1 /*
   2  * Copyright (c) 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  27 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  28 #include "gc_implementation/g1/heapRegion.hpp"
  29 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  30 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  31 #include "gc_implementation/g1/g1RemSetSummary.hpp"
  32 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  33 #include "runtime/thread.inline.hpp"
  34 
  35 class GetRSThreadVTimeClosure : public ThreadClosure {
  36 private:
  37   G1RemSetSummary* _summary;
  38   uint _counter;
  39 
  40 public:
  41   GetRSThreadVTimeClosure(G1RemSetSummary * summary) : ThreadClosure(), _summary(summary), _counter(0) {
  42     assert(_summary != NULL, "just checking");
  43   }
  44 
  45   virtual void do_thread(Thread* t) {
  46     ConcurrentG1RefineThread* crt = (ConcurrentG1RefineThread*) t;
  47     _summary->set_rs_thread_vtime(_counter, crt->vtime_accum());
  48     _counter++;
  49   }
  50 };
  51 
  52 void G1RemSetSummary::update() {
  53   _num_refined_cards = remset()->conc_refine_cards();
  54   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
  55   _num_processed_buf_mutator = dcqs.processed_buffers_mut();
  56   _num_processed_buf_rs_threads = dcqs.processed_buffers_rs_thread();
  57 
  58   _num_coarsenings = HeapRegionRemSet::n_coarsenings();
  59 
  60   ConcurrentG1Refine * cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
  61   if (_rs_threads_vtimes != NULL) {
  62     GetRSThreadVTimeClosure p(this);
  63     cg1r->worker_threads_do(&p);
  64   }
  65   set_sampling_thread_vtime(cg1r->sampling_thread()->vtime_accum());
  66 }
  67 
  68 void G1RemSetSummary::set_rs_thread_vtime(uint thread, double value) {
  69   assert(_rs_threads_vtimes != NULL, "just checking");
  70   assert(thread < _num_vtimes, "just checking");
  71   _rs_threads_vtimes[thread] = value;
  72 }
  73 
  74 double G1RemSetSummary::rs_thread_vtime(uint thread) const {
  75   assert(_rs_threads_vtimes != NULL, "just checking");
  76   assert(thread < _num_vtimes, "just checking");
  77   return _rs_threads_vtimes[thread];
  78 }
  79 
  80 void G1RemSetSummary::initialize(G1RemSet* remset, uint num_workers) {
  81   assert(_rs_threads_vtimes == NULL, "just checking");
  82   assert(remset != NULL, "just checking");
  83 
  84   _remset = remset;
  85   _num_vtimes = num_workers;
  86   _rs_threads_vtimes = NEW_C_HEAP_ARRAY(double, _num_vtimes, mtGC);
  87   memset(_rs_threads_vtimes, 0, sizeof(double) * _num_vtimes);
  88 
  89   update();
  90 }
  91 
  92 void G1RemSetSummary::set(G1RemSetSummary* other) {
  93   assert(other != NULL, "just checking");
  94   assert(remset() == other->remset(), "just checking");
  95   assert(_num_vtimes == other->_num_vtimes, "just checking");
  96 
  97   _num_refined_cards = other->num_concurrent_refined_cards();
  98 
  99   _num_processed_buf_mutator = other->num_processed_buf_mutator();
 100   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads();
 101 
 102   _num_coarsenings = other->_num_coarsenings;
 103 
 104   memcpy(_rs_threads_vtimes, other->_rs_threads_vtimes, sizeof(double) * _num_vtimes);
 105 
 106   set_sampling_thread_vtime(other->sampling_thread_vtime());
 107 }
 108 
 109 void G1RemSetSummary::subtract_from(G1RemSetSummary* other) {
 110   assert(other != NULL, "just checking");
 111   assert(remset() == other->remset(), "just checking");
 112   assert(_num_vtimes == other->_num_vtimes, "just checking");
 113 
 114   _num_refined_cards = other->num_concurrent_refined_cards() - _num_refined_cards;
 115 
 116   _num_processed_buf_mutator = other->num_processed_buf_mutator() - _num_processed_buf_mutator;
 117   _num_processed_buf_rs_threads = other->num_processed_buf_rs_threads() - _num_processed_buf_rs_threads;
 118 
 119   _num_coarsenings = other->num_coarsenings() - _num_coarsenings;
 120 
 121   for (uint i = 0; i < _num_vtimes; i++) {
 122     set_rs_thread_vtime(i, other->rs_thread_vtime(i) - rs_thread_vtime(i));
 123   }
 124 
 125   _sampling_thread_vtime = other->sampling_thread_vtime() - _sampling_thread_vtime;
 126 }
 127 















































































 128 class HRRSStatsIter: public HeapRegionClosure {
 129   size_t _occupied;





 130 
 131   size_t _total_rs_mem_sz;
 132   size_t _max_rs_mem_sz;
 133   HeapRegion* _max_rs_mem_sz_region;
 134 
 135   size_t _total_code_root_mem_sz;





 136   size_t _max_code_root_mem_sz;
 137   HeapRegion* _max_code_root_mem_sz_region;







 138 public:
 139   HRRSStatsIter() :
 140     _occupied(0),
 141     _total_rs_mem_sz(0),
 142     _max_rs_mem_sz(0),
 143     _max_rs_mem_sz_region(NULL),
 144     _total_code_root_mem_sz(0),
 145     _max_code_root_mem_sz(0),
 146     _max_code_root_mem_sz_region(NULL)
 147   {}
 148 
 149   bool doHeapRegion(HeapRegion* r) {
 150     HeapRegionRemSet* hrrs = r->rem_set();
 151 
 152     // HeapRegionRemSet::mem_size() includes the
 153     // size of the strong code roots
 154     size_t rs_mem_sz = hrrs->mem_size();
 155     if (rs_mem_sz > _max_rs_mem_sz) {
 156       _max_rs_mem_sz = rs_mem_sz;
 157       _max_rs_mem_sz_region = r;
 158     }
 159     _total_rs_mem_sz += rs_mem_sz;
 160 
 161     size_t code_root_mem_sz = hrrs->strong_code_roots_mem_size();
 162     if (code_root_mem_sz > _max_code_root_mem_sz) {
 163       _max_code_root_mem_sz = code_root_mem_sz;
 164       _max_code_root_mem_sz_region = r;
 165     }
 166     _total_code_root_mem_sz += code_root_mem_sz;











 167 
 168     size_t occ = hrrs->occupied();
 169     _occupied += occ;
 170     return false;
 171   }
 172   size_t total_rs_mem_sz() { return _total_rs_mem_sz; }
 173   size_t max_rs_mem_sz() { return _max_rs_mem_sz; }
 174   HeapRegion* max_rs_mem_sz_region() { return _max_rs_mem_sz_region; }
 175   size_t total_code_root_mem_sz() { return _total_code_root_mem_sz; }
 176   size_t max_code_root_mem_sz() { return _max_code_root_mem_sz; }
 177   HeapRegion* max_code_root_mem_sz_region() { return _max_code_root_mem_sz_region; }
 178   size_t occupied() { return _occupied; }
 179 };
 180 
 181 double calc_percentage(size_t numerator, size_t denominator) {
 182   if (denominator != 0) {
 183     return (double)numerator / denominator * 100.0;
 184   } else {
 185     return 0.0f;
 186   }
 187 }
















































 188 
 189 void G1RemSetSummary::print_on(outputStream* out) {
 190   out->print_cr("\n Concurrent RS processed "SIZE_FORMAT" cards",

 191                 num_concurrent_refined_cards());
 192   out->print_cr("  Of %d completed buffers:", num_processed_buf_total());
 193   out->print_cr("     %8d (%5.1f%%) by concurrent RS threads.",
 194                 num_processed_buf_total(),
 195                 calc_percentage(num_processed_buf_rs_threads(), num_processed_buf_total()));
 196   out->print_cr("     %8d (%5.1f%%) by mutator threads.",
 197                 num_processed_buf_mutator(),
 198                 calc_percentage(num_processed_buf_mutator(), num_processed_buf_total()));

 199   out->print_cr("  Concurrent RS threads times (s)");
 200   out->print("     ");
 201   for (uint i = 0; i < _num_vtimes; i++) {
 202     out->print("    %5.2f", rs_thread_vtime(i));
 203   }
 204   out->cr();
 205   out->print_cr("  Concurrent sampling threads times (s)");
 206   out->print_cr("         %5.2f", sampling_thread_vtime());
 207 
 208   HRRSStatsIter blk;
 209   G1CollectedHeap::heap()->heap_region_iterate(&blk);
 210   // RemSet stats
 211   out->print_cr("  Total heap region rem set sizes = "SIZE_FORMAT"K."
 212                 "  Max = "SIZE_FORMAT"K.",
 213                 blk.total_rs_mem_sz()/K, blk.max_rs_mem_sz()/K);
 214   out->print_cr("  Static structures = "SIZE_FORMAT"K,"
 215                 " free_lists = "SIZE_FORMAT"K.",
 216                 HeapRegionRemSet::static_mem_size() / K,
 217                 HeapRegionRemSet::fl_mem_size() / K);
 218   out->print_cr("    "SIZE_FORMAT" occupied cards represented.",
 219                 blk.occupied());
 220   HeapRegion* max_rs_mem_sz_region = blk.max_rs_mem_sz_region();
 221   HeapRegionRemSet* max_rs_rem_set = max_rs_mem_sz_region->rem_set();
 222   out->print_cr("    Max size region = "HR_FORMAT", "
 223                 "size = "SIZE_FORMAT "K, occupied = "SIZE_FORMAT"K.",
 224                 HR_FORMAT_PARAMS(max_rs_mem_sz_region),
 225                 (max_rs_rem_set->mem_size() + K - 1)/K,
 226                 (max_rs_rem_set->occupied() + K - 1)/K);
 227   out->print_cr("    Did %d coarsenings.", num_coarsenings());
 228   // Strong code root stats
 229   out->print_cr("  Total heap region code-root set sizes = "SIZE_FORMAT"K."
 230                 "  Max = "SIZE_FORMAT"K.",
 231                 blk.total_code_root_mem_sz()/K, blk.max_code_root_mem_sz()/K);
 232   HeapRegion* max_code_root_mem_sz_region = blk.max_code_root_mem_sz_region();
 233   HeapRegionRemSet* max_code_root_rem_set = max_code_root_mem_sz_region->rem_set();
 234   out->print_cr("    Max size region = "HR_FORMAT", "
 235                 "size = "SIZE_FORMAT "K, num_elems = "SIZE_FORMAT".",
 236                 HR_FORMAT_PARAMS(max_code_root_mem_sz_region),
 237                 (max_code_root_rem_set->strong_code_roots_mem_size() + K - 1)/K,
 238                 (max_code_root_rem_set->strong_code_roots_list_length()));
 239 }
--- EOF ---