1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #ifndef __clang_major__
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  32 #include "gc_implementation/g1/concurrentMark.hpp"
  33 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  34 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  35 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  36 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  37 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  38 #include "gc_implementation/g1/g1Log.hpp"
  39 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  40 #include "gc_implementation/shared/gcPolicyCounters.hpp"
  41 #include "runtime/arguments.hpp"
  42 #include "runtime/java.hpp"
  43 #include "runtime/mutexLocker.hpp"
  44 #include "utilities/debug.hpp"
  45 
  46 // Different defaults for different number of GC threads
  47 // They were chosen by running GCOld and SPECjbb on debris with different
  48 //   numbers of GC threads and choosing them based on the results
  49 
  50 // all the same
  51 static double rs_length_diff_defaults[] = {
  52   0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0
  53 };
  54 
  55 static double cost_per_card_ms_defaults[] = {
  56   0.01, 0.005, 0.005, 0.003, 0.003, 0.002, 0.002, 0.0015
  57 };
  58 
  59 // all the same
  60 static double young_cards_per_entry_ratio_defaults[] = {
  61   1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0
  62 };
  63 
  64 static double cost_per_entry_ms_defaults[] = {
  65   0.015, 0.01, 0.01, 0.008, 0.008, 0.0055, 0.0055, 0.005
  66 };
  67 
  68 static double cost_per_byte_ms_defaults[] = {
  69   0.00006, 0.00003, 0.00003, 0.000015, 0.000015, 0.00001, 0.00001, 0.000009
  70 };
  71 
  72 // these should be pretty consistent
  73 static double constant_other_time_ms_defaults[] = {
  74   5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0, 5.0
  75 };
  76 
  77 
  78 static double young_other_cost_per_region_ms_defaults[] = {
  79   0.3, 0.2, 0.2, 0.15, 0.15, 0.12, 0.12, 0.1
  80 };
  81 
  82 static double non_young_other_cost_per_region_ms_defaults[] = {
  83   1.0, 0.7, 0.7, 0.5, 0.5, 0.42, 0.42, 0.30
  84 };
  85 
  86 G1CollectorPolicy::G1CollectorPolicy() :
  87   _parallel_gc_threads(ParallelGCThreads),
  88 
  89   _phase_times(NULL),
  90 
  91   _recent_gc_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  92   _stop_world_start(0.0),
  93 
  94   _concurrent_mark_remark_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  95   _concurrent_mark_cleanup_times_ms(new TruncatedSeq(NumPrevPausesForHeuristics)),
  96 
  97   _alloc_rate_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
  98   _prev_collection_pause_end_ms(0.0),
  99   _rs_length_diff_seq(new TruncatedSeq(TruncatedSeqLength)),
 100   _cost_per_card_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 101   _young_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 102   _mixed_cards_per_entry_ratio_seq(new TruncatedSeq(TruncatedSeqLength)),
 103   _cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 104   _mixed_cost_per_entry_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 105   _cost_per_byte_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 106   _cost_per_byte_ms_during_cm_seq(new TruncatedSeq(TruncatedSeqLength)),
 107   _constant_other_time_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 108   _young_other_cost_per_region_ms_seq(new TruncatedSeq(TruncatedSeqLength)),
 109   _non_young_other_cost_per_region_ms_seq(
 110                                          new TruncatedSeq(TruncatedSeqLength)),
 111 
 112   _pending_cards_seq(new TruncatedSeq(TruncatedSeqLength)),
 113   _rs_lengths_seq(new TruncatedSeq(TruncatedSeqLength)),
 114 
 115   _pause_time_target_ms((double) MaxGCPauseMillis),
 116 
 117   _gcs_are_young(true),
 118 
 119   _during_marking(false),
 120   _in_marking_window(false),
 121   _in_marking_window_im(false),
 122 
 123   _recent_prev_end_times_for_all_gcs_sec(
 124                                 new TruncatedSeq(NumPrevPausesForHeuristics)),
 125 
 126   _recent_avg_pause_time_ratio(0.0),
 127 
 128   _initiate_conc_mark_if_possible(false),
 129   _during_initial_mark_pause(false),
 130   _last_young_gc(false),
 131   _last_gc_was_young(false),
 132 
 133   _eden_used_bytes_before_gc(0),
 134   _survivor_used_bytes_before_gc(0),
 135   _heap_used_bytes_before_gc(0),
 136   _metaspace_used_bytes_before_gc(0),
 137   _eden_capacity_bytes_before_gc(0),
 138   _heap_capacity_bytes_before_gc(0),
 139 
 140   _eden_cset_region_length(0),
 141   _survivor_cset_region_length(0),
 142   _old_cset_region_length(0),
 143 
 144   _sigma(G1ConfidencePercent / 100.0),
 145 
 146   _collection_set(NULL),
 147   _collection_set_bytes_used_before(0),
 148 
 149   // Incremental CSet attributes
 150   _inc_cset_build_state(Inactive),
 151   _inc_cset_head(NULL),
 152   _inc_cset_tail(NULL),
 153   _inc_cset_bytes_used_before(0),
 154   _inc_cset_max_finger(NULL),
 155   _inc_cset_recorded_rs_lengths(0),
 156   _inc_cset_recorded_rs_lengths_diffs(0),
 157   _inc_cset_predicted_elapsed_time_ms(0.0),
 158   _inc_cset_predicted_elapsed_time_ms_diffs(0.0),
 159 
 160   // add here any more surv rate groups
 161   _recorded_survivor_regions(0),
 162   _recorded_survivor_head(NULL),
 163   _recorded_survivor_tail(NULL),
 164   _survivors_age_table(true),
 165 
 166   _gc_overhead_perc(0.0) {
 167 
 168   // SurvRateGroups below must be initialized after '_sigma' because they
 169   // indirectly access '_sigma' through this object passed to their constructor.
 170   _short_lived_surv_rate_group =
 171     new SurvRateGroup(this, "Short Lived", G1YoungSurvRateNumRegionsSummary);
 172   _survivor_surv_rate_group =
 173     new SurvRateGroup(this, "Survivor", G1YoungSurvRateNumRegionsSummary);
 174 
 175   // Set up the region size and associated fields. Given that the
 176   // policy is created before the heap, we have to set this up here,
 177   // so it's done as soon as possible.
 178 
 179   // It would have been natural to pass initial_heap_byte_size() and
 180   // max_heap_byte_size() to setup_heap_region_size() but those have
 181   // not been set up at this point since they should be aligned with
 182   // the region size. So, there is a circular dependency here. We base
 183   // the region size on the heap size, but the heap size should be
 184   // aligned with the region size. To get around this we use the
 185   // unaligned values for the heap.
 186   HeapRegion::setup_heap_region_size(InitialHeapSize, MaxHeapSize);
 187   HeapRegionRemSet::setup_remset_size();
 188 
 189   G1ErgoVerbose::initialize();
 190   if (PrintAdaptiveSizePolicy) {
 191     // Currently, we only use a single switch for all the heuristics.
 192     G1ErgoVerbose::set_enabled(true);
 193     // Given that we don't currently have a verboseness level
 194     // parameter, we'll hardcode this to high. This can be easily
 195     // changed in the future.
 196     G1ErgoVerbose::set_level(ErgoHigh);
 197   } else {
 198     G1ErgoVerbose::set_enabled(false);
 199   }
 200 
 201   // Verify PLAB sizes
 202   const size_t region_size = HeapRegion::GrainWords;
 203   if (YoungPLABSize > region_size || OldPLABSize > region_size) {
 204     char buffer[128];
 205     jio_snprintf(buffer, sizeof(buffer), "%sPLABSize should be at most "SIZE_FORMAT,
 206                  OldPLABSize > region_size ? "Old" : "Young", region_size);
 207     vm_exit_during_initialization(buffer);
 208   }
 209 
 210   _recent_prev_end_times_for_all_gcs_sec->add(os::elapsedTime());
 211   _prev_collection_pause_end_ms = os::elapsedTime() * 1000.0;
 212 
 213   int index = MIN2(_parallel_gc_threads - 1, 7);
 214 
 215   _rs_length_diff_seq->add(rs_length_diff_defaults[index]);
 216   _cost_per_card_ms_seq->add(cost_per_card_ms_defaults[index]);
 217   _young_cards_per_entry_ratio_seq->add(
 218                                   young_cards_per_entry_ratio_defaults[index]);
 219   _cost_per_entry_ms_seq->add(cost_per_entry_ms_defaults[index]);
 220   _cost_per_byte_ms_seq->add(cost_per_byte_ms_defaults[index]);
 221   _constant_other_time_ms_seq->add(constant_other_time_ms_defaults[index]);
 222   _young_other_cost_per_region_ms_seq->add(
 223                                young_other_cost_per_region_ms_defaults[index]);
 224   _non_young_other_cost_per_region_ms_seq->add(
 225                            non_young_other_cost_per_region_ms_defaults[index]);
 226 
 227   // Below, we might need to calculate the pause time target based on
 228   // the pause interval. When we do so we are going to give G1 maximum
 229   // flexibility and allow it to do pauses when it needs to. So, we'll
 230   // arrange that the pause interval to be pause time target + 1 to
 231   // ensure that a) the pause time target is maximized with respect to
 232   // the pause interval and b) we maintain the invariant that pause
 233   // time target < pause interval. If the user does not want this
 234   // maximum flexibility, they will have to set the pause interval
 235   // explicitly.
 236 
 237   // First make sure that, if either parameter is set, its value is
 238   // reasonable.
 239   if (!FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 240     if (MaxGCPauseMillis < 1) {
 241       vm_exit_during_initialization("MaxGCPauseMillis should be "
 242                                     "greater than 0");
 243     }
 244   }
 245   if (!FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 246     if (GCPauseIntervalMillis < 1) {
 247       vm_exit_during_initialization("GCPauseIntervalMillis should be "
 248                                     "greater than 0");
 249     }
 250   }
 251 
 252   // Then, if the pause time target parameter was not set, set it to
 253   // the default value.
 254   if (FLAG_IS_DEFAULT(MaxGCPauseMillis)) {
 255     if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 256       // The default pause time target in G1 is 200ms
 257       FLAG_SET_DEFAULT(MaxGCPauseMillis, 200);
 258     } else {
 259       // We do not allow the pause interval to be set without the
 260       // pause time target
 261       vm_exit_during_initialization("GCPauseIntervalMillis cannot be set "
 262                                     "without setting MaxGCPauseMillis");
 263     }
 264   }
 265 
 266   // Then, if the interval parameter was not set, set it according to
 267   // the pause time target (this will also deal with the case when the
 268   // pause time target is the default value).
 269   if (FLAG_IS_DEFAULT(GCPauseIntervalMillis)) {
 270     FLAG_SET_DEFAULT(GCPauseIntervalMillis, MaxGCPauseMillis + 1);
 271   }
 272 
 273   // Finally, make sure that the two parameters are consistent.
 274   if (MaxGCPauseMillis >= GCPauseIntervalMillis) {
 275     char buffer[256];
 276     jio_snprintf(buffer, 256,
 277                  "MaxGCPauseMillis (%u) should be less than "
 278                  "GCPauseIntervalMillis (%u)",
 279                  MaxGCPauseMillis, GCPauseIntervalMillis);
 280     vm_exit_during_initialization(buffer);
 281   }
 282 
 283   double max_gc_time = (double) MaxGCPauseMillis / 1000.0;
 284   double time_slice  = (double) GCPauseIntervalMillis / 1000.0;
 285   _mmu_tracker = new G1MMUTrackerQueue(time_slice, max_gc_time);
 286 
 287   // start conservatively (around 50ms is about right)
 288   _concurrent_mark_remark_times_ms->add(0.05);
 289   _concurrent_mark_cleanup_times_ms->add(0.20);
 290   _tenuring_threshold = MaxTenuringThreshold;
 291   // _max_survivor_regions will be calculated by
 292   // update_young_list_target_length() during initialization.
 293   _max_survivor_regions = 0;
 294 
 295   assert(GCTimeRatio > 0,
 296          "we should have set it to a default value set_g1_gc_flags() "
 297          "if a user set it to 0");
 298   _gc_overhead_perc = 100.0 * (1.0 / (1.0 + GCTimeRatio));
 299 
 300   uintx reserve_perc = G1ReservePercent;
 301   // Put an artificial ceiling on this so that it's not set to a silly value.
 302   if (reserve_perc > 50) {
 303     reserve_perc = 50;
 304     warning("G1ReservePercent is set to a value that is too large, "
 305             "it's been updated to %u", reserve_perc);
 306   }
 307   _reserve_factor = (double) reserve_perc / 100.0;
 308   // This will be set when the heap is expanded
 309   // for the first time during initialization.
 310   _reserve_regions = 0;
 311 
 312   _collectionSetChooser = new CollectionSetChooser();
 313 }
 314 
 315 void G1CollectorPolicy::initialize_alignments() {
 316   _space_alignment = HeapRegion::GrainBytes;
 317   size_t card_table_alignment = GenRemSet::max_alignment_constraint();
 318   size_t page_size = UseLargePages ? os::large_page_size() : os::vm_page_size();
 319   _heap_alignment = MAX3(card_table_alignment, _space_alignment, page_size);
 320 }
 321 
 322 void G1CollectorPolicy::initialize_flags() {
 323   if (G1HeapRegionSize != HeapRegion::GrainBytes) {
 324     FLAG_SET_ERGO(uintx, G1HeapRegionSize, HeapRegion::GrainBytes);
 325   }
 326 
 327   if (SurvivorRatio < 1) {
 328     vm_exit_during_initialization("Invalid survivor ratio specified");
 329   }
 330   CollectorPolicy::initialize_flags();
 331   _young_gen_sizer = new G1YoungGenSizer(); // Must be after call to initialize_flags
 332 }
 333 
 334 void G1CollectorPolicy::post_heap_initialize() {
 335   uintx max_regions = G1CollectedHeap::heap()->max_regions();
 336   size_t max_young_size = (size_t)_young_gen_sizer->max_young_length(max_regions) * HeapRegion::GrainBytes;
 337   if (max_young_size != MaxNewSize) {
 338     FLAG_SET_ERGO(uintx, MaxNewSize, max_young_size);
 339   }
 340 }
 341 
 342 G1YoungGenSizer::G1YoungGenSizer() : _sizer_kind(SizerDefaults), _adaptive_size(true),
 343         _min_desired_young_length(0), _max_desired_young_length(0) {
 344   if (FLAG_IS_CMDLINE(NewRatio)) {
 345     if (FLAG_IS_CMDLINE(NewSize) || FLAG_IS_CMDLINE(MaxNewSize)) {
 346       warning("-XX:NewSize and -XX:MaxNewSize override -XX:NewRatio");
 347     } else {
 348       _sizer_kind = SizerNewRatio;
 349       _adaptive_size = false;
 350       return;
 351     }
 352   }
 353 
 354   if (NewSize > MaxNewSize) {
 355     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 356       warning("NewSize (" SIZE_FORMAT "k) is greater than the MaxNewSize (" SIZE_FORMAT "k). "
 357               "A new max generation size of " SIZE_FORMAT "k will be used.",
 358               NewSize/K, MaxNewSize/K, NewSize/K);
 359     }
 360     MaxNewSize = NewSize;
 361   }
 362 
 363   if (FLAG_IS_CMDLINE(NewSize)) {
 364     _min_desired_young_length = MAX2((uint) (NewSize / HeapRegion::GrainBytes),
 365                                      1U);
 366     if (FLAG_IS_CMDLINE(MaxNewSize)) {
 367       _max_desired_young_length =
 368                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 369                                   1U);
 370       _sizer_kind = SizerMaxAndNewSize;
 371       _adaptive_size = _min_desired_young_length == _max_desired_young_length;
 372     } else {
 373       _sizer_kind = SizerNewSizeOnly;
 374     }
 375   } else if (FLAG_IS_CMDLINE(MaxNewSize)) {
 376     _max_desired_young_length =
 377                              MAX2((uint) (MaxNewSize / HeapRegion::GrainBytes),
 378                                   1U);
 379     _sizer_kind = SizerMaxNewSizeOnly;
 380   }
 381 }
 382 
 383 uint G1YoungGenSizer::calculate_default_min_length(uint new_number_of_heap_regions) {
 384   uint default_value = (new_number_of_heap_regions * G1NewSizePercent) / 100;
 385   return MAX2(1U, default_value);
 386 }
 387 
 388 uint G1YoungGenSizer::calculate_default_max_length(uint new_number_of_heap_regions) {
 389   uint default_value = (new_number_of_heap_regions * G1MaxNewSizePercent) / 100;
 390   return MAX2(1U, default_value);
 391 }
 392 
 393 void G1YoungGenSizer::recalculate_min_max_young_length(uint number_of_heap_regions, uint* min_young_length, uint* max_young_length) {
 394   assert(number_of_heap_regions > 0, "Heap must be initialized");
 395 
 396   switch (_sizer_kind) {
 397     case SizerDefaults:
 398       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 399       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 400       break;
 401     case SizerNewSizeOnly:
 402       *max_young_length = calculate_default_max_length(number_of_heap_regions);
 403       *max_young_length = MAX2(*min_young_length, *max_young_length);
 404       break;
 405     case SizerMaxNewSizeOnly:
 406       *min_young_length = calculate_default_min_length(number_of_heap_regions);
 407       *min_young_length = MIN2(*min_young_length, *max_young_length);
 408       break;
 409     case SizerMaxAndNewSize:
 410       // Do nothing. Values set on the command line, don't update them at runtime.
 411       break;
 412     case SizerNewRatio:
 413       *min_young_length = number_of_heap_regions / (NewRatio + 1);
 414       *max_young_length = *min_young_length;
 415       break;
 416     default:
 417       ShouldNotReachHere();
 418   }
 419 
 420   assert(*min_young_length <= *max_young_length, "Invalid min/max young gen size values");
 421 }
 422 
 423 uint G1YoungGenSizer::max_young_length(uint number_of_heap_regions) {
 424   // We need to pass the desired values because recalculation may not update these
 425   // values in some cases.
 426   uint temp = _min_desired_young_length;
 427   uint result = _max_desired_young_length;
 428   recalculate_min_max_young_length(number_of_heap_regions, &temp, &result);
 429   return result;
 430 }
 431 
 432 void G1YoungGenSizer::heap_size_changed(uint new_number_of_heap_regions) {
 433   recalculate_min_max_young_length(new_number_of_heap_regions, &_min_desired_young_length,
 434           &_max_desired_young_length);
 435 }
 436 
 437 void G1CollectorPolicy::init() {
 438   _phase_times = new G1GCPhaseTimes(_parallel_gc_threads, G1Log::finest() ? G1CollectedHeap::num_ext_root_tasks() : 0);
 439   // Set aside an initial future to_space.
 440   _g1 = G1CollectedHeap::heap();
 441 
 442   assert(Heap_lock->owned_by_self(), "Locking discipline.");
 443 
 444   initialize_gc_policy_counters();
 445 
 446   if (adaptive_young_list_length()) {
 447     _young_list_fixed_length = 0;
 448   } else {
 449     _young_list_fixed_length = _young_gen_sizer->min_desired_young_length();
 450   }
 451   _free_regions_at_end_of_collection = _g1->num_free_regions();
 452   update_young_list_target_length();
 453 
 454   // We may immediately start allocating regions and placing them on the
 455   // collection set list. Initialize the per-collection set info
 456   start_incremental_cset_building();
 457 }
 458 
 459 // Create the jstat counters for the policy.
 460 void G1CollectorPolicy::initialize_gc_policy_counters() {
 461   _gc_policy_counters = new GCPolicyCounters("GarbageFirst", 1, 3);
 462 }
 463 
 464 bool G1CollectorPolicy::predict_will_fit(uint young_length,
 465                                          double base_time_ms,
 466                                          uint base_free_regions,
 467                                          double target_pause_time_ms) {
 468   if (young_length >= base_free_regions) {
 469     // end condition 1: not enough space for the young regions
 470     return false;
 471   }
 472 
 473   double accum_surv_rate = accum_yg_surv_rate_pred((int) young_length - 1);
 474   size_t bytes_to_copy =
 475                (size_t) (accum_surv_rate * (double) HeapRegion::GrainBytes);
 476   double copy_time_ms = predict_object_copy_time_ms(bytes_to_copy);
 477   double young_other_time_ms = predict_young_other_time_ms(young_length);
 478   double pause_time_ms = base_time_ms + copy_time_ms + young_other_time_ms;
 479   if (pause_time_ms > target_pause_time_ms) {
 480     // end condition 2: prediction is over the target pause time
 481     return false;
 482   }
 483 
 484   size_t free_bytes =
 485                    (base_free_regions - young_length) * HeapRegion::GrainBytes;
 486   if ((2.0 * sigma()) * (double) bytes_to_copy > (double) free_bytes) {
 487     // end condition 3: out-of-space (conservatively!)
 488     return false;
 489   }
 490 
 491   // success!
 492   return true;
 493 }
 494 
 495 void G1CollectorPolicy::record_new_heap_size(uint new_number_of_regions) {
 496   // re-calculate the necessary reserve
 497   double reserve_regions_d = (double) new_number_of_regions * _reserve_factor;
 498   // We use ceiling so that if reserve_regions_d is > 0.0 (but
 499   // smaller than 1.0) we'll get 1.
 500   _reserve_regions = (uint) ceil(reserve_regions_d);
 501 
 502   _young_gen_sizer->heap_size_changed(new_number_of_regions);
 503 }
 504 
 505 uint G1CollectorPolicy::calculate_young_list_desired_min_length(
 506                                                        uint base_min_length) {
 507   uint desired_min_length = 0;
 508   if (adaptive_young_list_length()) {
 509     if (_alloc_rate_ms_seq->num() > 3) {
 510       double now_sec = os::elapsedTime();
 511       double when_ms = _mmu_tracker->when_max_gc_sec(now_sec) * 1000.0;
 512       double alloc_rate_ms = predict_alloc_rate_ms();
 513       desired_min_length = (uint) ceil(alloc_rate_ms * when_ms);
 514     } else {
 515       // otherwise we don't have enough info to make the prediction
 516     }
 517   }
 518   desired_min_length += base_min_length;
 519   // make sure we don't go below any user-defined minimum bound
 520   return MAX2(_young_gen_sizer->min_desired_young_length(), desired_min_length);
 521 }
 522 
 523 uint G1CollectorPolicy::calculate_young_list_desired_max_length() {
 524   // Here, we might want to also take into account any additional
 525   // constraints (i.e., user-defined minimum bound). Currently, we
 526   // effectively don't set this bound.
 527   return _young_gen_sizer->max_desired_young_length();
 528 }
 529 
 530 void G1CollectorPolicy::update_young_list_target_length(size_t rs_lengths) {
 531   if (rs_lengths == (size_t) -1) {
 532     // if it's set to the default value (-1), we should predict it;
 533     // otherwise, use the given value.
 534     rs_lengths = (size_t) get_new_prediction(_rs_lengths_seq);
 535   }
 536 
 537   // Calculate the absolute and desired min bounds.
 538 
 539   // This is how many young regions we already have (currently: the survivors).
 540   uint base_min_length = recorded_survivor_regions();
 541   // This is the absolute minimum young length, which ensures that we
 542   // can allocate one eden region in the worst-case.
 543   uint absolute_min_length = base_min_length + 1;
 544   uint desired_min_length =
 545                      calculate_young_list_desired_min_length(base_min_length);
 546   if (desired_min_length < absolute_min_length) {
 547     desired_min_length = absolute_min_length;
 548   }
 549 
 550   // Calculate the absolute and desired max bounds.
 551 
 552   // We will try our best not to "eat" into the reserve.
 553   uint absolute_max_length = 0;
 554   if (_free_regions_at_end_of_collection > _reserve_regions) {
 555     absolute_max_length = _free_regions_at_end_of_collection - _reserve_regions;
 556   }
 557   uint desired_max_length = calculate_young_list_desired_max_length();
 558   if (desired_max_length > absolute_max_length) {
 559     desired_max_length = absolute_max_length;
 560   }
 561 
 562   uint young_list_target_length = 0;
 563   if (adaptive_young_list_length()) {
 564     if (gcs_are_young()) {
 565       young_list_target_length =
 566                         calculate_young_list_target_length(rs_lengths,
 567                                                            base_min_length,
 568                                                            desired_min_length,
 569                                                            desired_max_length);
 570       _rs_lengths_prediction = rs_lengths;
 571     } else {
 572       // Don't calculate anything and let the code below bound it to
 573       // the desired_min_length, i.e., do the next GC as soon as
 574       // possible to maximize how many old regions we can add to it.
 575     }
 576   } else {
 577     // The user asked for a fixed young gen so we'll fix the young gen
 578     // whether the next GC is young or mixed.
 579     young_list_target_length = _young_list_fixed_length;
 580   }
 581 
 582   // Make sure we don't go over the desired max length, nor under the
 583   // desired min length. In case they clash, desired_min_length wins
 584   // which is why that test is second.
 585   if (young_list_target_length > desired_max_length) {
 586     young_list_target_length = desired_max_length;
 587   }
 588   if (young_list_target_length < desired_min_length) {
 589     young_list_target_length = desired_min_length;
 590   }
 591 
 592   assert(young_list_target_length > recorded_survivor_regions(),
 593          "we should be able to allocate at least one eden region");
 594   assert(young_list_target_length >= absolute_min_length, "post-condition");
 595   _young_list_target_length = young_list_target_length;
 596 
 597   update_max_gc_locker_expansion();
 598 }
 599 
 600 uint
 601 G1CollectorPolicy::calculate_young_list_target_length(size_t rs_lengths,
 602                                                      uint base_min_length,
 603                                                      uint desired_min_length,
 604                                                      uint desired_max_length) {
 605   assert(adaptive_young_list_length(), "pre-condition");
 606   assert(gcs_are_young(), "only call this for young GCs");
 607 
 608   // In case some edge-condition makes the desired max length too small...
 609   if (desired_max_length <= desired_min_length) {
 610     return desired_min_length;
 611   }
 612 
 613   // We'll adjust min_young_length and max_young_length not to include
 614   // the already allocated young regions (i.e., so they reflect the
 615   // min and max eden regions we'll allocate). The base_min_length
 616   // will be reflected in the predictions by the
 617   // survivor_regions_evac_time prediction.
 618   assert(desired_min_length > base_min_length, "invariant");
 619   uint min_young_length = desired_min_length - base_min_length;
 620   assert(desired_max_length > base_min_length, "invariant");
 621   uint max_young_length = desired_max_length - base_min_length;
 622 
 623   double target_pause_time_ms = _mmu_tracker->max_gc_time() * 1000.0;
 624   double survivor_regions_evac_time = predict_survivor_regions_evac_time();
 625   size_t pending_cards = (size_t) get_new_prediction(_pending_cards_seq);
 626   size_t adj_rs_lengths = rs_lengths + predict_rs_length_diff();
 627   size_t scanned_cards = predict_young_card_num(adj_rs_lengths);
 628   double base_time_ms =
 629     predict_base_elapsed_time_ms(pending_cards, scanned_cards) +
 630     survivor_regions_evac_time;
 631   uint available_free_regions = _free_regions_at_end_of_collection;
 632   uint base_free_regions = 0;
 633   if (available_free_regions > _reserve_regions) {
 634     base_free_regions = available_free_regions - _reserve_regions;
 635   }
 636 
 637   // Here, we will make sure that the shortest young length that
 638   // makes sense fits within the target pause time.
 639 
 640   if (predict_will_fit(min_young_length, base_time_ms,
 641                        base_free_regions, target_pause_time_ms)) {
 642     // The shortest young length will fit into the target pause time;
 643     // we'll now check whether the absolute maximum number of young
 644     // regions will fit in the target pause time. If not, we'll do
 645     // a binary search between min_young_length and max_young_length.
 646     if (predict_will_fit(max_young_length, base_time_ms,
 647                          base_free_regions, target_pause_time_ms)) {
 648       // The maximum young length will fit into the target pause time.
 649       // We are done so set min young length to the maximum length (as
 650       // the result is assumed to be returned in min_young_length).
 651       min_young_length = max_young_length;
 652     } else {
 653       // The maximum possible number of young regions will not fit within
 654       // the target pause time so we'll search for the optimal
 655       // length. The loop invariants are:
 656       //
 657       // min_young_length < max_young_length
 658       // min_young_length is known to fit into the target pause time
 659       // max_young_length is known not to fit into the target pause time
 660       //
 661       // Going into the loop we know the above hold as we've just
 662       // checked them. Every time around the loop we check whether
 663       // the middle value between min_young_length and
 664       // max_young_length fits into the target pause time. If it
 665       // does, it becomes the new min. If it doesn't, it becomes
 666       // the new max. This way we maintain the loop invariants.
 667 
 668       assert(min_young_length < max_young_length, "invariant");
 669       uint diff = (max_young_length - min_young_length) / 2;
 670       while (diff > 0) {
 671         uint young_length = min_young_length + diff;
 672         if (predict_will_fit(young_length, base_time_ms,
 673                              base_free_regions, target_pause_time_ms)) {
 674           min_young_length = young_length;
 675         } else {
 676           max_young_length = young_length;
 677         }
 678         assert(min_young_length <  max_young_length, "invariant");
 679         diff = (max_young_length - min_young_length) / 2;
 680       }
 681       // The results is min_young_length which, according to the
 682       // loop invariants, should fit within the target pause time.
 683 
 684       // These are the post-conditions of the binary search above:
 685       assert(min_young_length < max_young_length,
 686              "otherwise we should have discovered that max_young_length "
 687              "fits into the pause target and not done the binary search");
 688       assert(predict_will_fit(min_young_length, base_time_ms,
 689                               base_free_regions, target_pause_time_ms),
 690              "min_young_length, the result of the binary search, should "
 691              "fit into the pause target");
 692       assert(!predict_will_fit(min_young_length + 1, base_time_ms,
 693                                base_free_regions, target_pause_time_ms),
 694              "min_young_length, the result of the binary search, should be "
 695              "optimal, so no larger length should fit into the pause target");
 696     }
 697   } else {
 698     // Even the minimum length doesn't fit into the pause time
 699     // target, return it as the result nevertheless.
 700   }
 701   return base_min_length + min_young_length;
 702 }
 703 
 704 double G1CollectorPolicy::predict_survivor_regions_evac_time() {
 705   double survivor_regions_evac_time = 0.0;
 706   for (HeapRegion * r = _recorded_survivor_head;
 707        r != NULL && r != _recorded_survivor_tail->get_next_young_region();
 708        r = r->get_next_young_region()) {
 709     survivor_regions_evac_time += predict_region_elapsed_time_ms(r, gcs_are_young());
 710   }
 711   return survivor_regions_evac_time;
 712 }
 713 
 714 void G1CollectorPolicy::revise_young_list_target_length_if_necessary() {
 715   guarantee( adaptive_young_list_length(), "should not call this otherwise" );
 716 
 717   size_t rs_lengths = _g1->young_list()->sampled_rs_lengths();
 718   if (rs_lengths > _rs_lengths_prediction) {
 719     // add 10% to avoid having to recalculate often
 720     size_t rs_lengths_prediction = rs_lengths * 1100 / 1000;
 721     update_young_list_target_length(rs_lengths_prediction);
 722   }
 723 }
 724 
 725 
 726 
 727 HeapWord* G1CollectorPolicy::mem_allocate_work(size_t size,
 728                                                bool is_tlab,
 729                                                bool* gc_overhead_limit_was_exceeded) {
 730   guarantee(false, "Not using this policy feature yet.");
 731   return NULL;
 732 }
 733 
 734 // This method controls how a collector handles one or more
 735 // of its generations being fully allocated.
 736 HeapWord* G1CollectorPolicy::satisfy_failed_allocation(size_t size,
 737                                                        bool is_tlab) {
 738   guarantee(false, "Not using this policy feature yet.");
 739   return NULL;
 740 }
 741 
 742 
 743 #ifndef PRODUCT
 744 bool G1CollectorPolicy::verify_young_ages() {
 745   HeapRegion* head = _g1->young_list()->first_region();
 746   return
 747     verify_young_ages(head, _short_lived_surv_rate_group);
 748   // also call verify_young_ages on any additional surv rate groups
 749 }
 750 
 751 bool
 752 G1CollectorPolicy::verify_young_ages(HeapRegion* head,
 753                                      SurvRateGroup *surv_rate_group) {
 754   guarantee( surv_rate_group != NULL, "pre-condition" );
 755 
 756   const char* name = surv_rate_group->name();
 757   bool ret = true;
 758   int prev_age = -1;
 759 
 760   for (HeapRegion* curr = head;
 761        curr != NULL;
 762        curr = curr->get_next_young_region()) {
 763     SurvRateGroup* group = curr->surv_rate_group();
 764     if (group == NULL && !curr->is_survivor()) {
 765       gclog_or_tty->print_cr("## %s: encountered NULL surv_rate_group", name);
 766       ret = false;
 767     }
 768 
 769     if (surv_rate_group == group) {
 770       int age = curr->age_in_surv_rate_group();
 771 
 772       if (age < 0) {
 773         gclog_or_tty->print_cr("## %s: encountered negative age", name);
 774         ret = false;
 775       }
 776 
 777       if (age <= prev_age) {
 778         gclog_or_tty->print_cr("## %s: region ages are not strictly increasing "
 779                                "(%d, %d)", name, age, prev_age);
 780         ret = false;
 781       }
 782       prev_age = age;
 783     }
 784   }
 785 
 786   return ret;
 787 }
 788 #endif // PRODUCT
 789 
 790 void G1CollectorPolicy::record_full_collection_start() {
 791   _full_collection_start_sec = os::elapsedTime();
 792   record_heap_size_info_at_start(true /* full */);
 793   // Release the future to-space so that it is available for compaction into.
 794   _g1->set_full_collection();
 795 }
 796 
 797 void G1CollectorPolicy::record_full_collection_end() {
 798   // Consider this like a collection pause for the purposes of allocation
 799   // since last pause.
 800   double end_sec = os::elapsedTime();
 801   double full_gc_time_sec = end_sec - _full_collection_start_sec;
 802   double full_gc_time_ms = full_gc_time_sec * 1000.0;
 803 
 804   _trace_old_gen_time_data.record_full_collection(full_gc_time_ms);
 805 
 806   update_recent_gc_times(end_sec, full_gc_time_ms);
 807 
 808   _g1->clear_full_collection();
 809 
 810   // "Nuke" the heuristics that control the young/mixed GC
 811   // transitions and make sure we start with young GCs after the Full GC.
 812   set_gcs_are_young(true);
 813   _last_young_gc = false;
 814   clear_initiate_conc_mark_if_possible();
 815   clear_during_initial_mark_pause();
 816   _in_marking_window = false;
 817   _in_marking_window_im = false;
 818 
 819   _short_lived_surv_rate_group->start_adding_regions();
 820   // also call this on any additional surv rate groups
 821 
 822   record_survivor_regions(0, NULL, NULL);
 823 
 824   _free_regions_at_end_of_collection = _g1->num_free_regions();
 825   // Reset survivors SurvRateGroup.
 826   _survivor_surv_rate_group->reset();
 827   update_young_list_target_length();
 828   _collectionSetChooser->clear();
 829 }
 830 
 831 void G1CollectorPolicy::record_stop_world_start() {
 832   _stop_world_start = os::elapsedTime();
 833 }
 834 
 835 void G1CollectorPolicy::record_collection_pause_start(double start_time_sec) {
 836   // We only need to do this here as the policy will only be applied
 837   // to the GC we're about to start. so, no point is calculating this
 838   // every time we calculate / recalculate the target young length.
 839   update_survivors_policy();
 840 
 841   assert(_g1->used() == _g1->recalculate_used(),
 842          err_msg("sanity, used: "SIZE_FORMAT" recalculate_used: "SIZE_FORMAT,
 843                  _g1->used(), _g1->recalculate_used()));
 844 
 845   double s_w_t_ms = (start_time_sec - _stop_world_start) * 1000.0;
 846   _trace_young_gen_time_data.record_start_collection(s_w_t_ms);
 847   _stop_world_start = 0.0;
 848 
 849   record_heap_size_info_at_start(false /* full */);
 850 
 851   phase_times()->record_cur_collection_start_sec(start_time_sec);
 852   _pending_cards = _g1->pending_card_num();
 853 
 854   _collection_set_bytes_used_before = 0;
 855   _bytes_copied_during_gc = 0;
 856 
 857   _last_gc_was_young = false;
 858 
 859   // do that for any other surv rate groups
 860   _short_lived_surv_rate_group->stop_adding_regions();
 861   _survivors_age_table.clear();
 862 
 863   assert( verify_young_ages(), "region age verification" );
 864 }
 865 
 866 void G1CollectorPolicy::record_concurrent_mark_init_end(double
 867                                                    mark_init_elapsed_time_ms) {
 868   _during_marking = true;
 869   assert(!initiate_conc_mark_if_possible(), "we should have cleared it by now");
 870   clear_during_initial_mark_pause();
 871   _cur_mark_stop_world_time_ms = mark_init_elapsed_time_ms;
 872 }
 873 
 874 void G1CollectorPolicy::record_concurrent_mark_remark_start() {
 875   _mark_remark_start_sec = os::elapsedTime();
 876   _during_marking = false;
 877 }
 878 
 879 void G1CollectorPolicy::record_concurrent_mark_remark_end() {
 880   double end_time_sec = os::elapsedTime();
 881   double elapsed_time_ms = (end_time_sec - _mark_remark_start_sec)*1000.0;
 882   _concurrent_mark_remark_times_ms->add(elapsed_time_ms);
 883   _cur_mark_stop_world_time_ms += elapsed_time_ms;
 884   _prev_collection_pause_end_ms += elapsed_time_ms;
 885 
 886   _mmu_tracker->add_pause(_mark_remark_start_sec, end_time_sec, true);
 887 }
 888 
 889 void G1CollectorPolicy::record_concurrent_mark_cleanup_start() {
 890   _mark_cleanup_start_sec = os::elapsedTime();
 891 }
 892 
 893 void G1CollectorPolicy::record_concurrent_mark_cleanup_completed() {
 894   _last_young_gc = true;
 895   _in_marking_window = false;
 896 }
 897 
 898 void G1CollectorPolicy::record_concurrent_pause() {
 899   if (_stop_world_start > 0.0) {
 900     double yield_ms = (os::elapsedTime() - _stop_world_start) * 1000.0;
 901     _trace_young_gen_time_data.record_yield_time(yield_ms);
 902   }
 903 }
 904 
 905 bool G1CollectorPolicy::need_to_start_conc_mark(const char* source, size_t alloc_word_size) {
 906   if (_g1->concurrent_mark()->cmThread()->during_cycle()) {
 907     return false;
 908   }
 909 
 910   size_t marking_initiating_used_threshold =
 911     (_g1->capacity() / 100) * InitiatingHeapOccupancyPercent;
 912   size_t cur_used_bytes = _g1->non_young_capacity_bytes();
 913   size_t alloc_byte_size = alloc_word_size * HeapWordSize;
 914 
 915   if ((cur_used_bytes + alloc_byte_size) > marking_initiating_used_threshold) {
 916     if (gcs_are_young() && !_last_young_gc) {
 917       ergo_verbose5(ErgoConcCycles,
 918         "request concurrent cycle initiation",
 919         ergo_format_reason("occupancy higher than threshold")
 920         ergo_format_byte("occupancy")
 921         ergo_format_byte("allocation request")
 922         ergo_format_byte_perc("threshold")
 923         ergo_format_str("source"),
 924         cur_used_bytes,
 925         alloc_byte_size,
 926         marking_initiating_used_threshold,
 927         (double) InitiatingHeapOccupancyPercent,
 928         source);
 929       return true;
 930     } else {
 931       ergo_verbose5(ErgoConcCycles,
 932         "do not request concurrent cycle initiation",
 933         ergo_format_reason("still doing mixed collections")
 934         ergo_format_byte("occupancy")
 935         ergo_format_byte("allocation request")
 936         ergo_format_byte_perc("threshold")
 937         ergo_format_str("source"),
 938         cur_used_bytes,
 939         alloc_byte_size,
 940         marking_initiating_used_threshold,
 941         (double) InitiatingHeapOccupancyPercent,
 942         source);
 943     }
 944   }
 945 
 946   return false;
 947 }
 948 
 949 // Anything below that is considered to be zero
 950 #define MIN_TIMER_GRANULARITY 0.0000001
 951 
 952 void G1CollectorPolicy::record_collection_pause_end(double pause_time_ms, EvacuationInfo& evacuation_info) {
 953   double end_time_sec = os::elapsedTime();
 954   assert(_cur_collection_pause_used_regions_at_start >= cset_region_length(),
 955          "otherwise, the subtraction below does not make sense");
 956   size_t rs_size =
 957             _cur_collection_pause_used_regions_at_start - cset_region_length();
 958   size_t cur_used_bytes = _g1->used();
 959   assert(cur_used_bytes == _g1->recalculate_used(), "It should!");
 960   bool last_pause_included_initial_mark = false;
 961   bool update_stats = !_g1->evacuation_failed();
 962 
 963 #ifndef PRODUCT
 964   if (G1YoungSurvRateVerbose) {
 965     gclog_or_tty->cr();
 966     _short_lived_surv_rate_group->print();
 967     // do that for any other surv rate groups too
 968   }
 969 #endif // PRODUCT
 970 
 971   last_pause_included_initial_mark = during_initial_mark_pause();
 972   if (last_pause_included_initial_mark) {
 973     record_concurrent_mark_init_end(0.0);
 974   } else if (need_to_start_conc_mark("end of GC")) {
 975     // Note: this might have already been set, if during the last
 976     // pause we decided to start a cycle but at the beginning of
 977     // this pause we decided to postpone it. That's OK.
 978     set_initiate_conc_mark_if_possible();
 979   }
 980 
 981   _mmu_tracker->add_pause(end_time_sec - pause_time_ms/1000.0,
 982                           end_time_sec, false);
 983 
 984   evacuation_info.set_collectionset_used_before(_collection_set_bytes_used_before);
 985   evacuation_info.set_bytes_copied(_bytes_copied_during_gc);
 986 
 987   if (update_stats) {
 988     _trace_young_gen_time_data.record_end_collection(pause_time_ms, phase_times());
 989     // this is where we update the allocation rate of the application
 990     double app_time_ms =
 991       (phase_times()->cur_collection_start_sec() * 1000.0 - _prev_collection_pause_end_ms);
 992     if (app_time_ms < MIN_TIMER_GRANULARITY) {
 993       // This usually happens due to the timer not having the required
 994       // granularity. Some Linuxes are the usual culprits.
 995       // We'll just set it to something (arbitrarily) small.
 996       app_time_ms = 1.0;
 997     }
 998     // We maintain the invariant that all objects allocated by mutator
 999     // threads will be allocated out of eden regions. So, we can use
1000     // the eden region number allocated since the previous GC to
1001     // calculate the application's allocate rate. The only exception
1002     // to that is humongous objects that are allocated separately. But
1003     // given that humongous object allocations do not really affect
1004     // either the pause's duration nor when the next pause will take
1005     // place we can safely ignore them here.
1006     uint regions_allocated = eden_cset_region_length();
1007     double alloc_rate_ms = (double) regions_allocated / app_time_ms;
1008     _alloc_rate_ms_seq->add(alloc_rate_ms);
1009 
1010     double interval_ms =
1011       (end_time_sec - _recent_prev_end_times_for_all_gcs_sec->oldest()) * 1000.0;
1012     update_recent_gc_times(end_time_sec, pause_time_ms);
1013     _recent_avg_pause_time_ratio = _recent_gc_times_ms->sum()/interval_ms;
1014     if (recent_avg_pause_time_ratio() < 0.0 ||
1015         (recent_avg_pause_time_ratio() - 1.0 > 0.0)) {
1016 #ifndef PRODUCT
1017       // Dump info to allow post-facto debugging
1018       gclog_or_tty->print_cr("recent_avg_pause_time_ratio() out of bounds");
1019       gclog_or_tty->print_cr("-------------------------------------------");
1020       gclog_or_tty->print_cr("Recent GC Times (ms):");
1021       _recent_gc_times_ms->dump();
1022       gclog_or_tty->print_cr("(End Time=%3.3f) Recent GC End Times (s):", end_time_sec);
1023       _recent_prev_end_times_for_all_gcs_sec->dump();
1024       gclog_or_tty->print_cr("GC = %3.3f, Interval = %3.3f, Ratio = %3.3f",
1025                              _recent_gc_times_ms->sum(), interval_ms, recent_avg_pause_time_ratio());
1026       // In debug mode, terminate the JVM if the user wants to debug at this point.
1027       assert(!G1FailOnFPError, "Debugging data for CR 6898948 has been dumped above");
1028 #endif  // !PRODUCT
1029       // Clip ratio between 0.0 and 1.0, and continue. This will be fixed in
1030       // CR 6902692 by redoing the manner in which the ratio is incrementally computed.
1031       if (_recent_avg_pause_time_ratio < 0.0) {
1032         _recent_avg_pause_time_ratio = 0.0;
1033       } else {
1034         assert(_recent_avg_pause_time_ratio - 1.0 > 0.0, "Ctl-point invariant");
1035         _recent_avg_pause_time_ratio = 1.0;
1036       }
1037     }
1038   }
1039 
1040   bool new_in_marking_window = _in_marking_window;
1041   bool new_in_marking_window_im = false;
1042   if (last_pause_included_initial_mark) {
1043     new_in_marking_window = true;
1044     new_in_marking_window_im = true;
1045   }
1046 
1047   if (_last_young_gc) {
1048     // This is supposed to to be the "last young GC" before we start
1049     // doing mixed GCs. Here we decide whether to start mixed GCs or not.
1050 
1051     if (!last_pause_included_initial_mark) {
1052       if (next_gc_should_be_mixed("start mixed GCs",
1053                                   "do not start mixed GCs")) {
1054         set_gcs_are_young(false);
1055       }
1056     } else {
1057       ergo_verbose0(ErgoMixedGCs,
1058                     "do not start mixed GCs",
1059                     ergo_format_reason("concurrent cycle is about to start"));
1060     }
1061     _last_young_gc = false;
1062   }
1063 
1064   if (!_last_gc_was_young) {
1065     // This is a mixed GC. Here we decide whether to continue doing
1066     // mixed GCs or not.
1067 
1068     if (!next_gc_should_be_mixed("continue mixed GCs",
1069                                  "do not continue mixed GCs")) {
1070       set_gcs_are_young(true);
1071     }
1072   }
1073 
1074   _short_lived_surv_rate_group->start_adding_regions();
1075   // Do that for any other surv rate groups
1076 
1077   if (update_stats) {
1078     double cost_per_card_ms = 0.0;
1079     if (_pending_cards > 0) {
1080       cost_per_card_ms = phase_times()->average_last_update_rs_time() / (double) _pending_cards;
1081       _cost_per_card_ms_seq->add(cost_per_card_ms);
1082     }
1083 
1084     size_t cards_scanned = _g1->cards_scanned();
1085 
1086     double cost_per_entry_ms = 0.0;
1087     if (cards_scanned > 10) {
1088       cost_per_entry_ms = phase_times()->average_last_scan_rs_time() / (double) cards_scanned;
1089       if (_last_gc_was_young) {
1090         _cost_per_entry_ms_seq->add(cost_per_entry_ms);
1091       } else {
1092         _mixed_cost_per_entry_ms_seq->add(cost_per_entry_ms);
1093       }
1094     }
1095 
1096     if (_max_rs_lengths > 0) {
1097       double cards_per_entry_ratio =
1098         (double) cards_scanned / (double) _max_rs_lengths;
1099       if (_last_gc_was_young) {
1100         _young_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1101       } else {
1102         _mixed_cards_per_entry_ratio_seq->add(cards_per_entry_ratio);
1103       }
1104     }
1105 
1106     // This is defensive. For a while _max_rs_lengths could get
1107     // smaller than _recorded_rs_lengths which was causing
1108     // rs_length_diff to get very large and mess up the RSet length
1109     // predictions. The reason was unsafe concurrent updates to the
1110     // _inc_cset_recorded_rs_lengths field which the code below guards
1111     // against (see CR 7118202). This bug has now been fixed (see CR
1112     // 7119027). However, I'm still worried that
1113     // _inc_cset_recorded_rs_lengths might still end up somewhat
1114     // inaccurate. The concurrent refinement thread calculates an
1115     // RSet's length concurrently with other CR threads updating it
1116     // which might cause it to calculate the length incorrectly (if,
1117     // say, it's in mid-coarsening). So I'll leave in the defensive
1118     // conditional below just in case.
1119     size_t rs_length_diff = 0;
1120     if (_max_rs_lengths > _recorded_rs_lengths) {
1121       rs_length_diff = _max_rs_lengths - _recorded_rs_lengths;
1122     }
1123     _rs_length_diff_seq->add((double) rs_length_diff);
1124 
1125     size_t freed_bytes = _heap_used_bytes_before_gc - cur_used_bytes;
1126     size_t copied_bytes = _collection_set_bytes_used_before - freed_bytes;
1127     double cost_per_byte_ms = 0.0;
1128 
1129     if (copied_bytes > 0) {
1130       cost_per_byte_ms = phase_times()->average_last_obj_copy_time() / (double) copied_bytes;
1131       if (_in_marking_window) {
1132         _cost_per_byte_ms_during_cm_seq->add(cost_per_byte_ms);
1133       } else {
1134         _cost_per_byte_ms_seq->add(cost_per_byte_ms);
1135       }
1136     }
1137 
1138     double all_other_time_ms = pause_time_ms -
1139       (phase_times()->average_last_update_rs_time() + phase_times()->average_last_scan_rs_time()
1140       + phase_times()->average_last_obj_copy_time() + phase_times()->average_last_termination_time());
1141 
1142     double young_other_time_ms = 0.0;
1143     if (young_cset_region_length() > 0) {
1144       young_other_time_ms =
1145         phase_times()->young_cset_choice_time_ms() +
1146         phase_times()->young_free_cset_time_ms();
1147       _young_other_cost_per_region_ms_seq->add(young_other_time_ms /
1148                                           (double) young_cset_region_length());
1149     }
1150     double non_young_other_time_ms = 0.0;
1151     if (old_cset_region_length() > 0) {
1152       non_young_other_time_ms =
1153         phase_times()->non_young_cset_choice_time_ms() +
1154         phase_times()->non_young_free_cset_time_ms();
1155 
1156       _non_young_other_cost_per_region_ms_seq->add(non_young_other_time_ms /
1157                                             (double) old_cset_region_length());
1158     }
1159 
1160     double constant_other_time_ms = all_other_time_ms -
1161       (young_other_time_ms + non_young_other_time_ms);
1162     _constant_other_time_ms_seq->add(constant_other_time_ms);
1163 
1164     double survival_ratio = 0.0;
1165     if (_collection_set_bytes_used_before > 0) {
1166       survival_ratio = (double) _bytes_copied_during_gc /
1167                                    (double) _collection_set_bytes_used_before;
1168     }
1169 
1170     _pending_cards_seq->add((double) _pending_cards);
1171     _rs_lengths_seq->add((double) _max_rs_lengths);
1172   }
1173 
1174   _in_marking_window = new_in_marking_window;
1175   _in_marking_window_im = new_in_marking_window_im;
1176   _free_regions_at_end_of_collection = _g1->num_free_regions();
1177   update_young_list_target_length();
1178 
1179   // Note that _mmu_tracker->max_gc_time() returns the time in seconds.
1180   double update_rs_time_goal_ms = _mmu_tracker->max_gc_time() * MILLIUNITS * G1RSetUpdatingPauseTimePercent / 100.0;
1181   adjust_concurrent_refinement(phase_times()->average_last_update_rs_time(),
1182                                phase_times()->sum_last_update_rs_processed_buffers(), update_rs_time_goal_ms);
1183 
1184   _collectionSetChooser->verify();
1185 }
1186 
1187 #define EXT_SIZE_FORMAT "%.1f%s"
1188 #define EXT_SIZE_PARAMS(bytes)                                  \
1189   byte_size_in_proper_unit((double)(bytes)),                    \
1190   proper_unit_for_byte_size((bytes))
1191 
1192 void G1CollectorPolicy::record_heap_size_info_at_start(bool full) {
1193   YoungList* young_list = _g1->young_list();
1194   _eden_used_bytes_before_gc = young_list->eden_used_bytes();
1195   _survivor_used_bytes_before_gc = young_list->survivor_used_bytes();
1196   _heap_capacity_bytes_before_gc = _g1->capacity();
1197   _heap_used_bytes_before_gc = _g1->used();
1198   _cur_collection_pause_used_regions_at_start = _g1->num_used_regions();
1199 
1200   _eden_capacity_bytes_before_gc =
1201          (_young_list_target_length * HeapRegion::GrainBytes) - _survivor_used_bytes_before_gc;
1202 
1203   if (full) {
1204     _metaspace_used_bytes_before_gc = MetaspaceAux::used_bytes();
1205   }
1206 }
1207 
1208 void G1CollectorPolicy::print_heap_transition() {
1209   _g1->print_size_transition(gclog_or_tty,
1210                              _heap_used_bytes_before_gc,
1211                              _g1->used(),
1212                              _g1->capacity());
1213 }
1214 
1215 void G1CollectorPolicy::print_detailed_heap_transition(bool full) {
1216   YoungList* young_list = _g1->young_list();
1217 
1218   size_t eden_used_bytes_after_gc = young_list->eden_used_bytes();
1219   size_t survivor_used_bytes_after_gc = young_list->survivor_used_bytes();
1220   size_t heap_used_bytes_after_gc = _g1->used();
1221 
1222   size_t heap_capacity_bytes_after_gc = _g1->capacity();
1223   size_t eden_capacity_bytes_after_gc =
1224     (_young_list_target_length * HeapRegion::GrainBytes) - survivor_used_bytes_after_gc;
1225 
1226   gclog_or_tty->print(
1227     "   [Eden: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT") "
1228     "Survivors: "EXT_SIZE_FORMAT"->"EXT_SIZE_FORMAT" "
1229     "Heap: "EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")->"
1230     EXT_SIZE_FORMAT"("EXT_SIZE_FORMAT")]",
1231     EXT_SIZE_PARAMS(_eden_used_bytes_before_gc),
1232     EXT_SIZE_PARAMS(_eden_capacity_bytes_before_gc),
1233     EXT_SIZE_PARAMS(eden_used_bytes_after_gc),
1234     EXT_SIZE_PARAMS(eden_capacity_bytes_after_gc),
1235     EXT_SIZE_PARAMS(_survivor_used_bytes_before_gc),
1236     EXT_SIZE_PARAMS(survivor_used_bytes_after_gc),
1237     EXT_SIZE_PARAMS(_heap_used_bytes_before_gc),
1238     EXT_SIZE_PARAMS(_heap_capacity_bytes_before_gc),
1239     EXT_SIZE_PARAMS(heap_used_bytes_after_gc),
1240     EXT_SIZE_PARAMS(heap_capacity_bytes_after_gc));
1241 
1242   if (full) {
1243     MetaspaceAux::print_metaspace_change(_metaspace_used_bytes_before_gc);
1244   }
1245 
1246   gclog_or_tty->cr();
1247 }
1248 
1249 void G1CollectorPolicy::adjust_concurrent_refinement(double update_rs_time,
1250                                                      double update_rs_processed_buffers,
1251                                                      double goal_ms) {
1252   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
1253   ConcurrentG1Refine *cg1r = G1CollectedHeap::heap()->concurrent_g1_refine();
1254 
1255   if (G1UseAdaptiveConcRefinement) {
1256     const int k_gy = 3, k_gr = 6;
1257     const double inc_k = 1.1, dec_k = 0.9;
1258 
1259     int g = cg1r->green_zone();
1260     if (update_rs_time > goal_ms) {
1261       g = (int)(g * dec_k);  // Can become 0, that's OK. That would mean a mutator-only processing.
1262     } else {
1263       if (update_rs_time < goal_ms && update_rs_processed_buffers > g) {
1264         g = (int)MAX2(g * inc_k, g + 1.0);
1265       }
1266     }
1267     // Change the refinement threads params
1268     cg1r->set_green_zone(g);
1269     cg1r->set_yellow_zone(g * k_gy);
1270     cg1r->set_red_zone(g * k_gr);
1271     cg1r->reinitialize_threads();
1272 
1273     int processing_threshold_delta = MAX2((int)(cg1r->green_zone() * sigma()), 1);
1274     int processing_threshold = MIN2(cg1r->green_zone() + processing_threshold_delta,
1275                                     cg1r->yellow_zone());
1276     // Change the barrier params
1277     dcqs.set_process_completed_threshold(processing_threshold);
1278     dcqs.set_max_completed_queue(cg1r->red_zone());
1279   }
1280 
1281   int curr_queue_size = dcqs.completed_buffers_num();
1282   if (curr_queue_size >= cg1r->yellow_zone()) {
1283     dcqs.set_completed_queue_padding(curr_queue_size);
1284   } else {
1285     dcqs.set_completed_queue_padding(0);
1286   }
1287   dcqs.notify_if_necessary();
1288 }
1289 
1290 double
1291 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards,
1292                                                 size_t scanned_cards) {
1293   return
1294     predict_rs_update_time_ms(pending_cards) +
1295     predict_rs_scan_time_ms(scanned_cards) +
1296     predict_constant_other_time_ms();
1297 }
1298 
1299 double
1300 G1CollectorPolicy::predict_base_elapsed_time_ms(size_t pending_cards) {
1301   size_t rs_length = predict_rs_length_diff();
1302   size_t card_num;
1303   if (gcs_are_young()) {
1304     card_num = predict_young_card_num(rs_length);
1305   } else {
1306     card_num = predict_non_young_card_num(rs_length);
1307   }
1308   return predict_base_elapsed_time_ms(pending_cards, card_num);
1309 }
1310 
1311 size_t G1CollectorPolicy::predict_bytes_to_copy(HeapRegion* hr) {
1312   size_t bytes_to_copy;
1313   if (hr->is_marked())
1314     bytes_to_copy = hr->max_live_bytes();
1315   else {
1316     assert(hr->is_young() && hr->age_in_surv_rate_group() != -1, "invariant");
1317     int age = hr->age_in_surv_rate_group();
1318     double yg_surv_rate = predict_yg_surv_rate(age, hr->surv_rate_group());
1319     bytes_to_copy = (size_t) ((double) hr->used() * yg_surv_rate);
1320   }
1321   return bytes_to_copy;
1322 }
1323 
1324 double
1325 G1CollectorPolicy::predict_region_elapsed_time_ms(HeapRegion* hr,
1326                                                   bool for_young_gc) {
1327   size_t rs_length = hr->rem_set()->occupied();
1328   size_t card_num;
1329 
1330   // Predicting the number of cards is based on which type of GC
1331   // we're predicting for.
1332   if (for_young_gc) {
1333     card_num = predict_young_card_num(rs_length);
1334   } else {
1335     card_num = predict_non_young_card_num(rs_length);
1336   }
1337   size_t bytes_to_copy = predict_bytes_to_copy(hr);
1338 
1339   double region_elapsed_time_ms =
1340     predict_rs_scan_time_ms(card_num) +
1341     predict_object_copy_time_ms(bytes_to_copy);
1342 
1343   // The prediction of the "other" time for this region is based
1344   // upon the region type and NOT the GC type.
1345   if (hr->is_young()) {
1346     region_elapsed_time_ms += predict_young_other_time_ms(1);
1347   } else {
1348     region_elapsed_time_ms += predict_non_young_other_time_ms(1);
1349   }
1350   return region_elapsed_time_ms;
1351 }
1352 
1353 void
1354 G1CollectorPolicy::init_cset_region_lengths(uint eden_cset_region_length,
1355                                             uint survivor_cset_region_length) {
1356   _eden_cset_region_length     = eden_cset_region_length;
1357   _survivor_cset_region_length = survivor_cset_region_length;
1358   _old_cset_region_length      = 0;
1359 }
1360 
1361 void G1CollectorPolicy::set_recorded_rs_lengths(size_t rs_lengths) {
1362   _recorded_rs_lengths = rs_lengths;
1363 }
1364 
1365 void G1CollectorPolicy::update_recent_gc_times(double end_time_sec,
1366                                                double elapsed_ms) {
1367   _recent_gc_times_ms->add(elapsed_ms);
1368   _recent_prev_end_times_for_all_gcs_sec->add(end_time_sec);
1369   _prev_collection_pause_end_ms = end_time_sec * 1000.0;
1370 }
1371 
1372 size_t G1CollectorPolicy::expansion_amount() {
1373   double recent_gc_overhead = recent_avg_pause_time_ratio() * 100.0;
1374   double threshold = _gc_overhead_perc;
1375   if (recent_gc_overhead > threshold) {
1376     // We will double the existing space, or take
1377     // G1ExpandByPercentOfAvailable % of the available expansion
1378     // space, whichever is smaller, bounded below by a minimum
1379     // expansion (unless that's all that's left.)
1380     const size_t min_expand_bytes = 1*M;
1381     size_t reserved_bytes = _g1->max_capacity();
1382     size_t committed_bytes = _g1->capacity();
1383     size_t uncommitted_bytes = reserved_bytes - committed_bytes;
1384     size_t expand_bytes;
1385     size_t expand_bytes_via_pct =
1386       uncommitted_bytes * G1ExpandByPercentOfAvailable / 100;
1387     expand_bytes = MIN2(expand_bytes_via_pct, committed_bytes);
1388     expand_bytes = MAX2(expand_bytes, min_expand_bytes);
1389     expand_bytes = MIN2(expand_bytes, uncommitted_bytes);
1390 
1391     ergo_verbose5(ErgoHeapSizing,
1392                   "attempt heap expansion",
1393                   ergo_format_reason("recent GC overhead higher than "
1394                                      "threshold after GC")
1395                   ergo_format_perc("recent GC overhead")
1396                   ergo_format_perc("threshold")
1397                   ergo_format_byte("uncommitted")
1398                   ergo_format_byte_perc("calculated expansion amount"),
1399                   recent_gc_overhead, threshold,
1400                   uncommitted_bytes,
1401                   expand_bytes_via_pct, (double) G1ExpandByPercentOfAvailable);
1402 
1403     return expand_bytes;
1404   } else {
1405     return 0;
1406   }
1407 }
1408 
1409 void G1CollectorPolicy::print_tracing_info() const {
1410   _trace_young_gen_time_data.print();
1411   _trace_old_gen_time_data.print();
1412 }
1413 
1414 void G1CollectorPolicy::print_yg_surv_rate_info() const {
1415 #ifndef PRODUCT
1416   _short_lived_surv_rate_group->print_surv_rate_summary();
1417   // add this call for any other surv rate groups
1418 #endif // PRODUCT
1419 }
1420 
1421 bool G1CollectorPolicy::is_young_list_full() {
1422   uint young_list_length = _g1->young_list()->length();
1423   uint young_list_target_length = _young_list_target_length;
1424   return young_list_length >= young_list_target_length;
1425 }
1426 
1427 bool G1CollectorPolicy::can_expand_young_list() {
1428   uint young_list_length = _g1->young_list()->length();
1429   uint young_list_max_length = _young_list_max_length;
1430   return young_list_length < young_list_max_length;
1431 }
1432 
1433 void G1CollectorPolicy::update_max_gc_locker_expansion() {
1434   uint expansion_region_num = 0;
1435   if (GCLockerEdenExpansionPercent > 0) {
1436     double perc = (double) GCLockerEdenExpansionPercent / 100.0;
1437     double expansion_region_num_d = perc * (double) _young_list_target_length;
1438     // We use ceiling so that if expansion_region_num_d is > 0.0 (but
1439     // less than 1.0) we'll get 1.
1440     expansion_region_num = (uint) ceil(expansion_region_num_d);
1441   } else {
1442     assert(expansion_region_num == 0, "sanity");
1443   }
1444   _young_list_max_length = _young_list_target_length + expansion_region_num;
1445   assert(_young_list_target_length <= _young_list_max_length, "post-condition");
1446 }
1447 
1448 // Calculates survivor space parameters.
1449 void G1CollectorPolicy::update_survivors_policy() {
1450   double max_survivor_regions_d =
1451                  (double) _young_list_target_length / (double) SurvivorRatio;
1452   // We use ceiling so that if max_survivor_regions_d is > 0.0 (but
1453   // smaller than 1.0) we'll get 1.
1454   _max_survivor_regions = (uint) ceil(max_survivor_regions_d);
1455 
1456   _tenuring_threshold = _survivors_age_table.compute_tenuring_threshold(
1457         HeapRegion::GrainWords * _max_survivor_regions);
1458 }
1459 
1460 bool G1CollectorPolicy::force_initial_mark_if_outside_cycle(
1461                                                      GCCause::Cause gc_cause) {
1462   bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1463   if (!during_cycle) {
1464     ergo_verbose1(ErgoConcCycles,
1465                   "request concurrent cycle initiation",
1466                   ergo_format_reason("requested by GC cause")
1467                   ergo_format_str("GC cause"),
1468                   GCCause::to_string(gc_cause));
1469     set_initiate_conc_mark_if_possible();
1470     return true;
1471   } else {
1472     ergo_verbose1(ErgoConcCycles,
1473                   "do not request concurrent cycle initiation",
1474                   ergo_format_reason("concurrent cycle already in progress")
1475                   ergo_format_str("GC cause"),
1476                   GCCause::to_string(gc_cause));
1477     return false;
1478   }
1479 }
1480 
1481 void
1482 G1CollectorPolicy::decide_on_conc_mark_initiation() {
1483   // We are about to decide on whether this pause will be an
1484   // initial-mark pause.
1485 
1486   // First, during_initial_mark_pause() should not be already set. We
1487   // will set it here if we have to. However, it should be cleared by
1488   // the end of the pause (it's only set for the duration of an
1489   // initial-mark pause).
1490   assert(!during_initial_mark_pause(), "pre-condition");
1491 
1492   if (initiate_conc_mark_if_possible()) {
1493     // We had noticed on a previous pause that the heap occupancy has
1494     // gone over the initiating threshold and we should start a
1495     // concurrent marking cycle. So we might initiate one.
1496 
1497     bool during_cycle = _g1->concurrent_mark()->cmThread()->during_cycle();
1498     if (!during_cycle) {
1499       // The concurrent marking thread is not "during a cycle", i.e.,
1500       // it has completed the last one. So we can go ahead and
1501       // initiate a new cycle.
1502 
1503       set_during_initial_mark_pause();
1504       // We do not allow mixed GCs during marking.
1505       if (!gcs_are_young()) {
1506         set_gcs_are_young(true);
1507         ergo_verbose0(ErgoMixedGCs,
1508                       "end mixed GCs",
1509                       ergo_format_reason("concurrent cycle is about to start"));
1510       }
1511 
1512       // And we can now clear initiate_conc_mark_if_possible() as
1513       // we've already acted on it.
1514       clear_initiate_conc_mark_if_possible();
1515 
1516       ergo_verbose0(ErgoConcCycles,
1517                   "initiate concurrent cycle",
1518                   ergo_format_reason("concurrent cycle initiation requested"));
1519     } else {
1520       // The concurrent marking thread is still finishing up the
1521       // previous cycle. If we start one right now the two cycles
1522       // overlap. In particular, the concurrent marking thread might
1523       // be in the process of clearing the next marking bitmap (which
1524       // we will use for the next cycle if we start one). Starting a
1525       // cycle now will be bad given that parts of the marking
1526       // information might get cleared by the marking thread. And we
1527       // cannot wait for the marking thread to finish the cycle as it
1528       // periodically yields while clearing the next marking bitmap
1529       // and, if it's in a yield point, it's waiting for us to
1530       // finish. So, at this point we will not start a cycle and we'll
1531       // let the concurrent marking thread complete the last one.
1532       ergo_verbose0(ErgoConcCycles,
1533                     "do not initiate concurrent cycle",
1534                     ergo_format_reason("concurrent cycle already in progress"));
1535     }
1536   }
1537 }
1538 
1539 class ParKnownGarbageHRClosure: public HeapRegionClosure {
1540   G1CollectedHeap* _g1h;
1541   CSetChooserParUpdater _cset_updater;
1542 
1543 public:
1544   ParKnownGarbageHRClosure(CollectionSetChooser* hrSorted,
1545                            uint chunk_size) :
1546     _g1h(G1CollectedHeap::heap()),
1547     _cset_updater(hrSorted, true /* parallel */, chunk_size) { }
1548 
1549   bool doHeapRegion(HeapRegion* r) {
1550     // Do we have any marking information for this region?
1551     if (r->is_marked()) {
1552       // We will skip any region that's currently used as an old GC
1553       // alloc region (we should not consider those for collection
1554       // before we fill them up).
1555       if (_cset_updater.should_add(r) && !_g1h->is_old_gc_alloc_region(r)) {
1556         _cset_updater.add_region(r);
1557       }
1558     }
1559     return false;
1560   }
1561 };
1562 
1563 class ParKnownGarbageTask: public AbstractGangTask {
1564   CollectionSetChooser* _hrSorted;
1565   uint _chunk_size;
1566   G1CollectedHeap* _g1;
1567   HeapRegionClaimer _hrclaimer;
1568 
1569 public:
1570   ParKnownGarbageTask(CollectionSetChooser* hrSorted, uint chunk_size, uint n_workers) :
1571       AbstractGangTask("ParKnownGarbageTask"),
1572       _hrSorted(hrSorted), _chunk_size(chunk_size),
1573       _g1(G1CollectedHeap::heap()), _hrclaimer(n_workers) {}
1574 
1575   void work(uint worker_id) {
1576     ParKnownGarbageHRClosure parKnownGarbageCl(_hrSorted, _chunk_size);
1577     _g1->heap_region_par_iterate(&parKnownGarbageCl, worker_id, &_hrclaimer);
1578   }
1579 };
1580 
1581 uint G1CollectorPolicy::calculate_parallel_work_chunk_size(uint n_workers, uint n_regions) {
1582   assert(n_workers > 0, "Active gc workers should be greater than 0");
1583   const uint overpartition_factor = 4;
1584   const uint min_chunk_size = MAX2(n_regions / n_workers, 1U);
1585   return MAX2(n_regions / (n_workers * overpartition_factor), min_chunk_size);
1586 }
1587 
1588 void
1589 G1CollectorPolicy::record_concurrent_mark_cleanup_end(uint n_workers) {
1590   _collectionSetChooser->clear();
1591 
1592   uint n_regions = _g1->num_regions();
1593   uint chunk_size = calculate_parallel_work_chunk_size(n_workers, n_regions);
1594   _collectionSetChooser->prepare_for_par_region_addition(n_regions, chunk_size);
1595   ParKnownGarbageTask par_known_garbage_task(_collectionSetChooser, chunk_size, n_workers);
1596   _g1->workers()->run_task(&par_known_garbage_task);
1597 
1598   _collectionSetChooser->sort_regions();
1599 
1600   double end_sec = os::elapsedTime();
1601   double elapsed_time_ms = (end_sec - _mark_cleanup_start_sec) * 1000.0;
1602   _concurrent_mark_cleanup_times_ms->add(elapsed_time_ms);
1603   _cur_mark_stop_world_time_ms += elapsed_time_ms;
1604   _prev_collection_pause_end_ms += elapsed_time_ms;
1605   _mmu_tracker->add_pause(_mark_cleanup_start_sec, end_sec, true);
1606 }
1607 
1608 // Add the heap region at the head of the non-incremental collection set
1609 void G1CollectorPolicy::add_old_region_to_cset(HeapRegion* hr) {
1610   assert(_inc_cset_build_state == Active, "Precondition");
1611   assert(hr->is_old(), "the region should be old");
1612 
1613   assert(!hr->in_collection_set(), "should not already be in the CSet");
1614   hr->set_in_collection_set(true);
1615   hr->set_next_in_collection_set(_collection_set);
1616   _collection_set = hr;
1617   _collection_set_bytes_used_before += hr->used();
1618   _g1->register_old_region_with_in_cset_fast_test(hr);
1619   size_t rs_length = hr->rem_set()->occupied();
1620   _recorded_rs_lengths += rs_length;
1621   _old_cset_region_length += 1;
1622 }
1623 
1624 // Initialize the per-collection-set information
1625 void G1CollectorPolicy::start_incremental_cset_building() {
1626   assert(_inc_cset_build_state == Inactive, "Precondition");
1627 
1628   _inc_cset_head = NULL;
1629   _inc_cset_tail = NULL;
1630   _inc_cset_bytes_used_before = 0;
1631 
1632   _inc_cset_max_finger = 0;
1633   _inc_cset_recorded_rs_lengths = 0;
1634   _inc_cset_recorded_rs_lengths_diffs = 0;
1635   _inc_cset_predicted_elapsed_time_ms = 0.0;
1636   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1637   _inc_cset_build_state = Active;
1638 }
1639 
1640 void G1CollectorPolicy::finalize_incremental_cset_building() {
1641   assert(_inc_cset_build_state == Active, "Precondition");
1642   assert(SafepointSynchronize::is_at_safepoint(), "should be at a safepoint");
1643 
1644   // The two "main" fields, _inc_cset_recorded_rs_lengths and
1645   // _inc_cset_predicted_elapsed_time_ms, are updated by the thread
1646   // that adds a new region to the CSet. Further updates by the
1647   // concurrent refinement thread that samples the young RSet lengths
1648   // are accumulated in the *_diffs fields. Here we add the diffs to
1649   // the "main" fields.
1650 
1651   if (_inc_cset_recorded_rs_lengths_diffs >= 0) {
1652     _inc_cset_recorded_rs_lengths += _inc_cset_recorded_rs_lengths_diffs;
1653   } else {
1654     // This is defensive. The diff should in theory be always positive
1655     // as RSets can only grow between GCs. However, given that we
1656     // sample their size concurrently with other threads updating them
1657     // it's possible that we might get the wrong size back, which
1658     // could make the calculations somewhat inaccurate.
1659     size_t diffs = (size_t) (-_inc_cset_recorded_rs_lengths_diffs);
1660     if (_inc_cset_recorded_rs_lengths >= diffs) {
1661       _inc_cset_recorded_rs_lengths -= diffs;
1662     } else {
1663       _inc_cset_recorded_rs_lengths = 0;
1664     }
1665   }
1666   _inc_cset_predicted_elapsed_time_ms +=
1667                                      _inc_cset_predicted_elapsed_time_ms_diffs;
1668 
1669   _inc_cset_recorded_rs_lengths_diffs = 0;
1670   _inc_cset_predicted_elapsed_time_ms_diffs = 0.0;
1671 }
1672 
1673 void G1CollectorPolicy::add_to_incremental_cset_info(HeapRegion* hr, size_t rs_length) {
1674   // This routine is used when:
1675   // * adding survivor regions to the incremental cset at the end of an
1676   //   evacuation pause,
1677   // * adding the current allocation region to the incremental cset
1678   //   when it is retired, and
1679   // * updating existing policy information for a region in the
1680   //   incremental cset via young list RSet sampling.
1681   // Therefore this routine may be called at a safepoint by the
1682   // VM thread, or in-between safepoints by mutator threads (when
1683   // retiring the current allocation region) or a concurrent
1684   // refine thread (RSet sampling).
1685 
1686   double region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1687   size_t used_bytes = hr->used();
1688   _inc_cset_recorded_rs_lengths += rs_length;
1689   _inc_cset_predicted_elapsed_time_ms += region_elapsed_time_ms;
1690   _inc_cset_bytes_used_before += used_bytes;
1691 
1692   // Cache the values we have added to the aggregated information
1693   // in the heap region in case we have to remove this region from
1694   // the incremental collection set, or it is updated by the
1695   // rset sampling code
1696   hr->set_recorded_rs_length(rs_length);
1697   hr->set_predicted_elapsed_time_ms(region_elapsed_time_ms);
1698 }
1699 
1700 void G1CollectorPolicy::update_incremental_cset_info(HeapRegion* hr,
1701                                                      size_t new_rs_length) {
1702   // Update the CSet information that is dependent on the new RS length
1703   assert(hr->is_young(), "Precondition");
1704   assert(!SafepointSynchronize::is_at_safepoint(),
1705                                                "should not be at a safepoint");
1706 
1707   // We could have updated _inc_cset_recorded_rs_lengths and
1708   // _inc_cset_predicted_elapsed_time_ms directly but we'd need to do
1709   // that atomically, as this code is executed by a concurrent
1710   // refinement thread, potentially concurrently with a mutator thread
1711   // allocating a new region and also updating the same fields. To
1712   // avoid the atomic operations we accumulate these updates on two
1713   // separate fields (*_diffs) and we'll just add them to the "main"
1714   // fields at the start of a GC.
1715 
1716   ssize_t old_rs_length = (ssize_t) hr->recorded_rs_length();
1717   ssize_t rs_lengths_diff = (ssize_t) new_rs_length - old_rs_length;
1718   _inc_cset_recorded_rs_lengths_diffs += rs_lengths_diff;
1719 
1720   double old_elapsed_time_ms = hr->predicted_elapsed_time_ms();
1721   double new_region_elapsed_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
1722   double elapsed_ms_diff = new_region_elapsed_time_ms - old_elapsed_time_ms;
1723   _inc_cset_predicted_elapsed_time_ms_diffs += elapsed_ms_diff;
1724 
1725   hr->set_recorded_rs_length(new_rs_length);
1726   hr->set_predicted_elapsed_time_ms(new_region_elapsed_time_ms);
1727 }
1728 
1729 void G1CollectorPolicy::add_region_to_incremental_cset_common(HeapRegion* hr) {
1730   assert(hr->is_young(), "invariant");
1731   assert(hr->young_index_in_cset() > -1, "should have already been set");
1732   assert(_inc_cset_build_state == Active, "Precondition");
1733 
1734   // We need to clear and set the cached recorded/cached collection set
1735   // information in the heap region here (before the region gets added
1736   // to the collection set). An individual heap region's cached values
1737   // are calculated, aggregated with the policy collection set info,
1738   // and cached in the heap region here (initially) and (subsequently)
1739   // by the Young List sampling code.
1740 
1741   size_t rs_length = hr->rem_set()->occupied();
1742   add_to_incremental_cset_info(hr, rs_length);
1743 
1744   HeapWord* hr_end = hr->end();
1745   _inc_cset_max_finger = MAX2(_inc_cset_max_finger, hr_end);
1746 
1747   assert(!hr->in_collection_set(), "invariant");
1748   hr->set_in_collection_set(true);
1749   assert( hr->next_in_collection_set() == NULL, "invariant");
1750 
1751   _g1->register_young_region_with_in_cset_fast_test(hr);
1752 }
1753 
1754 // Add the region at the RHS of the incremental cset
1755 void G1CollectorPolicy::add_region_to_incremental_cset_rhs(HeapRegion* hr) {
1756   // We should only ever be appending survivors at the end of a pause
1757   assert(hr->is_survivor(), "Logic");
1758 
1759   // Do the 'common' stuff
1760   add_region_to_incremental_cset_common(hr);
1761 
1762   // Now add the region at the right hand side
1763   if (_inc_cset_tail == NULL) {
1764     assert(_inc_cset_head == NULL, "invariant");
1765     _inc_cset_head = hr;
1766   } else {
1767     _inc_cset_tail->set_next_in_collection_set(hr);
1768   }
1769   _inc_cset_tail = hr;
1770 }
1771 
1772 // Add the region to the LHS of the incremental cset
1773 void G1CollectorPolicy::add_region_to_incremental_cset_lhs(HeapRegion* hr) {
1774   // Survivors should be added to the RHS at the end of a pause
1775   assert(hr->is_eden(), "Logic");
1776 
1777   // Do the 'common' stuff
1778   add_region_to_incremental_cset_common(hr);
1779 
1780   // Add the region at the left hand side
1781   hr->set_next_in_collection_set(_inc_cset_head);
1782   if (_inc_cset_head == NULL) {
1783     assert(_inc_cset_tail == NULL, "Invariant");
1784     _inc_cset_tail = hr;
1785   }
1786   _inc_cset_head = hr;
1787 }
1788 
1789 #ifndef PRODUCT
1790 void G1CollectorPolicy::print_collection_set(HeapRegion* list_head, outputStream* st) {
1791   assert(list_head == inc_cset_head() || list_head == collection_set(), "must be");
1792 
1793   st->print_cr("\nCollection_set:");
1794   HeapRegion* csr = list_head;
1795   while (csr != NULL) {
1796     HeapRegion* next = csr->next_in_collection_set();
1797     assert(csr->in_collection_set(), "bad CS");
1798     st->print_cr("  "HR_FORMAT", P: "PTR_FORMAT "N: "PTR_FORMAT", age: %4d",
1799                  HR_FORMAT_PARAMS(csr),
1800                  csr->prev_top_at_mark_start(), csr->next_top_at_mark_start(),
1801                  csr->age_in_surv_rate_group_cond());
1802     csr = next;
1803   }
1804 }
1805 #endif // !PRODUCT
1806 
1807 double G1CollectorPolicy::reclaimable_bytes_perc(size_t reclaimable_bytes) {
1808   // Returns the given amount of reclaimable bytes (that represents
1809   // the amount of reclaimable space still to be collected) as a
1810   // percentage of the current heap capacity.
1811   size_t capacity_bytes = _g1->capacity();
1812   return (double) reclaimable_bytes * 100.0 / (double) capacity_bytes;
1813 }
1814 
1815 bool G1CollectorPolicy::next_gc_should_be_mixed(const char* true_action_str,
1816                                                 const char* false_action_str) {
1817   CollectionSetChooser* cset_chooser = _collectionSetChooser;
1818   if (cset_chooser->is_empty()) {
1819     ergo_verbose0(ErgoMixedGCs,
1820                   false_action_str,
1821                   ergo_format_reason("candidate old regions not available"));
1822     return false;
1823   }
1824 
1825   // Is the amount of uncollected reclaimable space above G1HeapWastePercent?
1826   size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1827   double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1828   double threshold = (double) G1HeapWastePercent;
1829   if (reclaimable_perc <= threshold) {
1830     ergo_verbose4(ErgoMixedGCs,
1831               false_action_str,
1832               ergo_format_reason("reclaimable percentage not over threshold")
1833               ergo_format_region("candidate old regions")
1834               ergo_format_byte_perc("reclaimable")
1835               ergo_format_perc("threshold"),
1836               cset_chooser->remaining_regions(),
1837               reclaimable_bytes,
1838               reclaimable_perc, threshold);
1839     return false;
1840   }
1841 
1842   ergo_verbose4(ErgoMixedGCs,
1843                 true_action_str,
1844                 ergo_format_reason("candidate old regions available")
1845                 ergo_format_region("candidate old regions")
1846                 ergo_format_byte_perc("reclaimable")
1847                 ergo_format_perc("threshold"),
1848                 cset_chooser->remaining_regions(),
1849                 reclaimable_bytes,
1850                 reclaimable_perc, threshold);
1851   return true;
1852 }
1853 
1854 uint G1CollectorPolicy::calc_min_old_cset_length() {
1855   // The min old CSet region bound is based on the maximum desired
1856   // number of mixed GCs after a cycle. I.e., even if some old regions
1857   // look expensive, we should add them to the CSet anyway to make
1858   // sure we go through the available old regions in no more than the
1859   // maximum desired number of mixed GCs.
1860   //
1861   // The calculation is based on the number of marked regions we added
1862   // to the CSet chooser in the first place, not how many remain, so
1863   // that the result is the same during all mixed GCs that follow a cycle.
1864 
1865   const size_t region_num = (size_t) _collectionSetChooser->length();
1866   const size_t gc_num = (size_t) MAX2(G1MixedGCCountTarget, (uintx) 1);
1867   size_t result = region_num / gc_num;
1868   // emulate ceiling
1869   if (result * gc_num < region_num) {
1870     result += 1;
1871   }
1872   return (uint) result;
1873 }
1874 
1875 uint G1CollectorPolicy::calc_max_old_cset_length() {
1876   // The max old CSet region bound is based on the threshold expressed
1877   // as a percentage of the heap size. I.e., it should bound the
1878   // number of old regions added to the CSet irrespective of how many
1879   // of them are available.
1880 
1881   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1882   const size_t region_num = g1h->num_regions();
1883   const size_t perc = (size_t) G1OldCSetRegionThresholdPercent;
1884   size_t result = region_num * perc / 100;
1885   // emulate ceiling
1886   if (100 * result < region_num * perc) {
1887     result += 1;
1888   }
1889   return (uint) result;
1890 }
1891 
1892 
1893 void G1CollectorPolicy::finalize_cset(double target_pause_time_ms, EvacuationInfo& evacuation_info) {
1894   double young_start_time_sec = os::elapsedTime();
1895 
1896   YoungList* young_list = _g1->young_list();
1897   finalize_incremental_cset_building();
1898 
1899   guarantee(target_pause_time_ms > 0.0,
1900             err_msg("target_pause_time_ms = %1.6lf should be positive",
1901                     target_pause_time_ms));
1902   guarantee(_collection_set == NULL, "Precondition");
1903 
1904   double base_time_ms = predict_base_elapsed_time_ms(_pending_cards);
1905   double predicted_pause_time_ms = base_time_ms;
1906   double time_remaining_ms = MAX2(target_pause_time_ms - base_time_ms, 0.0);
1907 
1908   ergo_verbose4(ErgoCSetConstruction | ErgoHigh,
1909                 "start choosing CSet",
1910                 ergo_format_size("_pending_cards")
1911                 ergo_format_ms("predicted base time")
1912                 ergo_format_ms("remaining time")
1913                 ergo_format_ms("target pause time"),
1914                 _pending_cards, base_time_ms, time_remaining_ms, target_pause_time_ms);
1915 
1916   _last_gc_was_young = gcs_are_young() ? true : false;
1917 
1918   if (_last_gc_was_young) {
1919     _trace_young_gen_time_data.increment_young_collection_count();
1920   } else {
1921     _trace_young_gen_time_data.increment_mixed_collection_count();
1922   }
1923 
1924   // The young list is laid with the survivor regions from the previous
1925   // pause are appended to the RHS of the young list, i.e.
1926   //   [Newly Young Regions ++ Survivors from last pause].
1927 
1928   uint survivor_region_length = young_list->survivor_length();
1929   uint eden_region_length = young_list->length() - survivor_region_length;
1930   init_cset_region_lengths(eden_region_length, survivor_region_length);
1931 
1932   HeapRegion* hr = young_list->first_survivor_region();
1933   while (hr != NULL) {
1934     assert(hr->is_survivor(), "badly formed young list");
1935     // There is a convention that all the young regions in the CSet
1936     // are tagged as "eden", so we do this for the survivors here. We
1937     // use the special set_eden_pre_gc() as it doesn't check that the
1938     // region is free (which is not the case here).
1939     hr->set_eden_pre_gc();
1940     hr = hr->get_next_young_region();
1941   }
1942 
1943   // Clear the fields that point to the survivor list - they are all young now.
1944   young_list->clear_survivors();
1945 
1946   _collection_set = _inc_cset_head;
1947   _collection_set_bytes_used_before = _inc_cset_bytes_used_before;
1948   time_remaining_ms = MAX2(time_remaining_ms - _inc_cset_predicted_elapsed_time_ms, 0.0);
1949   predicted_pause_time_ms += _inc_cset_predicted_elapsed_time_ms;
1950 
1951   ergo_verbose3(ErgoCSetConstruction | ErgoHigh,
1952                 "add young regions to CSet",
1953                 ergo_format_region("eden")
1954                 ergo_format_region("survivors")
1955                 ergo_format_ms("predicted young region time"),
1956                 eden_region_length, survivor_region_length,
1957                 _inc_cset_predicted_elapsed_time_ms);
1958 
1959   // The number of recorded young regions is the incremental
1960   // collection set's current size
1961   set_recorded_rs_lengths(_inc_cset_recorded_rs_lengths);
1962 
1963   double young_end_time_sec = os::elapsedTime();
1964   phase_times()->record_young_cset_choice_time_ms((young_end_time_sec - young_start_time_sec) * 1000.0);
1965 
1966   // Set the start of the non-young choice time.
1967   double non_young_start_time_sec = young_end_time_sec;
1968 
1969   if (!gcs_are_young()) {
1970     CollectionSetChooser* cset_chooser = _collectionSetChooser;
1971     cset_chooser->verify();
1972     const uint min_old_cset_length = calc_min_old_cset_length();
1973     const uint max_old_cset_length = calc_max_old_cset_length();
1974 
1975     uint expensive_region_num = 0;
1976     bool check_time_remaining = adaptive_young_list_length();
1977 
1978     HeapRegion* hr = cset_chooser->peek();
1979     while (hr != NULL) {
1980       if (old_cset_region_length() >= max_old_cset_length) {
1981         // Added maximum number of old regions to the CSet.
1982         ergo_verbose2(ErgoCSetConstruction,
1983                       "finish adding old regions to CSet",
1984                       ergo_format_reason("old CSet region num reached max")
1985                       ergo_format_region("old")
1986                       ergo_format_region("max"),
1987                       old_cset_region_length(), max_old_cset_length);
1988         break;
1989       }
1990 
1991 
1992       // Stop adding regions if the remaining reclaimable space is
1993       // not above G1HeapWastePercent.
1994       size_t reclaimable_bytes = cset_chooser->remaining_reclaimable_bytes();
1995       double reclaimable_perc = reclaimable_bytes_perc(reclaimable_bytes);
1996       double threshold = (double) G1HeapWastePercent;
1997       if (reclaimable_perc <= threshold) {
1998         // We've added enough old regions that the amount of uncollected
1999         // reclaimable space is at or below the waste threshold. Stop
2000         // adding old regions to the CSet.
2001         ergo_verbose5(ErgoCSetConstruction,
2002                       "finish adding old regions to CSet",
2003                       ergo_format_reason("reclaimable percentage not over threshold")
2004                       ergo_format_region("old")
2005                       ergo_format_region("max")
2006                       ergo_format_byte_perc("reclaimable")
2007                       ergo_format_perc("threshold"),
2008                       old_cset_region_length(),
2009                       max_old_cset_length,
2010                       reclaimable_bytes,
2011                       reclaimable_perc, threshold);
2012         break;
2013       }
2014 
2015       double predicted_time_ms = predict_region_elapsed_time_ms(hr, gcs_are_young());
2016       if (check_time_remaining) {
2017         if (predicted_time_ms > time_remaining_ms) {
2018           // Too expensive for the current CSet.
2019 
2020           if (old_cset_region_length() >= min_old_cset_length) {
2021             // We have added the minimum number of old regions to the CSet,
2022             // we are done with this CSet.
2023             ergo_verbose4(ErgoCSetConstruction,
2024                           "finish adding old regions to CSet",
2025                           ergo_format_reason("predicted time is too high")
2026                           ergo_format_ms("predicted time")
2027                           ergo_format_ms("remaining time")
2028                           ergo_format_region("old")
2029                           ergo_format_region("min"),
2030                           predicted_time_ms, time_remaining_ms,
2031                           old_cset_region_length(), min_old_cset_length);
2032             break;
2033           }
2034 
2035           // We'll add it anyway given that we haven't reached the
2036           // minimum number of old regions.
2037           expensive_region_num += 1;
2038         }
2039       } else {
2040         if (old_cset_region_length() >= min_old_cset_length) {
2041           // In the non-auto-tuning case, we'll finish adding regions
2042           // to the CSet if we reach the minimum.
2043           ergo_verbose2(ErgoCSetConstruction,
2044                         "finish adding old regions to CSet",
2045                         ergo_format_reason("old CSet region num reached min")
2046                         ergo_format_region("old")
2047                         ergo_format_region("min"),
2048                         old_cset_region_length(), min_old_cset_length);
2049           break;
2050         }
2051       }
2052 
2053       // We will add this region to the CSet.
2054       time_remaining_ms = MAX2(time_remaining_ms - predicted_time_ms, 0.0);
2055       predicted_pause_time_ms += predicted_time_ms;
2056       cset_chooser->remove_and_move_to_next(hr);
2057       _g1->old_set_remove(hr);
2058       add_old_region_to_cset(hr);
2059 
2060       hr = cset_chooser->peek();
2061     }
2062     if (hr == NULL) {
2063       ergo_verbose0(ErgoCSetConstruction,
2064                     "finish adding old regions to CSet",
2065                     ergo_format_reason("candidate old regions not available"));
2066     }
2067 
2068     if (expensive_region_num > 0) {
2069       // We print the information once here at the end, predicated on
2070       // whether we added any apparently expensive regions or not, to
2071       // avoid generating output per region.
2072       ergo_verbose4(ErgoCSetConstruction,
2073                     "added expensive regions to CSet",
2074                     ergo_format_reason("old CSet region num not reached min")
2075                     ergo_format_region("old")
2076                     ergo_format_region("expensive")
2077                     ergo_format_region("min")
2078                     ergo_format_ms("remaining time"),
2079                     old_cset_region_length(),
2080                     expensive_region_num,
2081                     min_old_cset_length,
2082                     time_remaining_ms);
2083     }
2084 
2085     cset_chooser->verify();
2086   }
2087 
2088   stop_incremental_cset_building();
2089 
2090   ergo_verbose5(ErgoCSetConstruction,
2091                 "finish choosing CSet",
2092                 ergo_format_region("eden")
2093                 ergo_format_region("survivors")
2094                 ergo_format_region("old")
2095                 ergo_format_ms("predicted pause time")
2096                 ergo_format_ms("target pause time"),
2097                 eden_region_length, survivor_region_length,
2098                 old_cset_region_length(),
2099                 predicted_pause_time_ms, target_pause_time_ms);
2100 
2101   double non_young_end_time_sec = os::elapsedTime();
2102   phase_times()->record_non_young_cset_choice_time_ms((non_young_end_time_sec - non_young_start_time_sec) * 1000.0);
2103   evacuation_info.set_collectionset_regions(cset_region_length());
2104 }
2105 
2106 void TraceYoungGenTimeData::record_start_collection(double time_to_stop_the_world_ms) {
2107   if(TraceYoungGenTime) {
2108     _all_stop_world_times_ms.add(time_to_stop_the_world_ms);
2109   }
2110 }
2111 
2112 void TraceYoungGenTimeData::record_yield_time(double yield_time_ms) {
2113   if(TraceYoungGenTime) {
2114     _all_yield_times_ms.add(yield_time_ms);
2115   }
2116 }
2117 
2118 void TraceYoungGenTimeData::record_end_collection(double pause_time_ms, G1GCPhaseTimes* phase_times) {
2119   if(TraceYoungGenTime) {
2120     _total.add(pause_time_ms);
2121     _other.add(pause_time_ms - phase_times->accounted_time_ms());
2122     _root_region_scan_wait.add(phase_times->root_region_scan_wait_time_ms());
2123     _parallel.add(phase_times->cur_collection_par_time_ms());
2124     _ext_root_scan.add(phase_times->average_last_ext_root_scan_time());
2125     _satb_filtering.add(phase_times->average_last_satb_filtering_times_ms());
2126     _update_rs.add(phase_times->average_last_update_rs_time());
2127     _scan_rs.add(phase_times->average_last_scan_rs_time());
2128     _obj_copy.add(phase_times->average_last_obj_copy_time());
2129     _termination.add(phase_times->average_last_termination_time());
2130 
2131     double parallel_known_time = phase_times->average_last_ext_root_scan_time() +
2132       phase_times->average_last_satb_filtering_times_ms() +
2133       phase_times->average_last_update_rs_time() +
2134       phase_times->average_last_scan_rs_time() +
2135       phase_times->average_last_obj_copy_time() +
2136       + phase_times->average_last_termination_time();
2137 
2138     double parallel_other_time = phase_times->cur_collection_par_time_ms() - parallel_known_time;
2139     _parallel_other.add(parallel_other_time);
2140     _clear_ct.add(phase_times->cur_clear_ct_time_ms());
2141   }
2142 }
2143 
2144 void TraceYoungGenTimeData::increment_young_collection_count() {
2145   if(TraceYoungGenTime) {
2146     ++_young_pause_num;
2147   }
2148 }
2149 
2150 void TraceYoungGenTimeData::increment_mixed_collection_count() {
2151   if(TraceYoungGenTime) {
2152     ++_mixed_pause_num;
2153   }
2154 }
2155 
2156 void TraceYoungGenTimeData::print_summary(const char* str,
2157                                           const NumberSeq* seq) const {
2158   double sum = seq->sum();
2159   gclog_or_tty->print_cr("%-27s = %8.2lf s (avg = %8.2lf ms)",
2160                 str, sum / 1000.0, seq->avg());
2161 }
2162 
2163 void TraceYoungGenTimeData::print_summary_sd(const char* str,
2164                                              const NumberSeq* seq) const {
2165   print_summary(str, seq);
2166   gclog_or_tty->print_cr("%+45s = %5d, std dev = %8.2lf ms, max = %8.2lf ms)",
2167                 "(num", seq->num(), seq->sd(), seq->maximum());
2168 }
2169 
2170 void TraceYoungGenTimeData::print() const {
2171   if (!TraceYoungGenTime) {
2172     return;
2173   }
2174 
2175   gclog_or_tty->print_cr("ALL PAUSES");
2176   print_summary_sd("   Total", &_total);
2177   gclog_or_tty->cr();
2178   gclog_or_tty->cr();
2179   gclog_or_tty->print_cr("   Young GC Pauses: %8d", _young_pause_num);
2180   gclog_or_tty->print_cr("   Mixed GC Pauses: %8d", _mixed_pause_num);
2181   gclog_or_tty->cr();
2182 
2183   gclog_or_tty->print_cr("EVACUATION PAUSES");
2184 
2185   if (_young_pause_num == 0 && _mixed_pause_num == 0) {
2186     gclog_or_tty->print_cr("none");
2187   } else {
2188     print_summary_sd("   Evacuation Pauses", &_total);
2189     print_summary("      Root Region Scan Wait", &_root_region_scan_wait);
2190     print_summary("      Parallel Time", &_parallel);
2191     print_summary("         Ext Root Scanning", &_ext_root_scan);
2192     print_summary("         SATB Filtering", &_satb_filtering);
2193     print_summary("         Update RS", &_update_rs);
2194     print_summary("         Scan RS", &_scan_rs);
2195     print_summary("         Object Copy", &_obj_copy);
2196     print_summary("         Termination", &_termination);
2197     print_summary("         Parallel Other", &_parallel_other);
2198     print_summary("      Clear CT", &_clear_ct);
2199     print_summary("      Other", &_other);
2200   }
2201   gclog_or_tty->cr();
2202 
2203   gclog_or_tty->print_cr("MISC");
2204   print_summary_sd("   Stop World", &_all_stop_world_times_ms);
2205   print_summary_sd("   Yields", &_all_yield_times_ms);
2206 }
2207 
2208 void TraceOldGenTimeData::record_full_collection(double full_gc_time_ms) {
2209   if (TraceOldGenTime) {
2210     _all_full_gc_times.add(full_gc_time_ms);
2211   }
2212 }
2213 
2214 void TraceOldGenTimeData::print() const {
2215   if (!TraceOldGenTime) {
2216     return;
2217   }
2218 
2219   if (_all_full_gc_times.num() > 0) {
2220     gclog_or_tty->print("\n%4d full_gcs: total time = %8.2f s",
2221       _all_full_gc_times.num(),
2222       _all_full_gc_times.sum() / 1000.0);
2223     gclog_or_tty->print_cr(" (avg = %8.2fms).", _all_full_gc_times.avg());
2224     gclog_or_tty->print_cr("                     [std. dev = %8.2f ms, max = %8.2f ms]",
2225       _all_full_gc_times.sd(),
2226       _all_full_gc_times.maximum());
2227   }
2228 }