1 /*
   2  * Copyright (c) 2001, 2013, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef SHARE_VM_UTILITIES_TASKQUEUE_HPP
  26 #define SHARE_VM_UTILITIES_TASKQUEUE_HPP
  27 
  28 #include "memory/allocation.hpp"
  29 #include "memory/allocation.inline.hpp"
  30 #include "runtime/mutex.hpp"
  31 #include "utilities/stack.hpp"
  32 #ifdef TARGET_OS_ARCH_linux_x86
  33 # include "orderAccess_linux_x86.inline.hpp"
  34 #endif
  35 #ifdef TARGET_OS_ARCH_linux_sparc
  36 # include "orderAccess_linux_sparc.inline.hpp"
  37 #endif
  38 #ifdef TARGET_OS_ARCH_linux_zero
  39 # include "orderAccess_linux_zero.inline.hpp"
  40 #endif
  41 #ifdef TARGET_OS_ARCH_solaris_x86
  42 # include "orderAccess_solaris_x86.inline.hpp"
  43 #endif
  44 #ifdef TARGET_OS_ARCH_solaris_sparc
  45 # include "orderAccess_solaris_sparc.inline.hpp"
  46 #endif
  47 #ifdef TARGET_OS_ARCH_windows_x86
  48 # include "orderAccess_windows_x86.inline.hpp"
  49 #endif
  50 #ifdef TARGET_OS_ARCH_linux_arm
  51 # include "orderAccess_linux_arm.inline.hpp"
  52 #endif
  53 #ifdef TARGET_OS_ARCH_linux_ppc
  54 # include "orderAccess_linux_ppc.inline.hpp"
  55 #endif
  56 #ifdef TARGET_OS_ARCH_bsd_x86
  57 # include "orderAccess_bsd_x86.inline.hpp"
  58 #endif
  59 #ifdef TARGET_OS_ARCH_bsd_zero
  60 # include "orderAccess_bsd_zero.inline.hpp"
  61 #endif
  62 
  63 // Simple TaskQueue stats that are collected by default in debug builds.
  64 
  65 #if !defined(TASKQUEUE_STATS) && defined(ASSERT)
  66 #define TASKQUEUE_STATS 1
  67 #elif !defined(TASKQUEUE_STATS)
  68 #define TASKQUEUE_STATS 0
  69 #endif
  70 
  71 #if TASKQUEUE_STATS
  72 #define TASKQUEUE_STATS_ONLY(code) code
  73 #else
  74 #define TASKQUEUE_STATS_ONLY(code)
  75 #endif // TASKQUEUE_STATS
  76 
  77 #if TASKQUEUE_STATS
  78 class TaskQueueStats {
  79 public:
  80   enum StatId {
  81     push,             // number of taskqueue pushes
  82     pop,              // number of taskqueue pops
  83     pop_slow,         // subset of taskqueue pops that were done slow-path
  84     steal_attempt,    // number of taskqueue steal attempts
  85     steal,            // number of taskqueue steals
  86     overflow,         // number of overflow pushes
  87     overflow_max_len, // max length of overflow stack
  88     last_stat_id
  89   };
  90 
  91 public:
  92   inline TaskQueueStats()       { reset(); }
  93 
  94   inline void record_push()     { ++_stats[push]; }
  95   inline void record_pop()      { ++_stats[pop]; }
  96   inline void record_pop_slow() { record_pop(); ++_stats[pop_slow]; }
  97   inline void record_steal(bool success);
  98   inline void record_overflow(size_t new_length);
  99 
 100   TaskQueueStats & operator +=(const TaskQueueStats & addend);
 101 
 102   inline size_t get(StatId id) const { return _stats[id]; }
 103   inline const size_t* get() const   { return _stats; }
 104 
 105   inline void reset();
 106 
 107   // Print the specified line of the header (does not include a line separator).
 108   static void print_header(unsigned int line, outputStream* const stream = tty,
 109                            unsigned int width = 10);
 110   // Print the statistics (does not include a line separator).
 111   void print(outputStream* const stream = tty, unsigned int width = 10) const;
 112 
 113   DEBUG_ONLY(void verify() const;)
 114 
 115 private:
 116   size_t                    _stats[last_stat_id];
 117   static const char * const _names[last_stat_id];
 118 };
 119 
 120 void TaskQueueStats::record_steal(bool success) {
 121   ++_stats[steal_attempt];
 122   if (success) ++_stats[steal];
 123 }
 124 
 125 void TaskQueueStats::record_overflow(size_t new_len) {
 126   ++_stats[overflow];
 127   if (new_len > _stats[overflow_max_len]) _stats[overflow_max_len] = new_len;
 128 }
 129 
 130 void TaskQueueStats::reset() {
 131   memset(_stats, 0, sizeof(_stats));
 132 }
 133 #endif // TASKQUEUE_STATS
 134 
 135 // TaskQueueSuper collects functionality common to all GenericTaskQueue instances.
 136 
 137 template <unsigned int N, MEMFLAGS F>
 138 class TaskQueueSuper: public CHeapObj<F> {
 139 protected:
 140   // Internal type for indexing the queue; also used for the tag.
 141   typedef NOT_LP64(uint16_t) LP64_ONLY(uint32_t) idx_t;
 142 
 143   // The first free element after the last one pushed (mod N).
 144   volatile uint _bottom;
 145 
 146   enum { MOD_N_MASK = N - 1 };
 147 
 148   class Age {
 149   public:
 150     Age(size_t data = 0)         { _data = data; }
 151     Age(const Age& age)          { _data = age._data; }
 152     Age(idx_t top, idx_t tag)    { _fields._top = top; _fields._tag = tag; }
 153 
 154     Age   get()        const volatile { return _data; }
 155     void  set(Age age) volatile       { _data = age._data; }
 156 
 157     idx_t top()        const volatile { return _fields._top; }
 158     idx_t tag()        const volatile { return _fields._tag; }
 159 
 160     // Increment top; if it wraps, increment tag also.
 161     void increment() {
 162       _fields._top = increment_index(_fields._top);
 163       if (_fields._top == 0) ++_fields._tag;
 164     }
 165 
 166     Age cmpxchg(const Age new_age, const Age old_age) volatile {
 167       return (size_t) Atomic::cmpxchg_ptr((intptr_t)new_age._data,
 168                                           (volatile intptr_t *)&_data,
 169                                           (intptr_t)old_age._data);
 170     }
 171 
 172     bool operator ==(const Age& other) const { return _data == other._data; }
 173 
 174   private:
 175     struct fields {
 176       idx_t _top;
 177       idx_t _tag;
 178     };
 179     union {
 180       size_t _data;
 181       fields _fields;
 182     };
 183   };
 184 
 185   volatile Age _age;
 186 
 187   // These both operate mod N.
 188   static uint increment_index(uint ind) {
 189     return (ind + 1) & MOD_N_MASK;
 190   }
 191   static uint decrement_index(uint ind) {
 192     return (ind - 1) & MOD_N_MASK;
 193   }
 194 
 195   // Returns a number in the range [0..N).  If the result is "N-1", it should be
 196   // interpreted as 0.
 197   uint dirty_size(uint bot, uint top) const {
 198     return (bot - top) & MOD_N_MASK;
 199   }
 200 
 201   // Returns the size corresponding to the given "bot" and "top".
 202   uint size(uint bot, uint top) const {
 203     uint sz = dirty_size(bot, top);
 204     // Has the queue "wrapped", so that bottom is less than top?  There's a
 205     // complicated special case here.  A pair of threads could perform pop_local
 206     // and pop_global operations concurrently, starting from a state in which
 207     // _bottom == _top+1.  The pop_local could succeed in decrementing _bottom,
 208     // and the pop_global in incrementing _top (in which case the pop_global
 209     // will be awarded the contested queue element.)  The resulting state must
 210     // be interpreted as an empty queue.  (We only need to worry about one such
 211     // event: only the queue owner performs pop_local's, and several concurrent
 212     // threads attempting to perform the pop_global will all perform the same
 213     // CAS, and only one can succeed.)  Any stealing thread that reads after
 214     // either the increment or decrement will see an empty queue, and will not
 215     // join the competitors.  The "sz == -1 || sz == N-1" state will not be
 216     // modified by concurrent queues, so the owner thread can reset the state to
 217     // _bottom == top so subsequent pushes will be performed normally.
 218     return (sz == N - 1) ? 0 : sz;
 219   }
 220 
 221 public:
 222   TaskQueueSuper() : _bottom(0), _age() {}
 223 
 224   // Return true if the TaskQueue contains/does not contain any tasks.
 225   bool peek()     const { return _bottom != _age.top(); }
 226   bool is_empty() const { return size() == 0; }
 227 
 228   // Return an estimate of the number of elements in the queue.
 229   // The "careful" version admits the possibility of pop_local/pop_global
 230   // races.
 231   uint size() const {
 232     return size(_bottom, _age.top());
 233   }
 234 
 235   uint dirty_size() const {
 236     return dirty_size(_bottom, _age.top());
 237   }
 238 
 239   void set_empty() {
 240     _bottom = 0;
 241     _age.set(0);
 242   }
 243 
 244   // Maximum number of elements allowed in the queue.  This is two less
 245   // than the actual queue size, for somewhat complicated reasons.
 246   uint max_elems() const { return N - 2; }
 247 
 248   // Total size of queue.
 249   static const uint total_size() { return N; }
 250 
 251   TASKQUEUE_STATS_ONLY(TaskQueueStats stats;)
 252 };
 253 
 254 //
 255 // GenericTaskQueue implements an ABP, Aurora-Blumofe-Plaxton, double-
 256 // ended-queue (deque), intended for use in work stealing. Queue operations
 257 // are non-blocking.
 258 //
 259 // A queue owner thread performs push() and pop_local() operations on one end
 260 // of the queue, while other threads may steal work using the pop_global()
 261 // method.
 262 //
 263 // The main difference to the original algorithm is that this
 264 // implementation allows wrap-around at the end of its allocated
 265 // storage, which is an array.
 266 //
 267 // The original paper is:
 268 //
 269 // Arora, N. S., Blumofe, R. D., and Plaxton, C. G.
 270 // Thread scheduling for multiprogrammed multiprocessors.
 271 // Theory of Computing Systems 34, 2 (2001), 115-144.
 272 //
 273 // The following paper provides an correctness proof and an
 274 // implementation for weakly ordered memory models including (pseudo-)
 275 // code containing memory barriers for a Chase-Lev deque. Chase-Lev is
 276 // similar to ABP, with the main difference that it allows resizing of the
 277 // underlying storage:
 278 //
 279 // Le, N. M., Pop, A., Cohen A., and Nardell, F. Z.
 280 // Correct and efficient work-stealing for weak memory models
 281 // Proceedings of the 18th ACM SIGPLAN symposium on Principles and
 282 // practice of parallel programming (PPoPP 2013), 69-80
 283 //
 284 
 285 template <class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 286 class GenericTaskQueue: public TaskQueueSuper<N, F> {
 287   ArrayAllocator<E, F> _array_allocator;
 288 protected:
 289   typedef typename TaskQueueSuper<N, F>::Age Age;
 290   typedef typename TaskQueueSuper<N, F>::idx_t idx_t;
 291 
 292   using TaskQueueSuper<N, F>::_bottom;
 293   using TaskQueueSuper<N, F>::_age;
 294   using TaskQueueSuper<N, F>::increment_index;
 295   using TaskQueueSuper<N, F>::decrement_index;
 296   using TaskQueueSuper<N, F>::dirty_size;
 297 
 298 public:
 299   using TaskQueueSuper<N, F>::max_elems;
 300   using TaskQueueSuper<N, F>::size;
 301 
 302 #if  TASKQUEUE_STATS
 303   using TaskQueueSuper<N, F>::stats;
 304 #endif
 305 
 306 private:
 307   // Slow paths for push, pop_local.  (pop_global has no fast path.)
 308   bool push_slow(E t, uint dirty_n_elems);
 309   bool pop_local_slow(uint localBot, Age oldAge);
 310 
 311 public:
 312   typedef E element_type;
 313 
 314   // Initializes the queue to empty.
 315   GenericTaskQueue();
 316 
 317   void initialize();
 318 
 319   // Push the task "t" on the queue.  Returns "false" iff the queue is full.
 320   inline bool push(E t);
 321 
 322   // Attempts to claim a task from the "local" end of the queue (the most
 323   // recently pushed).  If successful, returns true and sets t to the task;
 324   // otherwise, returns false (the queue is empty).
 325   inline bool pop_local(E& t);
 326 
 327   // Like pop_local(), but uses the "global" end of the queue (the least
 328   // recently pushed).
 329   bool pop_global(E& t);
 330 
 331   // Delete any resource associated with the queue.
 332   ~GenericTaskQueue();
 333 
 334   // apply the closure to all elements in the task queue
 335   void oops_do(OopClosure* f);
 336 
 337 private:
 338   // Element array.
 339   volatile E* _elems;
 340 };
 341 
 342 template<class E, MEMFLAGS F, unsigned int N>
 343 GenericTaskQueue<E, F, N>::GenericTaskQueue() {
 344   assert(sizeof(Age) == sizeof(size_t), "Depends on this.");
 345 }
 346 
 347 template<class E, MEMFLAGS F, unsigned int N>
 348 void GenericTaskQueue<E, F, N>::initialize() {
 349   _elems = _array_allocator.allocate(N);
 350 }
 351 
 352 template<class E, MEMFLAGS F, unsigned int N>
 353 void GenericTaskQueue<E, F, N>::oops_do(OopClosure* f) {
 354   // tty->print_cr("START OopTaskQueue::oops_do");
 355   uint iters = size();
 356   uint index = _bottom;
 357   for (uint i = 0; i < iters; ++i) {
 358     index = decrement_index(index);
 359     // tty->print_cr("  doing entry %d," INTPTR_T " -> " INTPTR_T,
 360     //            index, &_elems[index], _elems[index]);
 361     E* t = (E*)&_elems[index];      // cast away volatility
 362     oop* p = (oop*)t;
 363     assert((*t)->is_oop_or_null(), "Not an oop or null");
 364     f->do_oop(p);
 365   }
 366   // tty->print_cr("END OopTaskQueue::oops_do");
 367 }
 368 
 369 template<class E, MEMFLAGS F, unsigned int N>
 370 bool GenericTaskQueue<E, F, N>::push_slow(E t, uint dirty_n_elems) {
 371   if (dirty_n_elems == N - 1) {
 372     // Actually means 0, so do the push.
 373     uint localBot = _bottom;
 374     // g++ complains if the volatile result of the assignment is
 375     // unused, so we cast the volatile away.  We cannot cast directly
 376     // to void, because gcc treats that as not using the result of the
 377     // assignment.  However, casting to E& means that we trigger an
 378     // unused-value warning.  So, we cast the E& to void.
 379     (void)const_cast<E&>(_elems[localBot] = t);
 380     OrderAccess::release_store(&_bottom, increment_index(localBot));
 381     TASKQUEUE_STATS_ONLY(stats.record_push());
 382     return true;
 383   }
 384   return false;
 385 }
 386 
 387 // pop_local_slow() is done by the owning thread and is trying to
 388 // get the last task in the queue.  It will compete with pop_global()
 389 // that will be used by other threads.  The tag age is incremented
 390 // whenever the queue goes empty which it will do here if this thread
 391 // gets the last task or in pop_global() if the queue wraps (top == 0
 392 // and pop_global() succeeds, see pop_global()).
 393 template<class E, MEMFLAGS F, unsigned int N>
 394 bool GenericTaskQueue<E, F, N>::pop_local_slow(uint localBot, Age oldAge) {
 395   // This queue was observed to contain exactly one element; either this
 396   // thread will claim it, or a competing "pop_global".  In either case,
 397   // the queue will be logically empty afterwards.  Create a new Age value
 398   // that represents the empty queue for the given value of "_bottom".  (We
 399   // must also increment "tag" because of the case where "bottom == 1",
 400   // "top == 0".  A pop_global could read the queue element in that case,
 401   // then have the owner thread do a pop followed by another push.  Without
 402   // the incrementing of "tag", the pop_global's CAS could succeed,
 403   // allowing it to believe it has claimed the stale element.)
 404   Age newAge((idx_t)localBot, oldAge.tag() + 1);
 405   // Perhaps a competing pop_global has already incremented "top", in which
 406   // case it wins the element.
 407   if (localBot == oldAge.top()) {
 408     // No competing pop_global has yet incremented "top"; we'll try to
 409     // install new_age, thus claiming the element.
 410     Age tempAge = _age.cmpxchg(newAge, oldAge);
 411     if (tempAge == oldAge) {
 412       // We win.
 413       assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 414       TASKQUEUE_STATS_ONLY(stats.record_pop_slow());
 415       return true;
 416     }
 417   }
 418   // We lose; a completing pop_global gets the element.  But the queue is empty
 419   // and top is greater than bottom.  Fix this representation of the empty queue
 420   // to become the canonical one.
 421   _age.set(newAge);
 422   assert(dirty_size(localBot, _age.top()) != N - 1, "sanity");
 423   return false;
 424 }
 425 
 426 template<class E, MEMFLAGS F, unsigned int N>
 427 bool GenericTaskQueue<E, F, N>::pop_global(E& t) {
 428   Age oldAge = _age.get();
 429   // Architectures with weak memory model require a barrier here
 430   // to guarantee that bottom is not older than age,
 431   // which is crucial for the correctness of the algorithm.
 432 #if !(defined SPARC || defined IA32 || defined AMD64)
 433   OrderAccess::fence();
 434 #endif
 435   uint localBot = OrderAccess::load_acquire((volatile juint*)&_bottom);
 436   uint n_elems = size(localBot, oldAge.top());
 437   if (n_elems == 0) {
 438     return false;
 439   }
 440 
 441   // g++ complains if the volatile result of the assignment is
 442   // unused, so we cast the volatile away.  We cannot cast directly
 443   // to void, because gcc treats that as not using the result of the
 444   // assignment.  However, casting to E& means that we trigger an
 445   // unused-value warning.  So, we cast the E& to void.
 446   (void) const_cast<E&>(t = _elems[oldAge.top()]);
 447   Age newAge(oldAge);
 448   newAge.increment();
 449   Age resAge = _age.cmpxchg(newAge, oldAge);
 450 
 451   // Note that using "_bottom" here might fail, since a pop_local might
 452   // have decremented it.
 453   assert(dirty_size(localBot, newAge.top()) != N - 1, "sanity");
 454   return resAge == oldAge;
 455 }
 456 
 457 template<class E, MEMFLAGS F, unsigned int N>
 458 GenericTaskQueue<E, F, N>::~GenericTaskQueue() {
 459   FREE_C_HEAP_ARRAY(E, _elems, F);
 460 }
 461 
 462 // OverflowTaskQueue is a TaskQueue that also includes an overflow stack for
 463 // elements that do not fit in the TaskQueue.
 464 //
 465 // This class hides two methods from super classes:
 466 //
 467 // push() - push onto the task queue or, if that fails, onto the overflow stack
 468 // is_empty() - return true if both the TaskQueue and overflow stack are empty
 469 //
 470 // Note that size() is not hidden--it returns the number of elements in the
 471 // TaskQueue, and does not include the size of the overflow stack.  This
 472 // simplifies replacement of GenericTaskQueues with OverflowTaskQueues.
 473 template<class E, MEMFLAGS F, unsigned int N = TASKQUEUE_SIZE>
 474 class OverflowTaskQueue: public GenericTaskQueue<E, F, N>
 475 {
 476 public:
 477   typedef Stack<E, F>               overflow_t;
 478   typedef GenericTaskQueue<E, F, N> taskqueue_t;
 479 
 480   TASKQUEUE_STATS_ONLY(using taskqueue_t::stats;)
 481 
 482   // Push task t onto the queue or onto the overflow stack.  Return true.
 483   inline bool push(E t);
 484 
 485   // Attempt to pop from the overflow stack; return true if anything was popped.
 486   inline bool pop_overflow(E& t);
 487 
 488   inline overflow_t* overflow_stack() { return &_overflow_stack; }
 489 
 490   inline bool taskqueue_empty() const { return taskqueue_t::is_empty(); }
 491   inline bool overflow_empty()  const { return _overflow_stack.is_empty(); }
 492   inline bool is_empty()        const {
 493     return taskqueue_empty() && overflow_empty();
 494   }
 495 
 496 private:
 497   overflow_t _overflow_stack;
 498 };
 499 
 500 template <class E, MEMFLAGS F, unsigned int N>
 501 bool OverflowTaskQueue<E, F, N>::push(E t)
 502 {
 503   if (!taskqueue_t::push(t)) {
 504     overflow_stack()->push(t);
 505     TASKQUEUE_STATS_ONLY(stats.record_overflow(overflow_stack()->size()));
 506   }
 507   return true;
 508 }
 509 
 510 template <class E, MEMFLAGS F, unsigned int N>
 511 bool OverflowTaskQueue<E, F, N>::pop_overflow(E& t)
 512 {
 513   if (overflow_empty()) return false;
 514   t = overflow_stack()->pop();
 515   return true;
 516 }
 517 
 518 class TaskQueueSetSuper {
 519 protected:
 520   static int randomParkAndMiller(int* seed0);
 521 public:
 522   // Returns "true" if some TaskQueue in the set contains a task.
 523   virtual bool peek() = 0;
 524 };
 525 
 526 template <MEMFLAGS F> class TaskQueueSetSuperImpl: public CHeapObj<F>, public TaskQueueSetSuper {
 527 };
 528 
 529 template<class T, MEMFLAGS F>
 530 class GenericTaskQueueSet: public TaskQueueSetSuperImpl<F> {
 531 private:
 532   uint _n;
 533   T** _queues;
 534 
 535 public:
 536   typedef typename T::element_type E;
 537 
 538   GenericTaskQueueSet(int n) : _n(n) {
 539     typedef T* GenericTaskQueuePtr;
 540     _queues = NEW_C_HEAP_ARRAY(GenericTaskQueuePtr, n, F);
 541     for (int i = 0; i < n; i++) {
 542       _queues[i] = NULL;
 543     }
 544   }
 545 
 546   bool steal_best_of_2(uint queue_num, int* seed, E& t);
 547 
 548   void register_queue(uint i, T* q);
 549 
 550   T* queue(uint n);
 551 
 552   // The thread with queue number "queue_num" (and whose random number seed is
 553   // at "seed") is trying to steal a task from some other queue.  (It may try
 554   // several queues, according to some configuration parameter.)  If some steal
 555   // succeeds, returns "true" and sets "t" to the stolen task, otherwise returns
 556   // false.
 557   bool steal(uint queue_num, int* seed, E& t);
 558 
 559   bool peek();
 560 };
 561 
 562 template<class T, MEMFLAGS F> void
 563 GenericTaskQueueSet<T, F>::register_queue(uint i, T* q) {
 564   assert(i < _n, "index out of range.");
 565   _queues[i] = q;
 566 }
 567 
 568 template<class T, MEMFLAGS F> T*
 569 GenericTaskQueueSet<T, F>::queue(uint i) {
 570   return _queues[i];
 571 }
 572 
 573 template<class T, MEMFLAGS F> bool
 574 GenericTaskQueueSet<T, F>::steal(uint queue_num, int* seed, E& t) {
 575   for (uint i = 0; i < 2 * _n; i++) {
 576     if (steal_best_of_2(queue_num, seed, t)) {
 577       TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(true));
 578       return true;
 579     }
 580   }
 581   TASKQUEUE_STATS_ONLY(queue(queue_num)->stats.record_steal(false));
 582   return false;
 583 }
 584 
 585 template<class T, MEMFLAGS F> bool
 586 GenericTaskQueueSet<T, F>::steal_best_of_2(uint queue_num, int* seed, E& t) {
 587   if (_n > 2) {
 588     uint k1 = queue_num;
 589     while (k1 == queue_num) k1 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 590     uint k2 = queue_num;
 591     while (k2 == queue_num || k2 == k1) k2 = TaskQueueSetSuper::randomParkAndMiller(seed) % _n;
 592     // Sample both and try the larger.
 593     uint sz1 = _queues[k1]->size();
 594     uint sz2 = _queues[k2]->size();
 595     if (sz2 > sz1) return _queues[k2]->pop_global(t);
 596     else return _queues[k1]->pop_global(t);
 597   } else if (_n == 2) {
 598     // Just try the other one.
 599     uint k = (queue_num + 1) % 2;
 600     return _queues[k]->pop_global(t);
 601   } else {
 602     assert(_n == 1, "can't be zero.");
 603     return false;
 604   }
 605 }
 606 
 607 template<class T, MEMFLAGS F>
 608 bool GenericTaskQueueSet<T, F>::peek() {
 609   // Try all the queues.
 610   for (uint j = 0; j < _n; j++) {
 611     if (_queues[j]->peek())
 612       return true;
 613   }
 614   return false;
 615 }
 616 
 617 // When to terminate from the termination protocol.
 618 class TerminatorTerminator: public CHeapObj<mtInternal> {
 619 public:
 620   virtual bool should_exit_termination() = 0;
 621 };
 622 
 623 // A class to aid in the termination of a set of parallel tasks using
 624 // TaskQueueSet's for work stealing.
 625 
 626 #undef TRACESPINNING
 627 
 628 class ParallelTaskTerminator: public StackObj {
 629 private:
 630   int _n_threads;
 631   TaskQueueSetSuper* _queue_set;
 632   int _offered_termination;
 633 
 634 #ifdef TRACESPINNING
 635   static uint _total_yields;
 636   static uint _total_spins;
 637   static uint _total_peeks;
 638 #endif
 639 
 640   bool peek_in_queue_set();
 641 protected:
 642   virtual void yield();
 643   void sleep(uint millis);
 644 
 645 public:
 646 
 647   // "n_threads" is the number of threads to be terminated.  "queue_set" is a
 648   // queue sets of work queues of other threads.
 649   ParallelTaskTerminator(int n_threads, TaskQueueSetSuper* queue_set);
 650 
 651   // The current thread has no work, and is ready to terminate if everyone
 652   // else is.  If returns "true", all threads are terminated.  If returns
 653   // "false", available work has been observed in one of the task queues,
 654   // so the global task is not complete.
 655   bool offer_termination() {
 656     return offer_termination(NULL);
 657   }
 658 
 659   // As above, but it also terminates if the should_exit_termination()
 660   // method of the terminator parameter returns true. If terminator is
 661   // NULL, then it is ignored.
 662   bool offer_termination(TerminatorTerminator* terminator);
 663 
 664   // Reset the terminator, so that it may be reused again.
 665   // The caller is responsible for ensuring that this is done
 666   // in an MT-safe manner, once the previous round of use of
 667   // the terminator is finished.
 668   void reset_for_reuse();
 669   // Same as above but the number of parallel threads is set to the
 670   // given number.
 671   void reset_for_reuse(int n_threads);
 672 
 673 #ifdef TRACESPINNING
 674   static uint total_yields() { return _total_yields; }
 675   static uint total_spins() { return _total_spins; }
 676   static uint total_peeks() { return _total_peeks; }
 677   static void print_termination_counts();
 678 #endif
 679 };
 680 
 681 template<class E, MEMFLAGS F, unsigned int N> inline bool
 682 GenericTaskQueue<E, F, N>::push(E t) {
 683   uint localBot = _bottom;
 684   assert(localBot < N, "_bottom out of range.");
 685   idx_t top = _age.top();
 686   uint dirty_n_elems = dirty_size(localBot, top);
 687   assert(dirty_n_elems < N, "n_elems out of range.");
 688   if (dirty_n_elems < max_elems()) {
 689     // g++ complains if the volatile result of the assignment is
 690     // unused, so we cast the volatile away.  We cannot cast directly
 691     // to void, because gcc treats that as not using the result of the
 692     // assignment.  However, casting to E& means that we trigger an
 693     // unused-value warning.  So, we cast the E& to void.
 694     (void) const_cast<E&>(_elems[localBot] = t);
 695     OrderAccess::release_store(&_bottom, increment_index(localBot));
 696     TASKQUEUE_STATS_ONLY(stats.record_push());
 697     return true;
 698   } else {
 699     return push_slow(t, dirty_n_elems);
 700   }
 701 }
 702 
 703 template<class E, MEMFLAGS F, unsigned int N> inline bool
 704 GenericTaskQueue<E, F, N>::pop_local(E& t) {
 705   uint localBot = _bottom;
 706   // This value cannot be N-1.  That can only occur as a result of
 707   // the assignment to bottom in this method.  If it does, this method
 708   // resets the size to 0 before the next call (which is sequential,
 709   // since this is pop_local.)
 710   uint dirty_n_elems = dirty_size(localBot, _age.top());
 711   assert(dirty_n_elems != N - 1, "Shouldn't be possible...");
 712   if (dirty_n_elems == 0) return false;
 713   localBot = decrement_index(localBot);
 714   _bottom = localBot;
 715   // This is necessary to prevent any read below from being reordered
 716   // before the store just above.
 717   OrderAccess::fence();
 718   // g++ complains if the volatile result of the assignment is
 719   // unused, so we cast the volatile away.  We cannot cast directly
 720   // to void, because gcc treats that as not using the result of the
 721   // assignment.  However, casting to E& means that we trigger an
 722   // unused-value warning.  So, we cast the E& to void.
 723   (void) const_cast<E&>(t = _elems[localBot]);
 724   // This is a second read of "age"; the "size()" above is the first.
 725   // If there's still at least one element in the queue, based on the
 726   // "_bottom" and "age" we've read, then there can be no interference with
 727   // a "pop_global" operation, and we're done.
 728   idx_t tp = _age.top();    // XXX
 729   if (size(localBot, tp) > 0) {
 730     assert(dirty_size(localBot, tp) != N - 1, "sanity");
 731     TASKQUEUE_STATS_ONLY(stats.record_pop());
 732     return true;
 733   } else {
 734     // Otherwise, the queue contained exactly one element; we take the slow
 735     // path.
 736     return pop_local_slow(localBot, _age.get());
 737   }
 738 }
 739 
 740 typedef GenericTaskQueue<oop, mtGC>             OopTaskQueue;
 741 typedef GenericTaskQueueSet<OopTaskQueue, mtGC> OopTaskQueueSet;
 742 
 743 #ifdef _MSC_VER
 744 #pragma warning(push)
 745 // warning C4522: multiple assignment operators specified
 746 #pragma warning(disable:4522)
 747 #endif
 748 
 749 // This is a container class for either an oop* or a narrowOop*.
 750 // Both are pushed onto a task queue and the consumer will test is_narrow()
 751 // to determine which should be processed.
 752 class StarTask {
 753   void*  _holder;        // either union oop* or narrowOop*
 754 
 755   enum { COMPRESSED_OOP_MASK = 1 };
 756 
 757  public:
 758   StarTask(narrowOop* p) {
 759     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 760     _holder = (void *)((uintptr_t)p | COMPRESSED_OOP_MASK);
 761   }
 762   StarTask(oop* p)       {
 763     assert(((uintptr_t)p & COMPRESSED_OOP_MASK) == 0, "Information loss!");
 764     _holder = (void*)p;
 765   }
 766   StarTask()             { _holder = NULL; }
 767   operator oop*()        { return (oop*)_holder; }
 768   operator narrowOop*()  {
 769     return (narrowOop*)((uintptr_t)_holder & ~COMPRESSED_OOP_MASK);
 770   }
 771 
 772   StarTask& operator=(const StarTask& t) {
 773     _holder = t._holder;
 774     return *this;
 775   }
 776   volatile StarTask& operator=(const volatile StarTask& t) volatile {
 777     _holder = t._holder;
 778     return *this;
 779   }
 780 
 781   bool is_narrow() const {
 782     return (((uintptr_t)_holder & COMPRESSED_OOP_MASK) != 0);
 783   }
 784 };
 785 
 786 class ObjArrayTask
 787 {
 788 public:
 789   ObjArrayTask(oop o = NULL, int idx = 0): _obj(o), _index(idx) { }
 790   ObjArrayTask(oop o, size_t idx): _obj(o), _index(int(idx)) {
 791     assert(idx <= size_t(max_jint), "too big");
 792   }
 793   ObjArrayTask(const ObjArrayTask& t): _obj(t._obj), _index(t._index) { }
 794 
 795   ObjArrayTask& operator =(const ObjArrayTask& t) {
 796     _obj = t._obj;
 797     _index = t._index;
 798     return *this;
 799   }
 800   volatile ObjArrayTask&
 801   operator =(const volatile ObjArrayTask& t) volatile {
 802     _obj = t._obj;
 803     _index = t._index;
 804     return *this;
 805   }
 806 
 807   inline oop obj()   const { return _obj; }
 808   inline int index() const { return _index; }
 809 
 810   DEBUG_ONLY(bool is_valid() const); // Tasks to be pushed/popped must be valid.
 811 
 812 private:
 813   oop _obj;
 814   int _index;
 815 };
 816 
 817 #ifdef _MSC_VER
 818 #pragma warning(pop)
 819 #endif
 820 
 821 typedef OverflowTaskQueue<StarTask, mtClass>           OopStarTaskQueue;
 822 typedef GenericTaskQueueSet<OopStarTaskQueue, mtClass> OopStarTaskQueueSet;
 823 
 824 typedef OverflowTaskQueue<size_t, mtInternal>             RegionTaskQueue;
 825 typedef GenericTaskQueueSet<RegionTaskQueue, mtClass>     RegionTaskQueueSet;
 826 
 827 
 828 #endif // SHARE_VM_UTILITIES_TASKQUEUE_HPP