1 /*
   2  * Copyright (c) 2001, 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/codeCache.hpp"
  27 #include "code/icBuffer.hpp"
  28 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  29 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  30 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  31 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  32 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  33 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  35 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  36 #include "gc_implementation/g1/g1EvacFailure.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/g1MarkSweep.hpp"
  40 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  41 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  42 #include "gc_implementation/g1/g1StringDedup.hpp"
  43 #include "gc_implementation/g1/g1YCTypes.hpp"
  44 #include "gc_implementation/g1/heapRegion.inline.hpp"
  45 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  46 #include "gc_implementation/g1/heapRegionSeq.inline.hpp"
  47 #include "gc_implementation/g1/vm_operations_g1.hpp"
  48 #include "gc_implementation/shared/gcHeapSummary.hpp"
  49 #include "gc_implementation/shared/gcTimer.hpp"
  50 #include "gc_implementation/shared/gcTrace.hpp"
  51 #include "gc_implementation/shared/gcTraceTime.hpp"
  52 #include "gc_implementation/shared/isGCActiveMark.hpp"
  53 #include "memory/gcLocker.inline.hpp"
  54 #include "memory/generationSpec.hpp"
  55 #include "memory/iterator.hpp"
  56 #include "memory/referenceProcessor.hpp"
  57 #include "oops/oop.inline.hpp"
  58 #include "oops/oop.pcgc.inline.hpp"
  59 #include "runtime/vmThread.hpp"
  60 #include "utilities/ticks.hpp"
  61 
  62 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  63 
  64 // turn it on so that the contents of the young list (scan-only /
  65 // to-be-collected) are printed at "strategic" points before / during
  66 // / after the collection --- this is useful for debugging
  67 #define YOUNG_LIST_VERBOSE 0
  68 // CURRENT STATUS
  69 // This file is under construction.  Search for "FIXME".
  70 
  71 // INVARIANTS/NOTES
  72 //
  73 // All allocation activity covered by the G1CollectedHeap interface is
  74 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  75 // and allocate_new_tlab, which are the "entry" points to the
  76 // allocation code from the rest of the JVM.  (Note that this does not
  77 // apply to TLAB allocation, which is not part of this interface: it
  78 // is done by clients of this interface.)
  79 
  80 // Notes on implementation of parallelism in different tasks.
  81 //
  82 // G1ParVerifyTask uses heap_region_par_iterate_chunked() for parallelism.
  83 // The number of GC workers is passed to heap_region_par_iterate_chunked().
  84 // It does use run_task() which sets _n_workers in the task.
  85 // G1ParTask executes g1_process_strong_roots() ->
  86 // SharedHeap::process_strong_roots() which calls eventually to
  87 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
  88 // SequentialSubTasksDone.  SharedHeap::process_strong_roots() also
  89 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
  90 //
  91 
  92 // Local to this file.
  93 
  94 class RefineCardTableEntryClosure: public CardTableEntryClosure {
  95   G1RemSet* _g1rs;
  96   ConcurrentG1Refine* _cg1r;
  97   bool _concurrent;
  98 public:
  99   RefineCardTableEntryClosure(G1RemSet* g1rs,
 100                               ConcurrentG1Refine* cg1r) :
 101     _g1rs(g1rs), _cg1r(cg1r), _concurrent(true)
 102   {}
 103   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 104     bool oops_into_cset = _g1rs->refine_card(card_ptr, worker_i, false);
 105     // This path is executed by the concurrent refine or mutator threads,
 106     // concurrently, and so we do not care if card_ptr contains references
 107     // that point into the collection set.
 108     assert(!oops_into_cset, "should be");
 109 
 110     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 111       // Caller will actually yield.
 112       return false;
 113     }
 114     // Otherwise, we finished successfully; return true.
 115     return true;
 116   }
 117   void set_concurrent(bool b) { _concurrent = b; }
 118 };
 119 
 120 
 121 class ClearLoggedCardTableEntryClosure: public CardTableEntryClosure {
 122   int _calls;
 123   G1CollectedHeap* _g1h;
 124   CardTableModRefBS* _ctbs;
 125   int _histo[256];
 126 public:
 127   ClearLoggedCardTableEntryClosure() :
 128     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set())
 129   {
 130     for (int i = 0; i < 256; i++) _histo[i] = 0;
 131   }
 132   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 133     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 134       _calls++;
 135       unsigned char* ujb = (unsigned char*)card_ptr;
 136       int ind = (int)(*ujb);
 137       _histo[ind]++;
 138       *card_ptr = -1;
 139     }
 140     return true;
 141   }
 142   int calls() { return _calls; }
 143   void print_histo() {
 144     gclog_or_tty->print_cr("Card table value histogram:");
 145     for (int i = 0; i < 256; i++) {
 146       if (_histo[i] != 0) {
 147         gclog_or_tty->print_cr("  %d: %d", i, _histo[i]);
 148       }
 149     }
 150   }
 151 };
 152 
 153 class RedirtyLoggedCardTableEntryClosure: public CardTableEntryClosure {
 154   int _calls;
 155   G1CollectedHeap* _g1h;
 156   CardTableModRefBS* _ctbs;
 157 public:
 158   RedirtyLoggedCardTableEntryClosure() :
 159     _calls(0), _g1h(G1CollectedHeap::heap()), _ctbs(_g1h->g1_barrier_set()) {}
 160 
 161   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 162     if (_g1h->is_in_reserved(_ctbs->addr_for(card_ptr))) {
 163       _calls++;
 164       *card_ptr = 0;
 165     }
 166     return true;
 167   }
 168   int calls() { return _calls; }
 169 };
 170 
 171 YoungList::YoungList(G1CollectedHeap* g1h) :
 172     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 173     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 174   guarantee(check_list_empty(false), "just making sure...");
 175 }
 176 
 177 void YoungList::push_region(HeapRegion *hr) {
 178   assert(!hr->is_young(), "should not already be young");
 179   assert(hr->get_next_young_region() == NULL, "cause it should!");
 180 
 181   hr->set_next_young_region(_head);
 182   _head = hr;
 183 
 184   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 185   ++_length;
 186 }
 187 
 188 void YoungList::add_survivor_region(HeapRegion* hr) {
 189   assert(hr->is_survivor(), "should be flagged as survivor region");
 190   assert(hr->get_next_young_region() == NULL, "cause it should!");
 191 
 192   hr->set_next_young_region(_survivor_head);
 193   if (_survivor_head == NULL) {
 194     _survivor_tail = hr;
 195   }
 196   _survivor_head = hr;
 197   ++_survivor_length;
 198 }
 199 
 200 void YoungList::empty_list(HeapRegion* list) {
 201   while (list != NULL) {
 202     HeapRegion* next = list->get_next_young_region();
 203     list->set_next_young_region(NULL);
 204     list->uninstall_surv_rate_group();
 205     list->set_not_young();
 206     list = next;
 207   }
 208 }
 209 
 210 void YoungList::empty_list() {
 211   assert(check_list_well_formed(), "young list should be well formed");
 212 
 213   empty_list(_head);
 214   _head = NULL;
 215   _length = 0;
 216 
 217   empty_list(_survivor_head);
 218   _survivor_head = NULL;
 219   _survivor_tail = NULL;
 220   _survivor_length = 0;
 221 
 222   _last_sampled_rs_lengths = 0;
 223 
 224   assert(check_list_empty(false), "just making sure...");
 225 }
 226 
 227 bool YoungList::check_list_well_formed() {
 228   bool ret = true;
 229 
 230   uint length = 0;
 231   HeapRegion* curr = _head;
 232   HeapRegion* last = NULL;
 233   while (curr != NULL) {
 234     if (!curr->is_young()) {
 235       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 236                              "incorrectly tagged (y: %d, surv: %d)",
 237                              curr->bottom(), curr->end(),
 238                              curr->is_young(), curr->is_survivor());
 239       ret = false;
 240     }
 241     ++length;
 242     last = curr;
 243     curr = curr->get_next_young_region();
 244   }
 245   ret = ret && (length == _length);
 246 
 247   if (!ret) {
 248     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 249     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 250                            length, _length);
 251   }
 252 
 253   return ret;
 254 }
 255 
 256 bool YoungList::check_list_empty(bool check_sample) {
 257   bool ret = true;
 258 
 259   if (_length != 0) {
 260     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 261                   _length);
 262     ret = false;
 263   }
 264   if (check_sample && _last_sampled_rs_lengths != 0) {
 265     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 266     ret = false;
 267   }
 268   if (_head != NULL) {
 269     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 270     ret = false;
 271   }
 272   if (!ret) {
 273     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 274   }
 275 
 276   return ret;
 277 }
 278 
 279 void
 280 YoungList::rs_length_sampling_init() {
 281   _sampled_rs_lengths = 0;
 282   _curr               = _head;
 283 }
 284 
 285 bool
 286 YoungList::rs_length_sampling_more() {
 287   return _curr != NULL;
 288 }
 289 
 290 void
 291 YoungList::rs_length_sampling_next() {
 292   assert( _curr != NULL, "invariant" );
 293   size_t rs_length = _curr->rem_set()->occupied();
 294 
 295   _sampled_rs_lengths += rs_length;
 296 
 297   // The current region may not yet have been added to the
 298   // incremental collection set (it gets added when it is
 299   // retired as the current allocation region).
 300   if (_curr->in_collection_set()) {
 301     // Update the collection set policy information for this region
 302     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 303   }
 304 
 305   _curr = _curr->get_next_young_region();
 306   if (_curr == NULL) {
 307     _last_sampled_rs_lengths = _sampled_rs_lengths;
 308     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 309   }
 310 }
 311 
 312 void
 313 YoungList::reset_auxilary_lists() {
 314   guarantee( is_empty(), "young list should be empty" );
 315   assert(check_list_well_formed(), "young list should be well formed");
 316 
 317   // Add survivor regions to SurvRateGroup.
 318   _g1h->g1_policy()->note_start_adding_survivor_regions();
 319   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 320 
 321   int young_index_in_cset = 0;
 322   for (HeapRegion* curr = _survivor_head;
 323        curr != NULL;
 324        curr = curr->get_next_young_region()) {
 325     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 326 
 327     // The region is a non-empty survivor so let's add it to
 328     // the incremental collection set for the next evacuation
 329     // pause.
 330     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 331     young_index_in_cset += 1;
 332   }
 333   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 334   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 335 
 336   _head   = _survivor_head;
 337   _length = _survivor_length;
 338   if (_survivor_head != NULL) {
 339     assert(_survivor_tail != NULL, "cause it shouldn't be");
 340     assert(_survivor_length > 0, "invariant");
 341     _survivor_tail->set_next_young_region(NULL);
 342   }
 343 
 344   // Don't clear the survivor list handles until the start of
 345   // the next evacuation pause - we need it in order to re-tag
 346   // the survivor regions from this evacuation pause as 'young'
 347   // at the start of the next.
 348 
 349   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 350 
 351   assert(check_list_well_formed(), "young list should be well formed");
 352 }
 353 
 354 void YoungList::print() {
 355   HeapRegion* lists[] = {_head,   _survivor_head};
 356   const char* names[] = {"YOUNG", "SURVIVOR"};
 357 
 358   for (unsigned int list = 0; list < ARRAY_SIZE(lists); ++list) {
 359     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 360     HeapRegion *curr = lists[list];
 361     if (curr == NULL)
 362       gclog_or_tty->print_cr("  empty");
 363     while (curr != NULL) {
 364       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
 365                              HR_FORMAT_PARAMS(curr),
 366                              curr->prev_top_at_mark_start(),
 367                              curr->next_top_at_mark_start(),
 368                              curr->age_in_surv_rate_group_cond());
 369       curr = curr->get_next_young_region();
 370     }
 371   }
 372 
 373   gclog_or_tty->print_cr("");
 374 }
 375 
 376 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 377 {
 378   // Claim the right to put the region on the dirty cards region list
 379   // by installing a self pointer.
 380   HeapRegion* next = hr->get_next_dirty_cards_region();
 381   if (next == NULL) {
 382     HeapRegion* res = (HeapRegion*)
 383       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 384                           NULL);
 385     if (res == NULL) {
 386       HeapRegion* head;
 387       do {
 388         // Put the region to the dirty cards region list.
 389         head = _dirty_cards_region_list;
 390         next = (HeapRegion*)
 391           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 392         if (next == head) {
 393           assert(hr->get_next_dirty_cards_region() == hr,
 394                  "hr->get_next_dirty_cards_region() != hr");
 395           if (next == NULL) {
 396             // The last region in the list points to itself.
 397             hr->set_next_dirty_cards_region(hr);
 398           } else {
 399             hr->set_next_dirty_cards_region(next);
 400           }
 401         }
 402       } while (next != head);
 403     }
 404   }
 405 }
 406 
 407 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 408 {
 409   HeapRegion* head;
 410   HeapRegion* hr;
 411   do {
 412     head = _dirty_cards_region_list;
 413     if (head == NULL) {
 414       return NULL;
 415     }
 416     HeapRegion* new_head = head->get_next_dirty_cards_region();
 417     if (head == new_head) {
 418       // The last region.
 419       new_head = NULL;
 420     }
 421     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 422                                           head);
 423   } while (hr != head);
 424   assert(hr != NULL, "invariant");
 425   hr->set_next_dirty_cards_region(NULL);
 426   return hr;
 427 }
 428 
 429 void G1CollectedHeap::stop_conc_gc_threads() {
 430   _cg1r->stop();
 431   _cmThread->stop();
 432   if (G1StringDedup::is_enabled()) {
 433     G1StringDedup::stop();
 434   }
 435 }
 436 
 437 #ifdef ASSERT
 438 // A region is added to the collection set as it is retired
 439 // so an address p can point to a region which will be in the
 440 // collection set but has not yet been retired.  This method
 441 // therefore is only accurate during a GC pause after all
 442 // regions have been retired.  It is used for debugging
 443 // to check if an nmethod has references to objects that can
 444 // be move during a partial collection.  Though it can be
 445 // inaccurate, it is sufficient for G1 because the conservative
 446 // implementation of is_scavengable() for G1 will indicate that
 447 // all nmethods must be scanned during a partial collection.
 448 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 449   HeapRegion* hr = heap_region_containing(p);
 450   return hr != NULL && hr->in_collection_set();
 451 }
 452 #endif
 453 
 454 // Returns true if the reference points to an object that
 455 // can move in an incremental collection.
 456 bool G1CollectedHeap::is_scavengable(const void* p) {
 457   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 458   G1CollectorPolicy* g1p = g1h->g1_policy();
 459   HeapRegion* hr = heap_region_containing(p);
 460   if (hr == NULL) {
 461      // null
 462      assert(p == NULL, err_msg("Not NULL " PTR_FORMAT ,p));
 463      return false;
 464   } else {
 465     return !hr->isHumongous();
 466   }
 467 }
 468 
 469 void G1CollectedHeap::check_ct_logs_at_safepoint() {
 470   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
 471   CardTableModRefBS* ct_bs = g1_barrier_set();
 472 
 473   // Count the dirty cards at the start.
 474   CountNonCleanMemRegionClosure count1(this);
 475   ct_bs->mod_card_iterate(&count1);
 476   int orig_count = count1.n();
 477 
 478   // First clear the logged cards.
 479   ClearLoggedCardTableEntryClosure clear;
 480   dcqs.set_closure(&clear);
 481   dcqs.apply_closure_to_all_completed_buffers();
 482   dcqs.iterate_closure_all_threads(false);
 483   clear.print_histo();
 484 
 485   // Now ensure that there's no dirty cards.
 486   CountNonCleanMemRegionClosure count2(this);
 487   ct_bs->mod_card_iterate(&count2);
 488   if (count2.n() != 0) {
 489     gclog_or_tty->print_cr("Card table has %d entries; %d originally",
 490                            count2.n(), orig_count);
 491   }
 492   guarantee(count2.n() == 0, "Card table should be clean.");
 493 
 494   RedirtyLoggedCardTableEntryClosure redirty;
 495   JavaThread::dirty_card_queue_set().set_closure(&redirty);
 496   dcqs.apply_closure_to_all_completed_buffers();
 497   dcqs.iterate_closure_all_threads(false);
 498   gclog_or_tty->print_cr("Log entries = %d, dirty cards = %d.",
 499                          clear.calls(), orig_count);
 500   guarantee(redirty.calls() == clear.calls(),
 501             "Or else mechanism is broken.");
 502 
 503   CountNonCleanMemRegionClosure count3(this);
 504   ct_bs->mod_card_iterate(&count3);
 505   if (count3.n() != orig_count) {
 506     gclog_or_tty->print_cr("Should have restored them all: orig = %d, final = %d.",
 507                            orig_count, count3.n());
 508     guarantee(count3.n() >= orig_count, "Should have restored them all.");
 509   }
 510 
 511   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
 512 }
 513 
 514 // Private class members.
 515 
 516 G1CollectedHeap* G1CollectedHeap::_g1h;
 517 
 518 // Private methods.
 519 
 520 HeapRegion*
 521 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 522   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 523   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 524     if (!_secondary_free_list.is_empty()) {
 525       if (G1ConcRegionFreeingVerbose) {
 526         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 527                                "secondary_free_list has %u entries",
 528                                _secondary_free_list.length());
 529       }
 530       // It looks as if there are free regions available on the
 531       // secondary_free_list. Let's move them to the free_list and try
 532       // again to allocate from it.
 533       append_secondary_free_list();
 534 
 535       assert(!_free_list.is_empty(), "if the secondary_free_list was not "
 536              "empty we should have moved at least one entry to the free_list");
 537       HeapRegion* res = _free_list.remove_region(is_old);
 538       if (G1ConcRegionFreeingVerbose) {
 539         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 540                                "allocated "HR_FORMAT" from secondary_free_list",
 541                                HR_FORMAT_PARAMS(res));
 542       }
 543       return res;
 544     }
 545 
 546     // Wait here until we get notified either when (a) there are no
 547     // more free regions coming or (b) some regions have been moved on
 548     // the secondary_free_list.
 549     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 550   }
 551 
 552   if (G1ConcRegionFreeingVerbose) {
 553     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 554                            "could not allocate from secondary_free_list");
 555   }
 556   return NULL;
 557 }
 558 
 559 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 560   assert(!isHumongous(word_size) || word_size <= HeapRegion::GrainWords,
 561          "the only time we use this to allocate a humongous region is "
 562          "when we are allocating a single humongous region");
 563 
 564   HeapRegion* res;
 565   if (G1StressConcRegionFreeing) {
 566     if (!_secondary_free_list.is_empty()) {
 567       if (G1ConcRegionFreeingVerbose) {
 568         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 569                                "forced to look at the secondary_free_list");
 570       }
 571       res = new_region_try_secondary_free_list(is_old);
 572       if (res != NULL) {
 573         return res;
 574       }
 575     }
 576   }
 577 
 578   res = _free_list.remove_region(is_old);
 579 
 580   if (res == NULL) {
 581     if (G1ConcRegionFreeingVerbose) {
 582       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 583                              "res == NULL, trying the secondary_free_list");
 584     }
 585     res = new_region_try_secondary_free_list(is_old);
 586   }
 587   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 588     // Currently, only attempts to allocate GC alloc regions set
 589     // do_expand to true. So, we should only reach here during a
 590     // safepoint. If this assumption changes we might have to
 591     // reconsider the use of _expand_heap_after_alloc_failure.
 592     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 593 
 594     ergo_verbose1(ErgoHeapSizing,
 595                   "attempt heap expansion",
 596                   ergo_format_reason("region allocation request failed")
 597                   ergo_format_byte("allocation request"),
 598                   word_size * HeapWordSize);
 599     if (expand(word_size * HeapWordSize)) {
 600       // Given that expand() succeeded in expanding the heap, and we
 601       // always expand the heap by an amount aligned to the heap
 602       // region size, the free list should in theory not be empty.
 603       // In either case remove_region() will check for NULL.
 604       res = _free_list.remove_region(is_old);
 605     } else {
 606       _expand_heap_after_alloc_failure = false;
 607     }
 608   }
 609   return res;
 610 }
 611 
 612 uint G1CollectedHeap::humongous_obj_allocate_find_first(uint num_regions,
 613                                                         size_t word_size) {
 614   assert(isHumongous(word_size), "word_size should be humongous");
 615   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 616 
 617   uint first = G1_NULL_HRS_INDEX;
 618   if (num_regions == 1) {
 619     // Only one region to allocate, no need to go through the slower
 620     // path. The caller will attempt the expansion if this fails, so
 621     // let's not try to expand here too.
 622     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 623     if (hr != NULL) {
 624       first = hr->hrs_index();
 625     } else {
 626       first = G1_NULL_HRS_INDEX;
 627     }
 628   } else {
 629     // We can't allocate humongous regions while cleanupComplete() is
 630     // running, since some of the regions we find to be empty might not
 631     // yet be added to the free list and it is not straightforward to
 632     // know which list they are on so that we can remove them. Note
 633     // that we only need to do this if we need to allocate more than
 634     // one region to satisfy the current humongous allocation
 635     // request. If we are only allocating one region we use the common
 636     // region allocation code (see above).
 637     wait_while_free_regions_coming();
 638     append_secondary_free_list_if_not_empty_with_lock();
 639 
 640     if (free_regions() >= num_regions) {
 641       first = _hrs.find_contiguous(num_regions);
 642       if (first != G1_NULL_HRS_INDEX) {
 643         for (uint i = first; i < first + num_regions; ++i) {
 644           HeapRegion* hr = region_at(i);
 645           assert(hr->is_empty(), "sanity");
 646           assert(is_on_master_free_list(hr), "sanity");
 647           hr->set_pending_removal(true);
 648         }
 649         _free_list.remove_all_pending(num_regions);
 650       }
 651     }
 652   }
 653   return first;
 654 }
 655 
 656 HeapWord*
 657 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 658                                                            uint num_regions,
 659                                                            size_t word_size) {
 660   assert(first != G1_NULL_HRS_INDEX, "pre-condition");
 661   assert(isHumongous(word_size), "word_size should be humongous");
 662   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 663 
 664   // Index of last region in the series + 1.
 665   uint last = first + num_regions;
 666 
 667   // We need to initialize the region(s) we just discovered. This is
 668   // a bit tricky given that it can happen concurrently with
 669   // refinement threads refining cards on these regions and
 670   // potentially wanting to refine the BOT as they are scanning
 671   // those cards (this can happen shortly after a cleanup; see CR
 672   // 6991377). So we have to set up the region(s) carefully and in
 673   // a specific order.
 674 
 675   // The word size sum of all the regions we will allocate.
 676   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 677   assert(word_size <= word_size_sum, "sanity");
 678 
 679   // This will be the "starts humongous" region.
 680   HeapRegion* first_hr = region_at(first);
 681   // The header of the new object will be placed at the bottom of
 682   // the first region.
 683   HeapWord* new_obj = first_hr->bottom();
 684   // This will be the new end of the first region in the series that
 685   // should also match the end of the last region in the series.
 686   HeapWord* new_end = new_obj + word_size_sum;
 687   // This will be the new top of the first region that will reflect
 688   // this allocation.
 689   HeapWord* new_top = new_obj + word_size;
 690 
 691   // First, we need to zero the header of the space that we will be
 692   // allocating. When we update top further down, some refinement
 693   // threads might try to scan the region. By zeroing the header we
 694   // ensure that any thread that will try to scan the region will
 695   // come across the zero klass word and bail out.
 696   //
 697   // NOTE: It would not have been correct to have used
 698   // CollectedHeap::fill_with_object() and make the space look like
 699   // an int array. The thread that is doing the allocation will
 700   // later update the object header to a potentially different array
 701   // type and, for a very short period of time, the klass and length
 702   // fields will be inconsistent. This could cause a refinement
 703   // thread to calculate the object size incorrectly.
 704   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 705 
 706   // We will set up the first region as "starts humongous". This
 707   // will also update the BOT covering all the regions to reflect
 708   // that there is a single object that starts at the bottom of the
 709   // first region.
 710   first_hr->set_startsHumongous(new_top, new_end);
 711 
 712   // Then, if there are any, we will set up the "continues
 713   // humongous" regions.
 714   HeapRegion* hr = NULL;
 715   for (uint i = first + 1; i < last; ++i) {
 716     hr = region_at(i);
 717     hr->set_continuesHumongous(first_hr);
 718   }
 719   // If we have "continues humongous" regions (hr != NULL), then the
 720   // end of the last one should match new_end.
 721   assert(hr == NULL || hr->end() == new_end, "sanity");
 722 
 723   // Up to this point no concurrent thread would have been able to
 724   // do any scanning on any region in this series. All the top
 725   // fields still point to bottom, so the intersection between
 726   // [bottom,top] and [card_start,card_end] will be empty. Before we
 727   // update the top fields, we'll do a storestore to make sure that
 728   // no thread sees the update to top before the zeroing of the
 729   // object header and the BOT initialization.
 730   OrderAccess::storestore();
 731 
 732   // Now that the BOT and the object header have been initialized,
 733   // we can update top of the "starts humongous" region.
 734   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 735          "new_top should be in this region");
 736   first_hr->set_top(new_top);
 737   if (_hr_printer.is_active()) {
 738     HeapWord* bottom = first_hr->bottom();
 739     HeapWord* end = first_hr->orig_end();
 740     if ((first + 1) == last) {
 741       // the series has a single humongous region
 742       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 743     } else {
 744       // the series has more than one humongous regions
 745       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 746     }
 747   }
 748 
 749   // Now, we will update the top fields of the "continues humongous"
 750   // regions. The reason we need to do this is that, otherwise,
 751   // these regions would look empty and this will confuse parts of
 752   // G1. For example, the code that looks for a consecutive number
 753   // of empty regions will consider them empty and try to
 754   // re-allocate them. We can extend is_empty() to also include
 755   // !continuesHumongous(), but it is easier to just update the top
 756   // fields here. The way we set top for all regions (i.e., top ==
 757   // end for all regions but the last one, top == new_top for the
 758   // last one) is actually used when we will free up the humongous
 759   // region in free_humongous_region().
 760   hr = NULL;
 761   for (uint i = first + 1; i < last; ++i) {
 762     hr = region_at(i);
 763     if ((i + 1) == last) {
 764       // last continues humongous region
 765       assert(hr->bottom() < new_top && new_top <= hr->end(),
 766              "new_top should fall on this region");
 767       hr->set_top(new_top);
 768       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 769     } else {
 770       // not last one
 771       assert(new_top > hr->end(), "new_top should be above this region");
 772       hr->set_top(hr->end());
 773       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 774     }
 775   }
 776   // If we have continues humongous regions (hr != NULL), then the
 777   // end of the last one should match new_end and its top should
 778   // match new_top.
 779   assert(hr == NULL ||
 780          (hr->end() == new_end && hr->top() == new_top), "sanity");
 781 
 782   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 783   _summary_bytes_used += first_hr->used();
 784   _humongous_set.add(first_hr);
 785 
 786   return new_obj;
 787 }
 788 
 789 // If could fit into free regions w/o expansion, try.
 790 // Otherwise, if can expand, do so.
 791 // Otherwise, if using ex regions might help, try with ex given back.
 792 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size) {
 793   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 794 
 795   verify_region_sets_optional();
 796 
 797   size_t word_size_rounded = round_to(word_size, HeapRegion::GrainWords);
 798   uint num_regions = (uint) (word_size_rounded / HeapRegion::GrainWords);
 799   uint x_num = expansion_regions();
 800   uint fs = _hrs.free_suffix();
 801   uint first = humongous_obj_allocate_find_first(num_regions, word_size);
 802   if (first == G1_NULL_HRS_INDEX) {
 803     // The only thing we can do now is attempt expansion.
 804     if (fs + x_num >= num_regions) {
 805       // If the number of regions we're trying to allocate for this
 806       // object is at most the number of regions in the free suffix,
 807       // then the call to humongous_obj_allocate_find_first() above
 808       // should have succeeded and we wouldn't be here.
 809       //
 810       // We should only be trying to expand when the free suffix is
 811       // not sufficient for the object _and_ we have some expansion
 812       // room available.
 813       assert(num_regions > fs, "earlier allocation should have succeeded");
 814 
 815       ergo_verbose1(ErgoHeapSizing,
 816                     "attempt heap expansion",
 817                     ergo_format_reason("humongous allocation request failed")
 818                     ergo_format_byte("allocation request"),
 819                     word_size * HeapWordSize);
 820       if (expand((num_regions - fs) * HeapRegion::GrainBytes)) {
 821         // Even though the heap was expanded, it might not have
 822         // reached the desired size. So, we cannot assume that the
 823         // allocation will succeed.
 824         first = humongous_obj_allocate_find_first(num_regions, word_size);
 825       }
 826     }
 827   }
 828 
 829   HeapWord* result = NULL;
 830   if (first != G1_NULL_HRS_INDEX) {
 831     result =
 832       humongous_obj_allocate_initialize_regions(first, num_regions, word_size);
 833     assert(result != NULL, "it should always return a valid result");
 834 
 835     // A successful humongous object allocation changes the used space
 836     // information of the old generation so we need to recalculate the
 837     // sizes and update the jstat counters here.
 838     g1mm()->update_sizes();
 839   }
 840 
 841   verify_region_sets_optional();
 842 
 843   return result;
 844 }
 845 
 846 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 847   assert_heap_not_locked_and_not_at_safepoint();
 848   assert(!isHumongous(word_size), "we do not allow humongous TLABs");
 849 
 850   unsigned int dummy_gc_count_before;
 851   int dummy_gclocker_retry_count = 0;
 852   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 853 }
 854 
 855 HeapWord*
 856 G1CollectedHeap::mem_allocate(size_t word_size,
 857                               bool*  gc_overhead_limit_was_exceeded) {
 858   assert_heap_not_locked_and_not_at_safepoint();
 859 
 860   // Loop until the allocation is satisfied, or unsatisfied after GC.
 861   for (int try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 862     unsigned int gc_count_before;
 863 
 864     HeapWord* result = NULL;
 865     if (!isHumongous(word_size)) {
 866       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 867     } else {
 868       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 869     }
 870     if (result != NULL) {
 871       return result;
 872     }
 873 
 874     // Create the garbage collection operation...
 875     VM_G1CollectForAllocation op(gc_count_before, word_size);
 876     // ...and get the VM thread to execute it.
 877     VMThread::execute(&op);
 878 
 879     if (op.prologue_succeeded() && op.pause_succeeded()) {
 880       // If the operation was successful we'll return the result even
 881       // if it is NULL. If the allocation attempt failed immediately
 882       // after a Full GC, it's unlikely we'll be able to allocate now.
 883       HeapWord* result = op.result();
 884       if (result != NULL && !isHumongous(word_size)) {
 885         // Allocations that take place on VM operations do not do any
 886         // card dirtying and we have to do it here. We only have to do
 887         // this for non-humongous allocations, though.
 888         dirty_young_block(result, word_size);
 889       }
 890       return result;
 891     } else {
 892       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 893         return NULL;
 894       }
 895       assert(op.result() == NULL,
 896              "the result should be NULL if the VM op did not succeed");
 897     }
 898 
 899     // Give a warning if we seem to be looping forever.
 900     if ((QueuedAllocationWarningCount > 0) &&
 901         (try_count % QueuedAllocationWarningCount == 0)) {
 902       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 903     }
 904   }
 905 
 906   ShouldNotReachHere();
 907   return NULL;
 908 }
 909 
 910 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 911                                            unsigned int *gc_count_before_ret,
 912                                            int* gclocker_retry_count_ret) {
 913   // Make sure you read the note in attempt_allocation_humongous().
 914 
 915   assert_heap_not_locked_and_not_at_safepoint();
 916   assert(!isHumongous(word_size), "attempt_allocation_slow() should not "
 917          "be called for humongous allocation requests");
 918 
 919   // We should only get here after the first-level allocation attempt
 920   // (attempt_allocation()) failed to allocate.
 921 
 922   // We will loop until a) we manage to successfully perform the
 923   // allocation or b) we successfully schedule a collection which
 924   // fails to perform the allocation. b) is the only case when we'll
 925   // return NULL.
 926   HeapWord* result = NULL;
 927   for (int try_count = 1; /* we'll return */; try_count += 1) {
 928     bool should_try_gc;
 929     unsigned int gc_count_before;
 930 
 931     {
 932       MutexLockerEx x(Heap_lock);
 933 
 934       result = _mutator_alloc_region.attempt_allocation_locked(word_size,
 935                                                       false /* bot_updates */);
 936       if (result != NULL) {
 937         return result;
 938       }
 939 
 940       // If we reach here, attempt_allocation_locked() above failed to
 941       // allocate a new region. So the mutator alloc region should be NULL.
 942       assert(_mutator_alloc_region.get() == NULL, "only way to get here");
 943 
 944       if (GC_locker::is_active_and_needs_gc()) {
 945         if (g1_policy()->can_expand_young_list()) {
 946           // No need for an ergo verbose message here,
 947           // can_expand_young_list() does this when it returns true.
 948           result = _mutator_alloc_region.attempt_allocation_force(word_size,
 949                                                       false /* bot_updates */);
 950           if (result != NULL) {
 951             return result;
 952           }
 953         }
 954         should_try_gc = false;
 955       } else {
 956         // The GCLocker may not be active but the GCLocker initiated
 957         // GC may not yet have been performed (GCLocker::needs_gc()
 958         // returns true). In this case we do not try this GC and
 959         // wait until the GCLocker initiated GC is performed, and
 960         // then retry the allocation.
 961         if (GC_locker::needs_gc()) {
 962           should_try_gc = false;
 963         } else {
 964           // Read the GC count while still holding the Heap_lock.
 965           gc_count_before = total_collections();
 966           should_try_gc = true;
 967         }
 968       }
 969     }
 970 
 971     if (should_try_gc) {
 972       bool succeeded;
 973       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 974           GCCause::_g1_inc_collection_pause);
 975       if (result != NULL) {
 976         assert(succeeded, "only way to get back a non-NULL result");
 977         return result;
 978       }
 979 
 980       if (succeeded) {
 981         // If we get here we successfully scheduled a collection which
 982         // failed to allocate. No point in trying to allocate
 983         // further. We'll just return NULL.
 984         MutexLockerEx x(Heap_lock);
 985         *gc_count_before_ret = total_collections();
 986         return NULL;
 987       }
 988     } else {
 989       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 990         MutexLockerEx x(Heap_lock);
 991         *gc_count_before_ret = total_collections();
 992         return NULL;
 993       }
 994       // The GCLocker is either active or the GCLocker initiated
 995       // GC has not yet been performed. Stall until it is and
 996       // then retry the allocation.
 997       GC_locker::stall_until_clear();
 998       (*gclocker_retry_count_ret) += 1;
 999     }
1000 
1001     // We can reach here if we were unsuccessful in scheduling a
1002     // collection (because another thread beat us to it) or if we were
1003     // stalled due to the GC locker. In either can we should retry the
1004     // allocation attempt in case another thread successfully
1005     // performed a collection and reclaimed enough space. We do the
1006     // first attempt (without holding the Heap_lock) here and the
1007     // follow-on attempt will be at the start of the next loop
1008     // iteration (after taking the Heap_lock).
1009     result = _mutator_alloc_region.attempt_allocation(word_size,
1010                                                       false /* bot_updates */);
1011     if (result != NULL) {
1012       return result;
1013     }
1014 
1015     // Give a warning if we seem to be looping forever.
1016     if ((QueuedAllocationWarningCount > 0) &&
1017         (try_count % QueuedAllocationWarningCount == 0)) {
1018       warning("G1CollectedHeap::attempt_allocation_slow() "
1019               "retries %d times", try_count);
1020     }
1021   }
1022 
1023   ShouldNotReachHere();
1024   return NULL;
1025 }
1026 
1027 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
1028                                           unsigned int * gc_count_before_ret,
1029                                           int* gclocker_retry_count_ret) {
1030   // The structure of this method has a lot of similarities to
1031   // attempt_allocation_slow(). The reason these two were not merged
1032   // into a single one is that such a method would require several "if
1033   // allocation is not humongous do this, otherwise do that"
1034   // conditional paths which would obscure its flow. In fact, an early
1035   // version of this code did use a unified method which was harder to
1036   // follow and, as a result, it had subtle bugs that were hard to
1037   // track down. So keeping these two methods separate allows each to
1038   // be more readable. It will be good to keep these two in sync as
1039   // much as possible.
1040 
1041   assert_heap_not_locked_and_not_at_safepoint();
1042   assert(isHumongous(word_size), "attempt_allocation_humongous() "
1043          "should only be called for humongous allocations");
1044 
1045   // Humongous objects can exhaust the heap quickly, so we should check if we
1046   // need to start a marking cycle at each humongous object allocation. We do
1047   // the check before we do the actual allocation. The reason for doing it
1048   // before the allocation is that we avoid having to keep track of the newly
1049   // allocated memory while we do a GC.
1050   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
1051                                            word_size)) {
1052     collect(GCCause::_g1_humongous_allocation);
1053   }
1054 
1055   // We will loop until a) we manage to successfully perform the
1056   // allocation or b) we successfully schedule a collection which
1057   // fails to perform the allocation. b) is the only case when we'll
1058   // return NULL.
1059   HeapWord* result = NULL;
1060   for (int try_count = 1; /* we'll return */; try_count += 1) {
1061     bool should_try_gc;
1062     unsigned int gc_count_before;
1063 
1064     {
1065       MutexLockerEx x(Heap_lock);
1066 
1067       // Given that humongous objects are not allocated in young
1068       // regions, we'll first try to do the allocation without doing a
1069       // collection hoping that there's enough space in the heap.
1070       result = humongous_obj_allocate(word_size);
1071       if (result != NULL) {
1072         return result;
1073       }
1074 
1075       if (GC_locker::is_active_and_needs_gc()) {
1076         should_try_gc = false;
1077       } else {
1078          // The GCLocker may not be active but the GCLocker initiated
1079         // GC may not yet have been performed (GCLocker::needs_gc()
1080         // returns true). In this case we do not try this GC and
1081         // wait until the GCLocker initiated GC is performed, and
1082         // then retry the allocation.
1083         if (GC_locker::needs_gc()) {
1084           should_try_gc = false;
1085         } else {
1086           // Read the GC count while still holding the Heap_lock.
1087           gc_count_before = total_collections();
1088           should_try_gc = true;
1089         }
1090       }
1091     }
1092 
1093     if (should_try_gc) {
1094       // If we failed to allocate the humongous object, we should try to
1095       // do a collection pause (if we're allowed) in case it reclaims
1096       // enough space for the allocation to succeed after the pause.
1097 
1098       bool succeeded;
1099       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1100           GCCause::_g1_humongous_allocation);
1101       if (result != NULL) {
1102         assert(succeeded, "only way to get back a non-NULL result");
1103         return result;
1104       }
1105 
1106       if (succeeded) {
1107         // If we get here we successfully scheduled a collection which
1108         // failed to allocate. No point in trying to allocate
1109         // further. We'll just return NULL.
1110         MutexLockerEx x(Heap_lock);
1111         *gc_count_before_ret = total_collections();
1112         return NULL;
1113       }
1114     } else {
1115       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1116         MutexLockerEx x(Heap_lock);
1117         *gc_count_before_ret = total_collections();
1118         return NULL;
1119       }
1120       // The GCLocker is either active or the GCLocker initiated
1121       // GC has not yet been performed. Stall until it is and
1122       // then retry the allocation.
1123       GC_locker::stall_until_clear();
1124       (*gclocker_retry_count_ret) += 1;
1125     }
1126 
1127     // We can reach here if we were unsuccessful in scheduling a
1128     // collection (because another thread beat us to it) or if we were
1129     // stalled due to the GC locker. In either can we should retry the
1130     // allocation attempt in case another thread successfully
1131     // performed a collection and reclaimed enough space.  Give a
1132     // warning if we seem to be looping forever.
1133 
1134     if ((QueuedAllocationWarningCount > 0) &&
1135         (try_count % QueuedAllocationWarningCount == 0)) {
1136       warning("G1CollectedHeap::attempt_allocation_humongous() "
1137               "retries %d times", try_count);
1138     }
1139   }
1140 
1141   ShouldNotReachHere();
1142   return NULL;
1143 }
1144 
1145 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1146                                        bool expect_null_mutator_alloc_region) {
1147   assert_at_safepoint(true /* should_be_vm_thread */);
1148   assert(_mutator_alloc_region.get() == NULL ||
1149                                              !expect_null_mutator_alloc_region,
1150          "the current alloc region was unexpectedly found to be non-NULL");
1151 
1152   if (!isHumongous(word_size)) {
1153     return _mutator_alloc_region.attempt_allocation_locked(word_size,
1154                                                       false /* bot_updates */);
1155   } else {
1156     HeapWord* result = humongous_obj_allocate(word_size);
1157     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1158       g1_policy()->set_initiate_conc_mark_if_possible();
1159     }
1160     return result;
1161   }
1162 
1163   ShouldNotReachHere();
1164 }
1165 
1166 class PostMCRemSetClearClosure: public HeapRegionClosure {
1167   G1CollectedHeap* _g1h;
1168   ModRefBarrierSet* _mr_bs;
1169 public:
1170   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1171     _g1h(g1h), _mr_bs(mr_bs) {}
1172 
1173   bool doHeapRegion(HeapRegion* r) {
1174     HeapRegionRemSet* hrrs = r->rem_set();
1175 
1176     if (r->continuesHumongous()) {
1177       // We'll assert that the strong code root list and RSet is empty
1178       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1179       assert(hrrs->occupied() == 0, "RSet should be empty");
1180       return false;
1181     }
1182 
1183     _g1h->reset_gc_time_stamps(r);
1184     hrrs->clear();
1185     // You might think here that we could clear just the cards
1186     // corresponding to the used region.  But no: if we leave a dirty card
1187     // in a region we might allocate into, then it would prevent that card
1188     // from being enqueued, and cause it to be missed.
1189     // Re: the performance cost: we shouldn't be doing full GC anyway!
1190     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1191 
1192     return false;
1193   }
1194 };
1195 
1196 void G1CollectedHeap::clear_rsets_post_compaction() {
1197   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1198   heap_region_iterate(&rs_clear);
1199 }
1200 
1201 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1202   G1CollectedHeap*   _g1h;
1203   UpdateRSOopClosure _cl;
1204   int                _worker_i;
1205 public:
1206   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1207     _cl(g1->g1_rem_set(), worker_i),
1208     _worker_i(worker_i),
1209     _g1h(g1)
1210   { }
1211 
1212   bool doHeapRegion(HeapRegion* r) {
1213     if (!r->continuesHumongous()) {
1214       _cl.set_from(r);
1215       r->oop_iterate(&_cl);
1216     }
1217     return false;
1218   }
1219 };
1220 
1221 class ParRebuildRSTask: public AbstractGangTask {
1222   G1CollectedHeap* _g1;
1223 public:
1224   ParRebuildRSTask(G1CollectedHeap* g1)
1225     : AbstractGangTask("ParRebuildRSTask"),
1226       _g1(g1)
1227   { }
1228 
1229   void work(uint worker_id) {
1230     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1231     _g1->heap_region_par_iterate_chunked(&rebuild_rs, worker_id,
1232                                           _g1->workers()->active_workers(),
1233                                          HeapRegion::RebuildRSClaimValue);
1234   }
1235 };
1236 
1237 class PostCompactionPrinterClosure: public HeapRegionClosure {
1238 private:
1239   G1HRPrinter* _hr_printer;
1240 public:
1241   bool doHeapRegion(HeapRegion* hr) {
1242     assert(!hr->is_young(), "not expecting to find young regions");
1243     // We only generate output for non-empty regions.
1244     if (!hr->is_empty()) {
1245       if (!hr->isHumongous()) {
1246         _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1247       } else if (hr->startsHumongous()) {
1248         if (hr->region_num() == 1) {
1249           // single humongous region
1250           _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1251         } else {
1252           _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1253         }
1254       } else {
1255         assert(hr->continuesHumongous(), "only way to get here");
1256         _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1257       }
1258     }
1259     return false;
1260   }
1261 
1262   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1263     : _hr_printer(hr_printer) { }
1264 };
1265 
1266 void G1CollectedHeap::print_hrs_post_compaction() {
1267   PostCompactionPrinterClosure cl(hr_printer());
1268   heap_region_iterate(&cl);
1269 }
1270 
1271 bool G1CollectedHeap::do_collection(bool explicit_gc,
1272                                     bool clear_all_soft_refs,
1273                                     size_t word_size) {
1274   assert_at_safepoint(true /* should_be_vm_thread */);
1275 
1276   if (GC_locker::check_active_before_gc()) {
1277     return false;
1278   }
1279 
1280   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1281   gc_timer->register_gc_start();
1282 
1283   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1284   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1285 
1286   SvcGCMarker sgcm(SvcGCMarker::FULL);
1287   ResourceMark rm;
1288 
1289   print_heap_before_gc();
1290   trace_heap_before_gc(gc_tracer);
1291 
1292   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1293 
1294   verify_region_sets_optional();
1295 
1296   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1297                            collector_policy()->should_clear_all_soft_refs();
1298 
1299   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1300 
1301   {
1302     IsGCActiveMark x;
1303 
1304     // Timing
1305     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1306     gclog_or_tty->date_stamp(G1Log::fine() && PrintGCDateStamps);
1307     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1308 
1309     {
1310       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL);
1311       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1312       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1313 
1314       double start = os::elapsedTime();
1315       g1_policy()->record_full_collection_start();
1316 
1317       // Note: When we have a more flexible GC logging framework that
1318       // allows us to add optional attributes to a GC log record we
1319       // could consider timing and reporting how long we wait in the
1320       // following two methods.
1321       wait_while_free_regions_coming();
1322       // If we start the compaction before the CM threads finish
1323       // scanning the root regions we might trip them over as we'll
1324       // be moving objects / updating references. So let's wait until
1325       // they are done. By telling them to abort, they should complete
1326       // early.
1327       _cm->root_regions()->abort();
1328       _cm->root_regions()->wait_until_scan_finished();
1329       append_secondary_free_list_if_not_empty_with_lock();
1330 
1331       gc_prologue(true);
1332       increment_total_collections(true /* full gc */);
1333       increment_old_marking_cycles_started();
1334 
1335       assert(used() == recalculate_used(), "Should be equal");
1336 
1337       verify_before_gc();
1338 
1339       pre_full_gc_dump(gc_timer);
1340 
1341       COMPILER2_PRESENT(DerivedPointerTable::clear());
1342 
1343       // Disable discovery and empty the discovered lists
1344       // for the CM ref processor.
1345       ref_processor_cm()->disable_discovery();
1346       ref_processor_cm()->abandon_partial_discovery();
1347       ref_processor_cm()->verify_no_references_recorded();
1348 
1349       // Abandon current iterations of concurrent marking and concurrent
1350       // refinement, if any are in progress. We have to do this before
1351       // wait_until_scan_finished() below.
1352       concurrent_mark()->abort();
1353 
1354       // Make sure we'll choose a new allocation region afterwards.
1355       release_mutator_alloc_region();
1356       abandon_gc_alloc_regions();
1357       g1_rem_set()->cleanupHRRS();
1358 
1359       // We should call this after we retire any currently active alloc
1360       // regions so that all the ALLOC / RETIRE events are generated
1361       // before the start GC event.
1362       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1363 
1364       // We may have added regions to the current incremental collection
1365       // set between the last GC or pause and now. We need to clear the
1366       // incremental collection set and then start rebuilding it afresh
1367       // after this full GC.
1368       abandon_collection_set(g1_policy()->inc_cset_head());
1369       g1_policy()->clear_incremental_cset();
1370       g1_policy()->stop_incremental_cset_building();
1371 
1372       tear_down_region_sets(false /* free_list_only */);
1373       g1_policy()->set_gcs_are_young(true);
1374 
1375       // See the comments in g1CollectedHeap.hpp and
1376       // G1CollectedHeap::ref_processing_init() about
1377       // how reference processing currently works in G1.
1378 
1379       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1380       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1381 
1382       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1383       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1384 
1385       ref_processor_stw()->enable_discovery(true /*verify_disabled*/, true /*verify_no_refs*/);
1386       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1387 
1388       // Do collection work
1389       {
1390         HandleMark hm;  // Discard invalid handles created during gc
1391         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1392       }
1393 
1394       assert(free_regions() == 0, "we should not have added any free regions");
1395       rebuild_region_sets(false /* free_list_only */);
1396 
1397       // Enqueue any discovered reference objects that have
1398       // not been removed from the discovered lists.
1399       ref_processor_stw()->enqueue_discovered_references();
1400 
1401       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1402 
1403       MemoryService::track_memory_usage();
1404 
1405       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1406       ref_processor_stw()->verify_no_references_recorded();
1407 
1408       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1409       ClassLoaderDataGraph::purge();
1410       MetaspaceAux::verify_metrics();
1411 
1412       // Note: since we've just done a full GC, concurrent
1413       // marking is no longer active. Therefore we need not
1414       // re-enable reference discovery for the CM ref processor.
1415       // That will be done at the start of the next marking cycle.
1416       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1417       ref_processor_cm()->verify_no_references_recorded();
1418 
1419       reset_gc_time_stamp();
1420       // Since everything potentially moved, we will clear all remembered
1421       // sets, and clear all cards.  Later we will rebuild remembered
1422       // sets. We will also reset the GC time stamps of the regions.
1423       clear_rsets_post_compaction();
1424       check_gc_time_stamps();
1425 
1426       // Resize the heap if necessary.
1427       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1428 
1429       if (_hr_printer.is_active()) {
1430         // We should do this after we potentially resize the heap so
1431         // that all the COMMIT / UNCOMMIT events are generated before
1432         // the end GC event.
1433 
1434         print_hrs_post_compaction();
1435         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1436       }
1437 
1438       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1439       if (hot_card_cache->use_cache()) {
1440         hot_card_cache->reset_card_counts();
1441         hot_card_cache->reset_hot_cache();
1442       }
1443 
1444       // Rebuild remembered sets of all regions.
1445       if (G1CollectedHeap::use_parallel_gc_threads()) {
1446         uint n_workers =
1447           AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1448                                                   workers()->active_workers(),
1449                                                   Threads::number_of_non_daemon_threads());
1450         assert(UseDynamicNumberOfGCThreads ||
1451                n_workers == workers()->total_workers(),
1452                "If not dynamic should be using all the  workers");
1453         workers()->set_active_workers(n_workers);
1454         // Set parallel threads in the heap (_n_par_threads) only
1455         // before a parallel phase and always reset it to 0 after
1456         // the phase so that the number of parallel threads does
1457         // no get carried forward to a serial phase where there
1458         // may be code that is "possibly_parallel".
1459         set_par_threads(n_workers);
1460 
1461         ParRebuildRSTask rebuild_rs_task(this);
1462         assert(check_heap_region_claim_values(
1463                HeapRegion::InitialClaimValue), "sanity check");
1464         assert(UseDynamicNumberOfGCThreads ||
1465                workers()->active_workers() == workers()->total_workers(),
1466                "Unless dynamic should use total workers");
1467         // Use the most recent number of  active workers
1468         assert(workers()->active_workers() > 0,
1469                "Active workers not properly set");
1470         set_par_threads(workers()->active_workers());
1471         workers()->run_task(&rebuild_rs_task);
1472         set_par_threads(0);
1473         assert(check_heap_region_claim_values(
1474                HeapRegion::RebuildRSClaimValue), "sanity check");
1475         reset_heap_region_claim_values();
1476       } else {
1477         RebuildRSOutOfRegionClosure rebuild_rs(this);
1478         heap_region_iterate(&rebuild_rs);
1479       }
1480 
1481       // Rebuild the strong code root lists for each region
1482       rebuild_strong_code_roots();
1483 
1484       if (true) { // FIXME
1485         MetaspaceGC::compute_new_size();
1486       }
1487 
1488 #ifdef TRACESPINNING
1489       ParallelTaskTerminator::print_termination_counts();
1490 #endif
1491 
1492       // Discard all rset updates
1493       JavaThread::dirty_card_queue_set().abandon_logs();
1494       assert(!G1DeferredRSUpdate
1495              || (G1DeferredRSUpdate &&
1496                 (dirty_card_queue_set().completed_buffers_num() == 0)), "Should not be any");
1497 
1498       _young_list->reset_sampled_info();
1499       // At this point there should be no regions in the
1500       // entire heap tagged as young.
1501       assert(check_young_list_empty(true /* check_heap */),
1502              "young list should be empty at this point");
1503 
1504       // Update the number of full collections that have been completed.
1505       increment_old_marking_cycles_completed(false /* concurrent */);
1506 
1507       _hrs.verify_optional();
1508       verify_region_sets_optional();
1509 
1510       verify_after_gc();
1511 
1512       // Start a new incremental collection set for the next pause
1513       assert(g1_policy()->collection_set() == NULL, "must be");
1514       g1_policy()->start_incremental_cset_building();
1515 
1516       clear_cset_fast_test();
1517 
1518       init_mutator_alloc_region();
1519 
1520       double end = os::elapsedTime();
1521       g1_policy()->record_full_collection_end();
1522 
1523       if (G1Log::fine()) {
1524         g1_policy()->print_heap_transition();
1525       }
1526 
1527       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1528       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1529       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1530       // before any GC notifications are raised.
1531       g1mm()->update_sizes();
1532 
1533       gc_epilogue(true);
1534     }
1535 
1536     if (G1Log::finer()) {
1537       g1_policy()->print_detailed_heap_transition(true /* full */);
1538     }
1539 
1540     print_heap_after_gc();
1541     trace_heap_after_gc(gc_tracer);
1542 
1543     post_full_gc_dump(gc_timer);
1544 
1545     gc_timer->register_gc_end();
1546     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1547   }
1548 
1549   return true;
1550 }
1551 
1552 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1553   // do_collection() will return whether it succeeded in performing
1554   // the GC. Currently, there is no facility on the
1555   // do_full_collection() API to notify the caller than the collection
1556   // did not succeed (e.g., because it was locked out by the GC
1557   // locker). So, right now, we'll ignore the return value.
1558   bool dummy = do_collection(true,                /* explicit_gc */
1559                              clear_all_soft_refs,
1560                              0                    /* word_size */);
1561 }
1562 
1563 // This code is mostly copied from TenuredGeneration.
1564 void
1565 G1CollectedHeap::
1566 resize_if_necessary_after_full_collection(size_t word_size) {
1567   // Include the current allocation, if any, and bytes that will be
1568   // pre-allocated to support collections, as "used".
1569   const size_t used_after_gc = used();
1570   const size_t capacity_after_gc = capacity();
1571   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1572 
1573   // This is enforced in arguments.cpp.
1574   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1575          "otherwise the code below doesn't make sense");
1576 
1577   // We don't have floating point command-line arguments
1578   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1579   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1580   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1581   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1582 
1583   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1584   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1585 
1586   // We have to be careful here as these two calculations can overflow
1587   // 32-bit size_t's.
1588   double used_after_gc_d = (double) used_after_gc;
1589   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1590   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1591 
1592   // Let's make sure that they are both under the max heap size, which
1593   // by default will make them fit into a size_t.
1594   double desired_capacity_upper_bound = (double) max_heap_size;
1595   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1596                                     desired_capacity_upper_bound);
1597   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1598                                     desired_capacity_upper_bound);
1599 
1600   // We can now safely turn them into size_t's.
1601   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1602   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1603 
1604   // This assert only makes sense here, before we adjust them
1605   // with respect to the min and max heap size.
1606   assert(minimum_desired_capacity <= maximum_desired_capacity,
1607          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1608                  "maximum_desired_capacity = "SIZE_FORMAT,
1609                  minimum_desired_capacity, maximum_desired_capacity));
1610 
1611   // Should not be greater than the heap max size. No need to adjust
1612   // it with respect to the heap min size as it's a lower bound (i.e.,
1613   // we'll try to make the capacity larger than it, not smaller).
1614   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1615   // Should not be less than the heap min size. No need to adjust it
1616   // with respect to the heap max size as it's an upper bound (i.e.,
1617   // we'll try to make the capacity smaller than it, not greater).
1618   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1619 
1620   if (capacity_after_gc < minimum_desired_capacity) {
1621     // Don't expand unless it's significant
1622     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1623     ergo_verbose4(ErgoHeapSizing,
1624                   "attempt heap expansion",
1625                   ergo_format_reason("capacity lower than "
1626                                      "min desired capacity after Full GC")
1627                   ergo_format_byte("capacity")
1628                   ergo_format_byte("occupancy")
1629                   ergo_format_byte_perc("min desired capacity"),
1630                   capacity_after_gc, used_after_gc,
1631                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1632     expand(expand_bytes);
1633 
1634     // No expansion, now see if we want to shrink
1635   } else if (capacity_after_gc > maximum_desired_capacity) {
1636     // Capacity too large, compute shrinking size
1637     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1638     ergo_verbose4(ErgoHeapSizing,
1639                   "attempt heap shrinking",
1640                   ergo_format_reason("capacity higher than "
1641                                      "max desired capacity after Full GC")
1642                   ergo_format_byte("capacity")
1643                   ergo_format_byte("occupancy")
1644                   ergo_format_byte_perc("max desired capacity"),
1645                   capacity_after_gc, used_after_gc,
1646                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1647     shrink(shrink_bytes);
1648   }
1649 }
1650 
1651 
1652 HeapWord*
1653 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1654                                            bool* succeeded) {
1655   assert_at_safepoint(true /* should_be_vm_thread */);
1656 
1657   *succeeded = true;
1658   // Let's attempt the allocation first.
1659   HeapWord* result =
1660     attempt_allocation_at_safepoint(word_size,
1661                                  false /* expect_null_mutator_alloc_region */);
1662   if (result != NULL) {
1663     assert(*succeeded, "sanity");
1664     return result;
1665   }
1666 
1667   // In a G1 heap, we're supposed to keep allocation from failing by
1668   // incremental pauses.  Therefore, at least for now, we'll favor
1669   // expansion over collection.  (This might change in the future if we can
1670   // do something smarter than full collection to satisfy a failed alloc.)
1671   result = expand_and_allocate(word_size);
1672   if (result != NULL) {
1673     assert(*succeeded, "sanity");
1674     return result;
1675   }
1676 
1677   // Expansion didn't work, we'll try to do a Full GC.
1678   bool gc_succeeded = do_collection(false, /* explicit_gc */
1679                                     false, /* clear_all_soft_refs */
1680                                     word_size);
1681   if (!gc_succeeded) {
1682     *succeeded = false;
1683     return NULL;
1684   }
1685 
1686   // Retry the allocation
1687   result = attempt_allocation_at_safepoint(word_size,
1688                                   true /* expect_null_mutator_alloc_region */);
1689   if (result != NULL) {
1690     assert(*succeeded, "sanity");
1691     return result;
1692   }
1693 
1694   // Then, try a Full GC that will collect all soft references.
1695   gc_succeeded = do_collection(false, /* explicit_gc */
1696                                true,  /* clear_all_soft_refs */
1697                                word_size);
1698   if (!gc_succeeded) {
1699     *succeeded = false;
1700     return NULL;
1701   }
1702 
1703   // Retry the allocation once more
1704   result = attempt_allocation_at_safepoint(word_size,
1705                                   true /* expect_null_mutator_alloc_region */);
1706   if (result != NULL) {
1707     assert(*succeeded, "sanity");
1708     return result;
1709   }
1710 
1711   assert(!collector_policy()->should_clear_all_soft_refs(),
1712          "Flag should have been handled and cleared prior to this point");
1713 
1714   // What else?  We might try synchronous finalization later.  If the total
1715   // space available is large enough for the allocation, then a more
1716   // complete compaction phase than we've tried so far might be
1717   // appropriate.
1718   assert(*succeeded, "sanity");
1719   return NULL;
1720 }
1721 
1722 // Attempting to expand the heap sufficiently
1723 // to support an allocation of the given "word_size".  If
1724 // successful, perform the allocation and return the address of the
1725 // allocated block, or else "NULL".
1726 
1727 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size) {
1728   assert_at_safepoint(true /* should_be_vm_thread */);
1729 
1730   verify_region_sets_optional();
1731 
1732   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1733   ergo_verbose1(ErgoHeapSizing,
1734                 "attempt heap expansion",
1735                 ergo_format_reason("allocation request failed")
1736                 ergo_format_byte("allocation request"),
1737                 word_size * HeapWordSize);
1738   if (expand(expand_bytes)) {
1739     _hrs.verify_optional();
1740     verify_region_sets_optional();
1741     return attempt_allocation_at_safepoint(word_size,
1742                                  false /* expect_null_mutator_alloc_region */);
1743   }
1744   return NULL;
1745 }
1746 
1747 void G1CollectedHeap::update_committed_space(HeapWord* old_end,
1748                                              HeapWord* new_end) {
1749   assert(old_end != new_end, "don't call this otherwise");
1750   assert((HeapWord*) _g1_storage.high() == new_end, "invariant");
1751 
1752   // Update the committed mem region.
1753   _g1_committed.set_end(new_end);
1754   // Tell the card table about the update.
1755   Universe::heap()->barrier_set()->resize_covered_region(_g1_committed);
1756   // Tell the BOT about the update.
1757   _bot_shared->resize(_g1_committed.word_size());
1758   // Tell the hot card cache about the update
1759   _cg1r->hot_card_cache()->resize_card_counts(capacity());
1760 }
1761 
1762 bool G1CollectedHeap::expand(size_t expand_bytes) {
1763   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1764   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1765                                        HeapRegion::GrainBytes);
1766   ergo_verbose2(ErgoHeapSizing,
1767                 "expand the heap",
1768                 ergo_format_byte("requested expansion amount")
1769                 ergo_format_byte("attempted expansion amount"),
1770                 expand_bytes, aligned_expand_bytes);
1771 
1772   if (_g1_storage.uncommitted_size() == 0) {
1773     ergo_verbose0(ErgoHeapSizing,
1774                       "did not expand the heap",
1775                       ergo_format_reason("heap already fully expanded"));
1776     return false;
1777   }
1778 
1779   // First commit the memory.
1780   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1781   bool successful = _g1_storage.expand_by(aligned_expand_bytes);
1782   if (successful) {
1783     // Then propagate this update to the necessary data structures.
1784     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1785     update_committed_space(old_end, new_end);
1786 
1787     FreeRegionList expansion_list("Local Expansion List");
1788     MemRegion mr = _hrs.expand_by(old_end, new_end, &expansion_list);
1789     assert(mr.start() == old_end, "post-condition");
1790     // mr might be a smaller region than what was requested if
1791     // expand_by() was unable to allocate the HeapRegion instances
1792     assert(mr.end() <= new_end, "post-condition");
1793 
1794     size_t actual_expand_bytes = mr.byte_size();
1795     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1796     assert(actual_expand_bytes == expansion_list.total_capacity_bytes(),
1797            "post-condition");
1798     if (actual_expand_bytes < aligned_expand_bytes) {
1799       // We could not expand _hrs to the desired size. In this case we
1800       // need to shrink the committed space accordingly.
1801       assert(mr.end() < new_end, "invariant");
1802 
1803       size_t diff_bytes = aligned_expand_bytes - actual_expand_bytes;
1804       // First uncommit the memory.
1805       _g1_storage.shrink_by(diff_bytes);
1806       // Then propagate this update to the necessary data structures.
1807       update_committed_space(new_end, mr.end());
1808     }
1809     _free_list.add_as_tail(&expansion_list);
1810 
1811     if (_hr_printer.is_active()) {
1812       HeapWord* curr = mr.start();
1813       while (curr < mr.end()) {
1814         HeapWord* curr_end = curr + HeapRegion::GrainWords;
1815         _hr_printer.commit(curr, curr_end);
1816         curr = curr_end;
1817       }
1818       assert(curr == mr.end(), "post-condition");
1819     }
1820     g1_policy()->record_new_heap_size(n_regions());
1821   } else {
1822     ergo_verbose0(ErgoHeapSizing,
1823                   "did not expand the heap",
1824                   ergo_format_reason("heap expansion operation failed"));
1825     // The expansion of the virtual storage space was unsuccessful.
1826     // Let's see if it was because we ran out of swap.
1827     if (G1ExitOnExpansionFailure &&
1828         _g1_storage.uncommitted_size() >= aligned_expand_bytes) {
1829       // We had head room...
1830       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1831     }
1832   }
1833   return successful;
1834 }
1835 
1836 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1837   size_t aligned_shrink_bytes =
1838     ReservedSpace::page_align_size_down(shrink_bytes);
1839   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1840                                          HeapRegion::GrainBytes);
1841   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1842 
1843   uint num_regions_removed = _hrs.shrink_by(num_regions_to_remove);
1844   HeapWord* old_end = (HeapWord*) _g1_storage.high();
1845   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1846 
1847   ergo_verbose3(ErgoHeapSizing,
1848                 "shrink the heap",
1849                 ergo_format_byte("requested shrinking amount")
1850                 ergo_format_byte("aligned shrinking amount")
1851                 ergo_format_byte("attempted shrinking amount"),
1852                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1853   if (num_regions_removed > 0) {
1854     _g1_storage.shrink_by(shrunk_bytes);
1855     HeapWord* new_end = (HeapWord*) _g1_storage.high();
1856 
1857     if (_hr_printer.is_active()) {
1858       HeapWord* curr = old_end;
1859       while (curr > new_end) {
1860         HeapWord* curr_end = curr;
1861         curr -= HeapRegion::GrainWords;
1862         _hr_printer.uncommit(curr, curr_end);
1863       }
1864     }
1865 
1866     _expansion_regions += num_regions_removed;
1867     update_committed_space(old_end, new_end);
1868     HeapRegionRemSet::shrink_heap(n_regions());
1869     g1_policy()->record_new_heap_size(n_regions());
1870   } else {
1871     ergo_verbose0(ErgoHeapSizing,
1872                   "did not shrink the heap",
1873                   ergo_format_reason("heap shrinking operation failed"));
1874   }
1875 }
1876 
1877 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1878   verify_region_sets_optional();
1879 
1880   // We should only reach here at the end of a Full GC which means we
1881   // should not not be holding to any GC alloc regions. The method
1882   // below will make sure of that and do any remaining clean up.
1883   abandon_gc_alloc_regions();
1884 
1885   // Instead of tearing down / rebuilding the free lists here, we
1886   // could instead use the remove_all_pending() method on free_list to
1887   // remove only the ones that we need to remove.
1888   tear_down_region_sets(true /* free_list_only */);
1889   shrink_helper(shrink_bytes);
1890   rebuild_region_sets(true /* free_list_only */);
1891 
1892   _hrs.verify_optional();
1893   verify_region_sets_optional();
1894 }
1895 
1896 // Public methods.
1897 
1898 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1899 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1900 #endif // _MSC_VER
1901 
1902 
1903 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1904   SharedHeap(policy_),
1905   _g1_policy(policy_),
1906   _dirty_card_queue_set(false),
1907   _into_cset_dirty_card_queue_set(false),
1908   _is_alive_closure_cm(this),
1909   _is_alive_closure_stw(this),
1910   _ref_processor_cm(NULL),
1911   _ref_processor_stw(NULL),
1912   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1913   _bot_shared(NULL),
1914   _evac_failure_scan_stack(NULL),
1915   _mark_in_progress(false),
1916   _cg1r(NULL), _summary_bytes_used(0),
1917   _g1mm(NULL),
1918   _refine_cte_cl(NULL),
1919   _full_collection(false),
1920   _free_list("Master Free List", new MasterFreeRegionListMtSafeChecker()),
1921   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1922   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1923   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1924   _free_regions_coming(false),
1925   _young_list(new YoungList(this)),
1926   _gc_time_stamp(0),
1927   _retained_old_gc_alloc_region(NULL),
1928   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1929   _old_plab_stats(OldPLABSize, PLABWeight),
1930   _expand_heap_after_alloc_failure(true),
1931   _surviving_young_words(NULL),
1932   _old_marking_cycles_started(0),
1933   _old_marking_cycles_completed(0),
1934   _concurrent_cycle_started(false),
1935   _in_cset_fast_test(),
1936   _dirty_cards_region_list(NULL),
1937   _worker_cset_start_region(NULL),
1938   _worker_cset_start_region_time_stamp(NULL),
1939   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1940   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1941   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1942   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1943 
1944   _g1h = this;
1945   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1946     vm_exit_during_initialization("Failed necessary allocation.");
1947   }
1948 
1949   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1950 
1951   int n_queues = MAX2((int)ParallelGCThreads, 1);
1952   _task_queues = new RefToScanQueueSet(n_queues);
1953 
1954   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1955   assert(n_rem_sets > 0, "Invariant.");
1956 
1957   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1958   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(unsigned int, n_queues, mtGC);
1959   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1960 
1961   for (int i = 0; i < n_queues; i++) {
1962     RefToScanQueue* q = new RefToScanQueue();
1963     q->initialize();
1964     _task_queues->register_queue(i, q);
1965     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1966   }
1967   clear_cset_start_regions();
1968 
1969   // Initialize the G1EvacuationFailureALot counters and flags.
1970   NOT_PRODUCT(reset_evacuation_should_fail();)
1971 
1972   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1973 }
1974 
1975 jint G1CollectedHeap::initialize() {
1976   CollectedHeap::pre_initialize();
1977   os::enable_vtime();
1978 
1979   G1Log::init();
1980 
1981   // Necessary to satisfy locking discipline assertions.
1982 
1983   MutexLocker x(Heap_lock);
1984 
1985   // We have to initialize the printer before committing the heap, as
1986   // it will be used then.
1987   _hr_printer.set_active(G1PrintHeapRegions);
1988 
1989   // While there are no constraints in the GC code that HeapWordSize
1990   // be any particular value, there are multiple other areas in the
1991   // system which believe this to be true (e.g. oop->object_size in some
1992   // cases incorrectly returns the size in wordSize units rather than
1993   // HeapWordSize).
1994   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1995 
1996   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1997   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1998   size_t heap_alignment = collector_policy()->heap_alignment();
1999 
2000   // Ensure that the sizes are properly aligned.
2001   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
2002   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
2003   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
2004 
2005   _cg1r = new ConcurrentG1Refine(this);
2006 
2007   // Reserve the maximum.
2008 
2009   // When compressed oops are enabled, the preferred heap base
2010   // is calculated by subtracting the requested size from the
2011   // 32Gb boundary and using the result as the base address for
2012   // heap reservation. If the requested size is not aligned to
2013   // HeapRegion::GrainBytes (i.e. the alignment that is passed
2014   // into the ReservedHeapSpace constructor) then the actual
2015   // base of the reserved heap may end up differing from the
2016   // address that was requested (i.e. the preferred heap base).
2017   // If this happens then we could end up using a non-optimal
2018   // compressed oops mode.
2019 
2020   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
2021                                                  heap_alignment);
2022 
2023   // It is important to do this in a way such that concurrent readers can't
2024   // temporarily think something is in the heap.  (I've actually seen this
2025   // happen in asserts: DLD.)
2026   _reserved.set_word_size(0);
2027   _reserved.set_start((HeapWord*)heap_rs.base());
2028   _reserved.set_end((HeapWord*)(heap_rs.base() + heap_rs.size()));
2029 
2030   _expansion_regions = (uint) (max_byte_size / HeapRegion::GrainBytes);
2031 
2032   // Create the gen rem set (and barrier set) for the entire reserved region.
2033   _rem_set = collector_policy()->create_rem_set(_reserved, 2);
2034   set_barrier_set(rem_set()->bs());
2035   if (!barrier_set()->is_a(BarrierSet::G1SATBCTLogging)) {
2036     vm_exit_during_initialization("G1 requires a G1SATBLoggingCardTableModRefBS");
2037     return JNI_ENOMEM;
2038   }
2039 
2040   // Also create a G1 rem set.
2041   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
2042 
2043   // Carve out the G1 part of the heap.
2044 
2045   ReservedSpace g1_rs   = heap_rs.first_part(max_byte_size);
2046   _g1_reserved = MemRegion((HeapWord*)g1_rs.base(),
2047                            g1_rs.size()/HeapWordSize);
2048 
2049   _g1_storage.initialize(g1_rs, 0);
2050   _g1_committed = MemRegion((HeapWord*)_g1_storage.low(), (size_t) 0);
2051   _hrs.initialize((HeapWord*) _g1_reserved.start(),
2052                   (HeapWord*) _g1_reserved.end());
2053   assert(_hrs.max_length() == _expansion_regions,
2054          err_msg("max length: %u expansion regions: %u",
2055                  _hrs.max_length(), _expansion_regions));
2056 
2057   // Do later initialization work for concurrent refinement.
2058   _cg1r->init();
2059 
2060   // 6843694 - ensure that the maximum region index can fit
2061   // in the remembered set structures.
2062   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
2063   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
2064 
2065   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
2066   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
2067   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
2068             "too many cards per region");
2069 
2070   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
2071 
2072   _bot_shared = new G1BlockOffsetSharedArray(_reserved,
2073                                              heap_word_size(init_byte_size));
2074 
2075   _g1h = this;
2076 
2077   _in_cset_fast_test.initialize(_g1_reserved.start(), _g1_reserved.end(), HeapRegion::GrainBytes);
2078 
2079   // Create the ConcurrentMark data structure and thread.
2080   // (Must do this late, so that "max_regions" is defined.)
2081   _cm = new ConcurrentMark(this, heap_rs);
2082   if (_cm == NULL || !_cm->completed_initialization()) {
2083     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2084     return JNI_ENOMEM;
2085   }
2086   _cmThread = _cm->cmThread();
2087 
2088   // Initialize the from_card cache structure of HeapRegionRemSet.
2089   HeapRegionRemSet::init_heap(max_regions());
2090 
2091   // Now expand into the initial heap size.
2092   if (!expand(init_byte_size)) {
2093     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2094     return JNI_ENOMEM;
2095   }
2096 
2097   // Perform any initialization actions delegated to the policy.
2098   g1_policy()->init();
2099 
2100   _refine_cte_cl =
2101     new RefineCardTableEntryClosure(g1_rem_set(),
2102                                     concurrent_g1_refine());
2103   JavaThread::dirty_card_queue_set().set_closure(_refine_cte_cl);
2104 
2105   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2106                                                SATB_Q_FL_lock,
2107                                                G1SATBProcessCompletedThreshold,
2108                                                Shared_SATB_Q_lock);
2109 
2110   JavaThread::dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2111                                                 DirtyCardQ_FL_lock,
2112                                                 concurrent_g1_refine()->yellow_zone(),
2113                                                 concurrent_g1_refine()->red_zone(),
2114                                                 Shared_DirtyCardQ_lock);
2115 
2116   if (G1DeferredRSUpdate) {
2117     dirty_card_queue_set().initialize(DirtyCardQ_CBL_mon,
2118                                       DirtyCardQ_FL_lock,
2119                                       -1, // never trigger processing
2120                                       -1, // no limit on length
2121                                       Shared_DirtyCardQ_lock,
2122                                       &JavaThread::dirty_card_queue_set());
2123   }
2124 
2125   // Initialize the card queue set used to hold cards containing
2126   // references into the collection set.
2127   _into_cset_dirty_card_queue_set.initialize(DirtyCardQ_CBL_mon,
2128                                              DirtyCardQ_FL_lock,
2129                                              -1, // never trigger processing
2130                                              -1, // no limit on length
2131                                              Shared_DirtyCardQ_lock,
2132                                              &JavaThread::dirty_card_queue_set());
2133 
2134   // In case we're keeping closure specialization stats, initialize those
2135   // counts and that mechanism.
2136   SpecializationStats::clear();
2137 
2138   // Here we allocate the dummy full region that is required by the
2139   // G1AllocRegion class. If we don't pass an address in the reserved
2140   // space here, lots of asserts fire.
2141 
2142   HeapRegion* dummy_region = new_heap_region(0 /* index of bottom region */,
2143                                              _g1_reserved.start());
2144   // We'll re-use the same region whether the alloc region will
2145   // require BOT updates or not and, if it doesn't, then a non-young
2146   // region will complain that it cannot support allocations without
2147   // BOT updates. So we'll tag the dummy region as young to avoid that.
2148   dummy_region->set_young();
2149   // Make sure it's full.
2150   dummy_region->set_top(dummy_region->end());
2151   G1AllocRegion::setup(this, dummy_region);
2152 
2153   init_mutator_alloc_region();
2154 
2155   // Do create of the monitoring and management support so that
2156   // values in the heap have been properly initialized.
2157   _g1mm = new G1MonitoringSupport(this);
2158 
2159   G1StringDedup::initialize();
2160 
2161   return JNI_OK;
2162 }
2163 
2164 void G1CollectedHeap::stop() {
2165   // Abort any ongoing concurrent root region scanning and stop all
2166   // concurrent threads. We do this to make sure these threads do
2167   // not continue to execute and access resources (e.g. gclog_or_tty)
2168   // that are destroyed during shutdown.
2169   _cm->root_regions()->abort();
2170   _cm->root_regions()->wait_until_scan_finished();
2171   stop_conc_gc_threads();
2172 }
2173 
2174 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2175   return HeapRegion::max_region_size();
2176 }
2177 
2178 void G1CollectedHeap::ref_processing_init() {
2179   // Reference processing in G1 currently works as follows:
2180   //
2181   // * There are two reference processor instances. One is
2182   //   used to record and process discovered references
2183   //   during concurrent marking; the other is used to
2184   //   record and process references during STW pauses
2185   //   (both full and incremental).
2186   // * Both ref processors need to 'span' the entire heap as
2187   //   the regions in the collection set may be dotted around.
2188   //
2189   // * For the concurrent marking ref processor:
2190   //   * Reference discovery is enabled at initial marking.
2191   //   * Reference discovery is disabled and the discovered
2192   //     references processed etc during remarking.
2193   //   * Reference discovery is MT (see below).
2194   //   * Reference discovery requires a barrier (see below).
2195   //   * Reference processing may or may not be MT
2196   //     (depending on the value of ParallelRefProcEnabled
2197   //     and ParallelGCThreads).
2198   //   * A full GC disables reference discovery by the CM
2199   //     ref processor and abandons any entries on it's
2200   //     discovered lists.
2201   //
2202   // * For the STW processor:
2203   //   * Non MT discovery is enabled at the start of a full GC.
2204   //   * Processing and enqueueing during a full GC is non-MT.
2205   //   * During a full GC, references are processed after marking.
2206   //
2207   //   * Discovery (may or may not be MT) is enabled at the start
2208   //     of an incremental evacuation pause.
2209   //   * References are processed near the end of a STW evacuation pause.
2210   //   * For both types of GC:
2211   //     * Discovery is atomic - i.e. not concurrent.
2212   //     * Reference discovery will not need a barrier.
2213 
2214   SharedHeap::ref_processing_init();
2215   MemRegion mr = reserved_region();
2216 
2217   // Concurrent Mark ref processor
2218   _ref_processor_cm =
2219     new ReferenceProcessor(mr,    // span
2220                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2221                                 // mt processing
2222                            (int) ParallelGCThreads,
2223                                 // degree of mt processing
2224                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2225                                 // mt discovery
2226                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2227                                 // degree of mt discovery
2228                            false,
2229                                 // Reference discovery is not atomic
2230                            &_is_alive_closure_cm,
2231                                 // is alive closure
2232                                 // (for efficiency/performance)
2233                            true);
2234                                 // Setting next fields of discovered
2235                                 // lists requires a barrier.
2236 
2237   // STW ref processor
2238   _ref_processor_stw =
2239     new ReferenceProcessor(mr,    // span
2240                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2241                                 // mt processing
2242                            MAX2((int)ParallelGCThreads, 1),
2243                                 // degree of mt processing
2244                            (ParallelGCThreads > 1),
2245                                 // mt discovery
2246                            MAX2((int)ParallelGCThreads, 1),
2247                                 // degree of mt discovery
2248                            true,
2249                                 // Reference discovery is atomic
2250                            &_is_alive_closure_stw,
2251                                 // is alive closure
2252                                 // (for efficiency/performance)
2253                            false);
2254                                 // Setting next fields of discovered
2255                                 // lists does not require a barrier.
2256 }
2257 
2258 size_t G1CollectedHeap::capacity() const {
2259   return _g1_committed.byte_size();
2260 }
2261 
2262 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2263   assert(!hr->continuesHumongous(), "pre-condition");
2264   hr->reset_gc_time_stamp();
2265   if (hr->startsHumongous()) {
2266     uint first_index = hr->hrs_index() + 1;
2267     uint last_index = hr->last_hc_index();
2268     for (uint i = first_index; i < last_index; i += 1) {
2269       HeapRegion* chr = region_at(i);
2270       assert(chr->continuesHumongous(), "sanity");
2271       chr->reset_gc_time_stamp();
2272     }
2273   }
2274 }
2275 
2276 #ifndef PRODUCT
2277 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2278 private:
2279   unsigned _gc_time_stamp;
2280   bool _failures;
2281 
2282 public:
2283   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2284     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2285 
2286   virtual bool doHeapRegion(HeapRegion* hr) {
2287     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2288     if (_gc_time_stamp != region_gc_time_stamp) {
2289       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2290                              "expected %d", HR_FORMAT_PARAMS(hr),
2291                              region_gc_time_stamp, _gc_time_stamp);
2292       _failures = true;
2293     }
2294     return false;
2295   }
2296 
2297   bool failures() { return _failures; }
2298 };
2299 
2300 void G1CollectedHeap::check_gc_time_stamps() {
2301   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2302   heap_region_iterate(&cl);
2303   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2304 }
2305 #endif // PRODUCT
2306 
2307 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2308                                                  DirtyCardQueue* into_cset_dcq,
2309                                                  bool concurrent,
2310                                                  uint worker_i) {
2311   // Clean cards in the hot card cache
2312   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2313   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2314 
2315   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2316   int n_completed_buffers = 0;
2317   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2318     n_completed_buffers++;
2319   }
2320   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2321   dcqs.clear_n_completed_buffers();
2322   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2323 }
2324 
2325 
2326 // Computes the sum of the storage used by the various regions.
2327 
2328 size_t G1CollectedHeap::used() const {
2329   assert(Heap_lock->owner() != NULL,
2330          "Should be owned on this thread's behalf.");
2331   size_t result = _summary_bytes_used;
2332   // Read only once in case it is set to NULL concurrently
2333   HeapRegion* hr = _mutator_alloc_region.get();
2334   if (hr != NULL)
2335     result += hr->used();
2336   return result;
2337 }
2338 
2339 size_t G1CollectedHeap::used_unlocked() const {
2340   size_t result = _summary_bytes_used;
2341   return result;
2342 }
2343 
2344 class SumUsedClosure: public HeapRegionClosure {
2345   size_t _used;
2346 public:
2347   SumUsedClosure() : _used(0) {}
2348   bool doHeapRegion(HeapRegion* r) {
2349     if (!r->continuesHumongous()) {
2350       _used += r->used();
2351     }
2352     return false;
2353   }
2354   size_t result() { return _used; }
2355 };
2356 
2357 size_t G1CollectedHeap::recalculate_used() const {
2358   double recalculate_used_start = os::elapsedTime();
2359 
2360   SumUsedClosure blk;
2361   heap_region_iterate(&blk);
2362 
2363   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2364   return blk.result();
2365 }
2366 
2367 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2368   switch (cause) {
2369     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2370     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2371     case GCCause::_g1_humongous_allocation: return true;
2372     default:                                return false;
2373   }
2374 }
2375 
2376 #ifndef PRODUCT
2377 void G1CollectedHeap::allocate_dummy_regions() {
2378   // Let's fill up most of the region
2379   size_t word_size = HeapRegion::GrainWords - 1024;
2380   // And as a result the region we'll allocate will be humongous.
2381   guarantee(isHumongous(word_size), "sanity");
2382 
2383   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2384     // Let's use the existing mechanism for the allocation
2385     HeapWord* dummy_obj = humongous_obj_allocate(word_size);
2386     if (dummy_obj != NULL) {
2387       MemRegion mr(dummy_obj, word_size);
2388       CollectedHeap::fill_with_object(mr);
2389     } else {
2390       // If we can't allocate once, we probably cannot allocate
2391       // again. Let's get out of the loop.
2392       break;
2393     }
2394   }
2395 }
2396 #endif // !PRODUCT
2397 
2398 void G1CollectedHeap::increment_old_marking_cycles_started() {
2399   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2400     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2401     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2402     _old_marking_cycles_started, _old_marking_cycles_completed));
2403 
2404   _old_marking_cycles_started++;
2405 }
2406 
2407 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2408   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2409 
2410   // We assume that if concurrent == true, then the caller is a
2411   // concurrent thread that was joined the Suspendible Thread
2412   // Set. If there's ever a cheap way to check this, we should add an
2413   // assert here.
2414 
2415   // Given that this method is called at the end of a Full GC or of a
2416   // concurrent cycle, and those can be nested (i.e., a Full GC can
2417   // interrupt a concurrent cycle), the number of full collections
2418   // completed should be either one (in the case where there was no
2419   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2420   // behind the number of full collections started.
2421 
2422   // This is the case for the inner caller, i.e. a Full GC.
2423   assert(concurrent ||
2424          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2425          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2426          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2427                  "is inconsistent with _old_marking_cycles_completed = %u",
2428                  _old_marking_cycles_started, _old_marking_cycles_completed));
2429 
2430   // This is the case for the outer caller, i.e. the concurrent cycle.
2431   assert(!concurrent ||
2432          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2433          err_msg("for outer caller (concurrent cycle): "
2434                  "_old_marking_cycles_started = %u "
2435                  "is inconsistent with _old_marking_cycles_completed = %u",
2436                  _old_marking_cycles_started, _old_marking_cycles_completed));
2437 
2438   _old_marking_cycles_completed += 1;
2439 
2440   // We need to clear the "in_progress" flag in the CM thread before
2441   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2442   // is set) so that if a waiter requests another System.gc() it doesn't
2443   // incorrectly see that a marking cycle is still in progress.
2444   if (concurrent) {
2445     _cmThread->clear_in_progress();
2446   }
2447 
2448   // This notify_all() will ensure that a thread that called
2449   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2450   // and it's waiting for a full GC to finish will be woken up. It is
2451   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2452   FullGCCount_lock->notify_all();
2453 }
2454 
2455 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2456   _concurrent_cycle_started = true;
2457   _gc_timer_cm->register_gc_start(start_time);
2458 
2459   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2460   trace_heap_before_gc(_gc_tracer_cm);
2461 }
2462 
2463 void G1CollectedHeap::register_concurrent_cycle_end() {
2464   if (_concurrent_cycle_started) {
2465     if (_cm->has_aborted()) {
2466       _gc_tracer_cm->report_concurrent_mode_failure();
2467     }
2468 
2469     _gc_timer_cm->register_gc_end();
2470     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2471 
2472     _concurrent_cycle_started = false;
2473   }
2474 }
2475 
2476 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2477   if (_concurrent_cycle_started) {
2478     trace_heap_after_gc(_gc_tracer_cm);
2479   }
2480 }
2481 
2482 G1YCType G1CollectedHeap::yc_type() {
2483   bool is_young = g1_policy()->gcs_are_young();
2484   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2485   bool is_during_mark = mark_in_progress();
2486 
2487   if (is_initial_mark) {
2488     return InitialMark;
2489   } else if (is_during_mark) {
2490     return DuringMark;
2491   } else if (is_young) {
2492     return Normal;
2493   } else {
2494     return Mixed;
2495   }
2496 }
2497 
2498 void G1CollectedHeap::collect(GCCause::Cause cause) {
2499   assert_heap_not_locked();
2500 
2501   unsigned int gc_count_before;
2502   unsigned int old_marking_count_before;
2503   bool retry_gc;
2504 
2505   do {
2506     retry_gc = false;
2507 
2508     {
2509       MutexLocker ml(Heap_lock);
2510 
2511       // Read the GC count while holding the Heap_lock
2512       gc_count_before = total_collections();
2513       old_marking_count_before = _old_marking_cycles_started;
2514     }
2515 
2516     if (should_do_concurrent_full_gc(cause)) {
2517       // Schedule an initial-mark evacuation pause that will start a
2518       // concurrent cycle. We're setting word_size to 0 which means that
2519       // we are not requesting a post-GC allocation.
2520       VM_G1IncCollectionPause op(gc_count_before,
2521                                  0,     /* word_size */
2522                                  true,  /* should_initiate_conc_mark */
2523                                  g1_policy()->max_pause_time_ms(),
2524                                  cause);
2525 
2526       VMThread::execute(&op);
2527       if (!op.pause_succeeded()) {
2528         if (old_marking_count_before == _old_marking_cycles_started) {
2529           retry_gc = op.should_retry_gc();
2530         } else {
2531           // A Full GC happened while we were trying to schedule the
2532           // initial-mark GC. No point in starting a new cycle given
2533           // that the whole heap was collected anyway.
2534         }
2535 
2536         if (retry_gc) {
2537           if (GC_locker::is_active_and_needs_gc()) {
2538             GC_locker::stall_until_clear();
2539           }
2540         }
2541       }
2542     } else {
2543       if (cause == GCCause::_gc_locker
2544           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2545 
2546         // Schedule a standard evacuation pause. We're setting word_size
2547         // to 0 which means that we are not requesting a post-GC allocation.
2548         VM_G1IncCollectionPause op(gc_count_before,
2549                                    0,     /* word_size */
2550                                    false, /* should_initiate_conc_mark */
2551                                    g1_policy()->max_pause_time_ms(),
2552                                    cause);
2553         VMThread::execute(&op);
2554       } else {
2555         // Schedule a Full GC.
2556         VM_G1CollectFull op(gc_count_before, old_marking_count_before, cause);
2557         VMThread::execute(&op);
2558       }
2559     }
2560   } while (retry_gc);
2561 }
2562 
2563 bool G1CollectedHeap::is_in(const void* p) const {
2564   if (_g1_committed.contains(p)) {
2565     // Given that we know that p is in the committed space,
2566     // heap_region_containing_raw() should successfully
2567     // return the containing region.
2568     HeapRegion* hr = heap_region_containing_raw(p);
2569     return hr->is_in(p);
2570   } else {
2571     return false;
2572   }
2573 }
2574 
2575 // Iteration functions.
2576 
2577 // Iterates an OopClosure over all ref-containing fields of objects
2578 // within a HeapRegion.
2579 
2580 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2581   MemRegion _mr;
2582   ExtendedOopClosure* _cl;
2583 public:
2584   IterateOopClosureRegionClosure(MemRegion mr, ExtendedOopClosure* cl)
2585     : _mr(mr), _cl(cl) {}
2586   bool doHeapRegion(HeapRegion* r) {
2587     if (!r->continuesHumongous()) {
2588       r->oop_iterate(_cl);
2589     }
2590     return false;
2591   }
2592 };
2593 
2594 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2595   IterateOopClosureRegionClosure blk(_g1_committed, cl);
2596   heap_region_iterate(&blk);
2597 }
2598 
2599 void G1CollectedHeap::oop_iterate(MemRegion mr, ExtendedOopClosure* cl) {
2600   IterateOopClosureRegionClosure blk(mr, cl);
2601   heap_region_iterate(&blk);
2602 }
2603 
2604 // Iterates an ObjectClosure over all objects within a HeapRegion.
2605 
2606 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2607   ObjectClosure* _cl;
2608 public:
2609   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2610   bool doHeapRegion(HeapRegion* r) {
2611     if (! r->continuesHumongous()) {
2612       r->object_iterate(_cl);
2613     }
2614     return false;
2615   }
2616 };
2617 
2618 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2619   IterateObjectClosureRegionClosure blk(cl);
2620   heap_region_iterate(&blk);
2621 }
2622 
2623 // Calls a SpaceClosure on a HeapRegion.
2624 
2625 class SpaceClosureRegionClosure: public HeapRegionClosure {
2626   SpaceClosure* _cl;
2627 public:
2628   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2629   bool doHeapRegion(HeapRegion* r) {
2630     _cl->do_space(r);
2631     return false;
2632   }
2633 };
2634 
2635 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2636   SpaceClosureRegionClosure blk(cl);
2637   heap_region_iterate(&blk);
2638 }
2639 
2640 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2641   _hrs.iterate(cl);
2642 }
2643 
2644 void
2645 G1CollectedHeap::heap_region_par_iterate_chunked(HeapRegionClosure* cl,
2646                                                  uint worker_id,
2647                                                  uint no_of_par_workers,
2648                                                  jint claim_value) {
2649   const uint regions = n_regions();
2650   const uint max_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
2651                              no_of_par_workers :
2652                              1);
2653   assert(UseDynamicNumberOfGCThreads ||
2654          no_of_par_workers == workers()->total_workers(),
2655          "Non dynamic should use fixed number of workers");
2656   // try to spread out the starting points of the workers
2657   const HeapRegion* start_hr =
2658                         start_region_for_worker(worker_id, no_of_par_workers);
2659   const uint start_index = start_hr->hrs_index();
2660 
2661   // each worker will actually look at all regions
2662   for (uint count = 0; count < regions; ++count) {
2663     const uint index = (start_index + count) % regions;
2664     assert(0 <= index && index < regions, "sanity");
2665     HeapRegion* r = region_at(index);
2666     // we'll ignore "continues humongous" regions (we'll process them
2667     // when we come across their corresponding "start humongous"
2668     // region) and regions already claimed
2669     if (r->claim_value() == claim_value || r->continuesHumongous()) {
2670       continue;
2671     }
2672     // OK, try to claim it
2673     if (r->claimHeapRegion(claim_value)) {
2674       // success!
2675       assert(!r->continuesHumongous(), "sanity");
2676       if (r->startsHumongous()) {
2677         // If the region is "starts humongous" we'll iterate over its
2678         // "continues humongous" first; in fact we'll do them
2679         // first. The order is important. In on case, calling the
2680         // closure on the "starts humongous" region might de-allocate
2681         // and clear all its "continues humongous" regions and, as a
2682         // result, we might end up processing them twice. So, we'll do
2683         // them first (notice: most closures will ignore them anyway) and
2684         // then we'll do the "starts humongous" region.
2685         for (uint ch_index = index + 1; ch_index < regions; ++ch_index) {
2686           HeapRegion* chr = region_at(ch_index);
2687 
2688           // if the region has already been claimed or it's not
2689           // "continues humongous" we're done
2690           if (chr->claim_value() == claim_value ||
2691               !chr->continuesHumongous()) {
2692             break;
2693           }
2694 
2695           // No one should have claimed it directly. We can given
2696           // that we claimed its "starts humongous" region.
2697           assert(chr->claim_value() != claim_value, "sanity");
2698           assert(chr->humongous_start_region() == r, "sanity");
2699 
2700           if (chr->claimHeapRegion(claim_value)) {
2701             // we should always be able to claim it; no one else should
2702             // be trying to claim this region
2703 
2704             bool res2 = cl->doHeapRegion(chr);
2705             assert(!res2, "Should not abort");
2706 
2707             // Right now, this holds (i.e., no closure that actually
2708             // does something with "continues humongous" regions
2709             // clears them). We might have to weaken it in the future,
2710             // but let's leave these two asserts here for extra safety.
2711             assert(chr->continuesHumongous(), "should still be the case");
2712             assert(chr->humongous_start_region() == r, "sanity");
2713           } else {
2714             guarantee(false, "we should not reach here");
2715           }
2716         }
2717       }
2718 
2719       assert(!r->continuesHumongous(), "sanity");
2720       bool res = cl->doHeapRegion(r);
2721       assert(!res, "Should not abort");
2722     }
2723   }
2724 }
2725 
2726 class ResetClaimValuesClosure: public HeapRegionClosure {
2727 public:
2728   bool doHeapRegion(HeapRegion* r) {
2729     r->set_claim_value(HeapRegion::InitialClaimValue);
2730     return false;
2731   }
2732 };
2733 
2734 void G1CollectedHeap::reset_heap_region_claim_values() {
2735   ResetClaimValuesClosure blk;
2736   heap_region_iterate(&blk);
2737 }
2738 
2739 void G1CollectedHeap::reset_cset_heap_region_claim_values() {
2740   ResetClaimValuesClosure blk;
2741   collection_set_iterate(&blk);
2742 }
2743 
2744 #ifdef ASSERT
2745 // This checks whether all regions in the heap have the correct claim
2746 // value. I also piggy-backed on this a check to ensure that the
2747 // humongous_start_region() information on "continues humongous"
2748 // regions is correct.
2749 
2750 class CheckClaimValuesClosure : public HeapRegionClosure {
2751 private:
2752   jint _claim_value;
2753   uint _failures;
2754   HeapRegion* _sh_region;
2755 
2756 public:
2757   CheckClaimValuesClosure(jint claim_value) :
2758     _claim_value(claim_value), _failures(0), _sh_region(NULL) { }
2759   bool doHeapRegion(HeapRegion* r) {
2760     if (r->claim_value() != _claim_value) {
2761       gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2762                              "claim value = %d, should be %d",
2763                              HR_FORMAT_PARAMS(r),
2764                              r->claim_value(), _claim_value);
2765       ++_failures;
2766     }
2767     if (!r->isHumongous()) {
2768       _sh_region = NULL;
2769     } else if (r->startsHumongous()) {
2770       _sh_region = r;
2771     } else if (r->continuesHumongous()) {
2772       if (r->humongous_start_region() != _sh_region) {
2773         gclog_or_tty->print_cr("Region " HR_FORMAT ", "
2774                                "HS = "PTR_FORMAT", should be "PTR_FORMAT,
2775                                HR_FORMAT_PARAMS(r),
2776                                r->humongous_start_region(),
2777                                _sh_region);
2778         ++_failures;
2779       }
2780     }
2781     return false;
2782   }
2783   uint failures() { return _failures; }
2784 };
2785 
2786 bool G1CollectedHeap::check_heap_region_claim_values(jint claim_value) {
2787   CheckClaimValuesClosure cl(claim_value);
2788   heap_region_iterate(&cl);
2789   return cl.failures() == 0;
2790 }
2791 
2792 class CheckClaimValuesInCSetHRClosure: public HeapRegionClosure {
2793 private:
2794   jint _claim_value;
2795   uint _failures;
2796 
2797 public:
2798   CheckClaimValuesInCSetHRClosure(jint claim_value) :
2799     _claim_value(claim_value), _failures(0) { }
2800 
2801   uint failures() { return _failures; }
2802 
2803   bool doHeapRegion(HeapRegion* hr) {
2804     assert(hr->in_collection_set(), "how?");
2805     assert(!hr->isHumongous(), "H-region in CSet");
2806     if (hr->claim_value() != _claim_value) {
2807       gclog_or_tty->print_cr("CSet Region " HR_FORMAT ", "
2808                              "claim value = %d, should be %d",
2809                              HR_FORMAT_PARAMS(hr),
2810                              hr->claim_value(), _claim_value);
2811       _failures += 1;
2812     }
2813     return false;
2814   }
2815 };
2816 
2817 bool G1CollectedHeap::check_cset_heap_region_claim_values(jint claim_value) {
2818   CheckClaimValuesInCSetHRClosure cl(claim_value);
2819   collection_set_iterate(&cl);
2820   return cl.failures() == 0;
2821 }
2822 #endif // ASSERT
2823 
2824 // Clear the cached CSet starting regions and (more importantly)
2825 // the time stamps. Called when we reset the GC time stamp.
2826 void G1CollectedHeap::clear_cset_start_regions() {
2827   assert(_worker_cset_start_region != NULL, "sanity");
2828   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2829 
2830   int n_queues = MAX2((int)ParallelGCThreads, 1);
2831   for (int i = 0; i < n_queues; i++) {
2832     _worker_cset_start_region[i] = NULL;
2833     _worker_cset_start_region_time_stamp[i] = 0;
2834   }
2835 }
2836 
2837 // Given the id of a worker, obtain or calculate a suitable
2838 // starting region for iterating over the current collection set.
2839 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2840   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2841 
2842   HeapRegion* result = NULL;
2843   unsigned gc_time_stamp = get_gc_time_stamp();
2844 
2845   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2846     // Cached starting region for current worker was set
2847     // during the current pause - so it's valid.
2848     // Note: the cached starting heap region may be NULL
2849     // (when the collection set is empty).
2850     result = _worker_cset_start_region[worker_i];
2851     assert(result == NULL || result->in_collection_set(), "sanity");
2852     return result;
2853   }
2854 
2855   // The cached entry was not valid so let's calculate
2856   // a suitable starting heap region for this worker.
2857 
2858   // We want the parallel threads to start their collection
2859   // set iteration at different collection set regions to
2860   // avoid contention.
2861   // If we have:
2862   //          n collection set regions
2863   //          p threads
2864   // Then thread t will start at region floor ((t * n) / p)
2865 
2866   result = g1_policy()->collection_set();
2867   if (G1CollectedHeap::use_parallel_gc_threads()) {
2868     uint cs_size = g1_policy()->cset_region_length();
2869     uint active_workers = workers()->active_workers();
2870     assert(UseDynamicNumberOfGCThreads ||
2871              active_workers == workers()->total_workers(),
2872              "Unless dynamic should use total workers");
2873 
2874     uint end_ind   = (cs_size * worker_i) / active_workers;
2875     uint start_ind = 0;
2876 
2877     if (worker_i > 0 &&
2878         _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2879       // Previous workers starting region is valid
2880       // so let's iterate from there
2881       start_ind = (cs_size * (worker_i - 1)) / active_workers;
2882       result = _worker_cset_start_region[worker_i - 1];
2883     }
2884 
2885     for (uint i = start_ind; i < end_ind; i++) {
2886       result = result->next_in_collection_set();
2887     }
2888   }
2889 
2890   // Note: the calculated starting heap region may be NULL
2891   // (when the collection set is empty).
2892   assert(result == NULL || result->in_collection_set(), "sanity");
2893   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2894          "should be updated only once per pause");
2895   _worker_cset_start_region[worker_i] = result;
2896   OrderAccess::storestore();
2897   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2898   return result;
2899 }
2900 
2901 HeapRegion* G1CollectedHeap::start_region_for_worker(uint worker_i,
2902                                                      uint no_of_par_workers) {
2903   uint worker_num =
2904            G1CollectedHeap::use_parallel_gc_threads() ? no_of_par_workers : 1U;
2905   assert(UseDynamicNumberOfGCThreads ||
2906          no_of_par_workers == workers()->total_workers(),
2907          "Non dynamic should use fixed number of workers");
2908   const uint start_index = n_regions() * worker_i / worker_num;
2909   return region_at(start_index);
2910 }
2911 
2912 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2913   HeapRegion* r = g1_policy()->collection_set();
2914   while (r != NULL) {
2915     HeapRegion* next = r->next_in_collection_set();
2916     if (cl->doHeapRegion(r)) {
2917       cl->incomplete();
2918       return;
2919     }
2920     r = next;
2921   }
2922 }
2923 
2924 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2925                                                   HeapRegionClosure *cl) {
2926   if (r == NULL) {
2927     // The CSet is empty so there's nothing to do.
2928     return;
2929   }
2930 
2931   assert(r->in_collection_set(),
2932          "Start region must be a member of the collection set.");
2933   HeapRegion* cur = r;
2934   while (cur != NULL) {
2935     HeapRegion* next = cur->next_in_collection_set();
2936     if (cl->doHeapRegion(cur) && false) {
2937       cl->incomplete();
2938       return;
2939     }
2940     cur = next;
2941   }
2942   cur = g1_policy()->collection_set();
2943   while (cur != r) {
2944     HeapRegion* next = cur->next_in_collection_set();
2945     if (cl->doHeapRegion(cur) && false) {
2946       cl->incomplete();
2947       return;
2948     }
2949     cur = next;
2950   }
2951 }
2952 
2953 CompactibleSpace* G1CollectedHeap::first_compactible_space() {
2954   return n_regions() > 0 ? region_at(0) : NULL;
2955 }
2956 
2957 
2958 Space* G1CollectedHeap::space_containing(const void* addr) const {
2959   Space* res = heap_region_containing(addr);
2960   return res;
2961 }
2962 
2963 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2964   Space* sp = space_containing(addr);
2965   if (sp != NULL) {
2966     return sp->block_start(addr);
2967   }
2968   return NULL;
2969 }
2970 
2971 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2972   Space* sp = space_containing(addr);
2973   assert(sp != NULL, "block_size of address outside of heap");
2974   return sp->block_size(addr);
2975 }
2976 
2977 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2978   Space* sp = space_containing(addr);
2979   return sp->block_is_obj(addr);
2980 }
2981 
2982 bool G1CollectedHeap::supports_tlab_allocation() const {
2983   return true;
2984 }
2985 
2986 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2987   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2988 }
2989 
2990 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2991   return young_list()->eden_used_bytes();
2992 }
2993 
2994 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2995 // must be smaller than the humongous object limit.
2996 size_t G1CollectedHeap::max_tlab_size() const {
2997   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2998 }
2999 
3000 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
3001   // Return the remaining space in the cur alloc region, but not less than
3002   // the min TLAB size.
3003 
3004   // Also, this value can be at most the humongous object threshold,
3005   // since we can't allow tlabs to grow big enough to accommodate
3006   // humongous objects.
3007 
3008   HeapRegion* hr = _mutator_alloc_region.get();
3009   size_t max_tlab = max_tlab_size() * wordSize;
3010   if (hr == NULL) {
3011     return max_tlab;
3012   } else {
3013     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
3014   }
3015 }
3016 
3017 size_t G1CollectedHeap::max_capacity() const {
3018   return _g1_reserved.byte_size();
3019 }
3020 
3021 jlong G1CollectedHeap::millis_since_last_gc() {
3022   // assert(false, "NYI");
3023   return 0;
3024 }
3025 
3026 void G1CollectedHeap::prepare_for_verify() {
3027   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
3028     ensure_parsability(false);
3029   }
3030   g1_rem_set()->prepare_for_verify();
3031 }
3032 
3033 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
3034                                               VerifyOption vo) {
3035   switch (vo) {
3036   case VerifyOption_G1UsePrevMarking:
3037     return hr->obj_allocated_since_prev_marking(obj);
3038   case VerifyOption_G1UseNextMarking:
3039     return hr->obj_allocated_since_next_marking(obj);
3040   case VerifyOption_G1UseMarkWord:
3041     return false;
3042   default:
3043     ShouldNotReachHere();
3044   }
3045   return false; // keep some compilers happy
3046 }
3047 
3048 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
3049   switch (vo) {
3050   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
3051   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
3052   case VerifyOption_G1UseMarkWord:    return NULL;
3053   default:                            ShouldNotReachHere();
3054   }
3055   return NULL; // keep some compilers happy
3056 }
3057 
3058 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
3059   switch (vo) {
3060   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
3061   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
3062   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
3063   default:                            ShouldNotReachHere();
3064   }
3065   return false; // keep some compilers happy
3066 }
3067 
3068 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
3069   switch (vo) {
3070   case VerifyOption_G1UsePrevMarking: return "PTAMS";
3071   case VerifyOption_G1UseNextMarking: return "NTAMS";
3072   case VerifyOption_G1UseMarkWord:    return "NONE";
3073   default:                            ShouldNotReachHere();
3074   }
3075   return NULL; // keep some compilers happy
3076 }
3077 
3078 class VerifyRootsClosure: public OopClosure {
3079 private:
3080   G1CollectedHeap* _g1h;
3081   VerifyOption     _vo;
3082   bool             _failures;
3083 public:
3084   // _vo == UsePrevMarking -> use "prev" marking information,
3085   // _vo == UseNextMarking -> use "next" marking information,
3086   // _vo == UseMarkWord    -> use mark word from object header.
3087   VerifyRootsClosure(VerifyOption vo) :
3088     _g1h(G1CollectedHeap::heap()),
3089     _vo(vo),
3090     _failures(false) { }
3091 
3092   bool failures() { return _failures; }
3093 
3094   template <class T> void do_oop_nv(T* p) {
3095     T heap_oop = oopDesc::load_heap_oop(p);
3096     if (!oopDesc::is_null(heap_oop)) {
3097       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3098       if (_g1h->is_obj_dead_cond(obj, _vo)) {
3099         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
3100                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
3101         if (_vo == VerifyOption_G1UseMarkWord) {
3102           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
3103         }
3104         obj->print_on(gclog_or_tty);
3105         _failures = true;
3106       }
3107     }
3108   }
3109 
3110   void do_oop(oop* p)       { do_oop_nv(p); }
3111   void do_oop(narrowOop* p) { do_oop_nv(p); }
3112 };
3113 
3114 class G1VerifyCodeRootOopClosure: public OopClosure {
3115   G1CollectedHeap* _g1h;
3116   OopClosure* _root_cl;
3117   nmethod* _nm;
3118   VerifyOption _vo;
3119   bool _failures;
3120 
3121   template <class T> void do_oop_work(T* p) {
3122     // First verify that this root is live
3123     _root_cl->do_oop(p);
3124 
3125     if (!G1VerifyHeapRegionCodeRoots) {
3126       // We're not verifying the code roots attached to heap region.
3127       return;
3128     }
3129 
3130     // Don't check the code roots during marking verification in a full GC
3131     if (_vo == VerifyOption_G1UseMarkWord) {
3132       return;
3133     }
3134 
3135     // Now verify that the current nmethod (which contains p) is
3136     // in the code root list of the heap region containing the
3137     // object referenced by p.
3138 
3139     T heap_oop = oopDesc::load_heap_oop(p);
3140     if (!oopDesc::is_null(heap_oop)) {
3141       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
3142 
3143       // Now fetch the region containing the object
3144       HeapRegion* hr = _g1h->heap_region_containing(obj);
3145       HeapRegionRemSet* hrrs = hr->rem_set();
3146       // Verify that the strong code root list for this region
3147       // contains the nmethod
3148       if (!hrrs->strong_code_roots_list_contains(_nm)) {
3149         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
3150                               "from nmethod "PTR_FORMAT" not in strong "
3151                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
3152                               p, _nm, hr->bottom(), hr->end());
3153         _failures = true;
3154       }
3155     }
3156   }
3157 
3158 public:
3159   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
3160     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
3161 
3162   void do_oop(oop* p) { do_oop_work(p); }
3163   void do_oop(narrowOop* p) { do_oop_work(p); }
3164 
3165   void set_nmethod(nmethod* nm) { _nm = nm; }
3166   bool failures() { return _failures; }
3167 };
3168 
3169 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
3170   G1VerifyCodeRootOopClosure* _oop_cl;
3171 
3172 public:
3173   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
3174     _oop_cl(oop_cl) {}
3175 
3176   void do_code_blob(CodeBlob* cb) {
3177     nmethod* nm = cb->as_nmethod_or_null();
3178     if (nm != NULL) {
3179       _oop_cl->set_nmethod(nm);
3180       nm->oops_do(_oop_cl);
3181     }
3182   }
3183 };
3184 
3185 class YoungRefCounterClosure : public OopClosure {
3186   G1CollectedHeap* _g1h;
3187   int              _count;
3188  public:
3189   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
3190   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
3191   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
3192 
3193   int count() { return _count; }
3194   void reset_count() { _count = 0; };
3195 };
3196 
3197 class VerifyKlassClosure: public KlassClosure {
3198   YoungRefCounterClosure _young_ref_counter_closure;
3199   OopClosure *_oop_closure;
3200  public:
3201   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
3202   void do_klass(Klass* k) {
3203     k->oops_do(_oop_closure);
3204 
3205     _young_ref_counter_closure.reset_count();
3206     k->oops_do(&_young_ref_counter_closure);
3207     if (_young_ref_counter_closure.count() > 0) {
3208       guarantee(k->has_modified_oops(), err_msg("Klass %p, has young refs but is not dirty.", k));
3209     }
3210   }
3211 };
3212 
3213 class VerifyLivenessOopClosure: public OopClosure {
3214   G1CollectedHeap* _g1h;
3215   VerifyOption _vo;
3216 public:
3217   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
3218     _g1h(g1h), _vo(vo)
3219   { }
3220   void do_oop(narrowOop *p) { do_oop_work(p); }
3221   void do_oop(      oop *p) { do_oop_work(p); }
3222 
3223   template <class T> void do_oop_work(T *p) {
3224     oop obj = oopDesc::load_decode_heap_oop(p);
3225     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
3226               "Dead object referenced by a not dead object");
3227   }
3228 };
3229 
3230 class VerifyObjsInRegionClosure: public ObjectClosure {
3231 private:
3232   G1CollectedHeap* _g1h;
3233   size_t _live_bytes;
3234   HeapRegion *_hr;
3235   VerifyOption _vo;
3236 public:
3237   // _vo == UsePrevMarking -> use "prev" marking information,
3238   // _vo == UseNextMarking -> use "next" marking information,
3239   // _vo == UseMarkWord    -> use mark word from object header.
3240   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
3241     : _live_bytes(0), _hr(hr), _vo(vo) {
3242     _g1h = G1CollectedHeap::heap();
3243   }
3244   void do_object(oop o) {
3245     VerifyLivenessOopClosure isLive(_g1h, _vo);
3246     assert(o != NULL, "Huh?");
3247     if (!_g1h->is_obj_dead_cond(o, _vo)) {
3248       // If the object is alive according to the mark word,
3249       // then verify that the marking information agrees.
3250       // Note we can't verify the contra-positive of the
3251       // above: if the object is dead (according to the mark
3252       // word), it may not be marked, or may have been marked
3253       // but has since became dead, or may have been allocated
3254       // since the last marking.
3255       if (_vo == VerifyOption_G1UseMarkWord) {
3256         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
3257       }
3258 
3259       o->oop_iterate_no_header(&isLive);
3260       if (!_hr->obj_allocated_since_prev_marking(o)) {
3261         size_t obj_size = o->size();    // Make sure we don't overflow
3262         _live_bytes += (obj_size * HeapWordSize);
3263       }
3264     }
3265   }
3266   size_t live_bytes() { return _live_bytes; }
3267 };
3268 
3269 class PrintObjsInRegionClosure : public ObjectClosure {
3270   HeapRegion *_hr;
3271   G1CollectedHeap *_g1;
3272 public:
3273   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3274     _g1 = G1CollectedHeap::heap();
3275   };
3276 
3277   void do_object(oop o) {
3278     if (o != NULL) {
3279       HeapWord *start = (HeapWord *) o;
3280       size_t word_sz = o->size();
3281       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3282                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3283                           (void*) o, word_sz,
3284                           _g1->isMarkedPrev(o),
3285                           _g1->isMarkedNext(o),
3286                           _hr->obj_allocated_since_prev_marking(o));
3287       HeapWord *end = start + word_sz;
3288       HeapWord *cur;
3289       int *val;
3290       for (cur = start; cur < end; cur++) {
3291         val = (int *) cur;
3292         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3293       }
3294     }
3295   }
3296 };
3297 
3298 class VerifyRegionClosure: public HeapRegionClosure {
3299 private:
3300   bool             _par;
3301   VerifyOption     _vo;
3302   bool             _failures;
3303 public:
3304   // _vo == UsePrevMarking -> use "prev" marking information,
3305   // _vo == UseNextMarking -> use "next" marking information,
3306   // _vo == UseMarkWord    -> use mark word from object header.
3307   VerifyRegionClosure(bool par, VerifyOption vo)
3308     : _par(par),
3309       _vo(vo),
3310       _failures(false) {}
3311 
3312   bool failures() {
3313     return _failures;
3314   }
3315 
3316   bool doHeapRegion(HeapRegion* r) {
3317     if (!r->continuesHumongous()) {
3318       bool failures = false;
3319       r->verify(_vo, &failures);
3320       if (failures) {
3321         _failures = true;
3322       } else {
3323         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3324         r->object_iterate(&not_dead_yet_cl);
3325         if (_vo != VerifyOption_G1UseNextMarking) {
3326           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3327             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3328                                    "max_live_bytes "SIZE_FORMAT" "
3329                                    "< calculated "SIZE_FORMAT,
3330                                    r->bottom(), r->end(),
3331                                    r->max_live_bytes(),
3332                                  not_dead_yet_cl.live_bytes());
3333             _failures = true;
3334           }
3335         } else {
3336           // When vo == UseNextMarking we cannot currently do a sanity
3337           // check on the live bytes as the calculation has not been
3338           // finalized yet.
3339         }
3340       }
3341     }
3342     return false; // stop the region iteration if we hit a failure
3343   }
3344 };
3345 
3346 // This is the task used for parallel verification of the heap regions
3347 
3348 class G1ParVerifyTask: public AbstractGangTask {
3349 private:
3350   G1CollectedHeap* _g1h;
3351   VerifyOption     _vo;
3352   bool             _failures;
3353 
3354 public:
3355   // _vo == UsePrevMarking -> use "prev" marking information,
3356   // _vo == UseNextMarking -> use "next" marking information,
3357   // _vo == UseMarkWord    -> use mark word from object header.
3358   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3359     AbstractGangTask("Parallel verify task"),
3360     _g1h(g1h),
3361     _vo(vo),
3362     _failures(false) { }
3363 
3364   bool failures() {
3365     return _failures;
3366   }
3367 
3368   void work(uint worker_id) {
3369     HandleMark hm;
3370     VerifyRegionClosure blk(true, _vo);
3371     _g1h->heap_region_par_iterate_chunked(&blk, worker_id,
3372                                           _g1h->workers()->active_workers(),
3373                                           HeapRegion::ParVerifyClaimValue);
3374     if (blk.failures()) {
3375       _failures = true;
3376     }
3377   }
3378 };
3379 
3380 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3381   if (SafepointSynchronize::is_at_safepoint()) {
3382     assert(Thread::current()->is_VM_thread(),
3383            "Expected to be executed serially by the VM thread at this point");
3384 
3385     if (!silent) { gclog_or_tty->print("Roots "); }
3386     VerifyRootsClosure rootsCl(vo);
3387     VerifyKlassClosure klassCl(this, &rootsCl);
3388 
3389     // We apply the relevant closures to all the oops in the
3390     // system dictionary, class loader data graph and the string table.
3391     // Don't verify the code cache here, since it's verified below.
3392     const int so = SO_AllClasses | SO_Strings;
3393 
3394     // Need cleared claim bits for the strong roots processing
3395     ClassLoaderDataGraph::clear_claimed_marks();
3396 
3397     process_strong_roots(true,      // activate StrongRootsScope
3398                          ScanningOption(so),  // roots scanning options
3399                          &rootsCl,
3400                          &klassCl
3401                          );
3402 
3403     // Verify the nmethods in the code cache.
3404     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3405     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3406     CodeCache::blobs_do(&blobsCl);
3407 
3408     bool failures = rootsCl.failures() || codeRootsCl.failures();
3409 
3410     if (vo != VerifyOption_G1UseMarkWord) {
3411       // If we're verifying during a full GC then the region sets
3412       // will have been torn down at the start of the GC. Therefore
3413       // verifying the region sets will fail. So we only verify
3414       // the region sets when not in a full GC.
3415       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3416       verify_region_sets();
3417     }
3418 
3419     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3420     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3421       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3422              "sanity check");
3423 
3424       G1ParVerifyTask task(this, vo);
3425       assert(UseDynamicNumberOfGCThreads ||
3426         workers()->active_workers() == workers()->total_workers(),
3427         "If not dynamic should be using all the workers");
3428       int n_workers = workers()->active_workers();
3429       set_par_threads(n_workers);
3430       workers()->run_task(&task);
3431       set_par_threads(0);
3432       if (task.failures()) {
3433         failures = true;
3434       }
3435 
3436       // Checks that the expected amount of parallel work was done.
3437       // The implication is that n_workers is > 0.
3438       assert(check_heap_region_claim_values(HeapRegion::ParVerifyClaimValue),
3439              "sanity check");
3440 
3441       reset_heap_region_claim_values();
3442 
3443       assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3444              "sanity check");
3445     } else {
3446       VerifyRegionClosure blk(false, vo);
3447       heap_region_iterate(&blk);
3448       if (blk.failures()) {
3449         failures = true;
3450       }
3451     }
3452     if (!silent) gclog_or_tty->print("RemSet ");
3453     rem_set()->verify();
3454 
3455     if (G1StringDedup::is_enabled()) {
3456       if (!silent) gclog_or_tty->print("StrDedup ");
3457       G1StringDedup::verify();
3458     }
3459 
3460     if (failures) {
3461       gclog_or_tty->print_cr("Heap:");
3462       // It helps to have the per-region information in the output to
3463       // help us track down what went wrong. This is why we call
3464       // print_extended_on() instead of print_on().
3465       print_extended_on(gclog_or_tty);
3466       gclog_or_tty->print_cr("");
3467 #ifndef PRODUCT
3468       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3469         concurrent_mark()->print_reachable("at-verification-failure",
3470                                            vo, false /* all */);
3471       }
3472 #endif
3473       gclog_or_tty->flush();
3474     }
3475     guarantee(!failures, "there should not have been any failures");
3476   } else {
3477     if (!silent) {
3478       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3479       if (G1StringDedup::is_enabled()) {
3480         gclog_or_tty->print(", StrDedup");
3481       }
3482       gclog_or_tty->print(") ");
3483     }
3484   }
3485 }
3486 
3487 void G1CollectedHeap::verify(bool silent) {
3488   verify(silent, VerifyOption_G1UsePrevMarking);
3489 }
3490 
3491 double G1CollectedHeap::verify(bool guard, const char* msg) {
3492   double verify_time_ms = 0.0;
3493 
3494   if (guard && total_collections() >= VerifyGCStartAt) {
3495     double verify_start = os::elapsedTime();
3496     HandleMark hm;  // Discard invalid handles created during verification
3497     prepare_for_verify();
3498     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3499     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3500   }
3501 
3502   return verify_time_ms;
3503 }
3504 
3505 void G1CollectedHeap::verify_before_gc() {
3506   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3507   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3508 }
3509 
3510 void G1CollectedHeap::verify_after_gc() {
3511   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3512   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3513 }
3514 
3515 class PrintRegionClosure: public HeapRegionClosure {
3516   outputStream* _st;
3517 public:
3518   PrintRegionClosure(outputStream* st) : _st(st) {}
3519   bool doHeapRegion(HeapRegion* r) {
3520     r->print_on(_st);
3521     return false;
3522   }
3523 };
3524 
3525 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3526                                        const HeapRegion* hr,
3527                                        const VerifyOption vo) const {
3528   switch (vo) {
3529   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3530   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3531   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3532   default:                            ShouldNotReachHere();
3533   }
3534   return false; // keep some compilers happy
3535 }
3536 
3537 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3538                                        const VerifyOption vo) const {
3539   switch (vo) {
3540   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3541   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3542   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3543   default:                            ShouldNotReachHere();
3544   }
3545   return false; // keep some compilers happy
3546 }
3547 
3548 void G1CollectedHeap::print_on(outputStream* st) const {
3549   st->print(" %-20s", "garbage-first heap");
3550   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3551             capacity()/K, used_unlocked()/K);
3552   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3553             _g1_storage.low_boundary(),
3554             _g1_storage.high(),
3555             _g1_storage.high_boundary());
3556   st->cr();
3557   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3558   uint young_regions = _young_list->length();
3559   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3560             (size_t) young_regions * HeapRegion::GrainBytes / K);
3561   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3562   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3563             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3564   st->cr();
3565   MetaspaceAux::print_on(st);
3566 }
3567 
3568 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3569   print_on(st);
3570 
3571   // Print the per-region information.
3572   st->cr();
3573   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3574                "HS=humongous(starts), HC=humongous(continues), "
3575                "CS=collection set, F=free, TS=gc time stamp, "
3576                "PTAMS=previous top-at-mark-start, "
3577                "NTAMS=next top-at-mark-start)");
3578   PrintRegionClosure blk(st);
3579   heap_region_iterate(&blk);
3580 }
3581 
3582 void G1CollectedHeap::print_on_error(outputStream* st) const {
3583   this->CollectedHeap::print_on_error(st);
3584 
3585   if (_cm != NULL) {
3586     st->cr();
3587     _cm->print_on_error(st);
3588   }
3589 }
3590 
3591 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3592   if (G1CollectedHeap::use_parallel_gc_threads()) {
3593     workers()->print_worker_threads_on(st);
3594   }
3595   _cmThread->print_on(st);
3596   st->cr();
3597   _cm->print_worker_threads_on(st);
3598   _cg1r->print_worker_threads_on(st);
3599   if (G1StringDedup::is_enabled()) {
3600     G1StringDedup::print_worker_threads_on(st);
3601   }
3602 }
3603 
3604 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3605   if (G1CollectedHeap::use_parallel_gc_threads()) {
3606     workers()->threads_do(tc);
3607   }
3608   tc->do_thread(_cmThread);
3609   _cg1r->threads_do(tc);
3610   if (G1StringDedup::is_enabled()) {
3611     G1StringDedup::threads_do(tc);
3612   }
3613 }
3614 
3615 void G1CollectedHeap::print_tracing_info() const {
3616   // We'll overload this to mean "trace GC pause statistics."
3617   if (TraceGen0Time || TraceGen1Time) {
3618     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3619     // to that.
3620     g1_policy()->print_tracing_info();
3621   }
3622   if (G1SummarizeRSetStats) {
3623     g1_rem_set()->print_summary_info();
3624   }
3625   if (G1SummarizeConcMark) {
3626     concurrent_mark()->print_summary_info();
3627   }
3628   g1_policy()->print_yg_surv_rate_info();
3629   SpecializationStats::print();
3630 }
3631 
3632 #ifndef PRODUCT
3633 // Helpful for debugging RSet issues.
3634 
3635 class PrintRSetsClosure : public HeapRegionClosure {
3636 private:
3637   const char* _msg;
3638   size_t _occupied_sum;
3639 
3640 public:
3641   bool doHeapRegion(HeapRegion* r) {
3642     HeapRegionRemSet* hrrs = r->rem_set();
3643     size_t occupied = hrrs->occupied();
3644     _occupied_sum += occupied;
3645 
3646     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3647                            HR_FORMAT_PARAMS(r));
3648     if (occupied == 0) {
3649       gclog_or_tty->print_cr("  RSet is empty");
3650     } else {
3651       hrrs->print();
3652     }
3653     gclog_or_tty->print_cr("----------");
3654     return false;
3655   }
3656 
3657   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3658     gclog_or_tty->cr();
3659     gclog_or_tty->print_cr("========================================");
3660     gclog_or_tty->print_cr(msg);
3661     gclog_or_tty->cr();
3662   }
3663 
3664   ~PrintRSetsClosure() {
3665     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3666     gclog_or_tty->print_cr("========================================");
3667     gclog_or_tty->cr();
3668   }
3669 };
3670 
3671 void G1CollectedHeap::print_cset_rsets() {
3672   PrintRSetsClosure cl("Printing CSet RSets");
3673   collection_set_iterate(&cl);
3674 }
3675 
3676 void G1CollectedHeap::print_all_rsets() {
3677   PrintRSetsClosure cl("Printing All RSets");;
3678   heap_region_iterate(&cl);
3679 }
3680 #endif // PRODUCT
3681 
3682 G1CollectedHeap* G1CollectedHeap::heap() {
3683   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3684          "not a garbage-first heap");
3685   return _g1h;
3686 }
3687 
3688 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3689   // always_do_update_barrier = false;
3690   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3691   // Fill TLAB's and such
3692   accumulate_statistics_all_tlabs();
3693   ensure_parsability(true);
3694 
3695   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3696       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3697     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3698   }
3699 }
3700 
3701 void G1CollectedHeap::gc_epilogue(bool full /* Ignored */) {
3702 
3703   if (G1SummarizeRSetStats &&
3704       (G1SummarizeRSetStatsPeriod > 0) &&
3705       // we are at the end of the GC. Total collections has already been increased.
3706       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3707     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3708   }
3709 
3710   // FIXME: what is this about?
3711   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3712   // is set.
3713   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3714                         "derived pointer present"));
3715   // always_do_update_barrier = true;
3716 
3717   resize_all_tlabs();
3718 
3719   // We have just completed a GC. Update the soft reference
3720   // policy with the new heap occupancy
3721   Universe::update_heap_info_at_gc();
3722 }
3723 
3724 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3725                                                unsigned int gc_count_before,
3726                                                bool* succeeded,
3727                                                GCCause::Cause gc_cause) {
3728   assert_heap_not_locked_and_not_at_safepoint();
3729   g1_policy()->record_stop_world_start();
3730   VM_G1IncCollectionPause op(gc_count_before,
3731                              word_size,
3732                              false, /* should_initiate_conc_mark */
3733                              g1_policy()->max_pause_time_ms(),
3734                              gc_cause);
3735   VMThread::execute(&op);
3736 
3737   HeapWord* result = op.result();
3738   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3739   assert(result == NULL || ret_succeeded,
3740          "the result should be NULL if the VM did not succeed");
3741   *succeeded = ret_succeeded;
3742 
3743   assert_heap_not_locked();
3744   return result;
3745 }
3746 
3747 void
3748 G1CollectedHeap::doConcurrentMark() {
3749   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3750   if (!_cmThread->in_progress()) {
3751     _cmThread->set_started();
3752     CGC_lock->notify();
3753   }
3754 }
3755 
3756 size_t G1CollectedHeap::pending_card_num() {
3757   size_t extra_cards = 0;
3758   JavaThread *curr = Threads::first();
3759   while (curr != NULL) {
3760     DirtyCardQueue& dcq = curr->dirty_card_queue();
3761     extra_cards += dcq.size();
3762     curr = curr->next();
3763   }
3764   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3765   size_t buffer_size = dcqs.buffer_size();
3766   size_t buffer_num = dcqs.completed_buffers_num();
3767 
3768   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3769   // in bytes - not the number of 'entries'. We need to convert
3770   // into a number of cards.
3771   return (buffer_size * buffer_num + extra_cards) / oopSize;
3772 }
3773 
3774 size_t G1CollectedHeap::cards_scanned() {
3775   return g1_rem_set()->cardsScanned();
3776 }
3777 
3778 void
3779 G1CollectedHeap::setup_surviving_young_words() {
3780   assert(_surviving_young_words == NULL, "pre-condition");
3781   uint array_length = g1_policy()->young_cset_region_length();
3782   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3783   if (_surviving_young_words == NULL) {
3784     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3785                           "Not enough space for young surv words summary.");
3786   }
3787   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3788 #ifdef ASSERT
3789   for (uint i = 0;  i < array_length; ++i) {
3790     assert( _surviving_young_words[i] == 0, "memset above" );
3791   }
3792 #endif // !ASSERT
3793 }
3794 
3795 void
3796 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3797   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3798   uint array_length = g1_policy()->young_cset_region_length();
3799   for (uint i = 0; i < array_length; ++i) {
3800     _surviving_young_words[i] += surv_young_words[i];
3801   }
3802 }
3803 
3804 void
3805 G1CollectedHeap::cleanup_surviving_young_words() {
3806   guarantee( _surviving_young_words != NULL, "pre-condition" );
3807   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words, mtGC);
3808   _surviving_young_words = NULL;
3809 }
3810 
3811 #ifdef ASSERT
3812 class VerifyCSetClosure: public HeapRegionClosure {
3813 public:
3814   bool doHeapRegion(HeapRegion* hr) {
3815     // Here we check that the CSet region's RSet is ready for parallel
3816     // iteration. The fields that we'll verify are only manipulated
3817     // when the region is part of a CSet and is collected. Afterwards,
3818     // we reset these fields when we clear the region's RSet (when the
3819     // region is freed) so they are ready when the region is
3820     // re-allocated. The only exception to this is if there's an
3821     // evacuation failure and instead of freeing the region we leave
3822     // it in the heap. In that case, we reset these fields during
3823     // evacuation failure handling.
3824     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3825 
3826     // Here's a good place to add any other checks we'd like to
3827     // perform on CSet regions.
3828     return false;
3829   }
3830 };
3831 #endif // ASSERT
3832 
3833 #if TASKQUEUE_STATS
3834 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3835   st->print_raw_cr("GC Task Stats");
3836   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3837   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3838 }
3839 
3840 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3841   print_taskqueue_stats_hdr(st);
3842 
3843   TaskQueueStats totals;
3844   const int n = workers() != NULL ? workers()->total_workers() : 1;
3845   for (int i = 0; i < n; ++i) {
3846     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3847     totals += task_queue(i)->stats;
3848   }
3849   st->print_raw("tot "); totals.print(st); st->cr();
3850 
3851   DEBUG_ONLY(totals.verify());
3852 }
3853 
3854 void G1CollectedHeap::reset_taskqueue_stats() {
3855   const int n = workers() != NULL ? workers()->total_workers() : 1;
3856   for (int i = 0; i < n; ++i) {
3857     task_queue(i)->stats.reset();
3858   }
3859 }
3860 #endif // TASKQUEUE_STATS
3861 
3862 void G1CollectedHeap::log_gc_header() {
3863   if (!G1Log::fine()) {
3864     return;
3865   }
3866 
3867   gclog_or_tty->date_stamp(PrintGCDateStamps);
3868   gclog_or_tty->stamp(PrintGCTimeStamps);
3869 
3870   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3871     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3872     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3873 
3874   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3875 }
3876 
3877 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3878   if (!G1Log::fine()) {
3879     return;
3880   }
3881 
3882   if (G1Log::finer()) {
3883     if (evacuation_failed()) {
3884       gclog_or_tty->print(" (to-space exhausted)");
3885     }
3886     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3887     g1_policy()->phase_times()->note_gc_end();
3888     g1_policy()->phase_times()->print(pause_time_sec);
3889     g1_policy()->print_detailed_heap_transition();
3890   } else {
3891     if (evacuation_failed()) {
3892       gclog_or_tty->print("--");
3893     }
3894     g1_policy()->print_heap_transition();
3895     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3896   }
3897   gclog_or_tty->flush();
3898 }
3899 
3900 bool
3901 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3902   assert_at_safepoint(true /* should_be_vm_thread */);
3903   guarantee(!is_gc_active(), "collection is not reentrant");
3904 
3905   if (GC_locker::check_active_before_gc()) {
3906     return false;
3907   }
3908 
3909   _gc_timer_stw->register_gc_start();
3910 
3911   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3912 
3913   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3914   ResourceMark rm;
3915 
3916   print_heap_before_gc();
3917   trace_heap_before_gc(_gc_tracer_stw);
3918 
3919   verify_region_sets_optional();
3920   verify_dirty_young_regions();
3921 
3922   // This call will decide whether this pause is an initial-mark
3923   // pause. If it is, during_initial_mark_pause() will return true
3924   // for the duration of this pause.
3925   g1_policy()->decide_on_conc_mark_initiation();
3926 
3927   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3928   assert(!g1_policy()->during_initial_mark_pause() ||
3929           g1_policy()->gcs_are_young(), "sanity");
3930 
3931   // We also do not allow mixed GCs during marking.
3932   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3933 
3934   // Record whether this pause is an initial mark. When the current
3935   // thread has completed its logging output and it's safe to signal
3936   // the CM thread, the flag's value in the policy has been reset.
3937   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3938 
3939   // Inner scope for scope based logging, timers, and stats collection
3940   {
3941     EvacuationInfo evacuation_info;
3942 
3943     if (g1_policy()->during_initial_mark_pause()) {
3944       // We are about to start a marking cycle, so we increment the
3945       // full collection counter.
3946       increment_old_marking_cycles_started();
3947       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3948     }
3949 
3950     _gc_tracer_stw->report_yc_type(yc_type());
3951 
3952     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3953 
3954     int active_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
3955                                 workers()->active_workers() : 1);
3956     double pause_start_sec = os::elapsedTime();
3957     g1_policy()->phase_times()->note_gc_start(active_workers);
3958     log_gc_header();
3959 
3960     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3961     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3962 
3963     // If the secondary_free_list is not empty, append it to the
3964     // free_list. No need to wait for the cleanup operation to finish;
3965     // the region allocation code will check the secondary_free_list
3966     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3967     // set, skip this step so that the region allocation code has to
3968     // get entries from the secondary_free_list.
3969     if (!G1StressConcRegionFreeing) {
3970       append_secondary_free_list_if_not_empty_with_lock();
3971     }
3972 
3973     assert(check_young_list_well_formed(), "young list should be well formed");
3974     assert(check_heap_region_claim_values(HeapRegion::InitialClaimValue),
3975            "sanity check");
3976 
3977     // Don't dynamically change the number of GC threads this early.  A value of
3978     // 0 is used to indicate serial work.  When parallel work is done,
3979     // it will be set.
3980 
3981     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3982       IsGCActiveMark x;
3983 
3984       gc_prologue(false);
3985       increment_total_collections(false /* full gc */);
3986       increment_gc_time_stamp();
3987 
3988       verify_before_gc();
3989 
3990       COMPILER2_PRESENT(DerivedPointerTable::clear());
3991 
3992       // Please see comment in g1CollectedHeap.hpp and
3993       // G1CollectedHeap::ref_processing_init() to see how
3994       // reference processing currently works in G1.
3995 
3996       // Enable discovery in the STW reference processor
3997       ref_processor_stw()->enable_discovery(true /*verify_disabled*/,
3998                                             true /*verify_no_refs*/);
3999 
4000       {
4001         // We want to temporarily turn off discovery by the
4002         // CM ref processor, if necessary, and turn it back on
4003         // on again later if we do. Using a scoped
4004         // NoRefDiscovery object will do this.
4005         NoRefDiscovery no_cm_discovery(ref_processor_cm());
4006 
4007         // Forget the current alloc region (we might even choose it to be part
4008         // of the collection set!).
4009         release_mutator_alloc_region();
4010 
4011         // We should call this after we retire the mutator alloc
4012         // region(s) so that all the ALLOC / RETIRE events are generated
4013         // before the start GC event.
4014         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
4015 
4016         // This timing is only used by the ergonomics to handle our pause target.
4017         // It is unclear why this should not include the full pause. We will
4018         // investigate this in CR 7178365.
4019         //
4020         // Preserving the old comment here if that helps the investigation:
4021         //
4022         // The elapsed time induced by the start time below deliberately elides
4023         // the possible verification above.
4024         double sample_start_time_sec = os::elapsedTime();
4025 
4026 #if YOUNG_LIST_VERBOSE
4027         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
4028         _young_list->print();
4029         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4030 #endif // YOUNG_LIST_VERBOSE
4031 
4032         g1_policy()->record_collection_pause_start(sample_start_time_sec);
4033 
4034         double scan_wait_start = os::elapsedTime();
4035         // We have to wait until the CM threads finish scanning the
4036         // root regions as it's the only way to ensure that all the
4037         // objects on them have been correctly scanned before we start
4038         // moving them during the GC.
4039         bool waited = _cm->root_regions()->wait_until_scan_finished();
4040         double wait_time_ms = 0.0;
4041         if (waited) {
4042           double scan_wait_end = os::elapsedTime();
4043           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
4044         }
4045         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
4046 
4047 #if YOUNG_LIST_VERBOSE
4048         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
4049         _young_list->print();
4050 #endif // YOUNG_LIST_VERBOSE
4051 
4052         if (g1_policy()->during_initial_mark_pause()) {
4053           concurrent_mark()->checkpointRootsInitialPre();
4054         }
4055 
4056 #if YOUNG_LIST_VERBOSE
4057         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
4058         _young_list->print();
4059         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4060 #endif // YOUNG_LIST_VERBOSE
4061 
4062         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
4063 
4064         _cm->note_start_of_gc();
4065         // We should not verify the per-thread SATB buffers given that
4066         // we have not filtered them yet (we'll do so during the
4067         // GC). We also call this after finalize_cset() to
4068         // ensure that the CSet has been finalized.
4069         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4070                                  true  /* verify_enqueued_buffers */,
4071                                  false /* verify_thread_buffers */,
4072                                  true  /* verify_fingers */);
4073 
4074         if (_hr_printer.is_active()) {
4075           HeapRegion* hr = g1_policy()->collection_set();
4076           while (hr != NULL) {
4077             G1HRPrinter::RegionType type;
4078             if (!hr->is_young()) {
4079               type = G1HRPrinter::Old;
4080             } else if (hr->is_survivor()) {
4081               type = G1HRPrinter::Survivor;
4082             } else {
4083               type = G1HRPrinter::Eden;
4084             }
4085             _hr_printer.cset(hr);
4086             hr = hr->next_in_collection_set();
4087           }
4088         }
4089 
4090 #ifdef ASSERT
4091         VerifyCSetClosure cl;
4092         collection_set_iterate(&cl);
4093 #endif // ASSERT
4094 
4095         setup_surviving_young_words();
4096 
4097         // Initialize the GC alloc regions.
4098         init_gc_alloc_regions(evacuation_info);
4099 
4100         // Actually do the work...
4101         evacuate_collection_set(evacuation_info);
4102 
4103         // We do this to mainly verify the per-thread SATB buffers
4104         // (which have been filtered by now) since we didn't verify
4105         // them earlier. No point in re-checking the stacks / enqueued
4106         // buffers given that the CSet has not changed since last time
4107         // we checked.
4108         _cm->verify_no_cset_oops(false /* verify_stacks */,
4109                                  false /* verify_enqueued_buffers */,
4110                                  true  /* verify_thread_buffers */,
4111                                  true  /* verify_fingers */);
4112 
4113         free_collection_set(g1_policy()->collection_set(), evacuation_info);
4114         g1_policy()->clear_collection_set();
4115 
4116         cleanup_surviving_young_words();
4117 
4118         // Start a new incremental collection set for the next pause.
4119         g1_policy()->start_incremental_cset_building();
4120 
4121         clear_cset_fast_test();
4122 
4123         _young_list->reset_sampled_info();
4124 
4125         // Don't check the whole heap at this point as the
4126         // GC alloc regions from this pause have been tagged
4127         // as survivors and moved on to the survivor list.
4128         // Survivor regions will fail the !is_young() check.
4129         assert(check_young_list_empty(false /* check_heap */),
4130           "young list should be empty");
4131 
4132 #if YOUNG_LIST_VERBOSE
4133         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
4134         _young_list->print();
4135 #endif // YOUNG_LIST_VERBOSE
4136 
4137         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
4138                                              _young_list->first_survivor_region(),
4139                                              _young_list->last_survivor_region());
4140 
4141         _young_list->reset_auxilary_lists();
4142 
4143         if (evacuation_failed()) {
4144           _summary_bytes_used = recalculate_used();
4145           uint n_queues = MAX2((int)ParallelGCThreads, 1);
4146           for (uint i = 0; i < n_queues; i++) {
4147             if (_evacuation_failed_info_array[i].has_failed()) {
4148               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
4149             }
4150           }
4151         } else {
4152           // The "used" of the the collection set have already been subtracted
4153           // when they were freed.  Add in the bytes evacuated.
4154           _summary_bytes_used += g1_policy()->bytes_copied_during_gc();
4155         }
4156 
4157         if (g1_policy()->during_initial_mark_pause()) {
4158           // We have to do this before we notify the CM threads that
4159           // they can start working to make sure that all the
4160           // appropriate initialization is done on the CM object.
4161           concurrent_mark()->checkpointRootsInitialPost();
4162           set_marking_started();
4163           // Note that we don't actually trigger the CM thread at
4164           // this point. We do that later when we're sure that
4165           // the current thread has completed its logging output.
4166         }
4167 
4168         allocate_dummy_regions();
4169 
4170 #if YOUNG_LIST_VERBOSE
4171         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
4172         _young_list->print();
4173         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
4174 #endif // YOUNG_LIST_VERBOSE
4175 
4176         init_mutator_alloc_region();
4177 
4178         {
4179           size_t expand_bytes = g1_policy()->expansion_amount();
4180           if (expand_bytes > 0) {
4181             size_t bytes_before = capacity();
4182             // No need for an ergo verbose message here,
4183             // expansion_amount() does this when it returns a value > 0.
4184             if (!expand(expand_bytes)) {
4185               // We failed to expand the heap so let's verify that
4186               // committed/uncommitted amount match the backing store
4187               assert(capacity() == _g1_storage.committed_size(), "committed size mismatch");
4188               assert(max_capacity() == _g1_storage.reserved_size(), "reserved size mismatch");
4189             }
4190           }
4191         }
4192 
4193         // We redo the verification but now wrt to the new CSet which
4194         // has just got initialized after the previous CSet was freed.
4195         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4196                                  true  /* verify_enqueued_buffers */,
4197                                  true  /* verify_thread_buffers */,
4198                                  true  /* verify_fingers */);
4199         _cm->note_end_of_gc();
4200 
4201         // This timing is only used by the ergonomics to handle our pause target.
4202         // It is unclear why this should not include the full pause. We will
4203         // investigate this in CR 7178365.
4204         double sample_end_time_sec = os::elapsedTime();
4205         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4206         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4207 
4208         MemoryService::track_memory_usage();
4209 
4210         // In prepare_for_verify() below we'll need to scan the deferred
4211         // update buffers to bring the RSets up-to-date if
4212         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4213         // the update buffers we'll probably need to scan cards on the
4214         // regions we just allocated to (i.e., the GC alloc
4215         // regions). However, during the last GC we called
4216         // set_saved_mark() on all the GC alloc regions, so card
4217         // scanning might skip the [saved_mark_word()...top()] area of
4218         // those regions (i.e., the area we allocated objects into
4219         // during the last GC). But it shouldn't. Given that
4220         // saved_mark_word() is conditional on whether the GC time stamp
4221         // on the region is current or not, by incrementing the GC time
4222         // stamp here we invalidate all the GC time stamps on all the
4223         // regions and saved_mark_word() will simply return top() for
4224         // all the regions. This is a nicer way of ensuring this rather
4225         // than iterating over the regions and fixing them. In fact, the
4226         // GC time stamp increment here also ensures that
4227         // saved_mark_word() will return top() between pauses, i.e.,
4228         // during concurrent refinement. So we don't need the
4229         // is_gc_active() check to decided which top to use when
4230         // scanning cards (see CR 7039627).
4231         increment_gc_time_stamp();
4232 
4233         verify_after_gc();
4234 
4235         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4236         ref_processor_stw()->verify_no_references_recorded();
4237 
4238         // CM reference discovery will be re-enabled if necessary.
4239       }
4240 
4241       // We should do this after we potentially expand the heap so
4242       // that all the COMMIT events are generated before the end GC
4243       // event, and after we retire the GC alloc regions so that all
4244       // RETIRE events are generated before the end GC event.
4245       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4246 
4247       if (mark_in_progress()) {
4248         concurrent_mark()->update_g1_committed();
4249       }
4250 
4251 #ifdef TRACESPINNING
4252       ParallelTaskTerminator::print_termination_counts();
4253 #endif
4254 
4255       gc_epilogue(false);
4256     }
4257 
4258     // Print the remainder of the GC log output.
4259     log_gc_footer(os::elapsedTime() - pause_start_sec);
4260 
4261     // It is not yet to safe to tell the concurrent mark to
4262     // start as we have some optional output below. We don't want the
4263     // output from the concurrent mark thread interfering with this
4264     // logging output either.
4265 
4266     _hrs.verify_optional();
4267     verify_region_sets_optional();
4268 
4269     TASKQUEUE_STATS_ONLY(if (ParallelGCVerbose) print_taskqueue_stats());
4270     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4271 
4272     print_heap_after_gc();
4273     trace_heap_after_gc(_gc_tracer_stw);
4274 
4275     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4276     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4277     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4278     // before any GC notifications are raised.
4279     g1mm()->update_sizes();
4280 
4281     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4282     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4283     _gc_timer_stw->register_gc_end();
4284     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4285   }
4286   // It should now be safe to tell the concurrent mark thread to start
4287   // without its logging output interfering with the logging output
4288   // that came from the pause.
4289 
4290   if (should_start_conc_mark) {
4291     // CAUTION: after the doConcurrentMark() call below,
4292     // the concurrent marking thread(s) could be running
4293     // concurrently with us. Make sure that anything after
4294     // this point does not assume that we are the only GC thread
4295     // running. Note: of course, the actual marking work will
4296     // not start until the safepoint itself is released in
4297     // SuspendibleThreadSet::desynchronize().
4298     doConcurrentMark();
4299   }
4300 
4301   return true;
4302 }
4303 
4304 size_t G1CollectedHeap::desired_plab_sz(GCAllocPurpose purpose)
4305 {
4306   size_t gclab_word_size;
4307   switch (purpose) {
4308     case GCAllocForSurvived:
4309       gclab_word_size = _survivor_plab_stats.desired_plab_sz();
4310       break;
4311     case GCAllocForTenured:
4312       gclab_word_size = _old_plab_stats.desired_plab_sz();
4313       break;
4314     default:
4315       assert(false, "unknown GCAllocPurpose");
4316       gclab_word_size = _old_plab_stats.desired_plab_sz();
4317       break;
4318   }
4319 
4320   // Prevent humongous PLAB sizes for two reasons:
4321   // * PLABs are allocated using a similar paths as oops, but should
4322   //   never be in a humongous region
4323   // * Allowing humongous PLABs needlessly churns the region free lists
4324   return MIN2(_humongous_object_threshold_in_words, gclab_word_size);
4325 }
4326 
4327 void G1CollectedHeap::init_mutator_alloc_region() {
4328   assert(_mutator_alloc_region.get() == NULL, "pre-condition");
4329   _mutator_alloc_region.init();
4330 }
4331 
4332 void G1CollectedHeap::release_mutator_alloc_region() {
4333   _mutator_alloc_region.release();
4334   assert(_mutator_alloc_region.get() == NULL, "post-condition");
4335 }
4336 
4337 void G1CollectedHeap::init_gc_alloc_regions(EvacuationInfo& evacuation_info) {
4338   assert_at_safepoint(true /* should_be_vm_thread */);
4339 
4340   _survivor_gc_alloc_region.init();
4341   _old_gc_alloc_region.init();
4342   HeapRegion* retained_region = _retained_old_gc_alloc_region;
4343   _retained_old_gc_alloc_region = NULL;
4344 
4345   // We will discard the current GC alloc region if:
4346   // a) it's in the collection set (it can happen!),
4347   // b) it's already full (no point in using it),
4348   // c) it's empty (this means that it was emptied during
4349   // a cleanup and it should be on the free list now), or
4350   // d) it's humongous (this means that it was emptied
4351   // during a cleanup and was added to the free list, but
4352   // has been subsequently used to allocate a humongous
4353   // object that may be less than the region size).
4354   if (retained_region != NULL &&
4355       !retained_region->in_collection_set() &&
4356       !(retained_region->top() == retained_region->end()) &&
4357       !retained_region->is_empty() &&
4358       !retained_region->isHumongous()) {
4359     retained_region->set_saved_mark();
4360     // The retained region was added to the old region set when it was
4361     // retired. We have to remove it now, since we don't allow regions
4362     // we allocate to in the region sets. We'll re-add it later, when
4363     // it's retired again.
4364     _old_set.remove(retained_region);
4365     bool during_im = g1_policy()->during_initial_mark_pause();
4366     retained_region->note_start_of_copying(during_im);
4367     _old_gc_alloc_region.set(retained_region);
4368     _hr_printer.reuse(retained_region);
4369     evacuation_info.set_alloc_regions_used_before(retained_region->used());
4370   }
4371 }
4372 
4373 void G1CollectedHeap::release_gc_alloc_regions(uint no_of_gc_workers, EvacuationInfo& evacuation_info) {
4374   evacuation_info.set_allocation_regions(_survivor_gc_alloc_region.count() +
4375                                          _old_gc_alloc_region.count());
4376   _survivor_gc_alloc_region.release();
4377   // If we have an old GC alloc region to release, we'll save it in
4378   // _retained_old_gc_alloc_region. If we don't
4379   // _retained_old_gc_alloc_region will become NULL. This is what we
4380   // want either way so no reason to check explicitly for either
4381   // condition.
4382   _retained_old_gc_alloc_region = _old_gc_alloc_region.release();
4383 
4384   if (ResizePLAB) {
4385     _survivor_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4386     _old_plab_stats.adjust_desired_plab_sz(no_of_gc_workers);
4387   }
4388 }
4389 
4390 void G1CollectedHeap::abandon_gc_alloc_regions() {
4391   assert(_survivor_gc_alloc_region.get() == NULL, "pre-condition");
4392   assert(_old_gc_alloc_region.get() == NULL, "pre-condition");
4393   _retained_old_gc_alloc_region = NULL;
4394 }
4395 
4396 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4397   _drain_in_progress = false;
4398   set_evac_failure_closure(cl);
4399   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4400 }
4401 
4402 void G1CollectedHeap::finalize_for_evac_failure() {
4403   assert(_evac_failure_scan_stack != NULL &&
4404          _evac_failure_scan_stack->length() == 0,
4405          "Postcondition");
4406   assert(!_drain_in_progress, "Postcondition");
4407   delete _evac_failure_scan_stack;
4408   _evac_failure_scan_stack = NULL;
4409 }
4410 
4411 void G1CollectedHeap::remove_self_forwarding_pointers() {
4412   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4413 
4414   double remove_self_forwards_start = os::elapsedTime();
4415 
4416   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4417 
4418   if (G1CollectedHeap::use_parallel_gc_threads()) {
4419     set_par_threads();
4420     workers()->run_task(&rsfp_task);
4421     set_par_threads(0);
4422   } else {
4423     rsfp_task.work(0);
4424   }
4425 
4426   assert(check_cset_heap_region_claim_values(HeapRegion::ParEvacFailureClaimValue), "sanity");
4427 
4428   // Reset the claim values in the regions in the collection set.
4429   reset_cset_heap_region_claim_values();
4430 
4431   assert(check_cset_heap_region_claim_values(HeapRegion::InitialClaimValue), "sanity");
4432 
4433   // Now restore saved marks, if any.
4434   assert(_objs_with_preserved_marks.size() ==
4435             _preserved_marks_of_objs.size(), "Both or none.");
4436   while (!_objs_with_preserved_marks.is_empty()) {
4437     oop obj = _objs_with_preserved_marks.pop();
4438     markOop m = _preserved_marks_of_objs.pop();
4439     obj->set_mark(m);
4440   }
4441   _objs_with_preserved_marks.clear(true);
4442   _preserved_marks_of_objs.clear(true);
4443 
4444   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4445 }
4446 
4447 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4448   _evac_failure_scan_stack->push(obj);
4449 }
4450 
4451 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4452   assert(_evac_failure_scan_stack != NULL, "precondition");
4453 
4454   while (_evac_failure_scan_stack->length() > 0) {
4455      oop obj = _evac_failure_scan_stack->pop();
4456      _evac_failure_closure->set_region(heap_region_containing(obj));
4457      obj->oop_iterate_backwards(_evac_failure_closure);
4458   }
4459 }
4460 
4461 oop
4462 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4463                                                oop old) {
4464   assert(obj_in_cs(old),
4465          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4466                  (HeapWord*) old));
4467   markOop m = old->mark();
4468   oop forward_ptr = old->forward_to_atomic(old);
4469   if (forward_ptr == NULL) {
4470     // Forward-to-self succeeded.
4471     assert(_par_scan_state != NULL, "par scan state");
4472     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4473     uint queue_num = _par_scan_state->queue_num();
4474 
4475     _evacuation_failed = true;
4476     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4477     if (_evac_failure_closure != cl) {
4478       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4479       assert(!_drain_in_progress,
4480              "Should only be true while someone holds the lock.");
4481       // Set the global evac-failure closure to the current thread's.
4482       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4483       set_evac_failure_closure(cl);
4484       // Now do the common part.
4485       handle_evacuation_failure_common(old, m);
4486       // Reset to NULL.
4487       set_evac_failure_closure(NULL);
4488     } else {
4489       // The lock is already held, and this is recursive.
4490       assert(_drain_in_progress, "This should only be the recursive case.");
4491       handle_evacuation_failure_common(old, m);
4492     }
4493     return old;
4494   } else {
4495     // Forward-to-self failed. Either someone else managed to allocate
4496     // space for this object (old != forward_ptr) or they beat us in
4497     // self-forwarding it (old == forward_ptr).
4498     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4499            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4500                    "should not be in the CSet",
4501                    (HeapWord*) old, (HeapWord*) forward_ptr));
4502     return forward_ptr;
4503   }
4504 }
4505 
4506 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4507   preserve_mark_if_necessary(old, m);
4508 
4509   HeapRegion* r = heap_region_containing(old);
4510   if (!r->evacuation_failed()) {
4511     r->set_evacuation_failed(true);
4512     _hr_printer.evac_failure(r);
4513   }
4514 
4515   push_on_evac_failure_scan_stack(old);
4516 
4517   if (!_drain_in_progress) {
4518     // prevent recursion in copy_to_survivor_space()
4519     _drain_in_progress = true;
4520     drain_evac_failure_scan_stack();
4521     _drain_in_progress = false;
4522   }
4523 }
4524 
4525 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4526   assert(evacuation_failed(), "Oversaving!");
4527   // We want to call the "for_promotion_failure" version only in the
4528   // case of a promotion failure.
4529   if (m->must_be_preserved_for_promotion_failure(obj)) {
4530     _objs_with_preserved_marks.push(obj);
4531     _preserved_marks_of_objs.push(m);
4532   }
4533 }
4534 
4535 HeapWord* G1CollectedHeap::par_allocate_during_gc(GCAllocPurpose purpose,
4536                                                   size_t word_size) {
4537   if (purpose == GCAllocForSurvived) {
4538     HeapWord* result = survivor_attempt_allocation(word_size);
4539     if (result != NULL) {
4540       return result;
4541     } else {
4542       // Let's try to allocate in the old gen in case we can fit the
4543       // object there.
4544       return old_attempt_allocation(word_size);
4545     }
4546   } else {
4547     assert(purpose ==  GCAllocForTenured, "sanity");
4548     HeapWord* result = old_attempt_allocation(word_size);
4549     if (result != NULL) {
4550       return result;
4551     } else {
4552       // Let's try to allocate in the survivors in case we can fit the
4553       // object there.
4554       return survivor_attempt_allocation(word_size);
4555     }
4556   }
4557 
4558   ShouldNotReachHere();
4559   // Trying to keep some compilers happy.
4560   return NULL;
4561 }
4562 
4563 G1ParGCAllocBuffer::G1ParGCAllocBuffer(size_t gclab_word_size) :
4564   ParGCAllocBuffer(gclab_word_size), _retired(true) { }
4565 
4566 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
4567   : _g1h(g1h),
4568     _refs(g1h->task_queue(queue_num)),
4569     _dcq(&g1h->dirty_card_queue_set()),
4570     _ct_bs(g1h->g1_barrier_set()),
4571     _g1_rem(g1h->g1_rem_set()),
4572     _hash_seed(17), _queue_num(queue_num),
4573     _term_attempts(0),
4574     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
4575     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
4576     _age_table(false), _scanner(g1h, this, rp),
4577     _strong_roots_time(0), _term_time(0),
4578     _alloc_buffer_waste(0), _undo_waste(0) {
4579   // we allocate G1YoungSurvRateNumRegions plus one entries, since
4580   // we "sacrifice" entry 0 to keep track of surviving bytes for
4581   // non-young regions (where the age is -1)
4582   // We also add a few elements at the beginning and at the end in
4583   // an attempt to eliminate cache contention
4584   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
4585   uint array_length = PADDING_ELEM_NUM +
4586                       real_length +
4587                       PADDING_ELEM_NUM;
4588   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
4589   if (_surviving_young_words_base == NULL)
4590     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
4591                           "Not enough space for young surv histo.");
4592   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
4593   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
4594 
4595   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
4596   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
4597 
4598   _start = os::elapsedTime();
4599 }
4600 
4601 void
4602 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
4603 {
4604   st->print_raw_cr("GC Termination Stats");
4605   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
4606                    " ------waste (KiB)------");
4607   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
4608                    "  total   alloc    undo");
4609   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
4610                    " ------- ------- -------");
4611 }
4612 
4613 void
4614 G1ParScanThreadState::print_termination_stats(int i,
4615                                               outputStream* const st) const
4616 {
4617   const double elapsed_ms = elapsed_time() * 1000.0;
4618   const double s_roots_ms = strong_roots_time() * 1000.0;
4619   const double term_ms    = term_time() * 1000.0;
4620   st->print_cr("%3d %9.2f %9.2f %6.2f "
4621                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
4622                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
4623                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
4624                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
4625                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
4626                alloc_buffer_waste() * HeapWordSize / K,
4627                undo_waste() * HeapWordSize / K);
4628 }
4629 
4630 #ifdef ASSERT
4631 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
4632   assert(ref != NULL, "invariant");
4633   assert(UseCompressedOops, "sanity");
4634   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, ref));
4635   oop p = oopDesc::load_decode_heap_oop(ref);
4636   assert(_g1h->is_in_g1_reserved(p),
4637          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4638   return true;
4639 }
4640 
4641 bool G1ParScanThreadState::verify_ref(oop* ref) const {
4642   assert(ref != NULL, "invariant");
4643   if (has_partial_array_mask(ref)) {
4644     // Must be in the collection set--it's already been copied.
4645     oop p = clear_partial_array_mask(ref);
4646     assert(_g1h->obj_in_cs(p),
4647            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4648   } else {
4649     oop p = oopDesc::load_decode_heap_oop(ref);
4650     assert(_g1h->is_in_g1_reserved(p),
4651            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, ref, (void *)p));
4652   }
4653   return true;
4654 }
4655 
4656 bool G1ParScanThreadState::verify_task(StarTask ref) const {
4657   if (ref.is_narrow()) {
4658     return verify_ref((narrowOop*) ref);
4659   } else {
4660     return verify_ref((oop*) ref);
4661   }
4662 }
4663 #endif // ASSERT
4664 
4665 void G1ParScanThreadState::trim_queue() {
4666   assert(_evac_failure_cl != NULL, "not set");
4667 
4668   StarTask ref;
4669   do {
4670     // Drain the overflow stack first, so other threads can steal.
4671     while (refs()->pop_overflow(ref)) {
4672       deal_with_reference(ref);
4673     }
4674 
4675     while (refs()->pop_local(ref)) {
4676       deal_with_reference(ref);
4677     }
4678   } while (!refs()->is_empty());
4679 }
4680 
4681 G1ParClosureSuper::G1ParClosureSuper(G1CollectedHeap* g1,
4682                                      G1ParScanThreadState* par_scan_state) :
4683   _g1(g1), _par_scan_state(par_scan_state),
4684   _worker_id(par_scan_state->queue_num()) { }
4685 
4686 void G1ParCopyHelper::mark_object(oop obj) {
4687 #ifdef ASSERT
4688   HeapRegion* hr = _g1->heap_region_containing(obj);
4689   assert(hr != NULL, "sanity");
4690   assert(!hr->in_collection_set(), "should not mark objects in the CSet");
4691 #endif // ASSERT
4692 
4693   // We know that the object is not moving so it's safe to read its size.
4694   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4695 }
4696 
4697 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4698 #ifdef ASSERT
4699   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4700   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4701   assert(from_obj != to_obj, "should not be self-forwarded");
4702 
4703   HeapRegion* from_hr = _g1->heap_region_containing(from_obj);
4704   assert(from_hr != NULL, "sanity");
4705   assert(from_hr->in_collection_set(), "from obj should be in the CSet");
4706 
4707   HeapRegion* to_hr = _g1->heap_region_containing(to_obj);
4708   assert(to_hr != NULL, "sanity");
4709   assert(!to_hr->in_collection_set(), "should not mark objects in the CSet");
4710 #endif // ASSERT
4711 
4712   // The object might be in the process of being copied by another
4713   // worker so we cannot trust that its to-space image is
4714   // well-formed. So we have to read its size from its from-space
4715   // image which we know should not be changing.
4716   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4717 }
4718 
4719 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
4720   size_t word_sz = old->size();
4721   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
4722   // +1 to make the -1 indexes valid...
4723   int       young_index = from_region->young_index_in_cset()+1;
4724   assert( (from_region->is_young() && young_index >  0) ||
4725          (!from_region->is_young() && young_index == 0), "invariant" );
4726   G1CollectorPolicy* g1p = _g1h->g1_policy();
4727   markOop m = old->mark();
4728   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
4729                                            : m->age();
4730   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
4731                                                              word_sz);
4732   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
4733 #ifndef PRODUCT
4734   // Should this evacuation fail?
4735   if (_g1h->evacuation_should_fail()) {
4736     if (obj_ptr != NULL) {
4737       undo_allocation(alloc_purpose, obj_ptr, word_sz);
4738       obj_ptr = NULL;
4739     }
4740   }
4741 #endif // !PRODUCT
4742 
4743   if (obj_ptr == NULL) {
4744     // This will either forward-to-self, or detect that someone else has
4745     // installed a forwarding pointer.
4746     return _g1h->handle_evacuation_failure_par(this, old);
4747   }
4748 
4749   oop obj = oop(obj_ptr);
4750 
4751   // We're going to allocate linearly, so might as well prefetch ahead.
4752   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
4753 
4754   oop forward_ptr = old->forward_to_atomic(obj);
4755   if (forward_ptr == NULL) {
4756     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
4757 
4758     // alloc_purpose is just a hint to allocate() above, recheck the type of region
4759     // we actually allocated from and update alloc_purpose accordingly
4760     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
4761     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
4762 
4763     if (g1p->track_object_age(alloc_purpose)) {
4764       // We could simply do obj->incr_age(). However, this causes a
4765       // performance issue. obj->incr_age() will first check whether
4766       // the object has a displaced mark by checking its mark word;
4767       // getting the mark word from the new location of the object
4768       // stalls. So, given that we already have the mark word and we
4769       // are about to install it anyway, it's better to increase the
4770       // age on the mark word, when the object does not have a
4771       // displaced mark word. We're not expecting many objects to have
4772       // a displaced marked word, so that case is not optimized
4773       // further (it could be...) and we simply call obj->incr_age().
4774 
4775       if (m->has_displaced_mark_helper()) {
4776         // in this case, we have to install the mark word first,
4777         // otherwise obj looks to be forwarded (the old mark word,
4778         // which contains the forward pointer, was copied)
4779         obj->set_mark(m);
4780         obj->incr_age();
4781       } else {
4782         m = m->incr_age();
4783         obj->set_mark(m);
4784       }
4785       age_table()->add(obj, word_sz);
4786     } else {
4787       obj->set_mark(m);
4788     }
4789 
4790     if (G1StringDedup::is_enabled()) {
4791       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
4792                                              to_region->is_young(),
4793                                              queue_num(),
4794                                              obj);
4795     }
4796 
4797     size_t* surv_young_words = surviving_young_words();
4798     surv_young_words[young_index] += word_sz;
4799 
4800     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
4801       // We keep track of the next start index in the length field of
4802       // the to-space object. The actual length can be found in the
4803       // length field of the from-space object.
4804       arrayOop(obj)->set_length(0);
4805       oop* old_p = set_partial_array_mask(old);
4806       push_on_queue(old_p);
4807     } else {
4808       // No point in using the slower heap_region_containing() method,
4809       // given that we know obj is in the heap.
4810       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
4811       obj->oop_iterate_backwards(&_scanner);
4812     }
4813   } else {
4814     undo_allocation(alloc_purpose, obj_ptr, word_sz);
4815     obj = forward_ptr;
4816   }
4817   return obj;
4818 }
4819 
4820 template <class T>
4821 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4822   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4823     _scanned_klass->record_modified_oops();
4824   }
4825 }
4826 
4827 template <G1Barrier barrier, bool do_mark_object>
4828 template <class T>
4829 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4830   T heap_oop = oopDesc::load_heap_oop(p);
4831 
4832   if (oopDesc::is_null(heap_oop)) {
4833     return;
4834   }
4835 
4836   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4837 
4838   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4839 
4840   if (_g1->in_cset_fast_test(obj)) {
4841     oop forwardee;
4842     if (obj->is_forwarded()) {
4843       forwardee = obj->forwardee();
4844     } else {
4845       forwardee = _par_scan_state->copy_to_survivor_space(obj);
4846     }
4847     assert(forwardee != NULL, "forwardee should not be NULL");
4848     oopDesc::encode_store_heap_oop(p, forwardee);
4849     if (do_mark_object && forwardee != obj) {
4850       // If the object is self-forwarded we don't need to explicitly
4851       // mark it, the evacuation failure protocol will do so.
4852       mark_forwarded_object(obj, forwardee);
4853     }
4854 
4855     if (barrier == G1BarrierKlass) {
4856       do_klass_barrier(p, forwardee);
4857     }
4858   } else {
4859     // The object is not in collection set. If we're a root scanning
4860     // closure during an initial mark pause (i.e. do_mark_object will
4861     // be true) then attempt to mark the object.
4862     if (do_mark_object) {
4863       mark_object(obj);
4864     }
4865   }
4866 
4867   if (barrier == G1BarrierEvac) {
4868     _par_scan_state->update_rs(_from, p, _worker_id);
4869   }
4870 }
4871 
4872 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(oop* p);
4873 template void G1ParCopyClosure<G1BarrierEvac, false>::do_oop_work(narrowOop* p);
4874 
4875 class G1ParEvacuateFollowersClosure : public VoidClosure {
4876 protected:
4877   G1CollectedHeap*              _g1h;
4878   G1ParScanThreadState*         _par_scan_state;
4879   RefToScanQueueSet*            _queues;
4880   ParallelTaskTerminator*       _terminator;
4881 
4882   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4883   RefToScanQueueSet*      queues()         { return _queues; }
4884   ParallelTaskTerminator* terminator()     { return _terminator; }
4885 
4886 public:
4887   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4888                                 G1ParScanThreadState* par_scan_state,
4889                                 RefToScanQueueSet* queues,
4890                                 ParallelTaskTerminator* terminator)
4891     : _g1h(g1h), _par_scan_state(par_scan_state),
4892       _queues(queues), _terminator(terminator) {}
4893 
4894   void do_void();
4895 
4896 private:
4897   inline bool offer_termination();
4898 };
4899 
4900 bool G1ParEvacuateFollowersClosure::offer_termination() {
4901   G1ParScanThreadState* const pss = par_scan_state();
4902   pss->start_term_time();
4903   const bool res = terminator()->offer_termination();
4904   pss->end_term_time();
4905   return res;
4906 }
4907 
4908 void G1ParEvacuateFollowersClosure::do_void() {
4909   StarTask stolen_task;
4910   G1ParScanThreadState* const pss = par_scan_state();
4911   pss->trim_queue();
4912 
4913   do {
4914     while (queues()->steal(pss->queue_num(), pss->hash_seed(), stolen_task)) {
4915       assert(pss->verify_task(stolen_task), "sanity");
4916       if (stolen_task.is_narrow()) {
4917         pss->deal_with_reference((narrowOop*) stolen_task);
4918       } else {
4919         pss->deal_with_reference((oop*) stolen_task);
4920       }
4921 
4922       // We've just processed a reference and we might have made
4923       // available new entries on the queues. So we have to make sure
4924       // we drain the queues as necessary.
4925       pss->trim_queue();
4926     }
4927   } while (!offer_termination());
4928 }
4929 
4930 class G1KlassScanClosure : public KlassClosure {
4931  G1ParCopyHelper* _closure;
4932  bool             _process_only_dirty;
4933  int              _count;
4934  public:
4935   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4936       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4937   void do_klass(Klass* klass) {
4938     // If the klass has not been dirtied we know that there's
4939     // no references into  the young gen and we can skip it.
4940    if (!_process_only_dirty || klass->has_modified_oops()) {
4941       // Clean the klass since we're going to scavenge all the metadata.
4942       klass->clear_modified_oops();
4943 
4944       // Tell the closure that this klass is the Klass to scavenge
4945       // and is the one to dirty if oops are left pointing into the young gen.
4946       _closure->set_scanned_klass(klass);
4947 
4948       klass->oops_do(_closure);
4949 
4950       _closure->set_scanned_klass(NULL);
4951     }
4952     _count++;
4953   }
4954 };
4955 
4956 class G1ParTask : public AbstractGangTask {
4957 protected:
4958   G1CollectedHeap*       _g1h;
4959   RefToScanQueueSet      *_queues;
4960   ParallelTaskTerminator _terminator;
4961   uint _n_workers;
4962 
4963   Mutex _stats_lock;
4964   Mutex* stats_lock() { return &_stats_lock; }
4965 
4966   size_t getNCards() {
4967     return (_g1h->capacity() + G1BlockOffsetSharedArray::N_bytes - 1)
4968       / G1BlockOffsetSharedArray::N_bytes;
4969   }
4970 
4971 public:
4972   G1ParTask(G1CollectedHeap* g1h,
4973             RefToScanQueueSet *task_queues)
4974     : AbstractGangTask("G1 collection"),
4975       _g1h(g1h),
4976       _queues(task_queues),
4977       _terminator(0, _queues),
4978       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4979   {}
4980 
4981   RefToScanQueueSet* queues() { return _queues; }
4982 
4983   RefToScanQueue *work_queue(int i) {
4984     return queues()->queue(i);
4985   }
4986 
4987   ParallelTaskTerminator* terminator() { return &_terminator; }
4988 
4989   virtual void set_for_termination(int active_workers) {
4990     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4991     // in the young space (_par_seq_tasks) in the G1 heap
4992     // for SequentialSubTasksDone.
4993     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4994     // both of which need setting by set_n_termination().
4995     _g1h->SharedHeap::set_n_termination(active_workers);
4996     _g1h->set_n_termination(active_workers);
4997     terminator()->reset_for_reuse(active_workers);
4998     _n_workers = active_workers;
4999   }
5000 
5001   void work(uint worker_id) {
5002     if (worker_id >= _n_workers) return;  // no work needed this round
5003 
5004     double start_time_ms = os::elapsedTime() * 1000.0;
5005     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
5006 
5007     {
5008       ResourceMark rm;
5009       HandleMark   hm;
5010 
5011       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
5012 
5013       G1ParScanThreadState            pss(_g1h, worker_id, rp);
5014       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
5015 
5016       pss.set_evac_failure_closure(&evac_failure_cl);
5017 
5018       G1ParScanExtRootClosure        only_scan_root_cl(_g1h, &pss, rp);
5019       G1ParScanMetadataClosure       only_scan_metadata_cl(_g1h, &pss, rp);
5020 
5021       G1ParScanAndMarkExtRootClosure scan_mark_root_cl(_g1h, &pss, rp);
5022       G1ParScanAndMarkMetadataClosure scan_mark_metadata_cl(_g1h, &pss, rp);
5023 
5024       bool only_young                 = _g1h->g1_policy()->gcs_are_young();
5025       G1KlassScanClosure              scan_mark_klasses_cl_s(&scan_mark_metadata_cl, false);
5026       G1KlassScanClosure              only_scan_klasses_cl_s(&only_scan_metadata_cl, only_young);
5027 
5028       OopClosure*                    scan_root_cl = &only_scan_root_cl;
5029       G1KlassScanClosure*            scan_klasses_cl = &only_scan_klasses_cl_s;
5030 
5031       if (_g1h->g1_policy()->during_initial_mark_pause()) {
5032         // We also need to mark copied objects.
5033         scan_root_cl = &scan_mark_root_cl;
5034         scan_klasses_cl = &scan_mark_klasses_cl_s;
5035       }
5036 
5037       G1ParPushHeapRSClosure          push_heap_rs_cl(_g1h, &pss);
5038 
5039       // Don't scan the scavengable methods in the code cache as part
5040       // of strong root scanning. The code roots that point into a
5041       // region in the collection set are scanned when we scan the
5042       // region's RSet.
5043       int so = SharedHeap::SO_AllClasses | SharedHeap::SO_Strings;
5044 
5045       pss.start_strong_roots();
5046       _g1h->g1_process_strong_roots(/* is scavenging */ true,
5047                                     SharedHeap::ScanningOption(so),
5048                                     scan_root_cl,
5049                                     &push_heap_rs_cl,
5050                                     scan_klasses_cl,
5051                                     worker_id);
5052       pss.end_strong_roots();
5053 
5054       {
5055         double start = os::elapsedTime();
5056         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
5057         evac.do_void();
5058         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
5059         double term_ms = pss.term_time()*1000.0;
5060         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
5061         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
5062       }
5063       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
5064       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
5065 
5066       if (ParallelGCVerbose) {
5067         MutexLocker x(stats_lock());
5068         pss.print_termination_stats(worker_id);
5069       }
5070 
5071       assert(pss.refs()->is_empty(), "should be empty");
5072 
5073       // Close the inner scope so that the ResourceMark and HandleMark
5074       // destructors are executed here and are included as part of the
5075       // "GC Worker Time".
5076     }
5077 
5078     double end_time_ms = os::elapsedTime() * 1000.0;
5079     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
5080   }
5081 };
5082 
5083 // *** Common G1 Evacuation Stuff
5084 
5085 // This method is run in a GC worker.
5086 
5087 void
5088 G1CollectedHeap::
5089 g1_process_strong_roots(bool is_scavenging,
5090                         ScanningOption so,
5091                         OopClosure* scan_non_heap_roots,
5092                         OopsInHeapRegionClosure* scan_rs,
5093                         G1KlassScanClosure* scan_klasses,
5094                         uint worker_i) {
5095 
5096   // First scan the strong roots
5097   double ext_roots_start = os::elapsedTime();
5098   double closure_app_time_sec = 0.0;
5099 
5100   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
5101 
5102   process_strong_roots(false, // no scoping; this is parallel code
5103                        so,
5104                        &buf_scan_non_heap_roots,
5105                        scan_klasses
5106                        );
5107 
5108   // Now the CM ref_processor roots.
5109   if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
5110     // We need to treat the discovered reference lists of the
5111     // concurrent mark ref processor as roots and keep entries
5112     // (which are added by the marking threads) on them live
5113     // until they can be processed at the end of marking.
5114     ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
5115   }
5116 
5117   // Finish up any enqueued closure apps (attributed as object copy time).
5118   buf_scan_non_heap_roots.done();
5119 
5120   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds();
5121 
5122   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
5123 
5124   double ext_root_time_ms =
5125     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
5126 
5127   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
5128 
5129   // During conc marking we have to filter the per-thread SATB buffers
5130   // to make sure we remove any oops into the CSet (which will show up
5131   // as implicitly live).
5132   double satb_filtering_ms = 0.0;
5133   if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
5134     if (mark_in_progress()) {
5135       double satb_filter_start = os::elapsedTime();
5136 
5137       JavaThread::satb_mark_queue_set().filter_thread_buffers();
5138 
5139       satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
5140     }
5141   }
5142   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
5143 
5144   // If this is an initial mark pause, and we're not scanning
5145   // the entire code cache, we need to mark the oops in the
5146   // strong code root lists for the regions that are not in
5147   // the collection set.
5148   // Note all threads participate in this set of root tasks.
5149   double mark_strong_code_roots_ms = 0.0;
5150   if (g1_policy()->during_initial_mark_pause() && !(so & SO_AllCodeCache)) {
5151     double mark_strong_roots_start = os::elapsedTime();
5152     mark_strong_code_roots(worker_i);
5153     mark_strong_code_roots_ms = (os::elapsedTime() - mark_strong_roots_start) * 1000.0;
5154   }
5155   g1_policy()->phase_times()->record_strong_code_root_mark_time(worker_i, mark_strong_code_roots_ms);
5156 
5157   // Now scan the complement of the collection set.
5158   CodeBlobToOopClosure eager_scan_code_roots(scan_non_heap_roots, true /* do_marking */);
5159   g1_rem_set()->oops_into_collection_set_do(scan_rs, &eager_scan_code_roots, worker_i);
5160 
5161   _process_strong_tasks->all_tasks_completed();
5162 }
5163 
5164 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
5165 private:
5166   BoolObjectClosure* _is_alive;
5167   int _initial_string_table_size;
5168   int _initial_symbol_table_size;
5169 
5170   bool  _process_strings;
5171   int _strings_processed;
5172   int _strings_removed;
5173 
5174   bool  _process_symbols;
5175   int _symbols_processed;
5176   int _symbols_removed;
5177 
5178   bool _do_in_parallel;
5179 public:
5180   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
5181     AbstractGangTask("Par String/Symbol table unlink"), _is_alive(is_alive),
5182     _do_in_parallel(G1CollectedHeap::use_parallel_gc_threads()),
5183     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
5184     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
5185 
5186     _initial_string_table_size = StringTable::the_table()->table_size();
5187     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
5188     if (process_strings) {
5189       StringTable::clear_parallel_claimed_index();
5190     }
5191     if (process_symbols) {
5192       SymbolTable::clear_parallel_claimed_index();
5193     }
5194   }
5195 
5196   ~G1StringSymbolTableUnlinkTask() {
5197     guarantee(!_process_strings || !_do_in_parallel || StringTable::parallel_claimed_index() >= _initial_string_table_size,
5198               err_msg("claim value %d after unlink less than initial string table size %d",
5199                       StringTable::parallel_claimed_index(), _initial_string_table_size));
5200     guarantee(!_process_symbols || !_do_in_parallel || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
5201               err_msg("claim value %d after unlink less than initial symbol table size %d",
5202                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
5203   }
5204 
5205   void work(uint worker_id) {
5206     if (_do_in_parallel) {
5207       int strings_processed = 0;
5208       int strings_removed = 0;
5209       int symbols_processed = 0;
5210       int symbols_removed = 0;
5211       if (_process_strings) {
5212         StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
5213         Atomic::add(strings_processed, &_strings_processed);
5214         Atomic::add(strings_removed, &_strings_removed);
5215       }
5216       if (_process_symbols) {
5217         SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
5218         Atomic::add(symbols_processed, &_symbols_processed);
5219         Atomic::add(symbols_removed, &_symbols_removed);
5220       }
5221     } else {
5222       if (_process_strings) {
5223         StringTable::unlink(_is_alive, &_strings_processed, &_strings_removed);
5224       }
5225       if (_process_symbols) {
5226         SymbolTable::unlink(&_symbols_processed, &_symbols_removed);
5227       }
5228     }
5229   }
5230 
5231   size_t strings_processed() const { return (size_t)_strings_processed; }
5232   size_t strings_removed()   const { return (size_t)_strings_removed; }
5233 
5234   size_t symbols_processed() const { return (size_t)_symbols_processed; }
5235   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
5236 };
5237 
5238 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5239                                                      bool process_strings, bool process_symbols) {
5240   uint n_workers = (G1CollectedHeap::use_parallel_gc_threads() ?
5241                    _g1h->workers()->active_workers() : 1);
5242 
5243   G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5244   if (G1CollectedHeap::use_parallel_gc_threads()) {
5245     set_par_threads(n_workers);
5246     workers()->run_task(&g1_unlink_task);
5247     set_par_threads(0);
5248   } else {
5249     g1_unlink_task.work(0);
5250   }
5251   if (G1TraceStringSymbolTableScrubbing) {
5252     gclog_or_tty->print_cr("Cleaned string and symbol table, "
5253                            "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
5254                            "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
5255                            g1_unlink_task.strings_processed(), g1_unlink_task.strings_removed(),
5256                            g1_unlink_task.symbols_processed(), g1_unlink_task.symbols_removed());
5257   }
5258 
5259   if (G1StringDedup::is_enabled()) {
5260     G1StringDedup::unlink(is_alive);
5261   }
5262 }
5263 
5264 class RedirtyLoggedCardTableEntryFastClosure : public CardTableEntryClosure {
5265 public:
5266   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
5267     *card_ptr = CardTableModRefBS::dirty_card_val();
5268     return true;
5269   }
5270 };
5271 
5272 void G1CollectedHeap::redirty_logged_cards() {
5273   guarantee(G1DeferredRSUpdate, "Must only be called when using deferred RS updates.");
5274   double redirty_logged_cards_start = os::elapsedTime();
5275 
5276   RedirtyLoggedCardTableEntryFastClosure redirty;
5277   dirty_card_queue_set().set_closure(&redirty);
5278   dirty_card_queue_set().apply_closure_to_all_completed_buffers();
5279 
5280   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5281   dcq.merge_bufferlists(&dirty_card_queue_set());
5282   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5283 
5284   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5285 }
5286 
5287 // Weak Reference Processing support
5288 
5289 // An always "is_alive" closure that is used to preserve referents.
5290 // If the object is non-null then it's alive.  Used in the preservation
5291 // of referent objects that are pointed to by reference objects
5292 // discovered by the CM ref processor.
5293 class G1AlwaysAliveClosure: public BoolObjectClosure {
5294   G1CollectedHeap* _g1;
5295 public:
5296   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5297   bool do_object_b(oop p) {
5298     if (p != NULL) {
5299       return true;
5300     }
5301     return false;
5302   }
5303 };
5304 
5305 bool G1STWIsAliveClosure::do_object_b(oop p) {
5306   // An object is reachable if it is outside the collection set,
5307   // or is inside and copied.
5308   return !_g1->obj_in_cs(p) || p->is_forwarded();
5309 }
5310 
5311 // Non Copying Keep Alive closure
5312 class G1KeepAliveClosure: public OopClosure {
5313   G1CollectedHeap* _g1;
5314 public:
5315   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5316   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5317   void do_oop(      oop* p) {
5318     oop obj = *p;
5319 
5320     if (_g1->obj_in_cs(obj)) {
5321       assert( obj->is_forwarded(), "invariant" );
5322       *p = obj->forwardee();
5323     }
5324   }
5325 };
5326 
5327 // Copying Keep Alive closure - can be called from both
5328 // serial and parallel code as long as different worker
5329 // threads utilize different G1ParScanThreadState instances
5330 // and different queues.
5331 
5332 class G1CopyingKeepAliveClosure: public OopClosure {
5333   G1CollectedHeap*         _g1h;
5334   OopClosure*              _copy_non_heap_obj_cl;
5335   OopsInHeapRegionClosure* _copy_metadata_obj_cl;
5336   G1ParScanThreadState*    _par_scan_state;
5337 
5338 public:
5339   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5340                             OopClosure* non_heap_obj_cl,
5341                             OopsInHeapRegionClosure* metadata_obj_cl,
5342                             G1ParScanThreadState* pss):
5343     _g1h(g1h),
5344     _copy_non_heap_obj_cl(non_heap_obj_cl),
5345     _copy_metadata_obj_cl(metadata_obj_cl),
5346     _par_scan_state(pss)
5347   {}
5348 
5349   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5350   virtual void do_oop(      oop* p) { do_oop_work(p); }
5351 
5352   template <class T> void do_oop_work(T* p) {
5353     oop obj = oopDesc::load_decode_heap_oop(p);
5354 
5355     if (_g1h->obj_in_cs(obj)) {
5356       // If the referent object has been forwarded (either copied
5357       // to a new location or to itself in the event of an
5358       // evacuation failure) then we need to update the reference
5359       // field and, if both reference and referent are in the G1
5360       // heap, update the RSet for the referent.
5361       //
5362       // If the referent has not been forwarded then we have to keep
5363       // it alive by policy. Therefore we have copy the referent.
5364       //
5365       // If the reference field is in the G1 heap then we can push
5366       // on the PSS queue. When the queue is drained (after each
5367       // phase of reference processing) the object and it's followers
5368       // will be copied, the reference field set to point to the
5369       // new location, and the RSet updated. Otherwise we need to
5370       // use the the non-heap or metadata closures directly to copy
5371       // the referent object and update the pointer, while avoiding
5372       // updating the RSet.
5373 
5374       if (_g1h->is_in_g1_reserved(p)) {
5375         _par_scan_state->push_on_queue(p);
5376       } else {
5377         assert(!ClassLoaderDataGraph::contains((address)p),
5378                err_msg("Otherwise need to call _copy_metadata_obj_cl->do_oop(p) "
5379                               PTR_FORMAT, p));
5380           _copy_non_heap_obj_cl->do_oop(p);
5381         }
5382       }
5383     }
5384 };
5385 
5386 // Serial drain queue closure. Called as the 'complete_gc'
5387 // closure for each discovered list in some of the
5388 // reference processing phases.
5389 
5390 class G1STWDrainQueueClosure: public VoidClosure {
5391 protected:
5392   G1CollectedHeap* _g1h;
5393   G1ParScanThreadState* _par_scan_state;
5394 
5395   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5396 
5397 public:
5398   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5399     _g1h(g1h),
5400     _par_scan_state(pss)
5401   { }
5402 
5403   void do_void() {
5404     G1ParScanThreadState* const pss = par_scan_state();
5405     pss->trim_queue();
5406   }
5407 };
5408 
5409 // Parallel Reference Processing closures
5410 
5411 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5412 // processing during G1 evacuation pauses.
5413 
5414 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5415 private:
5416   G1CollectedHeap*   _g1h;
5417   RefToScanQueueSet* _queues;
5418   FlexibleWorkGang*  _workers;
5419   int                _active_workers;
5420 
5421 public:
5422   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5423                         FlexibleWorkGang* workers,
5424                         RefToScanQueueSet *task_queues,
5425                         int n_workers) :
5426     _g1h(g1h),
5427     _queues(task_queues),
5428     _workers(workers),
5429     _active_workers(n_workers)
5430   {
5431     assert(n_workers > 0, "shouldn't call this otherwise");
5432   }
5433 
5434   // Executes the given task using concurrent marking worker threads.
5435   virtual void execute(ProcessTask& task);
5436   virtual void execute(EnqueueTask& task);
5437 };
5438 
5439 // Gang task for possibly parallel reference processing
5440 
5441 class G1STWRefProcTaskProxy: public AbstractGangTask {
5442   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5443   ProcessTask&     _proc_task;
5444   G1CollectedHeap* _g1h;
5445   RefToScanQueueSet *_task_queues;
5446   ParallelTaskTerminator* _terminator;
5447 
5448 public:
5449   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5450                      G1CollectedHeap* g1h,
5451                      RefToScanQueueSet *task_queues,
5452                      ParallelTaskTerminator* terminator) :
5453     AbstractGangTask("Process reference objects in parallel"),
5454     _proc_task(proc_task),
5455     _g1h(g1h),
5456     _task_queues(task_queues),
5457     _terminator(terminator)
5458   {}
5459 
5460   virtual void work(uint worker_id) {
5461     // The reference processing task executed by a single worker.
5462     ResourceMark rm;
5463     HandleMark   hm;
5464 
5465     G1STWIsAliveClosure is_alive(_g1h);
5466 
5467     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5468     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5469 
5470     pss.set_evac_failure_closure(&evac_failure_cl);
5471 
5472     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5473     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5474 
5475     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5476     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5477 
5478     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5479     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5480 
5481     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5482       // We also need to mark copied objects.
5483       copy_non_heap_cl = &copy_mark_non_heap_cl;
5484       copy_metadata_cl = &copy_mark_metadata_cl;
5485     }
5486 
5487     // Keep alive closure.
5488     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5489 
5490     // Complete GC closure
5491     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5492 
5493     // Call the reference processing task's work routine.
5494     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5495 
5496     // Note we cannot assert that the refs array is empty here as not all
5497     // of the processing tasks (specifically phase2 - pp2_work) execute
5498     // the complete_gc closure (which ordinarily would drain the queue) so
5499     // the queue may not be empty.
5500   }
5501 };
5502 
5503 // Driver routine for parallel reference processing.
5504 // Creates an instance of the ref processing gang
5505 // task and has the worker threads execute it.
5506 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5507   assert(_workers != NULL, "Need parallel worker threads.");
5508 
5509   ParallelTaskTerminator terminator(_active_workers, _queues);
5510   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5511 
5512   _g1h->set_par_threads(_active_workers);
5513   _workers->run_task(&proc_task_proxy);
5514   _g1h->set_par_threads(0);
5515 }
5516 
5517 // Gang task for parallel reference enqueueing.
5518 
5519 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5520   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5521   EnqueueTask& _enq_task;
5522 
5523 public:
5524   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5525     AbstractGangTask("Enqueue reference objects in parallel"),
5526     _enq_task(enq_task)
5527   { }
5528 
5529   virtual void work(uint worker_id) {
5530     _enq_task.work(worker_id);
5531   }
5532 };
5533 
5534 // Driver routine for parallel reference enqueueing.
5535 // Creates an instance of the ref enqueueing gang
5536 // task and has the worker threads execute it.
5537 
5538 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5539   assert(_workers != NULL, "Need parallel worker threads.");
5540 
5541   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5542 
5543   _g1h->set_par_threads(_active_workers);
5544   _workers->run_task(&enq_task_proxy);
5545   _g1h->set_par_threads(0);
5546 }
5547 
5548 // End of weak reference support closures
5549 
5550 // Abstract task used to preserve (i.e. copy) any referent objects
5551 // that are in the collection set and are pointed to by reference
5552 // objects discovered by the CM ref processor.
5553 
5554 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5555 protected:
5556   G1CollectedHeap* _g1h;
5557   RefToScanQueueSet      *_queues;
5558   ParallelTaskTerminator _terminator;
5559   uint _n_workers;
5560 
5561 public:
5562   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5563     AbstractGangTask("ParPreserveCMReferents"),
5564     _g1h(g1h),
5565     _queues(task_queues),
5566     _terminator(workers, _queues),
5567     _n_workers(workers)
5568   { }
5569 
5570   void work(uint worker_id) {
5571     ResourceMark rm;
5572     HandleMark   hm;
5573 
5574     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5575     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5576 
5577     pss.set_evac_failure_closure(&evac_failure_cl);
5578 
5579     assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5580 
5581 
5582     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5583     G1ParScanMetadataClosure       only_copy_metadata_cl(_g1h, &pss, NULL);
5584 
5585     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5586     G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(_g1h, &pss, NULL);
5587 
5588     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5589     OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5590 
5591     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5592       // We also need to mark copied objects.
5593       copy_non_heap_cl = &copy_mark_non_heap_cl;
5594       copy_metadata_cl = &copy_mark_metadata_cl;
5595     }
5596 
5597     // Is alive closure
5598     G1AlwaysAliveClosure always_alive(_g1h);
5599 
5600     // Copying keep alive closure. Applied to referent objects that need
5601     // to be copied.
5602     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, copy_metadata_cl, &pss);
5603 
5604     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5605 
5606     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5607     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5608 
5609     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5610     // So this must be true - but assert just in case someone decides to
5611     // change the worker ids.
5612     assert(0 <= worker_id && worker_id < limit, "sanity");
5613     assert(!rp->discovery_is_atomic(), "check this code");
5614 
5615     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5616     for (uint idx = worker_id; idx < limit; idx += stride) {
5617       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5618 
5619       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5620       while (iter.has_next()) {
5621         // Since discovery is not atomic for the CM ref processor, we
5622         // can see some null referent objects.
5623         iter.load_ptrs(DEBUG_ONLY(true));
5624         oop ref = iter.obj();
5625 
5626         // This will filter nulls.
5627         if (iter.is_referent_alive()) {
5628           iter.make_referent_alive();
5629         }
5630         iter.move_to_next();
5631       }
5632     }
5633 
5634     // Drain the queue - which may cause stealing
5635     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5636     drain_queue.do_void();
5637     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5638     assert(pss.refs()->is_empty(), "should be");
5639   }
5640 };
5641 
5642 // Weak Reference processing during an evacuation pause (part 1).
5643 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5644   double ref_proc_start = os::elapsedTime();
5645 
5646   ReferenceProcessor* rp = _ref_processor_stw;
5647   assert(rp->discovery_enabled(), "should have been enabled");
5648 
5649   // Any reference objects, in the collection set, that were 'discovered'
5650   // by the CM ref processor should have already been copied (either by
5651   // applying the external root copy closure to the discovered lists, or
5652   // by following an RSet entry).
5653   //
5654   // But some of the referents, that are in the collection set, that these
5655   // reference objects point to may not have been copied: the STW ref
5656   // processor would have seen that the reference object had already
5657   // been 'discovered' and would have skipped discovering the reference,
5658   // but would not have treated the reference object as a regular oop.
5659   // As a result the copy closure would not have been applied to the
5660   // referent object.
5661   //
5662   // We need to explicitly copy these referent objects - the references
5663   // will be processed at the end of remarking.
5664   //
5665   // We also need to do this copying before we process the reference
5666   // objects discovered by the STW ref processor in case one of these
5667   // referents points to another object which is also referenced by an
5668   // object discovered by the STW ref processor.
5669 
5670   assert(!G1CollectedHeap::use_parallel_gc_threads() ||
5671            no_of_gc_workers == workers()->active_workers(),
5672            "Need to reset active GC workers");
5673 
5674   set_par_threads(no_of_gc_workers);
5675   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5676                                                  no_of_gc_workers,
5677                                                  _task_queues);
5678 
5679   if (G1CollectedHeap::use_parallel_gc_threads()) {
5680     workers()->run_task(&keep_cm_referents);
5681   } else {
5682     keep_cm_referents.work(0);
5683   }
5684 
5685   set_par_threads(0);
5686 
5687   // Closure to test whether a referent is alive.
5688   G1STWIsAliveClosure is_alive(this);
5689 
5690   // Even when parallel reference processing is enabled, the processing
5691   // of JNI refs is serial and performed serially by the current thread
5692   // rather than by a worker. The following PSS will be used for processing
5693   // JNI refs.
5694 
5695   // Use only a single queue for this PSS.
5696   G1ParScanThreadState            pss(this, 0, NULL);
5697 
5698   // We do not embed a reference processor in the copying/scanning
5699   // closures while we're actually processing the discovered
5700   // reference objects.
5701   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5702 
5703   pss.set_evac_failure_closure(&evac_failure_cl);
5704 
5705   assert(pss.refs()->is_empty(), "pre-condition");
5706 
5707   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5708   G1ParScanMetadataClosure       only_copy_metadata_cl(this, &pss, NULL);
5709 
5710   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5711   G1ParScanAndMarkMetadataClosure copy_mark_metadata_cl(this, &pss, NULL);
5712 
5713   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5714   OopsInHeapRegionClosure*       copy_metadata_cl = &only_copy_metadata_cl;
5715 
5716   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5717     // We also need to mark copied objects.
5718     copy_non_heap_cl = &copy_mark_non_heap_cl;
5719     copy_metadata_cl = &copy_mark_metadata_cl;
5720   }
5721 
5722   // Keep alive closure.
5723   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, copy_metadata_cl, &pss);
5724 
5725   // Serial Complete GC closure
5726   G1STWDrainQueueClosure drain_queue(this, &pss);
5727 
5728   // Setup the soft refs policy...
5729   rp->setup_policy(false);
5730 
5731   ReferenceProcessorStats stats;
5732   if (!rp->processing_is_mt()) {
5733     // Serial reference processing...
5734     stats = rp->process_discovered_references(&is_alive,
5735                                               &keep_alive,
5736                                               &drain_queue,
5737                                               NULL,
5738                                               _gc_timer_stw);
5739   } else {
5740     // Parallel reference processing
5741     assert(rp->num_q() == no_of_gc_workers, "sanity");
5742     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5743 
5744     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5745     stats = rp->process_discovered_references(&is_alive,
5746                                               &keep_alive,
5747                                               &drain_queue,
5748                                               &par_task_executor,
5749                                               _gc_timer_stw);
5750   }
5751 
5752   _gc_tracer_stw->report_gc_reference_stats(stats);
5753 
5754   // We have completed copying any necessary live referent objects.
5755   assert(pss.refs()->is_empty(), "both queue and overflow should be empty");
5756 
5757   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5758   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5759 }
5760 
5761 // Weak Reference processing during an evacuation pause (part 2).
5762 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5763   double ref_enq_start = os::elapsedTime();
5764 
5765   ReferenceProcessor* rp = _ref_processor_stw;
5766   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5767 
5768   // Now enqueue any remaining on the discovered lists on to
5769   // the pending list.
5770   if (!rp->processing_is_mt()) {
5771     // Serial reference processing...
5772     rp->enqueue_discovered_references();
5773   } else {
5774     // Parallel reference enqueueing
5775 
5776     assert(no_of_gc_workers == workers()->active_workers(),
5777            "Need to reset active workers");
5778     assert(rp->num_q() == no_of_gc_workers, "sanity");
5779     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5780 
5781     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5782     rp->enqueue_discovered_references(&par_task_executor);
5783   }
5784 
5785   rp->verify_no_references_recorded();
5786   assert(!rp->discovery_enabled(), "should have been disabled");
5787 
5788   // FIXME
5789   // CM's reference processing also cleans up the string and symbol tables.
5790   // Should we do that here also? We could, but it is a serial operation
5791   // and could significantly increase the pause time.
5792 
5793   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5794   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5795 }
5796 
5797 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5798   _expand_heap_after_alloc_failure = true;
5799   _evacuation_failed = false;
5800 
5801   // Should G1EvacuationFailureALot be in effect for this GC?
5802   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5803 
5804   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5805 
5806   // Disable the hot card cache.
5807   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5808   hot_card_cache->reset_hot_cache_claimed_index();
5809   hot_card_cache->set_use_cache(false);
5810 
5811   uint n_workers;
5812   if (G1CollectedHeap::use_parallel_gc_threads()) {
5813     n_workers =
5814       AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5815                                      workers()->active_workers(),
5816                                      Threads::number_of_non_daemon_threads());
5817     assert(UseDynamicNumberOfGCThreads ||
5818            n_workers == workers()->total_workers(),
5819            "If not dynamic should be using all the  workers");
5820     workers()->set_active_workers(n_workers);
5821     set_par_threads(n_workers);
5822   } else {
5823     assert(n_par_threads() == 0,
5824            "Should be the original non-parallel value");
5825     n_workers = 1;
5826   }
5827 
5828   G1ParTask g1_par_task(this, _task_queues);
5829 
5830   init_for_evac_failure(NULL);
5831 
5832   rem_set()->prepare_for_younger_refs_iterate(true);
5833 
5834   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5835   double start_par_time_sec = os::elapsedTime();
5836   double end_par_time_sec;
5837 
5838   {
5839     StrongRootsScope srs(this);
5840 
5841     if (G1CollectedHeap::use_parallel_gc_threads()) {
5842       // The individual threads will set their evac-failure closures.
5843       if (ParallelGCVerbose) G1ParScanThreadState::print_termination_stats_hdr();
5844       // These tasks use ShareHeap::_process_strong_tasks
5845       assert(UseDynamicNumberOfGCThreads ||
5846              workers()->active_workers() == workers()->total_workers(),
5847              "If not dynamic should be using all the  workers");
5848       workers()->run_task(&g1_par_task);
5849     } else {
5850       g1_par_task.set_for_termination(n_workers);
5851       g1_par_task.work(0);
5852     }
5853     end_par_time_sec = os::elapsedTime();
5854 
5855     // Closing the inner scope will execute the destructor
5856     // for the StrongRootsScope object. We record the current
5857     // elapsed time before closing the scope so that time
5858     // taken for the SRS destructor is NOT included in the
5859     // reported parallel time.
5860   }
5861 
5862   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5863   g1_policy()->phase_times()->record_par_time(par_time_ms);
5864 
5865   double code_root_fixup_time_ms =
5866         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5867   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5868 
5869   set_par_threads(0);
5870 
5871   // Process any discovered reference objects - we have
5872   // to do this _before_ we retire the GC alloc regions
5873   // as we may have to copy some 'reachable' referent
5874   // objects (and their reachable sub-graphs) that were
5875   // not copied during the pause.
5876   process_discovered_references(n_workers);
5877 
5878   // Weak root processing.
5879   {
5880     G1STWIsAliveClosure is_alive(this);
5881     G1KeepAliveClosure keep_alive(this);
5882     JNIHandles::weak_oops_do(&is_alive, &keep_alive);
5883     if (G1StringDedup::is_enabled()) {
5884       G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5885     }
5886   }
5887 
5888   release_gc_alloc_regions(n_workers, evacuation_info);
5889   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5890 
5891   // Reset and re-enable the hot card cache.
5892   // Note the counts for the cards in the regions in the
5893   // collection set are reset when the collection set is freed.
5894   hot_card_cache->reset_hot_cache();
5895   hot_card_cache->set_use_cache(true);
5896 
5897   // Migrate the strong code roots attached to each region in
5898   // the collection set. Ideally we would like to do this
5899   // after we have finished the scanning/evacuation of the
5900   // strong code roots for a particular heap region.
5901   migrate_strong_code_roots();
5902 
5903   purge_code_root_memory();
5904 
5905   if (g1_policy()->during_initial_mark_pause()) {
5906     // Reset the claim values set during marking the strong code roots
5907     reset_heap_region_claim_values();
5908   }
5909 
5910   finalize_for_evac_failure();
5911 
5912   if (evacuation_failed()) {
5913     remove_self_forwarding_pointers();
5914 
5915     // Reset the G1EvacuationFailureALot counters and flags
5916     // Note: the values are reset only when an actual
5917     // evacuation failure occurs.
5918     NOT_PRODUCT(reset_evacuation_should_fail();)
5919   }
5920 
5921   // Enqueue any remaining references remaining on the STW
5922   // reference processor's discovered lists. We need to do
5923   // this after the card table is cleaned (and verified) as
5924   // the act of enqueueing entries on to the pending list
5925   // will log these updates (and dirty their associated
5926   // cards). We need these updates logged to update any
5927   // RSets.
5928   enqueue_discovered_references(n_workers);
5929 
5930   if (G1DeferredRSUpdate) {
5931     redirty_logged_cards();
5932   }
5933   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5934 }
5935 
5936 void G1CollectedHeap::free_region(HeapRegion* hr,
5937                                   FreeRegionList* free_list,
5938                                   bool par,
5939                                   bool locked) {
5940   assert(!hr->isHumongous(), "this is only for non-humongous regions");
5941   assert(!hr->is_empty(), "the region should not be empty");
5942   assert(free_list != NULL, "pre-condition");
5943 
5944   // Clear the card counts for this region.
5945   // Note: we only need to do this if the region is not young
5946   // (since we don't refine cards in young regions).
5947   if (!hr->is_young()) {
5948     _cg1r->hot_card_cache()->reset_card_counts(hr);
5949   }
5950   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5951   free_list->add_ordered(hr);
5952 }
5953 
5954 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5955                                      FreeRegionList* free_list,
5956                                      bool par) {
5957   assert(hr->startsHumongous(), "this is only for starts humongous regions");
5958   assert(free_list != NULL, "pre-condition");
5959 
5960   size_t hr_capacity = hr->capacity();
5961   // We need to read this before we make the region non-humongous,
5962   // otherwise the information will be gone.
5963   uint last_index = hr->last_hc_index();
5964   hr->set_notHumongous();
5965   free_region(hr, free_list, par);
5966 
5967   uint i = hr->hrs_index() + 1;
5968   while (i < last_index) {
5969     HeapRegion* curr_hr = region_at(i);
5970     assert(curr_hr->continuesHumongous(), "invariant");
5971     curr_hr->set_notHumongous();
5972     free_region(curr_hr, free_list, par);
5973     i += 1;
5974   }
5975 }
5976 
5977 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5978                                        const HeapRegionSetCount& humongous_regions_removed) {
5979   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5980     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5981     _old_set.bulk_remove(old_regions_removed);
5982     _humongous_set.bulk_remove(humongous_regions_removed);
5983   }
5984 
5985 }
5986 
5987 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5988   assert(list != NULL, "list can't be null");
5989   if (!list->is_empty()) {
5990     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5991     _free_list.add_ordered(list);
5992   }
5993 }
5994 
5995 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5996   assert(_summary_bytes_used >= bytes,
5997          err_msg("invariant: _summary_bytes_used: "SIZE_FORMAT" should be >= bytes: "SIZE_FORMAT,
5998                   _summary_bytes_used, bytes));
5999   _summary_bytes_used -= bytes;
6000 }
6001 
6002 class G1ParCleanupCTTask : public AbstractGangTask {
6003   G1SATBCardTableModRefBS* _ct_bs;
6004   G1CollectedHeap* _g1h;
6005   HeapRegion* volatile _su_head;
6006 public:
6007   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
6008                      G1CollectedHeap* g1h) :
6009     AbstractGangTask("G1 Par Cleanup CT Task"),
6010     _ct_bs(ct_bs), _g1h(g1h) { }
6011 
6012   void work(uint worker_id) {
6013     HeapRegion* r;
6014     while (r = _g1h->pop_dirty_cards_region()) {
6015       clear_cards(r);
6016     }
6017   }
6018 
6019   void clear_cards(HeapRegion* r) {
6020     // Cards of the survivors should have already been dirtied.
6021     if (!r->is_survivor()) {
6022       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
6023     }
6024   }
6025 };
6026 
6027 #ifndef PRODUCT
6028 class G1VerifyCardTableCleanup: public HeapRegionClosure {
6029   G1CollectedHeap* _g1h;
6030   G1SATBCardTableModRefBS* _ct_bs;
6031 public:
6032   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
6033     : _g1h(g1h), _ct_bs(ct_bs) { }
6034   virtual bool doHeapRegion(HeapRegion* r) {
6035     if (r->is_survivor()) {
6036       _g1h->verify_dirty_region(r);
6037     } else {
6038       _g1h->verify_not_dirty_region(r);
6039     }
6040     return false;
6041   }
6042 };
6043 
6044 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
6045   // All of the region should be clean.
6046   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6047   MemRegion mr(hr->bottom(), hr->end());
6048   ct_bs->verify_not_dirty_region(mr);
6049 }
6050 
6051 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
6052   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
6053   // dirty allocated blocks as they allocate them. The thread that
6054   // retires each region and replaces it with a new one will do a
6055   // maximal allocation to fill in [pre_dummy_top(),end()] but will
6056   // not dirty that area (one less thing to have to do while holding
6057   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
6058   // is dirty.
6059   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6060   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
6061   if (hr->is_young()) {
6062     ct_bs->verify_g1_young_region(mr);
6063   } else {
6064     ct_bs->verify_dirty_region(mr);
6065   }
6066 }
6067 
6068 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
6069   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6070   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
6071     verify_dirty_region(hr);
6072   }
6073 }
6074 
6075 void G1CollectedHeap::verify_dirty_young_regions() {
6076   verify_dirty_young_list(_young_list->first_region());
6077 }
6078 #endif
6079 
6080 void G1CollectedHeap::cleanUpCardTable() {
6081   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6082   double start = os::elapsedTime();
6083 
6084   {
6085     // Iterate over the dirty cards region list.
6086     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6087 
6088     if (G1CollectedHeap::use_parallel_gc_threads()) {
6089       set_par_threads();
6090       workers()->run_task(&cleanup_task);
6091       set_par_threads(0);
6092     } else {
6093       while (_dirty_cards_region_list) {
6094         HeapRegion* r = _dirty_cards_region_list;
6095         cleanup_task.clear_cards(r);
6096         _dirty_cards_region_list = r->get_next_dirty_cards_region();
6097         if (_dirty_cards_region_list == r) {
6098           // The last region.
6099           _dirty_cards_region_list = NULL;
6100         }
6101         r->set_next_dirty_cards_region(NULL);
6102       }
6103     }
6104 #ifndef PRODUCT
6105     if (G1VerifyCTCleanup || VerifyAfterGC) {
6106       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6107       heap_region_iterate(&cleanup_verifier);
6108     }
6109 #endif
6110   }
6111 
6112   double elapsed = os::elapsedTime() - start;
6113   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6114 }
6115 
6116 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6117   size_t pre_used = 0;
6118   FreeRegionList local_free_list("Local List for CSet Freeing");
6119 
6120   double young_time_ms     = 0.0;
6121   double non_young_time_ms = 0.0;
6122 
6123   // Since the collection set is a superset of the the young list,
6124   // all we need to do to clear the young list is clear its
6125   // head and length, and unlink any young regions in the code below
6126   _young_list->clear();
6127 
6128   G1CollectorPolicy* policy = g1_policy();
6129 
6130   double start_sec = os::elapsedTime();
6131   bool non_young = true;
6132 
6133   HeapRegion* cur = cs_head;
6134   int age_bound = -1;
6135   size_t rs_lengths = 0;
6136 
6137   while (cur != NULL) {
6138     assert(!is_on_master_free_list(cur), "sanity");
6139     if (non_young) {
6140       if (cur->is_young()) {
6141         double end_sec = os::elapsedTime();
6142         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6143         non_young_time_ms += elapsed_ms;
6144 
6145         start_sec = os::elapsedTime();
6146         non_young = false;
6147       }
6148     } else {
6149       if (!cur->is_young()) {
6150         double end_sec = os::elapsedTime();
6151         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6152         young_time_ms += elapsed_ms;
6153 
6154         start_sec = os::elapsedTime();
6155         non_young = true;
6156       }
6157     }
6158 
6159     rs_lengths += cur->rem_set()->occupied_locked();
6160 
6161     HeapRegion* next = cur->next_in_collection_set();
6162     assert(cur->in_collection_set(), "bad CS");
6163     cur->set_next_in_collection_set(NULL);
6164     cur->set_in_collection_set(false);
6165 
6166     if (cur->is_young()) {
6167       int index = cur->young_index_in_cset();
6168       assert(index != -1, "invariant");
6169       assert((uint) index < policy->young_cset_region_length(), "invariant");
6170       size_t words_survived = _surviving_young_words[index];
6171       cur->record_surv_words_in_group(words_survived);
6172 
6173       // At this point the we have 'popped' cur from the collection set
6174       // (linked via next_in_collection_set()) but it is still in the
6175       // young list (linked via next_young_region()). Clear the
6176       // _next_young_region field.
6177       cur->set_next_young_region(NULL);
6178     } else {
6179       int index = cur->young_index_in_cset();
6180       assert(index == -1, "invariant");
6181     }
6182 
6183     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6184             (!cur->is_young() && cur->young_index_in_cset() == -1),
6185             "invariant" );
6186 
6187     if (!cur->evacuation_failed()) {
6188       MemRegion used_mr = cur->used_region();
6189 
6190       // And the region is empty.
6191       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6192       pre_used += cur->used();
6193       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6194     } else {
6195       cur->uninstall_surv_rate_group();
6196       if (cur->is_young()) {
6197         cur->set_young_index_in_cset(-1);
6198       }
6199       cur->set_not_young();
6200       cur->set_evacuation_failed(false);
6201       // The region is now considered to be old.
6202       _old_set.add(cur);
6203       evacuation_info.increment_collectionset_used_after(cur->used());
6204     }
6205     cur = next;
6206   }
6207 
6208   evacuation_info.set_regions_freed(local_free_list.length());
6209   policy->record_max_rs_lengths(rs_lengths);
6210   policy->cset_regions_freed();
6211 
6212   double end_sec = os::elapsedTime();
6213   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6214 
6215   if (non_young) {
6216     non_young_time_ms += elapsed_ms;
6217   } else {
6218     young_time_ms += elapsed_ms;
6219   }
6220 
6221   prepend_to_freelist(&local_free_list);
6222   decrement_summary_bytes(pre_used);
6223   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6224   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6225 }
6226 
6227 // This routine is similar to the above but does not record
6228 // any policy statistics or update free lists; we are abandoning
6229 // the current incremental collection set in preparation of a
6230 // full collection. After the full GC we will start to build up
6231 // the incremental collection set again.
6232 // This is only called when we're doing a full collection
6233 // and is immediately followed by the tearing down of the young list.
6234 
6235 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6236   HeapRegion* cur = cs_head;
6237 
6238   while (cur != NULL) {
6239     HeapRegion* next = cur->next_in_collection_set();
6240     assert(cur->in_collection_set(), "bad CS");
6241     cur->set_next_in_collection_set(NULL);
6242     cur->set_in_collection_set(false);
6243     cur->set_young_index_in_cset(-1);
6244     cur = next;
6245   }
6246 }
6247 
6248 void G1CollectedHeap::set_free_regions_coming() {
6249   if (G1ConcRegionFreeingVerbose) {
6250     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6251                            "setting free regions coming");
6252   }
6253 
6254   assert(!free_regions_coming(), "pre-condition");
6255   _free_regions_coming = true;
6256 }
6257 
6258 void G1CollectedHeap::reset_free_regions_coming() {
6259   assert(free_regions_coming(), "pre-condition");
6260 
6261   {
6262     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6263     _free_regions_coming = false;
6264     SecondaryFreeList_lock->notify_all();
6265   }
6266 
6267   if (G1ConcRegionFreeingVerbose) {
6268     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6269                            "reset free regions coming");
6270   }
6271 }
6272 
6273 void G1CollectedHeap::wait_while_free_regions_coming() {
6274   // Most of the time we won't have to wait, so let's do a quick test
6275   // first before we take the lock.
6276   if (!free_regions_coming()) {
6277     return;
6278   }
6279 
6280   if (G1ConcRegionFreeingVerbose) {
6281     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6282                            "waiting for free regions");
6283   }
6284 
6285   {
6286     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6287     while (free_regions_coming()) {
6288       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6289     }
6290   }
6291 
6292   if (G1ConcRegionFreeingVerbose) {
6293     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6294                            "done waiting for free regions");
6295   }
6296 }
6297 
6298 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6299   assert(heap_lock_held_for_gc(),
6300               "the heap lock should already be held by or for this thread");
6301   _young_list->push_region(hr);
6302 }
6303 
6304 class NoYoungRegionsClosure: public HeapRegionClosure {
6305 private:
6306   bool _success;
6307 public:
6308   NoYoungRegionsClosure() : _success(true) { }
6309   bool doHeapRegion(HeapRegion* r) {
6310     if (r->is_young()) {
6311       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6312                              r->bottom(), r->end());
6313       _success = false;
6314     }
6315     return false;
6316   }
6317   bool success() { return _success; }
6318 };
6319 
6320 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6321   bool ret = _young_list->check_list_empty(check_sample);
6322 
6323   if (check_heap) {
6324     NoYoungRegionsClosure closure;
6325     heap_region_iterate(&closure);
6326     ret = ret && closure.success();
6327   }
6328 
6329   return ret;
6330 }
6331 
6332 class TearDownRegionSetsClosure : public HeapRegionClosure {
6333 private:
6334   HeapRegionSet *_old_set;
6335 
6336 public:
6337   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6338 
6339   bool doHeapRegion(HeapRegion* r) {
6340     if (r->is_empty()) {
6341       // We ignore empty regions, we'll empty the free list afterwards
6342     } else if (r->is_young()) {
6343       // We ignore young regions, we'll empty the young list afterwards
6344     } else if (r->isHumongous()) {
6345       // We ignore humongous regions, we're not tearing down the
6346       // humongous region set
6347     } else {
6348       // The rest should be old
6349       _old_set->remove(r);
6350     }
6351     return false;
6352   }
6353 
6354   ~TearDownRegionSetsClosure() {
6355     assert(_old_set->is_empty(), "post-condition");
6356   }
6357 };
6358 
6359 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6360   assert_at_safepoint(true /* should_be_vm_thread */);
6361 
6362   if (!free_list_only) {
6363     TearDownRegionSetsClosure cl(&_old_set);
6364     heap_region_iterate(&cl);
6365 
6366     // Note that emptying the _young_list is postponed and instead done as
6367     // the first step when rebuilding the regions sets again. The reason for
6368     // this is that during a full GC string deduplication needs to know if
6369     // a collected region was young or old when the full GC was initiated.
6370   }
6371   _free_list.remove_all();
6372 }
6373 
6374 class RebuildRegionSetsClosure : public HeapRegionClosure {
6375 private:
6376   bool            _free_list_only;
6377   HeapRegionSet*   _old_set;
6378   FreeRegionList* _free_list;
6379   size_t          _total_used;
6380 
6381 public:
6382   RebuildRegionSetsClosure(bool free_list_only,
6383                            HeapRegionSet* old_set, FreeRegionList* free_list) :
6384     _free_list_only(free_list_only),
6385     _old_set(old_set), _free_list(free_list), _total_used(0) {
6386     assert(_free_list->is_empty(), "pre-condition");
6387     if (!free_list_only) {
6388       assert(_old_set->is_empty(), "pre-condition");
6389     }
6390   }
6391 
6392   bool doHeapRegion(HeapRegion* r) {
6393     if (r->continuesHumongous()) {
6394       return false;
6395     }
6396 
6397     if (r->is_empty()) {
6398       // Add free regions to the free list
6399       _free_list->add_as_tail(r);
6400     } else if (!_free_list_only) {
6401       assert(!r->is_young(), "we should not come across young regions");
6402 
6403       if (r->isHumongous()) {
6404         // We ignore humongous regions, we left the humongous set unchanged
6405       } else {
6406         // The rest should be old, add them to the old set
6407         _old_set->add(r);
6408       }
6409       _total_used += r->used();
6410     }
6411 
6412     return false;
6413   }
6414 
6415   size_t total_used() {
6416     return _total_used;
6417   }
6418 };
6419 
6420 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6421   assert_at_safepoint(true /* should_be_vm_thread */);
6422 
6423   if (!free_list_only) {
6424     _young_list->empty_list();
6425   }
6426 
6427   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_free_list);
6428   heap_region_iterate(&cl);
6429 
6430   if (!free_list_only) {
6431     _summary_bytes_used = cl.total_used();
6432   }
6433   assert(_summary_bytes_used == recalculate_used(),
6434          err_msg("inconsistent _summary_bytes_used, "
6435                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6436                  _summary_bytes_used, recalculate_used()));
6437 }
6438 
6439 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6440   _refine_cte_cl->set_concurrent(concurrent);
6441 }
6442 
6443 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6444   HeapRegion* hr = heap_region_containing(p);
6445   if (hr == NULL) {
6446     return false;
6447   } else {
6448     return hr->is_in(p);
6449   }
6450 }
6451 
6452 // Methods for the mutator alloc region
6453 
6454 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6455                                                       bool force) {
6456   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6457   assert(!force || g1_policy()->can_expand_young_list(),
6458          "if force is true we should be able to expand the young list");
6459   bool young_list_full = g1_policy()->is_young_list_full();
6460   if (force || !young_list_full) {
6461     HeapRegion* new_alloc_region = new_region(word_size,
6462                                               false /* is_old */,
6463                                               false /* do_expand */);
6464     if (new_alloc_region != NULL) {
6465       set_region_short_lived_locked(new_alloc_region);
6466       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6467       return new_alloc_region;
6468     }
6469   }
6470   return NULL;
6471 }
6472 
6473 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6474                                                   size_t allocated_bytes) {
6475   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6476   assert(alloc_region->is_young(), "all mutator alloc regions should be young");
6477 
6478   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6479   _summary_bytes_used += allocated_bytes;
6480   _hr_printer.retire(alloc_region);
6481   // We update the eden sizes here, when the region is retired,
6482   // instead of when it's allocated, since this is the point that its
6483   // used space has been recored in _summary_bytes_used.
6484   g1mm()->update_eden_size();
6485 }
6486 
6487 HeapRegion* MutatorAllocRegion::allocate_new_region(size_t word_size,
6488                                                     bool force) {
6489   return _g1h->new_mutator_alloc_region(word_size, force);
6490 }
6491 
6492 void G1CollectedHeap::set_par_threads() {
6493   // Don't change the number of workers.  Use the value previously set
6494   // in the workgroup.
6495   assert(G1CollectedHeap::use_parallel_gc_threads(), "shouldn't be here otherwise");
6496   uint n_workers = workers()->active_workers();
6497   assert(UseDynamicNumberOfGCThreads ||
6498            n_workers == workers()->total_workers(),
6499       "Otherwise should be using the total number of workers");
6500   if (n_workers == 0) {
6501     assert(false, "Should have been set in prior evacuation pause.");
6502     n_workers = ParallelGCThreads;
6503     workers()->set_active_workers(n_workers);
6504   }
6505   set_par_threads(n_workers);
6506 }
6507 
6508 void MutatorAllocRegion::retire_region(HeapRegion* alloc_region,
6509                                        size_t allocated_bytes) {
6510   _g1h->retire_mutator_alloc_region(alloc_region, allocated_bytes);
6511 }
6512 
6513 // Methods for the GC alloc regions
6514 
6515 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6516                                                  uint count,
6517                                                  GCAllocPurpose ap) {
6518   assert(FreeList_lock->owned_by_self(), "pre-condition");
6519 
6520   if (count < g1_policy()->max_regions(ap)) {
6521     bool survivor = (ap == GCAllocForSurvived);
6522     HeapRegion* new_alloc_region = new_region(word_size,
6523                                               !survivor,
6524                                               true /* do_expand */);
6525     if (new_alloc_region != NULL) {
6526       // We really only need to do this for old regions given that we
6527       // should never scan survivors. But it doesn't hurt to do it
6528       // for survivors too.
6529       new_alloc_region->set_saved_mark();
6530       if (survivor) {
6531         new_alloc_region->set_survivor();
6532         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6533       } else {
6534         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6535       }
6536       bool during_im = g1_policy()->during_initial_mark_pause();
6537       new_alloc_region->note_start_of_copying(during_im);
6538       return new_alloc_region;
6539     } else {
6540       g1_policy()->note_alloc_region_limit_reached(ap);
6541     }
6542   }
6543   return NULL;
6544 }
6545 
6546 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6547                                              size_t allocated_bytes,
6548                                              GCAllocPurpose ap) {
6549   bool during_im = g1_policy()->during_initial_mark_pause();
6550   alloc_region->note_end_of_copying(during_im);
6551   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6552   if (ap == GCAllocForSurvived) {
6553     young_list()->add_survivor_region(alloc_region);
6554   } else {
6555     _old_set.add(alloc_region);
6556   }
6557   _hr_printer.retire(alloc_region);
6558 }
6559 
6560 HeapRegion* SurvivorGCAllocRegion::allocate_new_region(size_t word_size,
6561                                                        bool force) {
6562   assert(!force, "not supported for GC alloc regions");
6563   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForSurvived);
6564 }
6565 
6566 void SurvivorGCAllocRegion::retire_region(HeapRegion* alloc_region,
6567                                           size_t allocated_bytes) {
6568   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6569                                GCAllocForSurvived);
6570 }
6571 
6572 HeapRegion* OldGCAllocRegion::allocate_new_region(size_t word_size,
6573                                                   bool force) {
6574   assert(!force, "not supported for GC alloc regions");
6575   return _g1h->new_gc_alloc_region(word_size, count(), GCAllocForTenured);
6576 }
6577 
6578 void OldGCAllocRegion::retire_region(HeapRegion* alloc_region,
6579                                      size_t allocated_bytes) {
6580   _g1h->retire_gc_alloc_region(alloc_region, allocated_bytes,
6581                                GCAllocForTenured);
6582 }
6583 // Heap region set verification
6584 
6585 class VerifyRegionListsClosure : public HeapRegionClosure {
6586 private:
6587   HeapRegionSet*   _old_set;
6588   HeapRegionSet*   _humongous_set;
6589   FreeRegionList*  _free_list;
6590 
6591 public:
6592   HeapRegionSetCount _old_count;
6593   HeapRegionSetCount _humongous_count;
6594   HeapRegionSetCount _free_count;
6595 
6596   VerifyRegionListsClosure(HeapRegionSet* old_set,
6597                            HeapRegionSet* humongous_set,
6598                            FreeRegionList* free_list) :
6599     _old_set(old_set), _humongous_set(humongous_set), _free_list(free_list),
6600     _old_count(), _humongous_count(), _free_count(){ }
6601 
6602   bool doHeapRegion(HeapRegion* hr) {
6603     if (hr->continuesHumongous()) {
6604       return false;
6605     }
6606 
6607     if (hr->is_young()) {
6608       // TODO
6609     } else if (hr->startsHumongous()) {
6610       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrs_index()));
6611       _humongous_count.increment(1u, hr->capacity());
6612     } else if (hr->is_empty()) {
6613       assert(hr->containing_set() == _free_list, err_msg("Heap region %u is empty but not on the free list.", hr->hrs_index()));
6614       _free_count.increment(1u, hr->capacity());
6615     } else {
6616       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrs_index()));
6617       _old_count.increment(1u, hr->capacity());
6618     }
6619     return false;
6620   }
6621 
6622   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, FreeRegionList* free_list) {
6623     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6624     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6625         old_set->total_capacity_bytes(), _old_count.capacity()));
6626 
6627     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6628     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6629         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6630 
6631     guarantee(free_list->length() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->length(), _free_count.length()));
6632     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6633         free_list->total_capacity_bytes(), _free_count.capacity()));
6634   }
6635 };
6636 
6637 HeapRegion* G1CollectedHeap::new_heap_region(uint hrs_index,
6638                                              HeapWord* bottom) {
6639   HeapWord* end = bottom + HeapRegion::GrainWords;
6640   MemRegion mr(bottom, end);
6641   assert(_g1_reserved.contains(mr), "invariant");
6642   // This might return NULL if the allocation fails
6643   return new HeapRegion(hrs_index, _bot_shared, mr);
6644 }
6645 
6646 void G1CollectedHeap::verify_region_sets() {
6647   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6648 
6649   // First, check the explicit lists.
6650   _free_list.verify_list();
6651   {
6652     // Given that a concurrent operation might be adding regions to
6653     // the secondary free list we have to take the lock before
6654     // verifying it.
6655     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6656     _secondary_free_list.verify_list();
6657   }
6658 
6659   // If a concurrent region freeing operation is in progress it will
6660   // be difficult to correctly attributed any free regions we come
6661   // across to the correct free list given that they might belong to
6662   // one of several (free_list, secondary_free_list, any local lists,
6663   // etc.). So, if that's the case we will skip the rest of the
6664   // verification operation. Alternatively, waiting for the concurrent
6665   // operation to complete will have a non-trivial effect on the GC's
6666   // operation (no concurrent operation will last longer than the
6667   // interval between two calls to verification) and it might hide
6668   // any issues that we would like to catch during testing.
6669   if (free_regions_coming()) {
6670     return;
6671   }
6672 
6673   // Make sure we append the secondary_free_list on the free_list so
6674   // that all free regions we will come across can be safely
6675   // attributed to the free_list.
6676   append_secondary_free_list_if_not_empty_with_lock();
6677 
6678   // Finally, make sure that the region accounting in the lists is
6679   // consistent with what we see in the heap.
6680 
6681   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_free_list);
6682   heap_region_iterate(&cl);
6683   cl.verify_counts(&_old_set, &_humongous_set, &_free_list);
6684 }
6685 
6686 // Optimized nmethod scanning
6687 
6688 class RegisterNMethodOopClosure: public OopClosure {
6689   G1CollectedHeap* _g1h;
6690   nmethod* _nm;
6691 
6692   template <class T> void do_oop_work(T* p) {
6693     T heap_oop = oopDesc::load_heap_oop(p);
6694     if (!oopDesc::is_null(heap_oop)) {
6695       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6696       HeapRegion* hr = _g1h->heap_region_containing(obj);
6697       assert(!hr->continuesHumongous(),
6698              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6699                      " starting at "HR_FORMAT,
6700                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6701 
6702       // HeapRegion::add_strong_code_root() avoids adding duplicate
6703       // entries but having duplicates is  OK since we "mark" nmethods
6704       // as visited when we scan the strong code root lists during the GC.
6705       hr->add_strong_code_root(_nm);
6706       assert(hr->rem_set()->strong_code_roots_list_contains(_nm),
6707              err_msg("failed to add code root "PTR_FORMAT" to remembered set of region "HR_FORMAT,
6708                      _nm, HR_FORMAT_PARAMS(hr)));
6709     }
6710   }
6711 
6712 public:
6713   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6714     _g1h(g1h), _nm(nm) {}
6715 
6716   void do_oop(oop* p)       { do_oop_work(p); }
6717   void do_oop(narrowOop* p) { do_oop_work(p); }
6718 };
6719 
6720 class UnregisterNMethodOopClosure: public OopClosure {
6721   G1CollectedHeap* _g1h;
6722   nmethod* _nm;
6723 
6724   template <class T> void do_oop_work(T* p) {
6725     T heap_oop = oopDesc::load_heap_oop(p);
6726     if (!oopDesc::is_null(heap_oop)) {
6727       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6728       HeapRegion* hr = _g1h->heap_region_containing(obj);
6729       assert(!hr->continuesHumongous(),
6730              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6731                      " starting at "HR_FORMAT,
6732                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6733 
6734       hr->remove_strong_code_root(_nm);
6735       assert(!hr->rem_set()->strong_code_roots_list_contains(_nm),
6736              err_msg("failed to remove code root "PTR_FORMAT" of region "HR_FORMAT,
6737                      _nm, HR_FORMAT_PARAMS(hr)));
6738     }
6739   }
6740 
6741 public:
6742   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6743     _g1h(g1h), _nm(nm) {}
6744 
6745   void do_oop(oop* p)       { do_oop_work(p); }
6746   void do_oop(narrowOop* p) { do_oop_work(p); }
6747 };
6748 
6749 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6750   CollectedHeap::register_nmethod(nm);
6751 
6752   guarantee(nm != NULL, "sanity");
6753   RegisterNMethodOopClosure reg_cl(this, nm);
6754   nm->oops_do(&reg_cl);
6755 }
6756 
6757 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6758   CollectedHeap::unregister_nmethod(nm);
6759 
6760   guarantee(nm != NULL, "sanity");
6761   UnregisterNMethodOopClosure reg_cl(this, nm);
6762   nm->oops_do(&reg_cl, true);
6763 }
6764 
6765 class MigrateCodeRootsHeapRegionClosure: public HeapRegionClosure {
6766 public:
6767   bool doHeapRegion(HeapRegion *hr) {
6768     assert(!hr->isHumongous(),
6769            err_msg("humongous region "HR_FORMAT" should not have been added to collection set",
6770                    HR_FORMAT_PARAMS(hr)));
6771     hr->migrate_strong_code_roots();
6772     return false;
6773   }
6774 };
6775 
6776 void G1CollectedHeap::migrate_strong_code_roots() {
6777   MigrateCodeRootsHeapRegionClosure cl;
6778   double migrate_start = os::elapsedTime();
6779   collection_set_iterate(&cl);
6780   double migration_time_ms = (os::elapsedTime() - migrate_start) * 1000.0;
6781   g1_policy()->phase_times()->record_strong_code_root_migration_time(migration_time_ms);
6782 }
6783 
6784 void G1CollectedHeap::purge_code_root_memory() {
6785   double purge_start = os::elapsedTime();
6786   G1CodeRootSet::purge_chunks(G1CodeRootsChunkCacheKeepPercent);
6787   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6788   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6789 }
6790 
6791 // Mark all the code roots that point into regions *not* in the
6792 // collection set.
6793 //
6794 // Note we do not want to use a "marking" CodeBlobToOopClosure while
6795 // walking the the code roots lists of regions not in the collection
6796 // set. Suppose we have an nmethod (M) that points to objects in two
6797 // separate regions - one in the collection set (R1) and one not (R2).
6798 // Using a "marking" CodeBlobToOopClosure here would result in "marking"
6799 // nmethod M when walking the code roots for R1. When we come to scan
6800 // the code roots for R2, we would see that M is already marked and it
6801 // would be skipped and the objects in R2 that are referenced from M
6802 // would not be evacuated.
6803 
6804 class MarkStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
6805 
6806   class MarkStrongCodeRootOopClosure: public OopClosure {
6807     ConcurrentMark* _cm;
6808     HeapRegion* _hr;
6809     uint _worker_id;
6810 
6811     template <class T> void do_oop_work(T* p) {
6812       T heap_oop = oopDesc::load_heap_oop(p);
6813       if (!oopDesc::is_null(heap_oop)) {
6814         oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6815         // Only mark objects in the region (which is assumed
6816         // to be not in the collection set).
6817         if (_hr->is_in(obj)) {
6818           _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
6819         }
6820       }
6821     }
6822 
6823   public:
6824     MarkStrongCodeRootOopClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id) :
6825       _cm(cm), _hr(hr), _worker_id(worker_id) {
6826       assert(!_hr->in_collection_set(), "sanity");
6827     }
6828 
6829     void do_oop(narrowOop* p) { do_oop_work(p); }
6830     void do_oop(oop* p)       { do_oop_work(p); }
6831   };
6832 
6833   MarkStrongCodeRootOopClosure _oop_cl;
6834 
6835 public:
6836   MarkStrongCodeRootCodeBlobClosure(ConcurrentMark* cm, HeapRegion* hr, uint worker_id):
6837     _oop_cl(cm, hr, worker_id) {}
6838 
6839   void do_code_blob(CodeBlob* cb) {
6840     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
6841     if (nm != NULL) {
6842       nm->oops_do(&_oop_cl);
6843     }
6844   }
6845 };
6846 
6847 class MarkStrongCodeRootsHRClosure: public HeapRegionClosure {
6848   G1CollectedHeap* _g1h;
6849   uint _worker_id;
6850 
6851 public:
6852   MarkStrongCodeRootsHRClosure(G1CollectedHeap* g1h, uint worker_id) :
6853     _g1h(g1h), _worker_id(worker_id) {}
6854 
6855   bool doHeapRegion(HeapRegion *hr) {
6856     HeapRegionRemSet* hrrs = hr->rem_set();
6857     if (hr->continuesHumongous()) {
6858       // Code roots should never be attached to a continuation of a humongous region
6859       assert(hrrs->strong_code_roots_list_length() == 0,
6860              err_msg("code roots should never be attached to continuations of humongous region "HR_FORMAT
6861                      " starting at "HR_FORMAT", but has "SIZE_FORMAT,
6862                      HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region()),
6863                      hrrs->strong_code_roots_list_length()));
6864       return false;
6865     }
6866 
6867     if (hr->in_collection_set()) {
6868       // Don't mark code roots into regions in the collection set here.
6869       // They will be marked when we scan them.
6870       return false;
6871     }
6872 
6873     MarkStrongCodeRootCodeBlobClosure cb_cl(_g1h->concurrent_mark(), hr, _worker_id);
6874     hr->strong_code_roots_do(&cb_cl);
6875     return false;
6876   }
6877 };
6878 
6879 void G1CollectedHeap::mark_strong_code_roots(uint worker_id) {
6880   MarkStrongCodeRootsHRClosure cl(this, worker_id);
6881   if (G1CollectedHeap::use_parallel_gc_threads()) {
6882     heap_region_par_iterate_chunked(&cl,
6883                                     worker_id,
6884                                     workers()->active_workers(),
6885                                     HeapRegion::ParMarkRootClaimValue);
6886   } else {
6887     heap_region_iterate(&cl);
6888   }
6889 }
6890 
6891 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6892   G1CollectedHeap* _g1h;
6893 
6894 public:
6895   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6896     _g1h(g1h) {}
6897 
6898   void do_code_blob(CodeBlob* cb) {
6899     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6900     if (nm == NULL) {
6901       return;
6902     }
6903 
6904     if (ScavengeRootsInCode && nm->detect_scavenge_root_oops()) {
6905       _g1h->register_nmethod(nm);
6906     }
6907   }
6908 };
6909 
6910 void G1CollectedHeap::rebuild_strong_code_roots() {
6911   RebuildStrongCodeRootClosure blob_cl(this);
6912   CodeCache::blobs_do(&blob_cl);
6913 }