap_byte_size() < M) {
  96     vm_exit_during_initialization("Too small minimum heap");
  97   }
  98   if (initial_heap_byte_size() <= NewSize) {
  99      // make sure there is at least some room in old space
 100     vm_exit_during_initialization("Too small initial heap for new size specified");
 101   }
 102   if (max_heap_byte_size() < min_heap_byte_size()) {
 103     vm_exit_during_initialization("Incompatible minimum and maximum heap sizes specified");
 104   }
 105   if (initial_heap_byte_size() < min_heap_byte_size()) {
 106     vm_exit_during_initialization("Incompatible minimum and initial heap sizes specified");
 107   }
 108   if (max_heap_byte_size() < initial_heap_byte_size()) {
 109     vm_exit_during_initialization("Incompatible initial and maximum heap sizes specified");
 110   }
 111 
 112   if (PrintGCDetails && Verbose) {
 113     gclog_or_tty->print_cr("Minimum heap " SIZE_FORMAT "  Initial heap "
 114       SIZE_FORMAT "  Maximum heap " SIZE_FORMAT,
 115       min_heap_byte_size(), initial_heap_byte_size(), max_heap_byte_size());
 116   }
 117 }
 118 
 119 bool CollectorPolicy::use_should_clear_all_soft_refs(bool v) {
 120   bool result = _should_clear_all_soft_refs;
 121   set_should_clear_all_soft_refs(false);
 122   return result;
 123 }
 124 
 125 GenRemSet* CollectorPolicy::create_rem_set(MemRegion whole_heap,
 126                                            int max_covered_regions) {
 127   switch (rem_set_name()) {
 128   case GenRemSet::CardTable: {
 129     CardTableRS* res = new CardTableRS(whole_heap, max_covered_regions);
 130     return res;
 131   }
 132   default:
 133     guarantee(false, "unrecognized GenRemSet::Name");
 134     return NULL;
 135   }
 136 }
 137 
 138 void CollectorPolicy::cleared_all_soft_refs() {
 139   // If near gc overhear limit, continue to clear SoftRefs.  SoftRefs may
 140   // have been cleared in the last collection but if the gc overhear
 141   // limit continues to be near, SoftRefs should still be cleared.
 142   if (size_policy() != NULL) {
 143     _should_clear_all_soft_refs = size_policy()->gc_overhead_limit_near();
 144   }
 145   _all_soft_refs_clear = true;
 146 }
 147 
 148 
 149 // GenCollectorPolicy methods.
 150 
 151 size_t GenCollectorPolicy::scale_by_NewRatio_aligned(size_t base_size) {
 152   size_t x = base_size / (NewRatio+1);
 153   size_t new_gen_size = x > min_alignment() ?
 154                      align_size_down(x, min_alignment()) :
 155                      min_alignment();
 156   return new_gen_size;
 157 }
 158 
 159 size_t GenCollectorPolicy::bound_minus_alignment(size_t desired_size,
 160                                                  size_t maximum_size) {
 161   size_t alignment = min_alignment();
 162   size_t max_minus = maximum_size - alignment;
 163   return desired_size < max_minus ? desired_size : max_minus;
 164 }
 165 
 166 
 167 void GenCollectorPolicy::initialize_size_policy(size_t init_eden_size,
 168                                                 size_t init_promo_size,
 169                                                 size_t init_survivor_size) {
 170   const double max_gc_pause_sec = ((double) MaxGCPauseMillis)/1000.0;
 171   _size_policy = new AdaptiveSizePolicy(init_eden_size,
 172                                         init_promo_size,
 173                                         init_survivor_size,
 174                                         max_gc_pause_sec,
 175                                         GCTimeRatio);
 176 }
 177 
 178 size_t GenCollectorPolicy::compute_max_alignment() {
 179   // The card marking array and the offset arrays for old generations are
 180   // committed in os pages as well. Make sure they are entirely full (to
 181   // avoid partial page problems), e.g. if 512 bytes heap corresponds to 1
 182   // byte entry and the os page size is 4096, the maximum heap size should
 183   // be 512*4096 = 2MB aligned.
 184   size_t alignment = GenRemSet::max_alignment_constraint(rem_set_name());
 185 
 186   // Parallel GC does its own alignment of the generations to avoid requiring a
 187   // large page (256M on some platforms) for the permanent generation.  The
 188   // other collectors should also be updated to do their own alignment and then
 189   // this use of lcm() should be removed.
 190   if (UseLargePages && !UseParallelGC) {
 191       // in presence of large pages we have to make sure that our
 192       // alignment is large page aware
 193       alignment = lcm(os::large_page_size(), alignment);
 194   }
 195 
 196   assert(alignment >= min_alignment(), "Must be");
 197 
 198   return alignment;
 199 }
 200 
 201 void GenCollectorPolicy::initialize_flags() {
 202   // All sizes must be multiples of the generation granularity.
 203   set_min_alignment((uintx) Generation::GenGrain);
 204   set_max_alignment(compute_max_alignment());
 205 
 206   CollectorPolicy::initialize_flags();
 207 
 208   // All generational heaps have a youngest gen; handle those flags here.
 209 
 210   // Adjust max size parameters
 211   if (NewSize > MaxNewSize) {
 212     MaxNewSize = NewSize;
 213   }
 214   NewSize = align_size_down(NewSize, min_alignment());
 215   MaxNewSize = align_size_down(MaxNewSize, min_alignment());
 216 
 217   // Check validity of heap flags
 218   assert(NewSize     % min_alignment() == 0, "eden space alignment");
 219   assert(MaxNewSize  % min_alignment() == 0, "survivor space alignment");
 220 
 221   if (NewSize < 3*min_alignment()) {
 222      // make sure there room for eden and two survivor spaces
 223     vm_exit_during_initialization("Too small new size specified");
 224   }
 225   if (SurvivorRatio < 1 || NewRatio < 1) {
 226     vm_exit_during_initialization("Invalid heap ratio specified");
 227   }
 228 }
 229 
 230 void TwoGenerationCollectorPolicy::initialize_flags() {
 231   GenCollectorPolicy::initialize_flags();
 232 
 233   OldSize = align_size_down(OldSize, min_alignment());
 234 
 235   if (FLAG_IS_CMDLINE(OldSize) && FLAG_IS_DEFAULT(NewSize)) {
 236     // NewRatio will be used later to set the young generation size so we use
 237     // it to calculate how big the heap should be based on the requested OldSize
 238     // and NewRatio.
 239     assert(NewRatio > 0, "NewRatio should have been set up earlier");
 240     size_t calculated_heapsize = (OldSize / NewRatio) * (NewRatio + 1);
 241 
 242     calculated_heapsize = align_size_up(calculated_heapsize, max_alignment());
 243     MaxHeapSize = calculated_heapsize;
 244     InitialHeapSize = calculated_heapsize;
 245   }
 246   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 247 
 248   // adjust max heap size if necessary
 249   if (NewSize + OldSize > MaxHeapSize) {
 250     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 251       // somebody set a maximum heap size with the intention that we should not
 252       // exceed it. Adjust New/OldSize as necessary.
 253       uintx calculated_size = NewSize + OldSize;
 254       double shrink_factor = (double) MaxHeapSize / calculated_size;
 255       // align
 256       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 257       // OldSize is already aligned because above we aligned MaxHeapSize to
 258       // max_alignment(), and we just made sure that NewSize is aligned to
 259       // min_alignment(). In initialize_flags() we verified that max_alignment()
 260       // is a multiple of min_alignment().
 261       OldSize = MaxHeapSize - NewSize;
 262     } else {
 263       MaxHeapSize = NewSize + OldSize;
 264     }
 265   }
 266   // need to do this again
 267   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 268 
 269   // adjust max heap size if necessary
 270   if (NewSize + OldSize > MaxHeapSize) {
 271     if (FLAG_IS_CMDLINE(MaxHeapSize)) {
 272       // somebody set a maximum heap size with the intention that we should not
 273       // exceed it. Adjust New/OldSize as necessary.
 274       uintx calculated_size = NewSize + OldSize;
 275       double shrink_factor = (double) MaxHeapSize / calculated_size;
 276       // align
 277       NewSize = align_size_down((uintx) (NewSize * shrink_factor), min_alignment());
 278       // OldSize is already aligned because above we aligned MaxHeapSize to
 279       // max_alignment(), and we just made sure that NewSize is aligned to
 280       // min_alignment(). In initialize_flags() we verified that max_alignment()
 281       // is a multiple of min_alignment().
 282       OldSize = MaxHeapSize - NewSize;
 283     } else {
 284       MaxHeapSize = NewSize + OldSize;
 285     }
 286   }
 287   // need to do this again
 288   MaxHeapSize = align_size_up(MaxHeapSize, max_alignment());
 289 
 290   always_do_update_barrier = UseConcMarkSweepGC;
 291 
 292   // Check validity of heap flags
 293   assert(OldSize     % min_alignment() == 0, "old space alignment");
 294   assert(MaxHeapSize % max_alignment() == 0, "maximum heap alignment");
 295 }
 296 
 297 // Values set on the command line win over any ergonomically
 298 // set command line parameters.
 299 // Ergonomic choice of parameters are done before this
 300 // method is called.  Values for command line parameters such as NewSize
 301 // and MaxNewSize feed those ergonomic choices into this method.
 302 // This method makes the final generation sizings consistent with
 303 // themselves and with overall heap sizings.
 304 // In the absence of explicitly set command line flags, policies
 305 // such as the use of NewRatio are used to size the generation.
 306 void GenCollectorPolicy::initialize_size_info() {
 307   CollectorPolicy::initialize_size_info();
 308 
 309   // min_alignment() is used for alignment within a generation.
 310   // There is additional alignment done down stream for some
 311   // collectors that sometimes causes unwanted rounding up of
 312   // generations sizes.
 313 
 314   // Determine maximum size of gen0
 315 
 316   size_t max_new_size = 0;
 317   if (FLAG_IS_CMDLINE(MaxNewSize) || FLAG_IS_ERGO(MaxNewSize)) {
 318     if (MaxNewSize < min_alignment()) {
 319       max_new_size = min_alignment();
 320     }
 321     if (MaxNewSize >= max_heap_byte_size()) {
 322       max_new_size = align_size_down(max_heap_byte_size() - min_alignment(),
 323                                      min_alignment());
 324       warning("MaxNewSize (" SIZE_FORMAT "k) is equal to or "
 325         "greater than the entire heap (" SIZE_FORMAT "k).  A "
 326         "new generation size of " SIZE_FORMAT "k will be used.",
 327         MaxNewSize/K, max_heap_byte_size()/K, max_new_size/K);
 328     } else {
 329       max_new_size = align_size_down(MaxNewSize, min_alignment());
 330     }
 331 
 332   // The case for FLAG_IS_ERGO(MaxNewSize) could be treated
 333   // specially at this point to just use an ergonomically set
 334   // MaxNewSize to set max_new_size.  For cases with small
 335   // heaps such a policy often did not work because the MaxNewSize
 336   // was larger than the entire heap.  The interpretation given
 337   // to ergonomically set flags is that the flags are set
 338   // by different collectors for their own special needs but
 339   // are not allowed to badly shape the heap.  This allows the
 340   // different collectors to decide what's best for themselves
 341   // without having to factor in the overall heap shape.  It
 342   // can be the case in the future that the collectors would
 343   // only make "wise" ergonomics choices and this policy could
 344   // just accept those choices.  The choices currently made are
 345   // not always "wise".
 346   } else {
 347     max_new_size = scale_by_NewRatio_aligned(max_heap_byte_size());
 348     // Bound the maximum size by NewSize below (since it historically
 349     // would have been NewSize and because the NewRatio calculation could
 350     // yield a size that is too small) and bound it by MaxNewSize above.
 351     // Ergonomics plays here by previously calculating the desired
 352     // NewSize and MaxNewSize.
 353     max_new_size = MIN2(MAX2(max_new_size, NewSize), MaxNewSize);
 354   }
 355   assert(max_new_size > 0, "All paths should set max_new_size");
 356 
 357   // Given the maximum gen0 size, determine the initial and
 358   // minimum gen0 sizes.
 359 
 360   if (max_heap_byte_size() == min_heap_byte_size()) {
 361     // The maximum and minimum heap sizes are the same so
 362     // the generations minimum and initial must be the
 363     // same as its maximum.
 364     set_min_gen0_size(max_new_size);
 365     set_initial_gen0_size(max_new_size);
 366     set_max_gen0_size(max_new_size);
 367   } else {
 368     size_t desired_new_size = 0;
 369     if (!FLAG_IS_DEFAULT(NewSize)) {
 370       // If NewSize is set ergonomically (for example by cms), it
 371       // would make sense to use it.  If it is used, also use it
 372       // to set the initial size.  Although there is no reason
 373       // the minimum size and the initial size have to be the same,
 374       // the current implementation gets into trouble during the calculation
 375       // of the tenured generation sizes if they are different.
 376       // Note that this makes the initial size and the minimum size
 377       // generally small compared to the NewRatio calculation.
 378       _min_gen0_size = NewSize;
 379       desired_new_size = NewSize;
 380       max_new_size = MAX2(max_new_size, NewSize);
 381     } else {
 382       // For the case where NewSize is the default, use NewRatio
 383       // to size the minimum and initial generation sizes.
 384       // Use the default NewSize as the floor for these values.  If
 385       // NewRatio is overly large, the resulting sizes can be too
 386       // small.
 387       _min_gen0_size = MAX2(scale_by_NewRatio_aligned(min_heap_byte_size()),
 388                           NewSize);
 389       desired_new_size =
 390         MAX2(scale_by_NewRatio_aligned(initial_heap_byte_size()),
 391              NewSize);
 392     }
 393 
 394     assert(_min_gen0_size > 0, "Sanity check");
 395     set_initial_gen0_size(desired_new_size);
 396     set_max_gen0_size(max_new_size);
 397 
 398     // At this point the desirable initial and minimum sizes have been
 399     // determined without regard to the maximum sizes.
 400 
 401     // Bound the sizes by the corresponding overall heap sizes.
 402     set_min_gen0_size(
 403       bound_minus_alignment(_min_gen0_size, min_heap_byte_size()));
 404     set_initial_gen0_size(
 405       bound_minus_alignment(_initial_gen0_size, initial_heap_byte_size()));
 406     set_max_gen0_size(
 407       bound_minus_alignment(_max_gen0_size, max_heap_byte_size()));
 408 
 409     // At this point all three sizes have been checked against the
 410     // maximum sizes but have not been checked for consistency
 411     // among the three.
 412 
 413     // Final check min <= initial <= max
 414     set_min_gen0_size(MIN2(_min_gen0_size, _max_gen0_size));
 415     set_initial_gen0_size(
 416       MAX2(MIN2(_initial_gen0_size, _max_gen0_size), _min_gen0_size));
 417     set_min_gen0_size(MIN2(_min_gen0_size, _initial_gen0_size));
 418   }
 419 
 420   if (PrintGCDetails && Verbose) {
 421     gclog_or_tty->print_cr("1: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 422       SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 423       min_gen0_size(), initial_gen0_size(), max_gen0_size());
 424   }
 425 }
 426 
 427 // Call this method during the sizing of the gen1 to make
 428 // adjustments to gen0 because of gen1 sizing policy.  gen0 initially has
 429 // the most freedom in sizing because it is done before the
 430 // policy for gen1 is applied.  Once gen1 policies have been applied,
 431 // there may be conflicts in the shape of the heap and this method
 432 // is used to make the needed adjustments.  The application of the
 433 // policies could be more sophisticated (iterative for example) but
 434 // keeping it simple also seems a worthwhile goal.
 435 bool TwoGenerationCollectorPolicy::adjust_gen0_sizes(size_t* gen0_size_ptr,
 436                                                      size_t* gen1_size_ptr,
 437                                                      const size_t heap_size,
 438                                                      const size_t min_gen1_size) {
 439   bool result = false;
 440 
 441   if ((*gen1_size_ptr + *gen0_size_ptr) > heap_size) {
 442     if ((heap_size < (*gen0_size_ptr + min_gen1_size)) &&
 443         (heap_size >= min_gen1_size + min_alignment())) {
 444       // Adjust gen0 down to accommodate min_gen1_size
 445       *gen0_size_ptr = heap_size - min_gen1_size;
 446       *gen0_size_ptr =
 447         MAX2((uintx)align_size_down(*gen0_size_ptr, min_alignment()),
 448              min_alignment());
 449       assert(*gen0_size_ptr > 0, "Min gen0 is too large");
 450       result = true;
 451     } else {
 452       *gen1_size_ptr = heap_size - *gen0_size_ptr;
 453       *gen1_size_ptr =
 454         MAX2((uintx)align_size_down(*gen1_size_ptr, min_alignment()),
 455                        min_alignment());
 456     }
 457   }
 458   return result;
 459 }
 460 
 461 // Minimum sizes of the generations may be different than
 462 // the initial sizes.  An inconsistently is permitted here
 463 // in the total size that can be specified explicitly by
 464 // command line specification of OldSize and NewSize and
 465 // also a command line specification of -Xms.  Issue a warning
 466 // but allow the values to pass.
 467 
 468 void TwoGenerationCollectorPolicy::initialize_size_info() {
 469   GenCollectorPolicy::initialize_size_info();
 470 
 471   // At this point the minimum, initial and maximum sizes
 472   // of the overall heap and of gen0 have been determined.
 473   // The maximum gen1 size can be determined from the maximum gen0
 474   // and maximum heap size since no explicit flags exits
 475   // for setting the gen1 maximum.
 476   _max_gen1_size = max_heap_byte_size() - _max_gen0_size;
 477   _max_gen1_size =
 478     MAX2((uintx)align_size_down(_max_gen1_size, min_alignment()),
 479          min_alignment());
 480   // If no explicit command line flag has been set for the
 481   // gen1 size, use what is left for gen1.
 482   if (FLAG_IS_DEFAULT(OldSize) || FLAG_IS_ERGO(OldSize)) {
 483     // The user has not specified any value or ergonomics
 484     // has chosen a value (which may or may not be consistent
 485     // with the overall heap size).  In either case make
 486     // the minimum, maximum and initial sizes consistent
 487     // with the gen0 sizes and the overall heap sizes.
 488     assert(min_heap_byte_size() > _min_gen0_size,
 489       "gen0 has an unexpected minimum size");
 490     set_min_gen1_size(min_heap_byte_size() - min_gen0_size());
 491     set_min_gen1_size(
 492       MAX2((uintx)align_size_down(_min_gen1_size, min_alignment()),
 493            min_alignment()));
 494     set_initial_gen1_size(initial_heap_byte_size() - initial_gen0_size());
 495     set_initial_gen1_size(
 496       MAX2((uintx)align_size_down(_initial_gen1_size, min_alignment()),
 497            min_alignment()));
 498 
 499   } else {
 500     // It's been explicitly set on the command line.  Use the
 501     // OldSize and then determine the consequences.
 502     set_min_gen1_size(OldSize);
 503     set_initial_gen1_size(OldSize);
 504 
 505     // If the user has explicitly set an OldSize that is inconsistent
 506     // with other command line flags, issue a warning.
 507     // The generation minimums and the overall heap mimimum should
 508     // be within one heap alignment.
 509     if ((_min_gen1_size + _min_gen0_size + min_alignment()) <
 510            min_heap_byte_size()) {
 511       warning("Inconsistency between minimum heap size and minimum "
 512           "generation sizes: using minimum heap = " SIZE_FORMAT,
 513           min_heap_byte_size());
 514     }
 515     if ((OldSize > _max_gen1_size)) {
 516       warning("Inconsistency between maximum heap size and maximum "
 517           "generation sizes: using maximum heap = " SIZE_FORMAT
 518           " -XX:OldSize flag is being ignored",
 519           max_heap_byte_size());
 520     }
 521     // If there is an inconsistency between the OldSize and the minimum and/or
 522     // initial size of gen0, since OldSize was explicitly set, OldSize wins.
 523     if (adjust_gen0_sizes(&_min_gen0_size, &_min_gen1_size,
 524                           min_heap_byte_size(), OldSize)) {
 525       if (PrintGCDetails && Verbose) {
 526         gclog_or_tty->print_cr("2: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 527               SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 528               min_gen0_size(), initial_gen0_size(), max_gen0_size());
 529       }
 530     }
 531     // Initial size
 532     if (adjust_gen0_sizes(&_initial_gen0_size, &_initial_gen1_size,
 533                          initial_heap_byte_size(), OldSize)) {
 534       if (PrintGCDetails && Verbose) {
 535         gclog_or_tty->print_cr("3: Minimum gen0 " SIZE_FORMAT "  Initial gen0 "
 536           SIZE_FORMAT "  Maximum gen0 " SIZE_FORMAT,
 537           min_gen0_size(), initial_gen0_size(), max_gen0_size());
 538       }
 539     }
 540   }
 541   // Enforce the maximum gen1 size.
 542   set_min_gen1_size(MIN2(_min_gen1_size, _max_gen1_size));
 543 
 544   // Check that min gen1 <= initial gen1 <= max gen1
 545   set_initial_gen1_size(MAX2(_initial_gen1_size, _min_gen1_size));
 546   set_initial_gen1_size(MIN2(_initial_gen1_size, _max_gen1_size));
 547 
 548   if (PrintGCDetails && Verbose) {
 549     gclog_or_tty->print_cr("Minimum gen1 " SIZE_FORMAT "  Initial gen1 "
 550       SIZE_FORMAT "  Maximum gen1 " SIZE_FORMAT,
 551       min_gen1_size(), initial_gen1_size(), max_gen1_size());
 552   }
 553 }
 554 
 555 HeapWord* GenCollectorPolicy::mem_allocate_work(size_t size,
 556                                         bool is_tlab,
 557                                         bool* gc_overhead_limit_was_exceeded) {
 558   GenCollectedHeap *gch = GenCollectedHeap::heap();
 559 
 560   debug_only(gch->check_for_valid_allocation_state());
 561   assert(gch->no_gc_in_progress(), "Allocation during gc not allowed");
 562 
 563   // In general gc_overhead_limit_was_exceeded should be false so
 564   // set it so here and reset it to true only if the gc time
 565   // limit is being exceeded as checked below.
 566   *gc_overhead_limit_was_exceeded = false;
 567 
 568   HeapWord* result = NULL;
 569 
 570   // Loop until the allocation is satisified,
 571   // or unsatisfied after GC.
 572   for (int try_count = 1, gclocker_stalled_count = 0; /* return or throw */; try_count += 1) {
 573     HandleMark hm; // discard any handles allocated in each iteration
 574 
 575     // First allocation attempt is lock-free.
 576     Generation *gen0 = gch->get_gen(0);
 577     assert(gen0->supports_inline_contig_alloc(),
 578       "Otherwise, must do alloc within heap lock");
 579     if (gen0->should_allocate(size, is_tlab)) {
 580       result = gen0->par_allocate(size, is_tlab);
 581       if (result != NULL) {
 582         assert(gch->is_in_reserved(result), "result not in heap");
 583         return result;
 584       }
 585     }
 586     unsigned int gc_count_before;  // read inside the Heap_lock locked region
 587     {
 588       MutexLocker ml(Heap_lock);
 589       if (PrintGC && Verbose) {
 590         gclog_or_tty->print_cr("TwoGenerationCollectorPolicy::mem_allocate_work:"
 591                       " attempting locked slow path allocation");
 592       }
 593       // Note that only large objects get a shot at being
 594       // allocated in later generations.
 595       bool first_only = ! should_try_older_generation_allocation(size);
 596 
 597       result = gch->attempt_allocation(size, is_tlab, first_only);
 598       if (result != NULL) {
 599         assert(gch->is_in_reserved(result), "result not in heap");
 600         return result;
 601       }
 602 
 603       if (GC_locker::is_active_and_needs_gc()) {
 604         if (is_tlab) {
 605           return NULL;  // Caller will retry allocating individual object
 606         }
 607         if (!gch->is_maximal_no_gc()) {
 608           // Try and expand heap to satisfy request
 609           result = expand_heap_and_allocate(size, is_tlab);
 610           // result could be null if we are out of space
 611           if (result != NULL) {
 612             return result;
 613           }
 614         }
 615 
 616         if (gclocker_stalled_count > GCLockerRetryAllocationCount) {
 617           return NULL; // we didn't get to do a GC and we didn't get any memory
 618         }
 619 
 620         // If this thread is not in a jni critical section, we stall
 621         // the requestor until the critical section has cleared and
 622         // GC allowed. When the critical section clears, a GC is
 623         // initiated by the last thread exiting the critical section; so
 624         // we retry the allocation sequence from the beginning of the loop,
 625         // rather than causing more, now probably unnecessary, GC attempts.
 626         JavaThread* jthr = JavaThread::current();
 627         if (!jthr->in_critical()) {
 628           MutexUnlocker mul(Heap_lock);
 629           // Wait for JNI critical section to be exited
 630           GC_locker::stall_until_clear();
 631           gclocker_stalled_count += 1;
 632           continue;
 633         } else {
 634           if (CheckJNICalls) {
 635             fatal("Possible deadlock due to allocating while"
 636                   " in jni critical section");
 637           }
 638           return NULL;
 639         }
 640       }
 641 
 642       // Read the gc count while the heap lock is held.
 643       gc_count_before = Universe::heap()->total_collections();
 644     }
 645 
 646     VM_GenCollectForAllocation op(size,
 647                                   is_tlab,
 648                                   gc_count_before);
 649     VMThread::execute(&op);
 650     if (op.prologue_succeeded()) {
 651       result = op.result();
 652       if (op.gc_locked()) {
 653          assert(result == NULL, "must be NULL if gc_locked() is true");
 654          continue;  // retry and/or stall as necessary
 655       }
 656 
 657       // Allocation has failed and a collection
 658       // has been done.  If the gc time limit was exceeded the
 659       // this time, return NULL so that an out-of-memory
 660       // will be thrown.  Clear gc_overhead_limit_exceeded
 661       // so that the overhead exceeded does not persist.
 662 
 663       const bool limit_exceeded = size_policy()->gc_overhead_limit_exceeded();
 664       const bool softrefs_clear = all_soft_refs_clear();
 665 
 666       if (limit_exceeded && softrefs_clear) {
 667         *gc_overhead_limit_was_exceeded = true;
 668         size_policy()->set_gc_overhead_limit_exceeded(false);
 669         if (op.result() != NULL) {
 670           CollectedHeap::fill_with_object(op.result(), size);
 671         }
 672         return NULL;
 673       }
 674       assert(result == NULL || gch->is_in_reserved(result),
 675              "result not in heap");
 676       return result;
 677     }
 678 
 679     // Give a warning if we seem to be looping forever.
 680     if ((QueuedAllocationWarningCount > 0) &&
 681         (try_count % QueuedAllocationWarningCount == 0)) {
 682           warning("TwoGenerationCollectorPolicy::mem_allocate_work retries %d times \n\t"
 683                   " size=%d %s", try_count, size, is_tlab ? "(TLAB)" : "");
 684     }
 685   }
 686 }
 687 
 688 HeapWord* GenCollectorPolicy::expand_heap_and_allocate(size_t size,
 689                                                        bool   is_tlab) {
 690   GenCollectedHeap *gch = GenCollectedHeap::heap();
 691   HeapWord* result = NULL;
 692   for (int i = number_of_generations() - 1; i >= 0 && result == NULL; i--) {
 693     Generation *gen = gch->get_gen(i);
 694     if (gen->should_allocate(size, is_tlab)) {
 695       result = gen->expand_and_allocate(size, is_tlab);
 696     }
 697   }
 698   assert(result == NULL || gch->is_in_reserved(result), "result not in heap");
 699   return result;
 700 }
 701 
 702 HeapWord* GenCollectorPolicy::satisfy_failed_allocation(size_t size,
 703                                                         bool   is_tlab) {
 704   GenCollectedHeap *gch = GenCollectedHeap::heap();
 705   GCCauseSetter x(gch, GCCause::_allocation_failure);
 706   HeapWord* result = NULL;
 707 
 708   assert(size != 0, "Precondition violated");
 709   if (GC_locker::is_active_and_needs_gc()) {
 710     // GC locker is active; instead of a collection we will attempt
 711     // to expand the heap, if there's room for expansion.
 712     if (!gch->is_maximal_no_gc()) {
 713       result = expand_heap_and_allocate(size, is_tlab);
 714     }
 715     return result;   // could be null if we are out of space
 716   } else if (!gch->incremental_collection_will_fail(false /* don't consult_young */)) {
 717     // Do an incremental collection.
 718     gch->do_collection(false            /* full */,
 719                        false            /* clear_all_soft_refs */,
 720                        size             /* size */,
 721                        is_tlab          /* is_tlab */,
 722                        number_of_generations() - 1 /* max_level */);
 723   } else {
 724     if (Verbose && PrintGCDetails) {
 725       gclog_or_tty->print(" :: Trying full because partial may fail :: ");
 726     }
 727     // Try a full collection; see delta for bug id 6266275
 728     // for the original code and why this has been simplified
 729     // with from-space allocation criteria modified and
 730     // such allocation moved out of the safepoint path.
 731     gch->do_collection(true             /* full */,
 732                        false            /* clear_all_soft_refs */,
 733                        size             /* size */,
 734                        is_tlab          /* is_tlab */,
 735                        number_of_generations() - 1 /* max_level */);
 736   }
 737 
 738   result = gch->attempt_allocation(size, is_tlab, false /*first_only*/);
 739 
 740   if (result != NULL) {
 741     assert(gch->is_in_reserved(result), "result not in heap");
 742     return result;
 743   }
 744 
 745   // OK, collection failed, try expansion.
 746   result = expand_heap_and_allocate(size, is_tlab);
 747   if (result != NULL) {
 748     return result;
 749   }
 750 
 751   // If we reach this point, we're really out of memory. Try every trick
 752   // we can to reclaim memory. Force collection of soft references. Force
 753   // a complete compaction of the heap. Any additional methods for finding
 754   // free memory should be here, especially if they are expensive. If this
 755   // attempt fails, an OOM exception will be thrown.
 756   {
 757     UIntFlagSetting flag_change(MarkSweepAlwaysCompactCount, 1); // Make sure the heap is fully compacted
 758 
 759     gch->do_collection(true             /* full */,
 760                        true             /* clear_all_soft_refs */,
 761                        size             /* size */,
 762                        is_tlab          /* is_tlab */,
 763                        number_of_generations() - 1 /* max_level */);
 764   }
 765 
 766   result = gch->attempt_allocation(size, is_tlab, false /* first_only */);
 767   if (result != NULL) {
 768     assert(gch->is_in_reserved(result), "result not in heap");
 769     return result;
 770   }
 771 
 772   assert(!should_clear_all_soft_refs(),
 773     "Flag should have been handled and cleared prior to this point");
 774 
 775   // What else?  We might try synchronous finalization later.  If the total
 776   // space available is large enough for the allocation, then a more
 777   // complete compaction phase than we've tried so far might be
 778   // appropriate.
 779   return NULL;
 780 }
 781 
 782 MetaWord* CollectorPolicy::satisfy_failed_metadata_allocation(
 783                                                  ClassLoaderData* loader_data,
 784                                                  size_t word_size,
 785                                                  Metaspace::MetadataType mdtype) {
 786   uint loop_count = 0;
 787   uint gc_count = 0;
 788   uint full_gc_count = 0;
 789 
 790   assert(!Heap_lock->owned_by_self(), "Should not be holding the Heap_lock");
 791 
 792   do {
 793     MetaWord* result = NULL;
 794     if (GC_locker::is_active_and_needs_gc()) {
 795       // If the GC_locker is active, just expand and allocate.
 796       // If that does not succeed, wait if this thread is not
 797       // in a critical section itself.
 798       result =
 799         loader_data->metaspace_non_null()->expand_and_allocate(word_size,
 800                                                                mdtype);
 801       if (result != NULL) {
 802         return result;
 803       }
 804       JavaThread* jthr = JavaThread::current();
 805       if (!jthr->in_critical()) {
 806         // Wait for JNI critical section to be exited
 807         GC_locker::stall_until_clear();
 808         // The GC invoked by the last thread leaving the critical
 809         // section will be a young collection and a full collection
 810         // is (currently) needed for unloading classes so continue
 811         // to the next iteration to get a full GC.
 812         continue;
 813       } else {
 814         if (CheckJNICalls) {
 815           fatal("Possible deadlock due to allocating while"
 816                 " in jni critical section");
 817         }
 818         return NULL;
 819       }
 820     }
 821 
 822     {  // Need lock to get self consistent gc_count's
 823       MutexLocker ml(Heap_lock);
 824       gc_count      = Universe::heap()->total_collections();
 825       full_gc_count = Universe::heap()->total_full_collections();
 826     }
 827 
 828     // Generate a VM operation
 829     VM_CollectForMetadataAllocation op(loader_data,
 830                                        word_size,
 831                                        mdtype,
 832                                        gc_count,
 833                                        full_gc_count,
 834                                        GCCause::_metadata_GC_threshold);
 835     VMThread::execute(&op);
 836 
 837     // If GC was locked out, try again.  Check
 838     // before checking success because the prologue
 839     // could have succeeded and the GC still have
 840     // been locked out.
 841     if (op.gc_locked()) {
 842       continue;
 843     }
 844 
 845     if (op.prologue_succeeded()) {
 846       return op.result();
 847     }
 848     loop_count++;
 849     if ((QueuedAllocationWarningCount > 0) &&
 850         (loop_count % QueuedAllocationWarningCount == 0)) {
 851       warning("satisfy_failed_metadata_allocation() retries %d times \n\t"
 852               " size=%d", loop_count, word_size);
 853     }
 854   } while (true);  // Until a GC is done
 855 }
 856 
 857 // Return true if any of the following is true:
 858 // . the allocation won't fit into the current young gen heap
 859 // . gc locker is occupied (jni critical section)
 860 // . heap memory is tight -- the most recent previous collection
 861 //   was a full collection because a partial collection (would
 862 //   have) failed and is likely to fail again
 863 bool GenCollectorPolicy::should_try_older_generation_allocation(
 864         size_t word_size) const {
 865   GenCollectedHeap* gch = GenCollectedHeap::heap();
 866   size_t gen0_capacity = gch->get_gen(0)->capacity_before_gc();
 867   return    (word_size > heap_word_size(gen0_capacity))
 868          || GC_locker::is_active_and_needs_gc()
 869          || gch->incremental_collection_failed();
 870 }
 871 
 872 
 873 //
 874 // MarkSweepPolicy methods
 875 //
 876 
 877 MarkSweepPolicy::MarkSweepPolicy() {
 878   initialize_all();
 879 }
 880 
 881 void MarkSweepPolicy::initialize_generations() {
 882   _generations = NEW_C_HEAP_ARRAY3(GenerationSpecPtr, number_of_generations(), mtGC, 0, AllocFailStrategy::RETURN_NULL);
 883   if (_generations == NULL)
 884     vm_exit_during_initialization("Unable to allocate gen spec");
 885 
 886   if (UseParNewGC) {
 887     _generations[0] = new GenerationSpec(Generation::ParNew, _initial_gen0_size, _max_gen0_size);
 888   } else {
 889     _generations[0] = new GenerationSpec(Generation::DefNew, _initial_gen0_size, _max_gen0_size);
 890   }
 891   _generations[1] = new GenerationSpec(Generation::MarkSweepCompact, _initial_gen1_size, _max_gen1_size);
 892 
 893   if (_generations[0] == NULL || _generations[1] == NULL)
 894     vm_exit_during_initialization("Unable to allocate gen spec");
 895 }
 896 
 897 void MarkSweepPolicy::initialize_gc_policy_counters() {
 898   // initialize the policy counters - 2 collectors, 3 generations
 899   if (UseParNewGC) {
 900     _gc_policy_counters = new GCPolicyCounters("ParNew:MSC", 2, 3);
 901   } else {
 902     _gc_policy_counters = new GCPolicyCounters("Copy:MSC", 2, 3);
 903   }
 904 }