1 /*
   2  * Copyright (c) 1999, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 // no precompiled headers
  26 #include "classfile/classLoader.hpp"
  27 #include "classfile/systemDictionary.hpp"
  28 #include "classfile/vmSymbols.hpp"
  29 #include "code/icBuffer.hpp"
  30 #include "code/vtableStubs.hpp"
  31 #include "compiler/compileBroker.hpp"
  32 #include "compiler/disassembler.hpp"
  33 #include "interpreter/interpreter.hpp"
  34 #include "jvm_linux.h"
  35 #include "memory/allocation.inline.hpp"
  36 #include "memory/filemap.hpp"
  37 #include "mutex_linux.inline.hpp"
  38 #include "oops/oop.inline.hpp"
  39 #include "os_share_linux.hpp"
  40 #include "prims/jniFastGetField.hpp"
  41 #include "prims/jvm.h"
  42 #include "prims/jvm_misc.hpp"
  43 #include "runtime/arguments.hpp"
  44 #include "runtime/extendedPC.hpp"
  45 #include "runtime/globals.hpp"
  46 #include "runtime/interfaceSupport.hpp"
  47 #include "runtime/init.hpp"
  48 #include "runtime/java.hpp"
  49 #include "runtime/javaCalls.hpp"
  50 #include "runtime/mutexLocker.hpp"
  51 #include "runtime/objectMonitor.hpp"
  52 #include "runtime/osThread.hpp"
  53 #include "runtime/perfMemory.hpp"
  54 #include "runtime/sharedRuntime.hpp"
  55 #include "runtime/statSampler.hpp"
  56 #include "runtime/stubRoutines.hpp"
  57 #include "runtime/thread.inline.hpp"
  58 #include "runtime/threadCritical.hpp"
  59 #include "runtime/timer.hpp"
  60 #include "services/attachListener.hpp"
  61 #include "services/memTracker.hpp"
  62 #include "services/runtimeService.hpp"
  63 #include "utilities/decoder.hpp"
  64 #include "utilities/defaultStream.hpp"
  65 #include "utilities/events.hpp"
  66 #include "utilities/elfFile.hpp"
  67 #include "utilities/growableArray.hpp"
  68 #include "utilities/vmError.hpp"
  69 
  70 // put OS-includes here
  71 # include <sys/types.h>
  72 # include <sys/mman.h>
  73 # include <sys/stat.h>
  74 # include <sys/select.h>
  75 # include <pthread.h>
  76 # include <signal.h>
  77 # include <errno.h>
  78 # include <dlfcn.h>
  79 # include <stdio.h>
  80 # include <unistd.h>
  81 # include <sys/resource.h>
  82 # include <pthread.h>
  83 # include <sys/stat.h>
  84 # include <sys/time.h>
  85 # include <sys/times.h>
  86 # include <sys/utsname.h>
  87 # include <sys/socket.h>
  88 # include <sys/wait.h>
  89 # include <pwd.h>
  90 # include <poll.h>
  91 # include <semaphore.h>
  92 # include <fcntl.h>
  93 # include <string.h>
  94 # include <syscall.h>
  95 # include <sys/sysinfo.h>
  96 # include <gnu/libc-version.h>
  97 # include <sys/ipc.h>
  98 # include <sys/shm.h>
  99 # include <link.h>
 100 # include <stdint.h>
 101 # include <inttypes.h>
 102 # include <sys/ioctl.h>
 103 
 104 #define MAX_PATH    (2 * K)
 105 
 106 // for timer info max values which include all bits
 107 #define ALL_64_BITS CONST64(0xFFFFFFFFFFFFFFFF)
 108 
 109 #define LARGEPAGES_BIT (1 << 6)
 110 ////////////////////////////////////////////////////////////////////////////////
 111 // global variables
 112 julong os::Linux::_physical_memory = 0;
 113 
 114 address   os::Linux::_initial_thread_stack_bottom = NULL;
 115 uintptr_t os::Linux::_initial_thread_stack_size   = 0;
 116 
 117 int (*os::Linux::_clock_gettime)(clockid_t, struct timespec *) = NULL;
 118 int (*os::Linux::_pthread_getcpuclockid)(pthread_t, clockid_t *) = NULL;
 119 Mutex* os::Linux::_createThread_lock = NULL;
 120 pthread_t os::Linux::_main_thread;
 121 int os::Linux::_page_size = -1;
 122 const int os::Linux::_vm_default_page_size = (8 * K);
 123 bool os::Linux::_is_floating_stack = false;
 124 bool os::Linux::_is_NPTL = false;
 125 bool os::Linux::_supports_fast_thread_cpu_time = false;
 126 const char * os::Linux::_glibc_version = NULL;
 127 const char * os::Linux::_libpthread_version = NULL;
 128 
 129 static jlong initial_time_count=0;
 130 
 131 static int clock_tics_per_sec = 100;
 132 
 133 // For diagnostics to print a message once. see run_periodic_checks
 134 static sigset_t check_signal_done;
 135 static bool check_signals = true;;
 136 
 137 static pid_t _initial_pid = 0;
 138 
 139 /* Signal number used to suspend/resume a thread */
 140 
 141 /* do not use any signal number less than SIGSEGV, see 4355769 */
 142 static int SR_signum = SIGUSR2;
 143 sigset_t SR_sigset;
 144 
 145 /* Used to protect dlsym() calls */
 146 static pthread_mutex_t dl_mutex;
 147 
 148 #ifdef JAVASE_EMBEDDED
 149 class MemNotifyThread: public Thread {
 150   friend class VMStructs;
 151  public:
 152   virtual void run();
 153 
 154  private:
 155   static MemNotifyThread* _memnotify_thread;
 156   int _fd;
 157 
 158  public:
 159 
 160   // Constructor
 161   MemNotifyThread(int fd);
 162 
 163   // Tester
 164   bool is_memnotify_thread() const { return true; }
 165 
 166   // Printing
 167   char* name() const { return (char*)"Linux MemNotify Thread"; }
 168 
 169   // Returns the single instance of the MemNotifyThread
 170   static MemNotifyThread* memnotify_thread() { return _memnotify_thread; }
 171 
 172   // Create and start the single instance of MemNotifyThread
 173   static void start();
 174 };
 175 #endif // JAVASE_EMBEDDED
 176 
 177 // utility functions
 178 
 179 static int SR_initialize();
 180 
 181 julong os::available_memory() {
 182   return Linux::available_memory();
 183 }
 184 
 185 julong os::Linux::available_memory() {
 186   // values in struct sysinfo are "unsigned long"
 187   struct sysinfo si;
 188   sysinfo(&si);
 189 
 190   return (julong)si.freeram * si.mem_unit;
 191 }
 192 
 193 julong os::physical_memory() {
 194   return Linux::physical_memory();
 195 }
 196 
 197 ////////////////////////////////////////////////////////////////////////////////
 198 // environment support
 199 
 200 bool os::getenv(const char* name, char* buf, int len) {
 201   const char* val = ::getenv(name);
 202   if (val != NULL && strlen(val) < (size_t)len) {
 203     strcpy(buf, val);
 204     return true;
 205   }
 206   if (len > 0) buf[0] = 0;  // return a null string
 207   return false;
 208 }
 209 
 210 
 211 // Return true if user is running as root.
 212 
 213 bool os::have_special_privileges() {
 214   static bool init = false;
 215   static bool privileges = false;
 216   if (!init) {
 217     privileges = (getuid() != geteuid()) || (getgid() != getegid());
 218     init = true;
 219   }
 220   return privileges;
 221 }
 222 
 223 
 224 #ifndef SYS_gettid
 225 // i386: 224, ia64: 1105, amd64: 186, sparc 143
 226 #ifdef __ia64__
 227 #define SYS_gettid 1105
 228 #elif __i386__
 229 #define SYS_gettid 224
 230 #elif __amd64__
 231 #define SYS_gettid 186
 232 #elif __sparc__
 233 #define SYS_gettid 143
 234 #else
 235 #error define gettid for the arch
 236 #endif
 237 #endif
 238 
 239 // Cpu architecture string
 240 #if   defined(ZERO)
 241 static char cpu_arch[] = ZERO_LIBARCH;
 242 #elif defined(IA64)
 243 static char cpu_arch[] = "ia64";
 244 #elif defined(IA32)
 245 static char cpu_arch[] = "i386";
 246 #elif defined(AMD64)
 247 static char cpu_arch[] = "amd64";
 248 #elif defined(ARM)
 249 static char cpu_arch[] = "arm";
 250 #elif defined(PPC)
 251 static char cpu_arch[] = "ppc";
 252 #elif defined(SPARC)
 253 #  ifdef _LP64
 254 static char cpu_arch[] = "sparcv9";
 255 #  else
 256 static char cpu_arch[] = "sparc";
 257 #  endif
 258 #else
 259 #error Add appropriate cpu_arch setting
 260 #endif
 261 
 262 
 263 // pid_t gettid()
 264 //
 265 // Returns the kernel thread id of the currently running thread. Kernel
 266 // thread id is used to access /proc.
 267 //
 268 // (Note that getpid() on LinuxThreads returns kernel thread id too; but
 269 // on NPTL, it returns the same pid for all threads, as required by POSIX.)
 270 //
 271 pid_t os::Linux::gettid() {
 272   int rslt = syscall(SYS_gettid);
 273   if (rslt == -1) {
 274      // old kernel, no NPTL support
 275      return getpid();
 276   } else {
 277      return (pid_t)rslt;
 278   }
 279 }
 280 
 281 // Most versions of linux have a bug where the number of processors are
 282 // determined by looking at the /proc file system.  In a chroot environment,
 283 // the system call returns 1.  This causes the VM to act as if it is
 284 // a single processor and elide locking (see is_MP() call).
 285 static bool unsafe_chroot_detected = false;
 286 static const char *unstable_chroot_error = "/proc file system not found.\n"
 287                      "Java may be unstable running multithreaded in a chroot "
 288                      "environment on Linux when /proc filesystem is not mounted.";
 289 
 290 void os::Linux::initialize_system_info() {
 291   set_processor_count(sysconf(_SC_NPROCESSORS_CONF));
 292   if (processor_count() == 1) {
 293     pid_t pid = os::Linux::gettid();
 294     char fname[32];
 295     jio_snprintf(fname, sizeof(fname), "/proc/%d", pid);
 296     FILE *fp = fopen(fname, "r");
 297     if (fp == NULL) {
 298       unsafe_chroot_detected = true;
 299     } else {
 300       fclose(fp);
 301     }
 302   }
 303   _physical_memory = (julong)sysconf(_SC_PHYS_PAGES) * (julong)sysconf(_SC_PAGESIZE);
 304   assert(processor_count() > 0, "linux error");
 305 }
 306 
 307 void os::init_system_properties_values() {
 308 //  char arch[12];
 309 //  sysinfo(SI_ARCHITECTURE, arch, sizeof(arch));
 310 
 311   // The next steps are taken in the product version:
 312   //
 313   // Obtain the JAVA_HOME value from the location of libjvm.so.
 314   // This library should be located at:
 315   // <JAVA_HOME>/jre/lib/<arch>/{client|server}/libjvm.so.
 316   //
 317   // If "/jre/lib/" appears at the right place in the path, then we
 318   // assume libjvm.so is installed in a JDK and we use this path.
 319   //
 320   // Otherwise exit with message: "Could not create the Java virtual machine."
 321   //
 322   // The following extra steps are taken in the debugging version:
 323   //
 324   // If "/jre/lib/" does NOT appear at the right place in the path
 325   // instead of exit check for $JAVA_HOME environment variable.
 326   //
 327   // If it is defined and we are able to locate $JAVA_HOME/jre/lib/<arch>,
 328   // then we append a fake suffix "hotspot/libjvm.so" to this path so
 329   // it looks like libjvm.so is installed there
 330   // <JAVA_HOME>/jre/lib/<arch>/hotspot/libjvm.so.
 331   //
 332   // Otherwise exit.
 333   //
 334   // Important note: if the location of libjvm.so changes this
 335   // code needs to be changed accordingly.
 336 
 337   // The next few definitions allow the code to be verbatim:
 338 #define malloc(n) (char*)NEW_C_HEAP_ARRAY(char, (n), mtInternal)
 339 #define getenv(n) ::getenv(n)
 340 
 341 /*
 342  * See ld(1):
 343  *      The linker uses the following search paths to locate required
 344  *      shared libraries:
 345  *        1: ...
 346  *        ...
 347  *        7: The default directories, normally /lib and /usr/lib.
 348  */
 349 #if defined(AMD64) || defined(_LP64) && (defined(SPARC) || defined(PPC) || defined(S390))
 350 #define DEFAULT_LIBPATH "/usr/lib64:/lib64:/lib:/usr/lib"
 351 #else
 352 #define DEFAULT_LIBPATH "/lib:/usr/lib"
 353 #endif
 354 
 355 #define EXTENSIONS_DIR  "/lib/ext"
 356 #define ENDORSED_DIR    "/lib/endorsed"
 357 #define REG_DIR         "/usr/java/packages"
 358 
 359   {
 360     /* sysclasspath, java_home, dll_dir */
 361     {
 362         char *home_path;
 363         char *dll_path;
 364         char *pslash;
 365         char buf[MAXPATHLEN];
 366         os::jvm_path(buf, sizeof(buf));
 367 
 368         // Found the full path to libjvm.so.
 369         // Now cut the path to <java_home>/jre if we can.
 370         *(strrchr(buf, '/')) = '\0';  /* get rid of /libjvm.so */
 371         pslash = strrchr(buf, '/');
 372         if (pslash != NULL)
 373             *pslash = '\0';           /* get rid of /{client|server|hotspot} */
 374         dll_path = malloc(strlen(buf) + 1);
 375         if (dll_path == NULL)
 376             return;
 377         strcpy(dll_path, buf);
 378         Arguments::set_dll_dir(dll_path);
 379 
 380         if (pslash != NULL) {
 381             pslash = strrchr(buf, '/');
 382             if (pslash != NULL) {
 383                 *pslash = '\0';       /* get rid of /<arch> */
 384                 pslash = strrchr(buf, '/');
 385                 if (pslash != NULL)
 386                     *pslash = '\0';   /* get rid of /lib */
 387             }
 388         }
 389 
 390         home_path = malloc(strlen(buf) + 1);
 391         if (home_path == NULL)
 392             return;
 393         strcpy(home_path, buf);
 394         Arguments::set_java_home(home_path);
 395 
 396         if (!set_boot_path('/', ':'))
 397             return;
 398     }
 399 
 400     /*
 401      * Where to look for native libraries
 402      *
 403      * Note: Due to a legacy implementation, most of the library path
 404      * is set in the launcher.  This was to accomodate linking restrictions
 405      * on legacy Linux implementations (which are no longer supported).
 406      * Eventually, all the library path setting will be done here.
 407      *
 408      * However, to prevent the proliferation of improperly built native
 409      * libraries, the new path component /usr/java/packages is added here.
 410      * Eventually, all the library path setting will be done here.
 411      */
 412     {
 413         char *ld_library_path;
 414 
 415         /*
 416          * Construct the invariant part of ld_library_path. Note that the
 417          * space for the colon and the trailing null are provided by the
 418          * nulls included by the sizeof operator (so actually we allocate
 419          * a byte more than necessary).
 420          */
 421         ld_library_path = (char *) malloc(sizeof(REG_DIR) + sizeof("/lib/") +
 422             strlen(cpu_arch) + sizeof(DEFAULT_LIBPATH));
 423         sprintf(ld_library_path, REG_DIR "/lib/%s:" DEFAULT_LIBPATH, cpu_arch);
 424 
 425         /*
 426          * Get the user setting of LD_LIBRARY_PATH, and prepended it.  It
 427          * should always exist (until the legacy problem cited above is
 428          * addressed).
 429          */
 430         char *v = getenv("LD_LIBRARY_PATH");
 431         if (v != NULL) {
 432             char *t = ld_library_path;
 433             /* That's +1 for the colon and +1 for the trailing '\0' */
 434             ld_library_path = (char *) malloc(strlen(v) + 1 + strlen(t) + 1);
 435             sprintf(ld_library_path, "%s:%s", v, t);
 436         }
 437         Arguments::set_library_path(ld_library_path);
 438     }
 439 
 440     /*
 441      * Extensions directories.
 442      *
 443      * Note that the space for the colon and the trailing null are provided
 444      * by the nulls included by the sizeof operator (so actually one byte more
 445      * than necessary is allocated).
 446      */
 447     {
 448         char *buf = malloc(strlen(Arguments::get_java_home()) +
 449             sizeof(EXTENSIONS_DIR) + sizeof(REG_DIR) + sizeof(EXTENSIONS_DIR));
 450         sprintf(buf, "%s" EXTENSIONS_DIR ":" REG_DIR EXTENSIONS_DIR,
 451             Arguments::get_java_home());
 452         Arguments::set_ext_dirs(buf);
 453     }
 454 
 455     /* Endorsed standards default directory. */
 456     {
 457         char * buf;
 458         buf = malloc(strlen(Arguments::get_java_home()) + sizeof(ENDORSED_DIR));
 459         sprintf(buf, "%s" ENDORSED_DIR, Arguments::get_java_home());
 460         Arguments::set_endorsed_dirs(buf);
 461     }
 462   }
 463 
 464 #undef malloc
 465 #undef getenv
 466 #undef EXTENSIONS_DIR
 467 #undef ENDORSED_DIR
 468 
 469   // Done
 470   return;
 471 }
 472 
 473 ////////////////////////////////////////////////////////////////////////////////
 474 // breakpoint support
 475 
 476 void os::breakpoint() {
 477   BREAKPOINT;
 478 }
 479 
 480 extern "C" void breakpoint() {
 481   // use debugger to set breakpoint here
 482 }
 483 
 484 ////////////////////////////////////////////////////////////////////////////////
 485 // signal support
 486 
 487 debug_only(static bool signal_sets_initialized = false);
 488 static sigset_t unblocked_sigs, vm_sigs, allowdebug_blocked_sigs;
 489 
 490 bool os::Linux::is_sig_ignored(int sig) {
 491       struct sigaction oact;
 492       sigaction(sig, (struct sigaction*)NULL, &oact);
 493       void* ohlr = oact.sa_sigaction ? CAST_FROM_FN_PTR(void*,  oact.sa_sigaction)
 494                                      : CAST_FROM_FN_PTR(void*,  oact.sa_handler);
 495       if (ohlr == CAST_FROM_FN_PTR(void*, SIG_IGN))
 496            return true;
 497       else
 498            return false;
 499 }
 500 
 501 void os::Linux::signal_sets_init() {
 502   // Should also have an assertion stating we are still single-threaded.
 503   assert(!signal_sets_initialized, "Already initialized");
 504   // Fill in signals that are necessarily unblocked for all threads in
 505   // the VM. Currently, we unblock the following signals:
 506   // SHUTDOWN{1,2,3}_SIGNAL: for shutdown hooks support (unless over-ridden
 507   //                         by -Xrs (=ReduceSignalUsage));
 508   // BREAK_SIGNAL which is unblocked only by the VM thread and blocked by all
 509   // other threads. The "ReduceSignalUsage" boolean tells us not to alter
 510   // the dispositions or masks wrt these signals.
 511   // Programs embedding the VM that want to use the above signals for their
 512   // own purposes must, at this time, use the "-Xrs" option to prevent
 513   // interference with shutdown hooks and BREAK_SIGNAL thread dumping.
 514   // (See bug 4345157, and other related bugs).
 515   // In reality, though, unblocking these signals is really a nop, since
 516   // these signals are not blocked by default.
 517   sigemptyset(&unblocked_sigs);
 518   sigemptyset(&allowdebug_blocked_sigs);
 519   sigaddset(&unblocked_sigs, SIGILL);
 520   sigaddset(&unblocked_sigs, SIGSEGV);
 521   sigaddset(&unblocked_sigs, SIGBUS);
 522   sigaddset(&unblocked_sigs, SIGFPE);
 523   sigaddset(&unblocked_sigs, SR_signum);
 524 
 525   if (!ReduceSignalUsage) {
 526    if (!os::Linux::is_sig_ignored(SHUTDOWN1_SIGNAL)) {
 527       sigaddset(&unblocked_sigs, SHUTDOWN1_SIGNAL);
 528       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN1_SIGNAL);
 529    }
 530    if (!os::Linux::is_sig_ignored(SHUTDOWN2_SIGNAL)) {
 531       sigaddset(&unblocked_sigs, SHUTDOWN2_SIGNAL);
 532       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN2_SIGNAL);
 533    }
 534    if (!os::Linux::is_sig_ignored(SHUTDOWN3_SIGNAL)) {
 535       sigaddset(&unblocked_sigs, SHUTDOWN3_SIGNAL);
 536       sigaddset(&allowdebug_blocked_sigs, SHUTDOWN3_SIGNAL);
 537    }
 538   }
 539   // Fill in signals that are blocked by all but the VM thread.
 540   sigemptyset(&vm_sigs);
 541   if (!ReduceSignalUsage)
 542     sigaddset(&vm_sigs, BREAK_SIGNAL);
 543   debug_only(signal_sets_initialized = true);
 544 
 545 }
 546 
 547 // These are signals that are unblocked while a thread is running Java.
 548 // (For some reason, they get blocked by default.)
 549 sigset_t* os::Linux::unblocked_signals() {
 550   assert(signal_sets_initialized, "Not initialized");
 551   return &unblocked_sigs;
 552 }
 553 
 554 // These are the signals that are blocked while a (non-VM) thread is
 555 // running Java. Only the VM thread handles these signals.
 556 sigset_t* os::Linux::vm_signals() {
 557   assert(signal_sets_initialized, "Not initialized");
 558   return &vm_sigs;
 559 }
 560 
 561 // These are signals that are blocked during cond_wait to allow debugger in
 562 sigset_t* os::Linux::allowdebug_blocked_signals() {
 563   assert(signal_sets_initialized, "Not initialized");
 564   return &allowdebug_blocked_sigs;
 565 }
 566 
 567 void os::Linux::hotspot_sigmask(Thread* thread) {
 568 
 569   //Save caller's signal mask before setting VM signal mask
 570   sigset_t caller_sigmask;
 571   pthread_sigmask(SIG_BLOCK, NULL, &caller_sigmask);
 572 
 573   OSThread* osthread = thread->osthread();
 574   osthread->set_caller_sigmask(caller_sigmask);
 575 
 576   pthread_sigmask(SIG_UNBLOCK, os::Linux::unblocked_signals(), NULL);
 577 
 578   if (!ReduceSignalUsage) {
 579     if (thread->is_VM_thread()) {
 580       // Only the VM thread handles BREAK_SIGNAL ...
 581       pthread_sigmask(SIG_UNBLOCK, vm_signals(), NULL);
 582     } else {
 583       // ... all other threads block BREAK_SIGNAL
 584       pthread_sigmask(SIG_BLOCK, vm_signals(), NULL);
 585     }
 586   }
 587 }
 588 
 589 //////////////////////////////////////////////////////////////////////////////
 590 // detecting pthread library
 591 
 592 void os::Linux::libpthread_init() {
 593   // Save glibc and pthread version strings. Note that _CS_GNU_LIBC_VERSION
 594   // and _CS_GNU_LIBPTHREAD_VERSION are supported in glibc >= 2.3.2. Use a
 595   // generic name for earlier versions.
 596   // Define macros here so we can build HotSpot on old systems.
 597 # ifndef _CS_GNU_LIBC_VERSION
 598 # define _CS_GNU_LIBC_VERSION 2
 599 # endif
 600 # ifndef _CS_GNU_LIBPTHREAD_VERSION
 601 # define _CS_GNU_LIBPTHREAD_VERSION 3
 602 # endif
 603 
 604   size_t n = confstr(_CS_GNU_LIBC_VERSION, NULL, 0);
 605   if (n > 0) {
 606      char *str = (char *)malloc(n, mtInternal);
 607      confstr(_CS_GNU_LIBC_VERSION, str, n);
 608      os::Linux::set_glibc_version(str);
 609   } else {
 610      // _CS_GNU_LIBC_VERSION is not supported, try gnu_get_libc_version()
 611      static char _gnu_libc_version[32];
 612      jio_snprintf(_gnu_libc_version, sizeof(_gnu_libc_version),
 613               "glibc %s %s", gnu_get_libc_version(), gnu_get_libc_release());
 614      os::Linux::set_glibc_version(_gnu_libc_version);
 615   }
 616 
 617   n = confstr(_CS_GNU_LIBPTHREAD_VERSION, NULL, 0);
 618   if (n > 0) {
 619      char *str = (char *)malloc(n, mtInternal);
 620      confstr(_CS_GNU_LIBPTHREAD_VERSION, str, n);
 621      // Vanilla RH-9 (glibc 2.3.2) has a bug that confstr() always tells
 622      // us "NPTL-0.29" even we are running with LinuxThreads. Check if this
 623      // is the case. LinuxThreads has a hard limit on max number of threads.
 624      // So sysconf(_SC_THREAD_THREADS_MAX) will return a positive value.
 625      // On the other hand, NPTL does not have such a limit, sysconf()
 626      // will return -1 and errno is not changed. Check if it is really NPTL.
 627      if (strcmp(os::Linux::glibc_version(), "glibc 2.3.2") == 0 &&
 628          strstr(str, "NPTL") &&
 629          sysconf(_SC_THREAD_THREADS_MAX) > 0) {
 630        free(str);
 631        os::Linux::set_libpthread_version("linuxthreads");
 632      } else {
 633        os::Linux::set_libpthread_version(str);
 634      }
 635   } else {
 636     // glibc before 2.3.2 only has LinuxThreads.
 637     os::Linux::set_libpthread_version("linuxthreads");
 638   }
 639 
 640   if (strstr(libpthread_version(), "NPTL")) {
 641      os::Linux::set_is_NPTL();
 642   } else {
 643      os::Linux::set_is_LinuxThreads();
 644   }
 645 
 646   // LinuxThreads have two flavors: floating-stack mode, which allows variable
 647   // stack size; and fixed-stack mode. NPTL is always floating-stack.
 648   if (os::Linux::is_NPTL() || os::Linux::supports_variable_stack_size()) {
 649      os::Linux::set_is_floating_stack();
 650   }
 651 }
 652 
 653 /////////////////////////////////////////////////////////////////////////////
 654 // thread stack
 655 
 656 // Force Linux kernel to expand current thread stack. If "bottom" is close
 657 // to the stack guard, caller should block all signals.
 658 //
 659 // MAP_GROWSDOWN:
 660 //   A special mmap() flag that is used to implement thread stacks. It tells
 661 //   kernel that the memory region should extend downwards when needed. This
 662 //   allows early versions of LinuxThreads to only mmap the first few pages
 663 //   when creating a new thread. Linux kernel will automatically expand thread
 664 //   stack as needed (on page faults).
 665 //
 666 //   However, because the memory region of a MAP_GROWSDOWN stack can grow on
 667 //   demand, if a page fault happens outside an already mapped MAP_GROWSDOWN
 668 //   region, it's hard to tell if the fault is due to a legitimate stack
 669 //   access or because of reading/writing non-exist memory (e.g. buffer
 670 //   overrun). As a rule, if the fault happens below current stack pointer,
 671 //   Linux kernel does not expand stack, instead a SIGSEGV is sent to the
 672 //   application (see Linux kernel fault.c).
 673 //
 674 //   This Linux feature can cause SIGSEGV when VM bangs thread stack for
 675 //   stack overflow detection.
 676 //
 677 //   Newer version of LinuxThreads (since glibc-2.2, or, RH-7.x) and NPTL do
 678 //   not use this flag. However, the stack of initial thread is not created
 679 //   by pthread, it is still MAP_GROWSDOWN. Also it's possible (though
 680 //   unlikely) that user code can create a thread with MAP_GROWSDOWN stack
 681 //   and then attach the thread to JVM.
 682 //
 683 // To get around the problem and allow stack banging on Linux, we need to
 684 // manually expand thread stack after receiving the SIGSEGV.
 685 //
 686 // There are two ways to expand thread stack to address "bottom", we used
 687 // both of them in JVM before 1.5:
 688 //   1. adjust stack pointer first so that it is below "bottom", and then
 689 //      touch "bottom"
 690 //   2. mmap() the page in question
 691 //
 692 // Now alternate signal stack is gone, it's harder to use 2. For instance,
 693 // if current sp is already near the lower end of page 101, and we need to
 694 // call mmap() to map page 100, it is possible that part of the mmap() frame
 695 // will be placed in page 100. When page 100 is mapped, it is zero-filled.
 696 // That will destroy the mmap() frame and cause VM to crash.
 697 //
 698 // The following code works by adjusting sp first, then accessing the "bottom"
 699 // page to force a page fault. Linux kernel will then automatically expand the
 700 // stack mapping.
 701 //
 702 // _expand_stack_to() assumes its frame size is less than page size, which
 703 // should always be true if the function is not inlined.
 704 
 705 #if __GNUC__ < 3    // gcc 2.x does not support noinline attribute
 706 #define NOINLINE
 707 #else
 708 #define NOINLINE __attribute__ ((noinline))
 709 #endif
 710 
 711 static void _expand_stack_to(address bottom) NOINLINE;
 712 
 713 static void _expand_stack_to(address bottom) {
 714   address sp;
 715   size_t size;
 716   volatile char *p;
 717 
 718   // Adjust bottom to point to the largest address within the same page, it
 719   // gives us a one-page buffer if alloca() allocates slightly more memory.
 720   bottom = (address)align_size_down((uintptr_t)bottom, os::Linux::page_size());
 721   bottom += os::Linux::page_size() - 1;
 722 
 723   // sp might be slightly above current stack pointer; if that's the case, we
 724   // will alloca() a little more space than necessary, which is OK. Don't use
 725   // os::current_stack_pointer(), as its result can be slightly below current
 726   // stack pointer, causing us to not alloca enough to reach "bottom".
 727   sp = (address)&sp;
 728 
 729   if (sp > bottom) {
 730     size = sp - bottom;
 731     p = (volatile char *)alloca(size);
 732     assert(p != NULL && p <= (volatile char *)bottom, "alloca problem?");
 733     p[0] = '\0';
 734   }
 735 }
 736 
 737 bool os::Linux::manually_expand_stack(JavaThread * t, address addr) {
 738   assert(t!=NULL, "just checking");
 739   assert(t->osthread()->expanding_stack(), "expand should be set");
 740   assert(t->stack_base() != NULL, "stack_base was not initialized");
 741 
 742   if (addr <  t->stack_base() && addr >= t->stack_yellow_zone_base()) {
 743     sigset_t mask_all, old_sigset;
 744     sigfillset(&mask_all);
 745     pthread_sigmask(SIG_SETMASK, &mask_all, &old_sigset);
 746     _expand_stack_to(addr);
 747     pthread_sigmask(SIG_SETMASK, &old_sigset, NULL);
 748     return true;
 749   }
 750   return false;
 751 }
 752 
 753 //////////////////////////////////////////////////////////////////////////////
 754 // create new thread
 755 
 756 static address highest_vm_reserved_address();
 757 
 758 // check if it's safe to start a new thread
 759 static bool _thread_safety_check(Thread* thread) {
 760   if (os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack()) {
 761     // Fixed stack LinuxThreads (SuSE Linux/x86, and some versions of Redhat)
 762     //   Heap is mmap'ed at lower end of memory space. Thread stacks are
 763     //   allocated (MAP_FIXED) from high address space. Every thread stack
 764     //   occupies a fixed size slot (usually 2Mbytes, but user can change
 765     //   it to other values if they rebuild LinuxThreads).
 766     //
 767     // Problem with MAP_FIXED is that mmap() can still succeed even part of
 768     // the memory region has already been mmap'ed. That means if we have too
 769     // many threads and/or very large heap, eventually thread stack will
 770     // collide with heap.
 771     //
 772     // Here we try to prevent heap/stack collision by comparing current
 773     // stack bottom with the highest address that has been mmap'ed by JVM
 774     // plus a safety margin for memory maps created by native code.
 775     //
 776     // This feature can be disabled by setting ThreadSafetyMargin to 0
 777     //
 778     if (ThreadSafetyMargin > 0) {
 779       address stack_bottom = os::current_stack_base() - os::current_stack_size();
 780 
 781       // not safe if our stack extends below the safety margin
 782       return stack_bottom - ThreadSafetyMargin >= highest_vm_reserved_address();
 783     } else {
 784       return true;
 785     }
 786   } else {
 787     // Floating stack LinuxThreads or NPTL:
 788     //   Unlike fixed stack LinuxThreads, thread stacks are not MAP_FIXED. When
 789     //   there's not enough space left, pthread_create() will fail. If we come
 790     //   here, that means enough space has been reserved for stack.
 791     return true;
 792   }
 793 }
 794 
 795 // Thread start routine for all newly created threads
 796 static void *java_start(Thread *thread) {
 797   // Try to randomize the cache line index of hot stack frames.
 798   // This helps when threads of the same stack traces evict each other's
 799   // cache lines. The threads can be either from the same JVM instance, or
 800   // from different JVM instances. The benefit is especially true for
 801   // processors with hyperthreading technology.
 802   static int counter = 0;
 803   int pid = os::current_process_id();
 804   alloca(((pid ^ counter++) & 7) * 128);
 805 
 806   ThreadLocalStorage::set_thread(thread);
 807 
 808   OSThread* osthread = thread->osthread();
 809   Monitor* sync = osthread->startThread_lock();
 810 
 811   // non floating stack LinuxThreads needs extra check, see above
 812   if (!_thread_safety_check(thread)) {
 813     // notify parent thread
 814     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 815     osthread->set_state(ZOMBIE);
 816     sync->notify_all();
 817     return NULL;
 818   }
 819 
 820   // thread_id is kernel thread id (similar to Solaris LWP id)
 821   osthread->set_thread_id(os::Linux::gettid());
 822 
 823   if (UseNUMA) {
 824     int lgrp_id = os::numa_get_group_id();
 825     if (lgrp_id != -1) {
 826       thread->set_lgrp_id(lgrp_id);
 827     }
 828   }
 829   // initialize signal mask for this thread
 830   os::Linux::hotspot_sigmask(thread);
 831 
 832   // initialize floating point control register
 833   os::Linux::init_thread_fpu_state();
 834 
 835   // handshaking with parent thread
 836   {
 837     MutexLockerEx ml(sync, Mutex::_no_safepoint_check_flag);
 838 
 839     // notify parent thread
 840     osthread->set_state(INITIALIZED);
 841     sync->notify_all();
 842 
 843     // wait until os::start_thread()
 844     while (osthread->get_state() == INITIALIZED) {
 845       sync->wait(Mutex::_no_safepoint_check_flag);
 846     }
 847   }
 848 
 849   // call one more level start routine
 850   thread->run();
 851 
 852   return 0;
 853 }
 854 
 855 bool os::create_thread(Thread* thread, ThreadType thr_type, size_t stack_size) {
 856   assert(thread->osthread() == NULL, "caller responsible");
 857 
 858   // Allocate the OSThread object
 859   OSThread* osthread = new OSThread(NULL, NULL);
 860   if (osthread == NULL) {
 861     return false;
 862   }
 863 
 864   // set the correct thread state
 865   osthread->set_thread_type(thr_type);
 866 
 867   // Initial state is ALLOCATED but not INITIALIZED
 868   osthread->set_state(ALLOCATED);
 869 
 870   thread->set_osthread(osthread);
 871 
 872   // init thread attributes
 873   pthread_attr_t attr;
 874   pthread_attr_init(&attr);
 875   pthread_attr_setdetachstate(&attr, PTHREAD_CREATE_DETACHED);
 876 
 877   // stack size
 878   if (os::Linux::supports_variable_stack_size()) {
 879     // calculate stack size if it's not specified by caller
 880     if (stack_size == 0) {
 881       stack_size = os::Linux::default_stack_size(thr_type);
 882 
 883       switch (thr_type) {
 884       case os::java_thread:
 885         // Java threads use ThreadStackSize which default value can be
 886         // changed with the flag -Xss
 887         assert (JavaThread::stack_size_at_create() > 0, "this should be set");
 888         stack_size = JavaThread::stack_size_at_create();
 889         break;
 890       case os::compiler_thread:
 891         if (CompilerThreadStackSize > 0) {
 892           stack_size = (size_t)(CompilerThreadStackSize * K);
 893           break;
 894         } // else fall through:
 895           // use VMThreadStackSize if CompilerThreadStackSize is not defined
 896       case os::vm_thread:
 897       case os::pgc_thread:
 898       case os::cgc_thread:
 899       case os::watcher_thread:
 900         if (VMThreadStackSize > 0) stack_size = (size_t)(VMThreadStackSize * K);
 901         break;
 902       }
 903     }
 904 
 905     stack_size = MAX2(stack_size, os::Linux::min_stack_allowed);
 906     pthread_attr_setstacksize(&attr, stack_size);
 907   } else {
 908     // let pthread_create() pick the default value.
 909   }
 910 
 911   // glibc guard page
 912   pthread_attr_setguardsize(&attr, os::Linux::default_guard_size(thr_type));
 913 
 914   ThreadState state;
 915 
 916   {
 917     // Serialize thread creation if we are running with fixed stack LinuxThreads
 918     bool lock = os::Linux::is_LinuxThreads() && !os::Linux::is_floating_stack();
 919     if (lock) {
 920       os::Linux::createThread_lock()->lock_without_safepoint_check();
 921     }
 922 
 923     pthread_t tid;
 924     int ret = pthread_create(&tid, &attr, (void* (*)(void*)) java_start, thread);
 925 
 926     pthread_attr_destroy(&attr);
 927 
 928     if (ret != 0) {
 929       if (PrintMiscellaneous && (Verbose || WizardMode)) {
 930         perror("pthread_create()");
 931       }
 932       // Need to clean up stuff we've allocated so far
 933       thread->set_osthread(NULL);
 934       delete osthread;
 935       if (lock) os::Linux::createThread_lock()->unlock();
 936       return false;
 937     }
 938 
 939     // Store pthread info into the OSThread
 940     osthread->set_pthread_id(tid);
 941 
 942     // Wait until child thread is either initialized or aborted
 943     {
 944       Monitor* sync_with_child = osthread->startThread_lock();
 945       MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
 946       while ((state = osthread->get_state()) == ALLOCATED) {
 947         sync_with_child->wait(Mutex::_no_safepoint_check_flag);
 948       }
 949     }
 950 
 951     if (lock) {
 952       os::Linux::createThread_lock()->unlock();
 953     }
 954   }
 955 
 956   // Aborted due to thread limit being reached
 957   if (state == ZOMBIE) {
 958       thread->set_osthread(NULL);
 959       delete osthread;
 960       return false;
 961   }
 962 
 963   // The thread is returned suspended (in state INITIALIZED),
 964   // and is started higher up in the call chain
 965   assert(state == INITIALIZED, "race condition");
 966   return true;
 967 }
 968 
 969 /////////////////////////////////////////////////////////////////////////////
 970 // attach existing thread
 971 
 972 // bootstrap the main thread
 973 bool os::create_main_thread(JavaThread* thread) {
 974   assert(os::Linux::_main_thread == pthread_self(), "should be called inside main thread");
 975   return create_attached_thread(thread);
 976 }
 977 
 978 bool os::create_attached_thread(JavaThread* thread) {
 979 #ifdef ASSERT
 980     thread->verify_not_published();
 981 #endif
 982 
 983   // Allocate the OSThread object
 984   OSThread* osthread = new OSThread(NULL, NULL);
 985 
 986   if (osthread == NULL) {
 987     return false;
 988   }
 989 
 990   // Store pthread info into the OSThread
 991   osthread->set_thread_id(os::Linux::gettid());
 992   osthread->set_pthread_id(::pthread_self());
 993 
 994   // initialize floating point control register
 995   os::Linux::init_thread_fpu_state();
 996 
 997   // Initial thread state is RUNNABLE
 998   osthread->set_state(RUNNABLE);
 999 
1000   thread->set_osthread(osthread);
1001 
1002   if (UseNUMA) {
1003     int lgrp_id = os::numa_get_group_id();
1004     if (lgrp_id != -1) {
1005       thread->set_lgrp_id(lgrp_id);
1006     }
1007   }
1008 
1009   if (os::Linux::is_initial_thread()) {
1010     // If current thread is initial thread, its stack is mapped on demand,
1011     // see notes about MAP_GROWSDOWN. Here we try to force kernel to map
1012     // the entire stack region to avoid SEGV in stack banging.
1013     // It is also useful to get around the heap-stack-gap problem on SuSE
1014     // kernel (see 4821821 for details). We first expand stack to the top
1015     // of yellow zone, then enable stack yellow zone (order is significant,
1016     // enabling yellow zone first will crash JVM on SuSE Linux), so there
1017     // is no gap between the last two virtual memory regions.
1018 
1019     JavaThread *jt = (JavaThread *)thread;
1020     address addr = jt->stack_yellow_zone_base();
1021     assert(addr != NULL, "initialization problem?");
1022     assert(jt->stack_available(addr) > 0, "stack guard should not be enabled");
1023 
1024     osthread->set_expanding_stack();
1025     os::Linux::manually_expand_stack(jt, addr);
1026     osthread->clear_expanding_stack();
1027   }
1028 
1029   // initialize signal mask for this thread
1030   // and save the caller's signal mask
1031   os::Linux::hotspot_sigmask(thread);
1032 
1033   return true;
1034 }
1035 
1036 void os::pd_start_thread(Thread* thread) {
1037   OSThread * osthread = thread->osthread();
1038   assert(osthread->get_state() != INITIALIZED, "just checking");
1039   Monitor* sync_with_child = osthread->startThread_lock();
1040   MutexLockerEx ml(sync_with_child, Mutex::_no_safepoint_check_flag);
1041   sync_with_child->notify();
1042 }
1043 
1044 // Free Linux resources related to the OSThread
1045 void os::free_thread(OSThread* osthread) {
1046   assert(osthread != NULL, "osthread not set");
1047 
1048   if (Thread::current()->osthread() == osthread) {
1049     // Restore caller's signal mask
1050     sigset_t sigmask = osthread->caller_sigmask();
1051     pthread_sigmask(SIG_SETMASK, &sigmask, NULL);
1052    }
1053 
1054   delete osthread;
1055 }
1056 
1057 //////////////////////////////////////////////////////////////////////////////
1058 // thread local storage
1059 
1060 int os::allocate_thread_local_storage() {
1061   pthread_key_t key;
1062   int rslt = pthread_key_create(&key, NULL);
1063   assert(rslt == 0, "cannot allocate thread local storage");
1064   return (int)key;
1065 }
1066 
1067 // Note: This is currently not used by VM, as we don't destroy TLS key
1068 // on VM exit.
1069 void os::free_thread_local_storage(int index) {
1070   int rslt = pthread_key_delete((pthread_key_t)index);
1071   assert(rslt == 0, "invalid index");
1072 }
1073 
1074 void os::thread_local_storage_at_put(int index, void* value) {
1075   int rslt = pthread_setspecific((pthread_key_t)index, value);
1076   assert(rslt == 0, "pthread_setspecific failed");
1077 }
1078 
1079 extern "C" Thread* get_thread() {
1080   return ThreadLocalStorage::thread();
1081 }
1082 
1083 //////////////////////////////////////////////////////////////////////////////
1084 // initial thread
1085 
1086 // Check if current thread is the initial thread, similar to Solaris thr_main.
1087 bool os::Linux::is_initial_thread(void) {
1088   char dummy;
1089   // If called before init complete, thread stack bottom will be null.
1090   // Can be called if fatal error occurs before initialization.
1091   if (initial_thread_stack_bottom() == NULL) return false;
1092   assert(initial_thread_stack_bottom() != NULL &&
1093          initial_thread_stack_size()   != 0,
1094          "os::init did not locate initial thread's stack region");
1095   if ((address)&dummy >= initial_thread_stack_bottom() &&
1096       (address)&dummy < initial_thread_stack_bottom() + initial_thread_stack_size())
1097        return true;
1098   else return false;
1099 }
1100 
1101 // Find the virtual memory area that contains addr
1102 static bool find_vma(address addr, address* vma_low, address* vma_high) {
1103   FILE *fp = fopen("/proc/self/maps", "r");
1104   if (fp) {
1105     address low, high;
1106     while (!feof(fp)) {
1107       if (fscanf(fp, "%p-%p", &low, &high) == 2) {
1108         if (low <= addr && addr < high) {
1109            if (vma_low)  *vma_low  = low;
1110            if (vma_high) *vma_high = high;
1111            fclose (fp);
1112            return true;
1113         }
1114       }
1115       for (;;) {
1116         int ch = fgetc(fp);
1117         if (ch == EOF || ch == (int)'\n') break;
1118       }
1119     }
1120     fclose(fp);
1121   }
1122   return false;
1123 }
1124 
1125 // Locate initial thread stack. This special handling of initial thread stack
1126 // is needed because pthread_getattr_np() on most (all?) Linux distros returns
1127 // bogus value for initial thread.
1128 void os::Linux::capture_initial_stack(size_t max_size) {
1129   // stack size is the easy part, get it from RLIMIT_STACK
1130   size_t stack_size;
1131   struct rlimit rlim;
1132   getrlimit(RLIMIT_STACK, &rlim);
1133   stack_size = rlim.rlim_cur;
1134 
1135   // 6308388: a bug in ld.so will relocate its own .data section to the
1136   //   lower end of primordial stack; reduce ulimit -s value a little bit
1137   //   so we won't install guard page on ld.so's data section.
1138   stack_size -= 2 * page_size();
1139 
1140   // 4441425: avoid crash with "unlimited" stack size on SuSE 7.1 or Redhat
1141   //   7.1, in both cases we will get 2G in return value.
1142   // 4466587: glibc 2.2.x compiled w/o "--enable-kernel=2.4.0" (RH 7.0,
1143   //   SuSE 7.2, Debian) can not handle alternate signal stack correctly
1144   //   for initial thread if its stack size exceeds 6M. Cap it at 2M,
1145   //   in case other parts in glibc still assumes 2M max stack size.
1146   // FIXME: alt signal stack is gone, maybe we can relax this constraint?
1147   // Problem still exists RH7.2 (IA64 anyway) but 2MB is a little small
1148   if (stack_size > 2 * K * K IA64_ONLY(*2))
1149       stack_size = 2 * K * K IA64_ONLY(*2);
1150   // Try to figure out where the stack base (top) is. This is harder.
1151   //
1152   // When an application is started, glibc saves the initial stack pointer in
1153   // a global variable "__libc_stack_end", which is then used by system
1154   // libraries. __libc_stack_end should be pretty close to stack top. The
1155   // variable is available since the very early days. However, because it is
1156   // a private interface, it could disappear in the future.
1157   //
1158   // Linux kernel saves start_stack information in /proc/<pid>/stat. Similar
1159   // to __libc_stack_end, it is very close to stack top, but isn't the real
1160   // stack top. Note that /proc may not exist if VM is running as a chroot
1161   // program, so reading /proc/<pid>/stat could fail. Also the contents of
1162   // /proc/<pid>/stat could change in the future (though unlikely).
1163   //
1164   // We try __libc_stack_end first. If that doesn't work, look for
1165   // /proc/<pid>/stat. If neither of them works, we use current stack pointer
1166   // as a hint, which should work well in most cases.
1167 
1168   uintptr_t stack_start;
1169 
1170   // try __libc_stack_end first
1171   uintptr_t *p = (uintptr_t *)dlsym(RTLD_DEFAULT, "__libc_stack_end");
1172   if (p && *p) {
1173     stack_start = *p;
1174   } else {
1175     // see if we can get the start_stack field from /proc/self/stat
1176     FILE *fp;
1177     int pid;
1178     char state;
1179     int ppid;
1180     int pgrp;
1181     int session;
1182     int nr;
1183     int tpgrp;
1184     unsigned long flags;
1185     unsigned long minflt;
1186     unsigned long cminflt;
1187     unsigned long majflt;
1188     unsigned long cmajflt;
1189     unsigned long utime;
1190     unsigned long stime;
1191     long cutime;
1192     long cstime;
1193     long prio;
1194     long nice;
1195     long junk;
1196     long it_real;
1197     uintptr_t start;
1198     uintptr_t vsize;
1199     intptr_t rss;
1200     uintptr_t rsslim;
1201     uintptr_t scodes;
1202     uintptr_t ecode;
1203     int i;
1204 
1205     // Figure what the primordial thread stack base is. Code is inspired
1206     // by email from Hans Boehm. /proc/self/stat begins with current pid,
1207     // followed by command name surrounded by parentheses, state, etc.
1208     char stat[2048];
1209     int statlen;
1210 
1211     fp = fopen("/proc/self/stat", "r");
1212     if (fp) {
1213       statlen = fread(stat, 1, 2047, fp);
1214       stat[statlen] = '\0';
1215       fclose(fp);
1216 
1217       // Skip pid and the command string. Note that we could be dealing with
1218       // weird command names, e.g. user could decide to rename java launcher
1219       // to "java 1.4.2 :)", then the stat file would look like
1220       //                1234 (java 1.4.2 :)) R ... ...
1221       // We don't really need to know the command string, just find the last
1222       // occurrence of ")" and then start parsing from there. See bug 4726580.
1223       char * s = strrchr(stat, ')');
1224 
1225       i = 0;
1226       if (s) {
1227         // Skip blank chars
1228         do s++; while (isspace(*s));
1229 
1230 #define _UFM UINTX_FORMAT
1231 #define _DFM INTX_FORMAT
1232 
1233         /*                                     1   1   1   1   1   1   1   1   1   1   2   2    2    2    2    2    2    2    2 */
1234         /*              3  4  5  6  7  8   9   0   1   2   3   4   5   6   7   8   9   0   1    2    3    4    5    6    7    8 */
1235         i = sscanf(s, "%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu %ld %ld %ld %ld %ld %ld " _UFM _UFM _DFM _UFM _UFM _UFM _UFM,
1236              &state,          /* 3  %c  */
1237              &ppid,           /* 4  %d  */
1238              &pgrp,           /* 5  %d  */
1239              &session,        /* 6  %d  */
1240              &nr,             /* 7  %d  */
1241              &tpgrp,          /* 8  %d  */
1242              &flags,          /* 9  %lu  */
1243              &minflt,         /* 10 %lu  */
1244              &cminflt,        /* 11 %lu  */
1245              &majflt,         /* 12 %lu  */
1246              &cmajflt,        /* 13 %lu  */
1247              &utime,          /* 14 %lu  */
1248              &stime,          /* 15 %lu  */
1249              &cutime,         /* 16 %ld  */
1250              &cstime,         /* 17 %ld  */
1251              &prio,           /* 18 %ld  */
1252              &nice,           /* 19 %ld  */
1253              &junk,           /* 20 %ld  */
1254              &it_real,        /* 21 %ld  */
1255              &start,          /* 22 UINTX_FORMAT */
1256              &vsize,          /* 23 UINTX_FORMAT */
1257              &rss,            /* 24 INTX_FORMAT  */
1258              &rsslim,         /* 25 UINTX_FORMAT */
1259              &scodes,         /* 26 UINTX_FORMAT */
1260              &ecode,          /* 27 UINTX_FORMAT */
1261              &stack_start);   /* 28 UINTX_FORMAT */
1262       }
1263 
1264 #undef _UFM
1265 #undef _DFM
1266 
1267       if (i != 28 - 2) {
1268          assert(false, "Bad conversion from /proc/self/stat");
1269          // product mode - assume we are the initial thread, good luck in the
1270          // embedded case.
1271          warning("Can't detect initial thread stack location - bad conversion");
1272          stack_start = (uintptr_t) &rlim;
1273       }
1274     } else {
1275       // For some reason we can't open /proc/self/stat (for example, running on
1276       // FreeBSD with a Linux emulator, or inside chroot), this should work for
1277       // most cases, so don't abort:
1278       warning("Can't detect initial thread stack location - no /proc/self/stat");
1279       stack_start = (uintptr_t) &rlim;
1280     }
1281   }
1282 
1283   // Now we have a pointer (stack_start) very close to the stack top, the
1284   // next thing to do is to figure out the exact location of stack top. We
1285   // can find out the virtual memory area that contains stack_start by
1286   // reading /proc/self/maps, it should be the last vma in /proc/self/maps,
1287   // and its upper limit is the real stack top. (again, this would fail if
1288   // running inside chroot, because /proc may not exist.)
1289 
1290   uintptr_t stack_top;
1291   address low, high;
1292   if (find_vma((address)stack_start, &low, &high)) {
1293     // success, "high" is the true stack top. (ignore "low", because initial
1294     // thread stack grows on demand, its real bottom is high - RLIMIT_STACK.)
1295     stack_top = (uintptr_t)high;
1296   } else {
1297     // failed, likely because /proc/self/maps does not exist
1298     warning("Can't detect initial thread stack location - find_vma failed");
1299     // best effort: stack_start is normally within a few pages below the real
1300     // stack top, use it as stack top, and reduce stack size so we won't put
1301     // guard page outside stack.
1302     stack_top = stack_start;
1303     stack_size -= 16 * page_size();
1304   }
1305 
1306   // stack_top could be partially down the page so align it
1307   stack_top = align_size_up(stack_top, page_size());
1308 
1309   if (max_size && stack_size > max_size) {
1310      _initial_thread_stack_size = max_size;
1311   } else {
1312      _initial_thread_stack_size = stack_size;
1313   }
1314 
1315   _initial_thread_stack_size = align_size_down(_initial_thread_stack_size, page_size());
1316   _initial_thread_stack_bottom = (address)stack_top - _initial_thread_stack_size;
1317 }
1318 
1319 ////////////////////////////////////////////////////////////////////////////////
1320 // time support
1321 
1322 // Time since start-up in seconds to a fine granularity.
1323 // Used by VMSelfDestructTimer and the MemProfiler.
1324 double os::elapsedTime() {
1325 
1326   return (double)(os::elapsed_counter()) * 0.000001;
1327 }
1328 
1329 jlong os::elapsed_counter() {
1330   timeval time;
1331   int status = gettimeofday(&time, NULL);
1332   return jlong(time.tv_sec) * 1000 * 1000 + jlong(time.tv_usec) - initial_time_count;
1333 }
1334 
1335 jlong os::elapsed_frequency() {
1336   return (1000 * 1000);
1337 }
1338 
1339 // For now, we say that linux does not support vtime.  I have no idea
1340 // whether it can actually be made to (DLD, 9/13/05).
1341 
1342 bool os::supports_vtime() { return false; }
1343 bool os::enable_vtime()   { return false; }
1344 bool os::vtime_enabled()  { return false; }
1345 double os::elapsedVTime() {
1346   // better than nothing, but not much
1347   return elapsedTime();
1348 }
1349 
1350 jlong os::javaTimeMillis() {
1351   timeval time;
1352   int status = gettimeofday(&time, NULL);
1353   assert(status != -1, "linux error");
1354   return jlong(time.tv_sec) * 1000  +  jlong(time.tv_usec / 1000);
1355 }
1356 
1357 #ifndef CLOCK_MONOTONIC
1358 #define CLOCK_MONOTONIC (1)
1359 #endif
1360 
1361 void os::Linux::clock_init() {
1362   // we do dlopen's in this particular order due to bug in linux
1363   // dynamical loader (see 6348968) leading to crash on exit
1364   void* handle = dlopen("librt.so.1", RTLD_LAZY);
1365   if (handle == NULL) {
1366     handle = dlopen("librt.so", RTLD_LAZY);
1367   }
1368 
1369   if (handle) {
1370     int (*clock_getres_func)(clockid_t, struct timespec*) =
1371            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_getres");
1372     int (*clock_gettime_func)(clockid_t, struct timespec*) =
1373            (int(*)(clockid_t, struct timespec*))dlsym(handle, "clock_gettime");
1374     if (clock_getres_func && clock_gettime_func) {
1375       // See if monotonic clock is supported by the kernel. Note that some
1376       // early implementations simply return kernel jiffies (updated every
1377       // 1/100 or 1/1000 second). It would be bad to use such a low res clock
1378       // for nano time (though the monotonic property is still nice to have).
1379       // It's fixed in newer kernels, however clock_getres() still returns
1380       // 1/HZ. We check if clock_getres() works, but will ignore its reported
1381       // resolution for now. Hopefully as people move to new kernels, this
1382       // won't be a problem.
1383       struct timespec res;
1384       struct timespec tp;
1385       if (clock_getres_func (CLOCK_MONOTONIC, &res) == 0 &&
1386           clock_gettime_func(CLOCK_MONOTONIC, &tp)  == 0) {
1387         // yes, monotonic clock is supported
1388         _clock_gettime = clock_gettime_func;
1389       } else {
1390         // close librt if there is no monotonic clock
1391         dlclose(handle);
1392       }
1393     }
1394   }
1395 }
1396 
1397 #ifndef SYS_clock_getres
1398 
1399 #if defined(IA32) || defined(AMD64)
1400 #define SYS_clock_getres IA32_ONLY(266)  AMD64_ONLY(229)
1401 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1402 #else
1403 #warning "SYS_clock_getres not defined for this platform, disabling fast_thread_cpu_time"
1404 #define sys_clock_getres(x,y)  -1
1405 #endif
1406 
1407 #else
1408 #define sys_clock_getres(x,y)  ::syscall(SYS_clock_getres, x, y)
1409 #endif
1410 
1411 void os::Linux::fast_thread_clock_init() {
1412   if (!UseLinuxPosixThreadCPUClocks) {
1413     return;
1414   }
1415   clockid_t clockid;
1416   struct timespec tp;
1417   int (*pthread_getcpuclockid_func)(pthread_t, clockid_t *) =
1418       (int(*)(pthread_t, clockid_t *)) dlsym(RTLD_DEFAULT, "pthread_getcpuclockid");
1419 
1420   // Switch to using fast clocks for thread cpu time if
1421   // the sys_clock_getres() returns 0 error code.
1422   // Note, that some kernels may support the current thread
1423   // clock (CLOCK_THREAD_CPUTIME_ID) but not the clocks
1424   // returned by the pthread_getcpuclockid().
1425   // If the fast Posix clocks are supported then the sys_clock_getres()
1426   // must return at least tp.tv_sec == 0 which means a resolution
1427   // better than 1 sec. This is extra check for reliability.
1428 
1429   if(pthread_getcpuclockid_func &&
1430      pthread_getcpuclockid_func(_main_thread, &clockid) == 0 &&
1431      sys_clock_getres(clockid, &tp) == 0 && tp.tv_sec == 0) {
1432 
1433     _supports_fast_thread_cpu_time = true;
1434     _pthread_getcpuclockid = pthread_getcpuclockid_func;
1435   }
1436 }
1437 
1438 jlong os::javaTimeNanos() {
1439   if (Linux::supports_monotonic_clock()) {
1440     struct timespec tp;
1441     int status = Linux::clock_gettime(CLOCK_MONOTONIC, &tp);
1442     assert(status == 0, "gettime error");
1443     jlong result = jlong(tp.tv_sec) * (1000 * 1000 * 1000) + jlong(tp.tv_nsec);
1444     return result;
1445   } else {
1446     timeval time;
1447     int status = gettimeofday(&time, NULL);
1448     assert(status != -1, "linux error");
1449     jlong usecs = jlong(time.tv_sec) * (1000 * 1000) + jlong(time.tv_usec);
1450     return 1000 * usecs;
1451   }
1452 }
1453 
1454 void os::javaTimeNanos_info(jvmtiTimerInfo *info_ptr) {
1455   if (Linux::supports_monotonic_clock()) {
1456     info_ptr->max_value = ALL_64_BITS;
1457 
1458     // CLOCK_MONOTONIC - amount of time since some arbitrary point in the past
1459     info_ptr->may_skip_backward = false;      // not subject to resetting or drifting
1460     info_ptr->may_skip_forward = false;       // not subject to resetting or drifting
1461   } else {
1462     // gettimeofday - based on time in seconds since the Epoch thus does not wrap
1463     info_ptr->max_value = ALL_64_BITS;
1464 
1465     // gettimeofday is a real time clock so it skips
1466     info_ptr->may_skip_backward = true;
1467     info_ptr->may_skip_forward = true;
1468   }
1469 
1470   info_ptr->kind = JVMTI_TIMER_ELAPSED;                // elapsed not CPU time
1471 }
1472 
1473 // Return the real, user, and system times in seconds from an
1474 // arbitrary fixed point in the past.
1475 bool os::getTimesSecs(double* process_real_time,
1476                       double* process_user_time,
1477                       double* process_system_time) {
1478   struct tms ticks;
1479   clock_t real_ticks = times(&ticks);
1480 
1481   if (real_ticks == (clock_t) (-1)) {
1482     return false;
1483   } else {
1484     double ticks_per_second = (double) clock_tics_per_sec;
1485     *process_user_time = ((double) ticks.tms_utime) / ticks_per_second;
1486     *process_system_time = ((double) ticks.tms_stime) / ticks_per_second;
1487     *process_real_time = ((double) real_ticks) / ticks_per_second;
1488 
1489     return true;
1490   }
1491 }
1492 
1493 
1494 char * os::local_time_string(char *buf, size_t buflen) {
1495   struct tm t;
1496   time_t long_time;
1497   time(&long_time);
1498   localtime_r(&long_time, &t);
1499   jio_snprintf(buf, buflen, "%d-%02d-%02d %02d:%02d:%02d",
1500                t.tm_year + 1900, t.tm_mon + 1, t.tm_mday,
1501                t.tm_hour, t.tm_min, t.tm_sec);
1502   return buf;
1503 }
1504 
1505 struct tm* os::localtime_pd(const time_t* clock, struct tm*  res) {
1506   return localtime_r(clock, res);
1507 }
1508 
1509 ////////////////////////////////////////////////////////////////////////////////
1510 // runtime exit support
1511 
1512 // Note: os::shutdown() might be called very early during initialization, or
1513 // called from signal handler. Before adding something to os::shutdown(), make
1514 // sure it is async-safe and can handle partially initialized VM.
1515 void os::shutdown() {
1516 
1517   // allow PerfMemory to attempt cleanup of any persistent resources
1518   perfMemory_exit();
1519 
1520   // needs to remove object in file system
1521   AttachListener::abort();
1522 
1523   // flush buffered output, finish log files
1524   ostream_abort();
1525 
1526   // Check for abort hook
1527   abort_hook_t abort_hook = Arguments::abort_hook();
1528   if (abort_hook != NULL) {
1529     abort_hook();
1530   }
1531 
1532 }
1533 
1534 // Note: os::abort() might be called very early during initialization, or
1535 // called from signal handler. Before adding something to os::abort(), make
1536 // sure it is async-safe and can handle partially initialized VM.
1537 void os::abort(bool dump_core) {
1538   os::shutdown();
1539   if (dump_core) {
1540 #ifndef PRODUCT
1541     fdStream out(defaultStream::output_fd());
1542     out.print_raw("Current thread is ");
1543     char buf[16];
1544     jio_snprintf(buf, sizeof(buf), UINTX_FORMAT, os::current_thread_id());
1545     out.print_raw_cr(buf);
1546     out.print_raw_cr("Dumping core ...");
1547 #endif
1548     ::abort(); // dump core
1549   }
1550 
1551   ::exit(1);
1552 }
1553 
1554 // Die immediately, no exit hook, no abort hook, no cleanup.
1555 void os::die() {
1556   // _exit() on LinuxThreads only kills current thread
1557   ::abort();
1558 }
1559 
1560 // unused on linux for now.
1561 void os::set_error_file(const char *logfile) {}
1562 
1563 
1564 // This method is a copy of JDK's sysGetLastErrorString
1565 // from src/solaris/hpi/src/system_md.c
1566 
1567 size_t os::lasterror(char *buf, size_t len) {
1568 
1569   if (errno == 0)  return 0;
1570 
1571   const char *s = ::strerror(errno);
1572   size_t n = ::strlen(s);
1573   if (n >= len) {
1574     n = len - 1;
1575   }
1576   ::strncpy(buf, s, n);
1577   buf[n] = '\0';
1578   return n;
1579 }
1580 
1581 intx os::current_thread_id() { return (intx)pthread_self(); }
1582 int os::current_process_id() {
1583 
1584   // Under the old linux thread library, linux gives each thread
1585   // its own process id. Because of this each thread will return
1586   // a different pid if this method were to return the result
1587   // of getpid(2). Linux provides no api that returns the pid
1588   // of the launcher thread for the vm. This implementation
1589   // returns a unique pid, the pid of the launcher thread
1590   // that starts the vm 'process'.
1591 
1592   // Under the NPTL, getpid() returns the same pid as the
1593   // launcher thread rather than a unique pid per thread.
1594   // Use gettid() if you want the old pre NPTL behaviour.
1595 
1596   // if you are looking for the result of a call to getpid() that
1597   // returns a unique pid for the calling thread, then look at the
1598   // OSThread::thread_id() method in osThread_linux.hpp file
1599 
1600   return (int)(_initial_pid ? _initial_pid : getpid());
1601 }
1602 
1603 // DLL functions
1604 
1605 const char* os::dll_file_extension() { return ".so"; }
1606 
1607 // This must be hard coded because it's the system's temporary
1608 // directory not the java application's temp directory, ala java.io.tmpdir.
1609 const char* os::get_temp_directory() { return "/tmp"; }
1610 
1611 static bool file_exists(const char* filename) {
1612   struct stat statbuf;
1613   if (filename == NULL || strlen(filename) == 0) {
1614     return false;
1615   }
1616   return os::stat(filename, &statbuf) == 0;
1617 }
1618 
1619 bool os::dll_build_name(char* buffer, size_t buflen,
1620                         const char* pname, const char* fname) {
1621   bool retval = false;
1622   // Copied from libhpi
1623   const size_t pnamelen = pname ? strlen(pname) : 0;
1624 
1625   // Return error on buffer overflow.
1626   if (pnamelen + strlen(fname) + 10 > (size_t) buflen) {
1627     return retval;
1628   }
1629 
1630   if (pnamelen == 0) {
1631     snprintf(buffer, buflen, "lib%s.so", fname);
1632     retval = true;
1633   } else if (strchr(pname, *os::path_separator()) != NULL) {
1634     int n;
1635     char** pelements = split_path(pname, &n);
1636     if (pelements == NULL) {
1637       return false;
1638     }
1639     for (int i = 0 ; i < n ; i++) {
1640       // Really shouldn't be NULL, but check can't hurt
1641       if (pelements[i] == NULL || strlen(pelements[i]) == 0) {
1642         continue; // skip the empty path values
1643       }
1644       snprintf(buffer, buflen, "%s/lib%s.so", pelements[i], fname);
1645       if (file_exists(buffer)) {
1646         retval = true;
1647         break;
1648       }
1649     }
1650     // release the storage
1651     for (int i = 0 ; i < n ; i++) {
1652       if (pelements[i] != NULL) {
1653         FREE_C_HEAP_ARRAY(char, pelements[i], mtInternal);
1654       }
1655     }
1656     if (pelements != NULL) {
1657       FREE_C_HEAP_ARRAY(char*, pelements, mtInternal);
1658     }
1659   } else {
1660     snprintf(buffer, buflen, "%s/lib%s.so", pname, fname);
1661     retval = true;
1662   }
1663   return retval;
1664 }
1665 
1666 // check if addr is inside libjvm.so
1667 bool os::address_is_in_vm(address addr) {
1668   static address libjvm_base_addr;
1669   Dl_info dlinfo;
1670 
1671   if (libjvm_base_addr == NULL) {
1672     dladdr(CAST_FROM_FN_PTR(void *, os::address_is_in_vm), &dlinfo);
1673     libjvm_base_addr = (address)dlinfo.dli_fbase;
1674     assert(libjvm_base_addr !=NULL, "Cannot obtain base address for libjvm");
1675   }
1676 
1677   if (dladdr((void *)addr, &dlinfo)) {
1678     if (libjvm_base_addr == (address)dlinfo.dli_fbase) return true;
1679   }
1680 
1681   return false;
1682 }
1683 
1684 bool os::dll_address_to_function_name(address addr, char *buf,
1685                                       int buflen, int *offset) {
1686   Dl_info dlinfo;
1687 
1688   if (dladdr((void*)addr, &dlinfo) && dlinfo.dli_sname != NULL) {
1689     if (buf != NULL) {
1690       if(!Decoder::demangle(dlinfo.dli_sname, buf, buflen)) {
1691         jio_snprintf(buf, buflen, "%s", dlinfo.dli_sname);
1692       }
1693     }
1694     if (offset != NULL) *offset = addr - (address)dlinfo.dli_saddr;
1695     return true;
1696   } else if (dlinfo.dli_fname != NULL && dlinfo.dli_fbase != 0) {
1697     if (Decoder::decode((address)(addr - (address)dlinfo.dli_fbase),
1698         buf, buflen, offset, dlinfo.dli_fname)) {
1699        return true;
1700     }
1701   }
1702 
1703   if (buf != NULL) buf[0] = '\0';
1704   if (offset != NULL) *offset = -1;
1705   return false;
1706 }
1707 
1708 struct _address_to_library_name {
1709   address addr;          // input : memory address
1710   size_t  buflen;        //         size of fname
1711   char*   fname;         // output: library name
1712   address base;          //         library base addr
1713 };
1714 
1715 static int address_to_library_name_callback(struct dl_phdr_info *info,
1716                                             size_t size, void *data) {
1717   int i;
1718   bool found = false;
1719   address libbase = NULL;
1720   struct _address_to_library_name * d = (struct _address_to_library_name *)data;
1721 
1722   // iterate through all loadable segments
1723   for (i = 0; i < info->dlpi_phnum; i++) {
1724     address segbase = (address)(info->dlpi_addr + info->dlpi_phdr[i].p_vaddr);
1725     if (info->dlpi_phdr[i].p_type == PT_LOAD) {
1726       // base address of a library is the lowest address of its loaded
1727       // segments.
1728       if (libbase == NULL || libbase > segbase) {
1729         libbase = segbase;
1730       }
1731       // see if 'addr' is within current segment
1732       if (segbase <= d->addr &&
1733           d->addr < segbase + info->dlpi_phdr[i].p_memsz) {
1734         found = true;
1735       }
1736     }
1737   }
1738 
1739   // dlpi_name is NULL or empty if the ELF file is executable, return 0
1740   // so dll_address_to_library_name() can fall through to use dladdr() which
1741   // can figure out executable name from argv[0].
1742   if (found && info->dlpi_name && info->dlpi_name[0]) {
1743     d->base = libbase;
1744     if (d->fname) {
1745       jio_snprintf(d->fname, d->buflen, "%s", info->dlpi_name);
1746     }
1747     return 1;
1748   }
1749   return 0;
1750 }
1751 
1752 bool os::dll_address_to_library_name(address addr, char* buf,
1753                                      int buflen, int* offset) {
1754   Dl_info dlinfo;
1755   struct _address_to_library_name data;
1756 
1757   // There is a bug in old glibc dladdr() implementation that it could resolve
1758   // to wrong library name if the .so file has a base address != NULL. Here
1759   // we iterate through the program headers of all loaded libraries to find
1760   // out which library 'addr' really belongs to. This workaround can be
1761   // removed once the minimum requirement for glibc is moved to 2.3.x.
1762   data.addr = addr;
1763   data.fname = buf;
1764   data.buflen = buflen;
1765   data.base = NULL;
1766   int rslt = dl_iterate_phdr(address_to_library_name_callback, (void *)&data);
1767 
1768   if (rslt) {
1769      // buf already contains library name
1770      if (offset) *offset = addr - data.base;
1771      return true;
1772   } else if (dladdr((void*)addr, &dlinfo)){
1773      if (buf) jio_snprintf(buf, buflen, "%s", dlinfo.dli_fname);
1774      if (offset) *offset = addr - (address)dlinfo.dli_fbase;
1775      return true;
1776   } else {
1777      if (buf) buf[0] = '\0';
1778      if (offset) *offset = -1;
1779      return false;
1780   }
1781 }
1782 
1783   // Loads .dll/.so and
1784   // in case of error it checks if .dll/.so was built for the
1785   // same architecture as Hotspot is running on
1786 
1787 
1788 // Remember the stack's state. The Linux dynamic linker will change
1789 // the stack to 'executable' at most once, so we must safepoint only once.
1790 bool os::Linux::_stack_is_executable = false;
1791 
1792 // VM operation that loads a library.  This is necessary if stack protection
1793 // of the Java stacks can be lost during loading the library.  If we
1794 // do not stop the Java threads, they can stack overflow before the stacks
1795 // are protected again.
1796 class VM_LinuxDllLoad: public VM_Operation {
1797  private:
1798   const char *_filename;
1799   char *_ebuf;
1800   int _ebuflen;
1801   void *_lib;
1802  public:
1803   VM_LinuxDllLoad(const char *fn, char *ebuf, int ebuflen) :
1804     _filename(fn), _ebuf(ebuf), _ebuflen(ebuflen), _lib(NULL) {}
1805   VMOp_Type type() const { return VMOp_LinuxDllLoad; }
1806   void doit() {
1807     _lib = os::Linux::dll_load_in_vmthread(_filename, _ebuf, _ebuflen);
1808     os::Linux::_stack_is_executable = true;
1809   }
1810   void* loaded_library() { return _lib; }
1811 };
1812 
1813 void * os::dll_load(const char *filename, char *ebuf, int ebuflen)
1814 {
1815   void * result = NULL;
1816   bool load_attempted = false;
1817 
1818   // Check whether the library to load might change execution rights
1819   // of the stack. If they are changed, the protection of the stack
1820   // guard pages will be lost. We need a safepoint to fix this.
1821   //
1822   // See Linux man page execstack(8) for more info.
1823   if (os::uses_stack_guard_pages() && !os::Linux::_stack_is_executable) {
1824     ElfFile ef(filename);
1825     if (!ef.specifies_noexecstack()) {
1826       if (!is_init_completed()) {
1827         os::Linux::_stack_is_executable = true;
1828         // This is OK - No Java threads have been created yet, and hence no
1829         // stack guard pages to fix.
1830         //
1831         // This should happen only when you are building JDK7 using a very
1832         // old version of JDK6 (e.g., with JPRT) and running test_gamma.
1833         //
1834         // Dynamic loader will make all stacks executable after
1835         // this function returns, and will not do that again.
1836         assert(Threads::first() == NULL, "no Java threads should exist yet.");
1837       } else {
1838         warning("You have loaded library %s which might have disabled stack guard. "
1839                 "The VM will try to fix the stack guard now.\n"
1840                 "It's highly recommended that you fix the library with "
1841                 "'execstack -c <libfile>', or link it with '-z noexecstack'.",
1842                 filename);
1843 
1844         assert(Thread::current()->is_Java_thread(), "must be Java thread");
1845         JavaThread *jt = JavaThread::current();
1846         if (jt->thread_state() != _thread_in_native) {
1847           // This happens when a compiler thread tries to load a hsdis-<arch>.so file
1848           // that requires ExecStack. Cannot enter safe point. Let's give up.
1849           warning("Unable to fix stack guard. Giving up.");
1850         } else {
1851           if (!LoadExecStackDllInVMThread) {
1852             // This is for the case where the DLL has an static
1853             // constructor function that executes JNI code. We cannot
1854             // load such DLLs in the VMThread.
1855             result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1856           }
1857 
1858           ThreadInVMfromNative tiv(jt);
1859           debug_only(VMNativeEntryWrapper vew;)
1860 
1861           VM_LinuxDllLoad op(filename, ebuf, ebuflen);
1862           VMThread::execute(&op);
1863           if (LoadExecStackDllInVMThread) {
1864             result = op.loaded_library();
1865           }
1866           load_attempted = true;
1867         }
1868       }
1869     }
1870   }
1871 
1872   if (!load_attempted) {
1873     result = os::Linux::dlopen_helper(filename, ebuf, ebuflen);
1874   }
1875 
1876   if (result != NULL) {
1877     // Successful loading
1878     return result;
1879   }
1880 
1881   Elf32_Ehdr elf_head;
1882   int diag_msg_max_length=ebuflen-strlen(ebuf);
1883   char* diag_msg_buf=ebuf+strlen(ebuf);
1884 
1885   if (diag_msg_max_length==0) {
1886     // No more space in ebuf for additional diagnostics message
1887     return NULL;
1888   }
1889 
1890 
1891   int file_descriptor= ::open(filename, O_RDONLY | O_NONBLOCK);
1892 
1893   if (file_descriptor < 0) {
1894     // Can't open library, report dlerror() message
1895     return NULL;
1896   }
1897 
1898   bool failed_to_read_elf_head=
1899     (sizeof(elf_head)!=
1900         (::read(file_descriptor, &elf_head,sizeof(elf_head)))) ;
1901 
1902   ::close(file_descriptor);
1903   if (failed_to_read_elf_head) {
1904     // file i/o error - report dlerror() msg
1905     return NULL;
1906   }
1907 
1908   typedef struct {
1909     Elf32_Half  code;         // Actual value as defined in elf.h
1910     Elf32_Half  compat_class; // Compatibility of archs at VM's sense
1911     char        elf_class;    // 32 or 64 bit
1912     char        endianess;    // MSB or LSB
1913     char*       name;         // String representation
1914   } arch_t;
1915 
1916   #ifndef EM_486
1917   #define EM_486          6               /* Intel 80486 */
1918   #endif
1919 
1920   static const arch_t arch_array[]={
1921     {EM_386,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1922     {EM_486,         EM_386,     ELFCLASS32, ELFDATA2LSB, (char*)"IA 32"},
1923     {EM_IA_64,       EM_IA_64,   ELFCLASS64, ELFDATA2LSB, (char*)"IA 64"},
1924     {EM_X86_64,      EM_X86_64,  ELFCLASS64, ELFDATA2LSB, (char*)"AMD 64"},
1925     {EM_SPARC,       EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1926     {EM_SPARC32PLUS, EM_SPARC,   ELFCLASS32, ELFDATA2MSB, (char*)"Sparc 32"},
1927     {EM_SPARCV9,     EM_SPARCV9, ELFCLASS64, ELFDATA2MSB, (char*)"Sparc v9 64"},
1928     {EM_PPC,         EM_PPC,     ELFCLASS32, ELFDATA2MSB, (char*)"Power PC 32"},
1929     {EM_PPC64,       EM_PPC64,   ELFCLASS64, ELFDATA2MSB, (char*)"Power PC 64"},
1930     {EM_ARM,         EM_ARM,     ELFCLASS32,   ELFDATA2LSB, (char*)"ARM"},
1931     {EM_S390,        EM_S390,    ELFCLASSNONE, ELFDATA2MSB, (char*)"IBM System/390"},
1932     {EM_ALPHA,       EM_ALPHA,   ELFCLASS64, ELFDATA2LSB, (char*)"Alpha"},
1933     {EM_MIPS_RS3_LE, EM_MIPS_RS3_LE, ELFCLASS32, ELFDATA2LSB, (char*)"MIPSel"},
1934     {EM_MIPS,        EM_MIPS,    ELFCLASS32, ELFDATA2MSB, (char*)"MIPS"},
1935     {EM_PARISC,      EM_PARISC,  ELFCLASS32, ELFDATA2MSB, (char*)"PARISC"},
1936     {EM_68K,         EM_68K,     ELFCLASS32, ELFDATA2MSB, (char*)"M68k"}
1937   };
1938 
1939   #if  (defined IA32)
1940     static  Elf32_Half running_arch_code=EM_386;
1941   #elif   (defined AMD64)
1942     static  Elf32_Half running_arch_code=EM_X86_64;
1943   #elif  (defined IA64)
1944     static  Elf32_Half running_arch_code=EM_IA_64;
1945   #elif  (defined __sparc) && (defined _LP64)
1946     static  Elf32_Half running_arch_code=EM_SPARCV9;
1947   #elif  (defined __sparc) && (!defined _LP64)
1948     static  Elf32_Half running_arch_code=EM_SPARC;
1949   #elif  (defined __powerpc64__)
1950     static  Elf32_Half running_arch_code=EM_PPC64;
1951   #elif  (defined __powerpc__)
1952     static  Elf32_Half running_arch_code=EM_PPC;
1953   #elif  (defined ARM)
1954     static  Elf32_Half running_arch_code=EM_ARM;
1955   #elif  (defined S390)
1956     static  Elf32_Half running_arch_code=EM_S390;
1957   #elif  (defined ALPHA)
1958     static  Elf32_Half running_arch_code=EM_ALPHA;
1959   #elif  (defined MIPSEL)
1960     static  Elf32_Half running_arch_code=EM_MIPS_RS3_LE;
1961   #elif  (defined PARISC)
1962     static  Elf32_Half running_arch_code=EM_PARISC;
1963   #elif  (defined MIPS)
1964     static  Elf32_Half running_arch_code=EM_MIPS;
1965   #elif  (defined M68K)
1966     static  Elf32_Half running_arch_code=EM_68K;
1967   #else
1968     #error Method os::dll_load requires that one of following is defined:\
1969          IA32, AMD64, IA64, __sparc, __powerpc__, ARM, S390, ALPHA, MIPS, MIPSEL, PARISC, M68K
1970   #endif
1971 
1972   // Identify compatability class for VM's architecture and library's architecture
1973   // Obtain string descriptions for architectures
1974 
1975   arch_t lib_arch={elf_head.e_machine,0,elf_head.e_ident[EI_CLASS], elf_head.e_ident[EI_DATA], NULL};
1976   int running_arch_index=-1;
1977 
1978   for (unsigned int i=0 ; i < ARRAY_SIZE(arch_array) ; i++ ) {
1979     if (running_arch_code == arch_array[i].code) {
1980       running_arch_index    = i;
1981     }
1982     if (lib_arch.code == arch_array[i].code) {
1983       lib_arch.compat_class = arch_array[i].compat_class;
1984       lib_arch.name         = arch_array[i].name;
1985     }
1986   }
1987 
1988   assert(running_arch_index != -1,
1989     "Didn't find running architecture code (running_arch_code) in arch_array");
1990   if (running_arch_index == -1) {
1991     // Even though running architecture detection failed
1992     // we may still continue with reporting dlerror() message
1993     return NULL;
1994   }
1995 
1996   if (lib_arch.endianess != arch_array[running_arch_index].endianess) {
1997     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: endianness mismatch)");
1998     return NULL;
1999   }
2000 
2001 #ifndef S390
2002   if (lib_arch.elf_class != arch_array[running_arch_index].elf_class) {
2003     ::snprintf(diag_msg_buf, diag_msg_max_length-1," (Possible cause: architecture word width mismatch)");
2004     return NULL;
2005   }
2006 #endif // !S390
2007 
2008   if (lib_arch.compat_class != arch_array[running_arch_index].compat_class) {
2009     if ( lib_arch.name!=NULL ) {
2010       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2011         " (Possible cause: can't load %s-bit .so on a %s-bit platform)",
2012         lib_arch.name, arch_array[running_arch_index].name);
2013     } else {
2014       ::snprintf(diag_msg_buf, diag_msg_max_length-1,
2015       " (Possible cause: can't load this .so (machine code=0x%x) on a %s-bit platform)",
2016         lib_arch.code,
2017         arch_array[running_arch_index].name);
2018     }
2019   }
2020 
2021   return NULL;
2022 }
2023 
2024 void * os::Linux::dlopen_helper(const char *filename, char *ebuf, int ebuflen) {
2025   void * result = ::dlopen(filename, RTLD_LAZY);
2026   if (result == NULL) {
2027     ::strncpy(ebuf, ::dlerror(), ebuflen - 1);
2028     ebuf[ebuflen-1] = '\0';
2029   }
2030   return result;
2031 }
2032 
2033 void * os::Linux::dll_load_in_vmthread(const char *filename, char *ebuf, int ebuflen) {
2034   void * result = NULL;
2035   if (LoadExecStackDllInVMThread) {
2036     result = dlopen_helper(filename, ebuf, ebuflen);
2037   }
2038 
2039   // Since 7019808, libjvm.so is linked with -noexecstack. If the VM loads a
2040   // library that requires an executable stack, or which does not have this
2041   // stack attribute set, dlopen changes the stack attribute to executable. The
2042   // read protection of the guard pages gets lost.
2043   //
2044   // Need to check _stack_is_executable again as multiple VM_LinuxDllLoad
2045   // may have been queued at the same time.
2046 
2047   if (!_stack_is_executable) {
2048     JavaThread *jt = Threads::first();
2049 
2050     while (jt) {
2051       if (!jt->stack_guard_zone_unused() &&        // Stack not yet fully initialized
2052           jt->stack_yellow_zone_enabled()) {       // No pending stack overflow exceptions
2053         if (!os::guard_memory((char *) jt->stack_red_zone_base() - jt->stack_red_zone_size(),
2054                               jt->stack_yellow_zone_size() + jt->stack_red_zone_size())) {
2055           warning("Attempt to reguard stack yellow zone failed.");
2056         }
2057       }
2058       jt = jt->next();
2059     }
2060   }
2061 
2062   return result;
2063 }
2064 
2065 /*
2066  * glibc-2.0 libdl is not MT safe.  If you are building with any glibc,
2067  * chances are you might want to run the generated bits against glibc-2.0
2068  * libdl.so, so always use locking for any version of glibc.
2069  */
2070 void* os::dll_lookup(void* handle, const char* name) {
2071   pthread_mutex_lock(&dl_mutex);
2072   void* res = dlsym(handle, name);
2073   pthread_mutex_unlock(&dl_mutex);
2074   return res;
2075 }
2076 
2077 
2078 static bool _print_ascii_file(const char* filename, outputStream* st) {
2079   int fd = ::open(filename, O_RDONLY);
2080   if (fd == -1) {
2081      return false;
2082   }
2083 
2084   char buf[32];
2085   int bytes;
2086   while ((bytes = ::read(fd, buf, sizeof(buf))) > 0) {
2087     st->print_raw(buf, bytes);
2088   }
2089 
2090   ::close(fd);
2091 
2092   return true;
2093 }
2094 
2095 void os::print_dll_info(outputStream *st) {
2096    st->print_cr("Dynamic libraries:");
2097 
2098    char fname[32];
2099    pid_t pid = os::Linux::gettid();
2100 
2101    jio_snprintf(fname, sizeof(fname), "/proc/%d/maps", pid);
2102 
2103    if (!_print_ascii_file(fname, st)) {
2104      st->print("Can not get library information for pid = %d\n", pid);
2105    }
2106 }
2107 
2108 void os::print_os_info_brief(outputStream* st) {
2109   os::Linux::print_distro_info(st);
2110 
2111   os::Posix::print_uname_info(st);
2112 
2113   os::Linux::print_libversion_info(st);
2114 
2115 }
2116 
2117 void os::print_os_info(outputStream* st) {
2118   st->print("OS:");
2119 
2120   os::Linux::print_distro_info(st);
2121 
2122   os::Posix::print_uname_info(st);
2123 
2124   // Print warning if unsafe chroot environment detected
2125   if (unsafe_chroot_detected) {
2126     st->print("WARNING!! ");
2127     st->print_cr(unstable_chroot_error);
2128   }
2129 
2130   os::Linux::print_libversion_info(st);
2131 
2132   os::Posix::print_rlimit_info(st);
2133 
2134   os::Posix::print_load_average(st);
2135 
2136   os::Linux::print_full_memory_info(st);
2137 }
2138 
2139 // Try to identify popular distros.
2140 // Most Linux distributions have /etc/XXX-release file, which contains
2141 // the OS version string. Some have more than one /etc/XXX-release file
2142 // (e.g. Mandrake has both /etc/mandrake-release and /etc/redhat-release.),
2143 // so the order is important.
2144 void os::Linux::print_distro_info(outputStream* st) {
2145   if (!_print_ascii_file("/etc/mandrake-release", st) &&
2146       !_print_ascii_file("/etc/sun-release", st) &&
2147       !_print_ascii_file("/etc/redhat-release", st) &&
2148       !_print_ascii_file("/etc/SuSE-release", st) &&
2149       !_print_ascii_file("/etc/turbolinux-release", st) &&
2150       !_print_ascii_file("/etc/gentoo-release", st) &&
2151       !_print_ascii_file("/etc/debian_version", st) &&
2152       !_print_ascii_file("/etc/ltib-release", st) &&
2153       !_print_ascii_file("/etc/angstrom-version", st)) {
2154       st->print("Linux");
2155   }
2156   st->cr();
2157 }
2158 
2159 void os::Linux::print_libversion_info(outputStream* st) {
2160   // libc, pthread
2161   st->print("libc:");
2162   st->print(os::Linux::glibc_version()); st->print(" ");
2163   st->print(os::Linux::libpthread_version()); st->print(" ");
2164   if (os::Linux::is_LinuxThreads()) {
2165      st->print("(%s stack)", os::Linux::is_floating_stack() ? "floating" : "fixed");
2166   }
2167   st->cr();
2168 }
2169 
2170 void os::Linux::print_full_memory_info(outputStream* st) {
2171    st->print("\n/proc/meminfo:\n");
2172    _print_ascii_file("/proc/meminfo", st);
2173    st->cr();
2174 }
2175 
2176 void os::print_memory_info(outputStream* st) {
2177 
2178   st->print("Memory:");
2179   st->print(" %dk page", os::vm_page_size()>>10);
2180 
2181   // values in struct sysinfo are "unsigned long"
2182   struct sysinfo si;
2183   sysinfo(&si);
2184 
2185   st->print(", physical " UINT64_FORMAT "k",
2186             os::physical_memory() >> 10);
2187   st->print("(" UINT64_FORMAT "k free)",
2188             os::available_memory() >> 10);
2189   st->print(", swap " UINT64_FORMAT "k",
2190             ((jlong)si.totalswap * si.mem_unit) >> 10);
2191   st->print("(" UINT64_FORMAT "k free)",
2192             ((jlong)si.freeswap * si.mem_unit) >> 10);
2193   st->cr();
2194 }
2195 
2196 void os::pd_print_cpu_info(outputStream* st) {
2197   st->print("\n/proc/cpuinfo:\n");
2198   if (!_print_ascii_file("/proc/cpuinfo", st)) {
2199     st->print("  <Not Available>");
2200   }
2201   st->cr();
2202 }
2203 
2204 // Taken from /usr/include/bits/siginfo.h  Supposed to be architecture specific
2205 // but they're the same for all the linux arch that we support
2206 // and they're the same for solaris but there's no common place to put this.
2207 const char *ill_names[] = { "ILL0", "ILL_ILLOPC", "ILL_ILLOPN", "ILL_ILLADR",
2208                           "ILL_ILLTRP", "ILL_PRVOPC", "ILL_PRVREG",
2209                           "ILL_COPROC", "ILL_BADSTK" };
2210 
2211 const char *fpe_names[] = { "FPE0", "FPE_INTDIV", "FPE_INTOVF", "FPE_FLTDIV",
2212                           "FPE_FLTOVF", "FPE_FLTUND", "FPE_FLTRES",
2213                           "FPE_FLTINV", "FPE_FLTSUB", "FPE_FLTDEN" };
2214 
2215 const char *segv_names[] = { "SEGV0", "SEGV_MAPERR", "SEGV_ACCERR" };
2216 
2217 const char *bus_names[] = { "BUS0", "BUS_ADRALN", "BUS_ADRERR", "BUS_OBJERR" };
2218 
2219 void os::print_siginfo(outputStream* st, void* siginfo) {
2220   st->print("siginfo:");
2221 
2222   const int buflen = 100;
2223   char buf[buflen];
2224   siginfo_t *si = (siginfo_t*)siginfo;
2225   st->print("si_signo=%s: ", os::exception_name(si->si_signo, buf, buflen));
2226   if (si->si_errno != 0 && strerror_r(si->si_errno, buf, buflen) == 0) {
2227     st->print("si_errno=%s", buf);
2228   } else {
2229     st->print("si_errno=%d", si->si_errno);
2230   }
2231   const int c = si->si_code;
2232   assert(c > 0, "unexpected si_code");
2233   switch (si->si_signo) {
2234   case SIGILL:
2235     st->print(", si_code=%d (%s)", c, c > 8 ? "" : ill_names[c]);
2236     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2237     break;
2238   case SIGFPE:
2239     st->print(", si_code=%d (%s)", c, c > 9 ? "" : fpe_names[c]);
2240     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2241     break;
2242   case SIGSEGV:
2243     st->print(", si_code=%d (%s)", c, c > 2 ? "" : segv_names[c]);
2244     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2245     break;
2246   case SIGBUS:
2247     st->print(", si_code=%d (%s)", c, c > 3 ? "" : bus_names[c]);
2248     st->print(", si_addr=" PTR_FORMAT, si->si_addr);
2249     break;
2250   default:
2251     st->print(", si_code=%d", si->si_code);
2252     // no si_addr
2253   }
2254 
2255   if ((si->si_signo == SIGBUS || si->si_signo == SIGSEGV) &&
2256       UseSharedSpaces) {
2257     FileMapInfo* mapinfo = FileMapInfo::current_info();
2258     if (mapinfo->is_in_shared_space(si->si_addr)) {
2259       st->print("\n\nError accessing class data sharing archive."   \
2260                 " Mapped file inaccessible during execution, "      \
2261                 " possible disk/network problem.");
2262     }
2263   }
2264   st->cr();
2265 }
2266 
2267 
2268 static void print_signal_handler(outputStream* st, int sig,
2269                                  char* buf, size_t buflen);
2270 
2271 void os::print_signal_handlers(outputStream* st, char* buf, size_t buflen) {
2272   st->print_cr("Signal Handlers:");
2273   print_signal_handler(st, SIGSEGV, buf, buflen);
2274   print_signal_handler(st, SIGBUS , buf, buflen);
2275   print_signal_handler(st, SIGFPE , buf, buflen);
2276   print_signal_handler(st, SIGPIPE, buf, buflen);
2277   print_signal_handler(st, SIGXFSZ, buf, buflen);
2278   print_signal_handler(st, SIGILL , buf, buflen);
2279   print_signal_handler(st, INTERRUPT_SIGNAL, buf, buflen);
2280   print_signal_handler(st, SR_signum, buf, buflen);
2281   print_signal_handler(st, SHUTDOWN1_SIGNAL, buf, buflen);
2282   print_signal_handler(st, SHUTDOWN2_SIGNAL , buf, buflen);
2283   print_signal_handler(st, SHUTDOWN3_SIGNAL , buf, buflen);
2284   print_signal_handler(st, BREAK_SIGNAL, buf, buflen);
2285 }
2286 
2287 static char saved_jvm_path[MAXPATHLEN] = {0};
2288 
2289 // Find the full path to the current module, libjvm.so
2290 void os::jvm_path(char *buf, jint buflen) {
2291   // Error checking.
2292   if (buflen < MAXPATHLEN) {
2293     assert(false, "must use a large-enough buffer");
2294     buf[0] = '\0';
2295     return;
2296   }
2297   // Lazy resolve the path to current module.
2298   if (saved_jvm_path[0] != 0) {
2299     strcpy(buf, saved_jvm_path);
2300     return;
2301   }
2302 
2303   char dli_fname[MAXPATHLEN];
2304   bool ret = dll_address_to_library_name(
2305                 CAST_FROM_FN_PTR(address, os::jvm_path),
2306                 dli_fname, sizeof(dli_fname), NULL);
2307   assert(ret != 0, "cannot locate libjvm");
2308   char *rp = realpath(dli_fname, buf);
2309   if (rp == NULL)
2310     return;
2311 
2312   if (Arguments::created_by_gamma_launcher()) {
2313     // Support for the gamma launcher.  Typical value for buf is
2314     // "<JAVA_HOME>/jre/lib/<arch>/<vmtype>/libjvm.so".  If "/jre/lib/" appears at
2315     // the right place in the string, then assume we are installed in a JDK and
2316     // we're done.  Otherwise, check for a JAVA_HOME environment variable and fix
2317     // up the path so it looks like libjvm.so is installed there (append a
2318     // fake suffix hotspot/libjvm.so).
2319     const char *p = buf + strlen(buf) - 1;
2320     for (int count = 0; p > buf && count < 5; ++count) {
2321       for (--p; p > buf && *p != '/'; --p)
2322         /* empty */ ;
2323     }
2324 
2325     if (strncmp(p, "/jre/lib/", 9) != 0) {
2326       // Look for JAVA_HOME in the environment.
2327       char* java_home_var = ::getenv("JAVA_HOME");
2328       if (java_home_var != NULL && java_home_var[0] != 0) {
2329         char* jrelib_p;
2330         int len;
2331 
2332         // Check the current module name "libjvm.so".
2333         p = strrchr(buf, '/');
2334         assert(strstr(p, "/libjvm") == p, "invalid library name");
2335 
2336         rp = realpath(java_home_var, buf);
2337         if (rp == NULL)
2338           return;
2339 
2340         // determine if this is a legacy image or modules image
2341         // modules image doesn't have "jre" subdirectory
2342         len = strlen(buf);
2343         jrelib_p = buf + len;
2344         snprintf(jrelib_p, buflen-len, "/jre/lib/%s", cpu_arch);
2345         if (0 != access(buf, F_OK)) {
2346           snprintf(jrelib_p, buflen-len, "/lib/%s", cpu_arch);
2347         }
2348 
2349         if (0 == access(buf, F_OK)) {
2350           // Use current module name "libjvm.so"
2351           len = strlen(buf);
2352           snprintf(buf + len, buflen-len, "/hotspot/libjvm.so");
2353         } else {
2354           // Go back to path of .so
2355           rp = realpath(dli_fname, buf);
2356           if (rp == NULL)
2357             return;
2358         }
2359       }
2360     }
2361   }
2362 
2363   strcpy(saved_jvm_path, buf);
2364 }
2365 
2366 void os::print_jni_name_prefix_on(outputStream* st, int args_size) {
2367   // no prefix required, not even "_"
2368 }
2369 
2370 void os::print_jni_name_suffix_on(outputStream* st, int args_size) {
2371   // no suffix required
2372 }
2373 
2374 ////////////////////////////////////////////////////////////////////////////////
2375 // sun.misc.Signal support
2376 
2377 static volatile jint sigint_count = 0;
2378 
2379 static void
2380 UserHandler(int sig, void *siginfo, void *context) {
2381   // 4511530 - sem_post is serialized and handled by the manager thread. When
2382   // the program is interrupted by Ctrl-C, SIGINT is sent to every thread. We
2383   // don't want to flood the manager thread with sem_post requests.
2384   if (sig == SIGINT && Atomic::add(1, &sigint_count) > 1)
2385       return;
2386 
2387   // Ctrl-C is pressed during error reporting, likely because the error
2388   // handler fails to abort. Let VM die immediately.
2389   if (sig == SIGINT && is_error_reported()) {
2390      os::die();
2391   }
2392 
2393   os::signal_notify(sig);
2394 }
2395 
2396 void* os::user_handler() {
2397   return CAST_FROM_FN_PTR(void*, UserHandler);
2398 }
2399 
2400 extern "C" {
2401   typedef void (*sa_handler_t)(int);
2402   typedef void (*sa_sigaction_t)(int, siginfo_t *, void *);
2403 }
2404 
2405 void* os::signal(int signal_number, void* handler) {
2406   struct sigaction sigAct, oldSigAct;
2407 
2408   sigfillset(&(sigAct.sa_mask));
2409   sigAct.sa_flags   = SA_RESTART|SA_SIGINFO;
2410   sigAct.sa_handler = CAST_TO_FN_PTR(sa_handler_t, handler);
2411 
2412   if (sigaction(signal_number, &sigAct, &oldSigAct)) {
2413     // -1 means registration failed
2414     return (void *)-1;
2415   }
2416 
2417   return CAST_FROM_FN_PTR(void*, oldSigAct.sa_handler);
2418 }
2419 
2420 void os::signal_raise(int signal_number) {
2421   ::raise(signal_number);
2422 }
2423 
2424 /*
2425  * The following code is moved from os.cpp for making this
2426  * code platform specific, which it is by its very nature.
2427  */
2428 
2429 // Will be modified when max signal is changed to be dynamic
2430 int os::sigexitnum_pd() {
2431   return NSIG;
2432 }
2433 
2434 // a counter for each possible signal value
2435 static volatile jint pending_signals[NSIG+1] = { 0 };
2436 
2437 // Linux(POSIX) specific hand shaking semaphore.
2438 static sem_t sig_sem;
2439 
2440 void os::signal_init_pd() {
2441   // Initialize signal structures
2442   ::memset((void*)pending_signals, 0, sizeof(pending_signals));
2443 
2444   // Initialize signal semaphore
2445   ::sem_init(&sig_sem, 0, 0);
2446 }
2447 
2448 void os::signal_notify(int sig) {
2449   Atomic::inc(&pending_signals[sig]);
2450   ::sem_post(&sig_sem);
2451 }
2452 
2453 static int check_pending_signals(bool wait) {
2454   Atomic::store(0, &sigint_count);
2455   for (;;) {
2456     for (int i = 0; i < NSIG + 1; i++) {
2457       jint n = pending_signals[i];
2458       if (n > 0 && n == Atomic::cmpxchg(n - 1, &pending_signals[i], n)) {
2459         return i;
2460       }
2461     }
2462     if (!wait) {
2463       return -1;
2464     }
2465     JavaThread *thread = JavaThread::current();
2466     ThreadBlockInVM tbivm(thread);
2467 
2468     bool threadIsSuspended;
2469     do {
2470       thread->set_suspend_equivalent();
2471       // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
2472       ::sem_wait(&sig_sem);
2473 
2474       // were we externally suspended while we were waiting?
2475       threadIsSuspended = thread->handle_special_suspend_equivalent_condition();
2476       if (threadIsSuspended) {
2477         //
2478         // The semaphore has been incremented, but while we were waiting
2479         // another thread suspended us. We don't want to continue running
2480         // while suspended because that would surprise the thread that
2481         // suspended us.
2482         //
2483         ::sem_post(&sig_sem);
2484 
2485         thread->java_suspend_self();
2486       }
2487     } while (threadIsSuspended);
2488   }
2489 }
2490 
2491 int os::signal_lookup() {
2492   return check_pending_signals(false);
2493 }
2494 
2495 int os::signal_wait() {
2496   return check_pending_signals(true);
2497 }
2498 
2499 ////////////////////////////////////////////////////////////////////////////////
2500 // Virtual Memory
2501 
2502 int os::vm_page_size() {
2503   // Seems redundant as all get out
2504   assert(os::Linux::page_size() != -1, "must call os::init");
2505   return os::Linux::page_size();
2506 }
2507 
2508 // Solaris allocates memory by pages.
2509 int os::vm_allocation_granularity() {
2510   assert(os::Linux::page_size() != -1, "must call os::init");
2511   return os::Linux::page_size();
2512 }
2513 
2514 // Rationale behind this function:
2515 //  current (Mon Apr 25 20:12:18 MSD 2005) oprofile drops samples without executable
2516 //  mapping for address (see lookup_dcookie() in the kernel module), thus we cannot get
2517 //  samples for JITted code. Here we create private executable mapping over the code cache
2518 //  and then we can use standard (well, almost, as mapping can change) way to provide
2519 //  info for the reporting script by storing timestamp and location of symbol
2520 void linux_wrap_code(char* base, size_t size) {
2521   static volatile jint cnt = 0;
2522 
2523   if (!UseOprofile) {
2524     return;
2525   }
2526 
2527   char buf[PATH_MAX+1];
2528   int num = Atomic::add(1, &cnt);
2529 
2530   snprintf(buf, sizeof(buf), "%s/hs-vm-%d-%d",
2531            os::get_temp_directory(), os::current_process_id(), num);
2532   unlink(buf);
2533 
2534   int fd = ::open(buf, O_CREAT | O_RDWR, S_IRWXU);
2535 
2536   if (fd != -1) {
2537     off_t rv = ::lseek(fd, size-2, SEEK_SET);
2538     if (rv != (off_t)-1) {
2539       if (::write(fd, "", 1) == 1) {
2540         mmap(base, size,
2541              PROT_READ|PROT_WRITE|PROT_EXEC,
2542              MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE, fd, 0);
2543       }
2544     }
2545     ::close(fd);
2546     unlink(buf);
2547   }
2548 }
2549 
2550 // NOTE: Linux kernel does not really reserve the pages for us.
2551 //       All it does is to check if there are enough free pages
2552 //       left at the time of mmap(). This could be a potential
2553 //       problem.
2554 bool os::pd_commit_memory(char* addr, size_t size, bool exec) {
2555   int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2556   uintptr_t res = (uintptr_t) ::mmap(addr, size, prot,
2557                                    MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 0);
2558   if (res != (uintptr_t) MAP_FAILED) {
2559     if (UseNUMAInterleaving) {
2560       numa_make_global(addr, size);
2561     }
2562     return true;
2563   }
2564   return false;
2565 }
2566 
2567 // Define MAP_HUGETLB here so we can build HotSpot on old systems.
2568 #ifndef MAP_HUGETLB
2569 #define MAP_HUGETLB 0x40000
2570 #endif
2571 
2572 // Define MADV_HUGEPAGE here so we can build HotSpot on old systems.
2573 #ifndef MADV_HUGEPAGE
2574 #define MADV_HUGEPAGE 14
2575 #endif
2576 
2577 bool os::pd_commit_memory(char* addr, size_t size, size_t alignment_hint,
2578                        bool exec) {
2579   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2580     int prot = exec ? PROT_READ|PROT_WRITE|PROT_EXEC : PROT_READ|PROT_WRITE;
2581     uintptr_t res =
2582       (uintptr_t) ::mmap(addr, size, prot,
2583                          MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS|MAP_HUGETLB,
2584                          -1, 0);
2585     if (res != (uintptr_t) MAP_FAILED) {
2586       if (UseNUMAInterleaving) {
2587         numa_make_global(addr, size);
2588       }
2589       return true;
2590     }
2591     // Fall through and try to use small pages
2592   }
2593 
2594   if (commit_memory(addr, size, exec)) {
2595     realign_memory(addr, size, alignment_hint);
2596     return true;
2597   }
2598   return false;
2599 }
2600 
2601 void os::pd_realign_memory(char *addr, size_t bytes, size_t alignment_hint) {
2602   if (UseHugeTLBFS && alignment_hint > (size_t)vm_page_size()) {
2603     // We don't check the return value: madvise(MADV_HUGEPAGE) may not
2604     // be supported or the memory may already be backed by huge pages.
2605     ::madvise(addr, bytes, MADV_HUGEPAGE);
2606   }
2607 }
2608 
2609 void os::pd_free_memory(char *addr, size_t bytes, size_t alignment_hint) {
2610   // This method works by doing an mmap over an existing mmaping and effectively discarding
2611   // the existing pages. However it won't work for SHM-based large pages that cannot be
2612   // uncommitted at all. We don't do anything in this case to avoid creating a segment with
2613   // small pages on top of the SHM segment. This method always works for small pages, so we
2614   // allow that in any case.
2615   if (alignment_hint <= (size_t)os::vm_page_size() || !UseSHM) {
2616     commit_memory(addr, bytes, alignment_hint, false);
2617   }
2618 }
2619 
2620 void os::numa_make_global(char *addr, size_t bytes) {
2621   Linux::numa_interleave_memory(addr, bytes);
2622 }
2623 
2624 void os::numa_make_local(char *addr, size_t bytes, int lgrp_hint) {
2625   Linux::numa_tonode_memory(addr, bytes, lgrp_hint);
2626 }
2627 
2628 bool os::numa_topology_changed()   { return false; }
2629 
2630 size_t os::numa_get_groups_num() {
2631   int max_node = Linux::numa_max_node();
2632   return max_node > 0 ? max_node + 1 : 1;
2633 }
2634 
2635 int os::numa_get_group_id() {
2636   int cpu_id = Linux::sched_getcpu();
2637   if (cpu_id != -1) {
2638     int lgrp_id = Linux::get_node_by_cpu(cpu_id);
2639     if (lgrp_id != -1) {
2640       return lgrp_id;
2641     }
2642   }
2643   return 0;
2644 }
2645 
2646 size_t os::numa_get_leaf_groups(int *ids, size_t size) {
2647   for (size_t i = 0; i < size; i++) {
2648     ids[i] = i;
2649   }
2650   return size;
2651 }
2652 
2653 bool os::get_page_info(char *start, page_info* info) {
2654   return false;
2655 }
2656 
2657 char *os::scan_pages(char *start, char* end, page_info* page_expected, page_info* page_found) {
2658   return end;
2659 }
2660 
2661 
2662 int os::Linux::sched_getcpu_syscall(void) {
2663   unsigned int cpu;
2664   int retval = -1;
2665 
2666 #if defined(IA32)
2667 # ifndef SYS_getcpu
2668 # define SYS_getcpu 318
2669 # endif
2670   retval = syscall(SYS_getcpu, &cpu, NULL, NULL);
2671 #elif defined(AMD64)
2672 // Unfortunately we have to bring all these macros here from vsyscall.h
2673 // to be able to compile on old linuxes.
2674 # define __NR_vgetcpu 2
2675 # define VSYSCALL_START (-10UL << 20)
2676 # define VSYSCALL_SIZE 1024
2677 # define VSYSCALL_ADDR(vsyscall_nr) (VSYSCALL_START+VSYSCALL_SIZE*(vsyscall_nr))
2678   typedef long (*vgetcpu_t)(unsigned int *cpu, unsigned int *node, unsigned long *tcache);
2679   vgetcpu_t vgetcpu = (vgetcpu_t)VSYSCALL_ADDR(__NR_vgetcpu);
2680   retval = vgetcpu(&cpu, NULL, NULL);
2681 #endif
2682 
2683   return (retval == -1) ? retval : cpu;
2684 }
2685 
2686 // Something to do with the numa-aware allocator needs these symbols
2687 extern "C" JNIEXPORT void numa_warn(int number, char *where, ...) { }
2688 extern "C" JNIEXPORT void numa_error(char *where) { }
2689 extern "C" JNIEXPORT int fork1() { return fork(); }
2690 
2691 
2692 // If we are running with libnuma version > 2, then we should
2693 // be trying to use symbols with versions 1.1
2694 // If we are running with earlier version, which did not have symbol versions,
2695 // we should use the base version.
2696 void* os::Linux::libnuma_dlsym(void* handle, const char *name) {
2697   void *f = dlvsym(handle, name, "libnuma_1.1");
2698   if (f == NULL) {
2699     f = dlsym(handle, name);
2700   }
2701   return f;
2702 }
2703 
2704 bool os::Linux::libnuma_init() {
2705   // sched_getcpu() should be in libc.
2706   set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t,
2707                                   dlsym(RTLD_DEFAULT, "sched_getcpu")));
2708 
2709   // If it's not, try a direct syscall.
2710   if (sched_getcpu() == -1)
2711     set_sched_getcpu(CAST_TO_FN_PTR(sched_getcpu_func_t, (void*)&sched_getcpu_syscall));
2712 
2713   if (sched_getcpu() != -1) { // Does it work?
2714     void *handle = dlopen("libnuma.so.1", RTLD_LAZY);
2715     if (handle != NULL) {
2716       set_numa_node_to_cpus(CAST_TO_FN_PTR(numa_node_to_cpus_func_t,
2717                                            libnuma_dlsym(handle, "numa_node_to_cpus")));
2718       set_numa_max_node(CAST_TO_FN_PTR(numa_max_node_func_t,
2719                                        libnuma_dlsym(handle, "numa_max_node")));
2720       set_numa_available(CAST_TO_FN_PTR(numa_available_func_t,
2721                                         libnuma_dlsym(handle, "numa_available")));
2722       set_numa_tonode_memory(CAST_TO_FN_PTR(numa_tonode_memory_func_t,
2723                                             libnuma_dlsym(handle, "numa_tonode_memory")));
2724       set_numa_interleave_memory(CAST_TO_FN_PTR(numa_interleave_memory_func_t,
2725                                             libnuma_dlsym(handle, "numa_interleave_memory")));
2726 
2727 
2728       if (numa_available() != -1) {
2729         set_numa_all_nodes((unsigned long*)libnuma_dlsym(handle, "numa_all_nodes"));
2730         // Create a cpu -> node mapping
2731         _cpu_to_node = new (ResourceObj::C_HEAP, mtInternal) GrowableArray<int>(0, true);
2732         rebuild_cpu_to_node_map();
2733         return true;
2734       }
2735     }
2736   }
2737   return false;
2738 }
2739 
2740 // rebuild_cpu_to_node_map() constructs a table mapping cpud id to node id.
2741 // The table is later used in get_node_by_cpu().
2742 void os::Linux::rebuild_cpu_to_node_map() {
2743   const size_t NCPUS = 32768; // Since the buffer size computation is very obscure
2744                               // in libnuma (possible values are starting from 16,
2745                               // and continuing up with every other power of 2, but less
2746                               // than the maximum number of CPUs supported by kernel), and
2747                               // is a subject to change (in libnuma version 2 the requirements
2748                               // are more reasonable) we'll just hardcode the number they use
2749                               // in the library.
2750   const size_t BitsPerCLong = sizeof(long) * CHAR_BIT;
2751 
2752   size_t cpu_num = os::active_processor_count();
2753   size_t cpu_map_size = NCPUS / BitsPerCLong;
2754   size_t cpu_map_valid_size =
2755     MIN2((cpu_num + BitsPerCLong - 1) / BitsPerCLong, cpu_map_size);
2756 
2757   cpu_to_node()->clear();
2758   cpu_to_node()->at_grow(cpu_num - 1);
2759   size_t node_num = numa_get_groups_num();
2760 
2761   unsigned long *cpu_map = NEW_C_HEAP_ARRAY(unsigned long, cpu_map_size, mtInternal);
2762   for (size_t i = 0; i < node_num; i++) {
2763     if (numa_node_to_cpus(i, cpu_map, cpu_map_size * sizeof(unsigned long)) != -1) {
2764       for (size_t j = 0; j < cpu_map_valid_size; j++) {
2765         if (cpu_map[j] != 0) {
2766           for (size_t k = 0; k < BitsPerCLong; k++) {
2767             if (cpu_map[j] & (1UL << k)) {
2768               cpu_to_node()->at_put(j * BitsPerCLong + k, i);
2769             }
2770           }
2771         }
2772       }
2773     }
2774   }
2775   FREE_C_HEAP_ARRAY(unsigned long, cpu_map, mtInternal);
2776 }
2777 
2778 int os::Linux::get_node_by_cpu(int cpu_id) {
2779   if (cpu_to_node() != NULL && cpu_id >= 0 && cpu_id < cpu_to_node()->length()) {
2780     return cpu_to_node()->at(cpu_id);
2781   }
2782   return -1;
2783 }
2784 
2785 GrowableArray<int>* os::Linux::_cpu_to_node;
2786 os::Linux::sched_getcpu_func_t os::Linux::_sched_getcpu;
2787 os::Linux::numa_node_to_cpus_func_t os::Linux::_numa_node_to_cpus;
2788 os::Linux::numa_max_node_func_t os::Linux::_numa_max_node;
2789 os::Linux::numa_available_func_t os::Linux::_numa_available;
2790 os::Linux::numa_tonode_memory_func_t os::Linux::_numa_tonode_memory;
2791 os::Linux::numa_interleave_memory_func_t os::Linux::_numa_interleave_memory;
2792 unsigned long* os::Linux::_numa_all_nodes;
2793 
2794 bool os::pd_uncommit_memory(char* addr, size_t size) {
2795   uintptr_t res = (uintptr_t) ::mmap(addr, size, PROT_NONE,
2796                 MAP_PRIVATE|MAP_FIXED|MAP_NORESERVE|MAP_ANONYMOUS, -1, 0);
2797   return res  != (uintptr_t) MAP_FAILED;
2798 }
2799 
2800 // Linux uses a growable mapping for the stack, and if the mapping for
2801 // the stack guard pages is not removed when we detach a thread the
2802 // stack cannot grow beyond the pages where the stack guard was
2803 // mapped.  If at some point later in the process the stack expands to
2804 // that point, the Linux kernel cannot expand the stack any further
2805 // because the guard pages are in the way, and a segfault occurs.
2806 //
2807 // However, it's essential not to split the stack region by unmapping
2808 // a region (leaving a hole) that's already part of the stack mapping,
2809 // so if the stack mapping has already grown beyond the guard pages at
2810 // the time we create them, we have to truncate the stack mapping.
2811 // So, we need to know the extent of the stack mapping when
2812 // create_stack_guard_pages() is called.
2813 
2814 // Find the bounds of the stack mapping.  Return true for success.
2815 //
2816 // We only need this for stacks that are growable: at the time of
2817 // writing thread stacks don't use growable mappings (i.e. those
2818 // creeated with MAP_GROWSDOWN), and aren't marked "[stack]", so this
2819 // only applies to the main thread.
2820 
2821 static
2822 bool get_stack_bounds(uintptr_t *bottom, uintptr_t *top) {
2823 
2824   char buf[128];
2825   int fd, sz;
2826 
2827   if ((fd = ::open("/proc/self/maps", O_RDONLY)) < 0) {
2828     return false;
2829   }
2830 
2831   const char kw[] = "[stack]";
2832   const int kwlen = sizeof(kw)-1;
2833 
2834   // Address part of /proc/self/maps couldn't be more than 128 bytes
2835   while ((sz = os::get_line_chars(fd, buf, sizeof(buf))) > 0) {
2836      if (sz > kwlen && ::memcmp(buf+sz-kwlen, kw, kwlen) == 0) {
2837         // Extract addresses
2838         if (sscanf(buf, "%" SCNxPTR "-%" SCNxPTR, bottom, top) == 2) {
2839            uintptr_t sp = (uintptr_t) __builtin_frame_address(0);
2840            if (sp >= *bottom && sp <= *top) {
2841               ::close(fd);
2842               return true;
2843            }
2844         }
2845      }
2846   }
2847 
2848  ::close(fd);
2849   return false;
2850 }
2851 
2852 
2853 // If the (growable) stack mapping already extends beyond the point
2854 // where we're going to put our guard pages, truncate the mapping at
2855 // that point by munmap()ping it.  This ensures that when we later
2856 // munmap() the guard pages we don't leave a hole in the stack
2857 // mapping. This only affects the main/initial thread, but guard
2858 // against future OS changes
2859 bool os::pd_create_stack_guard_pages(char* addr, size_t size) {
2860   uintptr_t stack_extent, stack_base;
2861   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2862   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2863       assert(os::Linux::is_initial_thread(),
2864            "growable stack in non-initial thread");
2865     if (stack_extent < (uintptr_t)addr)
2866       ::munmap((void*)stack_extent, (uintptr_t)addr - stack_extent);
2867   }
2868 
2869   return os::commit_memory(addr, size);
2870 }
2871 
2872 // If this is a growable mapping, remove the guard pages entirely by
2873 // munmap()ping them.  If not, just call uncommit_memory(). This only
2874 // affects the main/initial thread, but guard against future OS changes
2875 bool os::remove_stack_guard_pages(char* addr, size_t size) {
2876   uintptr_t stack_extent, stack_base;
2877   bool chk_bounds = NOT_DEBUG(os::Linux::is_initial_thread()) DEBUG_ONLY(true);
2878   if (chk_bounds && get_stack_bounds(&stack_extent, &stack_base)) {
2879       assert(os::Linux::is_initial_thread(),
2880            "growable stack in non-initial thread");
2881 
2882     return ::munmap(addr, size) == 0;
2883   }
2884 
2885   return os::uncommit_memory(addr, size);
2886 }
2887 
2888 static address _highest_vm_reserved_address = NULL;
2889 
2890 // If 'fixed' is true, anon_mmap() will attempt to reserve anonymous memory
2891 // at 'requested_addr'. If there are existing memory mappings at the same
2892 // location, however, they will be overwritten. If 'fixed' is false,
2893 // 'requested_addr' is only treated as a hint, the return value may or
2894 // may not start from the requested address. Unlike Linux mmap(), this
2895 // function returns NULL to indicate failure.
2896 static char* anon_mmap(char* requested_addr, size_t bytes, bool fixed) {
2897   char * addr;
2898   int flags;
2899 
2900   flags = MAP_PRIVATE | MAP_NORESERVE | MAP_ANONYMOUS;
2901   if (fixed) {
2902     assert((uintptr_t)requested_addr % os::Linux::page_size() == 0, "unaligned address");
2903     flags |= MAP_FIXED;
2904   }
2905 
2906   // Map reserved/uncommitted pages PROT_NONE so we fail early if we
2907   // touch an uncommitted page. Otherwise, the read/write might
2908   // succeed if we have enough swap space to back the physical page.
2909   addr = (char*)::mmap(requested_addr, bytes, PROT_NONE,
2910                        flags, -1, 0);
2911 
2912   if (addr != MAP_FAILED) {
2913     // anon_mmap() should only get called during VM initialization,
2914     // don't need lock (actually we can skip locking even it can be called
2915     // from multiple threads, because _highest_vm_reserved_address is just a
2916     // hint about the upper limit of non-stack memory regions.)
2917     if ((address)addr + bytes > _highest_vm_reserved_address) {
2918       _highest_vm_reserved_address = (address)addr + bytes;
2919     }
2920   }
2921 
2922   return addr == MAP_FAILED ? NULL : addr;
2923 }
2924 
2925 // Don't update _highest_vm_reserved_address, because there might be memory
2926 // regions above addr + size. If so, releasing a memory region only creates
2927 // a hole in the address space, it doesn't help prevent heap-stack collision.
2928 //
2929 static int anon_munmap(char * addr, size_t size) {
2930   return ::munmap(addr, size) == 0;
2931 }
2932 
2933 char* os::pd_reserve_memory(size_t bytes, char* requested_addr,
2934                          size_t alignment_hint) {
2935   return anon_mmap(requested_addr, bytes, (requested_addr != NULL));
2936 }
2937 
2938 bool os::pd_release_memory(char* addr, size_t size) {
2939   return anon_munmap(addr, size);
2940 }
2941 
2942 static address highest_vm_reserved_address() {
2943   return _highest_vm_reserved_address;
2944 }
2945 
2946 static bool linux_mprotect(char* addr, size_t size, int prot) {
2947   // Linux wants the mprotect address argument to be page aligned.
2948   char* bottom = (char*)align_size_down((intptr_t)addr, os::Linux::page_size());
2949 
2950   // According to SUSv3, mprotect() should only be used with mappings
2951   // established by mmap(), and mmap() always maps whole pages. Unaligned
2952   // 'addr' likely indicates problem in the VM (e.g. trying to change
2953   // protection of malloc'ed or statically allocated memory). Check the
2954   // caller if you hit this assert.
2955   assert(addr == bottom, "sanity check");
2956 
2957   size = align_size_up(pointer_delta(addr, bottom, 1) + size, os::Linux::page_size());
2958   return ::mprotect(bottom, size, prot) == 0;
2959 }
2960 
2961 // Set protections specified
2962 bool os::protect_memory(char* addr, size_t bytes, ProtType prot,
2963                         bool is_committed) {
2964   unsigned int p = 0;
2965   switch (prot) {
2966   case MEM_PROT_NONE: p = PROT_NONE; break;
2967   case MEM_PROT_READ: p = PROT_READ; break;
2968   case MEM_PROT_RW:   p = PROT_READ|PROT_WRITE; break;
2969   case MEM_PROT_RWX:  p = PROT_READ|PROT_WRITE|PROT_EXEC; break;
2970   default:
2971     ShouldNotReachHere();
2972   }
2973   // is_committed is unused.
2974   return linux_mprotect(addr, bytes, p);
2975 }
2976 
2977 bool os::guard_memory(char* addr, size_t size) {
2978   return linux_mprotect(addr, size, PROT_NONE);
2979 }
2980 
2981 bool os::unguard_memory(char* addr, size_t size) {
2982   return linux_mprotect(addr, size, PROT_READ|PROT_WRITE);
2983 }
2984 
2985 bool os::Linux::hugetlbfs_sanity_check(bool warn, size_t page_size) {
2986   bool result = false;
2987   void *p = mmap (NULL, page_size, PROT_READ|PROT_WRITE,
2988                   MAP_ANONYMOUS|MAP_PRIVATE|MAP_HUGETLB,
2989                   -1, 0);
2990 
2991   if (p != (void *) -1) {
2992     // We don't know if this really is a huge page or not.
2993     FILE *fp = fopen("/proc/self/maps", "r");
2994     if (fp) {
2995       while (!feof(fp)) {
2996         char chars[257];
2997         long x = 0;
2998         if (fgets(chars, sizeof(chars), fp)) {
2999           if (sscanf(chars, "%lx-%*x", &x) == 1
3000               && x == (long)p) {
3001             if (strstr (chars, "hugepage")) {
3002               result = true;
3003               break;
3004             }
3005           }
3006         }
3007       }
3008       fclose(fp);
3009     }
3010     munmap (p, page_size);
3011     if (result)
3012       return true;
3013   }
3014 
3015   if (warn) {
3016     warning("HugeTLBFS is not supported by the operating system.");
3017   }
3018 
3019   return result;
3020 }
3021 
3022 /*
3023 * Set the coredump_filter bits to include largepages in core dump (bit 6)
3024 *
3025 * From the coredump_filter documentation:
3026 *
3027 * - (bit 0) anonymous private memory
3028 * - (bit 1) anonymous shared memory
3029 * - (bit 2) file-backed private memory
3030 * - (bit 3) file-backed shared memory
3031 * - (bit 4) ELF header pages in file-backed private memory areas (it is
3032 *           effective only if the bit 2 is cleared)
3033 * - (bit 5) hugetlb private memory
3034 * - (bit 6) hugetlb shared memory
3035 */
3036 static void set_coredump_filter(void) {
3037   FILE *f;
3038   long cdm;
3039 
3040   if ((f = fopen("/proc/self/coredump_filter", "r+")) == NULL) {
3041     return;
3042   }
3043 
3044   if (fscanf(f, "%lx", &cdm) != 1) {
3045     fclose(f);
3046     return;
3047   }
3048 
3049   rewind(f);
3050 
3051   if ((cdm & LARGEPAGES_BIT) == 0) {
3052     cdm |= LARGEPAGES_BIT;
3053     fprintf(f, "%#lx", cdm);
3054   }
3055 
3056   fclose(f);
3057 }
3058 
3059 // Large page support
3060 
3061 static size_t _large_page_size = 0;
3062 
3063 void os::large_page_init() {
3064   if (!UseLargePages) {
3065     UseHugeTLBFS = false;
3066     UseSHM = false;
3067     return;
3068   }
3069 
3070   if (FLAG_IS_DEFAULT(UseHugeTLBFS) && FLAG_IS_DEFAULT(UseSHM)) {
3071     // If UseLargePages is specified on the command line try both methods,
3072     // if it's default, then try only HugeTLBFS.
3073     if (FLAG_IS_DEFAULT(UseLargePages)) {
3074       UseHugeTLBFS = true;
3075     } else {
3076       UseHugeTLBFS = UseSHM = true;
3077     }
3078   }
3079 
3080   if (LargePageSizeInBytes) {
3081     _large_page_size = LargePageSizeInBytes;
3082   } else {
3083     // large_page_size on Linux is used to round up heap size. x86 uses either
3084     // 2M or 4M page, depending on whether PAE (Physical Address Extensions)
3085     // mode is enabled. AMD64/EM64T uses 2M page in 64bit mode. IA64 can use
3086     // page as large as 256M.
3087     //
3088     // Here we try to figure out page size by parsing /proc/meminfo and looking
3089     // for a line with the following format:
3090     //    Hugepagesize:     2048 kB
3091     //
3092     // If we can't determine the value (e.g. /proc is not mounted, or the text
3093     // format has been changed), we'll use the largest page size supported by
3094     // the processor.
3095 
3096 #ifndef ZERO
3097     _large_page_size = IA32_ONLY(4 * M) AMD64_ONLY(2 * M) IA64_ONLY(256 * M) SPARC_ONLY(4 * M)
3098                        ARM_ONLY(2 * M) PPC_ONLY(4 * M);
3099 #endif // ZERO
3100 
3101     FILE *fp = fopen("/proc/meminfo", "r");
3102     if (fp) {
3103       while (!feof(fp)) {
3104         int x = 0;
3105         char buf[16];
3106         if (fscanf(fp, "Hugepagesize: %d", &x) == 1) {
3107           if (x && fgets(buf, sizeof(buf), fp) && strcmp(buf, " kB\n") == 0) {
3108             _large_page_size = x * K;
3109             break;
3110           }
3111         } else {
3112           // skip to next line
3113           for (;;) {
3114             int ch = fgetc(fp);
3115             if (ch == EOF || ch == (int)'\n') break;
3116           }
3117         }
3118       }
3119       fclose(fp);
3120     }
3121   }
3122 
3123   // print a warning if any large page related flag is specified on command line
3124   bool warn_on_failure = !FLAG_IS_DEFAULT(UseHugeTLBFS);
3125 
3126   const size_t default_page_size = (size_t)Linux::page_size();
3127   if (_large_page_size > default_page_size) {
3128     _page_sizes[0] = _large_page_size;
3129     _page_sizes[1] = default_page_size;
3130     _page_sizes[2] = 0;
3131   }
3132   UseHugeTLBFS = UseHugeTLBFS &&
3133                  Linux::hugetlbfs_sanity_check(warn_on_failure, _large_page_size);
3134 
3135   if (UseHugeTLBFS)
3136     UseSHM = false;
3137 
3138   UseLargePages = UseHugeTLBFS || UseSHM;
3139 
3140   set_coredump_filter();
3141 }
3142 
3143 #ifndef SHM_HUGETLB
3144 #define SHM_HUGETLB 04000
3145 #endif
3146 
3147 char* os::reserve_memory_special(size_t bytes, char* req_addr, bool exec) {
3148   // "exec" is passed in but not used.  Creating the shared image for
3149   // the code cache doesn't have an SHM_X executable permission to check.
3150   assert(UseLargePages && UseSHM, "only for SHM large pages");
3151 
3152   key_t key = IPC_PRIVATE;
3153   char *addr;
3154 
3155   bool warn_on_failure = UseLargePages &&
3156                         (!FLAG_IS_DEFAULT(UseLargePages) ||
3157                          !FLAG_IS_DEFAULT(LargePageSizeInBytes)
3158                         );
3159   char msg[128];
3160 
3161   // Create a large shared memory region to attach to based on size.
3162   // Currently, size is the total size of the heap
3163   int shmid = shmget(key, bytes, SHM_HUGETLB|IPC_CREAT|SHM_R|SHM_W);
3164   if (shmid == -1) {
3165      // Possible reasons for shmget failure:
3166      // 1. shmmax is too small for Java heap.
3167      //    > check shmmax value: cat /proc/sys/kernel/shmmax
3168      //    > increase shmmax value: echo "0xffffffff" > /proc/sys/kernel/shmmax
3169      // 2. not enough large page memory.
3170      //    > check available large pages: cat /proc/meminfo
3171      //    > increase amount of large pages:
3172      //          echo new_value > /proc/sys/vm/nr_hugepages
3173      //      Note 1: different Linux may use different name for this property,
3174      //            e.g. on Redhat AS-3 it is "hugetlb_pool".
3175      //      Note 2: it's possible there's enough physical memory available but
3176      //            they are so fragmented after a long run that they can't
3177      //            coalesce into large pages. Try to reserve large pages when
3178      //            the system is still "fresh".
3179      if (warn_on_failure) {
3180        jio_snprintf(msg, sizeof(msg), "Failed to reserve shared memory (errno = %d).", errno);
3181        warning(msg);
3182      }
3183      return NULL;
3184   }
3185 
3186   // attach to the region
3187   addr = (char*)shmat(shmid, req_addr, 0);
3188   int err = errno;
3189 
3190   // Remove shmid. If shmat() is successful, the actual shared memory segment
3191   // will be deleted when it's detached by shmdt() or when the process
3192   // terminates. If shmat() is not successful this will remove the shared
3193   // segment immediately.
3194   shmctl(shmid, IPC_RMID, NULL);
3195 
3196   if ((intptr_t)addr == -1) {
3197      if (warn_on_failure) {
3198        jio_snprintf(msg, sizeof(msg), "Failed to attach shared memory (errno = %d).", err);
3199        warning(msg);
3200      }
3201      return NULL;
3202   }
3203 
3204   if ((addr != NULL) && UseNUMAInterleaving) {
3205     numa_make_global(addr, bytes);
3206   }
3207 
3208   // The memory is committed
3209   address pc = CALLER_PC;
3210   MemTracker::record_virtual_memory_reserve((address)addr, bytes, pc);
3211   MemTracker::record_virtual_memory_commit((address)addr, bytes, pc);
3212 
3213   return addr;
3214 }
3215 
3216 bool os::release_memory_special(char* base, size_t bytes) {
3217   // detaching the SHM segment will also delete it, see reserve_memory_special()
3218   int rslt = shmdt(base);
3219   if (rslt == 0) {
3220     MemTracker::record_virtual_memory_uncommit((address)base, bytes);
3221     MemTracker::record_virtual_memory_release((address)base, bytes);
3222     return true;
3223   } else {
3224    return false;
3225   }
3226 }
3227 
3228 size_t os::large_page_size() {
3229   return _large_page_size;
3230 }
3231 
3232 // HugeTLBFS allows application to commit large page memory on demand;
3233 // with SysV SHM the entire memory region must be allocated as shared
3234 // memory.
3235 bool os::can_commit_large_page_memory() {
3236   return UseHugeTLBFS;
3237 }
3238 
3239 bool os::can_execute_large_page_memory() {
3240   return UseHugeTLBFS;
3241 }
3242 
3243 // Reserve memory at an arbitrary address, only if that area is
3244 // available (and not reserved for something else).
3245 
3246 char* os::pd_attempt_reserve_memory_at(size_t bytes, char* requested_addr) {
3247   const int max_tries = 10;
3248   char* base[max_tries];
3249   size_t size[max_tries];
3250   const size_t gap = 0x000000;
3251 
3252   // Assert only that the size is a multiple of the page size, since
3253   // that's all that mmap requires, and since that's all we really know
3254   // about at this low abstraction level.  If we need higher alignment,
3255   // we can either pass an alignment to this method or verify alignment
3256   // in one of the methods further up the call chain.  See bug 5044738.
3257   assert(bytes % os::vm_page_size() == 0, "reserving unexpected size block");
3258 
3259   // Repeatedly allocate blocks until the block is allocated at the
3260   // right spot. Give up after max_tries. Note that reserve_memory() will
3261   // automatically update _highest_vm_reserved_address if the call is
3262   // successful. The variable tracks the highest memory address every reserved
3263   // by JVM. It is used to detect heap-stack collision if running with
3264   // fixed-stack LinuxThreads. Because here we may attempt to reserve more
3265   // space than needed, it could confuse the collision detecting code. To
3266   // solve the problem, save current _highest_vm_reserved_address and
3267   // calculate the correct value before return.
3268   address old_highest = _highest_vm_reserved_address;
3269 
3270   // Linux mmap allows caller to pass an address as hint; give it a try first,
3271   // if kernel honors the hint then we can return immediately.
3272   char * addr = anon_mmap(requested_addr, bytes, false);
3273   if (addr == requested_addr) {
3274      return requested_addr;
3275   }
3276 
3277   if (addr != NULL) {
3278      // mmap() is successful but it fails to reserve at the requested address
3279      anon_munmap(addr, bytes);
3280   }
3281 
3282   int i;
3283   for (i = 0; i < max_tries; ++i) {
3284     base[i] = reserve_memory(bytes);
3285 
3286     if (base[i] != NULL) {
3287       // Is this the block we wanted?
3288       if (base[i] == requested_addr) {
3289         size[i] = bytes;
3290         break;
3291       }
3292 
3293       // Does this overlap the block we wanted? Give back the overlapped
3294       // parts and try again.
3295 
3296       size_t top_overlap = requested_addr + (bytes + gap) - base[i];
3297       if (top_overlap >= 0 && top_overlap < bytes) {
3298         unmap_memory(base[i], top_overlap);
3299         base[i] += top_overlap;
3300         size[i] = bytes - top_overlap;
3301       } else {
3302         size_t bottom_overlap = base[i] + bytes - requested_addr;
3303         if (bottom_overlap >= 0 && bottom_overlap < bytes) {
3304           unmap_memory(requested_addr, bottom_overlap);
3305           size[i] = bytes - bottom_overlap;
3306         } else {
3307           size[i] = bytes;
3308         }
3309       }
3310     }
3311   }
3312 
3313   // Give back the unused reserved pieces.
3314 
3315   for (int j = 0; j < i; ++j) {
3316     if (base[j] != NULL) {
3317       unmap_memory(base[j], size[j]);
3318     }
3319   }
3320 
3321   if (i < max_tries) {
3322     _highest_vm_reserved_address = MAX2(old_highest, (address)requested_addr + bytes);
3323     return requested_addr;
3324   } else {
3325     _highest_vm_reserved_address = old_highest;
3326     return NULL;
3327   }
3328 }
3329 
3330 size_t os::read(int fd, void *buf, unsigned int nBytes) {
3331   return ::read(fd, buf, nBytes);
3332 }
3333 
3334 // TODO-FIXME: reconcile Solaris' os::sleep with the linux variation.
3335 // Solaris uses poll(), linux uses park().
3336 // Poll() is likely a better choice, assuming that Thread.interrupt()
3337 // generates a SIGUSRx signal. Note that SIGUSR1 can interfere with
3338 // SIGSEGV, see 4355769.
3339 
3340 int os::sleep(Thread* thread, jlong millis, bool interruptible) {
3341   assert(thread == Thread::current(),  "thread consistency check");
3342 
3343   ParkEvent * const slp = thread->_SleepEvent ;
3344   slp->reset() ;
3345   OrderAccess::fence() ;
3346 
3347   if (interruptible) {
3348     jlong prevtime = javaTimeNanos();
3349 
3350     for (;;) {
3351       if (os::is_interrupted(thread, true)) {
3352         return OS_INTRPT;
3353       }
3354 
3355       jlong newtime = javaTimeNanos();
3356 
3357       if (newtime - prevtime < 0) {
3358         // time moving backwards, should only happen if no monotonic clock
3359         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3360         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3361       } else {
3362         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3363       }
3364 
3365       if(millis <= 0) {
3366         return OS_OK;
3367       }
3368 
3369       prevtime = newtime;
3370 
3371       {
3372         assert(thread->is_Java_thread(), "sanity check");
3373         JavaThread *jt = (JavaThread *) thread;
3374         ThreadBlockInVM tbivm(jt);
3375         OSThreadWaitState osts(jt->osthread(), false /* not Object.wait() */);
3376 
3377         jt->set_suspend_equivalent();
3378         // cleared by handle_special_suspend_equivalent_condition() or
3379         // java_suspend_self() via check_and_wait_while_suspended()
3380 
3381         slp->park(millis);
3382 
3383         // were we externally suspended while we were waiting?
3384         jt->check_and_wait_while_suspended();
3385       }
3386     }
3387   } else {
3388     OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
3389     jlong prevtime = javaTimeNanos();
3390 
3391     for (;;) {
3392       // It'd be nice to avoid the back-to-back javaTimeNanos() calls on
3393       // the 1st iteration ...
3394       jlong newtime = javaTimeNanos();
3395 
3396       if (newtime - prevtime < 0) {
3397         // time moving backwards, should only happen if no monotonic clock
3398         // not a guarantee() because JVM should not abort on kernel/glibc bugs
3399         assert(!Linux::supports_monotonic_clock(), "time moving backwards");
3400       } else {
3401         millis -= (newtime - prevtime) / NANOSECS_PER_MILLISEC;
3402       }
3403 
3404       if(millis <= 0) break ;
3405 
3406       prevtime = newtime;
3407       slp->park(millis);
3408     }
3409     return OS_OK ;
3410   }
3411 }
3412 
3413 int os::naked_sleep() {
3414   // %% make the sleep time an integer flag. for now use 1 millisec.
3415   return os::sleep(Thread::current(), 1, false);
3416 }
3417 
3418 // Sleep forever; naked call to OS-specific sleep; use with CAUTION
3419 void os::infinite_sleep() {
3420   while (true) {    // sleep forever ...
3421     ::sleep(100);   // ... 100 seconds at a time
3422   }
3423 }
3424 
3425 // Used to convert frequent JVM_Yield() to nops
3426 bool os::dont_yield() {
3427   return DontYieldALot;
3428 }
3429 
3430 void os::yield() {
3431   sched_yield();
3432 }
3433 
3434 os::YieldResult os::NakedYield() { sched_yield(); return os::YIELD_UNKNOWN ;}
3435 
3436 void os::yield_all(int attempts) {
3437   // Yields to all threads, including threads with lower priorities
3438   // Threads on Linux are all with same priority. The Solaris style
3439   // os::yield_all() with nanosleep(1ms) is not necessary.
3440   sched_yield();
3441 }
3442 
3443 // Called from the tight loops to possibly influence time-sharing heuristics
3444 void os::loop_breaker(int attempts) {
3445   os::yield_all(attempts);
3446 }
3447 
3448 ////////////////////////////////////////////////////////////////////////////////
3449 // thread priority support
3450 
3451 // Note: Normal Linux applications are run with SCHED_OTHER policy. SCHED_OTHER
3452 // only supports dynamic priority, static priority must be zero. For real-time
3453 // applications, Linux supports SCHED_RR which allows static priority (1-99).
3454 // However, for large multi-threaded applications, SCHED_RR is not only slower
3455 // than SCHED_OTHER, but also very unstable (my volano tests hang hard 4 out
3456 // of 5 runs - Sep 2005).
3457 //
3458 // The following code actually changes the niceness of kernel-thread/LWP. It
3459 // has an assumption that setpriority() only modifies one kernel-thread/LWP,
3460 // not the entire user process, and user level threads are 1:1 mapped to kernel
3461 // threads. It has always been the case, but could change in the future. For
3462 // this reason, the code should not be used as default (ThreadPriorityPolicy=0).
3463 // It is only used when ThreadPriorityPolicy=1 and requires root privilege.
3464 
3465 int os::java_to_os_priority[CriticalPriority + 1] = {
3466   19,              // 0 Entry should never be used
3467 
3468    4,              // 1 MinPriority
3469    3,              // 2
3470    2,              // 3
3471 
3472    1,              // 4
3473    0,              // 5 NormPriority
3474   -1,              // 6
3475 
3476   -2,              // 7
3477   -3,              // 8
3478   -4,              // 9 NearMaxPriority
3479 
3480   -5,              // 10 MaxPriority
3481 
3482   -5               // 11 CriticalPriority
3483 };
3484 
3485 static int prio_init() {
3486   if (ThreadPriorityPolicy == 1) {
3487     // Only root can raise thread priority. Don't allow ThreadPriorityPolicy=1
3488     // if effective uid is not root. Perhaps, a more elegant way of doing
3489     // this is to test CAP_SYS_NICE capability, but that will require libcap.so
3490     if (geteuid() != 0) {
3491       if (!FLAG_IS_DEFAULT(ThreadPriorityPolicy)) {
3492         warning("-XX:ThreadPriorityPolicy requires root privilege on Linux");
3493       }
3494       ThreadPriorityPolicy = 0;
3495     }
3496   }
3497   if (UseCriticalJavaThreadPriority) {
3498     os::java_to_os_priority[MaxPriority] = os::java_to_os_priority[CriticalPriority];
3499   }
3500   return 0;
3501 }
3502 
3503 OSReturn os::set_native_priority(Thread* thread, int newpri) {
3504   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) return OS_OK;
3505 
3506   int ret = setpriority(PRIO_PROCESS, thread->osthread()->thread_id(), newpri);
3507   return (ret == 0) ? OS_OK : OS_ERR;
3508 }
3509 
3510 OSReturn os::get_native_priority(const Thread* const thread, int *priority_ptr) {
3511   if ( !UseThreadPriorities || ThreadPriorityPolicy == 0 ) {
3512     *priority_ptr = java_to_os_priority[NormPriority];
3513     return OS_OK;
3514   }
3515 
3516   errno = 0;
3517   *priority_ptr = getpriority(PRIO_PROCESS, thread->osthread()->thread_id());
3518   return (*priority_ptr != -1 || errno == 0 ? OS_OK : OS_ERR);
3519 }
3520 
3521 // Hint to the underlying OS that a task switch would not be good.
3522 // Void return because it's a hint and can fail.
3523 void os::hint_no_preempt() {}
3524 
3525 ////////////////////////////////////////////////////////////////////////////////
3526 // suspend/resume support
3527 
3528 //  the low-level signal-based suspend/resume support is a remnant from the
3529 //  old VM-suspension that used to be for java-suspension, safepoints etc,
3530 //  within hotspot. Now there is a single use-case for this:
3531 //    - calling get_thread_pc() on the VMThread by the flat-profiler task
3532 //      that runs in the watcher thread.
3533 //  The remaining code is greatly simplified from the more general suspension
3534 //  code that used to be used.
3535 //
3536 //  The protocol is quite simple:
3537 //  - suspend:
3538 //      - sends a signal to the target thread
3539 //      - polls the suspend state of the osthread using a yield loop
3540 //      - target thread signal handler (SR_handler) sets suspend state
3541 //        and blocks in sigsuspend until continued
3542 //  - resume:
3543 //      - sets target osthread state to continue
3544 //      - sends signal to end the sigsuspend loop in the SR_handler
3545 //
3546 //  Note that the SR_lock plays no role in this suspend/resume protocol.
3547 //
3548 
3549 static void resume_clear_context(OSThread *osthread) {
3550   osthread->set_ucontext(NULL);
3551   osthread->set_siginfo(NULL);
3552 
3553   // notify the suspend action is completed, we have now resumed
3554   osthread->sr.clear_suspended();
3555 }
3556 
3557 static void suspend_save_context(OSThread *osthread, siginfo_t* siginfo, ucontext_t* context) {
3558   osthread->set_ucontext(context);
3559   osthread->set_siginfo(siginfo);
3560 }
3561 
3562 //
3563 // Handler function invoked when a thread's execution is suspended or
3564 // resumed. We have to be careful that only async-safe functions are
3565 // called here (Note: most pthread functions are not async safe and
3566 // should be avoided.)
3567 //
3568 // Note: sigwait() is a more natural fit than sigsuspend() from an
3569 // interface point of view, but sigwait() prevents the signal hander
3570 // from being run. libpthread would get very confused by not having
3571 // its signal handlers run and prevents sigwait()'s use with the
3572 // mutex granting granting signal.
3573 //
3574 // Currently only ever called on the VMThread
3575 //
3576 static void SR_handler(int sig, siginfo_t* siginfo, ucontext_t* context) {
3577   // Save and restore errno to avoid confusing native code with EINTR
3578   // after sigsuspend.
3579   int old_errno = errno;
3580 
3581   Thread* thread = Thread::current();
3582   OSThread* osthread = thread->osthread();
3583   assert(thread->is_VM_thread(), "Must be VMThread");
3584   // read current suspend action
3585   int action = osthread->sr.suspend_action();
3586   if (action == os::Linux::SuspendResume::SR_SUSPEND) {
3587     suspend_save_context(osthread, siginfo, context);
3588 
3589     // Notify the suspend action is about to be completed. do_suspend()
3590     // waits until SR_SUSPENDED is set and then returns. We will wait
3591     // here for a resume signal and that completes the suspend-other
3592     // action. do_suspend/do_resume is always called as a pair from
3593     // the same thread - so there are no races
3594 
3595     // notify the caller
3596     osthread->sr.set_suspended();
3597 
3598     sigset_t suspend_set;  // signals for sigsuspend()
3599 
3600     // get current set of blocked signals and unblock resume signal
3601     pthread_sigmask(SIG_BLOCK, NULL, &suspend_set);
3602     sigdelset(&suspend_set, SR_signum);
3603 
3604     // wait here until we are resumed
3605     do {
3606       sigsuspend(&suspend_set);
3607       // ignore all returns until we get a resume signal
3608     } while (osthread->sr.suspend_action() != os::Linux::SuspendResume::SR_CONTINUE);
3609 
3610     resume_clear_context(osthread);
3611 
3612   } else {
3613     assert(action == os::Linux::SuspendResume::SR_CONTINUE, "unexpected sr action");
3614     // nothing special to do - just leave the handler
3615   }
3616 
3617   errno = old_errno;
3618 }
3619 
3620 
3621 static int SR_initialize() {
3622   struct sigaction act;
3623   char *s;
3624   /* Get signal number to use for suspend/resume */
3625   if ((s = ::getenv("_JAVA_SR_SIGNUM")) != 0) {
3626     int sig = ::strtol(s, 0, 10);
3627     if (sig > 0 || sig < _NSIG) {
3628         SR_signum = sig;
3629     }
3630   }
3631 
3632   assert(SR_signum > SIGSEGV && SR_signum > SIGBUS,
3633         "SR_signum must be greater than max(SIGSEGV, SIGBUS), see 4355769");
3634 
3635   sigemptyset(&SR_sigset);
3636   sigaddset(&SR_sigset, SR_signum);
3637 
3638   /* Set up signal handler for suspend/resume */
3639   act.sa_flags = SA_RESTART|SA_SIGINFO;
3640   act.sa_handler = (void (*)(int)) SR_handler;
3641 
3642   // SR_signum is blocked by default.
3643   // 4528190 - We also need to block pthread restart signal (32 on all
3644   // supported Linux platforms). Note that LinuxThreads need to block
3645   // this signal for all threads to work properly. So we don't have
3646   // to use hard-coded signal number when setting up the mask.
3647   pthread_sigmask(SIG_BLOCK, NULL, &act.sa_mask);
3648 
3649   if (sigaction(SR_signum, &act, 0) == -1) {
3650     return -1;
3651   }
3652 
3653   // Save signal flag
3654   os::Linux::set_our_sigflags(SR_signum, act.sa_flags);
3655   return 0;
3656 }
3657 
3658 
3659 // returns true on success and false on error - really an error is fatal
3660 // but this seems the normal response to library errors
3661 static bool do_suspend(OSThread* osthread) {
3662   // mark as suspended and send signal
3663   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_SUSPEND);
3664   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3665   assert_status(status == 0, status, "pthread_kill");
3666 
3667   // check status and wait until notified of suspension
3668   if (status == 0) {
3669     for (int i = 0; !osthread->sr.is_suspended(); i++) {
3670       os::yield_all(i);
3671     }
3672     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3673     return true;
3674   }
3675   else {
3676     osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3677     return false;
3678   }
3679 }
3680 
3681 static void do_resume(OSThread* osthread) {
3682   assert(osthread->sr.is_suspended(), "thread should be suspended");
3683   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_CONTINUE);
3684 
3685   int status = pthread_kill(osthread->pthread_id(), SR_signum);
3686   assert_status(status == 0, status, "pthread_kill");
3687   // check status and wait unit notified of resumption
3688   if (status == 0) {
3689     for (int i = 0; osthread->sr.is_suspended(); i++) {
3690       os::yield_all(i);
3691     }
3692   }
3693   osthread->sr.set_suspend_action(os::Linux::SuspendResume::SR_NONE);
3694 }
3695 
3696 ////////////////////////////////////////////////////////////////////////////////
3697 // interrupt support
3698 
3699 void os::interrupt(Thread* thread) {
3700   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3701     "possibility of dangling Thread pointer");
3702 
3703   OSThread* osthread = thread->osthread();
3704 
3705   if (!osthread->interrupted()) {
3706     osthread->set_interrupted(true);
3707     // More than one thread can get here with the same value of osthread,
3708     // resulting in multiple notifications.  We do, however, want the store
3709     // to interrupted() to be visible to other threads before we execute unpark().
3710     OrderAccess::fence();
3711     ParkEvent * const slp = thread->_SleepEvent ;
3712     if (slp != NULL) slp->unpark() ;
3713   }
3714 
3715   // For JSR166. Unpark even if interrupt status already was set
3716   if (thread->is_Java_thread())
3717     ((JavaThread*)thread)->parker()->unpark();
3718 
3719   ParkEvent * ev = thread->_ParkEvent ;
3720   if (ev != NULL) ev->unpark() ;
3721 
3722 }
3723 
3724 bool os::is_interrupted(Thread* thread, bool clear_interrupted) {
3725   assert(Thread::current() == thread || Threads_lock->owned_by_self(),
3726     "possibility of dangling Thread pointer");
3727 
3728   OSThread* osthread = thread->osthread();
3729 
3730   bool interrupted = osthread->interrupted();
3731 
3732   if (interrupted && clear_interrupted) {
3733     osthread->set_interrupted(false);
3734     // consider thread->_SleepEvent->reset() ... optional optimization
3735   }
3736 
3737   return interrupted;
3738 }
3739 
3740 ///////////////////////////////////////////////////////////////////////////////////
3741 // signal handling (except suspend/resume)
3742 
3743 // This routine may be used by user applications as a "hook" to catch signals.
3744 // The user-defined signal handler must pass unrecognized signals to this
3745 // routine, and if it returns true (non-zero), then the signal handler must
3746 // return immediately.  If the flag "abort_if_unrecognized" is true, then this
3747 // routine will never retun false (zero), but instead will execute a VM panic
3748 // routine kill the process.
3749 //
3750 // If this routine returns false, it is OK to call it again.  This allows
3751 // the user-defined signal handler to perform checks either before or after
3752 // the VM performs its own checks.  Naturally, the user code would be making
3753 // a serious error if it tried to handle an exception (such as a null check
3754 // or breakpoint) that the VM was generating for its own correct operation.
3755 //
3756 // This routine may recognize any of the following kinds of signals:
3757 //    SIGBUS, SIGSEGV, SIGILL, SIGFPE, SIGQUIT, SIGPIPE, SIGXFSZ, SIGUSR1.
3758 // It should be consulted by handlers for any of those signals.
3759 //
3760 // The caller of this routine must pass in the three arguments supplied
3761 // to the function referred to in the "sa_sigaction" (not the "sa_handler")
3762 // field of the structure passed to sigaction().  This routine assumes that
3763 // the sa_flags field passed to sigaction() includes SA_SIGINFO and SA_RESTART.
3764 //
3765 // Note that the VM will print warnings if it detects conflicting signal
3766 // handlers, unless invoked with the option "-XX:+AllowUserSignalHandlers".
3767 //
3768 extern "C" JNIEXPORT int
3769 JVM_handle_linux_signal(int signo, siginfo_t* siginfo,
3770                         void* ucontext, int abort_if_unrecognized);
3771 
3772 void signalHandler(int sig, siginfo_t* info, void* uc) {
3773   assert(info != NULL && uc != NULL, "it must be old kernel");
3774   int orig_errno = errno;  // Preserve errno value over signal handler.
3775   JVM_handle_linux_signal(sig, info, uc, true);
3776   errno = orig_errno;
3777 }
3778 
3779 
3780 // This boolean allows users to forward their own non-matching signals
3781 // to JVM_handle_linux_signal, harmlessly.
3782 bool os::Linux::signal_handlers_are_installed = false;
3783 
3784 // For signal-chaining
3785 struct sigaction os::Linux::sigact[MAXSIGNUM];
3786 unsigned int os::Linux::sigs = 0;
3787 bool os::Linux::libjsig_is_loaded = false;
3788 typedef struct sigaction *(*get_signal_t)(int);
3789 get_signal_t os::Linux::get_signal_action = NULL;
3790 
3791 struct sigaction* os::Linux::get_chained_signal_action(int sig) {
3792   struct sigaction *actp = NULL;
3793 
3794   if (libjsig_is_loaded) {
3795     // Retrieve the old signal handler from libjsig
3796     actp = (*get_signal_action)(sig);
3797   }
3798   if (actp == NULL) {
3799     // Retrieve the preinstalled signal handler from jvm
3800     actp = get_preinstalled_handler(sig);
3801   }
3802 
3803   return actp;
3804 }
3805 
3806 static bool call_chained_handler(struct sigaction *actp, int sig,
3807                                  siginfo_t *siginfo, void *context) {
3808   // Call the old signal handler
3809   if (actp->sa_handler == SIG_DFL) {
3810     // It's more reasonable to let jvm treat it as an unexpected exception
3811     // instead of taking the default action.
3812     return false;
3813   } else if (actp->sa_handler != SIG_IGN) {
3814     if ((actp->sa_flags & SA_NODEFER) == 0) {
3815       // automaticlly block the signal
3816       sigaddset(&(actp->sa_mask), sig);
3817     }
3818 
3819     sa_handler_t hand;
3820     sa_sigaction_t sa;
3821     bool siginfo_flag_set = (actp->sa_flags & SA_SIGINFO) != 0;
3822     // retrieve the chained handler
3823     if (siginfo_flag_set) {
3824       sa = actp->sa_sigaction;
3825     } else {
3826       hand = actp->sa_handler;
3827     }
3828 
3829     if ((actp->sa_flags & SA_RESETHAND) != 0) {
3830       actp->sa_handler = SIG_DFL;
3831     }
3832 
3833     // try to honor the signal mask
3834     sigset_t oset;
3835     pthread_sigmask(SIG_SETMASK, &(actp->sa_mask), &oset);
3836 
3837     // call into the chained handler
3838     if (siginfo_flag_set) {
3839       (*sa)(sig, siginfo, context);
3840     } else {
3841       (*hand)(sig);
3842     }
3843 
3844     // restore the signal mask
3845     pthread_sigmask(SIG_SETMASK, &oset, 0);
3846   }
3847   // Tell jvm's signal handler the signal is taken care of.
3848   return true;
3849 }
3850 
3851 bool os::Linux::chained_handler(int sig, siginfo_t* siginfo, void* context) {
3852   bool chained = false;
3853   // signal-chaining
3854   if (UseSignalChaining) {
3855     struct sigaction *actp = get_chained_signal_action(sig);
3856     if (actp != NULL) {
3857       chained = call_chained_handler(actp, sig, siginfo, context);
3858     }
3859   }
3860   return chained;
3861 }
3862 
3863 struct sigaction* os::Linux::get_preinstalled_handler(int sig) {
3864   if ((( (unsigned int)1 << sig ) & sigs) != 0) {
3865     return &sigact[sig];
3866   }
3867   return NULL;
3868 }
3869 
3870 void os::Linux::save_preinstalled_handler(int sig, struct sigaction& oldAct) {
3871   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3872   sigact[sig] = oldAct;
3873   sigs |= (unsigned int)1 << sig;
3874 }
3875 
3876 // for diagnostic
3877 int os::Linux::sigflags[MAXSIGNUM];
3878 
3879 int os::Linux::get_our_sigflags(int sig) {
3880   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3881   return sigflags[sig];
3882 }
3883 
3884 void os::Linux::set_our_sigflags(int sig, int flags) {
3885   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3886   sigflags[sig] = flags;
3887 }
3888 
3889 void os::Linux::set_signal_handler(int sig, bool set_installed) {
3890   // Check for overwrite.
3891   struct sigaction oldAct;
3892   sigaction(sig, (struct sigaction*)NULL, &oldAct);
3893 
3894   void* oldhand = oldAct.sa_sigaction
3895                 ? CAST_FROM_FN_PTR(void*,  oldAct.sa_sigaction)
3896                 : CAST_FROM_FN_PTR(void*,  oldAct.sa_handler);
3897   if (oldhand != CAST_FROM_FN_PTR(void*, SIG_DFL) &&
3898       oldhand != CAST_FROM_FN_PTR(void*, SIG_IGN) &&
3899       oldhand != CAST_FROM_FN_PTR(void*, (sa_sigaction_t)signalHandler)) {
3900     if (AllowUserSignalHandlers || !set_installed) {
3901       // Do not overwrite; user takes responsibility to forward to us.
3902       return;
3903     } else if (UseSignalChaining) {
3904       // save the old handler in jvm
3905       save_preinstalled_handler(sig, oldAct);
3906       // libjsig also interposes the sigaction() call below and saves the
3907       // old sigaction on it own.
3908     } else {
3909       fatal(err_msg("Encountered unexpected pre-existing sigaction handler "
3910                     "%#lx for signal %d.", (long)oldhand, sig));
3911     }
3912   }
3913 
3914   struct sigaction sigAct;
3915   sigfillset(&(sigAct.sa_mask));
3916   sigAct.sa_handler = SIG_DFL;
3917   if (!set_installed) {
3918     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3919   } else {
3920     sigAct.sa_sigaction = signalHandler;
3921     sigAct.sa_flags = SA_SIGINFO|SA_RESTART;
3922   }
3923   // Save flags, which are set by ours
3924   assert(sig > 0 && sig < MAXSIGNUM, "vm signal out of expected range");
3925   sigflags[sig] = sigAct.sa_flags;
3926 
3927   int ret = sigaction(sig, &sigAct, &oldAct);
3928   assert(ret == 0, "check");
3929 
3930   void* oldhand2  = oldAct.sa_sigaction
3931                   ? CAST_FROM_FN_PTR(void*, oldAct.sa_sigaction)
3932                   : CAST_FROM_FN_PTR(void*, oldAct.sa_handler);
3933   assert(oldhand2 == oldhand, "no concurrent signal handler installation");
3934 }
3935 
3936 // install signal handlers for signals that HotSpot needs to
3937 // handle in order to support Java-level exception handling.
3938 
3939 void os::Linux::install_signal_handlers() {
3940   if (!signal_handlers_are_installed) {
3941     signal_handlers_are_installed = true;
3942 
3943     // signal-chaining
3944     typedef void (*signal_setting_t)();
3945     signal_setting_t begin_signal_setting = NULL;
3946     signal_setting_t end_signal_setting = NULL;
3947     begin_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3948                              dlsym(RTLD_DEFAULT, "JVM_begin_signal_setting"));
3949     if (begin_signal_setting != NULL) {
3950       end_signal_setting = CAST_TO_FN_PTR(signal_setting_t,
3951                              dlsym(RTLD_DEFAULT, "JVM_end_signal_setting"));
3952       get_signal_action = CAST_TO_FN_PTR(get_signal_t,
3953                             dlsym(RTLD_DEFAULT, "JVM_get_signal_action"));
3954       libjsig_is_loaded = true;
3955       assert(UseSignalChaining, "should enable signal-chaining");
3956     }
3957     if (libjsig_is_loaded) {
3958       // Tell libjsig jvm is setting signal handlers
3959       (*begin_signal_setting)();
3960     }
3961 
3962     set_signal_handler(SIGSEGV, true);
3963     set_signal_handler(SIGPIPE, true);
3964     set_signal_handler(SIGBUS, true);
3965     set_signal_handler(SIGILL, true);
3966     set_signal_handler(SIGFPE, true);
3967     set_signal_handler(SIGXFSZ, true);
3968 
3969     if (libjsig_is_loaded) {
3970       // Tell libjsig jvm finishes setting signal handlers
3971       (*end_signal_setting)();
3972     }
3973 
3974     // We don't activate signal checker if libjsig is in place, we trust ourselves
3975     // and if UserSignalHandler is installed all bets are off.
3976     // Log that signal checking is off only if -verbose:jni is specified.
3977     if (CheckJNICalls) {
3978       if (libjsig_is_loaded) {
3979         if (PrintJNIResolving) {
3980           tty->print_cr("Info: libjsig is activated, all active signal checking is disabled");
3981         }
3982         check_signals = false;
3983       }
3984       if (AllowUserSignalHandlers) {
3985         if (PrintJNIResolving) {
3986           tty->print_cr("Info: AllowUserSignalHandlers is activated, all active signal checking is disabled");
3987         }
3988         check_signals = false;
3989       }
3990     }
3991   }
3992 }
3993 
3994 // This is the fastest way to get thread cpu time on Linux.
3995 // Returns cpu time (user+sys) for any thread, not only for current.
3996 // POSIX compliant clocks are implemented in the kernels 2.6.16+.
3997 // It might work on 2.6.10+ with a special kernel/glibc patch.
3998 // For reference, please, see IEEE Std 1003.1-2004:
3999 //   http://www.unix.org/single_unix_specification
4000 
4001 jlong os::Linux::fast_thread_cpu_time(clockid_t clockid) {
4002   struct timespec tp;
4003   int rc = os::Linux::clock_gettime(clockid, &tp);
4004   assert(rc == 0, "clock_gettime is expected to return 0 code");
4005 
4006   return (tp.tv_sec * NANOSECS_PER_SEC) + tp.tv_nsec;
4007 }
4008 
4009 /////
4010 // glibc on Linux platform uses non-documented flag
4011 // to indicate, that some special sort of signal
4012 // trampoline is used.
4013 // We will never set this flag, and we should
4014 // ignore this flag in our diagnostic
4015 #ifdef SIGNIFICANT_SIGNAL_MASK
4016 #undef SIGNIFICANT_SIGNAL_MASK
4017 #endif
4018 #define SIGNIFICANT_SIGNAL_MASK (~0x04000000)
4019 
4020 static const char* get_signal_handler_name(address handler,
4021                                            char* buf, int buflen) {
4022   int offset;
4023   bool found = os::dll_address_to_library_name(handler, buf, buflen, &offset);
4024   if (found) {
4025     // skip directory names
4026     const char *p1, *p2;
4027     p1 = buf;
4028     size_t len = strlen(os::file_separator());
4029     while ((p2 = strstr(p1, os::file_separator())) != NULL) p1 = p2 + len;
4030     jio_snprintf(buf, buflen, "%s+0x%x", p1, offset);
4031   } else {
4032     jio_snprintf(buf, buflen, PTR_FORMAT, handler);
4033   }
4034   return buf;
4035 }
4036 
4037 static void print_signal_handler(outputStream* st, int sig,
4038                                  char* buf, size_t buflen) {
4039   struct sigaction sa;
4040 
4041   sigaction(sig, NULL, &sa);
4042 
4043   // See comment for SIGNIFICANT_SIGNAL_MASK define
4044   sa.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4045 
4046   st->print("%s: ", os::exception_name(sig, buf, buflen));
4047 
4048   address handler = (sa.sa_flags & SA_SIGINFO)
4049     ? CAST_FROM_FN_PTR(address, sa.sa_sigaction)
4050     : CAST_FROM_FN_PTR(address, sa.sa_handler);
4051 
4052   if (handler == CAST_FROM_FN_PTR(address, SIG_DFL)) {
4053     st->print("SIG_DFL");
4054   } else if (handler == CAST_FROM_FN_PTR(address, SIG_IGN)) {
4055     st->print("SIG_IGN");
4056   } else {
4057     st->print("[%s]", get_signal_handler_name(handler, buf, buflen));
4058   }
4059 
4060   st->print(", sa_mask[0]=" PTR32_FORMAT, *(uint32_t*)&sa.sa_mask);
4061 
4062   address rh = VMError::get_resetted_sighandler(sig);
4063   // May be, handler was resetted by VMError?
4064   if(rh != NULL) {
4065     handler = rh;
4066     sa.sa_flags = VMError::get_resetted_sigflags(sig) & SIGNIFICANT_SIGNAL_MASK;
4067   }
4068 
4069   st->print(", sa_flags="   PTR32_FORMAT, sa.sa_flags);
4070 
4071   // Check: is it our handler?
4072   if(handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler) ||
4073      handler == CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler)) {
4074     // It is our signal handler
4075     // check for flags, reset system-used one!
4076     if((int)sa.sa_flags != os::Linux::get_our_sigflags(sig)) {
4077       st->print(
4078                 ", flags was changed from " PTR32_FORMAT ", consider using jsig library",
4079                 os::Linux::get_our_sigflags(sig));
4080     }
4081   }
4082   st->cr();
4083 }
4084 
4085 
4086 #define DO_SIGNAL_CHECK(sig) \
4087   if (!sigismember(&check_signal_done, sig)) \
4088     os::Linux::check_signal_handler(sig)
4089 
4090 // This method is a periodic task to check for misbehaving JNI applications
4091 // under CheckJNI, we can add any periodic checks here
4092 
4093 void os::run_periodic_checks() {
4094 
4095   if (check_signals == false) return;
4096 
4097   // SEGV and BUS if overridden could potentially prevent
4098   // generation of hs*.log in the event of a crash, debugging
4099   // such a case can be very challenging, so we absolutely
4100   // check the following for a good measure:
4101   DO_SIGNAL_CHECK(SIGSEGV);
4102   DO_SIGNAL_CHECK(SIGILL);
4103   DO_SIGNAL_CHECK(SIGFPE);
4104   DO_SIGNAL_CHECK(SIGBUS);
4105   DO_SIGNAL_CHECK(SIGPIPE);
4106   DO_SIGNAL_CHECK(SIGXFSZ);
4107 
4108 
4109   // ReduceSignalUsage allows the user to override these handlers
4110   // see comments at the very top and jvm_solaris.h
4111   if (!ReduceSignalUsage) {
4112     DO_SIGNAL_CHECK(SHUTDOWN1_SIGNAL);
4113     DO_SIGNAL_CHECK(SHUTDOWN2_SIGNAL);
4114     DO_SIGNAL_CHECK(SHUTDOWN3_SIGNAL);
4115     DO_SIGNAL_CHECK(BREAK_SIGNAL);
4116   }
4117 
4118   DO_SIGNAL_CHECK(SR_signum);
4119   DO_SIGNAL_CHECK(INTERRUPT_SIGNAL);
4120 }
4121 
4122 typedef int (*os_sigaction_t)(int, const struct sigaction *, struct sigaction *);
4123 
4124 static os_sigaction_t os_sigaction = NULL;
4125 
4126 void os::Linux::check_signal_handler(int sig) {
4127   char buf[O_BUFLEN];
4128   address jvmHandler = NULL;
4129 
4130 
4131   struct sigaction act;
4132   if (os_sigaction == NULL) {
4133     // only trust the default sigaction, in case it has been interposed
4134     os_sigaction = (os_sigaction_t)dlsym(RTLD_DEFAULT, "sigaction");
4135     if (os_sigaction == NULL) return;
4136   }
4137 
4138   os_sigaction(sig, (struct sigaction*)NULL, &act);
4139 
4140 
4141   act.sa_flags &= SIGNIFICANT_SIGNAL_MASK;
4142 
4143   address thisHandler = (act.sa_flags & SA_SIGINFO)
4144     ? CAST_FROM_FN_PTR(address, act.sa_sigaction)
4145     : CAST_FROM_FN_PTR(address, act.sa_handler) ;
4146 
4147 
4148   switch(sig) {
4149   case SIGSEGV:
4150   case SIGBUS:
4151   case SIGFPE:
4152   case SIGPIPE:
4153   case SIGILL:
4154   case SIGXFSZ:
4155     jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)signalHandler);
4156     break;
4157 
4158   case SHUTDOWN1_SIGNAL:
4159   case SHUTDOWN2_SIGNAL:
4160   case SHUTDOWN3_SIGNAL:
4161   case BREAK_SIGNAL:
4162     jvmHandler = (address)user_handler();
4163     break;
4164 
4165   case INTERRUPT_SIGNAL:
4166     jvmHandler = CAST_FROM_FN_PTR(address, SIG_DFL);
4167     break;
4168 
4169   default:
4170     if (sig == SR_signum) {
4171       jvmHandler = CAST_FROM_FN_PTR(address, (sa_sigaction_t)SR_handler);
4172     } else {
4173       return;
4174     }
4175     break;
4176   }
4177 
4178   if (thisHandler != jvmHandler) {
4179     tty->print("Warning: %s handler ", exception_name(sig, buf, O_BUFLEN));
4180     tty->print("expected:%s", get_signal_handler_name(jvmHandler, buf, O_BUFLEN));
4181     tty->print_cr("  found:%s", get_signal_handler_name(thisHandler, buf, O_BUFLEN));
4182     // No need to check this sig any longer
4183     sigaddset(&check_signal_done, sig);
4184   } else if(os::Linux::get_our_sigflags(sig) != 0 && (int)act.sa_flags != os::Linux::get_our_sigflags(sig)) {
4185     tty->print("Warning: %s handler flags ", exception_name(sig, buf, O_BUFLEN));
4186     tty->print("expected:" PTR32_FORMAT, os::Linux::get_our_sigflags(sig));
4187     tty->print_cr("  found:" PTR32_FORMAT, act.sa_flags);
4188     // No need to check this sig any longer
4189     sigaddset(&check_signal_done, sig);
4190   }
4191 
4192   // Dump all the signal
4193   if (sigismember(&check_signal_done, sig)) {
4194     print_signal_handlers(tty, buf, O_BUFLEN);
4195   }
4196 }
4197 
4198 extern void report_error(char* file_name, int line_no, char* title, char* format, ...);
4199 
4200 extern bool signal_name(int signo, char* buf, size_t len);
4201 
4202 const char* os::exception_name(int exception_code, char* buf, size_t size) {
4203   if (0 < exception_code && exception_code <= SIGRTMAX) {
4204     // signal
4205     if (!signal_name(exception_code, buf, size)) {
4206       jio_snprintf(buf, size, "SIG%d", exception_code);
4207     }
4208     return buf;
4209   } else {
4210     return NULL;
4211   }
4212 }
4213 
4214 // this is called _before_ the most of global arguments have been parsed
4215 void os::init(void) {
4216   char dummy;   /* used to get a guess on initial stack address */
4217 //  first_hrtime = gethrtime();
4218 
4219   // With LinuxThreads the JavaMain thread pid (primordial thread)
4220   // is different than the pid of the java launcher thread.
4221   // So, on Linux, the launcher thread pid is passed to the VM
4222   // via the sun.java.launcher.pid property.
4223   // Use this property instead of getpid() if it was correctly passed.
4224   // See bug 6351349.
4225   pid_t java_launcher_pid = (pid_t) Arguments::sun_java_launcher_pid();
4226 
4227   _initial_pid = (java_launcher_pid > 0) ? java_launcher_pid : getpid();
4228 
4229   clock_tics_per_sec = sysconf(_SC_CLK_TCK);
4230 
4231   init_random(1234567);
4232 
4233   ThreadCritical::initialize();
4234 
4235   Linux::set_page_size(sysconf(_SC_PAGESIZE));
4236   if (Linux::page_size() == -1) {
4237     fatal(err_msg("os_linux.cpp: os::init: sysconf failed (%s)",
4238                   strerror(errno)));
4239   }
4240   init_page_sizes((size_t) Linux::page_size());
4241 
4242   Linux::initialize_system_info();
4243 
4244   // main_thread points to the aboriginal thread
4245   Linux::_main_thread = pthread_self();
4246 
4247   Linux::clock_init();
4248   initial_time_count = os::elapsed_counter();
4249   pthread_mutex_init(&dl_mutex, NULL);
4250 
4251   // If the pagesize of the VM is greater than 8K determine the appropriate
4252   // number of initial guard pages.  The user can change this with the
4253   // command line arguments, if needed.
4254   if (vm_page_size() > (int)Linux::vm_default_page_size()) {
4255     StackYellowPages = 1;
4256     StackRedPages = 1;
4257     StackShadowPages = round_to((StackShadowPages*Linux::vm_default_page_size()), vm_page_size()) / vm_page_size();
4258   }
4259 }
4260 
4261 // To install functions for atexit system call
4262 extern "C" {
4263   static void perfMemory_exit_helper() {
4264     perfMemory_exit();
4265   }
4266 }
4267 
4268 // this is called _after_ the global arguments have been parsed
4269 jint os::init_2(void)
4270 {
4271   Linux::fast_thread_clock_init();
4272 
4273   // Allocate a single page and mark it as readable for safepoint polling
4274   address polling_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4275   guarantee( polling_page != MAP_FAILED, "os::init_2: failed to allocate polling page" );
4276 
4277   os::set_polling_page( polling_page );
4278 
4279 #ifndef PRODUCT
4280   if(Verbose && PrintMiscellaneous)
4281     tty->print("[SafePoint Polling address: " INTPTR_FORMAT "]\n", (intptr_t)polling_page);
4282 #endif
4283 
4284   if (!UseMembar) {
4285     address mem_serialize_page = (address) ::mmap(NULL, Linux::page_size(), PROT_READ | PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 0);
4286     guarantee( mem_serialize_page != NULL, "mmap Failed for memory serialize page");
4287     os::set_memory_serialize_page( mem_serialize_page );
4288 
4289 #ifndef PRODUCT
4290     if(Verbose && PrintMiscellaneous)
4291       tty->print("[Memory Serialize  Page address: " INTPTR_FORMAT "]\n", (intptr_t)mem_serialize_page);
4292 #endif
4293   }
4294 
4295   os::large_page_init();
4296 
4297   // initialize suspend/resume support - must do this before signal_sets_init()
4298   if (SR_initialize() != 0) {
4299     perror("SR_initialize failed");
4300     return JNI_ERR;
4301   }
4302 
4303   Linux::signal_sets_init();
4304   Linux::install_signal_handlers();
4305 
4306   // Check minimum allowable stack size for thread creation and to initialize
4307   // the java system classes, including StackOverflowError - depends on page
4308   // size.  Add a page for compiler2 recursion in main thread.
4309   // Add in 2*BytesPerWord times page size to account for VM stack during
4310   // class initialization depending on 32 or 64 bit VM.
4311   os::Linux::min_stack_allowed = MAX2(os::Linux::min_stack_allowed,
4312             (size_t)(StackYellowPages+StackRedPages+StackShadowPages) * Linux::page_size() +
4313                     (2*BytesPerWord COMPILER2_PRESENT(+1)) * Linux::vm_default_page_size());
4314 
4315   size_t threadStackSizeInBytes = ThreadStackSize * K;
4316   if (threadStackSizeInBytes != 0 &&
4317       threadStackSizeInBytes < os::Linux::min_stack_allowed) {
4318         tty->print_cr("\nThe stack size specified is too small, "
4319                       "Specify at least %dk",
4320                       os::Linux::min_stack_allowed/ K);
4321         return JNI_ERR;
4322   }
4323 
4324   // Make the stack size a multiple of the page size so that
4325   // the yellow/red zones can be guarded.
4326   JavaThread::set_stack_size_at_create(round_to(threadStackSizeInBytes,
4327         vm_page_size()));
4328 
4329   Linux::capture_initial_stack(JavaThread::stack_size_at_create());
4330 
4331   Linux::libpthread_init();
4332   if (PrintMiscellaneous && (Verbose || WizardMode)) {
4333      tty->print_cr("[HotSpot is running with %s, %s(%s)]\n",
4334           Linux::glibc_version(), Linux::libpthread_version(),
4335           Linux::is_floating_stack() ? "floating stack" : "fixed stack");
4336   }
4337 
4338   if (UseNUMA) {
4339     if (!Linux::libnuma_init()) {
4340       UseNUMA = false;
4341     } else {
4342       if ((Linux::numa_max_node() < 1)) {
4343         // There's only one node(they start from 0), disable NUMA.
4344         UseNUMA = false;
4345       }
4346     }
4347     // With SHM large pages we cannot uncommit a page, so there's not way
4348     // we can make the adaptive lgrp chunk resizing work. If the user specified
4349     // both UseNUMA and UseLargePages (or UseSHM) on the command line - warn and
4350     // disable adaptive resizing.
4351     if (UseNUMA && UseLargePages && UseSHM) {
4352       if (!FLAG_IS_DEFAULT(UseNUMA)) {
4353         if (FLAG_IS_DEFAULT(UseLargePages) && FLAG_IS_DEFAULT(UseSHM)) {
4354           UseLargePages = false;
4355         } else {
4356           warning("UseNUMA is not fully compatible with SHM large pages, disabling adaptive resizing");
4357           UseAdaptiveSizePolicy = false;
4358           UseAdaptiveNUMAChunkSizing = false;
4359         }
4360       } else {
4361         UseNUMA = false;
4362       }
4363     }
4364     if (!UseNUMA && ForceNUMA) {
4365       UseNUMA = true;
4366     }
4367   }
4368 
4369   if (MaxFDLimit) {
4370     // set the number of file descriptors to max. print out error
4371     // if getrlimit/setrlimit fails but continue regardless.
4372     struct rlimit nbr_files;
4373     int status = getrlimit(RLIMIT_NOFILE, &nbr_files);
4374     if (status != 0) {
4375       if (PrintMiscellaneous && (Verbose || WizardMode))
4376         perror("os::init_2 getrlimit failed");
4377     } else {
4378       nbr_files.rlim_cur = nbr_files.rlim_max;
4379       status = setrlimit(RLIMIT_NOFILE, &nbr_files);
4380       if (status != 0) {
4381         if (PrintMiscellaneous && (Verbose || WizardMode))
4382           perror("os::init_2 setrlimit failed");
4383       }
4384     }
4385   }
4386 
4387   // Initialize lock used to serialize thread creation (see os::create_thread)
4388   Linux::set_createThread_lock(new Mutex(Mutex::leaf, "createThread_lock", false));
4389 
4390   // at-exit methods are called in the reverse order of their registration.
4391   // atexit functions are called on return from main or as a result of a
4392   // call to exit(3C). There can be only 32 of these functions registered
4393   // and atexit() does not set errno.
4394 
4395   if (PerfAllowAtExitRegistration) {
4396     // only register atexit functions if PerfAllowAtExitRegistration is set.
4397     // atexit functions can be delayed until process exit time, which
4398     // can be problematic for embedded VM situations. Embedded VMs should
4399     // call DestroyJavaVM() to assure that VM resources are released.
4400 
4401     // note: perfMemory_exit_helper atexit function may be removed in
4402     // the future if the appropriate cleanup code can be added to the
4403     // VM_Exit VMOperation's doit method.
4404     if (atexit(perfMemory_exit_helper) != 0) {
4405       warning("os::init2 atexit(perfMemory_exit_helper) failed");
4406     }
4407   }
4408 
4409   // initialize thread priority policy
4410   prio_init();
4411 
4412   return JNI_OK;
4413 }
4414 
4415 // this is called at the end of vm_initialization
4416 void os::init_3(void)
4417 {
4418 #ifdef JAVASE_EMBEDDED
4419   // Start the MemNotifyThread
4420   if (LowMemoryProtection) {
4421     MemNotifyThread::start();
4422   }
4423   return;
4424 #endif
4425 }
4426 
4427 // Mark the polling page as unreadable
4428 void os::make_polling_page_unreadable(void) {
4429   if( !guard_memory((char*)_polling_page, Linux::page_size()) )
4430     fatal("Could not disable polling page");
4431 };
4432 
4433 // Mark the polling page as readable
4434 void os::make_polling_page_readable(void) {
4435   if( !linux_mprotect((char *)_polling_page, Linux::page_size(), PROT_READ)) {
4436     fatal("Could not enable polling page");
4437   }
4438 };
4439 
4440 int os::active_processor_count() {
4441   // Linux doesn't yet have a (official) notion of processor sets,
4442   // so just return the number of online processors.
4443   int online_cpus = ::sysconf(_SC_NPROCESSORS_ONLN);
4444   assert(online_cpus > 0 && online_cpus <= processor_count(), "sanity check");
4445   return online_cpus;
4446 }
4447 
4448 void os::set_native_thread_name(const char *name) {
4449   // Not yet implemented.
4450   return;
4451 }
4452 
4453 bool os::distribute_processes(uint length, uint* distribution) {
4454   // Not yet implemented.
4455   return false;
4456 }
4457 
4458 bool os::bind_to_processor(uint processor_id) {
4459   // Not yet implemented.
4460   return false;
4461 }
4462 
4463 ///
4464 
4465 // Suspends the target using the signal mechanism and then grabs the PC before
4466 // resuming the target. Used by the flat-profiler only
4467 ExtendedPC os::get_thread_pc(Thread* thread) {
4468   // Make sure that it is called by the watcher for the VMThread
4469   assert(Thread::current()->is_Watcher_thread(), "Must be watcher");
4470   assert(thread->is_VM_thread(), "Can only be called for VMThread");
4471 
4472   ExtendedPC epc;
4473 
4474   OSThread* osthread = thread->osthread();
4475   if (do_suspend(osthread)) {
4476     if (osthread->ucontext() != NULL) {
4477       epc = os::Linux::ucontext_get_pc(osthread->ucontext());
4478     } else {
4479       // NULL context is unexpected, double-check this is the VMThread
4480       guarantee(thread->is_VM_thread(), "can only be called for VMThread");
4481     }
4482     do_resume(osthread);
4483   }
4484   // failure means pthread_kill failed for some reason - arguably this is
4485   // a fatal problem, but such problems are ignored elsewhere
4486 
4487   return epc;
4488 }
4489 
4490 int os::Linux::safe_cond_timedwait(pthread_cond_t *_cond, pthread_mutex_t *_mutex, const struct timespec *_abstime)
4491 {
4492    if (is_NPTL()) {
4493       return pthread_cond_timedwait(_cond, _mutex, _abstime);
4494    } else {
4495       // 6292965: LinuxThreads pthread_cond_timedwait() resets FPU control
4496       // word back to default 64bit precision if condvar is signaled. Java
4497       // wants 53bit precision.  Save and restore current value.
4498       int fpu = get_fpu_control_word();
4499       int status = pthread_cond_timedwait(_cond, _mutex, _abstime);
4500       set_fpu_control_word(fpu);
4501       return status;
4502    }
4503 }
4504 
4505 ////////////////////////////////////////////////////////////////////////////////
4506 // debug support
4507 
4508 bool os::find(address addr, outputStream* st) {
4509   Dl_info dlinfo;
4510   memset(&dlinfo, 0, sizeof(dlinfo));
4511   if (dladdr(addr, &dlinfo)) {
4512     st->print(PTR_FORMAT ": ", addr);
4513     if (dlinfo.dli_sname != NULL) {
4514       st->print("%s+%#x", dlinfo.dli_sname,
4515                  addr - (intptr_t)dlinfo.dli_saddr);
4516     } else if (dlinfo.dli_fname) {
4517       st->print("<offset %#x>", addr - (intptr_t)dlinfo.dli_fbase);
4518     } else {
4519       st->print("<absolute address>");
4520     }
4521     if (dlinfo.dli_fname) {
4522       st->print(" in %s", dlinfo.dli_fname);
4523     }
4524     if (dlinfo.dli_fbase) {
4525       st->print(" at " PTR_FORMAT, dlinfo.dli_fbase);
4526     }
4527     st->cr();
4528 
4529     if (Verbose) {
4530       // decode some bytes around the PC
4531       address begin = clamp_address_in_page(addr-40, addr, os::vm_page_size());
4532       address end   = clamp_address_in_page(addr+40, addr, os::vm_page_size());
4533       address       lowest = (address) dlinfo.dli_sname;
4534       if (!lowest)  lowest = (address) dlinfo.dli_fbase;
4535       if (begin < lowest)  begin = lowest;
4536       Dl_info dlinfo2;
4537       if (dladdr(end, &dlinfo2) && dlinfo2.dli_saddr != dlinfo.dli_saddr
4538           && end > dlinfo2.dli_saddr && dlinfo2.dli_saddr > begin)
4539         end = (address) dlinfo2.dli_saddr;
4540       Disassembler::decode(begin, end, st);
4541     }
4542     return true;
4543   }
4544   return false;
4545 }
4546 
4547 ////////////////////////////////////////////////////////////////////////////////
4548 // misc
4549 
4550 // This does not do anything on Linux. This is basically a hook for being
4551 // able to use structured exception handling (thread-local exception filters)
4552 // on, e.g., Win32.
4553 void
4554 os::os_exception_wrapper(java_call_t f, JavaValue* value, methodHandle* method,
4555                          JavaCallArguments* args, Thread* thread) {
4556   f(value, method, args, thread);
4557 }
4558 
4559 void os::print_statistics() {
4560 }
4561 
4562 int os::message_box(const char* title, const char* message) {
4563   int i;
4564   fdStream err(defaultStream::error_fd());
4565   for (i = 0; i < 78; i++) err.print_raw("=");
4566   err.cr();
4567   err.print_raw_cr(title);
4568   for (i = 0; i < 78; i++) err.print_raw("-");
4569   err.cr();
4570   err.print_raw_cr(message);
4571   for (i = 0; i < 78; i++) err.print_raw("=");
4572   err.cr();
4573 
4574   char buf[16];
4575   // Prevent process from exiting upon "read error" without consuming all CPU
4576   while (::read(0, buf, sizeof(buf)) <= 0) { ::sleep(100); }
4577 
4578   return buf[0] == 'y' || buf[0] == 'Y';
4579 }
4580 
4581 int os::stat(const char *path, struct stat *sbuf) {
4582   char pathbuf[MAX_PATH];
4583   if (strlen(path) > MAX_PATH - 1) {
4584     errno = ENAMETOOLONG;
4585     return -1;
4586   }
4587   os::native_path(strcpy(pathbuf, path));
4588   return ::stat(pathbuf, sbuf);
4589 }
4590 
4591 bool os::check_heap(bool force) {
4592   return true;
4593 }
4594 
4595 int local_vsnprintf(char* buf, size_t count, const char* format, va_list args) {
4596   return ::vsnprintf(buf, count, format, args);
4597 }
4598 
4599 // Is a (classpath) directory empty?
4600 bool os::dir_is_empty(const char* path) {
4601   DIR *dir = NULL;
4602   struct dirent *ptr;
4603 
4604   dir = opendir(path);
4605   if (dir == NULL) return true;
4606 
4607   /* Scan the directory */
4608   bool result = true;
4609   char buf[sizeof(struct dirent) + MAX_PATH];
4610   while (result && (ptr = ::readdir(dir)) != NULL) {
4611     if (strcmp(ptr->d_name, ".") != 0 && strcmp(ptr->d_name, "..") != 0) {
4612       result = false;
4613     }
4614   }
4615   closedir(dir);
4616   return result;
4617 }
4618 
4619 // This code originates from JDK's sysOpen and open64_w
4620 // from src/solaris/hpi/src/system_md.c
4621 
4622 #ifndef O_DELETE
4623 #define O_DELETE 0x10000
4624 #endif
4625 
4626 // Open a file. Unlink the file immediately after open returns
4627 // if the specified oflag has the O_DELETE flag set.
4628 // O_DELETE is used only in j2se/src/share/native/java/util/zip/ZipFile.c
4629 
4630 int os::open(const char *path, int oflag, int mode) {
4631 
4632   if (strlen(path) > MAX_PATH - 1) {
4633     errno = ENAMETOOLONG;
4634     return -1;
4635   }
4636   int fd;
4637   int o_delete = (oflag & O_DELETE);
4638   oflag = oflag & ~O_DELETE;
4639 
4640   fd = ::open64(path, oflag, mode);
4641   if (fd == -1) return -1;
4642 
4643   //If the open succeeded, the file might still be a directory
4644   {
4645     struct stat64 buf64;
4646     int ret = ::fstat64(fd, &buf64);
4647     int st_mode = buf64.st_mode;
4648 
4649     if (ret != -1) {
4650       if ((st_mode & S_IFMT) == S_IFDIR) {
4651         errno = EISDIR;
4652         ::close(fd);
4653         return -1;
4654       }
4655     } else {
4656       ::close(fd);
4657       return -1;
4658     }
4659   }
4660 
4661     /*
4662      * All file descriptors that are opened in the JVM and not
4663      * specifically destined for a subprocess should have the
4664      * close-on-exec flag set.  If we don't set it, then careless 3rd
4665      * party native code might fork and exec without closing all
4666      * appropriate file descriptors (e.g. as we do in closeDescriptors in
4667      * UNIXProcess.c), and this in turn might:
4668      *
4669      * - cause end-of-file to fail to be detected on some file
4670      *   descriptors, resulting in mysterious hangs, or
4671      *
4672      * - might cause an fopen in the subprocess to fail on a system
4673      *   suffering from bug 1085341.
4674      *
4675      * (Yes, the default setting of the close-on-exec flag is a Unix
4676      * design flaw)
4677      *
4678      * See:
4679      * 1085341: 32-bit stdio routines should support file descriptors >255
4680      * 4843136: (process) pipe file descriptor from Runtime.exec not being closed
4681      * 6339493: (process) Runtime.exec does not close all file descriptors on Solaris 9
4682      */
4683 #ifdef FD_CLOEXEC
4684     {
4685         int flags = ::fcntl(fd, F_GETFD);
4686         if (flags != -1)
4687             ::fcntl(fd, F_SETFD, flags | FD_CLOEXEC);
4688     }
4689 #endif
4690 
4691   if (o_delete != 0) {
4692     ::unlink(path);
4693   }
4694   return fd;
4695 }
4696 
4697 
4698 // create binary file, rewriting existing file if required
4699 int os::create_binary_file(const char* path, bool rewrite_existing) {
4700   int oflags = O_WRONLY | O_CREAT;
4701   if (!rewrite_existing) {
4702     oflags |= O_EXCL;
4703   }
4704   return ::open64(path, oflags, S_IREAD | S_IWRITE);
4705 }
4706 
4707 // return current position of file pointer
4708 jlong os::current_file_offset(int fd) {
4709   return (jlong)::lseek64(fd, (off64_t)0, SEEK_CUR);
4710 }
4711 
4712 // move file pointer to the specified offset
4713 jlong os::seek_to_file_offset(int fd, jlong offset) {
4714   return (jlong)::lseek64(fd, (off64_t)offset, SEEK_SET);
4715 }
4716 
4717 // This code originates from JDK's sysAvailable
4718 // from src/solaris/hpi/src/native_threads/src/sys_api_td.c
4719 
4720 int os::available(int fd, jlong *bytes) {
4721   jlong cur, end;
4722   int mode;
4723   struct stat64 buf64;
4724 
4725   if (::fstat64(fd, &buf64) >= 0) {
4726     mode = buf64.st_mode;
4727     if (S_ISCHR(mode) || S_ISFIFO(mode) || S_ISSOCK(mode)) {
4728       /*
4729       * XXX: is the following call interruptible? If so, this might
4730       * need to go through the INTERRUPT_IO() wrapper as for other
4731       * blocking, interruptible calls in this file.
4732       */
4733       int n;
4734       if (::ioctl(fd, FIONREAD, &n) >= 0) {
4735         *bytes = n;
4736         return 1;
4737       }
4738     }
4739   }
4740   if ((cur = ::lseek64(fd, 0L, SEEK_CUR)) == -1) {
4741     return 0;
4742   } else if ((end = ::lseek64(fd, 0L, SEEK_END)) == -1) {
4743     return 0;
4744   } else if (::lseek64(fd, cur, SEEK_SET) == -1) {
4745     return 0;
4746   }
4747   *bytes = end - cur;
4748   return 1;
4749 }
4750 
4751 int os::socket_available(int fd, jint *pbytes) {
4752   // Linux doc says EINTR not returned, unlike Solaris
4753   int ret = ::ioctl(fd, FIONREAD, pbytes);
4754 
4755   //%% note ioctl can return 0 when successful, JVM_SocketAvailable
4756   // is expected to return 0 on failure and 1 on success to the jdk.
4757   return (ret < 0) ? 0 : 1;
4758 }
4759 
4760 // Map a block of memory.
4761 char* os::pd_map_memory(int fd, const char* file_name, size_t file_offset,
4762                      char *addr, size_t bytes, bool read_only,
4763                      bool allow_exec) {
4764   int prot;
4765   int flags = MAP_PRIVATE;
4766 
4767   if (read_only) {
4768     prot = PROT_READ;
4769   } else {
4770     prot = PROT_READ | PROT_WRITE;
4771   }
4772 
4773   if (allow_exec) {
4774     prot |= PROT_EXEC;
4775   }
4776 
4777   if (addr != NULL) {
4778     flags |= MAP_FIXED;
4779   }
4780 
4781   char* mapped_address = (char*)mmap(addr, (size_t)bytes, prot, flags,
4782                                      fd, file_offset);
4783   if (mapped_address == MAP_FAILED) {
4784     return NULL;
4785   }
4786   return mapped_address;
4787 }
4788 
4789 
4790 // Remap a block of memory.
4791 char* os::pd_remap_memory(int fd, const char* file_name, size_t file_offset,
4792                        char *addr, size_t bytes, bool read_only,
4793                        bool allow_exec) {
4794   // same as map_memory() on this OS
4795   return os::map_memory(fd, file_name, file_offset, addr, bytes, read_only,
4796                         allow_exec);
4797 }
4798 
4799 
4800 // Unmap a block of memory.
4801 bool os::pd_unmap_memory(char* addr, size_t bytes) {
4802   return munmap(addr, bytes) == 0;
4803 }
4804 
4805 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time);
4806 
4807 static clockid_t thread_cpu_clockid(Thread* thread) {
4808   pthread_t tid = thread->osthread()->pthread_id();
4809   clockid_t clockid;
4810 
4811   // Get thread clockid
4812   int rc = os::Linux::pthread_getcpuclockid(tid, &clockid);
4813   assert(rc == 0, "pthread_getcpuclockid is expected to return 0 code");
4814   return clockid;
4815 }
4816 
4817 // current_thread_cpu_time(bool) and thread_cpu_time(Thread*, bool)
4818 // are used by JVM M&M and JVMTI to get user+sys or user CPU time
4819 // of a thread.
4820 //
4821 // current_thread_cpu_time() and thread_cpu_time(Thread*) returns
4822 // the fast estimate available on the platform.
4823 
4824 jlong os::current_thread_cpu_time() {
4825   if (os::Linux::supports_fast_thread_cpu_time()) {
4826     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4827   } else {
4828     // return user + sys since the cost is the same
4829     return slow_thread_cpu_time(Thread::current(), true /* user + sys */);
4830   }
4831 }
4832 
4833 jlong os::thread_cpu_time(Thread* thread) {
4834   // consistent with what current_thread_cpu_time() returns
4835   if (os::Linux::supports_fast_thread_cpu_time()) {
4836     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4837   } else {
4838     return slow_thread_cpu_time(thread, true /* user + sys */);
4839   }
4840 }
4841 
4842 jlong os::current_thread_cpu_time(bool user_sys_cpu_time) {
4843   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4844     return os::Linux::fast_thread_cpu_time(CLOCK_THREAD_CPUTIME_ID);
4845   } else {
4846     return slow_thread_cpu_time(Thread::current(), user_sys_cpu_time);
4847   }
4848 }
4849 
4850 jlong os::thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4851   if (user_sys_cpu_time && os::Linux::supports_fast_thread_cpu_time()) {
4852     return os::Linux::fast_thread_cpu_time(thread_cpu_clockid(thread));
4853   } else {
4854     return slow_thread_cpu_time(thread, user_sys_cpu_time);
4855   }
4856 }
4857 
4858 //
4859 //  -1 on error.
4860 //
4861 
4862 static jlong slow_thread_cpu_time(Thread *thread, bool user_sys_cpu_time) {
4863   static bool proc_task_unchecked = true;
4864   static const char *proc_stat_path = "/proc/%d/stat";
4865   pid_t  tid = thread->osthread()->thread_id();
4866   char *s;
4867   char stat[2048];
4868   int statlen;
4869   char proc_name[64];
4870   int count;
4871   long sys_time, user_time;
4872   char cdummy;
4873   int idummy;
4874   long ldummy;
4875   FILE *fp;
4876 
4877   // The /proc/<tid>/stat aggregates per-process usage on
4878   // new Linux kernels 2.6+ where NPTL is supported.
4879   // The /proc/self/task/<tid>/stat still has the per-thread usage.
4880   // See bug 6328462.
4881   // There possibly can be cases where there is no directory
4882   // /proc/self/task, so we check its availability.
4883   if (proc_task_unchecked && os::Linux::is_NPTL()) {
4884     // This is executed only once
4885     proc_task_unchecked = false;
4886     fp = fopen("/proc/self/task", "r");
4887     if (fp != NULL) {
4888       proc_stat_path = "/proc/self/task/%d/stat";
4889       fclose(fp);
4890     }
4891   }
4892 
4893   sprintf(proc_name, proc_stat_path, tid);
4894   fp = fopen(proc_name, "r");
4895   if ( fp == NULL ) return -1;
4896   statlen = fread(stat, 1, 2047, fp);
4897   stat[statlen] = '\0';
4898   fclose(fp);
4899 
4900   // Skip pid and the command string. Note that we could be dealing with
4901   // weird command names, e.g. user could decide to rename java launcher
4902   // to "java 1.4.2 :)", then the stat file would look like
4903   //                1234 (java 1.4.2 :)) R ... ...
4904   // We don't really need to know the command string, just find the last
4905   // occurrence of ")" and then start parsing from there. See bug 4726580.
4906   s = strrchr(stat, ')');
4907   if (s == NULL ) return -1;
4908 
4909   // Skip blank chars
4910   do s++; while (isspace(*s));
4911 
4912   count = sscanf(s,"%c %d %d %d %d %d %lu %lu %lu %lu %lu %lu %lu",
4913                  &cdummy, &idummy, &idummy, &idummy, &idummy, &idummy,
4914                  &ldummy, &ldummy, &ldummy, &ldummy, &ldummy,
4915                  &user_time, &sys_time);
4916   if ( count != 13 ) return -1;
4917   if (user_sys_cpu_time) {
4918     return ((jlong)sys_time + (jlong)user_time) * (1000000000 / clock_tics_per_sec);
4919   } else {
4920     return (jlong)user_time * (1000000000 / clock_tics_per_sec);
4921   }
4922 }
4923 
4924 void os::current_thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4925   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4926   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4927   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4928   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4929 }
4930 
4931 void os::thread_cpu_time_info(jvmtiTimerInfo *info_ptr) {
4932   info_ptr->max_value = ALL_64_BITS;       // will not wrap in less than 64 bits
4933   info_ptr->may_skip_backward = false;     // elapsed time not wall time
4934   info_ptr->may_skip_forward = false;      // elapsed time not wall time
4935   info_ptr->kind = JVMTI_TIMER_TOTAL_CPU;  // user+system time is returned
4936 }
4937 
4938 bool os::is_thread_cpu_time_supported() {
4939   return true;
4940 }
4941 
4942 // System loadavg support.  Returns -1 if load average cannot be obtained.
4943 // Linux doesn't yet have a (official) notion of processor sets,
4944 // so just return the system wide load average.
4945 int os::loadavg(double loadavg[], int nelem) {
4946   return ::getloadavg(loadavg, nelem);
4947 }
4948 
4949 void os::pause() {
4950   char filename[MAX_PATH];
4951   if (PauseAtStartupFile && PauseAtStartupFile[0]) {
4952     jio_snprintf(filename, MAX_PATH, PauseAtStartupFile);
4953   } else {
4954     jio_snprintf(filename, MAX_PATH, "./vm.paused.%d", current_process_id());
4955   }
4956 
4957   int fd = ::open(filename, O_WRONLY | O_CREAT | O_TRUNC, 0666);
4958   if (fd != -1) {
4959     struct stat buf;
4960     ::close(fd);
4961     while (::stat(filename, &buf) == 0) {
4962       (void)::poll(NULL, 0, 100);
4963     }
4964   } else {
4965     jio_fprintf(stderr,
4966       "Could not open pause file '%s', continuing immediately.\n", filename);
4967   }
4968 }
4969 
4970 
4971 // Refer to the comments in os_solaris.cpp park-unpark.
4972 //
4973 // Beware -- Some versions of NPTL embody a flaw where pthread_cond_timedwait() can
4974 // hang indefinitely.  For instance NPTL 0.60 on 2.4.21-4ELsmp is vulnerable.
4975 // For specifics regarding the bug see GLIBC BUGID 261237 :
4976 //    http://www.mail-archive.com/debian-glibc@lists.debian.org/msg10837.html.
4977 // Briefly, pthread_cond_timedwait() calls with an expiry time that's not in the future
4978 // will either hang or corrupt the condvar, resulting in subsequent hangs if the condvar
4979 // is used.  (The simple C test-case provided in the GLIBC bug report manifests the
4980 // hang).  The JVM is vulernable via sleep(), Object.wait(timo), LockSupport.parkNanos()
4981 // and monitorenter when we're using 1-0 locking.  All those operations may result in
4982 // calls to pthread_cond_timedwait().  Using LD_ASSUME_KERNEL to use an older version
4983 // of libpthread avoids the problem, but isn't practical.
4984 //
4985 // Possible remedies:
4986 //
4987 // 1.   Establish a minimum relative wait time.  50 to 100 msecs seems to work.
4988 //      This is palliative and probabilistic, however.  If the thread is preempted
4989 //      between the call to compute_abstime() and pthread_cond_timedwait(), more
4990 //      than the minimum period may have passed, and the abstime may be stale (in the
4991 //      past) resultin in a hang.   Using this technique reduces the odds of a hang
4992 //      but the JVM is still vulnerable, particularly on heavily loaded systems.
4993 //
4994 // 2.   Modify park-unpark to use per-thread (per ParkEvent) pipe-pairs instead
4995 //      of the usual flag-condvar-mutex idiom.  The write side of the pipe is set
4996 //      NDELAY. unpark() reduces to write(), park() reduces to read() and park(timo)
4997 //      reduces to poll()+read().  This works well, but consumes 2 FDs per extant
4998 //      thread.
4999 //
5000 // 3.   Embargo pthread_cond_timedwait() and implement a native "chron" thread
5001 //      that manages timeouts.  We'd emulate pthread_cond_timedwait() by enqueuing
5002 //      a timeout request to the chron thread and then blocking via pthread_cond_wait().
5003 //      This also works well.  In fact it avoids kernel-level scalability impediments
5004 //      on certain platforms that don't handle lots of active pthread_cond_timedwait()
5005 //      timers in a graceful fashion.
5006 //
5007 // 4.   When the abstime value is in the past it appears that control returns
5008 //      correctly from pthread_cond_timedwait(), but the condvar is left corrupt.
5009 //      Subsequent timedwait/wait calls may hang indefinitely.  Given that, we
5010 //      can avoid the problem by reinitializing the condvar -- by cond_destroy()
5011 //      followed by cond_init() -- after all calls to pthread_cond_timedwait().
5012 //      It may be possible to avoid reinitialization by checking the return
5013 //      value from pthread_cond_timedwait().  In addition to reinitializing the
5014 //      condvar we must establish the invariant that cond_signal() is only called
5015 //      within critical sections protected by the adjunct mutex.  This prevents
5016 //      cond_signal() from "seeing" a condvar that's in the midst of being
5017 //      reinitialized or that is corrupt.  Sadly, this invariant obviates the
5018 //      desirable signal-after-unlock optimization that avoids futile context switching.
5019 //
5020 //      I'm also concerned that some versions of NTPL might allocate an auxilliary
5021 //      structure when a condvar is used or initialized.  cond_destroy()  would
5022 //      release the helper structure.  Our reinitialize-after-timedwait fix
5023 //      put excessive stress on malloc/free and locks protecting the c-heap.
5024 //
5025 // We currently use (4).  See the WorkAroundNTPLTimedWaitHang flag.
5026 // It may be possible to refine (4) by checking the kernel and NTPL verisons
5027 // and only enabling the work-around for vulnerable environments.
5028 
5029 // utility to compute the abstime argument to timedwait:
5030 // millis is the relative timeout time
5031 // abstime will be the absolute timeout time
5032 // TODO: replace compute_abstime() with unpackTime()
5033 
5034 static struct timespec* compute_abstime(timespec* abstime, jlong millis) {
5035   if (millis < 0)  millis = 0;
5036   struct timeval now;
5037   int status = gettimeofday(&now, NULL);
5038   assert(status == 0, "gettimeofday");
5039   jlong seconds = millis / 1000;
5040   millis %= 1000;
5041   if (seconds > 50000000) { // see man cond_timedwait(3T)
5042     seconds = 50000000;
5043   }
5044   abstime->tv_sec = now.tv_sec  + seconds;
5045   long       usec = now.tv_usec + millis * 1000;
5046   if (usec >= 1000000) {
5047     abstime->tv_sec += 1;
5048     usec -= 1000000;
5049   }
5050   abstime->tv_nsec = usec * 1000;
5051   return abstime;
5052 }
5053 
5054 
5055 // Test-and-clear _Event, always leaves _Event set to 0, returns immediately.
5056 // Conceptually TryPark() should be equivalent to park(0).
5057 
5058 int os::PlatformEvent::TryPark() {
5059   for (;;) {
5060     const int v = _Event ;
5061     guarantee ((v == 0) || (v == 1), "invariant") ;
5062     if (Atomic::cmpxchg (0, &_Event, v) == v) return v  ;
5063   }
5064 }
5065 
5066 void os::PlatformEvent::park() {       // AKA "down()"
5067   // Invariant: Only the thread associated with the Event/PlatformEvent
5068   // may call park().
5069   // TODO: assert that _Assoc != NULL or _Assoc == Self
5070   int v ;
5071   for (;;) {
5072       v = _Event ;
5073       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5074   }
5075   guarantee (v >= 0, "invariant") ;
5076   if (v == 0) {
5077      // Do this the hard way by blocking ...
5078      int status = pthread_mutex_lock(_mutex);
5079      assert_status(status == 0, status, "mutex_lock");
5080      guarantee (_nParked == 0, "invariant") ;
5081      ++ _nParked ;
5082      while (_Event < 0) {
5083         status = pthread_cond_wait(_cond, _mutex);
5084         // for some reason, under 2.7 lwp_cond_wait() may return ETIME ...
5085         // Treat this the same as if the wait was interrupted
5086         if (status == ETIME) { status = EINTR; }
5087         assert_status(status == 0 || status == EINTR, status, "cond_wait");
5088      }
5089      -- _nParked ;
5090 
5091     _Event = 0 ;
5092      status = pthread_mutex_unlock(_mutex);
5093      assert_status(status == 0, status, "mutex_unlock");
5094     // Paranoia to ensure our locked and lock-free paths interact
5095     // correctly with each other.
5096     OrderAccess::fence();
5097   }
5098   guarantee (_Event >= 0, "invariant") ;
5099 }
5100 
5101 int os::PlatformEvent::park(jlong millis) {
5102   guarantee (_nParked == 0, "invariant") ;
5103 
5104   int v ;
5105   for (;;) {
5106       v = _Event ;
5107       if (Atomic::cmpxchg (v-1, &_Event, v) == v) break ;
5108   }
5109   guarantee (v >= 0, "invariant") ;
5110   if (v != 0) return OS_OK ;
5111 
5112   // We do this the hard way, by blocking the thread.
5113   // Consider enforcing a minimum timeout value.
5114   struct timespec abst;
5115   compute_abstime(&abst, millis);
5116 
5117   int ret = OS_TIMEOUT;
5118   int status = pthread_mutex_lock(_mutex);
5119   assert_status(status == 0, status, "mutex_lock");
5120   guarantee (_nParked == 0, "invariant") ;
5121   ++_nParked ;
5122 
5123   // Object.wait(timo) will return because of
5124   // (a) notification
5125   // (b) timeout
5126   // (c) thread.interrupt
5127   //
5128   // Thread.interrupt and object.notify{All} both call Event::set.
5129   // That is, we treat thread.interrupt as a special case of notification.
5130   // The underlying Solaris implementation, cond_timedwait, admits
5131   // spurious/premature wakeups, but the JLS/JVM spec prevents the
5132   // JVM from making those visible to Java code.  As such, we must
5133   // filter out spurious wakeups.  We assume all ETIME returns are valid.
5134   //
5135   // TODO: properly differentiate simultaneous notify+interrupt.
5136   // In that case, we should propagate the notify to another waiter.
5137 
5138   while (_Event < 0) {
5139     status = os::Linux::safe_cond_timedwait(_cond, _mutex, &abst);
5140     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5141       pthread_cond_destroy (_cond);
5142       pthread_cond_init (_cond, NULL) ;
5143     }
5144     assert_status(status == 0 || status == EINTR ||
5145                   status == ETIME || status == ETIMEDOUT,
5146                   status, "cond_timedwait");
5147     if (!FilterSpuriousWakeups) break ;                 // previous semantics
5148     if (status == ETIME || status == ETIMEDOUT) break ;
5149     // We consume and ignore EINTR and spurious wakeups.
5150   }
5151   --_nParked ;
5152   if (_Event >= 0) {
5153      ret = OS_OK;
5154   }
5155   _Event = 0 ;
5156   status = pthread_mutex_unlock(_mutex);
5157   assert_status(status == 0, status, "mutex_unlock");
5158   assert (_nParked == 0, "invariant") ;
5159   // Paranoia to ensure our locked and lock-free paths interact
5160   // correctly with each other.
5161   OrderAccess::fence();
5162   return ret;
5163 }
5164 
5165 void os::PlatformEvent::unpark() {
5166   // Transitions for _Event:
5167   //    0 :=> 1
5168   //    1 :=> 1
5169   //   -1 :=> either 0 or 1; must signal target thread
5170   //          That is, we can safely transition _Event from -1 to either
5171   //          0 or 1. Forcing 1 is slightly more efficient for back-to-back
5172   //          unpark() calls.
5173   // See also: "Semaphores in Plan 9" by Mullender & Cox
5174   //
5175   // Note: Forcing a transition from "-1" to "1" on an unpark() means
5176   // that it will take two back-to-back park() calls for the owning
5177   // thread to block. This has the benefit of forcing a spurious return
5178   // from the first park() call after an unpark() call which will help
5179   // shake out uses of park() and unpark() without condition variables.
5180 
5181   if (Atomic::xchg(1, &_Event) >= 0) return;
5182 
5183   // Wait for the thread associated with the event to vacate
5184   int status = pthread_mutex_lock(_mutex);
5185   assert_status(status == 0, status, "mutex_lock");
5186   int AnyWaiters = _nParked;
5187   assert(AnyWaiters == 0 || AnyWaiters == 1, "invariant");
5188   if (AnyWaiters != 0 && WorkAroundNPTLTimedWaitHang) {
5189     AnyWaiters = 0;
5190     pthread_cond_signal(_cond);
5191   }
5192   status = pthread_mutex_unlock(_mutex);
5193   assert_status(status == 0, status, "mutex_unlock");
5194   if (AnyWaiters != 0) {
5195     status = pthread_cond_signal(_cond);
5196     assert_status(status == 0, status, "cond_signal");
5197   }
5198 
5199   // Note that we signal() _after dropping the lock for "immortal" Events.
5200   // This is safe and avoids a common class of  futile wakeups.  In rare
5201   // circumstances this can cause a thread to return prematurely from
5202   // cond_{timed}wait() but the spurious wakeup is benign and the victim will
5203   // simply re-test the condition and re-park itself.
5204 }
5205 
5206 
5207 // JSR166
5208 // -------------------------------------------------------
5209 
5210 /*
5211  * The solaris and linux implementations of park/unpark are fairly
5212  * conservative for now, but can be improved. They currently use a
5213  * mutex/condvar pair, plus a a count.
5214  * Park decrements count if > 0, else does a condvar wait.  Unpark
5215  * sets count to 1 and signals condvar.  Only one thread ever waits
5216  * on the condvar. Contention seen when trying to park implies that someone
5217  * is unparking you, so don't wait. And spurious returns are fine, so there
5218  * is no need to track notifications.
5219  */
5220 
5221 #define MAX_SECS 100000000
5222 /*
5223  * This code is common to linux and solaris and will be moved to a
5224  * common place in dolphin.
5225  *
5226  * The passed in time value is either a relative time in nanoseconds
5227  * or an absolute time in milliseconds. Either way it has to be unpacked
5228  * into suitable seconds and nanoseconds components and stored in the
5229  * given timespec structure.
5230  * Given time is a 64-bit value and the time_t used in the timespec is only
5231  * a signed-32-bit value (except on 64-bit Linux) we have to watch for
5232  * overflow if times way in the future are given. Further on Solaris versions
5233  * prior to 10 there is a restriction (see cond_timedwait) that the specified
5234  * number of seconds, in abstime, is less than current_time  + 100,000,000.
5235  * As it will be 28 years before "now + 100000000" will overflow we can
5236  * ignore overflow and just impose a hard-limit on seconds using the value
5237  * of "now + 100,000,000". This places a limit on the timeout of about 3.17
5238  * years from "now".
5239  */
5240 
5241 static void unpackTime(timespec* absTime, bool isAbsolute, jlong time) {
5242   assert (time > 0, "convertTime");
5243 
5244   struct timeval now;
5245   int status = gettimeofday(&now, NULL);
5246   assert(status == 0, "gettimeofday");
5247 
5248   time_t max_secs = now.tv_sec + MAX_SECS;
5249 
5250   if (isAbsolute) {
5251     jlong secs = time / 1000;
5252     if (secs > max_secs) {
5253       absTime->tv_sec = max_secs;
5254     }
5255     else {
5256       absTime->tv_sec = secs;
5257     }
5258     absTime->tv_nsec = (time % 1000) * NANOSECS_PER_MILLISEC;
5259   }
5260   else {
5261     jlong secs = time / NANOSECS_PER_SEC;
5262     if (secs >= MAX_SECS) {
5263       absTime->tv_sec = max_secs;
5264       absTime->tv_nsec = 0;
5265     }
5266     else {
5267       absTime->tv_sec = now.tv_sec + secs;
5268       absTime->tv_nsec = (time % NANOSECS_PER_SEC) + now.tv_usec*1000;
5269       if (absTime->tv_nsec >= NANOSECS_PER_SEC) {
5270         absTime->tv_nsec -= NANOSECS_PER_SEC;
5271         ++absTime->tv_sec; // note: this must be <= max_secs
5272       }
5273     }
5274   }
5275   assert(absTime->tv_sec >= 0, "tv_sec < 0");
5276   assert(absTime->tv_sec <= max_secs, "tv_sec > max_secs");
5277   assert(absTime->tv_nsec >= 0, "tv_nsec < 0");
5278   assert(absTime->tv_nsec < NANOSECS_PER_SEC, "tv_nsec >= nanos_per_sec");
5279 }
5280 
5281 void Parker::park(bool isAbsolute, jlong time) {
5282   // Ideally we'd do something useful while spinning, such
5283   // as calling unpackTime().
5284 
5285   // Optional fast-path check:
5286   // Return immediately if a permit is available.
5287   // We depend on Atomic::xchg() having full barrier semantics
5288   // since we are doing a lock-free update to _counter.
5289   if (Atomic::xchg(0, &_counter) > 0) return;
5290 
5291   Thread* thread = Thread::current();
5292   assert(thread->is_Java_thread(), "Must be JavaThread");
5293   JavaThread *jt = (JavaThread *)thread;
5294 
5295   // Optional optimization -- avoid state transitions if there's an interrupt pending.
5296   // Check interrupt before trying to wait
5297   if (Thread::is_interrupted(thread, false)) {
5298     return;
5299   }
5300 
5301   // Next, demultiplex/decode time arguments
5302   timespec absTime;
5303   if (time < 0 || (isAbsolute && time == 0) ) { // don't wait at all
5304     return;
5305   }
5306   if (time > 0) {
5307     unpackTime(&absTime, isAbsolute, time);
5308   }
5309 
5310 
5311   // Enter safepoint region
5312   // Beware of deadlocks such as 6317397.
5313   // The per-thread Parker:: mutex is a classic leaf-lock.
5314   // In particular a thread must never block on the Threads_lock while
5315   // holding the Parker:: mutex.  If safepoints are pending both the
5316   // the ThreadBlockInVM() CTOR and DTOR may grab Threads_lock.
5317   ThreadBlockInVM tbivm(jt);
5318 
5319   // Don't wait if cannot get lock since interference arises from
5320   // unblocking.  Also. check interrupt before trying wait
5321   if (Thread::is_interrupted(thread, false) || pthread_mutex_trylock(_mutex) != 0) {
5322     return;
5323   }
5324 
5325   int status ;
5326   if (_counter > 0)  { // no wait needed
5327     _counter = 0;
5328     status = pthread_mutex_unlock(_mutex);
5329     assert (status == 0, "invariant") ;
5330     // Paranoia to ensure our locked and lock-free paths interact
5331     // correctly with each other and Java-level accesses.
5332     OrderAccess::fence();
5333     return;
5334   }
5335 
5336 #ifdef ASSERT
5337   // Don't catch signals while blocked; let the running threads have the signals.
5338   // (This allows a debugger to break into the running thread.)
5339   sigset_t oldsigs;
5340   sigset_t* allowdebug_blocked = os::Linux::allowdebug_blocked_signals();
5341   pthread_sigmask(SIG_BLOCK, allowdebug_blocked, &oldsigs);
5342 #endif
5343 
5344   OSThreadWaitState osts(thread->osthread(), false /* not Object.wait() */);
5345   jt->set_suspend_equivalent();
5346   // cleared by handle_special_suspend_equivalent_condition() or java_suspend_self()
5347 
5348   if (time == 0) {
5349     status = pthread_cond_wait (_cond, _mutex) ;
5350   } else {
5351     status = os::Linux::safe_cond_timedwait (_cond, _mutex, &absTime) ;
5352     if (status != 0 && WorkAroundNPTLTimedWaitHang) {
5353       pthread_cond_destroy (_cond) ;
5354       pthread_cond_init    (_cond, NULL);
5355     }
5356   }
5357   assert_status(status == 0 || status == EINTR ||
5358                 status == ETIME || status == ETIMEDOUT,
5359                 status, "cond_timedwait");
5360 
5361 #ifdef ASSERT
5362   pthread_sigmask(SIG_SETMASK, &oldsigs, NULL);
5363 #endif
5364 
5365   _counter = 0 ;
5366   status = pthread_mutex_unlock(_mutex) ;
5367   assert_status(status == 0, status, "invariant") ;
5368   // Paranoia to ensure our locked and lock-free paths interact
5369   // correctly with each other and Java-level accesses.
5370   OrderAccess::fence();
5371 
5372   // If externally suspended while waiting, re-suspend
5373   if (jt->handle_special_suspend_equivalent_condition()) {
5374     jt->java_suspend_self();
5375   }
5376 }
5377 
5378 void Parker::unpark() {
5379   int s, status ;
5380   status = pthread_mutex_lock(_mutex);
5381   assert (status == 0, "invariant") ;
5382   s = _counter;
5383   _counter = 1;
5384   if (s < 1) {
5385      if (WorkAroundNPTLTimedWaitHang) {
5386         status = pthread_cond_signal (_cond) ;
5387         assert (status == 0, "invariant") ;
5388         status = pthread_mutex_unlock(_mutex);
5389         assert (status == 0, "invariant") ;
5390      } else {
5391         status = pthread_mutex_unlock(_mutex);
5392         assert (status == 0, "invariant") ;
5393         status = pthread_cond_signal (_cond) ;
5394         assert (status == 0, "invariant") ;
5395      }
5396   } else {
5397     pthread_mutex_unlock(_mutex);
5398     assert (status == 0, "invariant") ;
5399   }
5400 }
5401 
5402 
5403 extern char** environ;
5404 
5405 #ifndef __NR_fork
5406 #define __NR_fork IA32_ONLY(2) IA64_ONLY(not defined) AMD64_ONLY(57)
5407 #endif
5408 
5409 #ifndef __NR_execve
5410 #define __NR_execve IA32_ONLY(11) IA64_ONLY(1033) AMD64_ONLY(59)
5411 #endif
5412 
5413 // Run the specified command in a separate process. Return its exit value,
5414 // or -1 on failure (e.g. can't fork a new process).
5415 // Unlike system(), this function can be called from signal handler. It
5416 // doesn't block SIGINT et al.
5417 int os::fork_and_exec(char* cmd) {
5418   const char * argv[4] = {"sh", "-c", cmd, NULL};
5419 
5420   // fork() in LinuxThreads/NPTL is not async-safe. It needs to run
5421   // pthread_atfork handlers and reset pthread library. All we need is a
5422   // separate process to execve. Make a direct syscall to fork process.
5423   // On IA64 there's no fork syscall, we have to use fork() and hope for
5424   // the best...
5425   pid_t pid = NOT_IA64(syscall(__NR_fork);)
5426               IA64_ONLY(fork();)
5427 
5428   if (pid < 0) {
5429     // fork failed
5430     return -1;
5431 
5432   } else if (pid == 0) {
5433     // child process
5434 
5435     // execve() in LinuxThreads will call pthread_kill_other_threads_np()
5436     // first to kill every thread on the thread list. Because this list is
5437     // not reset by fork() (see notes above), execve() will instead kill
5438     // every thread in the parent process. We know this is the only thread
5439     // in the new process, so make a system call directly.
5440     // IA64 should use normal execve() from glibc to match the glibc fork()
5441     // above.
5442     NOT_IA64(syscall(__NR_execve, "/bin/sh", argv, environ);)
5443     IA64_ONLY(execve("/bin/sh", (char* const*)argv, environ);)
5444 
5445     // execve failed
5446     _exit(-1);
5447 
5448   } else  {
5449     // copied from J2SE ..._waitForProcessExit() in UNIXProcess_md.c; we don't
5450     // care about the actual exit code, for now.
5451 
5452     int status;
5453 
5454     // Wait for the child process to exit.  This returns immediately if
5455     // the child has already exited. */
5456     while (waitpid(pid, &status, 0) < 0) {
5457         switch (errno) {
5458         case ECHILD: return 0;
5459         case EINTR: break;
5460         default: return -1;
5461         }
5462     }
5463 
5464     if (WIFEXITED(status)) {
5465        // The child exited normally; get its exit code.
5466        return WEXITSTATUS(status);
5467     } else if (WIFSIGNALED(status)) {
5468        // The child exited because of a signal
5469        // The best value to return is 0x80 + signal number,
5470        // because that is what all Unix shells do, and because
5471        // it allows callers to distinguish between process exit and
5472        // process death by signal.
5473        return 0x80 + WTERMSIG(status);
5474     } else {
5475        // Unknown exit code; pass it through
5476        return status;
5477     }
5478   }
5479 }
5480 
5481 // is_headless_jre()
5482 //
5483 // Test for the existence of xawt/libmawt.so or libawt_xawt.so
5484 // in order to report if we are running in a headless jre
5485 //
5486 // Since JDK8 xawt/libmawt.so was moved into the same directory
5487 // as libawt.so, and renamed libawt_xawt.so
5488 //
5489 bool os::is_headless_jre() {
5490     struct stat statbuf;
5491     char buf[MAXPATHLEN];
5492     char libmawtpath[MAXPATHLEN];
5493     const char *xawtstr  = "/xawt/libmawt.so";
5494     const char *new_xawtstr = "/libawt_xawt.so";
5495     char *p;
5496 
5497     // Get path to libjvm.so
5498     os::jvm_path(buf, sizeof(buf));
5499 
5500     // Get rid of libjvm.so
5501     p = strrchr(buf, '/');
5502     if (p == NULL) return false;
5503     else *p = '\0';
5504 
5505     // Get rid of client or server
5506     p = strrchr(buf, '/');
5507     if (p == NULL) return false;
5508     else *p = '\0';
5509 
5510     // check xawt/libmawt.so
5511     strcpy(libmawtpath, buf);
5512     strcat(libmawtpath, xawtstr);
5513     if (::stat(libmawtpath, &statbuf) == 0) return false;
5514 
5515     // check libawt_xawt.so
5516     strcpy(libmawtpath, buf);
5517     strcat(libmawtpath, new_xawtstr);
5518     if (::stat(libmawtpath, &statbuf) == 0) return false;
5519 
5520     return true;
5521 }
5522 
5523 // Get the default path to the core file
5524 // Returns the length of the string
5525 int os::get_core_path(char* buffer, size_t bufferSize) {
5526   const char* p = get_current_directory(buffer, bufferSize);
5527 
5528   if (p == NULL) {
5529     assert(p != NULL, "failed to get current directory");
5530     return 0;
5531   }
5532 
5533   return strlen(buffer);
5534 }
5535 
5536 #ifdef JAVASE_EMBEDDED
5537 //
5538 // A thread to watch the '/dev/mem_notify' device, which will tell us when the OS is running low on memory.
5539 //
5540 MemNotifyThread* MemNotifyThread::_memnotify_thread = NULL;
5541 
5542 // ctor
5543 //
5544 MemNotifyThread::MemNotifyThread(int fd): Thread() {
5545   assert(memnotify_thread() == NULL, "we can only allocate one MemNotifyThread");
5546   _fd = fd;
5547 
5548   if (os::create_thread(this, os::os_thread)) {
5549     _memnotify_thread = this;
5550     os::set_priority(this, NearMaxPriority);
5551     os::start_thread(this);
5552   }
5553 }
5554 
5555 // Where all the work gets done
5556 //
5557 void MemNotifyThread::run() {
5558   assert(this == memnotify_thread(), "expected the singleton MemNotifyThread");
5559 
5560   // Set up the select arguments
5561   fd_set rfds;
5562   if (_fd != -1) {
5563     FD_ZERO(&rfds);
5564     FD_SET(_fd, &rfds);
5565   }
5566 
5567   // Now wait for the mem_notify device to wake up
5568   while (1) {
5569     // Wait for the mem_notify device to signal us..
5570     int rc = select(_fd+1, _fd != -1 ? &rfds : NULL, NULL, NULL, NULL);
5571     if (rc == -1) {
5572       perror("select!\n");
5573       break;
5574     } else if (rc) {
5575       //ssize_t free_before = os::available_memory();
5576       //tty->print ("Notified: Free: %dK \n",os::available_memory()/1024);
5577 
5578       // The kernel is telling us there is not much memory left...
5579       // try to do something about that
5580 
5581       // If we are not already in a GC, try one.
5582       if (!Universe::heap()->is_gc_active()) {
5583         Universe::heap()->collect(GCCause::_allocation_failure);
5584 
5585         //ssize_t free_after = os::available_memory();
5586         //tty->print ("Post-Notify: Free: %dK\n",free_after/1024);
5587         //tty->print ("GC freed: %dK\n", (free_after - free_before)/1024);
5588       }
5589       // We might want to do something like the following if we find the GC's are not helping...
5590       // Universe::heap()->size_policy()->set_gc_time_limit_exceeded(true);
5591     }
5592   }
5593 }
5594 
5595 //
5596 // See if the /dev/mem_notify device exists, and if so, start a thread to monitor it.
5597 //
5598 void MemNotifyThread::start() {
5599   int    fd;
5600   fd = open ("/dev/mem_notify", O_RDONLY, 0);
5601   if (fd < 0) {
5602       return;
5603   }
5604 
5605   if (memnotify_thread() == NULL) {
5606     new MemNotifyThread(fd);
5607   }
5608 }
5609 #endif // JAVASE_EMBEDDED