1 /*
   2  * Copyright (c) 2001, 2015, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #if !defined(__clang_major__) && defined(__GNUC__)
  26 // FIXME, formats have issues.  Disable this macro definition, compile, and study warnings for more information.
  27 #define ATTRIBUTE_PRINTF(x,y)
  28 #endif
  29 
  30 #include "precompiled.hpp"
  31 #include "classfile/metadataOnStackMark.hpp"
  32 #include "classfile/stringTable.hpp"
  33 #include "code/codeCache.hpp"
  34 #include "code/icBuffer.hpp"
  35 #include "gc_implementation/g1/bufferingOopClosure.hpp"
  36 #include "gc_implementation/g1/concurrentG1Refine.hpp"
  37 #include "gc_implementation/g1/concurrentG1RefineThread.hpp"
  38 #include "gc_implementation/g1/concurrentMarkThread.inline.hpp"
  39 #include "gc_implementation/g1/g1AllocRegion.inline.hpp"
  40 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  41 #include "gc_implementation/g1/g1CollectorPolicy.hpp"
  42 #include "gc_implementation/g1/g1ErgoVerbose.hpp"
  43 #include "gc_implementation/g1/g1EvacFailure.hpp"
  44 #include "gc_implementation/g1/g1GCPhaseTimes.hpp"
  45 #include "gc_implementation/g1/g1Log.hpp"
  46 #include "gc_implementation/g1/g1MarkSweep.hpp"
  47 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  48 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  49 #include "gc_implementation/g1/g1RegionToSpaceMapper.hpp"
  50 #include "gc_implementation/g1/g1RemSet.inline.hpp"
  51 #include "gc_implementation/g1/g1StringDedup.hpp"
  52 #include "gc_implementation/g1/g1YCTypes.hpp"
  53 #include "gc_implementation/g1/heapRegion.inline.hpp"
  54 #include "gc_implementation/g1/heapRegionRemSet.hpp"
  55 #include "gc_implementation/g1/heapRegionSet.inline.hpp"
  56 #include "gc_implementation/g1/vm_operations_g1.hpp"
  57 #include "gc_implementation/shared/gcHeapSummary.hpp"
  58 #include "gc_implementation/shared/gcTimer.hpp"
  59 #include "gc_implementation/shared/gcTrace.hpp"
  60 #include "gc_implementation/shared/gcTraceTime.hpp"
  61 #include "gc_implementation/shared/isGCActiveMark.hpp"
  62 #include "memory/allocation.hpp"
  63 #include "memory/gcLocker.inline.hpp"
  64 #include "memory/generationSpec.hpp"
  65 #include "memory/iterator.hpp"
  66 #include "memory/referenceProcessor.hpp"
  67 #include "oops/oop.inline.hpp"
  68 #include "oops/oop.pcgc.inline.hpp"
  69 #include "runtime/atomic.inline.hpp"
  70 #include "runtime/orderAccess.inline.hpp"
  71 #include "runtime/vmThread.hpp"
  72 #include "utilities/globalDefinitions.hpp"
  73 
  74 size_t G1CollectedHeap::_humongous_object_threshold_in_words = 0;
  75 
  76 // turn it on so that the contents of the young list (scan-only /
  77 // to-be-collected) are printed at "strategic" points before / during
  78 // / after the collection --- this is useful for debugging
  79 #define YOUNG_LIST_VERBOSE 0
  80 // CURRENT STATUS
  81 // This file is under construction.  Search for "FIXME".
  82 
  83 // INVARIANTS/NOTES
  84 //
  85 // All allocation activity covered by the G1CollectedHeap interface is
  86 // serialized by acquiring the HeapLock.  This happens in mem_allocate
  87 // and allocate_new_tlab, which are the "entry" points to the
  88 // allocation code from the rest of the JVM.  (Note that this does not
  89 // apply to TLAB allocation, which is not part of this interface: it
  90 // is done by clients of this interface.)
  91 
  92 // Notes on implementation of parallelism in different tasks.
  93 //
  94 // G1ParVerifyTask uses heap_region_par_iterate() for parallelism.
  95 // The number of GC workers is passed to heap_region_par_iterate().
  96 // It does use run_task() which sets _n_workers in the task.
  97 // G1ParTask executes g1_process_roots() ->
  98 // SharedHeap::process_roots() which calls eventually to
  99 // CardTableModRefBS::par_non_clean_card_iterate_work() which uses
 100 // SequentialSubTasksDone.  SharedHeap::process_roots() also
 101 // directly uses SubTasksDone (_process_strong_tasks field in SharedHeap).
 102 //
 103 
 104 // Local to this file.
 105 
 106 class RefineCardTableEntryClosure: public CardTableEntryClosure {
 107   bool _concurrent;
 108 public:
 109   RefineCardTableEntryClosure() : _concurrent(true) { }
 110 
 111   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 112     bool oops_into_cset = G1CollectedHeap::heap()->g1_rem_set()->refine_card(card_ptr, worker_i, false);
 113     // This path is executed by the concurrent refine or mutator threads,
 114     // concurrently, and so we do not care if card_ptr contains references
 115     // that point into the collection set.
 116     assert(!oops_into_cset, "should be");
 117 
 118     if (_concurrent && SuspendibleThreadSet::should_yield()) {
 119       // Caller will actually yield.
 120       return false;
 121     }
 122     // Otherwise, we finished successfully; return true.
 123     return true;
 124   }
 125 
 126   void set_concurrent(bool b) { _concurrent = b; }
 127 };
 128 
 129 
 130 class RedirtyLoggedCardTableEntryClosure : public CardTableEntryClosure {
 131  private:
 132   size_t _num_processed;
 133 
 134  public:
 135   RedirtyLoggedCardTableEntryClosure() : CardTableEntryClosure(), _num_processed(0) { }
 136 
 137   bool do_card_ptr(jbyte* card_ptr, uint worker_i) {
 138     *card_ptr = CardTableModRefBS::dirty_card_val();
 139     _num_processed++;
 140     return true;
 141   }
 142 
 143   size_t num_processed() const { return _num_processed; }
 144 };
 145 
 146 YoungList::YoungList(G1CollectedHeap* g1h) :
 147     _g1h(g1h), _head(NULL), _length(0), _last_sampled_rs_lengths(0),
 148     _survivor_head(NULL), _survivor_tail(NULL), _survivor_length(0) {
 149   guarantee(check_list_empty(false), "just making sure...");
 150 }
 151 
 152 void YoungList::push_region(HeapRegion *hr) {
 153   assert(!hr->is_young(), "should not already be young");
 154   assert(hr->get_next_young_region() == NULL, "cause it should!");
 155 
 156   hr->set_next_young_region(_head);
 157   _head = hr;
 158 
 159   _g1h->g1_policy()->set_region_eden(hr, (int) _length);
 160   ++_length;
 161 }
 162 
 163 void YoungList::add_survivor_region(HeapRegion* hr) {
 164   assert(hr->is_survivor(), "should be flagged as survivor region");
 165   assert(hr->get_next_young_region() == NULL, "cause it should!");
 166 
 167   hr->set_next_young_region(_survivor_head);
 168   if (_survivor_head == NULL) {
 169     _survivor_tail = hr;
 170   }
 171   _survivor_head = hr;
 172   ++_survivor_length;
 173 }
 174 
 175 void YoungList::empty_list(HeapRegion* list) {
 176   while (list != NULL) {
 177     HeapRegion* next = list->get_next_young_region();
 178     list->set_next_young_region(NULL);
 179     list->uninstall_surv_rate_group();
 180     // This is called before a Full GC and all the non-empty /
 181     // non-humongous regions at the end of the Full GC will end up as
 182     // old anyway.
 183     list->set_old();
 184     list = next;
 185   }
 186 }
 187 
 188 void YoungList::empty_list() {
 189   assert(check_list_well_formed(), "young list should be well formed");
 190 
 191   empty_list(_head);
 192   _head = NULL;
 193   _length = 0;
 194 
 195   empty_list(_survivor_head);
 196   _survivor_head = NULL;
 197   _survivor_tail = NULL;
 198   _survivor_length = 0;
 199 
 200   _last_sampled_rs_lengths = 0;
 201 
 202   assert(check_list_empty(false), "just making sure...");
 203 }
 204 
 205 bool YoungList::check_list_well_formed() {
 206   bool ret = true;
 207 
 208   uint length = 0;
 209   HeapRegion* curr = _head;
 210   HeapRegion* last = NULL;
 211   while (curr != NULL) {
 212     if (!curr->is_young()) {
 213       gclog_or_tty->print_cr("### YOUNG REGION "PTR_FORMAT"-"PTR_FORMAT" "
 214                              "incorrectly tagged (y: %d, surv: %d)",
 215                              curr->bottom(), curr->end(),
 216                              curr->is_young(), curr->is_survivor());
 217       ret = false;
 218     }
 219     ++length;
 220     last = curr;
 221     curr = curr->get_next_young_region();
 222   }
 223   ret = ret && (length == _length);
 224 
 225   if (!ret) {
 226     gclog_or_tty->print_cr("### YOUNG LIST seems not well formed!");
 227     gclog_or_tty->print_cr("###   list has %u entries, _length is %u",
 228                            length, _length);
 229   }
 230 
 231   return ret;
 232 }
 233 
 234 bool YoungList::check_list_empty(bool check_sample) {
 235   bool ret = true;
 236 
 237   if (_length != 0) {
 238     gclog_or_tty->print_cr("### YOUNG LIST should have 0 length, not %u",
 239                   _length);
 240     ret = false;
 241   }
 242   if (check_sample && _last_sampled_rs_lengths != 0) {
 243     gclog_or_tty->print_cr("### YOUNG LIST has non-zero last sampled RS lengths");
 244     ret = false;
 245   }
 246   if (_head != NULL) {
 247     gclog_or_tty->print_cr("### YOUNG LIST does not have a NULL head");
 248     ret = false;
 249   }
 250   if (!ret) {
 251     gclog_or_tty->print_cr("### YOUNG LIST does not seem empty");
 252   }
 253 
 254   return ret;
 255 }
 256 
 257 void
 258 YoungList::rs_length_sampling_init() {
 259   _sampled_rs_lengths = 0;
 260   _curr               = _head;
 261 }
 262 
 263 bool
 264 YoungList::rs_length_sampling_more() {
 265   return _curr != NULL;
 266 }
 267 
 268 void
 269 YoungList::rs_length_sampling_next() {
 270   assert( _curr != NULL, "invariant" );
 271   size_t rs_length = _curr->rem_set()->occupied();
 272 
 273   _sampled_rs_lengths += rs_length;
 274 
 275   // The current region may not yet have been added to the
 276   // incremental collection set (it gets added when it is
 277   // retired as the current allocation region).
 278   if (_curr->in_collection_set()) {
 279     // Update the collection set policy information for this region
 280     _g1h->g1_policy()->update_incremental_cset_info(_curr, rs_length);
 281   }
 282 
 283   _curr = _curr->get_next_young_region();
 284   if (_curr == NULL) {
 285     _last_sampled_rs_lengths = _sampled_rs_lengths;
 286     // gclog_or_tty->print_cr("last sampled RS lengths = %d", _last_sampled_rs_lengths);
 287   }
 288 }
 289 
 290 void
 291 YoungList::reset_auxilary_lists() {
 292   guarantee( is_empty(), "young list should be empty" );
 293   assert(check_list_well_formed(), "young list should be well formed");
 294 
 295   // Add survivor regions to SurvRateGroup.
 296   _g1h->g1_policy()->note_start_adding_survivor_regions();
 297   _g1h->g1_policy()->finished_recalculating_age_indexes(true /* is_survivors */);
 298 
 299   int young_index_in_cset = 0;
 300   for (HeapRegion* curr = _survivor_head;
 301        curr != NULL;
 302        curr = curr->get_next_young_region()) {
 303     _g1h->g1_policy()->set_region_survivor(curr, young_index_in_cset);
 304 
 305     // The region is a non-empty survivor so let's add it to
 306     // the incremental collection set for the next evacuation
 307     // pause.
 308     _g1h->g1_policy()->add_region_to_incremental_cset_rhs(curr);
 309     young_index_in_cset += 1;
 310   }
 311   assert((uint) young_index_in_cset == _survivor_length, "post-condition");
 312   _g1h->g1_policy()->note_stop_adding_survivor_regions();
 313 
 314   _head   = _survivor_head;
 315   _length = _survivor_length;
 316   if (_survivor_head != NULL) {
 317     assert(_survivor_tail != NULL, "cause it shouldn't be");
 318     assert(_survivor_length > 0, "invariant");
 319     _survivor_tail->set_next_young_region(NULL);
 320   }
 321 
 322   // Don't clear the survivor list handles until the start of
 323   // the next evacuation pause - we need it in order to re-tag
 324   // the survivor regions from this evacuation pause as 'young'
 325   // at the start of the next.
 326 
 327   _g1h->g1_policy()->finished_recalculating_age_indexes(false /* is_survivors */);
 328 
 329   assert(check_list_well_formed(), "young list should be well formed");
 330 }
 331 
 332 void YoungList::print() {
 333   HeapRegion* lists[] = {_head,   _survivor_head};
 334   const char* names[] = {"YOUNG", "SURVIVOR"};
 335 
 336   for (uint list = 0; list < ARRAY_SIZE(lists); ++list) {
 337     gclog_or_tty->print_cr("%s LIST CONTENTS", names[list]);
 338     HeapRegion *curr = lists[list];
 339     if (curr == NULL)
 340       gclog_or_tty->print_cr("  empty");
 341     while (curr != NULL) {
 342       gclog_or_tty->print_cr("  "HR_FORMAT", P: "PTR_FORMAT ", N: "PTR_FORMAT", age: %4d",
 343                              HR_FORMAT_PARAMS(curr),
 344                              curr->prev_top_at_mark_start(),
 345                              curr->next_top_at_mark_start(),
 346                              curr->age_in_surv_rate_group_cond());
 347       curr = curr->get_next_young_region();
 348     }
 349   }
 350 
 351   gclog_or_tty->cr();
 352 }
 353 
 354 static const char* g1_ext_root_task_strings[G1CollectedHeap::G1H_PS_NumElements] = {
 355   "Filter SATB Roots (ms)",
 356   "CM RefProcessor Roots (ms)",
 357   "Wait For Strong CLD (ms)",
 358   "Weak CLD Roots (ms)"
 359 };
 360 
 361 const char* G1CollectedHeap::ext_roots_task_string(uint i) {
 362   vmassert(i < num_ext_root_tasks(), "must be");
 363   if (i < SH_PS_NumElements) {
 364     return SharedHeap::ext_roots_task_str(i);
 365   } else {
 366     return g1_ext_root_task_strings[i - SharedHeap::SH_PS_NumElements];
 367   }
 368 }
 369 
 370 
 371 void G1RegionMappingChangedListener::reset_from_card_cache(uint start_idx, size_t num_regions) {
 372   HeapRegionRemSet::invalidate_from_card_cache(start_idx, num_regions);
 373 }
 374 
 375 void G1RegionMappingChangedListener::on_commit(uint start_idx, size_t num_regions, bool zero_filled) {
 376   // The from card cache is not the memory that is actually committed. So we cannot
 377   // take advantage of the zero_filled parameter.
 378   reset_from_card_cache(start_idx, num_regions);
 379 }
 380 
 381 void G1CollectedHeap::push_dirty_cards_region(HeapRegion* hr)
 382 {
 383   // Claim the right to put the region on the dirty cards region list
 384   // by installing a self pointer.
 385   HeapRegion* next = hr->get_next_dirty_cards_region();
 386   if (next == NULL) {
 387     HeapRegion* res = (HeapRegion*)
 388       Atomic::cmpxchg_ptr(hr, hr->next_dirty_cards_region_addr(),
 389                           NULL);
 390     if (res == NULL) {
 391       HeapRegion* head;
 392       do {
 393         // Put the region to the dirty cards region list.
 394         head = _dirty_cards_region_list;
 395         next = (HeapRegion*)
 396           Atomic::cmpxchg_ptr(hr, &_dirty_cards_region_list, head);
 397         if (next == head) {
 398           assert(hr->get_next_dirty_cards_region() == hr,
 399                  "hr->get_next_dirty_cards_region() != hr");
 400           if (next == NULL) {
 401             // The last region in the list points to itself.
 402             hr->set_next_dirty_cards_region(hr);
 403           } else {
 404             hr->set_next_dirty_cards_region(next);
 405           }
 406         }
 407       } while (next != head);
 408     }
 409   }
 410 }
 411 
 412 HeapRegion* G1CollectedHeap::pop_dirty_cards_region()
 413 {
 414   HeapRegion* head;
 415   HeapRegion* hr;
 416   do {
 417     head = _dirty_cards_region_list;
 418     if (head == NULL) {
 419       return NULL;
 420     }
 421     HeapRegion* new_head = head->get_next_dirty_cards_region();
 422     if (head == new_head) {
 423       // The last region.
 424       new_head = NULL;
 425     }
 426     hr = (HeapRegion*)Atomic::cmpxchg_ptr(new_head, &_dirty_cards_region_list,
 427                                           head);
 428   } while (hr != head);
 429   assert(hr != NULL, "invariant");
 430   hr->set_next_dirty_cards_region(NULL);
 431   return hr;
 432 }
 433 
 434 #ifdef ASSERT
 435 // A region is added to the collection set as it is retired
 436 // so an address p can point to a region which will be in the
 437 // collection set but has not yet been retired.  This method
 438 // therefore is only accurate during a GC pause after all
 439 // regions have been retired.  It is used for debugging
 440 // to check if an nmethod has references to objects that can
 441 // be move during a partial collection.  Though it can be
 442 // inaccurate, it is sufficient for G1 because the conservative
 443 // implementation of is_scavengable() for G1 will indicate that
 444 // all nmethods must be scanned during a partial collection.
 445 bool G1CollectedHeap::is_in_partial_collection(const void* p) {
 446   if (p == NULL) {
 447     return false;
 448   }
 449   return heap_region_containing(p)->in_collection_set();
 450 }
 451 #endif
 452 
 453 // Returns true if the reference points to an object that
 454 // can move in an incremental collection.
 455 bool G1CollectedHeap::is_scavengable(const void* p) {
 456   HeapRegion* hr = heap_region_containing(p);
 457   return !hr->is_humongous();
 458 }
 459 
 460 // Private class members.
 461 
 462 G1CollectedHeap* G1CollectedHeap::_g1h;
 463 
 464 // Private methods.
 465 
 466 HeapRegion*
 467 G1CollectedHeap::new_region_try_secondary_free_list(bool is_old) {
 468   MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
 469   while (!_secondary_free_list.is_empty() || free_regions_coming()) {
 470     if (!_secondary_free_list.is_empty()) {
 471       if (G1ConcRegionFreeingVerbose) {
 472         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 473                                "secondary_free_list has %u entries",
 474                                _secondary_free_list.length());
 475       }
 476       // It looks as if there are free regions available on the
 477       // secondary_free_list. Let's move them to the free_list and try
 478       // again to allocate from it.
 479       append_secondary_free_list();
 480 
 481       assert(_hrm.num_free_regions() > 0, "if the secondary_free_list was not "
 482              "empty we should have moved at least one entry to the free_list");
 483       HeapRegion* res = _hrm.allocate_free_region(is_old);
 484       if (G1ConcRegionFreeingVerbose) {
 485         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 486                                "allocated "HR_FORMAT" from secondary_free_list",
 487                                HR_FORMAT_PARAMS(res));
 488       }
 489       return res;
 490     }
 491 
 492     // Wait here until we get notified either when (a) there are no
 493     // more free regions coming or (b) some regions have been moved on
 494     // the secondary_free_list.
 495     SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
 496   }
 497 
 498   if (G1ConcRegionFreeingVerbose) {
 499     gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 500                            "could not allocate from secondary_free_list");
 501   }
 502   return NULL;
 503 }
 504 
 505 HeapRegion* G1CollectedHeap::new_region(size_t word_size, bool is_old, bool do_expand) {
 506   assert(!is_humongous(word_size) || word_size <= HeapRegion::GrainWords,
 507          "the only time we use this to allocate a humongous region is "
 508          "when we are allocating a single humongous region");
 509 
 510   HeapRegion* res;
 511   if (G1StressConcRegionFreeing) {
 512     if (!_secondary_free_list.is_empty()) {
 513       if (G1ConcRegionFreeingVerbose) {
 514         gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 515                                "forced to look at the secondary_free_list");
 516       }
 517       res = new_region_try_secondary_free_list(is_old);
 518       if (res != NULL) {
 519         return res;
 520       }
 521     }
 522   }
 523 
 524   res = _hrm.allocate_free_region(is_old);
 525 
 526   if (res == NULL) {
 527     if (G1ConcRegionFreeingVerbose) {
 528       gclog_or_tty->print_cr("G1ConcRegionFreeing [region alloc] : "
 529                              "res == NULL, trying the secondary_free_list");
 530     }
 531     res = new_region_try_secondary_free_list(is_old);
 532   }
 533   if (res == NULL && do_expand && _expand_heap_after_alloc_failure) {
 534     // Currently, only attempts to allocate GC alloc regions set
 535     // do_expand to true. So, we should only reach here during a
 536     // safepoint. If this assumption changes we might have to
 537     // reconsider the use of _expand_heap_after_alloc_failure.
 538     assert(SafepointSynchronize::is_at_safepoint(), "invariant");
 539 
 540     ergo_verbose1(ErgoHeapSizing,
 541                   "attempt heap expansion",
 542                   ergo_format_reason("region allocation request failed")
 543                   ergo_format_byte("allocation request"),
 544                   word_size * HeapWordSize);
 545     if (expand(word_size * HeapWordSize)) {
 546       // Given that expand() succeeded in expanding the heap, and we
 547       // always expand the heap by an amount aligned to the heap
 548       // region size, the free list should in theory not be empty.
 549       // In either case allocate_free_region() will check for NULL.
 550       res = _hrm.allocate_free_region(is_old);
 551     } else {
 552       _expand_heap_after_alloc_failure = false;
 553     }
 554   }
 555   return res;
 556 }
 557 
 558 HeapWord*
 559 G1CollectedHeap::humongous_obj_allocate_initialize_regions(uint first,
 560                                                            uint num_regions,
 561                                                            size_t word_size,
 562                                                            AllocationContext_t context) {
 563   assert(first != G1_NO_HRM_INDEX, "pre-condition");
 564   assert(is_humongous(word_size), "word_size should be humongous");
 565   assert(num_regions * HeapRegion::GrainWords >= word_size, "pre-condition");
 566 
 567   // Index of last region in the series + 1.
 568   uint last = first + num_regions;
 569 
 570   // We need to initialize the region(s) we just discovered. This is
 571   // a bit tricky given that it can happen concurrently with
 572   // refinement threads refining cards on these regions and
 573   // potentially wanting to refine the BOT as they are scanning
 574   // those cards (this can happen shortly after a cleanup; see CR
 575   // 6991377). So we have to set up the region(s) carefully and in
 576   // a specific order.
 577 
 578   // The word size sum of all the regions we will allocate.
 579   size_t word_size_sum = (size_t) num_regions * HeapRegion::GrainWords;
 580   assert(word_size <= word_size_sum, "sanity");
 581 
 582   // This will be the "starts humongous" region.
 583   HeapRegion* first_hr = region_at(first);
 584   // The header of the new object will be placed at the bottom of
 585   // the first region.
 586   HeapWord* new_obj = first_hr->bottom();
 587   // This will be the new end of the first region in the series that
 588   // should also match the end of the last region in the series.
 589   HeapWord* new_end = new_obj + word_size_sum;
 590   // This will be the new top of the first region that will reflect
 591   // this allocation.
 592   HeapWord* new_top = new_obj + word_size;
 593 
 594   // First, we need to zero the header of the space that we will be
 595   // allocating. When we update top further down, some refinement
 596   // threads might try to scan the region. By zeroing the header we
 597   // ensure that any thread that will try to scan the region will
 598   // come across the zero klass word and bail out.
 599   //
 600   // NOTE: It would not have been correct to have used
 601   // CollectedHeap::fill_with_object() and make the space look like
 602   // an int array. The thread that is doing the allocation will
 603   // later update the object header to a potentially different array
 604   // type and, for a very short period of time, the klass and length
 605   // fields will be inconsistent. This could cause a refinement
 606   // thread to calculate the object size incorrectly.
 607   Copy::fill_to_words(new_obj, oopDesc::header_size(), 0);
 608 
 609   // We will set up the first region as "starts humongous". This
 610   // will also update the BOT covering all the regions to reflect
 611   // that there is a single object that starts at the bottom of the
 612   // first region.
 613   first_hr->set_starts_humongous(new_top, new_end);
 614   first_hr->set_allocation_context(context);
 615   // Then, if there are any, we will set up the "continues
 616   // humongous" regions.
 617   HeapRegion* hr = NULL;
 618   for (uint i = first + 1; i < last; ++i) {
 619     hr = region_at(i);
 620     hr->set_continues_humongous(first_hr);
 621     hr->set_allocation_context(context);
 622   }
 623   // If we have "continues humongous" regions (hr != NULL), then the
 624   // end of the last one should match new_end.
 625   assert(hr == NULL || hr->end() == new_end, "sanity");
 626 
 627   // Up to this point no concurrent thread would have been able to
 628   // do any scanning on any region in this series. All the top
 629   // fields still point to bottom, so the intersection between
 630   // [bottom,top] and [card_start,card_end] will be empty. Before we
 631   // update the top fields, we'll do a storestore to make sure that
 632   // no thread sees the update to top before the zeroing of the
 633   // object header and the BOT initialization.
 634   OrderAccess::storestore();
 635 
 636   // Now that the BOT and the object header have been initialized,
 637   // we can update top of the "starts humongous" region.
 638   assert(first_hr->bottom() < new_top && new_top <= first_hr->end(),
 639          "new_top should be in this region");
 640   first_hr->set_top(new_top);
 641   if (_hr_printer.is_active()) {
 642     HeapWord* bottom = first_hr->bottom();
 643     HeapWord* end = first_hr->orig_end();
 644     if ((first + 1) == last) {
 645       // the series has a single humongous region
 646       _hr_printer.alloc(G1HRPrinter::SingleHumongous, first_hr, new_top);
 647     } else {
 648       // the series has more than one humongous regions
 649       _hr_printer.alloc(G1HRPrinter::StartsHumongous, first_hr, end);
 650     }
 651   }
 652 
 653   // Now, we will update the top fields of the "continues humongous"
 654   // regions. The reason we need to do this is that, otherwise,
 655   // these regions would look empty and this will confuse parts of
 656   // G1. For example, the code that looks for a consecutive number
 657   // of empty regions will consider them empty and try to
 658   // re-allocate them. We can extend is_empty() to also include
 659   // !is_continues_humongous(), but it is easier to just update the top
 660   // fields here. The way we set top for all regions (i.e., top ==
 661   // end for all regions but the last one, top == new_top for the
 662   // last one) is actually used when we will free up the humongous
 663   // region in free_humongous_region().
 664   hr = NULL;
 665   for (uint i = first + 1; i < last; ++i) {
 666     hr = region_at(i);
 667     if ((i + 1) == last) {
 668       // last continues humongous region
 669       assert(hr->bottom() < new_top && new_top <= hr->end(),
 670              "new_top should fall on this region");
 671       hr->set_top(new_top);
 672       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, new_top);
 673     } else {
 674       // not last one
 675       assert(new_top > hr->end(), "new_top should be above this region");
 676       hr->set_top(hr->end());
 677       _hr_printer.alloc(G1HRPrinter::ContinuesHumongous, hr, hr->end());
 678     }
 679   }
 680   // If we have continues humongous regions (hr != NULL), then the
 681   // end of the last one should match new_end and its top should
 682   // match new_top.
 683   assert(hr == NULL ||
 684          (hr->end() == new_end && hr->top() == new_top), "sanity");
 685   check_bitmaps("Humongous Region Allocation", first_hr);
 686 
 687   assert(first_hr->used() == word_size * HeapWordSize, "invariant");
 688   _allocator->increase_used(first_hr->used());
 689   _humongous_set.add(first_hr);
 690 
 691   return new_obj;
 692 }
 693 
 694 // If could fit into free regions w/o expansion, try.
 695 // Otherwise, if can expand, do so.
 696 // Otherwise, if using ex regions might help, try with ex given back.
 697 HeapWord* G1CollectedHeap::humongous_obj_allocate(size_t word_size, AllocationContext_t context) {
 698   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
 699 
 700   verify_region_sets_optional();
 701 
 702   uint first = G1_NO_HRM_INDEX;
 703   uint obj_regions = (uint)(align_size_up_(word_size, HeapRegion::GrainWords) / HeapRegion::GrainWords);
 704 
 705   if (obj_regions == 1) {
 706     // Only one region to allocate, try to use a fast path by directly allocating
 707     // from the free lists. Do not try to expand here, we will potentially do that
 708     // later.
 709     HeapRegion* hr = new_region(word_size, true /* is_old */, false /* do_expand */);
 710     if (hr != NULL) {
 711       first = hr->hrm_index();
 712     }
 713   } else {
 714     // We can't allocate humongous regions spanning more than one region while
 715     // cleanupComplete() is running, since some of the regions we find to be
 716     // empty might not yet be added to the free list. It is not straightforward
 717     // to know in which list they are on so that we can remove them. We only
 718     // need to do this if we need to allocate more than one region to satisfy the
 719     // current humongous allocation request. If we are only allocating one region
 720     // we use the one-region region allocation code (see above), that already
 721     // potentially waits for regions from the secondary free list.
 722     wait_while_free_regions_coming();
 723     append_secondary_free_list_if_not_empty_with_lock();
 724 
 725     // Policy: Try only empty regions (i.e. already committed first). Maybe we
 726     // are lucky enough to find some.
 727     first = _hrm.find_contiguous_only_empty(obj_regions);
 728     if (first != G1_NO_HRM_INDEX) {
 729       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 730     }
 731   }
 732 
 733   if (first == G1_NO_HRM_INDEX) {
 734     // Policy: We could not find enough regions for the humongous object in the
 735     // free list. Look through the heap to find a mix of free and uncommitted regions.
 736     // If so, try expansion.
 737     first = _hrm.find_contiguous_empty_or_unavailable(obj_regions);
 738     if (first != G1_NO_HRM_INDEX) {
 739       // We found something. Make sure these regions are committed, i.e. expand
 740       // the heap. Alternatively we could do a defragmentation GC.
 741       ergo_verbose1(ErgoHeapSizing,
 742                     "attempt heap expansion",
 743                     ergo_format_reason("humongous allocation request failed")
 744                     ergo_format_byte("allocation request"),
 745                     word_size * HeapWordSize);
 746 
 747       _hrm.expand_at(first, obj_regions);
 748       g1_policy()->record_new_heap_size(num_regions());
 749 
 750 #ifdef ASSERT
 751       for (uint i = first; i < first + obj_regions; ++i) {
 752         HeapRegion* hr = region_at(i);
 753         assert(hr->is_free(), "sanity");
 754         assert(hr->is_empty(), "sanity");
 755         assert(is_on_master_free_list(hr), "sanity");
 756       }
 757 #endif
 758       _hrm.allocate_free_regions_starting_at(first, obj_regions);
 759     } else {
 760       // Policy: Potentially trigger a defragmentation GC.
 761     }
 762   }
 763 
 764   HeapWord* result = NULL;
 765   if (first != G1_NO_HRM_INDEX) {
 766     result = humongous_obj_allocate_initialize_regions(first, obj_regions,
 767                                                        word_size, context);
 768     assert(result != NULL, "it should always return a valid result");
 769 
 770     // A successful humongous object allocation changes the used space
 771     // information of the old generation so we need to recalculate the
 772     // sizes and update the jstat counters here.
 773     g1mm()->update_sizes();
 774   }
 775 
 776   verify_region_sets_optional();
 777 
 778   return result;
 779 }
 780 
 781 HeapWord* G1CollectedHeap::allocate_new_tlab(size_t word_size) {
 782   assert_heap_not_locked_and_not_at_safepoint();
 783   assert(!is_humongous(word_size), "we do not allow humongous TLABs");
 784 
 785   uint dummy_gc_count_before;
 786   uint dummy_gclocker_retry_count = 0;
 787   return attempt_allocation(word_size, &dummy_gc_count_before, &dummy_gclocker_retry_count);
 788 }
 789 
 790 HeapWord*
 791 G1CollectedHeap::mem_allocate(size_t word_size,
 792                               bool*  gc_overhead_limit_was_exceeded) {
 793   assert_heap_not_locked_and_not_at_safepoint();
 794 
 795   // Loop until the allocation is satisfied, or unsatisfied after GC.
 796   for (uint try_count = 1, gclocker_retry_count = 0; /* we'll return */; try_count += 1) {
 797     uint gc_count_before;
 798 
 799     HeapWord* result = NULL;
 800     if (!is_humongous(word_size)) {
 801       result = attempt_allocation(word_size, &gc_count_before, &gclocker_retry_count);
 802     } else {
 803       result = attempt_allocation_humongous(word_size, &gc_count_before, &gclocker_retry_count);
 804     }
 805     if (result != NULL) {
 806       return result;
 807     }
 808 
 809     // Create the garbage collection operation...
 810     VM_G1CollectForAllocation op(gc_count_before, word_size);
 811     op.set_allocation_context(AllocationContext::current());
 812 
 813     // ...and get the VM thread to execute it.
 814     VMThread::execute(&op);
 815 
 816     if (op.prologue_succeeded() && op.pause_succeeded()) {
 817       // If the operation was successful we'll return the result even
 818       // if it is NULL. If the allocation attempt failed immediately
 819       // after a Full GC, it's unlikely we'll be able to allocate now.
 820       HeapWord* result = op.result();
 821       if (result != NULL && !is_humongous(word_size)) {
 822         // Allocations that take place on VM operations do not do any
 823         // card dirtying and we have to do it here. We only have to do
 824         // this for non-humongous allocations, though.
 825         dirty_young_block(result, word_size);
 826       }
 827       return result;
 828     } else {
 829       if (gclocker_retry_count > GCLockerRetryAllocationCount) {
 830         return NULL;
 831       }
 832       assert(op.result() == NULL,
 833              "the result should be NULL if the VM op did not succeed");
 834     }
 835 
 836     // Give a warning if we seem to be looping forever.
 837     if ((QueuedAllocationWarningCount > 0) &&
 838         (try_count % QueuedAllocationWarningCount == 0)) {
 839       warning("G1CollectedHeap::mem_allocate retries %d times", try_count);
 840     }
 841   }
 842 
 843   ShouldNotReachHere();
 844   return NULL;
 845 }
 846 
 847 HeapWord* G1CollectedHeap::attempt_allocation_slow(size_t word_size,
 848                                                    AllocationContext_t context,
 849                                                    uint* gc_count_before_ret,
 850                                                    uint* gclocker_retry_count_ret) {
 851   // Make sure you read the note in attempt_allocation_humongous().
 852 
 853   assert_heap_not_locked_and_not_at_safepoint();
 854   assert(!is_humongous(word_size), "attempt_allocation_slow() should not "
 855          "be called for humongous allocation requests");
 856 
 857   // We should only get here after the first-level allocation attempt
 858   // (attempt_allocation()) failed to allocate.
 859 
 860   // We will loop until a) we manage to successfully perform the
 861   // allocation or b) we successfully schedule a collection which
 862   // fails to perform the allocation. b) is the only case when we'll
 863   // return NULL.
 864   HeapWord* result = NULL;
 865   for (int try_count = 1; /* we'll return */; try_count += 1) {
 866     bool should_try_gc;
 867     uint gc_count_before;
 868 
 869     {
 870       MutexLockerEx x(Heap_lock);
 871       result = _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
 872                                                                                     false /* bot_updates */);
 873       if (result != NULL) {
 874         return result;
 875       }
 876 
 877       // If we reach here, attempt_allocation_locked() above failed to
 878       // allocate a new region. So the mutator alloc region should be NULL.
 879       assert(_allocator->mutator_alloc_region(context)->get() == NULL, "only way to get here");
 880 
 881       if (GC_locker::is_active_and_needs_gc()) {
 882         if (g1_policy()->can_expand_young_list()) {
 883           // No need for an ergo verbose message here,
 884           // can_expand_young_list() does this when it returns true.
 885           result = _allocator->mutator_alloc_region(context)->attempt_allocation_force(word_size,
 886                                                                                        false /* bot_updates */);
 887           if (result != NULL) {
 888             return result;
 889           }
 890         }
 891         should_try_gc = false;
 892       } else {
 893         // The GCLocker may not be active but the GCLocker initiated
 894         // GC may not yet have been performed (GCLocker::needs_gc()
 895         // returns true). In this case we do not try this GC and
 896         // wait until the GCLocker initiated GC is performed, and
 897         // then retry the allocation.
 898         if (GC_locker::needs_gc()) {
 899           should_try_gc = false;
 900         } else {
 901           // Read the GC count while still holding the Heap_lock.
 902           gc_count_before = total_collections();
 903           should_try_gc = true;
 904         }
 905       }
 906     }
 907 
 908     if (should_try_gc) {
 909       bool succeeded;
 910       result = do_collection_pause(word_size, gc_count_before, &succeeded,
 911                                    GCCause::_g1_inc_collection_pause);
 912       if (result != NULL) {
 913         assert(succeeded, "only way to get back a non-NULL result");
 914         return result;
 915       }
 916 
 917       if (succeeded) {
 918         // If we get here we successfully scheduled a collection which
 919         // failed to allocate. No point in trying to allocate
 920         // further. We'll just return NULL.
 921         MutexLockerEx x(Heap_lock);
 922         *gc_count_before_ret = total_collections();
 923         return NULL;
 924       }
 925     } else {
 926       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
 927         MutexLockerEx x(Heap_lock);
 928         *gc_count_before_ret = total_collections();
 929         return NULL;
 930       }
 931       // The GCLocker is either active or the GCLocker initiated
 932       // GC has not yet been performed. Stall until it is and
 933       // then retry the allocation.
 934       GC_locker::stall_until_clear();
 935       (*gclocker_retry_count_ret) += 1;
 936     }
 937 
 938     // We can reach here if we were unsuccessful in scheduling a
 939     // collection (because another thread beat us to it) or if we were
 940     // stalled due to the GC locker. In either can we should retry the
 941     // allocation attempt in case another thread successfully
 942     // performed a collection and reclaimed enough space. We do the
 943     // first attempt (without holding the Heap_lock) here and the
 944     // follow-on attempt will be at the start of the next loop
 945     // iteration (after taking the Heap_lock).
 946     result = _allocator->mutator_alloc_region(context)->attempt_allocation(word_size,
 947                                                                            false /* bot_updates */);
 948     if (result != NULL) {
 949       return result;
 950     }
 951 
 952     // Give a warning if we seem to be looping forever.
 953     if ((QueuedAllocationWarningCount > 0) &&
 954         (try_count % QueuedAllocationWarningCount == 0)) {
 955       warning("G1CollectedHeap::attempt_allocation_slow() "
 956               "retries %d times", try_count);
 957     }
 958   }
 959 
 960   ShouldNotReachHere();
 961   return NULL;
 962 }
 963 
 964 HeapWord* G1CollectedHeap::attempt_allocation_humongous(size_t word_size,
 965                                                         uint* gc_count_before_ret,
 966                                                         uint* gclocker_retry_count_ret) {
 967   // The structure of this method has a lot of similarities to
 968   // attempt_allocation_slow(). The reason these two were not merged
 969   // into a single one is that such a method would require several "if
 970   // allocation is not humongous do this, otherwise do that"
 971   // conditional paths which would obscure its flow. In fact, an early
 972   // version of this code did use a unified method which was harder to
 973   // follow and, as a result, it had subtle bugs that were hard to
 974   // track down. So keeping these two methods separate allows each to
 975   // be more readable. It will be good to keep these two in sync as
 976   // much as possible.
 977 
 978   assert_heap_not_locked_and_not_at_safepoint();
 979   assert(is_humongous(word_size), "attempt_allocation_humongous() "
 980          "should only be called for humongous allocations");
 981 
 982   // Humongous objects can exhaust the heap quickly, so we should check if we
 983   // need to start a marking cycle at each humongous object allocation. We do
 984   // the check before we do the actual allocation. The reason for doing it
 985   // before the allocation is that we avoid having to keep track of the newly
 986   // allocated memory while we do a GC.
 987   if (g1_policy()->need_to_start_conc_mark("concurrent humongous allocation",
 988                                            word_size)) {
 989     collect(GCCause::_g1_humongous_allocation);
 990   }
 991 
 992   // We will loop until a) we manage to successfully perform the
 993   // allocation or b) we successfully schedule a collection which
 994   // fails to perform the allocation. b) is the only case when we'll
 995   // return NULL.
 996   HeapWord* result = NULL;
 997   for (int try_count = 1; /* we'll return */; try_count += 1) {
 998     bool should_try_gc;
 999     uint gc_count_before;
1000 
1001     {
1002       MutexLockerEx x(Heap_lock);
1003 
1004       // Given that humongous objects are not allocated in young
1005       // regions, we'll first try to do the allocation without doing a
1006       // collection hoping that there's enough space in the heap.
1007       result = humongous_obj_allocate(word_size, AllocationContext::current());
1008       if (result != NULL) {
1009         return result;
1010       }
1011 
1012       if (GC_locker::is_active_and_needs_gc()) {
1013         should_try_gc = false;
1014       } else {
1015          // The GCLocker may not be active but the GCLocker initiated
1016         // GC may not yet have been performed (GCLocker::needs_gc()
1017         // returns true). In this case we do not try this GC and
1018         // wait until the GCLocker initiated GC is performed, and
1019         // then retry the allocation.
1020         if (GC_locker::needs_gc()) {
1021           should_try_gc = false;
1022         } else {
1023           // Read the GC count while still holding the Heap_lock.
1024           gc_count_before = total_collections();
1025           should_try_gc = true;
1026         }
1027       }
1028     }
1029 
1030     if (should_try_gc) {
1031       // If we failed to allocate the humongous object, we should try to
1032       // do a collection pause (if we're allowed) in case it reclaims
1033       // enough space for the allocation to succeed after the pause.
1034 
1035       bool succeeded;
1036       result = do_collection_pause(word_size, gc_count_before, &succeeded,
1037                                    GCCause::_g1_humongous_allocation);
1038       if (result != NULL) {
1039         assert(succeeded, "only way to get back a non-NULL result");
1040         return result;
1041       }
1042 
1043       if (succeeded) {
1044         // If we get here we successfully scheduled a collection which
1045         // failed to allocate. No point in trying to allocate
1046         // further. We'll just return NULL.
1047         MutexLockerEx x(Heap_lock);
1048         *gc_count_before_ret = total_collections();
1049         return NULL;
1050       }
1051     } else {
1052       if (*gclocker_retry_count_ret > GCLockerRetryAllocationCount) {
1053         MutexLockerEx x(Heap_lock);
1054         *gc_count_before_ret = total_collections();
1055         return NULL;
1056       }
1057       // The GCLocker is either active or the GCLocker initiated
1058       // GC has not yet been performed. Stall until it is and
1059       // then retry the allocation.
1060       GC_locker::stall_until_clear();
1061       (*gclocker_retry_count_ret) += 1;
1062     }
1063 
1064     // We can reach here if we were unsuccessful in scheduling a
1065     // collection (because another thread beat us to it) or if we were
1066     // stalled due to the GC locker. In either can we should retry the
1067     // allocation attempt in case another thread successfully
1068     // performed a collection and reclaimed enough space.  Give a
1069     // warning if we seem to be looping forever.
1070 
1071     if ((QueuedAllocationWarningCount > 0) &&
1072         (try_count % QueuedAllocationWarningCount == 0)) {
1073       warning("G1CollectedHeap::attempt_allocation_humongous() "
1074               "retries %d times", try_count);
1075     }
1076   }
1077 
1078   ShouldNotReachHere();
1079   return NULL;
1080 }
1081 
1082 HeapWord* G1CollectedHeap::attempt_allocation_at_safepoint(size_t word_size,
1083                                                            AllocationContext_t context,
1084                                                            bool expect_null_mutator_alloc_region) {
1085   assert_at_safepoint(true /* should_be_vm_thread */);
1086   assert(_allocator->mutator_alloc_region(context)->get() == NULL ||
1087                                              !expect_null_mutator_alloc_region,
1088          "the current alloc region was unexpectedly found to be non-NULL");
1089 
1090   if (!is_humongous(word_size)) {
1091     return _allocator->mutator_alloc_region(context)->attempt_allocation_locked(word_size,
1092                                                       false /* bot_updates */);
1093   } else {
1094     HeapWord* result = humongous_obj_allocate(word_size, context);
1095     if (result != NULL && g1_policy()->need_to_start_conc_mark("STW humongous allocation")) {
1096       g1_policy()->set_initiate_conc_mark_if_possible();
1097     }
1098     return result;
1099   }
1100 
1101   ShouldNotReachHere();
1102 }
1103 
1104 class PostMCRemSetClearClosure: public HeapRegionClosure {
1105   G1CollectedHeap* _g1h;
1106   ModRefBarrierSet* _mr_bs;
1107 public:
1108   PostMCRemSetClearClosure(G1CollectedHeap* g1h, ModRefBarrierSet* mr_bs) :
1109     _g1h(g1h), _mr_bs(mr_bs) {}
1110 
1111   bool doHeapRegion(HeapRegion* r) {
1112     HeapRegionRemSet* hrrs = r->rem_set();
1113 
1114     if (r->is_continues_humongous()) {
1115       // We'll assert that the strong code root list and RSet is empty
1116       assert(hrrs->strong_code_roots_list_length() == 0, "sanity");
1117       assert(hrrs->occupied() == 0, "RSet should be empty");
1118       return false;
1119     }
1120 
1121     _g1h->reset_gc_time_stamps(r);
1122     hrrs->clear();
1123     // You might think here that we could clear just the cards
1124     // corresponding to the used region.  But no: if we leave a dirty card
1125     // in a region we might allocate into, then it would prevent that card
1126     // from being enqueued, and cause it to be missed.
1127     // Re: the performance cost: we shouldn't be doing full GC anyway!
1128     _mr_bs->clear(MemRegion(r->bottom(), r->end()));
1129 
1130     return false;
1131   }
1132 };
1133 
1134 void G1CollectedHeap::clear_rsets_post_compaction() {
1135   PostMCRemSetClearClosure rs_clear(this, g1_barrier_set());
1136   heap_region_iterate(&rs_clear);
1137 }
1138 
1139 class RebuildRSOutOfRegionClosure: public HeapRegionClosure {
1140   G1CollectedHeap*   _g1h;
1141   UpdateRSOopClosure _cl;
1142   int                _worker_i;
1143 public:
1144   RebuildRSOutOfRegionClosure(G1CollectedHeap* g1, int worker_i = 0) :
1145     _cl(g1->g1_rem_set(), worker_i),
1146     _worker_i(worker_i),
1147     _g1h(g1)
1148   { }
1149 
1150   bool doHeapRegion(HeapRegion* r) {
1151     if (!r->is_continues_humongous()) {
1152       _cl.set_from(r);
1153       r->oop_iterate(&_cl);
1154     }
1155     return false;
1156   }
1157 };
1158 
1159 class ParRebuildRSTask: public AbstractGangTask {
1160   G1CollectedHeap* _g1;
1161   HeapRegionClaimer _hrclaimer;
1162 
1163 public:
1164   ParRebuildRSTask(G1CollectedHeap* g1) :
1165       AbstractGangTask("ParRebuildRSTask"), _g1(g1), _hrclaimer(g1->workers()->active_workers()) {}
1166 
1167   void work(uint worker_id) {
1168     RebuildRSOutOfRegionClosure rebuild_rs(_g1, worker_id);
1169     _g1->heap_region_par_iterate(&rebuild_rs, worker_id, &_hrclaimer);
1170   }
1171 };
1172 
1173 class PostCompactionPrinterClosure: public HeapRegionClosure {
1174 private:
1175   G1HRPrinter* _hr_printer;
1176 public:
1177   bool doHeapRegion(HeapRegion* hr) {
1178     assert(!hr->is_young(), "not expecting to find young regions");
1179     if (hr->is_free()) {
1180       // We only generate output for non-empty regions.
1181     } else if (hr->is_starts_humongous()) {
1182       if (hr->region_num() == 1) {
1183         // single humongous region
1184         _hr_printer->post_compaction(hr, G1HRPrinter::SingleHumongous);
1185       } else {
1186         _hr_printer->post_compaction(hr, G1HRPrinter::StartsHumongous);
1187       }
1188     } else if (hr->is_continues_humongous()) {
1189       _hr_printer->post_compaction(hr, G1HRPrinter::ContinuesHumongous);
1190     } else if (hr->is_old()) {
1191       _hr_printer->post_compaction(hr, G1HRPrinter::Old);
1192     } else {
1193       ShouldNotReachHere();
1194     }
1195     return false;
1196   }
1197 
1198   PostCompactionPrinterClosure(G1HRPrinter* hr_printer)
1199     : _hr_printer(hr_printer) { }
1200 };
1201 
1202 void G1CollectedHeap::print_hrm_post_compaction() {
1203   PostCompactionPrinterClosure cl(hr_printer());
1204   heap_region_iterate(&cl);
1205 }
1206 
1207 bool G1CollectedHeap::do_collection(bool explicit_gc,
1208                                     bool clear_all_soft_refs,
1209                                     size_t word_size) {
1210   assert_at_safepoint(true /* should_be_vm_thread */);
1211 
1212   if (GC_locker::check_active_before_gc()) {
1213     return false;
1214   }
1215 
1216   STWGCTimer* gc_timer = G1MarkSweep::gc_timer();
1217   gc_timer->register_gc_start();
1218 
1219   SerialOldTracer* gc_tracer = G1MarkSweep::gc_tracer();
1220   gc_tracer->report_gc_start(gc_cause(), gc_timer->gc_start());
1221 
1222   SvcGCMarker sgcm(SvcGCMarker::FULL);
1223   ResourceMark rm;
1224 
1225   print_heap_before_gc();
1226   trace_heap_before_gc(gc_tracer);
1227 
1228   size_t metadata_prev_used = MetaspaceAux::used_bytes();
1229 
1230   verify_region_sets_optional();
1231 
1232   const bool do_clear_all_soft_refs = clear_all_soft_refs ||
1233                            collector_policy()->should_clear_all_soft_refs();
1234 
1235   ClearedAllSoftRefs casr(do_clear_all_soft_refs, collector_policy());
1236 
1237   {
1238     IsGCActiveMark x;
1239 
1240     // Timing
1241     assert(gc_cause() != GCCause::_java_lang_system_gc || explicit_gc, "invariant");
1242     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
1243 
1244     {
1245       GCTraceTime t(GCCauseString("Full GC", gc_cause()), G1Log::fine(), true, NULL, gc_tracer->gc_id());
1246       TraceCollectorStats tcs(g1mm()->full_collection_counters());
1247       TraceMemoryManagerStats tms(true /* fullGC */, gc_cause());
1248 
1249       g1_policy()->record_full_collection_start();
1250 
1251       // Note: When we have a more flexible GC logging framework that
1252       // allows us to add optional attributes to a GC log record we
1253       // could consider timing and reporting how long we wait in the
1254       // following two methods.
1255       wait_while_free_regions_coming();
1256       // If we start the compaction before the CM threads finish
1257       // scanning the root regions we might trip them over as we'll
1258       // be moving objects / updating references. So let's wait until
1259       // they are done. By telling them to abort, they should complete
1260       // early.
1261       _cm->root_regions()->abort();
1262       _cm->root_regions()->wait_until_scan_finished();
1263       append_secondary_free_list_if_not_empty_with_lock();
1264 
1265       gc_prologue(true);
1266       increment_total_collections(true /* full gc */);
1267       increment_old_marking_cycles_started();
1268 
1269       assert(used() == recalculate_used(), "Should be equal");
1270 
1271       verify_before_gc();
1272 
1273       check_bitmaps("Full GC Start");
1274       pre_full_gc_dump(gc_timer);
1275 
1276       COMPILER2_PRESENT(DerivedPointerTable::clear());
1277 
1278       // Disable discovery and empty the discovered lists
1279       // for the CM ref processor.
1280       ref_processor_cm()->disable_discovery();
1281       ref_processor_cm()->abandon_partial_discovery();
1282       ref_processor_cm()->verify_no_references_recorded();
1283 
1284       // Abandon current iterations of concurrent marking and concurrent
1285       // refinement, if any are in progress. We have to do this before
1286       // wait_until_scan_finished() below.
1287       concurrent_mark()->abort();
1288 
1289       // Make sure we'll choose a new allocation region afterwards.
1290       _allocator->release_mutator_alloc_region();
1291       _allocator->abandon_gc_alloc_regions();
1292       g1_rem_set()->cleanupHRRS();
1293 
1294       // We should call this after we retire any currently active alloc
1295       // regions so that all the ALLOC / RETIRE events are generated
1296       // before the start GC event.
1297       _hr_printer.start_gc(true /* full */, (size_t) total_collections());
1298 
1299       // We may have added regions to the current incremental collection
1300       // set between the last GC or pause and now. We need to clear the
1301       // incremental collection set and then start rebuilding it afresh
1302       // after this full GC.
1303       abandon_collection_set(g1_policy()->inc_cset_head());
1304       g1_policy()->clear_incremental_cset();
1305       g1_policy()->stop_incremental_cset_building();
1306 
1307       tear_down_region_sets(false /* free_list_only */);
1308       g1_policy()->set_gcs_are_young(true);
1309 
1310       // See the comments in g1CollectedHeap.hpp and
1311       // G1CollectedHeap::ref_processing_init() about
1312       // how reference processing currently works in G1.
1313 
1314       // Temporarily make discovery by the STW ref processor single threaded (non-MT).
1315       ReferenceProcessorMTDiscoveryMutator stw_rp_disc_ser(ref_processor_stw(), false);
1316 
1317       // Temporarily clear the STW ref processor's _is_alive_non_header field.
1318       ReferenceProcessorIsAliveMutator stw_rp_is_alive_null(ref_processor_stw(), NULL);
1319 
1320       ref_processor_stw()->enable_discovery();
1321       ref_processor_stw()->setup_policy(do_clear_all_soft_refs);
1322 
1323       // Do collection work
1324       {
1325         HandleMark hm;  // Discard invalid handles created during gc
1326         G1MarkSweep::invoke_at_safepoint(ref_processor_stw(), do_clear_all_soft_refs);
1327       }
1328 
1329       assert(num_free_regions() == 0, "we should not have added any free regions");
1330       rebuild_region_sets(false /* free_list_only */);
1331 
1332       // Enqueue any discovered reference objects that have
1333       // not been removed from the discovered lists.
1334       ref_processor_stw()->enqueue_discovered_references();
1335 
1336       COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
1337 
1338       MemoryService::track_memory_usage();
1339 
1340       assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
1341       ref_processor_stw()->verify_no_references_recorded();
1342 
1343       // Delete metaspaces for unloaded class loaders and clean up loader_data graph
1344       ClassLoaderDataGraph::purge();
1345       MetaspaceAux::verify_metrics();
1346 
1347       // Note: since we've just done a full GC, concurrent
1348       // marking is no longer active. Therefore we need not
1349       // re-enable reference discovery for the CM ref processor.
1350       // That will be done at the start of the next marking cycle.
1351       assert(!ref_processor_cm()->discovery_enabled(), "Postcondition");
1352       ref_processor_cm()->verify_no_references_recorded();
1353 
1354       reset_gc_time_stamp();
1355       // Since everything potentially moved, we will clear all remembered
1356       // sets, and clear all cards.  Later we will rebuild remembered
1357       // sets. We will also reset the GC time stamps of the regions.
1358       clear_rsets_post_compaction();
1359       check_gc_time_stamps();
1360 
1361       // Resize the heap if necessary.
1362       resize_if_necessary_after_full_collection(explicit_gc ? 0 : word_size);
1363 
1364       if (_hr_printer.is_active()) {
1365         // We should do this after we potentially resize the heap so
1366         // that all the COMMIT / UNCOMMIT events are generated before
1367         // the end GC event.
1368 
1369         print_hrm_post_compaction();
1370         _hr_printer.end_gc(true /* full */, (size_t) total_collections());
1371       }
1372 
1373       G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
1374       if (hot_card_cache->use_cache()) {
1375         hot_card_cache->reset_card_counts();
1376         hot_card_cache->reset_hot_cache();
1377       }
1378 
1379       // Rebuild remembered sets of all regions.
1380       uint n_workers =
1381         AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
1382                                                 workers()->active_workers(),
1383                                                 Threads::number_of_non_daemon_threads());
1384       assert(UseDynamicNumberOfGCThreads ||
1385              n_workers == workers()->total_workers(),
1386              "If not dynamic should be using all the  workers");
1387       workers()->set_active_workers(n_workers);
1388       // Set parallel threads in the heap (_n_par_threads) only
1389       // before a parallel phase and always reset it to 0 after
1390       // the phase so that the number of parallel threads does
1391       // no get carried forward to a serial phase where there
1392       // may be code that is "possibly_parallel".
1393       set_par_threads(n_workers);
1394 
1395       ParRebuildRSTask rebuild_rs_task(this);
1396       assert(UseDynamicNumberOfGCThreads ||
1397              workers()->active_workers() == workers()->total_workers(),
1398              "Unless dynamic should use total workers");
1399       // Use the most recent number of  active workers
1400       assert(workers()->active_workers() > 0,
1401              "Active workers not properly set");
1402       set_par_threads(workers()->active_workers());
1403       workers()->run_task(&rebuild_rs_task);
1404       set_par_threads(0);
1405 
1406       // Rebuild the strong code root lists for each region
1407       rebuild_strong_code_roots();
1408 
1409       if (true) { // FIXME
1410         MetaspaceGC::compute_new_size();
1411       }
1412 
1413 #ifdef TRACESPINNING
1414       ParallelTaskTerminator::print_termination_counts();
1415 #endif
1416 
1417       // Discard all rset updates
1418       JavaThread::dirty_card_queue_set().abandon_logs();
1419       assert(dirty_card_queue_set().completed_buffers_num() == 0, "DCQS should be empty");
1420 
1421       _young_list->reset_sampled_info();
1422       // At this point there should be no regions in the
1423       // entire heap tagged as young.
1424       assert(check_young_list_empty(true /* check_heap */),
1425              "young list should be empty at this point");
1426 
1427       // Update the number of full collections that have been completed.
1428       increment_old_marking_cycles_completed(false /* concurrent */);
1429 
1430       _hrm.verify_optional();
1431       verify_region_sets_optional();
1432 
1433       verify_after_gc();
1434 
1435       // Clear the previous marking bitmap, if needed for bitmap verification.
1436       // Note we cannot do this when we clear the next marking bitmap in
1437       // ConcurrentMark::abort() above since VerifyDuringGC verifies the
1438       // objects marked during a full GC against the previous bitmap.
1439       // But we need to clear it before calling check_bitmaps below since
1440       // the full GC has compacted objects and updated TAMS but not updated
1441       // the prev bitmap.
1442       if (G1VerifyBitmaps) {
1443         ((CMBitMap*) concurrent_mark()->prevMarkBitMap())->clearAll();
1444       }
1445       check_bitmaps("Full GC End");
1446 
1447       // Start a new incremental collection set for the next pause
1448       assert(g1_policy()->collection_set() == NULL, "must be");
1449       g1_policy()->start_incremental_cset_building();
1450 
1451       clear_cset_fast_test();
1452 
1453       _allocator->init_mutator_alloc_region();
1454 
1455       g1_policy()->record_full_collection_end();
1456 
1457       if (G1Log::fine()) {
1458         g1_policy()->print_heap_transition();
1459       }
1460 
1461       // We must call G1MonitoringSupport::update_sizes() in the same scoping level
1462       // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
1463       // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
1464       // before any GC notifications are raised.
1465       g1mm()->update_sizes();
1466 
1467       gc_epilogue(true);
1468     }
1469 
1470     if (G1Log::finer()) {
1471       g1_policy()->print_detailed_heap_transition(true /* full */);
1472     }
1473 
1474     print_heap_after_gc();
1475     trace_heap_after_gc(gc_tracer);
1476 
1477     post_full_gc_dump(gc_timer);
1478 
1479     gc_timer->register_gc_end();
1480     gc_tracer->report_gc_end(gc_timer->gc_end(), gc_timer->time_partitions());
1481   }
1482 
1483   return true;
1484 }
1485 
1486 void G1CollectedHeap::do_full_collection(bool clear_all_soft_refs) {
1487   // do_collection() will return whether it succeeded in performing
1488   // the GC. Currently, there is no facility on the
1489   // do_full_collection() API to notify the caller than the collection
1490   // did not succeed (e.g., because it was locked out by the GC
1491   // locker). So, right now, we'll ignore the return value.
1492   bool dummy = do_collection(true,                /* explicit_gc */
1493                              clear_all_soft_refs,
1494                              0                    /* word_size */);
1495 }
1496 
1497 // This code is mostly copied from TenuredGeneration.
1498 void
1499 G1CollectedHeap::
1500 resize_if_necessary_after_full_collection(size_t word_size) {
1501   // Include the current allocation, if any, and bytes that will be
1502   // pre-allocated to support collections, as "used".
1503   const size_t used_after_gc = used();
1504   const size_t capacity_after_gc = capacity();
1505   const size_t free_after_gc = capacity_after_gc - used_after_gc;
1506 
1507   // This is enforced in arguments.cpp.
1508   assert(MinHeapFreeRatio <= MaxHeapFreeRatio,
1509          "otherwise the code below doesn't make sense");
1510 
1511   // We don't have floating point command-line arguments
1512   const double minimum_free_percentage = (double) MinHeapFreeRatio / 100.0;
1513   const double maximum_used_percentage = 1.0 - minimum_free_percentage;
1514   const double maximum_free_percentage = (double) MaxHeapFreeRatio / 100.0;
1515   const double minimum_used_percentage = 1.0 - maximum_free_percentage;
1516 
1517   const size_t min_heap_size = collector_policy()->min_heap_byte_size();
1518   const size_t max_heap_size = collector_policy()->max_heap_byte_size();
1519 
1520   // We have to be careful here as these two calculations can overflow
1521   // 32-bit size_t's.
1522   double used_after_gc_d = (double) used_after_gc;
1523   double minimum_desired_capacity_d = used_after_gc_d / maximum_used_percentage;
1524   double maximum_desired_capacity_d = used_after_gc_d / minimum_used_percentage;
1525 
1526   // Let's make sure that they are both under the max heap size, which
1527   // by default will make them fit into a size_t.
1528   double desired_capacity_upper_bound = (double) max_heap_size;
1529   minimum_desired_capacity_d = MIN2(minimum_desired_capacity_d,
1530                                     desired_capacity_upper_bound);
1531   maximum_desired_capacity_d = MIN2(maximum_desired_capacity_d,
1532                                     desired_capacity_upper_bound);
1533 
1534   // We can now safely turn them into size_t's.
1535   size_t minimum_desired_capacity = (size_t) minimum_desired_capacity_d;
1536   size_t maximum_desired_capacity = (size_t) maximum_desired_capacity_d;
1537 
1538   // This assert only makes sense here, before we adjust them
1539   // with respect to the min and max heap size.
1540   assert(minimum_desired_capacity <= maximum_desired_capacity,
1541          err_msg("minimum_desired_capacity = "SIZE_FORMAT", "
1542                  "maximum_desired_capacity = "SIZE_FORMAT,
1543                  minimum_desired_capacity, maximum_desired_capacity));
1544 
1545   // Should not be greater than the heap max size. No need to adjust
1546   // it with respect to the heap min size as it's a lower bound (i.e.,
1547   // we'll try to make the capacity larger than it, not smaller).
1548   minimum_desired_capacity = MIN2(minimum_desired_capacity, max_heap_size);
1549   // Should not be less than the heap min size. No need to adjust it
1550   // with respect to the heap max size as it's an upper bound (i.e.,
1551   // we'll try to make the capacity smaller than it, not greater).
1552   maximum_desired_capacity =  MAX2(maximum_desired_capacity, min_heap_size);
1553 
1554   if (capacity_after_gc < minimum_desired_capacity) {
1555     // Don't expand unless it's significant
1556     size_t expand_bytes = minimum_desired_capacity - capacity_after_gc;
1557     ergo_verbose4(ErgoHeapSizing,
1558                   "attempt heap expansion",
1559                   ergo_format_reason("capacity lower than "
1560                                      "min desired capacity after Full GC")
1561                   ergo_format_byte("capacity")
1562                   ergo_format_byte("occupancy")
1563                   ergo_format_byte_perc("min desired capacity"),
1564                   capacity_after_gc, used_after_gc,
1565                   minimum_desired_capacity, (double) MinHeapFreeRatio);
1566     expand(expand_bytes);
1567 
1568     // No expansion, now see if we want to shrink
1569   } else if (capacity_after_gc > maximum_desired_capacity) {
1570     // Capacity too large, compute shrinking size
1571     size_t shrink_bytes = capacity_after_gc - maximum_desired_capacity;
1572     ergo_verbose4(ErgoHeapSizing,
1573                   "attempt heap shrinking",
1574                   ergo_format_reason("capacity higher than "
1575                                      "max desired capacity after Full GC")
1576                   ergo_format_byte("capacity")
1577                   ergo_format_byte("occupancy")
1578                   ergo_format_byte_perc("max desired capacity"),
1579                   capacity_after_gc, used_after_gc,
1580                   maximum_desired_capacity, (double) MaxHeapFreeRatio);
1581     shrink(shrink_bytes);
1582   }
1583 }
1584 
1585 
1586 HeapWord*
1587 G1CollectedHeap::satisfy_failed_allocation(size_t word_size,
1588                                            AllocationContext_t context,
1589                                            bool* succeeded) {
1590   assert_at_safepoint(true /* should_be_vm_thread */);
1591 
1592   *succeeded = true;
1593   // Let's attempt the allocation first.
1594   HeapWord* result =
1595     attempt_allocation_at_safepoint(word_size,
1596                                     context,
1597                                     false /* expect_null_mutator_alloc_region */);
1598   if (result != NULL) {
1599     assert(*succeeded, "sanity");
1600     return result;
1601   }
1602 
1603   // In a G1 heap, we're supposed to keep allocation from failing by
1604   // incremental pauses.  Therefore, at least for now, we'll favor
1605   // expansion over collection.  (This might change in the future if we can
1606   // do something smarter than full collection to satisfy a failed alloc.)
1607   result = expand_and_allocate(word_size, context);
1608   if (result != NULL) {
1609     assert(*succeeded, "sanity");
1610     return result;
1611   }
1612 
1613   // Expansion didn't work, we'll try to do a Full GC.
1614   bool gc_succeeded = do_collection(false, /* explicit_gc */
1615                                     false, /* clear_all_soft_refs */
1616                                     word_size);
1617   if (!gc_succeeded) {
1618     *succeeded = false;
1619     return NULL;
1620   }
1621 
1622   // Retry the allocation
1623   result = attempt_allocation_at_safepoint(word_size,
1624                                            context,
1625                                            true /* expect_null_mutator_alloc_region */);
1626   if (result != NULL) {
1627     assert(*succeeded, "sanity");
1628     return result;
1629   }
1630 
1631   // Then, try a Full GC that will collect all soft references.
1632   gc_succeeded = do_collection(false, /* explicit_gc */
1633                                true,  /* clear_all_soft_refs */
1634                                word_size);
1635   if (!gc_succeeded) {
1636     *succeeded = false;
1637     return NULL;
1638   }
1639 
1640   // Retry the allocation once more
1641   result = attempt_allocation_at_safepoint(word_size,
1642                                            context,
1643                                            true /* expect_null_mutator_alloc_region */);
1644   if (result != NULL) {
1645     assert(*succeeded, "sanity");
1646     return result;
1647   }
1648 
1649   assert(!collector_policy()->should_clear_all_soft_refs(),
1650          "Flag should have been handled and cleared prior to this point");
1651 
1652   // What else?  We might try synchronous finalization later.  If the total
1653   // space available is large enough for the allocation, then a more
1654   // complete compaction phase than we've tried so far might be
1655   // appropriate.
1656   assert(*succeeded, "sanity");
1657   return NULL;
1658 }
1659 
1660 // Attempting to expand the heap sufficiently
1661 // to support an allocation of the given "word_size".  If
1662 // successful, perform the allocation and return the address of the
1663 // allocated block, or else "NULL".
1664 
1665 HeapWord* G1CollectedHeap::expand_and_allocate(size_t word_size, AllocationContext_t context) {
1666   assert_at_safepoint(true /* should_be_vm_thread */);
1667 
1668   verify_region_sets_optional();
1669 
1670   size_t expand_bytes = MAX2(word_size * HeapWordSize, MinHeapDeltaBytes);
1671   ergo_verbose1(ErgoHeapSizing,
1672                 "attempt heap expansion",
1673                 ergo_format_reason("allocation request failed")
1674                 ergo_format_byte("allocation request"),
1675                 word_size * HeapWordSize);
1676   if (expand(expand_bytes)) {
1677     _hrm.verify_optional();
1678     verify_region_sets_optional();
1679     return attempt_allocation_at_safepoint(word_size,
1680                                            context,
1681                                            false /* expect_null_mutator_alloc_region */);
1682   }
1683   return NULL;
1684 }
1685 
1686 bool G1CollectedHeap::expand(size_t expand_bytes) {
1687   size_t aligned_expand_bytes = ReservedSpace::page_align_size_up(expand_bytes);
1688   aligned_expand_bytes = align_size_up(aligned_expand_bytes,
1689                                        HeapRegion::GrainBytes);
1690   ergo_verbose2(ErgoHeapSizing,
1691                 "expand the heap",
1692                 ergo_format_byte("requested expansion amount")
1693                 ergo_format_byte("attempted expansion amount"),
1694                 expand_bytes, aligned_expand_bytes);
1695 
1696   if (is_maximal_no_gc()) {
1697     ergo_verbose0(ErgoHeapSizing,
1698                       "did not expand the heap",
1699                       ergo_format_reason("heap already fully expanded"));
1700     return false;
1701   }
1702 
1703   uint regions_to_expand = (uint)(aligned_expand_bytes / HeapRegion::GrainBytes);
1704   assert(regions_to_expand > 0, "Must expand by at least one region");
1705 
1706   uint expanded_by = _hrm.expand_by(regions_to_expand);
1707 
1708   if (expanded_by > 0) {
1709     size_t actual_expand_bytes = expanded_by * HeapRegion::GrainBytes;
1710     assert(actual_expand_bytes <= aligned_expand_bytes, "post-condition");
1711     g1_policy()->record_new_heap_size(num_regions());
1712   } else {
1713     ergo_verbose0(ErgoHeapSizing,
1714                   "did not expand the heap",
1715                   ergo_format_reason("heap expansion operation failed"));
1716     // The expansion of the virtual storage space was unsuccessful.
1717     // Let's see if it was because we ran out of swap.
1718     if (G1ExitOnExpansionFailure &&
1719         _hrm.available() >= regions_to_expand) {
1720       // We had head room...
1721       vm_exit_out_of_memory(aligned_expand_bytes, OOM_MMAP_ERROR, "G1 heap expansion");
1722     }
1723   }
1724   return regions_to_expand > 0;
1725 }
1726 
1727 void G1CollectedHeap::shrink_helper(size_t shrink_bytes) {
1728   size_t aligned_shrink_bytes =
1729     ReservedSpace::page_align_size_down(shrink_bytes);
1730   aligned_shrink_bytes = align_size_down(aligned_shrink_bytes,
1731                                          HeapRegion::GrainBytes);
1732   uint num_regions_to_remove = (uint)(shrink_bytes / HeapRegion::GrainBytes);
1733 
1734   uint num_regions_removed = _hrm.shrink_by(num_regions_to_remove);
1735   size_t shrunk_bytes = num_regions_removed * HeapRegion::GrainBytes;
1736 
1737   ergo_verbose3(ErgoHeapSizing,
1738                 "shrink the heap",
1739                 ergo_format_byte("requested shrinking amount")
1740                 ergo_format_byte("aligned shrinking amount")
1741                 ergo_format_byte("attempted shrinking amount"),
1742                 shrink_bytes, aligned_shrink_bytes, shrunk_bytes);
1743   if (num_regions_removed > 0) {
1744     g1_policy()->record_new_heap_size(num_regions());
1745   } else {
1746     ergo_verbose0(ErgoHeapSizing,
1747                   "did not shrink the heap",
1748                   ergo_format_reason("heap shrinking operation failed"));
1749   }
1750 }
1751 
1752 void G1CollectedHeap::shrink(size_t shrink_bytes) {
1753   verify_region_sets_optional();
1754 
1755   // We should only reach here at the end of a Full GC which means we
1756   // should not not be holding to any GC alloc regions. The method
1757   // below will make sure of that and do any remaining clean up.
1758   _allocator->abandon_gc_alloc_regions();
1759 
1760   // Instead of tearing down / rebuilding the free lists here, we
1761   // could instead use the remove_all_pending() method on free_list to
1762   // remove only the ones that we need to remove.
1763   tear_down_region_sets(true /* free_list_only */);
1764   shrink_helper(shrink_bytes);
1765   rebuild_region_sets(true /* free_list_only */);
1766 
1767   _hrm.verify_optional();
1768   verify_region_sets_optional();
1769 }
1770 
1771 // Public methods.
1772 
1773 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
1774 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
1775 #endif // _MSC_VER
1776 
1777 
1778 G1CollectedHeap::G1CollectedHeap(G1CollectorPolicy* policy_) :
1779   SharedHeap(policy_),
1780   _g1_policy(policy_),
1781   _dirty_card_queue_set(false),
1782   _into_cset_dirty_card_queue_set(false),
1783   _is_alive_closure_cm(this),
1784   _is_alive_closure_stw(this),
1785   _ref_processor_cm(NULL),
1786   _ref_processor_stw(NULL),
1787   _process_strong_tasks(new SubTasksDone(G1H_PS_NumElements)),
1788   _bot_shared(NULL),
1789   _evac_failure_scan_stack(NULL),
1790   _mark_in_progress(false),
1791   _cg1r(NULL),
1792   _g1mm(NULL),
1793   _refine_cte_cl(NULL),
1794   _full_collection(false),
1795   _secondary_free_list("Secondary Free List", new SecondaryFreeRegionListMtSafeChecker()),
1796   _old_set("Old Set", false /* humongous */, new OldRegionSetMtSafeChecker()),
1797   _humongous_set("Master Humongous Set", true /* humongous */, new HumongousRegionSetMtSafeChecker()),
1798   _humongous_is_live(),
1799   _has_humongous_reclaim_candidates(false),
1800   _free_regions_coming(false),
1801   _young_list(new YoungList(this)),
1802   _gc_time_stamp(0),
1803   _survivor_plab_stats(YoungPLABSize, PLABWeight),
1804   _old_plab_stats(OldPLABSize, PLABWeight),
1805   _expand_heap_after_alloc_failure(true),
1806   _surviving_young_words(NULL),
1807   _old_marking_cycles_started(0),
1808   _old_marking_cycles_completed(0),
1809   _concurrent_cycle_started(false),
1810   _heap_summary_sent(false),
1811   _in_cset_fast_test(),
1812   _dirty_cards_region_list(NULL),
1813   _worker_cset_start_region(NULL),
1814   _worker_cset_start_region_time_stamp(NULL),
1815   _gc_timer_stw(new (ResourceObj::C_HEAP, mtGC) STWGCTimer()),
1816   _gc_timer_cm(new (ResourceObj::C_HEAP, mtGC) ConcurrentGCTimer()),
1817   _gc_tracer_stw(new (ResourceObj::C_HEAP, mtGC) G1NewTracer()),
1818   _gc_tracer_cm(new (ResourceObj::C_HEAP, mtGC) G1OldTracer()) {
1819 
1820   _g1h = this;
1821   if (_process_strong_tasks == NULL || !_process_strong_tasks->valid()) {
1822     vm_exit_during_initialization("Failed necessary allocation.");
1823   }
1824 
1825   _allocator = G1Allocator::create_allocator(_g1h);
1826   _humongous_object_threshold_in_words = HeapRegion::GrainWords / 2;
1827 
1828   int n_queues = MAX2((int)ParallelGCThreads, 1);
1829   _task_queues = new RefToScanQueueSet(n_queues);
1830 
1831   uint n_rem_sets = HeapRegionRemSet::num_par_rem_sets();
1832   assert(n_rem_sets > 0, "Invariant.");
1833 
1834   _worker_cset_start_region = NEW_C_HEAP_ARRAY(HeapRegion*, n_queues, mtGC);
1835   _worker_cset_start_region_time_stamp = NEW_C_HEAP_ARRAY(uint, n_queues, mtGC);
1836   _evacuation_failed_info_array = NEW_C_HEAP_ARRAY(EvacuationFailedInfo, n_queues, mtGC);
1837 
1838   for (int i = 0; i < n_queues; i++) {
1839     RefToScanQueue* q = new RefToScanQueue();
1840     q->initialize();
1841     _task_queues->register_queue(i, q);
1842     ::new (&_evacuation_failed_info_array[i]) EvacuationFailedInfo();
1843   }
1844   clear_cset_start_regions();
1845 
1846   // Initialize the G1EvacuationFailureALot counters and flags.
1847   NOT_PRODUCT(reset_evacuation_should_fail();)
1848 
1849   guarantee(_task_queues != NULL, "task_queues allocation failure.");
1850 }
1851 
1852 jint G1CollectedHeap::initialize() {
1853   CollectedHeap::pre_initialize();
1854   os::enable_vtime();
1855 
1856   G1Log::init();
1857 
1858   // Necessary to satisfy locking discipline assertions.
1859 
1860   MutexLocker x(Heap_lock);
1861 
1862   // We have to initialize the printer before committing the heap, as
1863   // it will be used then.
1864   _hr_printer.set_active(G1PrintHeapRegions);
1865 
1866   // While there are no constraints in the GC code that HeapWordSize
1867   // be any particular value, there are multiple other areas in the
1868   // system which believe this to be true (e.g. oop->object_size in some
1869   // cases incorrectly returns the size in wordSize units rather than
1870   // HeapWordSize).
1871   guarantee(HeapWordSize == wordSize, "HeapWordSize must equal wordSize");
1872 
1873   size_t init_byte_size = collector_policy()->initial_heap_byte_size();
1874   size_t max_byte_size = collector_policy()->max_heap_byte_size();
1875   size_t heap_alignment = collector_policy()->heap_alignment();
1876 
1877   // Ensure that the sizes are properly aligned.
1878   Universe::check_alignment(init_byte_size, HeapRegion::GrainBytes, "g1 heap");
1879   Universe::check_alignment(max_byte_size, HeapRegion::GrainBytes, "g1 heap");
1880   Universe::check_alignment(max_byte_size, heap_alignment, "g1 heap");
1881 
1882   _refine_cte_cl = new RefineCardTableEntryClosure();
1883 
1884   _cg1r = new ConcurrentG1Refine(this, _refine_cte_cl);
1885 
1886   // Reserve the maximum.
1887 
1888   // When compressed oops are enabled, the preferred heap base
1889   // is calculated by subtracting the requested size from the
1890   // 32Gb boundary and using the result as the base address for
1891   // heap reservation. If the requested size is not aligned to
1892   // HeapRegion::GrainBytes (i.e. the alignment that is passed
1893   // into the ReservedHeapSpace constructor) then the actual
1894   // base of the reserved heap may end up differing from the
1895   // address that was requested (i.e. the preferred heap base).
1896   // If this happens then we could end up using a non-optimal
1897   // compressed oops mode.
1898 
1899   ReservedSpace heap_rs = Universe::reserve_heap(max_byte_size,
1900                                                  heap_alignment);
1901 
1902   initialize_reserved_region((HeapWord*)heap_rs.base(), (HeapWord*)(heap_rs.base() + heap_rs.size()));
1903 
1904   // Create the barrier set for the entire reserved region.
1905   G1SATBCardTableLoggingModRefBS* bs
1906     = new G1SATBCardTableLoggingModRefBS(reserved_region());
1907   bs->initialize();
1908   assert(bs->is_a(BarrierSet::G1SATBCTLogging), "sanity");
1909   set_barrier_set(bs);
1910 
1911   // Also create a G1 rem set.
1912   _g1_rem_set = new G1RemSet(this, g1_barrier_set());
1913 
1914   // Carve out the G1 part of the heap.
1915 
1916   ReservedSpace g1_rs = heap_rs.first_part(max_byte_size);
1917   G1RegionToSpaceMapper* heap_storage =
1918     G1RegionToSpaceMapper::create_mapper(g1_rs,
1919                                          UseLargePages ? os::large_page_size() : os::vm_page_size(),
1920                                          HeapRegion::GrainBytes,
1921                                          1,
1922                                          mtJavaHeap);
1923   heap_storage->set_mapping_changed_listener(&_listener);
1924 
1925   // Reserve space for the block offset table. We do not support automatic uncommit
1926   // for the card table at this time. BOT only.
1927   ReservedSpace bot_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1928   G1RegionToSpaceMapper* bot_storage =
1929     G1RegionToSpaceMapper::create_mapper(bot_rs,
1930                                          os::vm_page_size(),
1931                                          HeapRegion::GrainBytes,
1932                                          G1BlockOffsetSharedArray::N_bytes,
1933                                          mtGC);
1934 
1935   ReservedSpace cardtable_rs(G1SATBCardTableLoggingModRefBS::compute_size(g1_rs.size() / HeapWordSize));
1936   G1RegionToSpaceMapper* cardtable_storage =
1937     G1RegionToSpaceMapper::create_mapper(cardtable_rs,
1938                                          os::vm_page_size(),
1939                                          HeapRegion::GrainBytes,
1940                                          G1BlockOffsetSharedArray::N_bytes,
1941                                          mtGC);
1942 
1943   // Reserve space for the card counts table.
1944   ReservedSpace card_counts_rs(G1BlockOffsetSharedArray::compute_size(g1_rs.size() / HeapWordSize));
1945   G1RegionToSpaceMapper* card_counts_storage =
1946     G1RegionToSpaceMapper::create_mapper(card_counts_rs,
1947                                          os::vm_page_size(),
1948                                          HeapRegion::GrainBytes,
1949                                          G1BlockOffsetSharedArray::N_bytes,
1950                                          mtGC);
1951 
1952   // Reserve space for prev and next bitmap.
1953   size_t bitmap_size = CMBitMap::compute_size(g1_rs.size());
1954 
1955   ReservedSpace prev_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1956   G1RegionToSpaceMapper* prev_bitmap_storage =
1957     G1RegionToSpaceMapper::create_mapper(prev_bitmap_rs,
1958                                          os::vm_page_size(),
1959                                          HeapRegion::GrainBytes,
1960                                          CMBitMap::mark_distance(),
1961                                          mtGC);
1962 
1963   ReservedSpace next_bitmap_rs(ReservedSpace::allocation_align_size_up(bitmap_size));
1964   G1RegionToSpaceMapper* next_bitmap_storage =
1965     G1RegionToSpaceMapper::create_mapper(next_bitmap_rs,
1966                                          os::vm_page_size(),
1967                                          HeapRegion::GrainBytes,
1968                                          CMBitMap::mark_distance(),
1969                                          mtGC);
1970 
1971   _hrm.initialize(heap_storage, prev_bitmap_storage, next_bitmap_storage, bot_storage, cardtable_storage, card_counts_storage);
1972   g1_barrier_set()->initialize(cardtable_storage);
1973    // Do later initialization work for concurrent refinement.
1974   _cg1r->init(card_counts_storage);
1975 
1976   // 6843694 - ensure that the maximum region index can fit
1977   // in the remembered set structures.
1978   const uint max_region_idx = (1U << (sizeof(RegionIdx_t)*BitsPerByte-1)) - 1;
1979   guarantee((max_regions() - 1) <= max_region_idx, "too many regions");
1980 
1981   size_t max_cards_per_region = ((size_t)1 << (sizeof(CardIdx_t)*BitsPerByte-1)) - 1;
1982   guarantee(HeapRegion::CardsPerRegion > 0, "make sure it's initialized");
1983   guarantee(HeapRegion::CardsPerRegion < max_cards_per_region,
1984             "too many cards per region");
1985 
1986   FreeRegionList::set_unrealistically_long_length(max_regions() + 1);
1987 
1988   _bot_shared = new G1BlockOffsetSharedArray(reserved_region(), bot_storage);
1989 
1990   _g1h = this;
1991 
1992   _in_cset_fast_test.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1993   _humongous_is_live.initialize(_hrm.reserved().start(), _hrm.reserved().end(), HeapRegion::GrainBytes);
1994 
1995   // Create the ConcurrentMark data structure and thread.
1996   // (Must do this late, so that "max_regions" is defined.)
1997   _cm = new ConcurrentMark(this, prev_bitmap_storage, next_bitmap_storage);
1998   if (_cm == NULL || !_cm->completed_initialization()) {
1999     vm_shutdown_during_initialization("Could not create/initialize ConcurrentMark");
2000     return JNI_ENOMEM;
2001   }
2002   _cmThread = _cm->cmThread();
2003 
2004   // Initialize the from_card cache structure of HeapRegionRemSet.
2005   HeapRegionRemSet::init_heap(max_regions());
2006 
2007   // Now expand into the initial heap size.
2008   if (!expand(init_byte_size)) {
2009     vm_shutdown_during_initialization("Failed to allocate initial heap.");
2010     return JNI_ENOMEM;
2011   }
2012 
2013   // Perform any initialization actions delegated to the policy.
2014   g1_policy()->init();
2015 
2016   JavaThread::satb_mark_queue_set().initialize(SATB_Q_CBL_mon,
2017                                                SATB_Q_FL_lock,
2018                                                G1SATBProcessCompletedThreshold,
2019                                                Shared_SATB_Q_lock);
2020 
2021   JavaThread::dirty_card_queue_set().initialize(_refine_cte_cl,
2022                                                 DirtyCardQ_CBL_mon,
2023                                                 DirtyCardQ_FL_lock,
2024                                                 concurrent_g1_refine()->yellow_zone(),
2025                                                 concurrent_g1_refine()->red_zone(),
2026                                                 Shared_DirtyCardQ_lock);
2027 
2028   dirty_card_queue_set().initialize(NULL, // Should never be called by the Java code
2029                                     DirtyCardQ_CBL_mon,
2030                                     DirtyCardQ_FL_lock,
2031                                     -1, // never trigger processing
2032                                     -1, // no limit on length
2033                                     Shared_DirtyCardQ_lock,
2034                                     &JavaThread::dirty_card_queue_set());
2035 
2036   // Initialize the card queue set used to hold cards containing
2037   // references into the collection set.
2038   _into_cset_dirty_card_queue_set.initialize(NULL, // Should never be called by the Java code
2039                                              DirtyCardQ_CBL_mon,
2040                                              DirtyCardQ_FL_lock,
2041                                              -1, // never trigger processing
2042                                              -1, // no limit on length
2043                                              Shared_DirtyCardQ_lock,
2044                                              &JavaThread::dirty_card_queue_set());
2045 
2046   // In case we're keeping closure specialization stats, initialize those
2047   // counts and that mechanism.
2048   SpecializationStats::clear();
2049 
2050   // Here we allocate the dummy HeapRegion that is required by the
2051   // G1AllocRegion class.
2052   HeapRegion* dummy_region = _hrm.get_dummy_region();
2053 
2054   // We'll re-use the same region whether the alloc region will
2055   // require BOT updates or not and, if it doesn't, then a non-young
2056   // region will complain that it cannot support allocations without
2057   // BOT updates. So we'll tag the dummy region as eden to avoid that.
2058   dummy_region->set_eden();
2059   // Make sure it's full.
2060   dummy_region->set_top(dummy_region->end());
2061   G1AllocRegion::setup(this, dummy_region);
2062 
2063   _allocator->init_mutator_alloc_region();
2064 
2065   // Do create of the monitoring and management support so that
2066   // values in the heap have been properly initialized.
2067   _g1mm = new G1MonitoringSupport(this);
2068 
2069   G1StringDedup::initialize();
2070 
2071   return JNI_OK;
2072 }
2073 
2074 void G1CollectedHeap::stop() {
2075   // Stop all concurrent threads. We do this to make sure these threads
2076   // do not continue to execute and access resources (e.g. gclog_or_tty)
2077   // that are destroyed during shutdown.
2078   _cg1r->stop();
2079   _cmThread->stop();
2080   if (G1StringDedup::is_enabled()) {
2081     G1StringDedup::stop();
2082   }
2083 }
2084 
2085 void G1CollectedHeap::clear_humongous_is_live_table() {
2086   guarantee(G1EagerReclaimHumongousObjects, "Should only be called if true");
2087   _humongous_is_live.clear();
2088 }
2089 
2090 size_t G1CollectedHeap::conservative_max_heap_alignment() {
2091   return HeapRegion::max_region_size();
2092 }
2093 
2094 void G1CollectedHeap::ref_processing_init() {
2095   // Reference processing in G1 currently works as follows:
2096   //
2097   // * There are two reference processor instances. One is
2098   //   used to record and process discovered references
2099   //   during concurrent marking; the other is used to
2100   //   record and process references during STW pauses
2101   //   (both full and incremental).
2102   // * Both ref processors need to 'span' the entire heap as
2103   //   the regions in the collection set may be dotted around.
2104   //
2105   // * For the concurrent marking ref processor:
2106   //   * Reference discovery is enabled at initial marking.
2107   //   * Reference discovery is disabled and the discovered
2108   //     references processed etc during remarking.
2109   //   * Reference discovery is MT (see below).
2110   //   * Reference discovery requires a barrier (see below).
2111   //   * Reference processing may or may not be MT
2112   //     (depending on the value of ParallelRefProcEnabled
2113   //     and ParallelGCThreads).
2114   //   * A full GC disables reference discovery by the CM
2115   //     ref processor and abandons any entries on it's
2116   //     discovered lists.
2117   //
2118   // * For the STW processor:
2119   //   * Non MT discovery is enabled at the start of a full GC.
2120   //   * Processing and enqueueing during a full GC is non-MT.
2121   //   * During a full GC, references are processed after marking.
2122   //
2123   //   * Discovery (may or may not be MT) is enabled at the start
2124   //     of an incremental evacuation pause.
2125   //   * References are processed near the end of a STW evacuation pause.
2126   //   * For both types of GC:
2127   //     * Discovery is atomic - i.e. not concurrent.
2128   //     * Reference discovery will not need a barrier.
2129 
2130   SharedHeap::ref_processing_init();
2131   MemRegion mr = reserved_region();
2132 
2133   // Concurrent Mark ref processor
2134   _ref_processor_cm =
2135     new ReferenceProcessor(mr,    // span
2136                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2137                                 // mt processing
2138                            (int) ParallelGCThreads,
2139                                 // degree of mt processing
2140                            (ParallelGCThreads > 1) || (ConcGCThreads > 1),
2141                                 // mt discovery
2142                            (int) MAX2(ParallelGCThreads, ConcGCThreads),
2143                                 // degree of mt discovery
2144                            false,
2145                                 // Reference discovery is not atomic
2146                            &_is_alive_closure_cm);
2147                                 // is alive closure
2148                                 // (for efficiency/performance)
2149 
2150   // STW ref processor
2151   _ref_processor_stw =
2152     new ReferenceProcessor(mr,    // span
2153                            ParallelRefProcEnabled && (ParallelGCThreads > 1),
2154                                 // mt processing
2155                            MAX2((int)ParallelGCThreads, 1),
2156                                 // degree of mt processing
2157                            (ParallelGCThreads > 1),
2158                                 // mt discovery
2159                            MAX2((int)ParallelGCThreads, 1),
2160                                 // degree of mt discovery
2161                            true,
2162                                 // Reference discovery is atomic
2163                            &_is_alive_closure_stw);
2164                                 // is alive closure
2165                                 // (for efficiency/performance)
2166 }
2167 
2168 size_t G1CollectedHeap::capacity() const {
2169   return _hrm.length() * HeapRegion::GrainBytes;
2170 }
2171 
2172 void G1CollectedHeap::reset_gc_time_stamps(HeapRegion* hr) {
2173   assert(!hr->is_continues_humongous(), "pre-condition");
2174   hr->reset_gc_time_stamp();
2175   if (hr->is_starts_humongous()) {
2176     uint first_index = hr->hrm_index() + 1;
2177     uint last_index = hr->last_hc_index();
2178     for (uint i = first_index; i < last_index; i += 1) {
2179       HeapRegion* chr = region_at(i);
2180       assert(chr->is_continues_humongous(), "sanity");
2181       chr->reset_gc_time_stamp();
2182     }
2183   }
2184 }
2185 
2186 #ifndef PRODUCT
2187 class CheckGCTimeStampsHRClosure : public HeapRegionClosure {
2188 private:
2189   unsigned _gc_time_stamp;
2190   bool _failures;
2191 
2192 public:
2193   CheckGCTimeStampsHRClosure(unsigned gc_time_stamp) :
2194     _gc_time_stamp(gc_time_stamp), _failures(false) { }
2195 
2196   virtual bool doHeapRegion(HeapRegion* hr) {
2197     unsigned region_gc_time_stamp = hr->get_gc_time_stamp();
2198     if (_gc_time_stamp != region_gc_time_stamp) {
2199       gclog_or_tty->print_cr("Region "HR_FORMAT" has GC time stamp = %d, "
2200                              "expected %d", HR_FORMAT_PARAMS(hr),
2201                              region_gc_time_stamp, _gc_time_stamp);
2202       _failures = true;
2203     }
2204     return false;
2205   }
2206 
2207   bool failures() { return _failures; }
2208 };
2209 
2210 void G1CollectedHeap::check_gc_time_stamps() {
2211   CheckGCTimeStampsHRClosure cl(_gc_time_stamp);
2212   heap_region_iterate(&cl);
2213   guarantee(!cl.failures(), "all GC time stamps should have been reset");
2214 }
2215 #endif // PRODUCT
2216 
2217 void G1CollectedHeap::iterate_dirty_card_closure(CardTableEntryClosure* cl,
2218                                                  DirtyCardQueue* into_cset_dcq,
2219                                                  bool concurrent,
2220                                                  uint worker_i) {
2221   // Clean cards in the hot card cache
2222   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
2223   hot_card_cache->drain(worker_i, g1_rem_set(), into_cset_dcq);
2224 
2225   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
2226   int n_completed_buffers = 0;
2227   while (dcqs.apply_closure_to_completed_buffer(cl, worker_i, 0, true)) {
2228     n_completed_buffers++;
2229   }
2230   g1_policy()->phase_times()->record_update_rs_processed_buffers(worker_i, n_completed_buffers);
2231   dcqs.clear_n_completed_buffers();
2232   assert(!dcqs.completed_buffers_exist_dirty(), "Completed buffers exist!");
2233 }
2234 
2235 
2236 // Computes the sum of the storage used by the various regions.
2237 size_t G1CollectedHeap::used() const {
2238   return _allocator->used();
2239 }
2240 
2241 size_t G1CollectedHeap::used_unlocked() const {
2242   return _allocator->used_unlocked();
2243 }
2244 
2245 class SumUsedClosure: public HeapRegionClosure {
2246   size_t _used;
2247 public:
2248   SumUsedClosure() : _used(0) {}
2249   bool doHeapRegion(HeapRegion* r) {
2250     if (!r->is_continues_humongous()) {
2251       _used += r->used();
2252     }
2253     return false;
2254   }
2255   size_t result() { return _used; }
2256 };
2257 
2258 size_t G1CollectedHeap::recalculate_used() const {
2259   double recalculate_used_start = os::elapsedTime();
2260 
2261   SumUsedClosure blk;
2262   heap_region_iterate(&blk);
2263 
2264   g1_policy()->phase_times()->record_evac_fail_recalc_used_time((os::elapsedTime() - recalculate_used_start) * 1000.0);
2265   return blk.result();
2266 }
2267 
2268 bool G1CollectedHeap::should_do_concurrent_full_gc(GCCause::Cause cause) {
2269   switch (cause) {
2270     case GCCause::_gc_locker:               return GCLockerInvokesConcurrent;
2271     case GCCause::_java_lang_system_gc:     return ExplicitGCInvokesConcurrent;
2272     case GCCause::_g1_humongous_allocation: return true;
2273     case GCCause::_update_allocation_context_stats_inc: return true;
2274     case GCCause::_wb_conc_mark:            return true;
2275     default:                                return false;
2276   }
2277 }
2278 
2279 #ifndef PRODUCT
2280 void G1CollectedHeap::allocate_dummy_regions() {
2281   // Let's fill up most of the region
2282   size_t word_size = HeapRegion::GrainWords - 1024;
2283   // And as a result the region we'll allocate will be humongous.
2284   guarantee(is_humongous(word_size), "sanity");
2285 
2286   for (uintx i = 0; i < G1DummyRegionsPerGC; ++i) {
2287     // Let's use the existing mechanism for the allocation
2288     HeapWord* dummy_obj = humongous_obj_allocate(word_size,
2289                                                  AllocationContext::system());
2290     if (dummy_obj != NULL) {
2291       MemRegion mr(dummy_obj, word_size);
2292       CollectedHeap::fill_with_object(mr);
2293     } else {
2294       // If we can't allocate once, we probably cannot allocate
2295       // again. Let's get out of the loop.
2296       break;
2297     }
2298   }
2299 }
2300 #endif // !PRODUCT
2301 
2302 void G1CollectedHeap::increment_old_marking_cycles_started() {
2303   assert(_old_marking_cycles_started == _old_marking_cycles_completed ||
2304     _old_marking_cycles_started == _old_marking_cycles_completed + 1,
2305     err_msg("Wrong marking cycle count (started: %d, completed: %d)",
2306     _old_marking_cycles_started, _old_marking_cycles_completed));
2307 
2308   _old_marking_cycles_started++;
2309 }
2310 
2311 void G1CollectedHeap::increment_old_marking_cycles_completed(bool concurrent) {
2312   MonitorLockerEx x(FullGCCount_lock, Mutex::_no_safepoint_check_flag);
2313 
2314   // We assume that if concurrent == true, then the caller is a
2315   // concurrent thread that was joined the Suspendible Thread
2316   // Set. If there's ever a cheap way to check this, we should add an
2317   // assert here.
2318 
2319   // Given that this method is called at the end of a Full GC or of a
2320   // concurrent cycle, and those can be nested (i.e., a Full GC can
2321   // interrupt a concurrent cycle), the number of full collections
2322   // completed should be either one (in the case where there was no
2323   // nesting) or two (when a Full GC interrupted a concurrent cycle)
2324   // behind the number of full collections started.
2325 
2326   // This is the case for the inner caller, i.e. a Full GC.
2327   assert(concurrent ||
2328          (_old_marking_cycles_started == _old_marking_cycles_completed + 1) ||
2329          (_old_marking_cycles_started == _old_marking_cycles_completed + 2),
2330          err_msg("for inner caller (Full GC): _old_marking_cycles_started = %u "
2331                  "is inconsistent with _old_marking_cycles_completed = %u",
2332                  _old_marking_cycles_started, _old_marking_cycles_completed));
2333 
2334   // This is the case for the outer caller, i.e. the concurrent cycle.
2335   assert(!concurrent ||
2336          (_old_marking_cycles_started == _old_marking_cycles_completed + 1),
2337          err_msg("for outer caller (concurrent cycle): "
2338                  "_old_marking_cycles_started = %u "
2339                  "is inconsistent with _old_marking_cycles_completed = %u",
2340                  _old_marking_cycles_started, _old_marking_cycles_completed));
2341 
2342   _old_marking_cycles_completed += 1;
2343 
2344   // We need to clear the "in_progress" flag in the CM thread before
2345   // we wake up any waiters (especially when ExplicitInvokesConcurrent
2346   // is set) so that if a waiter requests another System.gc() it doesn't
2347   // incorrectly see that a marking cycle is still in progress.
2348   if (concurrent) {
2349     _cmThread->clear_in_progress();
2350   }
2351 
2352   // This notify_all() will ensure that a thread that called
2353   // System.gc() with (with ExplicitGCInvokesConcurrent set or not)
2354   // and it's waiting for a full GC to finish will be woken up. It is
2355   // waiting in VM_G1IncCollectionPause::doit_epilogue().
2356   FullGCCount_lock->notify_all();
2357 }
2358 
2359 void G1CollectedHeap::register_concurrent_cycle_start(const Ticks& start_time) {
2360   _concurrent_cycle_started = true;
2361   _gc_timer_cm->register_gc_start(start_time);
2362 
2363   _gc_tracer_cm->report_gc_start(gc_cause(), _gc_timer_cm->gc_start());
2364   trace_heap_before_gc(_gc_tracer_cm);
2365 }
2366 
2367 void G1CollectedHeap::register_concurrent_cycle_end() {
2368   if (_concurrent_cycle_started) {
2369     if (_cm->has_aborted()) {
2370       _gc_tracer_cm->report_concurrent_mode_failure();
2371     }
2372 
2373     _gc_timer_cm->register_gc_end();
2374     _gc_tracer_cm->report_gc_end(_gc_timer_cm->gc_end(), _gc_timer_cm->time_partitions());
2375 
2376     // Clear state variables to prepare for the next concurrent cycle.
2377     _concurrent_cycle_started = false;
2378     _heap_summary_sent = false;
2379   }
2380 }
2381 
2382 void G1CollectedHeap::trace_heap_after_concurrent_cycle() {
2383   if (_concurrent_cycle_started) {
2384     // This function can be called when:
2385     //  the cleanup pause is run
2386     //  the concurrent cycle is aborted before the cleanup pause.
2387     //  the concurrent cycle is aborted after the cleanup pause,
2388     //   but before the concurrent cycle end has been registered.
2389     // Make sure that we only send the heap information once.
2390     if (!_heap_summary_sent) {
2391       trace_heap_after_gc(_gc_tracer_cm);
2392       _heap_summary_sent = true;
2393     }
2394   }
2395 }
2396 
2397 G1YCType G1CollectedHeap::yc_type() {
2398   bool is_young = g1_policy()->gcs_are_young();
2399   bool is_initial_mark = g1_policy()->during_initial_mark_pause();
2400   bool is_during_mark = mark_in_progress();
2401 
2402   if (is_initial_mark) {
2403     return InitialMark;
2404   } else if (is_during_mark) {
2405     return DuringMark;
2406   } else if (is_young) {
2407     return Normal;
2408   } else {
2409     return Mixed;
2410   }
2411 }
2412 
2413 void G1CollectedHeap::collect(GCCause::Cause cause) {
2414   assert_heap_not_locked();
2415 
2416   uint gc_count_before;
2417   uint old_marking_count_before;
2418   uint full_gc_count_before;
2419   bool retry_gc;
2420 
2421   do {
2422     retry_gc = false;
2423 
2424     {
2425       MutexLocker ml(Heap_lock);
2426 
2427       // Read the GC count while holding the Heap_lock
2428       gc_count_before = total_collections();
2429       full_gc_count_before = total_full_collections();
2430       old_marking_count_before = _old_marking_cycles_started;
2431     }
2432 
2433     if (should_do_concurrent_full_gc(cause)) {
2434       // Schedule an initial-mark evacuation pause that will start a
2435       // concurrent cycle. We're setting word_size to 0 which means that
2436       // we are not requesting a post-GC allocation.
2437       VM_G1IncCollectionPause op(gc_count_before,
2438                                  0,     /* word_size */
2439                                  true,  /* should_initiate_conc_mark */
2440                                  g1_policy()->max_pause_time_ms(),
2441                                  cause);
2442       op.set_allocation_context(AllocationContext::current());
2443 
2444       VMThread::execute(&op);
2445       if (!op.pause_succeeded()) {
2446         if (old_marking_count_before == _old_marking_cycles_started) {
2447           retry_gc = op.should_retry_gc();
2448         } else {
2449           // A Full GC happened while we were trying to schedule the
2450           // initial-mark GC. No point in starting a new cycle given
2451           // that the whole heap was collected anyway.
2452         }
2453 
2454         if (retry_gc) {
2455           if (GC_locker::is_active_and_needs_gc()) {
2456             GC_locker::stall_until_clear();
2457           }
2458         }
2459       }
2460     } else {
2461       if (cause == GCCause::_gc_locker || cause == GCCause::_wb_young_gc
2462           DEBUG_ONLY(|| cause == GCCause::_scavenge_alot)) {
2463 
2464         // Schedule a standard evacuation pause. We're setting word_size
2465         // to 0 which means that we are not requesting a post-GC allocation.
2466         VM_G1IncCollectionPause op(gc_count_before,
2467                                    0,     /* word_size */
2468                                    false, /* should_initiate_conc_mark */
2469                                    g1_policy()->max_pause_time_ms(),
2470                                    cause);
2471         VMThread::execute(&op);
2472       } else {
2473         // Schedule a Full GC.
2474         VM_G1CollectFull op(gc_count_before, full_gc_count_before, cause);
2475         VMThread::execute(&op);
2476       }
2477     }
2478   } while (retry_gc);
2479 }
2480 
2481 bool G1CollectedHeap::is_in(const void* p) const {
2482   if (_hrm.reserved().contains(p)) {
2483     // Given that we know that p is in the reserved space,
2484     // heap_region_containing_raw() should successfully
2485     // return the containing region.
2486     HeapRegion* hr = heap_region_containing_raw(p);
2487     return hr->is_in(p);
2488   } else {
2489     return false;
2490   }
2491 }
2492 
2493 #ifdef ASSERT
2494 bool G1CollectedHeap::is_in_exact(const void* p) const {
2495   bool contains = reserved_region().contains(p);
2496   bool available = _hrm.is_available(addr_to_region((HeapWord*)p));
2497   if (contains && available) {
2498     return true;
2499   } else {
2500     return false;
2501   }
2502 }
2503 #endif
2504 
2505 // Iteration functions.
2506 
2507 // Applies an ExtendedOopClosure onto all references of objects within a HeapRegion.
2508 
2509 class IterateOopClosureRegionClosure: public HeapRegionClosure {
2510   ExtendedOopClosure* _cl;
2511 public:
2512   IterateOopClosureRegionClosure(ExtendedOopClosure* cl) : _cl(cl) {}
2513   bool doHeapRegion(HeapRegion* r) {
2514     if (!r->is_continues_humongous()) {
2515       r->oop_iterate(_cl);
2516     }
2517     return false;
2518   }
2519 };
2520 
2521 void G1CollectedHeap::oop_iterate(ExtendedOopClosure* cl) {
2522   IterateOopClosureRegionClosure blk(cl);
2523   heap_region_iterate(&blk);
2524 }
2525 
2526 // Iterates an ObjectClosure over all objects within a HeapRegion.
2527 
2528 class IterateObjectClosureRegionClosure: public HeapRegionClosure {
2529   ObjectClosure* _cl;
2530 public:
2531   IterateObjectClosureRegionClosure(ObjectClosure* cl) : _cl(cl) {}
2532   bool doHeapRegion(HeapRegion* r) {
2533     if (!r->is_continues_humongous()) {
2534       r->object_iterate(_cl);
2535     }
2536     return false;
2537   }
2538 };
2539 
2540 void G1CollectedHeap::object_iterate(ObjectClosure* cl) {
2541   IterateObjectClosureRegionClosure blk(cl);
2542   heap_region_iterate(&blk);
2543 }
2544 
2545 // Calls a SpaceClosure on a HeapRegion.
2546 
2547 class SpaceClosureRegionClosure: public HeapRegionClosure {
2548   SpaceClosure* _cl;
2549 public:
2550   SpaceClosureRegionClosure(SpaceClosure* cl) : _cl(cl) {}
2551   bool doHeapRegion(HeapRegion* r) {
2552     _cl->do_space(r);
2553     return false;
2554   }
2555 };
2556 
2557 void G1CollectedHeap::space_iterate(SpaceClosure* cl) {
2558   SpaceClosureRegionClosure blk(cl);
2559   heap_region_iterate(&blk);
2560 }
2561 
2562 void G1CollectedHeap::heap_region_iterate(HeapRegionClosure* cl) const {
2563   _hrm.iterate(cl);
2564 }
2565 
2566 void
2567 G1CollectedHeap::heap_region_par_iterate(HeapRegionClosure* cl,
2568                                          uint worker_id,
2569                                          HeapRegionClaimer *hrclaimer,
2570                                          bool concurrent) const {
2571   _hrm.par_iterate(cl, worker_id, hrclaimer, concurrent);
2572 }
2573 
2574 // Clear the cached CSet starting regions and (more importantly)
2575 // the time stamps. Called when we reset the GC time stamp.
2576 void G1CollectedHeap::clear_cset_start_regions() {
2577   assert(_worker_cset_start_region != NULL, "sanity");
2578   assert(_worker_cset_start_region_time_stamp != NULL, "sanity");
2579 
2580   int n_queues = MAX2((int)ParallelGCThreads, 1);
2581   for (int i = 0; i < n_queues; i++) {
2582     _worker_cset_start_region[i] = NULL;
2583     _worker_cset_start_region_time_stamp[i] = 0;
2584   }
2585 }
2586 
2587 // Given the id of a worker, obtain or calculate a suitable
2588 // starting region for iterating over the current collection set.
2589 HeapRegion* G1CollectedHeap::start_cset_region_for_worker(uint worker_i) {
2590   assert(get_gc_time_stamp() > 0, "should have been updated by now");
2591 
2592   HeapRegion* result = NULL;
2593   unsigned gc_time_stamp = get_gc_time_stamp();
2594 
2595   if (_worker_cset_start_region_time_stamp[worker_i] == gc_time_stamp) {
2596     // Cached starting region for current worker was set
2597     // during the current pause - so it's valid.
2598     // Note: the cached starting heap region may be NULL
2599     // (when the collection set is empty).
2600     result = _worker_cset_start_region[worker_i];
2601     assert(result == NULL || result->in_collection_set(), "sanity");
2602     return result;
2603   }
2604 
2605   // The cached entry was not valid so let's calculate
2606   // a suitable starting heap region for this worker.
2607 
2608   // We want the parallel threads to start their collection
2609   // set iteration at different collection set regions to
2610   // avoid contention.
2611   // If we have:
2612   //          n collection set regions
2613   //          p threads
2614   // Then thread t will start at region floor ((t * n) / p)
2615 
2616   result = g1_policy()->collection_set();
2617   uint cs_size = g1_policy()->cset_region_length();
2618   uint active_workers = workers()->active_workers();
2619   assert(UseDynamicNumberOfGCThreads ||
2620            active_workers == workers()->total_workers(),
2621            "Unless dynamic should use total workers");
2622 
2623   uint end_ind   = (cs_size * worker_i) / active_workers;
2624   uint start_ind = 0;
2625 
2626   if (worker_i > 0 &&
2627       _worker_cset_start_region_time_stamp[worker_i - 1] == gc_time_stamp) {
2628     // Previous workers starting region is valid
2629     // so let's iterate from there
2630     start_ind = (cs_size * (worker_i - 1)) / active_workers;
2631     result = _worker_cset_start_region[worker_i - 1];
2632   }
2633 
2634   for (uint i = start_ind; i < end_ind; i++) {
2635     result = result->next_in_collection_set();
2636   }
2637 
2638   // Note: the calculated starting heap region may be NULL
2639   // (when the collection set is empty).
2640   assert(result == NULL || result->in_collection_set(), "sanity");
2641   assert(_worker_cset_start_region_time_stamp[worker_i] != gc_time_stamp,
2642          "should be updated only once per pause");
2643   _worker_cset_start_region[worker_i] = result;
2644   OrderAccess::storestore();
2645   _worker_cset_start_region_time_stamp[worker_i] = gc_time_stamp;
2646   return result;
2647 }
2648 
2649 void G1CollectedHeap::collection_set_iterate(HeapRegionClosure* cl) {
2650   HeapRegion* r = g1_policy()->collection_set();
2651   while (r != NULL) {
2652     HeapRegion* next = r->next_in_collection_set();
2653     if (cl->doHeapRegion(r)) {
2654       cl->incomplete();
2655       return;
2656     }
2657     r = next;
2658   }
2659 }
2660 
2661 void G1CollectedHeap::collection_set_iterate_from(HeapRegion* r,
2662                                                   HeapRegionClosure *cl) {
2663   if (r == NULL) {
2664     // The CSet is empty so there's nothing to do.
2665     return;
2666   }
2667 
2668   assert(r->in_collection_set(),
2669          "Start region must be a member of the collection set.");
2670   HeapRegion* cur = r;
2671   while (cur != NULL) {
2672     HeapRegion* next = cur->next_in_collection_set();
2673     if (cl->doHeapRegion(cur) && false) {
2674       cl->incomplete();
2675       return;
2676     }
2677     cur = next;
2678   }
2679   cur = g1_policy()->collection_set();
2680   while (cur != r) {
2681     HeapRegion* next = cur->next_in_collection_set();
2682     if (cl->doHeapRegion(cur) && false) {
2683       cl->incomplete();
2684       return;
2685     }
2686     cur = next;
2687   }
2688 }
2689 
2690 HeapRegion* G1CollectedHeap::next_compaction_region(const HeapRegion* from) const {
2691   HeapRegion* result = _hrm.next_region_in_heap(from);
2692   while (result != NULL && result->is_humongous()) {
2693     result = _hrm.next_region_in_heap(result);
2694   }
2695   return result;
2696 }
2697 
2698 Space* G1CollectedHeap::space_containing(const void* addr) const {
2699   return heap_region_containing(addr);
2700 }
2701 
2702 HeapWord* G1CollectedHeap::block_start(const void* addr) const {
2703   Space* sp = space_containing(addr);
2704   return sp->block_start(addr);
2705 }
2706 
2707 size_t G1CollectedHeap::block_size(const HeapWord* addr) const {
2708   Space* sp = space_containing(addr);
2709   return sp->block_size(addr);
2710 }
2711 
2712 bool G1CollectedHeap::block_is_obj(const HeapWord* addr) const {
2713   Space* sp = space_containing(addr);
2714   return sp->block_is_obj(addr);
2715 }
2716 
2717 bool G1CollectedHeap::supports_tlab_allocation() const {
2718   return true;
2719 }
2720 
2721 size_t G1CollectedHeap::tlab_capacity(Thread* ignored) const {
2722   return (_g1_policy->young_list_target_length() - young_list()->survivor_length()) * HeapRegion::GrainBytes;
2723 }
2724 
2725 size_t G1CollectedHeap::tlab_used(Thread* ignored) const {
2726   return young_list()->eden_used_bytes();
2727 }
2728 
2729 // For G1 TLABs should not contain humongous objects, so the maximum TLAB size
2730 // must be smaller than the humongous object limit.
2731 size_t G1CollectedHeap::max_tlab_size() const {
2732   return align_size_down(_humongous_object_threshold_in_words - 1, MinObjAlignment);
2733 }
2734 
2735 size_t G1CollectedHeap::unsafe_max_tlab_alloc(Thread* ignored) const {
2736   // Return the remaining space in the cur alloc region, but not less than
2737   // the min TLAB size.
2738 
2739   // Also, this value can be at most the humongous object threshold,
2740   // since we can't allow tlabs to grow big enough to accommodate
2741   // humongous objects.
2742 
2743   HeapRegion* hr = _allocator->mutator_alloc_region(AllocationContext::current())->get();
2744   size_t max_tlab = max_tlab_size() * wordSize;
2745   if (hr == NULL) {
2746     return max_tlab;
2747   } else {
2748     return MIN2(MAX2(hr->free(), (size_t) MinTLABSize), max_tlab);
2749   }
2750 }
2751 
2752 size_t G1CollectedHeap::max_capacity() const {
2753   return _hrm.reserved().byte_size();
2754 }
2755 
2756 jlong G1CollectedHeap::millis_since_last_gc() {
2757   // assert(false, "NYI");
2758   return 0;
2759 }
2760 
2761 void G1CollectedHeap::prepare_for_verify() {
2762   if (SafepointSynchronize::is_at_safepoint() || ! UseTLAB) {
2763     ensure_parsability(false);
2764   }
2765   g1_rem_set()->prepare_for_verify();
2766 }
2767 
2768 bool G1CollectedHeap::allocated_since_marking(oop obj, HeapRegion* hr,
2769                                               VerifyOption vo) {
2770   switch (vo) {
2771   case VerifyOption_G1UsePrevMarking:
2772     return hr->obj_allocated_since_prev_marking(obj);
2773   case VerifyOption_G1UseNextMarking:
2774     return hr->obj_allocated_since_next_marking(obj);
2775   case VerifyOption_G1UseMarkWord:
2776     return false;
2777   default:
2778     ShouldNotReachHere();
2779   }
2780   return false; // keep some compilers happy
2781 }
2782 
2783 HeapWord* G1CollectedHeap::top_at_mark_start(HeapRegion* hr, VerifyOption vo) {
2784   switch (vo) {
2785   case VerifyOption_G1UsePrevMarking: return hr->prev_top_at_mark_start();
2786   case VerifyOption_G1UseNextMarking: return hr->next_top_at_mark_start();
2787   case VerifyOption_G1UseMarkWord:    return NULL;
2788   default:                            ShouldNotReachHere();
2789   }
2790   return NULL; // keep some compilers happy
2791 }
2792 
2793 bool G1CollectedHeap::is_marked(oop obj, VerifyOption vo) {
2794   switch (vo) {
2795   case VerifyOption_G1UsePrevMarking: return isMarkedPrev(obj);
2796   case VerifyOption_G1UseNextMarking: return isMarkedNext(obj);
2797   case VerifyOption_G1UseMarkWord:    return obj->is_gc_marked();
2798   default:                            ShouldNotReachHere();
2799   }
2800   return false; // keep some compilers happy
2801 }
2802 
2803 const char* G1CollectedHeap::top_at_mark_start_str(VerifyOption vo) {
2804   switch (vo) {
2805   case VerifyOption_G1UsePrevMarking: return "PTAMS";
2806   case VerifyOption_G1UseNextMarking: return "NTAMS";
2807   case VerifyOption_G1UseMarkWord:    return "NONE";
2808   default:                            ShouldNotReachHere();
2809   }
2810   return NULL; // keep some compilers happy
2811 }
2812 
2813 class VerifyRootsClosure: public OopClosure {
2814 private:
2815   G1CollectedHeap* _g1h;
2816   VerifyOption     _vo;
2817   bool             _failures;
2818 public:
2819   // _vo == UsePrevMarking -> use "prev" marking information,
2820   // _vo == UseNextMarking -> use "next" marking information,
2821   // _vo == UseMarkWord    -> use mark word from object header.
2822   VerifyRootsClosure(VerifyOption vo) :
2823     _g1h(G1CollectedHeap::heap()),
2824     _vo(vo),
2825     _failures(false) { }
2826 
2827   bool failures() { return _failures; }
2828 
2829   template <class T> void do_oop_nv(T* p) {
2830     T heap_oop = oopDesc::load_heap_oop(p);
2831     if (!oopDesc::is_null(heap_oop)) {
2832       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2833       if (_g1h->is_obj_dead_cond(obj, _vo)) {
2834         gclog_or_tty->print_cr("Root location "PTR_FORMAT" "
2835                               "points to dead obj "PTR_FORMAT, p, (void*) obj);
2836         if (_vo == VerifyOption_G1UseMarkWord) {
2837           gclog_or_tty->print_cr("  Mark word: "PTR_FORMAT, (void*)(obj->mark()));
2838         }
2839         obj->print_on(gclog_or_tty);
2840         _failures = true;
2841       }
2842     }
2843   }
2844 
2845   void do_oop(oop* p)       { do_oop_nv(p); }
2846   void do_oop(narrowOop* p) { do_oop_nv(p); }
2847 };
2848 
2849 class G1VerifyCodeRootOopClosure: public OopClosure {
2850   G1CollectedHeap* _g1h;
2851   OopClosure* _root_cl;
2852   nmethod* _nm;
2853   VerifyOption _vo;
2854   bool _failures;
2855 
2856   template <class T> void do_oop_work(T* p) {
2857     // First verify that this root is live
2858     _root_cl->do_oop(p);
2859 
2860     if (!G1VerifyHeapRegionCodeRoots) {
2861       // We're not verifying the code roots attached to heap region.
2862       return;
2863     }
2864 
2865     // Don't check the code roots during marking verification in a full GC
2866     if (_vo == VerifyOption_G1UseMarkWord) {
2867       return;
2868     }
2869 
2870     // Now verify that the current nmethod (which contains p) is
2871     // in the code root list of the heap region containing the
2872     // object referenced by p.
2873 
2874     T heap_oop = oopDesc::load_heap_oop(p);
2875     if (!oopDesc::is_null(heap_oop)) {
2876       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
2877 
2878       // Now fetch the region containing the object
2879       HeapRegion* hr = _g1h->heap_region_containing(obj);
2880       HeapRegionRemSet* hrrs = hr->rem_set();
2881       // Verify that the strong code root list for this region
2882       // contains the nmethod
2883       if (!hrrs->strong_code_roots_list_contains(_nm)) {
2884         gclog_or_tty->print_cr("Code root location "PTR_FORMAT" "
2885                               "from nmethod "PTR_FORMAT" not in strong "
2886                               "code roots for region ["PTR_FORMAT","PTR_FORMAT")",
2887                               p, _nm, hr->bottom(), hr->end());
2888         _failures = true;
2889       }
2890     }
2891   }
2892 
2893 public:
2894   G1VerifyCodeRootOopClosure(G1CollectedHeap* g1h, OopClosure* root_cl, VerifyOption vo):
2895     _g1h(g1h), _root_cl(root_cl), _vo(vo), _nm(NULL), _failures(false) {}
2896 
2897   void do_oop(oop* p) { do_oop_work(p); }
2898   void do_oop(narrowOop* p) { do_oop_work(p); }
2899 
2900   void set_nmethod(nmethod* nm) { _nm = nm; }
2901   bool failures() { return _failures; }
2902 };
2903 
2904 class G1VerifyCodeRootBlobClosure: public CodeBlobClosure {
2905   G1VerifyCodeRootOopClosure* _oop_cl;
2906 
2907 public:
2908   G1VerifyCodeRootBlobClosure(G1VerifyCodeRootOopClosure* oop_cl):
2909     _oop_cl(oop_cl) {}
2910 
2911   void do_code_blob(CodeBlob* cb) {
2912     nmethod* nm = cb->as_nmethod_or_null();
2913     if (nm != NULL) {
2914       _oop_cl->set_nmethod(nm);
2915       nm->oops_do(_oop_cl);
2916     }
2917   }
2918 };
2919 
2920 class YoungRefCounterClosure : public OopClosure {
2921   G1CollectedHeap* _g1h;
2922   int              _count;
2923  public:
2924   YoungRefCounterClosure(G1CollectedHeap* g1h) : _g1h(g1h), _count(0) {}
2925   void do_oop(oop* p)       { if (_g1h->is_in_young(*p)) { _count++; } }
2926   void do_oop(narrowOop* p) { ShouldNotReachHere(); }
2927 
2928   int count() { return _count; }
2929   void reset_count() { _count = 0; };
2930 };
2931 
2932 class VerifyKlassClosure: public KlassClosure {
2933   YoungRefCounterClosure _young_ref_counter_closure;
2934   OopClosure *_oop_closure;
2935  public:
2936   VerifyKlassClosure(G1CollectedHeap* g1h, OopClosure* cl) : _young_ref_counter_closure(g1h), _oop_closure(cl) {}
2937   void do_klass(Klass* k) {
2938     k->oops_do(_oop_closure);
2939 
2940     _young_ref_counter_closure.reset_count();
2941     k->oops_do(&_young_ref_counter_closure);
2942     if (_young_ref_counter_closure.count() > 0) {
2943       guarantee(k->has_modified_oops(), err_msg("Klass " PTR_FORMAT ", has young refs but is not dirty.", k));
2944     }
2945   }
2946 };
2947 
2948 class VerifyLivenessOopClosure: public OopClosure {
2949   G1CollectedHeap* _g1h;
2950   VerifyOption _vo;
2951 public:
2952   VerifyLivenessOopClosure(G1CollectedHeap* g1h, VerifyOption vo):
2953     _g1h(g1h), _vo(vo)
2954   { }
2955   void do_oop(narrowOop *p) { do_oop_work(p); }
2956   void do_oop(      oop *p) { do_oop_work(p); }
2957 
2958   template <class T> void do_oop_work(T *p) {
2959     oop obj = oopDesc::load_decode_heap_oop(p);
2960     guarantee(obj == NULL || !_g1h->is_obj_dead_cond(obj, _vo),
2961               "Dead object referenced by a not dead object");
2962   }
2963 };
2964 
2965 class VerifyObjsInRegionClosure: public ObjectClosure {
2966 private:
2967   G1CollectedHeap* _g1h;
2968   size_t _live_bytes;
2969   HeapRegion *_hr;
2970   VerifyOption _vo;
2971 public:
2972   // _vo == UsePrevMarking -> use "prev" marking information,
2973   // _vo == UseNextMarking -> use "next" marking information,
2974   // _vo == UseMarkWord    -> use mark word from object header.
2975   VerifyObjsInRegionClosure(HeapRegion *hr, VerifyOption vo)
2976     : _live_bytes(0), _hr(hr), _vo(vo) {
2977     _g1h = G1CollectedHeap::heap();
2978   }
2979   void do_object(oop o) {
2980     VerifyLivenessOopClosure isLive(_g1h, _vo);
2981     assert(o != NULL, "Huh?");
2982     if (!_g1h->is_obj_dead_cond(o, _vo)) {
2983       // If the object is alive according to the mark word,
2984       // then verify that the marking information agrees.
2985       // Note we can't verify the contra-positive of the
2986       // above: if the object is dead (according to the mark
2987       // word), it may not be marked, or may have been marked
2988       // but has since became dead, or may have been allocated
2989       // since the last marking.
2990       if (_vo == VerifyOption_G1UseMarkWord) {
2991         guarantee(!_g1h->is_obj_dead(o), "mark word and concurrent mark mismatch");
2992       }
2993 
2994       o->oop_iterate_no_header(&isLive);
2995       if (!_hr->obj_allocated_since_prev_marking(o)) {
2996         size_t obj_size = o->size();    // Make sure we don't overflow
2997         _live_bytes += (obj_size * HeapWordSize);
2998       }
2999     }
3000   }
3001   size_t live_bytes() { return _live_bytes; }
3002 };
3003 
3004 class PrintObjsInRegionClosure : public ObjectClosure {
3005   HeapRegion *_hr;
3006   G1CollectedHeap *_g1;
3007 public:
3008   PrintObjsInRegionClosure(HeapRegion *hr) : _hr(hr) {
3009     _g1 = G1CollectedHeap::heap();
3010   };
3011 
3012   void do_object(oop o) {
3013     if (o != NULL) {
3014       HeapWord *start = (HeapWord *) o;
3015       size_t word_sz = o->size();
3016       gclog_or_tty->print("\nPrinting obj "PTR_FORMAT" of size " SIZE_FORMAT
3017                           " isMarkedPrev %d isMarkedNext %d isAllocSince %d\n",
3018                           (void*) o, word_sz,
3019                           _g1->isMarkedPrev(o),
3020                           _g1->isMarkedNext(o),
3021                           _hr->obj_allocated_since_prev_marking(o));
3022       HeapWord *end = start + word_sz;
3023       HeapWord *cur;
3024       int *val;
3025       for (cur = start; cur < end; cur++) {
3026         val = (int *) cur;
3027         gclog_or_tty->print("\t "PTR_FORMAT":%d\n", val, *val);
3028       }
3029     }
3030   }
3031 };
3032 
3033 class VerifyRegionClosure: public HeapRegionClosure {
3034 private:
3035   bool             _par;
3036   VerifyOption     _vo;
3037   bool             _failures;
3038 public:
3039   // _vo == UsePrevMarking -> use "prev" marking information,
3040   // _vo == UseNextMarking -> use "next" marking information,
3041   // _vo == UseMarkWord    -> use mark word from object header.
3042   VerifyRegionClosure(bool par, VerifyOption vo)
3043     : _par(par),
3044       _vo(vo),
3045       _failures(false) {}
3046 
3047   bool failures() {
3048     return _failures;
3049   }
3050 
3051   bool doHeapRegion(HeapRegion* r) {
3052     if (!r->is_continues_humongous()) {
3053       bool failures = false;
3054       r->verify(_vo, &failures);
3055       if (failures) {
3056         _failures = true;
3057       } else {
3058         VerifyObjsInRegionClosure not_dead_yet_cl(r, _vo);
3059         r->object_iterate(&not_dead_yet_cl);
3060         if (_vo != VerifyOption_G1UseNextMarking) {
3061           if (r->max_live_bytes() < not_dead_yet_cl.live_bytes()) {
3062             gclog_or_tty->print_cr("["PTR_FORMAT","PTR_FORMAT"] "
3063                                    "max_live_bytes "SIZE_FORMAT" "
3064                                    "< calculated "SIZE_FORMAT,
3065                                    r->bottom(), r->end(),
3066                                    r->max_live_bytes(),
3067                                  not_dead_yet_cl.live_bytes());
3068             _failures = true;
3069           }
3070         } else {
3071           // When vo == UseNextMarking we cannot currently do a sanity
3072           // check on the live bytes as the calculation has not been
3073           // finalized yet.
3074         }
3075       }
3076     }
3077     return false; // stop the region iteration if we hit a failure
3078   }
3079 };
3080 
3081 // This is the task used for parallel verification of the heap regions
3082 
3083 class G1ParVerifyTask: public AbstractGangTask {
3084 private:
3085   G1CollectedHeap*  _g1h;
3086   VerifyOption      _vo;
3087   bool              _failures;
3088   HeapRegionClaimer _hrclaimer;
3089 
3090 public:
3091   // _vo == UsePrevMarking -> use "prev" marking information,
3092   // _vo == UseNextMarking -> use "next" marking information,
3093   // _vo == UseMarkWord    -> use mark word from object header.
3094   G1ParVerifyTask(G1CollectedHeap* g1h, VerifyOption vo) :
3095       AbstractGangTask("Parallel verify task"),
3096       _g1h(g1h),
3097       _vo(vo),
3098       _failures(false),
3099       _hrclaimer(g1h->workers()->active_workers()) {}
3100 
3101   bool failures() {
3102     return _failures;
3103   }
3104 
3105   void work(uint worker_id) {
3106     HandleMark hm;
3107     VerifyRegionClosure blk(true, _vo);
3108     _g1h->heap_region_par_iterate(&blk, worker_id, &_hrclaimer);
3109     if (blk.failures()) {
3110       _failures = true;
3111     }
3112   }
3113 };
3114 
3115 void G1CollectedHeap::verify(bool silent, VerifyOption vo) {
3116   if (SafepointSynchronize::is_at_safepoint()) {
3117     assert(Thread::current()->is_VM_thread(),
3118            "Expected to be executed serially by the VM thread at this point");
3119 
3120     if (!silent) { gclog_or_tty->print("Roots "); }
3121     VerifyRootsClosure rootsCl(vo);
3122     VerifyKlassClosure klassCl(this, &rootsCl);
3123     CLDToKlassAndOopClosure cldCl(&klassCl, &rootsCl, false);
3124 
3125     // We apply the relevant closures to all the oops in the
3126     // system dictionary, class loader data graph, the string table
3127     // and the nmethods in the code cache.
3128     G1VerifyCodeRootOopClosure codeRootsCl(this, &rootsCl, vo);
3129     G1VerifyCodeRootBlobClosure blobsCl(&codeRootsCl);
3130 
3131     process_all_roots(true,            // activate StrongRootsScope
3132                       SO_AllCodeCache, // roots scanning options
3133                       &rootsCl,
3134                       &cldCl,
3135                       &blobsCl);
3136 
3137     bool failures = rootsCl.failures() || codeRootsCl.failures();
3138 
3139     if (vo != VerifyOption_G1UseMarkWord) {
3140       // If we're verifying during a full GC then the region sets
3141       // will have been torn down at the start of the GC. Therefore
3142       // verifying the region sets will fail. So we only verify
3143       // the region sets when not in a full GC.
3144       if (!silent) { gclog_or_tty->print("HeapRegionSets "); }
3145       verify_region_sets();
3146     }
3147 
3148     if (!silent) { gclog_or_tty->print("HeapRegions "); }
3149     if (GCParallelVerificationEnabled && ParallelGCThreads > 1) {
3150 
3151       G1ParVerifyTask task(this, vo);
3152       assert(UseDynamicNumberOfGCThreads ||
3153         workers()->active_workers() == workers()->total_workers(),
3154         "If not dynamic should be using all the workers");
3155       int n_workers = workers()->active_workers();
3156       set_par_threads(n_workers);
3157       workers()->run_task(&task);
3158       set_par_threads(0);
3159       if (task.failures()) {
3160         failures = true;
3161       }
3162 
3163     } else {
3164       VerifyRegionClosure blk(false, vo);
3165       heap_region_iterate(&blk);
3166       if (blk.failures()) {
3167         failures = true;
3168       }
3169     }
3170 
3171     if (G1StringDedup::is_enabled()) {
3172       if (!silent) gclog_or_tty->print("StrDedup ");
3173       G1StringDedup::verify();
3174     }
3175 
3176     if (failures) {
3177       gclog_or_tty->print_cr("Heap:");
3178       // It helps to have the per-region information in the output to
3179       // help us track down what went wrong. This is why we call
3180       // print_extended_on() instead of print_on().
3181       print_extended_on(gclog_or_tty);
3182       gclog_or_tty->cr();
3183 #ifndef PRODUCT
3184       if (VerifyDuringGC && G1VerifyDuringGCPrintReachable) {
3185         concurrent_mark()->print_reachable("at-verification-failure",
3186                                            vo, false /* all */);
3187       }
3188 #endif
3189       gclog_or_tty->flush();
3190     }
3191     guarantee(!failures, "there should not have been any failures");
3192   } else {
3193     if (!silent) {
3194       gclog_or_tty->print("(SKIPPING Roots, HeapRegionSets, HeapRegions, RemSet");
3195       if (G1StringDedup::is_enabled()) {
3196         gclog_or_tty->print(", StrDedup");
3197       }
3198       gclog_or_tty->print(") ");
3199     }
3200   }
3201 }
3202 
3203 void G1CollectedHeap::verify(bool silent) {
3204   verify(silent, VerifyOption_G1UsePrevMarking);
3205 }
3206 
3207 double G1CollectedHeap::verify(bool guard, const char* msg) {
3208   double verify_time_ms = 0.0;
3209 
3210   if (guard && total_collections() >= VerifyGCStartAt) {
3211     double verify_start = os::elapsedTime();
3212     HandleMark hm;  // Discard invalid handles created during verification
3213     prepare_for_verify();
3214     Universe::verify(VerifyOption_G1UsePrevMarking, msg);
3215     verify_time_ms = (os::elapsedTime() - verify_start) * 1000;
3216   }
3217 
3218   return verify_time_ms;
3219 }
3220 
3221 void G1CollectedHeap::verify_before_gc() {
3222   double verify_time_ms = verify(VerifyBeforeGC, " VerifyBeforeGC:");
3223   g1_policy()->phase_times()->record_verify_before_time_ms(verify_time_ms);
3224 }
3225 
3226 void G1CollectedHeap::verify_after_gc() {
3227   double verify_time_ms = verify(VerifyAfterGC, " VerifyAfterGC:");
3228   g1_policy()->phase_times()->record_verify_after_time_ms(verify_time_ms);
3229 }
3230 
3231 class PrintRegionClosure: public HeapRegionClosure {
3232   outputStream* _st;
3233 public:
3234   PrintRegionClosure(outputStream* st) : _st(st) {}
3235   bool doHeapRegion(HeapRegion* r) {
3236     r->print_on(_st);
3237     return false;
3238   }
3239 };
3240 
3241 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3242                                        const HeapRegion* hr,
3243                                        const VerifyOption vo) const {
3244   switch (vo) {
3245   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj, hr);
3246   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj, hr);
3247   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3248   default:                            ShouldNotReachHere();
3249   }
3250   return false; // keep some compilers happy
3251 }
3252 
3253 bool G1CollectedHeap::is_obj_dead_cond(const oop obj,
3254                                        const VerifyOption vo) const {
3255   switch (vo) {
3256   case VerifyOption_G1UsePrevMarking: return is_obj_dead(obj);
3257   case VerifyOption_G1UseNextMarking: return is_obj_ill(obj);
3258   case VerifyOption_G1UseMarkWord:    return !obj->is_gc_marked();
3259   default:                            ShouldNotReachHere();
3260   }
3261   return false; // keep some compilers happy
3262 }
3263 
3264 void G1CollectedHeap::print_on(outputStream* st) const {
3265   st->print(" %-20s", "garbage-first heap");
3266   st->print(" total " SIZE_FORMAT "K, used " SIZE_FORMAT "K",
3267             capacity()/K, used_unlocked()/K);
3268   st->print(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", " INTPTR_FORMAT ")",
3269             _hrm.reserved().start(),
3270             _hrm.reserved().start() + _hrm.length() + HeapRegion::GrainWords,
3271             _hrm.reserved().end());
3272   st->cr();
3273   st->print("  region size " SIZE_FORMAT "K, ", HeapRegion::GrainBytes / K);
3274   uint young_regions = _young_list->length();
3275   st->print("%u young (" SIZE_FORMAT "K), ", young_regions,
3276             (size_t) young_regions * HeapRegion::GrainBytes / K);
3277   uint survivor_regions = g1_policy()->recorded_survivor_regions();
3278   st->print("%u survivors (" SIZE_FORMAT "K)", survivor_regions,
3279             (size_t) survivor_regions * HeapRegion::GrainBytes / K);
3280   st->cr();
3281   MetaspaceAux::print_on(st);
3282 }
3283 
3284 void G1CollectedHeap::print_extended_on(outputStream* st) const {
3285   print_on(st);
3286 
3287   // Print the per-region information.
3288   st->cr();
3289   st->print_cr("Heap Regions: (Y=young(eden), SU=young(survivor), "
3290                "HS=humongous(starts), HC=humongous(continues), "
3291                "CS=collection set, F=free, TS=gc time stamp, "
3292                "PTAMS=previous top-at-mark-start, "
3293                "NTAMS=next top-at-mark-start)");
3294   PrintRegionClosure blk(st);
3295   heap_region_iterate(&blk);
3296 }
3297 
3298 void G1CollectedHeap::print_on_error(outputStream* st) const {
3299   this->CollectedHeap::print_on_error(st);
3300 
3301   if (_cm != NULL) {
3302     st->cr();
3303     _cm->print_on_error(st);
3304   }
3305 }
3306 
3307 void G1CollectedHeap::print_gc_threads_on(outputStream* st) const {
3308   workers()->print_worker_threads_on(st);
3309   _cmThread->print_on(st);
3310   st->cr();
3311   _cm->print_worker_threads_on(st);
3312   _cg1r->print_worker_threads_on(st);
3313   if (G1StringDedup::is_enabled()) {
3314     G1StringDedup::print_worker_threads_on(st);
3315   }
3316 }
3317 
3318 void G1CollectedHeap::gc_threads_do(ThreadClosure* tc) const {
3319   workers()->threads_do(tc);
3320   tc->do_thread(_cmThread);
3321   _cg1r->threads_do(tc);
3322   if (G1StringDedup::is_enabled()) {
3323     G1StringDedup::threads_do(tc);
3324   }
3325 }
3326 
3327 void G1CollectedHeap::print_tracing_info() const {
3328   // We'll overload this to mean "trace GC pause statistics."
3329   if (TraceYoungGenTime || TraceOldGenTime) {
3330     // The "G1CollectorPolicy" is keeping track of these stats, so delegate
3331     // to that.
3332     g1_policy()->print_tracing_info();
3333   }
3334   if (G1SummarizeRSetStats) {
3335     g1_rem_set()->print_summary_info();
3336   }
3337   if (G1SummarizeConcMark) {
3338     concurrent_mark()->print_summary_info();
3339   }
3340   g1_policy()->print_yg_surv_rate_info();
3341   SpecializationStats::print();
3342 }
3343 
3344 #ifndef PRODUCT
3345 // Helpful for debugging RSet issues.
3346 
3347 class PrintRSetsClosure : public HeapRegionClosure {
3348 private:
3349   const char* _msg;
3350   size_t _occupied_sum;
3351 
3352 public:
3353   bool doHeapRegion(HeapRegion* r) {
3354     HeapRegionRemSet* hrrs = r->rem_set();
3355     size_t occupied = hrrs->occupied();
3356     _occupied_sum += occupied;
3357 
3358     gclog_or_tty->print_cr("Printing RSet for region "HR_FORMAT,
3359                            HR_FORMAT_PARAMS(r));
3360     if (occupied == 0) {
3361       gclog_or_tty->print_cr("  RSet is empty");
3362     } else {
3363       hrrs->print();
3364     }
3365     gclog_or_tty->print_cr("----------");
3366     return false;
3367   }
3368 
3369   PrintRSetsClosure(const char* msg) : _msg(msg), _occupied_sum(0) {
3370     gclog_or_tty->cr();
3371     gclog_or_tty->print_cr("========================================");
3372     gclog_or_tty->print_cr("%s", msg);
3373     gclog_or_tty->cr();
3374   }
3375 
3376   ~PrintRSetsClosure() {
3377     gclog_or_tty->print_cr("Occupied Sum: "SIZE_FORMAT, _occupied_sum);
3378     gclog_or_tty->print_cr("========================================");
3379     gclog_or_tty->cr();
3380   }
3381 };
3382 
3383 void G1CollectedHeap::print_cset_rsets() {
3384   PrintRSetsClosure cl("Printing CSet RSets");
3385   collection_set_iterate(&cl);
3386 }
3387 
3388 void G1CollectedHeap::print_all_rsets() {
3389   PrintRSetsClosure cl("Printing All RSets");;
3390   heap_region_iterate(&cl);
3391 }
3392 #endif // PRODUCT
3393 
3394 G1CollectedHeap* G1CollectedHeap::heap() {
3395   assert(_sh->kind() == CollectedHeap::G1CollectedHeap,
3396          "not a garbage-first heap");
3397   return _g1h;
3398 }
3399 
3400 void G1CollectedHeap::gc_prologue(bool full /* Ignored */) {
3401   // always_do_update_barrier = false;
3402   assert(InlineCacheBuffer::is_empty(), "should have cleaned up ICBuffer");
3403   // Fill TLAB's and such
3404   accumulate_statistics_all_tlabs();
3405   ensure_parsability(true);
3406 
3407   if (G1SummarizeRSetStats && (G1SummarizeRSetStatsPeriod > 0) &&
3408       (total_collections() % G1SummarizeRSetStatsPeriod == 0)) {
3409     g1_rem_set()->print_periodic_summary_info("Before GC RS summary");
3410   }
3411 }
3412 
3413 void G1CollectedHeap::gc_epilogue(bool full) {
3414 
3415   if (G1SummarizeRSetStats &&
3416       (G1SummarizeRSetStatsPeriod > 0) &&
3417       // we are at the end of the GC. Total collections has already been increased.
3418       ((total_collections() - 1) % G1SummarizeRSetStatsPeriod == 0)) {
3419     g1_rem_set()->print_periodic_summary_info("After GC RS summary");
3420   }
3421 
3422   // FIXME: what is this about?
3423   // I'm ignoring the "fill_newgen()" call if "alloc_event_enabled"
3424   // is set.
3425   COMPILER2_PRESENT(assert(DerivedPointerTable::is_empty(),
3426                         "derived pointer present"));
3427   // always_do_update_barrier = true;
3428 
3429   resize_all_tlabs();
3430   allocation_context_stats().update(full);
3431 
3432   // We have just completed a GC. Update the soft reference
3433   // policy with the new heap occupancy
3434   Universe::update_heap_info_at_gc();
3435 }
3436 
3437 HeapWord* G1CollectedHeap::do_collection_pause(size_t word_size,
3438                                                uint gc_count_before,
3439                                                bool* succeeded,
3440                                                GCCause::Cause gc_cause) {
3441   assert_heap_not_locked_and_not_at_safepoint();
3442   g1_policy()->record_stop_world_start();
3443   VM_G1IncCollectionPause op(gc_count_before,
3444                              word_size,
3445                              false, /* should_initiate_conc_mark */
3446                              g1_policy()->max_pause_time_ms(),
3447                              gc_cause);
3448 
3449   op.set_allocation_context(AllocationContext::current());
3450   VMThread::execute(&op);
3451 
3452   HeapWord* result = op.result();
3453   bool ret_succeeded = op.prologue_succeeded() && op.pause_succeeded();
3454   assert(result == NULL || ret_succeeded,
3455          "the result should be NULL if the VM did not succeed");
3456   *succeeded = ret_succeeded;
3457 
3458   assert_heap_not_locked();
3459   return result;
3460 }
3461 
3462 void
3463 G1CollectedHeap::doConcurrentMark() {
3464   MutexLockerEx x(CGC_lock, Mutex::_no_safepoint_check_flag);
3465   if (!_cmThread->in_progress()) {
3466     _cmThread->set_started();
3467     CGC_lock->notify();
3468   }
3469 }
3470 
3471 size_t G1CollectedHeap::pending_card_num() {
3472   size_t extra_cards = 0;
3473   JavaThread *curr = Threads::first();
3474   while (curr != NULL) {
3475     DirtyCardQueue& dcq = curr->dirty_card_queue();
3476     extra_cards += dcq.size();
3477     curr = curr->next();
3478   }
3479   DirtyCardQueueSet& dcqs = JavaThread::dirty_card_queue_set();
3480   size_t buffer_size = dcqs.buffer_size();
3481   size_t buffer_num = dcqs.completed_buffers_num();
3482 
3483   // PtrQueueSet::buffer_size() and PtrQueue:size() return sizes
3484   // in bytes - not the number of 'entries'. We need to convert
3485   // into a number of cards.
3486   return (buffer_size * buffer_num + extra_cards) / oopSize;
3487 }
3488 
3489 size_t G1CollectedHeap::cards_scanned() {
3490   return g1_rem_set()->cardsScanned();
3491 }
3492 
3493 bool G1CollectedHeap::humongous_region_is_always_live(uint index) {
3494   HeapRegion* region = region_at(index);
3495   assert(region->is_starts_humongous(), "Must start a humongous object");
3496   return oop(region->bottom())->is_objArray() || !region->rem_set()->is_empty();
3497 }
3498 
3499 class RegisterHumongousWithInCSetFastTestClosure : public HeapRegionClosure {
3500  private:
3501   size_t _total_humongous;
3502   size_t _candidate_humongous;
3503 
3504   DirtyCardQueue _dcq;
3505 
3506   bool humongous_region_is_candidate(uint index) {
3507     HeapRegion* region = G1CollectedHeap::heap()->region_at(index);
3508     assert(region->is_starts_humongous(), "Must start a humongous object");
3509     HeapRegionRemSet* const rset = region->rem_set();
3510     bool const allow_stale_refs = G1EagerReclaimHumongousObjectsWithStaleRefs;
3511     return !oop(region->bottom())->is_objArray() &&
3512            ((allow_stale_refs && rset->occupancy_less_or_equal_than(G1RSetSparseRegionEntries)) ||
3513             (!allow_stale_refs && rset->is_empty()));
3514   }
3515 
3516  public:
3517   RegisterHumongousWithInCSetFastTestClosure()
3518   : _total_humongous(0),
3519     _candidate_humongous(0),
3520     _dcq(&JavaThread::dirty_card_queue_set()) {
3521   }
3522 
3523   virtual bool doHeapRegion(HeapRegion* r) {
3524     if (!r->is_starts_humongous()) {
3525       return false;
3526     }
3527     G1CollectedHeap* g1h = G1CollectedHeap::heap();
3528 
3529     uint region_idx = r->hrm_index();
3530     bool is_candidate = humongous_region_is_candidate(region_idx);
3531     // Is_candidate already filters out humongous object with large remembered sets.
3532     // If we have a humongous object with a few remembered sets, we simply flush these
3533     // remembered set entries into the DCQS. That will result in automatic
3534     // re-evaluation of their remembered set entries during the following evacuation
3535     // phase.
3536     if (is_candidate) {
3537       if (!r->rem_set()->is_empty()) {
3538         guarantee(r->rem_set()->occupancy_less_or_equal_than(G1RSetSparseRegionEntries),
3539                   "Found a not-small remembered set here. This is inconsistent with previous assumptions.");
3540         G1SATBCardTableLoggingModRefBS* bs = g1h->g1_barrier_set();
3541         HeapRegionRemSetIterator hrrs(r->rem_set());
3542         size_t card_index;
3543         while (hrrs.has_next(card_index)) {
3544           jbyte* card_ptr = (jbyte*)bs->byte_for_index(card_index);
3545           // The remembered set might contain references to already freed
3546           // regions. Filter out such entries to avoid failing card table
3547           // verification.
3548           if (!g1h->heap_region_containing(bs->addr_for(card_ptr))->is_free()) {
3549             if (*card_ptr != CardTableModRefBS::dirty_card_val()) {
3550               *card_ptr = CardTableModRefBS::dirty_card_val();
3551               _dcq.enqueue(card_ptr);
3552             }
3553           }
3554         }
3555         r->rem_set()->clear_locked();
3556       }
3557       assert(r->rem_set()->is_empty(), "At this point any humongous candidate remembered set must be empty.");
3558       g1h->register_humongous_region_with_in_cset_fast_test(region_idx);
3559       _candidate_humongous++;
3560     }
3561     _total_humongous++;
3562 
3563     return false;
3564   }
3565 
3566   size_t total_humongous() const { return _total_humongous; }
3567   size_t candidate_humongous() const { return _candidate_humongous; }
3568 
3569   void flush_rem_set_entries() { _dcq.flush(); }
3570 };
3571 
3572 void G1CollectedHeap::register_humongous_regions_with_in_cset_fast_test() {
3573   if (!G1EagerReclaimHumongousObjects) {
3574     g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(0.0, 0, 0);
3575     return;
3576   }
3577   double time = os::elapsed_counter();
3578 
3579   RegisterHumongousWithInCSetFastTestClosure cl;
3580   heap_region_iterate(&cl);
3581 
3582   time = ((double)(os::elapsed_counter() - time) / os::elapsed_frequency()) * 1000.0;
3583   g1_policy()->phase_times()->record_fast_reclaim_humongous_stats(time,
3584                                                                   cl.total_humongous(),
3585                                                                   cl.candidate_humongous());
3586   _has_humongous_reclaim_candidates = cl.candidate_humongous() > 0;
3587 
3588   if (_has_humongous_reclaim_candidates || G1TraceEagerReclaimHumongousObjects) {
3589     clear_humongous_is_live_table();
3590   }
3591 
3592   // Finally flush all remembered set entries to re-check into the global DCQS.
3593   cl.flush_rem_set_entries();
3594 }
3595 
3596 void
3597 G1CollectedHeap::setup_surviving_young_words() {
3598   assert(_surviving_young_words == NULL, "pre-condition");
3599   uint array_length = g1_policy()->young_cset_region_length();
3600   _surviving_young_words = NEW_C_HEAP_ARRAY(size_t, (size_t) array_length, mtGC);
3601   if (_surviving_young_words == NULL) {
3602     vm_exit_out_of_memory(sizeof(size_t) * array_length, OOM_MALLOC_ERROR,
3603                           "Not enough space for young surv words summary.");
3604   }
3605   memset(_surviving_young_words, 0, (size_t) array_length * sizeof(size_t));
3606 #ifdef ASSERT
3607   for (uint i = 0;  i < array_length; ++i) {
3608     assert( _surviving_young_words[i] == 0, "memset above" );
3609   }
3610 #endif // !ASSERT
3611 }
3612 
3613 void
3614 G1CollectedHeap::update_surviving_young_words(size_t* surv_young_words) {
3615   MutexLockerEx x(ParGCRareEvent_lock, Mutex::_no_safepoint_check_flag);
3616   uint array_length = g1_policy()->young_cset_region_length();
3617   for (uint i = 0; i < array_length; ++i) {
3618     _surviving_young_words[i] += surv_young_words[i];
3619   }
3620 }
3621 
3622 void
3623 G1CollectedHeap::cleanup_surviving_young_words() {
3624   guarantee( _surviving_young_words != NULL, "pre-condition" );
3625   FREE_C_HEAP_ARRAY(size_t, _surviving_young_words);
3626   _surviving_young_words = NULL;
3627 }
3628 
3629 #ifdef ASSERT
3630 class VerifyCSetClosure: public HeapRegionClosure {
3631 public:
3632   bool doHeapRegion(HeapRegion* hr) {
3633     // Here we check that the CSet region's RSet is ready for parallel
3634     // iteration. The fields that we'll verify are only manipulated
3635     // when the region is part of a CSet and is collected. Afterwards,
3636     // we reset these fields when we clear the region's RSet (when the
3637     // region is freed) so they are ready when the region is
3638     // re-allocated. The only exception to this is if there's an
3639     // evacuation failure and instead of freeing the region we leave
3640     // it in the heap. In that case, we reset these fields during
3641     // evacuation failure handling.
3642     guarantee(hr->rem_set()->verify_ready_for_par_iteration(), "verification");
3643 
3644     // Here's a good place to add any other checks we'd like to
3645     // perform on CSet regions.
3646     return false;
3647   }
3648 };
3649 #endif // ASSERT
3650 
3651 #if TASKQUEUE_STATS
3652 void G1CollectedHeap::print_taskqueue_stats_hdr(outputStream* const st) {
3653   st->print_raw_cr("GC Task Stats");
3654   st->print_raw("thr "); TaskQueueStats::print_header(1, st); st->cr();
3655   st->print_raw("--- "); TaskQueueStats::print_header(2, st); st->cr();
3656 }
3657 
3658 void G1CollectedHeap::print_taskqueue_stats(outputStream* const st) const {
3659   print_taskqueue_stats_hdr(st);
3660 
3661   TaskQueueStats totals;
3662   const int n = workers()->total_workers();
3663   for (int i = 0; i < n; ++i) {
3664     st->print("%3d ", i); task_queue(i)->stats.print(st); st->cr();
3665     totals += task_queue(i)->stats;
3666   }
3667   st->print_raw("tot "); totals.print(st); st->cr();
3668 
3669   DEBUG_ONLY(totals.verify());
3670 }
3671 
3672 void G1CollectedHeap::reset_taskqueue_stats() {
3673   const int n = workers()->total_workers();
3674   for (int i = 0; i < n; ++i) {
3675     task_queue(i)->stats.reset();
3676   }
3677 }
3678 #endif // TASKQUEUE_STATS
3679 
3680 void G1CollectedHeap::log_gc_header() {
3681   if (!G1Log::fine()) {
3682     return;
3683   }
3684 
3685   gclog_or_tty->gclog_stamp(_gc_tracer_stw->gc_id());
3686 
3687   GCCauseString gc_cause_str = GCCauseString("GC pause", gc_cause())
3688     .append(g1_policy()->gcs_are_young() ? "(young)" : "(mixed)")
3689     .append(g1_policy()->during_initial_mark_pause() ? " (initial-mark)" : "");
3690 
3691   gclog_or_tty->print("[%s", (const char*)gc_cause_str);
3692 }
3693 
3694 void G1CollectedHeap::log_gc_footer(double pause_time_sec) {
3695   if (!G1Log::fine()) {
3696     return;
3697   }
3698 
3699   if (G1Log::finer()) {
3700     if (evacuation_failed()) {
3701       gclog_or_tty->print(" (to-space exhausted)");
3702     }
3703     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3704     g1_policy()->phase_times()->note_gc_end();
3705     g1_policy()->phase_times()->print(pause_time_sec);
3706     g1_policy()->print_detailed_heap_transition();
3707   } else {
3708     if (evacuation_failed()) {
3709       gclog_or_tty->print("--");
3710     }
3711     g1_policy()->print_heap_transition();
3712     gclog_or_tty->print_cr(", %3.7f secs]", pause_time_sec);
3713   }
3714   gclog_or_tty->flush();
3715 }
3716 
3717 bool
3718 G1CollectedHeap::do_collection_pause_at_safepoint(double target_pause_time_ms) {
3719   assert_at_safepoint(true /* should_be_vm_thread */);
3720   guarantee(!is_gc_active(), "collection is not reentrant");
3721 
3722   if (GC_locker::check_active_before_gc()) {
3723     return false;
3724   }
3725 
3726   _gc_timer_stw->register_gc_start();
3727 
3728   _gc_tracer_stw->report_gc_start(gc_cause(), _gc_timer_stw->gc_start());
3729 
3730   SvcGCMarker sgcm(SvcGCMarker::MINOR);
3731   ResourceMark rm;
3732 
3733   print_heap_before_gc();
3734   trace_heap_before_gc(_gc_tracer_stw);
3735 
3736   verify_region_sets_optional();
3737   verify_dirty_young_regions();
3738 
3739   // This call will decide whether this pause is an initial-mark
3740   // pause. If it is, during_initial_mark_pause() will return true
3741   // for the duration of this pause.
3742   g1_policy()->decide_on_conc_mark_initiation();
3743 
3744   // We do not allow initial-mark to be piggy-backed on a mixed GC.
3745   assert(!g1_policy()->during_initial_mark_pause() ||
3746           g1_policy()->gcs_are_young(), "sanity");
3747 
3748   // We also do not allow mixed GCs during marking.
3749   assert(!mark_in_progress() || g1_policy()->gcs_are_young(), "sanity");
3750 
3751   // Record whether this pause is an initial mark. When the current
3752   // thread has completed its logging output and it's safe to signal
3753   // the CM thread, the flag's value in the policy has been reset.
3754   bool should_start_conc_mark = g1_policy()->during_initial_mark_pause();
3755 
3756   // Inner scope for scope based logging, timers, and stats collection
3757   {
3758     EvacuationInfo evacuation_info;
3759 
3760     if (g1_policy()->during_initial_mark_pause()) {
3761       // We are about to start a marking cycle, so we increment the
3762       // full collection counter.
3763       increment_old_marking_cycles_started();
3764       register_concurrent_cycle_start(_gc_timer_stw->gc_start());
3765     }
3766 
3767     _gc_tracer_stw->report_yc_type(yc_type());
3768 
3769     TraceCPUTime tcpu(G1Log::finer(), true, gclog_or_tty);
3770 
3771     int active_workers = workers()->active_workers();
3772     double pause_start_sec = os::elapsedTime();
3773     g1_policy()->phase_times()->note_gc_start(active_workers);
3774     log_gc_header();
3775 
3776     TraceCollectorStats tcs(g1mm()->incremental_collection_counters());
3777     TraceMemoryManagerStats tms(false /* fullGC */, gc_cause());
3778 
3779     // If the secondary_free_list is not empty, append it to the
3780     // free_list. No need to wait for the cleanup operation to finish;
3781     // the region allocation code will check the secondary_free_list
3782     // and wait if necessary. If the G1StressConcRegionFreeing flag is
3783     // set, skip this step so that the region allocation code has to
3784     // get entries from the secondary_free_list.
3785     if (!G1StressConcRegionFreeing) {
3786       append_secondary_free_list_if_not_empty_with_lock();
3787     }
3788 
3789     assert(check_young_list_well_formed(), "young list should be well formed");
3790 
3791     // Don't dynamically change the number of GC threads this early.  A value of
3792     // 0 is used to indicate serial work.  When parallel work is done,
3793     // it will be set.
3794 
3795     { // Call to jvmpi::post_class_unload_events must occur outside of active GC
3796       IsGCActiveMark x;
3797 
3798       gc_prologue(false);
3799       increment_total_collections(false /* full gc */);
3800       increment_gc_time_stamp();
3801 
3802       verify_before_gc();
3803 
3804       check_bitmaps("GC Start");
3805 
3806       COMPILER2_PRESENT(DerivedPointerTable::clear());
3807 
3808       // Please see comment in g1CollectedHeap.hpp and
3809       // G1CollectedHeap::ref_processing_init() to see how
3810       // reference processing currently works in G1.
3811 
3812       // Enable discovery in the STW reference processor
3813       ref_processor_stw()->enable_discovery();
3814 
3815       {
3816         // We want to temporarily turn off discovery by the
3817         // CM ref processor, if necessary, and turn it back on
3818         // on again later if we do. Using a scoped
3819         // NoRefDiscovery object will do this.
3820         NoRefDiscovery no_cm_discovery(ref_processor_cm());
3821 
3822         // Forget the current alloc region (we might even choose it to be part
3823         // of the collection set!).
3824         _allocator->release_mutator_alloc_region();
3825 
3826         // We should call this after we retire the mutator alloc
3827         // region(s) so that all the ALLOC / RETIRE events are generated
3828         // before the start GC event.
3829         _hr_printer.start_gc(false /* full */, (size_t) total_collections());
3830 
3831         // This timing is only used by the ergonomics to handle our pause target.
3832         // It is unclear why this should not include the full pause. We will
3833         // investigate this in CR 7178365.
3834         //
3835         // Preserving the old comment here if that helps the investigation:
3836         //
3837         // The elapsed time induced by the start time below deliberately elides
3838         // the possible verification above.
3839         double sample_start_time_sec = os::elapsedTime();
3840 
3841 #if YOUNG_LIST_VERBOSE
3842         gclog_or_tty->print_cr("\nBefore recording pause start.\nYoung_list:");
3843         _young_list->print();
3844         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3845 #endif // YOUNG_LIST_VERBOSE
3846 
3847         g1_policy()->record_collection_pause_start(sample_start_time_sec);
3848 
3849         double scan_wait_start = os::elapsedTime();
3850         // We have to wait until the CM threads finish scanning the
3851         // root regions as it's the only way to ensure that all the
3852         // objects on them have been correctly scanned before we start
3853         // moving them during the GC.
3854         bool waited = _cm->root_regions()->wait_until_scan_finished();
3855         double wait_time_ms = 0.0;
3856         if (waited) {
3857           double scan_wait_end = os::elapsedTime();
3858           wait_time_ms = (scan_wait_end - scan_wait_start) * 1000.0;
3859         }
3860         g1_policy()->phase_times()->record_root_region_scan_wait_time(wait_time_ms);
3861 
3862 #if YOUNG_LIST_VERBOSE
3863         gclog_or_tty->print_cr("\nAfter recording pause start.\nYoung_list:");
3864         _young_list->print();
3865 #endif // YOUNG_LIST_VERBOSE
3866 
3867         if (g1_policy()->during_initial_mark_pause()) {
3868           concurrent_mark()->checkpointRootsInitialPre();
3869         }
3870 
3871 #if YOUNG_LIST_VERBOSE
3872         gclog_or_tty->print_cr("\nBefore choosing collection set.\nYoung_list:");
3873         _young_list->print();
3874         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3875 #endif // YOUNG_LIST_VERBOSE
3876 
3877         g1_policy()->finalize_cset(target_pause_time_ms, evacuation_info);
3878 
3879         register_humongous_regions_with_in_cset_fast_test();
3880 
3881         assert(check_cset_fast_test(), "Inconsistency in the InCSetState table.");
3882 
3883         _cm->note_start_of_gc();
3884         // We should not verify the per-thread SATB buffers given that
3885         // we have not filtered them yet (we'll do so during the
3886         // GC). We also call this after finalize_cset() to
3887         // ensure that the CSet has been finalized.
3888         _cm->verify_no_cset_oops(true  /* verify_stacks */,
3889                                  true  /* verify_enqueued_buffers */,
3890                                  false /* verify_thread_buffers */,
3891                                  true  /* verify_fingers */);
3892 
3893         if (_hr_printer.is_active()) {
3894           HeapRegion* hr = g1_policy()->collection_set();
3895           while (hr != NULL) {
3896             _hr_printer.cset(hr);
3897             hr = hr->next_in_collection_set();
3898           }
3899         }
3900 
3901 #ifdef ASSERT
3902         VerifyCSetClosure cl;
3903         collection_set_iterate(&cl);
3904 #endif // ASSERT
3905 
3906         setup_surviving_young_words();
3907 
3908         // Initialize the GC alloc regions.
3909         _allocator->init_gc_alloc_regions(evacuation_info);
3910 
3911         // Actually do the work...
3912         evacuate_collection_set(evacuation_info);
3913 
3914         // We do this to mainly verify the per-thread SATB buffers
3915         // (which have been filtered by now) since we didn't verify
3916         // them earlier. No point in re-checking the stacks / enqueued
3917         // buffers given that the CSet has not changed since last time
3918         // we checked.
3919         _cm->verify_no_cset_oops(false /* verify_stacks */,
3920                                  false /* verify_enqueued_buffers */,
3921                                  true  /* verify_thread_buffers */,
3922                                  true  /* verify_fingers */);
3923 
3924         free_collection_set(g1_policy()->collection_set(), evacuation_info);
3925 
3926         eagerly_reclaim_humongous_regions();
3927 
3928         g1_policy()->clear_collection_set();
3929 
3930         cleanup_surviving_young_words();
3931 
3932         // Start a new incremental collection set for the next pause.
3933         g1_policy()->start_incremental_cset_building();
3934 
3935         clear_cset_fast_test();
3936 
3937         _young_list->reset_sampled_info();
3938 
3939         // Don't check the whole heap at this point as the
3940         // GC alloc regions from this pause have been tagged
3941         // as survivors and moved on to the survivor list.
3942         // Survivor regions will fail the !is_young() check.
3943         assert(check_young_list_empty(false /* check_heap */),
3944           "young list should be empty");
3945 
3946 #if YOUNG_LIST_VERBOSE
3947         gclog_or_tty->print_cr("Before recording survivors.\nYoung List:");
3948         _young_list->print();
3949 #endif // YOUNG_LIST_VERBOSE
3950 
3951         g1_policy()->record_survivor_regions(_young_list->survivor_length(),
3952                                              _young_list->first_survivor_region(),
3953                                              _young_list->last_survivor_region());
3954 
3955         _young_list->reset_auxilary_lists();
3956 
3957         if (evacuation_failed()) {
3958           _allocator->set_used(recalculate_used());
3959           uint n_queues = MAX2((int)ParallelGCThreads, 1);
3960           for (uint i = 0; i < n_queues; i++) {
3961             if (_evacuation_failed_info_array[i].has_failed()) {
3962               _gc_tracer_stw->report_evacuation_failed(_evacuation_failed_info_array[i]);
3963             }
3964           }
3965         } else {
3966           // The "used" of the the collection set have already been subtracted
3967           // when they were freed.  Add in the bytes evacuated.
3968           _allocator->increase_used(g1_policy()->bytes_copied_during_gc());
3969         }
3970 
3971         if (g1_policy()->during_initial_mark_pause()) {
3972           // We have to do this before we notify the CM threads that
3973           // they can start working to make sure that all the
3974           // appropriate initialization is done on the CM object.
3975           concurrent_mark()->checkpointRootsInitialPost();
3976           set_marking_started();
3977           // Note that we don't actually trigger the CM thread at
3978           // this point. We do that later when we're sure that
3979           // the current thread has completed its logging output.
3980         }
3981 
3982         allocate_dummy_regions();
3983 
3984 #if YOUNG_LIST_VERBOSE
3985         gclog_or_tty->print_cr("\nEnd of the pause.\nYoung_list:");
3986         _young_list->print();
3987         g1_policy()->print_collection_set(g1_policy()->inc_cset_head(), gclog_or_tty);
3988 #endif // YOUNG_LIST_VERBOSE
3989 
3990         _allocator->init_mutator_alloc_region();
3991 
3992         {
3993           size_t expand_bytes = g1_policy()->expansion_amount();
3994           if (expand_bytes > 0) {
3995             size_t bytes_before = capacity();
3996             // No need for an ergo verbose message here,
3997             // expansion_amount() does this when it returns a value > 0.
3998             if (!expand(expand_bytes)) {
3999               // We failed to expand the heap. Cannot do anything about it.
4000             }
4001           }
4002         }
4003 
4004         // We redo the verification but now wrt to the new CSet which
4005         // has just got initialized after the previous CSet was freed.
4006         _cm->verify_no_cset_oops(true  /* verify_stacks */,
4007                                  true  /* verify_enqueued_buffers */,
4008                                  true  /* verify_thread_buffers */,
4009                                  true  /* verify_fingers */);
4010         _cm->note_end_of_gc();
4011 
4012         // This timing is only used by the ergonomics to handle our pause target.
4013         // It is unclear why this should not include the full pause. We will
4014         // investigate this in CR 7178365.
4015         double sample_end_time_sec = os::elapsedTime();
4016         double pause_time_ms = (sample_end_time_sec - sample_start_time_sec) * MILLIUNITS;
4017         g1_policy()->record_collection_pause_end(pause_time_ms, evacuation_info);
4018 
4019         MemoryService::track_memory_usage();
4020 
4021         // In prepare_for_verify() below we'll need to scan the deferred
4022         // update buffers to bring the RSets up-to-date if
4023         // G1HRRSFlushLogBuffersOnVerify has been set. While scanning
4024         // the update buffers we'll probably need to scan cards on the
4025         // regions we just allocated to (i.e., the GC alloc
4026         // regions). However, during the last GC we called
4027         // set_saved_mark() on all the GC alloc regions, so card
4028         // scanning might skip the [saved_mark_word()...top()] area of
4029         // those regions (i.e., the area we allocated objects into
4030         // during the last GC). But it shouldn't. Given that
4031         // saved_mark_word() is conditional on whether the GC time stamp
4032         // on the region is current or not, by incrementing the GC time
4033         // stamp here we invalidate all the GC time stamps on all the
4034         // regions and saved_mark_word() will simply return top() for
4035         // all the regions. This is a nicer way of ensuring this rather
4036         // than iterating over the regions and fixing them. In fact, the
4037         // GC time stamp increment here also ensures that
4038         // saved_mark_word() will return top() between pauses, i.e.,
4039         // during concurrent refinement. So we don't need the
4040         // is_gc_active() check to decided which top to use when
4041         // scanning cards (see CR 7039627).
4042         increment_gc_time_stamp();
4043 
4044         verify_after_gc();
4045         check_bitmaps("GC End");
4046 
4047         assert(!ref_processor_stw()->discovery_enabled(), "Postcondition");
4048         ref_processor_stw()->verify_no_references_recorded();
4049 
4050         // CM reference discovery will be re-enabled if necessary.
4051       }
4052 
4053       // We should do this after we potentially expand the heap so
4054       // that all the COMMIT events are generated before the end GC
4055       // event, and after we retire the GC alloc regions so that all
4056       // RETIRE events are generated before the end GC event.
4057       _hr_printer.end_gc(false /* full */, (size_t) total_collections());
4058 
4059 #ifdef TRACESPINNING
4060       ParallelTaskTerminator::print_termination_counts();
4061 #endif
4062 
4063       gc_epilogue(false);
4064     }
4065 
4066     // Print the remainder of the GC log output.
4067     log_gc_footer(os::elapsedTime() - pause_start_sec);
4068 
4069     // It is not yet to safe to tell the concurrent mark to
4070     // start as we have some optional output below. We don't want the
4071     // output from the concurrent mark thread interfering with this
4072     // logging output either.
4073 
4074     _hrm.verify_optional();
4075     verify_region_sets_optional();
4076 
4077     TASKQUEUE_STATS_ONLY(if (PrintTaskqueue) print_taskqueue_stats());
4078     TASKQUEUE_STATS_ONLY(reset_taskqueue_stats());
4079 
4080     print_heap_after_gc();
4081     trace_heap_after_gc(_gc_tracer_stw);
4082 
4083     // We must call G1MonitoringSupport::update_sizes() in the same scoping level
4084     // as an active TraceMemoryManagerStats object (i.e. before the destructor for the
4085     // TraceMemoryManagerStats is called) so that the G1 memory pools are updated
4086     // before any GC notifications are raised.
4087     g1mm()->update_sizes();
4088 
4089     _gc_tracer_stw->report_evacuation_info(&evacuation_info);
4090     _gc_tracer_stw->report_tenuring_threshold(_g1_policy->tenuring_threshold());
4091     _gc_timer_stw->register_gc_end();
4092     _gc_tracer_stw->report_gc_end(_gc_timer_stw->gc_end(), _gc_timer_stw->time_partitions());
4093   }
4094   // It should now be safe to tell the concurrent mark thread to start
4095   // without its logging output interfering with the logging output
4096   // that came from the pause.
4097 
4098   if (should_start_conc_mark) {
4099     // CAUTION: after the doConcurrentMark() call below,
4100     // the concurrent marking thread(s) could be running
4101     // concurrently with us. Make sure that anything after
4102     // this point does not assume that we are the only GC thread
4103     // running. Note: of course, the actual marking work will
4104     // not start until the safepoint itself is released in
4105     // SuspendibleThreadSet::desynchronize().
4106     doConcurrentMark();
4107   }
4108 
4109   return true;
4110 }
4111 
4112 void G1CollectedHeap::init_for_evac_failure(OopsInHeapRegionClosure* cl) {
4113   _drain_in_progress = false;
4114   set_evac_failure_closure(cl);
4115   _evac_failure_scan_stack = new (ResourceObj::C_HEAP, mtGC) GrowableArray<oop>(40, true);
4116 }
4117 
4118 void G1CollectedHeap::finalize_for_evac_failure() {
4119   assert(_evac_failure_scan_stack != NULL &&
4120          _evac_failure_scan_stack->length() == 0,
4121          "Postcondition");
4122   assert(!_drain_in_progress, "Postcondition");
4123   delete _evac_failure_scan_stack;
4124   _evac_failure_scan_stack = NULL;
4125 }
4126 
4127 void G1CollectedHeap::remove_self_forwarding_pointers() {
4128   double remove_self_forwards_start = os::elapsedTime();
4129 
4130   set_par_threads();
4131   G1ParRemoveSelfForwardPtrsTask rsfp_task(this);
4132   workers()->run_task(&rsfp_task);
4133   set_par_threads(0);
4134 
4135   // Now restore saved marks, if any.
4136   assert(_objs_with_preserved_marks.size() ==
4137             _preserved_marks_of_objs.size(), "Both or none.");
4138   while (!_objs_with_preserved_marks.is_empty()) {
4139     oop obj = _objs_with_preserved_marks.pop();
4140     markOop m = _preserved_marks_of_objs.pop();
4141     obj->set_mark(m);
4142   }
4143   _objs_with_preserved_marks.clear(true);
4144   _preserved_marks_of_objs.clear(true);
4145 
4146   g1_policy()->phase_times()->record_evac_fail_remove_self_forwards((os::elapsedTime() - remove_self_forwards_start) * 1000.0);
4147 }
4148 
4149 void G1CollectedHeap::push_on_evac_failure_scan_stack(oop obj) {
4150   _evac_failure_scan_stack->push(obj);
4151 }
4152 
4153 void G1CollectedHeap::drain_evac_failure_scan_stack() {
4154   assert(_evac_failure_scan_stack != NULL, "precondition");
4155 
4156   while (_evac_failure_scan_stack->length() > 0) {
4157      oop obj = _evac_failure_scan_stack->pop();
4158      _evac_failure_closure->set_region(heap_region_containing(obj));
4159      obj->oop_iterate_backwards(_evac_failure_closure);
4160   }
4161 }
4162 
4163 oop
4164 G1CollectedHeap::handle_evacuation_failure_par(G1ParScanThreadState* _par_scan_state,
4165                                                oop old) {
4166   assert(obj_in_cs(old),
4167          err_msg("obj: "PTR_FORMAT" should still be in the CSet",
4168                  (HeapWord*) old));
4169   markOop m = old->mark();
4170   oop forward_ptr = old->forward_to_atomic(old);
4171   if (forward_ptr == NULL) {
4172     // Forward-to-self succeeded.
4173     assert(_par_scan_state != NULL, "par scan state");
4174     OopsInHeapRegionClosure* cl = _par_scan_state->evac_failure_closure();
4175     uint queue_num = _par_scan_state->queue_num();
4176 
4177     _evacuation_failed = true;
4178     _evacuation_failed_info_array[queue_num].register_copy_failure(old->size());
4179     if (_evac_failure_closure != cl) {
4180       MutexLockerEx x(EvacFailureStack_lock, Mutex::_no_safepoint_check_flag);
4181       assert(!_drain_in_progress,
4182              "Should only be true while someone holds the lock.");
4183       // Set the global evac-failure closure to the current thread's.
4184       assert(_evac_failure_closure == NULL, "Or locking has failed.");
4185       set_evac_failure_closure(cl);
4186       // Now do the common part.
4187       handle_evacuation_failure_common(old, m);
4188       // Reset to NULL.
4189       set_evac_failure_closure(NULL);
4190     } else {
4191       // The lock is already held, and this is recursive.
4192       assert(_drain_in_progress, "This should only be the recursive case.");
4193       handle_evacuation_failure_common(old, m);
4194     }
4195     return old;
4196   } else {
4197     // Forward-to-self failed. Either someone else managed to allocate
4198     // space for this object (old != forward_ptr) or they beat us in
4199     // self-forwarding it (old == forward_ptr).
4200     assert(old == forward_ptr || !obj_in_cs(forward_ptr),
4201            err_msg("obj: "PTR_FORMAT" forwarded to: "PTR_FORMAT" "
4202                    "should not be in the CSet",
4203                    (HeapWord*) old, (HeapWord*) forward_ptr));
4204     return forward_ptr;
4205   }
4206 }
4207 
4208 void G1CollectedHeap::handle_evacuation_failure_common(oop old, markOop m) {
4209   preserve_mark_if_necessary(old, m);
4210 
4211   HeapRegion* r = heap_region_containing(old);
4212   if (!r->evacuation_failed()) {
4213     r->set_evacuation_failed(true);
4214     _hr_printer.evac_failure(r);
4215   }
4216 
4217   push_on_evac_failure_scan_stack(old);
4218 
4219   if (!_drain_in_progress) {
4220     // prevent recursion in copy_to_survivor_space()
4221     _drain_in_progress = true;
4222     drain_evac_failure_scan_stack();
4223     _drain_in_progress = false;
4224   }
4225 }
4226 
4227 void G1CollectedHeap::preserve_mark_if_necessary(oop obj, markOop m) {
4228   assert(evacuation_failed(), "Oversaving!");
4229   // We want to call the "for_promotion_failure" version only in the
4230   // case of a promotion failure.
4231   if (m->must_be_preserved_for_promotion_failure(obj)) {
4232     _objs_with_preserved_marks.push(obj);
4233     _preserved_marks_of_objs.push(m);
4234   }
4235 }
4236 
4237 void G1ParCopyHelper::mark_object(oop obj) {
4238   assert(!_g1->heap_region_containing(obj)->in_collection_set(), "should not mark objects in the CSet");
4239 
4240   // We know that the object is not moving so it's safe to read its size.
4241   _cm->grayRoot(obj, (size_t) obj->size(), _worker_id);
4242 }
4243 
4244 void G1ParCopyHelper::mark_forwarded_object(oop from_obj, oop to_obj) {
4245   assert(from_obj->is_forwarded(), "from obj should be forwarded");
4246   assert(from_obj->forwardee() == to_obj, "to obj should be the forwardee");
4247   assert(from_obj != to_obj, "should not be self-forwarded");
4248 
4249   assert(_g1->heap_region_containing(from_obj)->in_collection_set(), "from obj should be in the CSet");
4250   assert(!_g1->heap_region_containing(to_obj)->in_collection_set(), "should not mark objects in the CSet");
4251 
4252   // The object might be in the process of being copied by another
4253   // worker so we cannot trust that its to-space image is
4254   // well-formed. So we have to read its size from its from-space
4255   // image which we know should not be changing.
4256   _cm->grayRoot(to_obj, (size_t) from_obj->size(), _worker_id);
4257 }
4258 
4259 template <class T>
4260 void G1ParCopyHelper::do_klass_barrier(T* p, oop new_obj) {
4261   if (_g1->heap_region_containing_raw(new_obj)->is_young()) {
4262     _scanned_klass->record_modified_oops();
4263   }
4264 }
4265 
4266 template <G1Barrier barrier, G1Mark do_mark_object>
4267 template <class T>
4268 void G1ParCopyClosure<barrier, do_mark_object>::do_oop_work(T* p) {
4269   T heap_oop = oopDesc::load_heap_oop(p);
4270 
4271   if (oopDesc::is_null(heap_oop)) {
4272     return;
4273   }
4274 
4275   oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
4276 
4277   assert(_worker_id == _par_scan_state->queue_num(), "sanity");
4278 
4279   const InCSetState state = _g1->in_cset_state(obj);
4280   if (state.is_in_cset()) {
4281     oop forwardee;
4282     markOop m = obj->mark();
4283     if (m->is_marked()) {
4284       forwardee = (oop) m->decode_pointer();
4285     } else {
4286       forwardee = _par_scan_state->copy_to_survivor_space(state, obj, m);
4287     }
4288     assert(forwardee != NULL, "forwardee should not be NULL");
4289     oopDesc::encode_store_heap_oop(p, forwardee);
4290     if (do_mark_object != G1MarkNone && forwardee != obj) {
4291       // If the object is self-forwarded we don't need to explicitly
4292       // mark it, the evacuation failure protocol will do so.
4293       mark_forwarded_object(obj, forwardee);
4294     }
4295 
4296     if (barrier == G1BarrierKlass) {
4297       do_klass_barrier(p, forwardee);
4298     }
4299   } else {
4300     if (state.is_humongous()) {
4301       _g1->set_humongous_is_live(obj);
4302     }
4303     // The object is not in collection set. If we're a root scanning
4304     // closure during an initial mark pause then attempt to mark the object.
4305     if (do_mark_object == G1MarkFromRoot) {
4306       mark_object(obj);
4307     }
4308   }
4309 
4310   if (barrier == G1BarrierEvac) {
4311     _par_scan_state->update_rs(_from, p, _worker_id);
4312   }
4313 }
4314 
4315 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(oop* p);
4316 template void G1ParCopyClosure<G1BarrierEvac, G1MarkNone>::do_oop_work(narrowOop* p);
4317 
4318 class G1ParEvacuateFollowersClosure : public VoidClosure {
4319 protected:
4320   G1CollectedHeap*              _g1h;
4321   G1ParScanThreadState*         _par_scan_state;
4322   RefToScanQueueSet*            _queues;
4323   ParallelTaskTerminator*       _terminator;
4324 
4325   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
4326   RefToScanQueueSet*      queues()         { return _queues; }
4327   ParallelTaskTerminator* terminator()     { return _terminator; }
4328 
4329 public:
4330   G1ParEvacuateFollowersClosure(G1CollectedHeap* g1h,
4331                                 G1ParScanThreadState* par_scan_state,
4332                                 RefToScanQueueSet* queues,
4333                                 ParallelTaskTerminator* terminator)
4334     : _g1h(g1h), _par_scan_state(par_scan_state),
4335       _queues(queues), _terminator(terminator) {}
4336 
4337   void do_void();
4338 
4339 private:
4340   inline bool offer_termination();
4341 };
4342 
4343 bool G1ParEvacuateFollowersClosure::offer_termination() {
4344   G1ParScanThreadState* const pss = par_scan_state();
4345   pss->start_term_time();
4346   const bool res = terminator()->offer_termination();
4347   pss->end_term_time();
4348   return res;
4349 }
4350 
4351 void G1ParEvacuateFollowersClosure::do_void() {
4352   G1ParScanThreadState* const pss = par_scan_state();
4353   pss->trim_queue();
4354   do {
4355     pss->steal_and_trim_queue(queues());
4356   } while (!offer_termination());
4357 }
4358 
4359 class G1KlassScanClosure : public KlassClosure {
4360  G1ParCopyHelper* _closure;
4361  bool             _process_only_dirty;
4362  int              _count;
4363  public:
4364   G1KlassScanClosure(G1ParCopyHelper* closure, bool process_only_dirty)
4365       : _process_only_dirty(process_only_dirty), _closure(closure), _count(0) {}
4366   void do_klass(Klass* klass) {
4367     // If the klass has not been dirtied we know that there's
4368     // no references into  the young gen and we can skip it.
4369    if (!_process_only_dirty || klass->has_modified_oops()) {
4370       // Clean the klass since we're going to scavenge all the metadata.
4371       klass->clear_modified_oops();
4372 
4373       // Tell the closure that this klass is the Klass to scavenge
4374       // and is the one to dirty if oops are left pointing into the young gen.
4375       _closure->set_scanned_klass(klass);
4376 
4377       klass->oops_do(_closure);
4378 
4379       _closure->set_scanned_klass(NULL);
4380     }
4381     _count++;
4382   }
4383 };
4384 
4385 class G1CodeBlobClosure : public CodeBlobClosure {
4386   class HeapRegionGatheringOopClosure : public OopClosure {
4387     G1CollectedHeap* _g1h;
4388     OopClosure* _work;
4389     nmethod* _nm;
4390 
4391     template <typename T>
4392     void do_oop_work(T* p) {
4393       _work->do_oop(p);
4394       T oop_or_narrowoop = oopDesc::load_heap_oop(p);
4395       if (!oopDesc::is_null(oop_or_narrowoop)) {
4396         oop o = oopDesc::decode_heap_oop_not_null(oop_or_narrowoop);
4397         HeapRegion* hr = _g1h->heap_region_containing_raw(o);
4398         assert(!_g1h->obj_in_cs(o) || hr->rem_set()->strong_code_roots_list_contains(_nm), "if o still in CS then evacuation failed and nm must already be in the remset");
4399         hr->add_strong_code_root(_nm);
4400       }
4401     }
4402 
4403   public:
4404     HeapRegionGatheringOopClosure(OopClosure* oc) : _g1h(G1CollectedHeap::heap()), _work(oc), _nm(NULL) {}
4405 
4406     void do_oop(oop* o) {
4407       do_oop_work(o);
4408     }
4409 
4410     void do_oop(narrowOop* o) {
4411       do_oop_work(o);
4412     }
4413 
4414     void set_nm(nmethod* nm) {
4415       _nm = nm;
4416     }
4417   };
4418 
4419   HeapRegionGatheringOopClosure _oc;
4420 public:
4421   G1CodeBlobClosure(OopClosure* oc) : _oc(oc) {}
4422 
4423   void do_code_blob(CodeBlob* cb) {
4424     nmethod* nm = cb->as_nmethod_or_null();
4425     if (nm != NULL) {
4426       if (!nm->test_set_oops_do_mark()) {
4427         _oc.set_nm(nm);
4428         nm->oops_do(&_oc);
4429         nm->fix_oop_relocations();
4430       }
4431     }
4432   }
4433 };
4434 
4435 class G1ParTask : public AbstractGangTask {
4436 protected:
4437   G1CollectedHeap*       _g1h;
4438   RefToScanQueueSet      *_queues;
4439   ParallelTaskTerminator _terminator;
4440   uint _n_workers;
4441 
4442   Mutex _stats_lock;
4443   Mutex* stats_lock() { return &_stats_lock; }
4444 
4445 public:
4446   G1ParTask(G1CollectedHeap* g1h, RefToScanQueueSet *task_queues)
4447     : AbstractGangTask("G1 collection"),
4448       _g1h(g1h),
4449       _queues(task_queues),
4450       _terminator(0, _queues),
4451       _stats_lock(Mutex::leaf, "parallel G1 stats lock", true)
4452   {}
4453 
4454   RefToScanQueueSet* queues() { return _queues; }
4455 
4456   RefToScanQueue *work_queue(int i) {
4457     return queues()->queue(i);
4458   }
4459 
4460   ParallelTaskTerminator* terminator() { return &_terminator; }
4461 
4462   virtual void set_for_termination(int active_workers) {
4463     // This task calls set_n_termination() in par_non_clean_card_iterate_work()
4464     // in the young space (_par_seq_tasks) in the G1 heap
4465     // for SequentialSubTasksDone.
4466     // This task also uses SubTasksDone in SharedHeap and G1CollectedHeap
4467     // both of which need setting by set_n_termination().
4468     _g1h->SharedHeap::set_n_termination(active_workers);
4469     _g1h->set_n_termination(active_workers);
4470     terminator()->reset_for_reuse(active_workers);
4471     _n_workers = active_workers;
4472   }
4473 
4474   // Helps out with CLD processing.
4475   //
4476   // During InitialMark we need to:
4477   // 1) Scavenge all CLDs for the young GC.
4478   // 2) Mark all objects directly reachable from strong CLDs.
4479   template <G1Mark do_mark_object>
4480   class G1CLDClosure : public CLDClosure {
4481     G1ParCopyClosure<G1BarrierNone,  do_mark_object>* _oop_closure;
4482     G1ParCopyClosure<G1BarrierKlass, do_mark_object>  _oop_in_klass_closure;
4483     G1KlassScanClosure                                _klass_in_cld_closure;
4484     bool                                              _claim;
4485 
4486    public:
4487     G1CLDClosure(G1ParCopyClosure<G1BarrierNone, do_mark_object>* oop_closure,
4488                  bool only_young, bool claim)
4489         : _oop_closure(oop_closure),
4490           _oop_in_klass_closure(oop_closure->g1(),
4491                                 oop_closure->pss(),
4492                                 oop_closure->rp()),
4493           _klass_in_cld_closure(&_oop_in_klass_closure, only_young),
4494           _claim(claim) {
4495 
4496     }
4497 
4498     void do_cld(ClassLoaderData* cld) {
4499       cld->oops_do(_oop_closure, &_klass_in_cld_closure, _claim);
4500     }
4501   };
4502 
4503   void work(uint worker_id) {
4504     if (worker_id >= _n_workers) return;  // no work needed this round
4505 
4506     double start_time_ms = os::elapsedTime() * 1000.0;
4507     _g1h->g1_policy()->phase_times()->record_gc_worker_start_time(worker_id, start_time_ms);
4508 
4509     {
4510       ResourceMark rm;
4511       HandleMark   hm;
4512 
4513       ReferenceProcessor*             rp = _g1h->ref_processor_stw();
4514 
4515       G1ParScanThreadState            pss(_g1h, worker_id, rp);
4516       G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, rp);
4517 
4518       pss.set_evac_failure_closure(&evac_failure_cl);
4519 
4520       bool only_young = _g1h->g1_policy()->gcs_are_young();
4521 
4522       // Non-IM young GC.
4523       G1ParCopyClosure<G1BarrierNone, G1MarkNone>             scan_only_root_cl(_g1h, &pss, rp);
4524       G1CLDClosure<G1MarkNone>                                scan_only_cld_cl(&scan_only_root_cl,
4525                                                                                only_young, // Only process dirty klasses.
4526                                                                                false);     // No need to claim CLDs.
4527       // IM young GC.
4528       //    Strong roots closures.
4529       G1ParCopyClosure<G1BarrierNone, G1MarkFromRoot>         scan_mark_root_cl(_g1h, &pss, rp);
4530       G1CLDClosure<G1MarkFromRoot>                            scan_mark_cld_cl(&scan_mark_root_cl,
4531                                                                                false, // Process all klasses.
4532                                                                                true); // Need to claim CLDs.
4533       //    Weak roots closures.
4534       G1ParCopyClosure<G1BarrierNone, G1MarkPromotedFromRoot> scan_mark_weak_root_cl(_g1h, &pss, rp);
4535       G1CLDClosure<G1MarkPromotedFromRoot>                    scan_mark_weak_cld_cl(&scan_mark_weak_root_cl,
4536                                                                                     false, // Process all klasses.
4537                                                                                     true); // Need to claim CLDs.
4538 
4539       G1CodeBlobClosure scan_only_code_cl(&scan_only_root_cl);
4540       G1CodeBlobClosure scan_mark_code_cl(&scan_mark_root_cl);
4541       // IM Weak code roots are handled later.
4542 
4543       OopClosure* strong_root_cl;
4544       OopClosure* weak_root_cl;
4545       CLDClosure* strong_cld_cl;
4546       CLDClosure* weak_cld_cl;
4547       CodeBlobClosure* strong_code_cl;
4548 
4549       if (_g1h->g1_policy()->during_initial_mark_pause()) {
4550         // We also need to mark copied objects.
4551         strong_root_cl = &scan_mark_root_cl;
4552         strong_cld_cl  = &scan_mark_cld_cl;
4553         strong_code_cl = &scan_mark_code_cl;
4554         if (ClassUnloadingWithConcurrentMark) {
4555           weak_root_cl = &scan_mark_weak_root_cl;
4556           weak_cld_cl  = &scan_mark_weak_cld_cl;
4557         } else {
4558           weak_root_cl = &scan_mark_root_cl;
4559           weak_cld_cl  = &scan_mark_cld_cl;
4560         }
4561       } else {
4562         strong_root_cl = &scan_only_root_cl;
4563         weak_root_cl   = &scan_only_root_cl;
4564         strong_cld_cl  = &scan_only_cld_cl;
4565         weak_cld_cl    = &scan_only_cld_cl;
4566         strong_code_cl = &scan_only_code_cl;
4567       }
4568 
4569 
4570       G1ParPushHeapRSClosure  push_heap_rs_cl(_g1h, &pss);
4571 
4572       G1GCPhaseTimes* pt = _g1h->g1_policy()->phase_times();
4573       GCPhaseTimeTracker phase_tracker(pt->get_ext_root_scan_phase_times(), pt->num_ext_root_scan_phases(), worker_id);
4574 
4575       pss.start_strong_roots();
4576       _g1h->g1_process_roots(strong_root_cl,
4577                              weak_root_cl,
4578                              &push_heap_rs_cl,
4579                              strong_cld_cl,
4580                              weak_cld_cl,
4581                              strong_code_cl,
4582                              worker_id,
4583                              &phase_tracker);
4584 
4585       pss.end_strong_roots();
4586 
4587       {
4588         double start = os::elapsedTime();
4589         G1ParEvacuateFollowersClosure evac(_g1h, &pss, _queues, &_terminator);
4590         evac.do_void();
4591         double elapsed_ms = (os::elapsedTime()-start)*1000.0;
4592         double term_ms = pss.term_time()*1000.0;
4593         _g1h->g1_policy()->phase_times()->add_obj_copy_time(worker_id, elapsed_ms-term_ms);
4594         _g1h->g1_policy()->phase_times()->record_termination(worker_id, term_ms, pss.term_attempts());
4595       }
4596       _g1h->g1_policy()->record_thread_age_table(pss.age_table());
4597       _g1h->update_surviving_young_words(pss.surviving_young_words()+1);
4598 
4599       if (PrintTerminationStats) {
4600         MutexLocker x(stats_lock());
4601         pss.print_termination_stats(worker_id);
4602       }
4603 
4604       assert(pss.queue_is_empty(), "should be empty");
4605 
4606       // Close the inner scope so that the ResourceMark and HandleMark
4607       // destructors are executed here and are included as part of the
4608       // "GC Worker Time".
4609     }
4610 
4611     double end_time_ms = os::elapsedTime() * 1000.0;
4612     _g1h->g1_policy()->phase_times()->record_gc_worker_end_time(worker_id, end_time_ms);
4613   }
4614 };
4615 
4616 // *** Common G1 Evacuation Stuff
4617 
4618 // This method is run in a GC worker.
4619 
4620 void
4621 G1CollectedHeap::
4622 g1_process_roots(OopClosure* scan_non_heap_roots,
4623                  OopClosure* scan_non_heap_weak_roots,
4624                  G1ParPushHeapRSClosure* scan_rs,
4625                  CLDClosure* scan_strong_clds,
4626                  CLDClosure* scan_weak_clds,
4627                  CodeBlobClosure* scan_strong_code,
4628                  uint worker_i,
4629                  GCPhaseTimeTracker* phase_tracker) {
4630 
4631   // First scan the shared roots.
4632   double ext_roots_start = os::elapsedTime();
4633   double closure_app_time_sec = 0.0;
4634 
4635   bool during_im = _g1h->g1_policy()->during_initial_mark_pause();
4636   bool trace_metadata = during_im && ClassUnloadingWithConcurrentMark;
4637 
4638   BufferingOopClosure buf_scan_non_heap_roots(scan_non_heap_roots);
4639   BufferingOopClosure buf_scan_non_heap_weak_roots(scan_non_heap_weak_roots);
4640 
4641   process_roots(false, // no scoping; this is parallel code
4642                 SharedHeap::SO_None,
4643                 &buf_scan_non_heap_roots,
4644                 &buf_scan_non_heap_weak_roots,
4645                 scan_strong_clds,
4646                 // Unloading Initial Marks handle the weak CLDs separately.
4647                 (trace_metadata ? NULL : scan_weak_clds),
4648                 scan_strong_code,
4649                 phase_tracker);
4650 
4651   // Now the CM ref_processor roots.
4652   {
4653     TrackPhaseTime x(phase_tracker, SharedHeap::SH_PS_NumElements + G1H_PS_refProcessor_oops_do);
4654     if (!_process_strong_tasks->is_task_claimed(G1H_PS_refProcessor_oops_do)) {
4655       // We need to treat the discovered reference lists of the
4656       // concurrent mark ref processor as roots and keep entries
4657       // (which are added by the marking threads) on them live
4658       // until they can be processed at the end of marking.
4659       ref_processor_cm()->weak_oops_do(&buf_scan_non_heap_roots);
4660     }
4661   }
4662 
4663   {
4664     TrackPhaseTime x(phase_tracker, SharedHeap::SH_PS_NumElements + G1H_PS_wait_strong_cld_nmethods);
4665     if (trace_metadata) {
4666       // Barrier to make sure all workers passed
4667       // the strong CLD and strong nmethods phases.
4668       active_strong_roots_scope()->wait_until_all_workers_done_with_threads(n_par_threads());
4669     }
4670   }
4671 
4672   {
4673     TrackPhaseTime x(phase_tracker, SharedHeap::SH_PS_NumElements + G1H_PS_weak_clds_oops_do);
4674     if (trace_metadata) {
4675       // Now take the complement of the strong CLDs.
4676       ClassLoaderDataGraph::roots_cld_do(NULL, scan_weak_clds);
4677     }
4678   }
4679 
4680   // Finish up any enqueued closure apps (attributed as object copy time).
4681   buf_scan_non_heap_roots.done();
4682   buf_scan_non_heap_weak_roots.done();
4683 
4684   double obj_copy_time_sec = buf_scan_non_heap_roots.closure_app_seconds()
4685       + buf_scan_non_heap_weak_roots.closure_app_seconds();
4686 
4687   g1_policy()->phase_times()->record_obj_copy_time(worker_i, obj_copy_time_sec * 1000.0);
4688 
4689   double ext_root_time_ms =
4690     ((os::elapsedTime() - ext_roots_start) - obj_copy_time_sec) * 1000.0;
4691 
4692   g1_policy()->phase_times()->record_ext_root_scan_time(worker_i, ext_root_time_ms);
4693 
4694   // During conc marking we have to filter the per-thread SATB buffers
4695   // to make sure we remove any oops into the CSet (which will show up
4696   // as implicitly live).
4697   double satb_filtering_ms = 0.0;
4698   {
4699     TrackPhaseTime x(phase_tracker, SharedHeap::SH_PS_NumElements + G1H_PS_filter_satb_buffers);
4700     if (!_process_strong_tasks->is_task_claimed(G1H_PS_filter_satb_buffers)) {
4701       if (mark_in_progress()) {
4702         double satb_filter_start = os::elapsedTime();
4703 
4704         JavaThread::satb_mark_queue_set().filter_thread_buffers();
4705 
4706         satb_filtering_ms = (os::elapsedTime() - satb_filter_start) * 1000.0;
4707       }
4708     }
4709   }
4710   g1_policy()->phase_times()->record_satb_filtering_time(worker_i, satb_filtering_ms);
4711 
4712   // Now scan the complement of the collection set.
4713   G1CodeBlobClosure scavenge_cs_nmethods(scan_non_heap_weak_roots);
4714 
4715   g1_rem_set()->oops_into_collection_set_do(scan_rs, &scavenge_cs_nmethods, worker_i);
4716 
4717   _process_strong_tasks->all_tasks_completed();
4718 }
4719 
4720 class G1StringSymbolTableUnlinkTask : public AbstractGangTask {
4721 private:
4722   BoolObjectClosure* _is_alive;
4723   int _initial_string_table_size;
4724   int _initial_symbol_table_size;
4725 
4726   bool  _process_strings;
4727   int _strings_processed;
4728   int _strings_removed;
4729 
4730   bool  _process_symbols;
4731   int _symbols_processed;
4732   int _symbols_removed;
4733 
4734 public:
4735   G1StringSymbolTableUnlinkTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols) :
4736     AbstractGangTask("String/Symbol Unlinking"),
4737     _is_alive(is_alive),
4738     _process_strings(process_strings), _strings_processed(0), _strings_removed(0),
4739     _process_symbols(process_symbols), _symbols_processed(0), _symbols_removed(0) {
4740 
4741     _initial_string_table_size = StringTable::the_table()->table_size();
4742     _initial_symbol_table_size = SymbolTable::the_table()->table_size();
4743     if (process_strings) {
4744       StringTable::clear_parallel_claimed_index();
4745     }
4746     if (process_symbols) {
4747       SymbolTable::clear_parallel_claimed_index();
4748     }
4749   }
4750 
4751   ~G1StringSymbolTableUnlinkTask() {
4752     guarantee(!_process_strings || StringTable::parallel_claimed_index() >= _initial_string_table_size,
4753               err_msg("claim value %d after unlink less than initial string table size %d",
4754                       StringTable::parallel_claimed_index(), _initial_string_table_size));
4755     guarantee(!_process_symbols || SymbolTable::parallel_claimed_index() >= _initial_symbol_table_size,
4756               err_msg("claim value %d after unlink less than initial symbol table size %d",
4757                       SymbolTable::parallel_claimed_index(), _initial_symbol_table_size));
4758 
4759     if (G1TraceStringSymbolTableScrubbing) {
4760       gclog_or_tty->print_cr("Cleaned string and symbol table, "
4761                              "strings: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed, "
4762                              "symbols: "SIZE_FORMAT" processed, "SIZE_FORMAT" removed",
4763                              strings_processed(), strings_removed(),
4764                              symbols_processed(), symbols_removed());
4765     }
4766   }
4767 
4768   void work(uint worker_id) {
4769     int strings_processed = 0;
4770     int strings_removed = 0;
4771     int symbols_processed = 0;
4772     int symbols_removed = 0;
4773     if (_process_strings) {
4774       StringTable::possibly_parallel_unlink(_is_alive, &strings_processed, &strings_removed);
4775       Atomic::add(strings_processed, &_strings_processed);
4776       Atomic::add(strings_removed, &_strings_removed);
4777     }
4778     if (_process_symbols) {
4779       SymbolTable::possibly_parallel_unlink(&symbols_processed, &symbols_removed);
4780       Atomic::add(symbols_processed, &_symbols_processed);
4781       Atomic::add(symbols_removed, &_symbols_removed);
4782     }
4783   }
4784 
4785   size_t strings_processed() const { return (size_t)_strings_processed; }
4786   size_t strings_removed()   const { return (size_t)_strings_removed; }
4787 
4788   size_t symbols_processed() const { return (size_t)_symbols_processed; }
4789   size_t symbols_removed()   const { return (size_t)_symbols_removed; }
4790 };
4791 
4792 class G1CodeCacheUnloadingTask VALUE_OBJ_CLASS_SPEC {
4793 private:
4794   static Monitor* _lock;
4795 
4796   BoolObjectClosure* const _is_alive;
4797   const bool               _unloading_occurred;
4798   const uint               _num_workers;
4799 
4800   // Variables used to claim nmethods.
4801   nmethod* _first_nmethod;
4802   volatile nmethod* _claimed_nmethod;
4803 
4804   // The list of nmethods that need to be processed by the second pass.
4805   volatile nmethod* _postponed_list;
4806   volatile uint     _num_entered_barrier;
4807 
4808  public:
4809   G1CodeCacheUnloadingTask(uint num_workers, BoolObjectClosure* is_alive, bool unloading_occurred) :
4810       _is_alive(is_alive),
4811       _unloading_occurred(unloading_occurred),
4812       _num_workers(num_workers),
4813       _first_nmethod(NULL),
4814       _claimed_nmethod(NULL),
4815       _postponed_list(NULL),
4816       _num_entered_barrier(0)
4817   {
4818     nmethod::increase_unloading_clock();
4819     // Get first alive nmethod
4820     NMethodIterator iter = NMethodIterator();
4821     if(iter.next_alive()) {
4822       _first_nmethod = iter.method();
4823     }
4824     _claimed_nmethod = (volatile nmethod*)_first_nmethod;
4825   }
4826 
4827   ~G1CodeCacheUnloadingTask() {
4828     CodeCache::verify_clean_inline_caches();
4829 
4830     CodeCache::set_needs_cache_clean(false);
4831     guarantee(CodeCache::scavenge_root_nmethods() == NULL, "Must be");
4832 
4833     CodeCache::verify_icholder_relocations();
4834   }
4835 
4836  private:
4837   void add_to_postponed_list(nmethod* nm) {
4838       nmethod* old;
4839       do {
4840         old = (nmethod*)_postponed_list;
4841         nm->set_unloading_next(old);
4842       } while ((nmethod*)Atomic::cmpxchg_ptr(nm, &_postponed_list, old) != old);
4843   }
4844 
4845   void clean_nmethod(nmethod* nm) {
4846     bool postponed = nm->do_unloading_parallel(_is_alive, _unloading_occurred);
4847 
4848     if (postponed) {
4849       // This nmethod referred to an nmethod that has not been cleaned/unloaded yet.
4850       add_to_postponed_list(nm);
4851     }
4852 
4853     // Mark that this thread has been cleaned/unloaded.
4854     // After this call, it will be safe to ask if this nmethod was unloaded or not.
4855     nm->set_unloading_clock(nmethod::global_unloading_clock());
4856   }
4857 
4858   void clean_nmethod_postponed(nmethod* nm) {
4859     nm->do_unloading_parallel_postponed(_is_alive, _unloading_occurred);
4860   }
4861 
4862   static const int MaxClaimNmethods = 16;
4863 
4864   void claim_nmethods(nmethod** claimed_nmethods, int *num_claimed_nmethods) {
4865     nmethod* first;
4866     NMethodIterator last;
4867 
4868     do {
4869       *num_claimed_nmethods = 0;
4870 
4871       first = (nmethod*)_claimed_nmethod;
4872       last = NMethodIterator(first);
4873 
4874       if (first != NULL) {
4875 
4876         for (int i = 0; i < MaxClaimNmethods; i++) {
4877           if (!last.next_alive()) {
4878             break;
4879           }
4880           claimed_nmethods[i] = last.method();
4881           (*num_claimed_nmethods)++;
4882         }
4883       }
4884 
4885     } while ((nmethod*)Atomic::cmpxchg_ptr(last.method(), &_claimed_nmethod, first) != first);
4886   }
4887 
4888   nmethod* claim_postponed_nmethod() {
4889     nmethod* claim;
4890     nmethod* next;
4891 
4892     do {
4893       claim = (nmethod*)_postponed_list;
4894       if (claim == NULL) {
4895         return NULL;
4896       }
4897 
4898       next = claim->unloading_next();
4899 
4900     } while ((nmethod*)Atomic::cmpxchg_ptr(next, &_postponed_list, claim) != claim);
4901 
4902     return claim;
4903   }
4904 
4905  public:
4906   // Mark that we're done with the first pass of nmethod cleaning.
4907   void barrier_mark(uint worker_id) {
4908     MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4909     _num_entered_barrier++;
4910     if (_num_entered_barrier == _num_workers) {
4911       ml.notify_all();
4912     }
4913   }
4914 
4915   // See if we have to wait for the other workers to
4916   // finish their first-pass nmethod cleaning work.
4917   void barrier_wait(uint worker_id) {
4918     if (_num_entered_barrier < _num_workers) {
4919       MonitorLockerEx ml(_lock, Mutex::_no_safepoint_check_flag);
4920       while (_num_entered_barrier < _num_workers) {
4921           ml.wait(Mutex::_no_safepoint_check_flag, 0, false);
4922       }
4923     }
4924   }
4925 
4926   // Cleaning and unloading of nmethods. Some work has to be postponed
4927   // to the second pass, when we know which nmethods survive.
4928   void work_first_pass(uint worker_id) {
4929     // The first nmethods is claimed by the first worker.
4930     if (worker_id == 0 && _first_nmethod != NULL) {
4931       clean_nmethod(_first_nmethod);
4932       _first_nmethod = NULL;
4933     }
4934 
4935     int num_claimed_nmethods;
4936     nmethod* claimed_nmethods[MaxClaimNmethods];
4937 
4938     while (true) {
4939       claim_nmethods(claimed_nmethods, &num_claimed_nmethods);
4940 
4941       if (num_claimed_nmethods == 0) {
4942         break;
4943       }
4944 
4945       for (int i = 0; i < num_claimed_nmethods; i++) {
4946         clean_nmethod(claimed_nmethods[i]);
4947       }
4948     }
4949 
4950     // The nmethod cleaning helps out and does the CodeCache part of MetadataOnStackMark.
4951     // Need to retire the buffers now that this thread has stopped cleaning nmethods.
4952     MetadataOnStackMark::retire_buffer_for_thread(Thread::current());
4953   }
4954 
4955   void work_second_pass(uint worker_id) {
4956     nmethod* nm;
4957     // Take care of postponed nmethods.
4958     while ((nm = claim_postponed_nmethod()) != NULL) {
4959       clean_nmethod_postponed(nm);
4960     }
4961   }
4962 };
4963 
4964 Monitor* G1CodeCacheUnloadingTask::_lock = new Monitor(Mutex::leaf, "Code Cache Unload lock", false, Monitor::_safepoint_check_never);
4965 
4966 class G1KlassCleaningTask : public StackObj {
4967   BoolObjectClosure*                      _is_alive;
4968   volatile jint                           _clean_klass_tree_claimed;
4969   ClassLoaderDataGraphKlassIteratorAtomic _klass_iterator;
4970 
4971  public:
4972   G1KlassCleaningTask(BoolObjectClosure* is_alive) :
4973       _is_alive(is_alive),
4974       _clean_klass_tree_claimed(0),
4975       _klass_iterator() {
4976   }
4977 
4978  private:
4979   bool claim_clean_klass_tree_task() {
4980     if (_clean_klass_tree_claimed) {
4981       return false;
4982     }
4983 
4984     return Atomic::cmpxchg(1, (jint*)&_clean_klass_tree_claimed, 0) == 0;
4985   }
4986 
4987   InstanceKlass* claim_next_klass() {
4988     Klass* klass;
4989     do {
4990       klass =_klass_iterator.next_klass();
4991     } while (klass != NULL && !klass->oop_is_instance());
4992 
4993     return (InstanceKlass*)klass;
4994   }
4995 
4996 public:
4997 
4998   void clean_klass(InstanceKlass* ik) {
4999     ik->clean_implementors_list(_is_alive);
5000     ik->clean_method_data(_is_alive);
5001 
5002     // G1 specific cleanup work that has
5003     // been moved here to be done in parallel.
5004     ik->clean_dependent_nmethods();
5005     if (JvmtiExport::has_redefined_a_class()) {
5006       InstanceKlass::purge_previous_versions(ik);
5007     }
5008   }
5009 
5010   void work() {
5011     ResourceMark rm;
5012 
5013     // One worker will clean the subklass/sibling klass tree.
5014     if (claim_clean_klass_tree_task()) {
5015       Klass::clean_subklass_tree(_is_alive);
5016     }
5017 
5018     // All workers will help cleaning the classes,
5019     InstanceKlass* klass;
5020     while ((klass = claim_next_klass()) != NULL) {
5021       clean_klass(klass);
5022     }
5023   }
5024 };
5025 
5026 // To minimize the remark pause times, the tasks below are done in parallel.
5027 class G1ParallelCleaningTask : public AbstractGangTask {
5028 private:
5029   G1StringSymbolTableUnlinkTask _string_symbol_task;
5030   G1CodeCacheUnloadingTask      _code_cache_task;
5031   G1KlassCleaningTask           _klass_cleaning_task;
5032 
5033 public:
5034   // The constructor is run in the VMThread.
5035   G1ParallelCleaningTask(BoolObjectClosure* is_alive, bool process_strings, bool process_symbols, uint num_workers, bool unloading_occurred) :
5036       AbstractGangTask("Parallel Cleaning"),
5037       _string_symbol_task(is_alive, process_strings, process_symbols),
5038       _code_cache_task(num_workers, is_alive, unloading_occurred),
5039       _klass_cleaning_task(is_alive) {
5040   }
5041 
5042   void pre_work_verification() {
5043     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5044   }
5045 
5046   void post_work_verification() {
5047     assert(!MetadataOnStackMark::has_buffer_for_thread(Thread::current()), "Should be empty");
5048   }
5049 
5050   // The parallel work done by all worker threads.
5051   void work(uint worker_id) {
5052     pre_work_verification();
5053 
5054     // Do first pass of code cache cleaning.
5055     _code_cache_task.work_first_pass(worker_id);
5056 
5057     // Let the threads mark that the first pass is done.
5058     _code_cache_task.barrier_mark(worker_id);
5059 
5060     // Clean the Strings and Symbols.
5061     _string_symbol_task.work(worker_id);
5062 
5063     // Wait for all workers to finish the first code cache cleaning pass.
5064     _code_cache_task.barrier_wait(worker_id);
5065 
5066     // Do the second code cache cleaning work, which realize on
5067     // the liveness information gathered during the first pass.
5068     _code_cache_task.work_second_pass(worker_id);
5069 
5070     // Clean all klasses that were not unloaded.
5071     _klass_cleaning_task.work();
5072 
5073     post_work_verification();
5074   }
5075 };
5076 
5077 
5078 void G1CollectedHeap::parallel_cleaning(BoolObjectClosure* is_alive,
5079                                         bool process_strings,
5080                                         bool process_symbols,
5081                                         bool class_unloading_occurred) {
5082   uint n_workers = workers()->active_workers();
5083 
5084   G1ParallelCleaningTask g1_unlink_task(is_alive, process_strings, process_symbols,
5085                                         n_workers, class_unloading_occurred);
5086   set_par_threads(n_workers);
5087   workers()->run_task(&g1_unlink_task);
5088   set_par_threads(0);
5089 }
5090 
5091 void G1CollectedHeap::unlink_string_and_symbol_table(BoolObjectClosure* is_alive,
5092                                                      bool process_strings, bool process_symbols) {
5093   {
5094     uint n_workers = _g1h->workers()->active_workers();
5095     G1StringSymbolTableUnlinkTask g1_unlink_task(is_alive, process_strings, process_symbols);
5096     set_par_threads(n_workers);
5097     workers()->run_task(&g1_unlink_task);
5098     set_par_threads(0);
5099   }
5100 
5101   if (G1StringDedup::is_enabled()) {
5102     G1StringDedup::unlink(is_alive);
5103   }
5104 }
5105 
5106 class G1RedirtyLoggedCardsTask : public AbstractGangTask {
5107  private:
5108   DirtyCardQueueSet* _queue;
5109  public:
5110   G1RedirtyLoggedCardsTask(DirtyCardQueueSet* queue) : AbstractGangTask("Redirty Cards"), _queue(queue) { }
5111 
5112   virtual void work(uint worker_id) {
5113     double start_time = os::elapsedTime();
5114 
5115     RedirtyLoggedCardTableEntryClosure cl;
5116     _queue->par_apply_closure_to_all_completed_buffers(&cl);
5117 
5118     G1GCPhaseTimes* timer = G1CollectedHeap::heap()->g1_policy()->phase_times();
5119     timer->record_redirty_logged_cards_time_ms(worker_id, (os::elapsedTime() - start_time) * 1000.0);
5120     timer->record_redirty_logged_cards_processed_cards(worker_id, cl.num_processed());
5121   }
5122 };
5123 
5124 void G1CollectedHeap::redirty_logged_cards() {
5125   double redirty_logged_cards_start = os::elapsedTime();
5126 
5127   uint n_workers = _g1h->workers()->active_workers();
5128 
5129   G1RedirtyLoggedCardsTask redirty_task(&dirty_card_queue_set());
5130   dirty_card_queue_set().reset_for_par_iteration();
5131   set_par_threads(n_workers);
5132   workers()->run_task(&redirty_task);
5133   set_par_threads(0);
5134 
5135   DirtyCardQueueSet& dcq = JavaThread::dirty_card_queue_set();
5136   dcq.merge_bufferlists(&dirty_card_queue_set());
5137   assert(dirty_card_queue_set().completed_buffers_num() == 0, "All should be consumed");
5138 
5139   g1_policy()->phase_times()->record_redirty_logged_cards_time_ms((os::elapsedTime() - redirty_logged_cards_start) * 1000.0);
5140 }
5141 
5142 // Weak Reference Processing support
5143 
5144 // An always "is_alive" closure that is used to preserve referents.
5145 // If the object is non-null then it's alive.  Used in the preservation
5146 // of referent objects that are pointed to by reference objects
5147 // discovered by the CM ref processor.
5148 class G1AlwaysAliveClosure: public BoolObjectClosure {
5149   G1CollectedHeap* _g1;
5150 public:
5151   G1AlwaysAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5152   bool do_object_b(oop p) {
5153     if (p != NULL) {
5154       return true;
5155     }
5156     return false;
5157   }
5158 };
5159 
5160 bool G1STWIsAliveClosure::do_object_b(oop p) {
5161   // An object is reachable if it is outside the collection set,
5162   // or is inside and copied.
5163   return !_g1->obj_in_cs(p) || p->is_forwarded();
5164 }
5165 
5166 // Non Copying Keep Alive closure
5167 class G1KeepAliveClosure: public OopClosure {
5168   G1CollectedHeap* _g1;
5169 public:
5170   G1KeepAliveClosure(G1CollectedHeap* g1) : _g1(g1) {}
5171   void do_oop(narrowOop* p) { guarantee(false, "Not needed"); }
5172   void do_oop(oop* p) {
5173     oop obj = *p;
5174     assert(obj != NULL, "the caller should have filtered out NULL values");
5175 
5176     const InCSetState cset_state = _g1->in_cset_state(obj);
5177     if (!cset_state.is_in_cset_or_humongous()) {
5178       return;
5179     }
5180     if (cset_state.is_in_cset()) {
5181       assert( obj->is_forwarded(), "invariant" );
5182       *p = obj->forwardee();
5183     } else {
5184       assert(!obj->is_forwarded(), "invariant" );
5185       assert(cset_state.is_humongous(),
5186              err_msg("Only allowed InCSet state is IsHumongous, but is %d", cset_state.value()));
5187       _g1->set_humongous_is_live(obj);
5188     }
5189   }
5190 };
5191 
5192 // Copying Keep Alive closure - can be called from both
5193 // serial and parallel code as long as different worker
5194 // threads utilize different G1ParScanThreadState instances
5195 // and different queues.
5196 
5197 class G1CopyingKeepAliveClosure: public OopClosure {
5198   G1CollectedHeap*         _g1h;
5199   OopClosure*              _copy_non_heap_obj_cl;
5200   G1ParScanThreadState*    _par_scan_state;
5201 
5202 public:
5203   G1CopyingKeepAliveClosure(G1CollectedHeap* g1h,
5204                             OopClosure* non_heap_obj_cl,
5205                             G1ParScanThreadState* pss):
5206     _g1h(g1h),
5207     _copy_non_heap_obj_cl(non_heap_obj_cl),
5208     _par_scan_state(pss)
5209   {}
5210 
5211   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
5212   virtual void do_oop(      oop* p) { do_oop_work(p); }
5213 
5214   template <class T> void do_oop_work(T* p) {
5215     oop obj = oopDesc::load_decode_heap_oop(p);
5216 
5217     if (_g1h->is_in_cset_or_humongous(obj)) {
5218       // If the referent object has been forwarded (either copied
5219       // to a new location or to itself in the event of an
5220       // evacuation failure) then we need to update the reference
5221       // field and, if both reference and referent are in the G1
5222       // heap, update the RSet for the referent.
5223       //
5224       // If the referent has not been forwarded then we have to keep
5225       // it alive by policy. Therefore we have copy the referent.
5226       //
5227       // If the reference field is in the G1 heap then we can push
5228       // on the PSS queue. When the queue is drained (after each
5229       // phase of reference processing) the object and it's followers
5230       // will be copied, the reference field set to point to the
5231       // new location, and the RSet updated. Otherwise we need to
5232       // use the the non-heap or metadata closures directly to copy
5233       // the referent object and update the pointer, while avoiding
5234       // updating the RSet.
5235 
5236       if (_g1h->is_in_g1_reserved(p)) {
5237         _par_scan_state->push_on_queue(p);
5238       } else {
5239         assert(!Metaspace::contains((const void*)p),
5240                err_msg("Unexpectedly found a pointer from metadata: "
5241                               PTR_FORMAT, p));
5242         _copy_non_heap_obj_cl->do_oop(p);
5243       }
5244     }
5245   }
5246 };
5247 
5248 // Serial drain queue closure. Called as the 'complete_gc'
5249 // closure for each discovered list in some of the
5250 // reference processing phases.
5251 
5252 class G1STWDrainQueueClosure: public VoidClosure {
5253 protected:
5254   G1CollectedHeap* _g1h;
5255   G1ParScanThreadState* _par_scan_state;
5256 
5257   G1ParScanThreadState*   par_scan_state() { return _par_scan_state; }
5258 
5259 public:
5260   G1STWDrainQueueClosure(G1CollectedHeap* g1h, G1ParScanThreadState* pss) :
5261     _g1h(g1h),
5262     _par_scan_state(pss)
5263   { }
5264 
5265   void do_void() {
5266     G1ParScanThreadState* const pss = par_scan_state();
5267     pss->trim_queue();
5268   }
5269 };
5270 
5271 // Parallel Reference Processing closures
5272 
5273 // Implementation of AbstractRefProcTaskExecutor for parallel reference
5274 // processing during G1 evacuation pauses.
5275 
5276 class G1STWRefProcTaskExecutor: public AbstractRefProcTaskExecutor {
5277 private:
5278   G1CollectedHeap*   _g1h;
5279   RefToScanQueueSet* _queues;
5280   FlexibleWorkGang*  _workers;
5281   int                _active_workers;
5282 
5283 public:
5284   G1STWRefProcTaskExecutor(G1CollectedHeap* g1h,
5285                         FlexibleWorkGang* workers,
5286                         RefToScanQueueSet *task_queues,
5287                         int n_workers) :
5288     _g1h(g1h),
5289     _queues(task_queues),
5290     _workers(workers),
5291     _active_workers(n_workers)
5292   {
5293     assert(n_workers > 0, "shouldn't call this otherwise");
5294   }
5295 
5296   // Executes the given task using concurrent marking worker threads.
5297   virtual void execute(ProcessTask& task);
5298   virtual void execute(EnqueueTask& task);
5299 };
5300 
5301 // Gang task for possibly parallel reference processing
5302 
5303 class G1STWRefProcTaskProxy: public AbstractGangTask {
5304   typedef AbstractRefProcTaskExecutor::ProcessTask ProcessTask;
5305   ProcessTask&     _proc_task;
5306   G1CollectedHeap* _g1h;
5307   RefToScanQueueSet *_task_queues;
5308   ParallelTaskTerminator* _terminator;
5309 
5310 public:
5311   G1STWRefProcTaskProxy(ProcessTask& proc_task,
5312                      G1CollectedHeap* g1h,
5313                      RefToScanQueueSet *task_queues,
5314                      ParallelTaskTerminator* terminator) :
5315     AbstractGangTask("Process reference objects in parallel"),
5316     _proc_task(proc_task),
5317     _g1h(g1h),
5318     _task_queues(task_queues),
5319     _terminator(terminator)
5320   {}
5321 
5322   virtual void work(uint worker_id) {
5323     // The reference processing task executed by a single worker.
5324     ResourceMark rm;
5325     HandleMark   hm;
5326 
5327     G1STWIsAliveClosure is_alive(_g1h);
5328 
5329     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5330     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5331 
5332     pss.set_evac_failure_closure(&evac_failure_cl);
5333 
5334     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5335 
5336     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5337 
5338     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5339 
5340     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5341       // We also need to mark copied objects.
5342       copy_non_heap_cl = &copy_mark_non_heap_cl;
5343     }
5344 
5345     // Keep alive closure.
5346     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5347 
5348     // Complete GC closure
5349     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _task_queues, _terminator);
5350 
5351     // Call the reference processing task's work routine.
5352     _proc_task.work(worker_id, is_alive, keep_alive, drain_queue);
5353 
5354     // Note we cannot assert that the refs array is empty here as not all
5355     // of the processing tasks (specifically phase2 - pp2_work) execute
5356     // the complete_gc closure (which ordinarily would drain the queue) so
5357     // the queue may not be empty.
5358   }
5359 };
5360 
5361 // Driver routine for parallel reference processing.
5362 // Creates an instance of the ref processing gang
5363 // task and has the worker threads execute it.
5364 void G1STWRefProcTaskExecutor::execute(ProcessTask& proc_task) {
5365   assert(_workers != NULL, "Need parallel worker threads.");
5366 
5367   ParallelTaskTerminator terminator(_active_workers, _queues);
5368   G1STWRefProcTaskProxy proc_task_proxy(proc_task, _g1h, _queues, &terminator);
5369 
5370   _g1h->set_par_threads(_active_workers);
5371   _workers->run_task(&proc_task_proxy);
5372   _g1h->set_par_threads(0);
5373 }
5374 
5375 // Gang task for parallel reference enqueueing.
5376 
5377 class G1STWRefEnqueueTaskProxy: public AbstractGangTask {
5378   typedef AbstractRefProcTaskExecutor::EnqueueTask EnqueueTask;
5379   EnqueueTask& _enq_task;
5380 
5381 public:
5382   G1STWRefEnqueueTaskProxy(EnqueueTask& enq_task) :
5383     AbstractGangTask("Enqueue reference objects in parallel"),
5384     _enq_task(enq_task)
5385   { }
5386 
5387   virtual void work(uint worker_id) {
5388     _enq_task.work(worker_id);
5389   }
5390 };
5391 
5392 // Driver routine for parallel reference enqueueing.
5393 // Creates an instance of the ref enqueueing gang
5394 // task and has the worker threads execute it.
5395 
5396 void G1STWRefProcTaskExecutor::execute(EnqueueTask& enq_task) {
5397   assert(_workers != NULL, "Need parallel worker threads.");
5398 
5399   G1STWRefEnqueueTaskProxy enq_task_proxy(enq_task);
5400 
5401   _g1h->set_par_threads(_active_workers);
5402   _workers->run_task(&enq_task_proxy);
5403   _g1h->set_par_threads(0);
5404 }
5405 
5406 // End of weak reference support closures
5407 
5408 // Abstract task used to preserve (i.e. copy) any referent objects
5409 // that are in the collection set and are pointed to by reference
5410 // objects discovered by the CM ref processor.
5411 
5412 class G1ParPreserveCMReferentsTask: public AbstractGangTask {
5413 protected:
5414   G1CollectedHeap* _g1h;
5415   RefToScanQueueSet      *_queues;
5416   ParallelTaskTerminator _terminator;
5417   uint _n_workers;
5418 
5419 public:
5420   G1ParPreserveCMReferentsTask(G1CollectedHeap* g1h,int workers, RefToScanQueueSet *task_queues) :
5421     AbstractGangTask("ParPreserveCMReferents"),
5422     _g1h(g1h),
5423     _queues(task_queues),
5424     _terminator(workers, _queues),
5425     _n_workers(workers)
5426   { }
5427 
5428   void work(uint worker_id) {
5429     ResourceMark rm;
5430     HandleMark   hm;
5431 
5432     G1ParScanThreadState            pss(_g1h, worker_id, NULL);
5433     G1ParScanHeapEvacFailureClosure evac_failure_cl(_g1h, &pss, NULL);
5434 
5435     pss.set_evac_failure_closure(&evac_failure_cl);
5436 
5437     assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5438 
5439     G1ParScanExtRootClosure        only_copy_non_heap_cl(_g1h, &pss, NULL);
5440 
5441     G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(_g1h, &pss, NULL);
5442 
5443     OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5444 
5445     if (_g1h->g1_policy()->during_initial_mark_pause()) {
5446       // We also need to mark copied objects.
5447       copy_non_heap_cl = &copy_mark_non_heap_cl;
5448     }
5449 
5450     // Is alive closure
5451     G1AlwaysAliveClosure always_alive(_g1h);
5452 
5453     // Copying keep alive closure. Applied to referent objects that need
5454     // to be copied.
5455     G1CopyingKeepAliveClosure keep_alive(_g1h, copy_non_heap_cl, &pss);
5456 
5457     ReferenceProcessor* rp = _g1h->ref_processor_cm();
5458 
5459     uint limit = ReferenceProcessor::number_of_subclasses_of_ref() * rp->max_num_q();
5460     uint stride = MIN2(MAX2(_n_workers, 1U), limit);
5461 
5462     // limit is set using max_num_q() - which was set using ParallelGCThreads.
5463     // So this must be true - but assert just in case someone decides to
5464     // change the worker ids.
5465     assert(0 <= worker_id && worker_id < limit, "sanity");
5466     assert(!rp->discovery_is_atomic(), "check this code");
5467 
5468     // Select discovered lists [i, i+stride, i+2*stride,...,limit)
5469     for (uint idx = worker_id; idx < limit; idx += stride) {
5470       DiscoveredList& ref_list = rp->discovered_refs()[idx];
5471 
5472       DiscoveredListIterator iter(ref_list, &keep_alive, &always_alive);
5473       while (iter.has_next()) {
5474         // Since discovery is not atomic for the CM ref processor, we
5475         // can see some null referent objects.
5476         iter.load_ptrs(DEBUG_ONLY(true));
5477         oop ref = iter.obj();
5478 
5479         // This will filter nulls.
5480         if (iter.is_referent_alive()) {
5481           iter.make_referent_alive();
5482         }
5483         iter.move_to_next();
5484       }
5485     }
5486 
5487     // Drain the queue - which may cause stealing
5488     G1ParEvacuateFollowersClosure drain_queue(_g1h, &pss, _queues, &_terminator);
5489     drain_queue.do_void();
5490     // Allocation buffers were retired at the end of G1ParEvacuateFollowersClosure
5491     assert(pss.queue_is_empty(), "should be");
5492   }
5493 };
5494 
5495 // Weak Reference processing during an evacuation pause (part 1).
5496 void G1CollectedHeap::process_discovered_references(uint no_of_gc_workers) {
5497   double ref_proc_start = os::elapsedTime();
5498 
5499   ReferenceProcessor* rp = _ref_processor_stw;
5500   assert(rp->discovery_enabled(), "should have been enabled");
5501 
5502   // Any reference objects, in the collection set, that were 'discovered'
5503   // by the CM ref processor should have already been copied (either by
5504   // applying the external root copy closure to the discovered lists, or
5505   // by following an RSet entry).
5506   //
5507   // But some of the referents, that are in the collection set, that these
5508   // reference objects point to may not have been copied: the STW ref
5509   // processor would have seen that the reference object had already
5510   // been 'discovered' and would have skipped discovering the reference,
5511   // but would not have treated the reference object as a regular oop.
5512   // As a result the copy closure would not have been applied to the
5513   // referent object.
5514   //
5515   // We need to explicitly copy these referent objects - the references
5516   // will be processed at the end of remarking.
5517   //
5518   // We also need to do this copying before we process the reference
5519   // objects discovered by the STW ref processor in case one of these
5520   // referents points to another object which is also referenced by an
5521   // object discovered by the STW ref processor.
5522 
5523   assert(no_of_gc_workers == workers()->active_workers(), "Need to reset active GC workers");
5524 
5525   set_par_threads(no_of_gc_workers);
5526   G1ParPreserveCMReferentsTask keep_cm_referents(this,
5527                                                  no_of_gc_workers,
5528                                                  _task_queues);
5529 
5530   workers()->run_task(&keep_cm_referents);
5531 
5532   set_par_threads(0);
5533 
5534   // Closure to test whether a referent is alive.
5535   G1STWIsAliveClosure is_alive(this);
5536 
5537   // Even when parallel reference processing is enabled, the processing
5538   // of JNI refs is serial and performed serially by the current thread
5539   // rather than by a worker. The following PSS will be used for processing
5540   // JNI refs.
5541 
5542   // Use only a single queue for this PSS.
5543   G1ParScanThreadState            pss(this, 0, NULL);
5544 
5545   // We do not embed a reference processor in the copying/scanning
5546   // closures while we're actually processing the discovered
5547   // reference objects.
5548   G1ParScanHeapEvacFailureClosure evac_failure_cl(this, &pss, NULL);
5549 
5550   pss.set_evac_failure_closure(&evac_failure_cl);
5551 
5552   assert(pss.queue_is_empty(), "pre-condition");
5553 
5554   G1ParScanExtRootClosure        only_copy_non_heap_cl(this, &pss, NULL);
5555 
5556   G1ParScanAndMarkExtRootClosure copy_mark_non_heap_cl(this, &pss, NULL);
5557 
5558   OopClosure*                    copy_non_heap_cl = &only_copy_non_heap_cl;
5559 
5560   if (_g1h->g1_policy()->during_initial_mark_pause()) {
5561     // We also need to mark copied objects.
5562     copy_non_heap_cl = &copy_mark_non_heap_cl;
5563   }
5564 
5565   // Keep alive closure.
5566   G1CopyingKeepAliveClosure keep_alive(this, copy_non_heap_cl, &pss);
5567 
5568   // Serial Complete GC closure
5569   G1STWDrainQueueClosure drain_queue(this, &pss);
5570 
5571   // Setup the soft refs policy...
5572   rp->setup_policy(false);
5573 
5574   ReferenceProcessorStats stats;
5575   if (!rp->processing_is_mt()) {
5576     // Serial reference processing...
5577     stats = rp->process_discovered_references(&is_alive,
5578                                               &keep_alive,
5579                                               &drain_queue,
5580                                               NULL,
5581                                               _gc_timer_stw,
5582                                               _gc_tracer_stw->gc_id());
5583   } else {
5584     // Parallel reference processing
5585     assert(rp->num_q() == no_of_gc_workers, "sanity");
5586     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5587 
5588     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5589     stats = rp->process_discovered_references(&is_alive,
5590                                               &keep_alive,
5591                                               &drain_queue,
5592                                               &par_task_executor,
5593                                               _gc_timer_stw,
5594                                               _gc_tracer_stw->gc_id());
5595   }
5596 
5597   _gc_tracer_stw->report_gc_reference_stats(stats);
5598 
5599   // We have completed copying any necessary live referent objects.
5600   assert(pss.queue_is_empty(), "both queue and overflow should be empty");
5601 
5602   double ref_proc_time = os::elapsedTime() - ref_proc_start;
5603   g1_policy()->phase_times()->record_ref_proc_time(ref_proc_time * 1000.0);
5604 }
5605 
5606 // Weak Reference processing during an evacuation pause (part 2).
5607 void G1CollectedHeap::enqueue_discovered_references(uint no_of_gc_workers) {
5608   double ref_enq_start = os::elapsedTime();
5609 
5610   ReferenceProcessor* rp = _ref_processor_stw;
5611   assert(!rp->discovery_enabled(), "should have been disabled as part of processing");
5612 
5613   // Now enqueue any remaining on the discovered lists on to
5614   // the pending list.
5615   if (!rp->processing_is_mt()) {
5616     // Serial reference processing...
5617     rp->enqueue_discovered_references();
5618   } else {
5619     // Parallel reference enqueueing
5620 
5621     assert(no_of_gc_workers == workers()->active_workers(),
5622            "Need to reset active workers");
5623     assert(rp->num_q() == no_of_gc_workers, "sanity");
5624     assert(no_of_gc_workers <= rp->max_num_q(), "sanity");
5625 
5626     G1STWRefProcTaskExecutor par_task_executor(this, workers(), _task_queues, no_of_gc_workers);
5627     rp->enqueue_discovered_references(&par_task_executor);
5628   }
5629 
5630   rp->verify_no_references_recorded();
5631   assert(!rp->discovery_enabled(), "should have been disabled");
5632 
5633   // FIXME
5634   // CM's reference processing also cleans up the string and symbol tables.
5635   // Should we do that here also? We could, but it is a serial operation
5636   // and could significantly increase the pause time.
5637 
5638   double ref_enq_time = os::elapsedTime() - ref_enq_start;
5639   g1_policy()->phase_times()->record_ref_enq_time(ref_enq_time * 1000.0);
5640 }
5641 
5642 void G1CollectedHeap::evacuate_collection_set(EvacuationInfo& evacuation_info) {
5643   _expand_heap_after_alloc_failure = true;
5644   _evacuation_failed = false;
5645 
5646   // Should G1EvacuationFailureALot be in effect for this GC?
5647   NOT_PRODUCT(set_evacuation_failure_alot_for_current_gc();)
5648 
5649   g1_rem_set()->prepare_for_oops_into_collection_set_do();
5650 
5651   // Disable the hot card cache.
5652   G1HotCardCache* hot_card_cache = _cg1r->hot_card_cache();
5653   hot_card_cache->reset_hot_cache_claimed_index();
5654   hot_card_cache->set_use_cache(false);
5655 
5656   uint n_workers;
5657   n_workers =
5658     AdaptiveSizePolicy::calc_active_workers(workers()->total_workers(),
5659                                    workers()->active_workers(),
5660                                    Threads::number_of_non_daemon_threads());
5661   assert(UseDynamicNumberOfGCThreads ||
5662          n_workers == workers()->total_workers(),
5663          "If not dynamic should be using all the  workers");
5664   workers()->set_active_workers(n_workers);
5665   set_par_threads(n_workers);
5666 
5667   G1ParTask g1_par_task(this, _task_queues);
5668 
5669   init_for_evac_failure(NULL);
5670 
5671   assert(dirty_card_queue_set().completed_buffers_num() == 0, "Should be empty");
5672   double start_par_time_sec = os::elapsedTime();
5673   double end_par_time_sec;
5674 
5675   {
5676     StrongRootsScope srs(this);
5677     // InitialMark needs claim bits to keep track of the marked-through CLDs.
5678     if (g1_policy()->during_initial_mark_pause()) {
5679       ClassLoaderDataGraph::clear_claimed_marks();
5680     }
5681 
5682      // The individual threads will set their evac-failure closures.
5683      if (PrintTerminationStats) G1ParScanThreadState::print_termination_stats_hdr();
5684      // These tasks use ShareHeap::_process_strong_tasks
5685      assert(UseDynamicNumberOfGCThreads ||
5686             workers()->active_workers() == workers()->total_workers(),
5687             "If not dynamic should be using all the  workers");
5688     workers()->run_task(&g1_par_task);
5689     end_par_time_sec = os::elapsedTime();
5690 
5691     // Closing the inner scope will execute the destructor
5692     // for the StrongRootsScope object. We record the current
5693     // elapsed time before closing the scope so that time
5694     // taken for the SRS destructor is NOT included in the
5695     // reported parallel time.
5696   }
5697 
5698   double par_time_ms = (end_par_time_sec - start_par_time_sec) * 1000.0;
5699   g1_policy()->phase_times()->record_par_time(par_time_ms);
5700 
5701   double code_root_fixup_time_ms =
5702         (os::elapsedTime() - end_par_time_sec) * 1000.0;
5703   g1_policy()->phase_times()->record_code_root_fixup_time(code_root_fixup_time_ms);
5704 
5705   set_par_threads(0);
5706 
5707   // Process any discovered reference objects - we have
5708   // to do this _before_ we retire the GC alloc regions
5709   // as we may have to copy some 'reachable' referent
5710   // objects (and their reachable sub-graphs) that were
5711   // not copied during the pause.
5712   process_discovered_references(n_workers);
5713 
5714   if (G1StringDedup::is_enabled()) {
5715     G1STWIsAliveClosure is_alive(this);
5716     G1KeepAliveClosure keep_alive(this);
5717     G1StringDedup::unlink_or_oops_do(&is_alive, &keep_alive);
5718   }
5719 
5720   _allocator->release_gc_alloc_regions(n_workers, evacuation_info);
5721   g1_rem_set()->cleanup_after_oops_into_collection_set_do();
5722 
5723   // Reset and re-enable the hot card cache.
5724   // Note the counts for the cards in the regions in the
5725   // collection set are reset when the collection set is freed.
5726   hot_card_cache->reset_hot_cache();
5727   hot_card_cache->set_use_cache(true);
5728 
5729   purge_code_root_memory();
5730 
5731   finalize_for_evac_failure();
5732 
5733   if (evacuation_failed()) {
5734     remove_self_forwarding_pointers();
5735 
5736     // Reset the G1EvacuationFailureALot counters and flags
5737     // Note: the values are reset only when an actual
5738     // evacuation failure occurs.
5739     NOT_PRODUCT(reset_evacuation_should_fail();)
5740   }
5741 
5742   // Enqueue any remaining references remaining on the STW
5743   // reference processor's discovered lists. We need to do
5744   // this after the card table is cleaned (and verified) as
5745   // the act of enqueueing entries on to the pending list
5746   // will log these updates (and dirty their associated
5747   // cards). We need these updates logged to update any
5748   // RSets.
5749   enqueue_discovered_references(n_workers);
5750 
5751   redirty_logged_cards();
5752   COMPILER2_PRESENT(DerivedPointerTable::update_pointers());
5753 }
5754 
5755 void G1CollectedHeap::free_region(HeapRegion* hr,
5756                                   FreeRegionList* free_list,
5757                                   bool par,
5758                                   bool locked) {
5759   assert(!hr->is_free(), "the region should not be free");
5760   assert(!hr->is_empty(), "the region should not be empty");
5761   assert(_hrm.is_available(hr->hrm_index()), "region should be committed");
5762   assert(free_list != NULL, "pre-condition");
5763 
5764   if (G1VerifyBitmaps) {
5765     MemRegion mr(hr->bottom(), hr->end());
5766     concurrent_mark()->clearRangePrevBitmap(mr);
5767   }
5768 
5769   // Clear the card counts for this region.
5770   // Note: we only need to do this if the region is not young
5771   // (since we don't refine cards in young regions).
5772   if (!hr->is_young()) {
5773     _cg1r->hot_card_cache()->reset_card_counts(hr);
5774   }
5775   hr->hr_clear(par, true /* clear_space */, locked /* locked */);
5776   free_list->add_ordered(hr);
5777 }
5778 
5779 void G1CollectedHeap::free_humongous_region(HeapRegion* hr,
5780                                      FreeRegionList* free_list,
5781                                      bool par) {
5782   assert(hr->is_starts_humongous(), "this is only for starts humongous regions");
5783   assert(free_list != NULL, "pre-condition");
5784 
5785   size_t hr_capacity = hr->capacity();
5786   // We need to read this before we make the region non-humongous,
5787   // otherwise the information will be gone.
5788   uint last_index = hr->last_hc_index();
5789   hr->clear_humongous();
5790   free_region(hr, free_list, par);
5791 
5792   uint i = hr->hrm_index() + 1;
5793   while (i < last_index) {
5794     HeapRegion* curr_hr = region_at(i);
5795     assert(curr_hr->is_continues_humongous(), "invariant");
5796     curr_hr->clear_humongous();
5797     free_region(curr_hr, free_list, par);
5798     i += 1;
5799   }
5800 }
5801 
5802 void G1CollectedHeap::remove_from_old_sets(const HeapRegionSetCount& old_regions_removed,
5803                                        const HeapRegionSetCount& humongous_regions_removed) {
5804   if (old_regions_removed.length() > 0 || humongous_regions_removed.length() > 0) {
5805     MutexLockerEx x(OldSets_lock, Mutex::_no_safepoint_check_flag);
5806     _old_set.bulk_remove(old_regions_removed);
5807     _humongous_set.bulk_remove(humongous_regions_removed);
5808   }
5809 
5810 }
5811 
5812 void G1CollectedHeap::prepend_to_freelist(FreeRegionList* list) {
5813   assert(list != NULL, "list can't be null");
5814   if (!list->is_empty()) {
5815     MutexLockerEx x(FreeList_lock, Mutex::_no_safepoint_check_flag);
5816     _hrm.insert_list_into_free_list(list);
5817   }
5818 }
5819 
5820 void G1CollectedHeap::decrement_summary_bytes(size_t bytes) {
5821   _allocator->decrease_used(bytes);
5822 }
5823 
5824 class G1ParCleanupCTTask : public AbstractGangTask {
5825   G1SATBCardTableModRefBS* _ct_bs;
5826   G1CollectedHeap* _g1h;
5827   HeapRegion* volatile _su_head;
5828 public:
5829   G1ParCleanupCTTask(G1SATBCardTableModRefBS* ct_bs,
5830                      G1CollectedHeap* g1h) :
5831     AbstractGangTask("G1 Par Cleanup CT Task"),
5832     _ct_bs(ct_bs), _g1h(g1h) { }
5833 
5834   void work(uint worker_id) {
5835     HeapRegion* r;
5836     while (r = _g1h->pop_dirty_cards_region()) {
5837       clear_cards(r);
5838     }
5839   }
5840 
5841   void clear_cards(HeapRegion* r) {
5842     // Cards of the survivors should have already been dirtied.
5843     if (!r->is_survivor()) {
5844       _ct_bs->clear(MemRegion(r->bottom(), r->end()));
5845     }
5846   }
5847 };
5848 
5849 #ifndef PRODUCT
5850 class G1VerifyCardTableCleanup: public HeapRegionClosure {
5851   G1CollectedHeap* _g1h;
5852   G1SATBCardTableModRefBS* _ct_bs;
5853 public:
5854   G1VerifyCardTableCleanup(G1CollectedHeap* g1h, G1SATBCardTableModRefBS* ct_bs)
5855     : _g1h(g1h), _ct_bs(ct_bs) { }
5856   virtual bool doHeapRegion(HeapRegion* r) {
5857     if (r->is_survivor()) {
5858       _g1h->verify_dirty_region(r);
5859     } else {
5860       _g1h->verify_not_dirty_region(r);
5861     }
5862     return false;
5863   }
5864 };
5865 
5866 void G1CollectedHeap::verify_not_dirty_region(HeapRegion* hr) {
5867   // All of the region should be clean.
5868   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5869   MemRegion mr(hr->bottom(), hr->end());
5870   ct_bs->verify_not_dirty_region(mr);
5871 }
5872 
5873 void G1CollectedHeap::verify_dirty_region(HeapRegion* hr) {
5874   // We cannot guarantee that [bottom(),end()] is dirty.  Threads
5875   // dirty allocated blocks as they allocate them. The thread that
5876   // retires each region and replaces it with a new one will do a
5877   // maximal allocation to fill in [pre_dummy_top(),end()] but will
5878   // not dirty that area (one less thing to have to do while holding
5879   // a lock). So we can only verify that [bottom(),pre_dummy_top()]
5880   // is dirty.
5881   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5882   MemRegion mr(hr->bottom(), hr->pre_dummy_top());
5883   if (hr->is_young()) {
5884     ct_bs->verify_g1_young_region(mr);
5885   } else {
5886     ct_bs->verify_dirty_region(mr);
5887   }
5888 }
5889 
5890 void G1CollectedHeap::verify_dirty_young_list(HeapRegion* head) {
5891   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
5892   for (HeapRegion* hr = head; hr != NULL; hr = hr->get_next_young_region()) {
5893     verify_dirty_region(hr);
5894   }
5895 }
5896 
5897 void G1CollectedHeap::verify_dirty_young_regions() {
5898   verify_dirty_young_list(_young_list->first_region());
5899 }
5900 
5901 bool G1CollectedHeap::verify_no_bits_over_tams(const char* bitmap_name, CMBitMapRO* bitmap,
5902                                                HeapWord* tams, HeapWord* end) {
5903   guarantee(tams <= end,
5904             err_msg("tams: "PTR_FORMAT" end: "PTR_FORMAT, tams, end));
5905   HeapWord* result = bitmap->getNextMarkedWordAddress(tams, end);
5906   if (result < end) {
5907     gclog_or_tty->cr();
5908     gclog_or_tty->print_cr("## wrong marked address on %s bitmap: "PTR_FORMAT,
5909                            bitmap_name, result);
5910     gclog_or_tty->print_cr("## %s tams: "PTR_FORMAT" end: "PTR_FORMAT,
5911                            bitmap_name, tams, end);
5912     return false;
5913   }
5914   return true;
5915 }
5916 
5917 bool G1CollectedHeap::verify_bitmaps(const char* caller, HeapRegion* hr) {
5918   CMBitMapRO* prev_bitmap = concurrent_mark()->prevMarkBitMap();
5919   CMBitMapRO* next_bitmap = (CMBitMapRO*) concurrent_mark()->nextMarkBitMap();
5920 
5921   HeapWord* bottom = hr->bottom();
5922   HeapWord* ptams  = hr->prev_top_at_mark_start();
5923   HeapWord* ntams  = hr->next_top_at_mark_start();
5924   HeapWord* end    = hr->end();
5925 
5926   bool res_p = verify_no_bits_over_tams("prev", prev_bitmap, ptams, end);
5927 
5928   bool res_n = true;
5929   // We reset mark_in_progress() before we reset _cmThread->in_progress() and in this window
5930   // we do the clearing of the next bitmap concurrently. Thus, we can not verify the bitmap
5931   // if we happen to be in that state.
5932   if (mark_in_progress() || !_cmThread->in_progress()) {
5933     res_n = verify_no_bits_over_tams("next", next_bitmap, ntams, end);
5934   }
5935   if (!res_p || !res_n) {
5936     gclog_or_tty->print_cr("#### Bitmap verification failed for "HR_FORMAT,
5937                            HR_FORMAT_PARAMS(hr));
5938     gclog_or_tty->print_cr("#### Caller: %s", caller);
5939     return false;
5940   }
5941   return true;
5942 }
5943 
5944 void G1CollectedHeap::check_bitmaps(const char* caller, HeapRegion* hr) {
5945   if (!G1VerifyBitmaps) return;
5946 
5947   guarantee(verify_bitmaps(caller, hr), "bitmap verification");
5948 }
5949 
5950 class G1VerifyBitmapClosure : public HeapRegionClosure {
5951 private:
5952   const char* _caller;
5953   G1CollectedHeap* _g1h;
5954   bool _failures;
5955 
5956 public:
5957   G1VerifyBitmapClosure(const char* caller, G1CollectedHeap* g1h) :
5958     _caller(caller), _g1h(g1h), _failures(false) { }
5959 
5960   bool failures() { return _failures; }
5961 
5962   virtual bool doHeapRegion(HeapRegion* hr) {
5963     if (hr->is_continues_humongous()) return false;
5964 
5965     bool result = _g1h->verify_bitmaps(_caller, hr);
5966     if (!result) {
5967       _failures = true;
5968     }
5969     return false;
5970   }
5971 };
5972 
5973 void G1CollectedHeap::check_bitmaps(const char* caller) {
5974   if (!G1VerifyBitmaps) return;
5975 
5976   G1VerifyBitmapClosure cl(caller, this);
5977   heap_region_iterate(&cl);
5978   guarantee(!cl.failures(), "bitmap verification");
5979 }
5980 
5981 class G1CheckCSetFastTableClosure : public HeapRegionClosure {
5982  private:
5983   bool _failures;
5984  public:
5985   G1CheckCSetFastTableClosure() : HeapRegionClosure(), _failures(false) { }
5986 
5987   virtual bool doHeapRegion(HeapRegion* hr) {
5988     uint i = hr->hrm_index();
5989     InCSetState cset_state = (InCSetState) G1CollectedHeap::heap()->_in_cset_fast_test.get_by_index(i);
5990     if (hr->is_humongous()) {
5991       if (hr->in_collection_set()) {
5992         gclog_or_tty->print_cr("\n## humongous region %u in CSet", i);
5993         _failures = true;
5994         return true;
5995       }
5996       if (cset_state.is_in_cset()) {
5997         gclog_or_tty->print_cr("\n## inconsistent cset state %d for humongous region %u", cset_state.value(), i);
5998         _failures = true;
5999         return true;
6000       }
6001       if (hr->is_continues_humongous() && cset_state.is_humongous()) {
6002         gclog_or_tty->print_cr("\n## inconsistent cset state %d for continues humongous region %u", cset_state.value(), i);
6003         _failures = true;
6004         return true;
6005       }
6006     } else {
6007       if (cset_state.is_humongous()) {
6008         gclog_or_tty->print_cr("\n## inconsistent cset state %d for non-humongous region %u", cset_state.value(), i);
6009         _failures = true;
6010         return true;
6011       }
6012       if (hr->in_collection_set() != cset_state.is_in_cset()) {
6013         gclog_or_tty->print_cr("\n## in CSet %d / cset state %d inconsistency for region %u",
6014                                hr->in_collection_set(), cset_state.value(), i);
6015         _failures = true;
6016         return true;
6017       }
6018       if (cset_state.is_in_cset()) {
6019         if (hr->is_young() != (cset_state.is_young())) {
6020           gclog_or_tty->print_cr("\n## is_young %d / cset state %d inconsistency for region %u",
6021                                  hr->is_young(), cset_state.value(), i);
6022           _failures = true;
6023           return true;
6024         }
6025         if (hr->is_old() != (cset_state.is_old())) {
6026           gclog_or_tty->print_cr("\n## is_old %d / cset state %d inconsistency for region %u",
6027                                  hr->is_old(), cset_state.value(), i);
6028           _failures = true;
6029           return true;
6030         }
6031       }
6032     }
6033     return false;
6034   }
6035 
6036   bool failures() const { return _failures; }
6037 };
6038 
6039 bool G1CollectedHeap::check_cset_fast_test() {
6040   G1CheckCSetFastTableClosure cl;
6041   _hrm.iterate(&cl);
6042   return !cl.failures();
6043 }
6044 #endif // PRODUCT
6045 
6046 void G1CollectedHeap::cleanUpCardTable() {
6047   G1SATBCardTableModRefBS* ct_bs = g1_barrier_set();
6048   double start = os::elapsedTime();
6049 
6050   {
6051     // Iterate over the dirty cards region list.
6052     G1ParCleanupCTTask cleanup_task(ct_bs, this);
6053 
6054     set_par_threads();
6055     workers()->run_task(&cleanup_task);
6056     set_par_threads(0);
6057 #ifndef PRODUCT
6058     if (G1VerifyCTCleanup || VerifyAfterGC) {
6059       G1VerifyCardTableCleanup cleanup_verifier(this, ct_bs);
6060       heap_region_iterate(&cleanup_verifier);
6061     }
6062 #endif
6063   }
6064 
6065   double elapsed = os::elapsedTime() - start;
6066   g1_policy()->phase_times()->record_clear_ct_time(elapsed * 1000.0);
6067 }
6068 
6069 void G1CollectedHeap::free_collection_set(HeapRegion* cs_head, EvacuationInfo& evacuation_info) {
6070   size_t pre_used = 0;
6071   FreeRegionList local_free_list("Local List for CSet Freeing");
6072 
6073   double young_time_ms     = 0.0;
6074   double non_young_time_ms = 0.0;
6075 
6076   // Since the collection set is a superset of the the young list,
6077   // all we need to do to clear the young list is clear its
6078   // head and length, and unlink any young regions in the code below
6079   _young_list->clear();
6080 
6081   G1CollectorPolicy* policy = g1_policy();
6082 
6083   double start_sec = os::elapsedTime();
6084   bool non_young = true;
6085 
6086   HeapRegion* cur = cs_head;
6087   int age_bound = -1;
6088   size_t rs_lengths = 0;
6089 
6090   while (cur != NULL) {
6091     assert(!is_on_master_free_list(cur), "sanity");
6092     if (non_young) {
6093       if (cur->is_young()) {
6094         double end_sec = os::elapsedTime();
6095         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6096         non_young_time_ms += elapsed_ms;
6097 
6098         start_sec = os::elapsedTime();
6099         non_young = false;
6100       }
6101     } else {
6102       if (!cur->is_young()) {
6103         double end_sec = os::elapsedTime();
6104         double elapsed_ms = (end_sec - start_sec) * 1000.0;
6105         young_time_ms += elapsed_ms;
6106 
6107         start_sec = os::elapsedTime();
6108         non_young = true;
6109       }
6110     }
6111 
6112     rs_lengths += cur->rem_set()->occupied_locked();
6113 
6114     HeapRegion* next = cur->next_in_collection_set();
6115     assert(cur->in_collection_set(), "bad CS");
6116     cur->set_next_in_collection_set(NULL);
6117     cur->set_in_collection_set(false);
6118 
6119     if (cur->is_young()) {
6120       int index = cur->young_index_in_cset();
6121       assert(index != -1, "invariant");
6122       assert((uint) index < policy->young_cset_region_length(), "invariant");
6123       size_t words_survived = _surviving_young_words[index];
6124       cur->record_surv_words_in_group(words_survived);
6125 
6126       // At this point the we have 'popped' cur from the collection set
6127       // (linked via next_in_collection_set()) but it is still in the
6128       // young list (linked via next_young_region()). Clear the
6129       // _next_young_region field.
6130       cur->set_next_young_region(NULL);
6131     } else {
6132       int index = cur->young_index_in_cset();
6133       assert(index == -1, "invariant");
6134     }
6135 
6136     assert( (cur->is_young() && cur->young_index_in_cset() > -1) ||
6137             (!cur->is_young() && cur->young_index_in_cset() == -1),
6138             "invariant" );
6139 
6140     if (!cur->evacuation_failed()) {
6141       MemRegion used_mr = cur->used_region();
6142 
6143       // And the region is empty.
6144       assert(!used_mr.is_empty(), "Should not have empty regions in a CS.");
6145       pre_used += cur->used();
6146       free_region(cur, &local_free_list, false /* par */, true /* locked */);
6147     } else {
6148       cur->uninstall_surv_rate_group();
6149       if (cur->is_young()) {
6150         cur->set_young_index_in_cset(-1);
6151       }
6152       cur->set_evacuation_failed(false);
6153       // The region is now considered to be old.
6154       cur->set_old();
6155       _old_set.add(cur);
6156       evacuation_info.increment_collectionset_used_after(cur->used());
6157     }
6158     cur = next;
6159   }
6160 
6161   evacuation_info.set_regions_freed(local_free_list.length());
6162   policy->record_max_rs_lengths(rs_lengths);
6163   policy->cset_regions_freed();
6164 
6165   double end_sec = os::elapsedTime();
6166   double elapsed_ms = (end_sec - start_sec) * 1000.0;
6167 
6168   if (non_young) {
6169     non_young_time_ms += elapsed_ms;
6170   } else {
6171     young_time_ms += elapsed_ms;
6172   }
6173 
6174   prepend_to_freelist(&local_free_list);
6175   decrement_summary_bytes(pre_used);
6176   policy->phase_times()->record_young_free_cset_time_ms(young_time_ms);
6177   policy->phase_times()->record_non_young_free_cset_time_ms(non_young_time_ms);
6178 }
6179 
6180 class G1FreeHumongousRegionClosure : public HeapRegionClosure {
6181  private:
6182   FreeRegionList* _free_region_list;
6183   HeapRegionSet* _proxy_set;
6184   HeapRegionSetCount _humongous_regions_removed;
6185   size_t _freed_bytes;
6186  public:
6187 
6188   G1FreeHumongousRegionClosure(FreeRegionList* free_region_list) :
6189     _free_region_list(free_region_list), _humongous_regions_removed(), _freed_bytes(0) {
6190   }
6191 
6192   virtual bool doHeapRegion(HeapRegion* r) {
6193     if (!r->is_starts_humongous()) {
6194       return false;
6195     }
6196 
6197     G1CollectedHeap* g1h = G1CollectedHeap::heap();
6198 
6199     oop obj = (oop)r->bottom();
6200     CMBitMap* next_bitmap = g1h->concurrent_mark()->nextMarkBitMap();
6201 
6202     // The following checks whether the humongous object is live are sufficient.
6203     // The main additional check (in addition to having a reference from the roots
6204     // or the young gen) is whether the humongous object has a remembered set entry.
6205     //
6206     // A humongous object cannot be live if there is no remembered set for it
6207     // because:
6208     // - there can be no references from within humongous starts regions referencing
6209     // the object because we never allocate other objects into them.
6210     // (I.e. there are no intra-region references that may be missed by the
6211     // remembered set)
6212     // - as soon there is a remembered set entry to the humongous starts region
6213     // (i.e. it has "escaped" to an old object) this remembered set entry will stay
6214     // until the end of a concurrent mark.
6215     //
6216     // It is not required to check whether the object has been found dead by marking
6217     // or not, in fact it would prevent reclamation within a concurrent cycle, as
6218     // all objects allocated during that time are considered live.
6219     // SATB marking is even more conservative than the remembered set.
6220     // So if at this point in the collection there is no remembered set entry,
6221     // nobody has a reference to it.
6222     // At the start of collection we flush all refinement logs, and remembered sets
6223     // are completely up-to-date wrt to references to the humongous object.
6224     //
6225     // Other implementation considerations:
6226     // - never consider object arrays at this time because they would pose
6227     // considerable effort for cleaning up the the remembered sets. This is
6228     // required because stale remembered sets might reference locations that
6229     // are currently allocated into.
6230     uint region_idx = r->hrm_index();
6231     if (g1h->humongous_is_live(region_idx) ||
6232         g1h->humongous_region_is_always_live(region_idx)) {
6233 
6234       if (G1TraceEagerReclaimHumongousObjects) {
6235         gclog_or_tty->print_cr("Live humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6236                                region_idx,
6237                                obj->size()*HeapWordSize,
6238                                r->bottom(),
6239                                r->region_num(),
6240                                r->rem_set()->occupied(),
6241                                r->rem_set()->strong_code_roots_list_length(),
6242                                next_bitmap->isMarked(r->bottom()),
6243                                g1h->humongous_is_live(region_idx),
6244                                obj->is_objArray()
6245                               );
6246       }
6247 
6248       return false;
6249     }
6250 
6251     guarantee(!obj->is_objArray(),
6252               err_msg("Eagerly reclaiming object arrays is not supported, but the object "PTR_FORMAT" is.",
6253                       r->bottom()));
6254 
6255     if (G1TraceEagerReclaimHumongousObjects) {
6256       gclog_or_tty->print_cr("Dead humongous region %u size "SIZE_FORMAT" start "PTR_FORMAT" length "UINT32_FORMAT" with remset "SIZE_FORMAT" code roots "SIZE_FORMAT" is marked %d live-other %d obj array %d",
6257                              region_idx,
6258                              obj->size()*HeapWordSize,
6259                              r->bottom(),
6260                              r->region_num(),
6261                              r->rem_set()->occupied(),
6262                              r->rem_set()->strong_code_roots_list_length(),
6263                              next_bitmap->isMarked(r->bottom()),
6264                              g1h->humongous_is_live(region_idx),
6265                              obj->is_objArray()
6266                             );
6267     }
6268     // Need to clear mark bit of the humongous object if already set.
6269     if (next_bitmap->isMarked(r->bottom())) {
6270       next_bitmap->clear(r->bottom());
6271     }
6272     _freed_bytes += r->used();
6273     r->set_containing_set(NULL);
6274     _humongous_regions_removed.increment(1u, r->capacity());
6275     g1h->free_humongous_region(r, _free_region_list, false);
6276 
6277     return false;
6278   }
6279 
6280   HeapRegionSetCount& humongous_free_count() {
6281     return _humongous_regions_removed;
6282   }
6283 
6284   size_t bytes_freed() const {
6285     return _freed_bytes;
6286   }
6287 
6288   size_t humongous_reclaimed() const {
6289     return _humongous_regions_removed.length();
6290   }
6291 };
6292 
6293 void G1CollectedHeap::eagerly_reclaim_humongous_regions() {
6294   assert_at_safepoint(true);
6295 
6296   if (!G1EagerReclaimHumongousObjects ||
6297       (!_has_humongous_reclaim_candidates && !G1TraceEagerReclaimHumongousObjects)) {
6298     g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms(0.0, 0);
6299     return;
6300   }
6301 
6302   double start_time = os::elapsedTime();
6303 
6304   FreeRegionList local_cleanup_list("Local Humongous Cleanup List");
6305 
6306   G1FreeHumongousRegionClosure cl(&local_cleanup_list);
6307   heap_region_iterate(&cl);
6308 
6309   HeapRegionSetCount empty_set;
6310   remove_from_old_sets(empty_set, cl.humongous_free_count());
6311 
6312   G1HRPrinter* hr_printer = _g1h->hr_printer();
6313   if (hr_printer->is_active()) {
6314     FreeRegionListIterator iter(&local_cleanup_list);
6315     while (iter.more_available()) {
6316       HeapRegion* hr = iter.get_next();
6317       hr_printer->cleanup(hr);
6318     }
6319   }
6320 
6321   prepend_to_freelist(&local_cleanup_list);
6322   decrement_summary_bytes(cl.bytes_freed());
6323 
6324   g1_policy()->phase_times()->record_fast_reclaim_humongous_time_ms((os::elapsedTime() - start_time) * 1000.0,
6325                                                                     cl.humongous_reclaimed());
6326 }
6327 
6328 // This routine is similar to the above but does not record
6329 // any policy statistics or update free lists; we are abandoning
6330 // the current incremental collection set in preparation of a
6331 // full collection. After the full GC we will start to build up
6332 // the incremental collection set again.
6333 // This is only called when we're doing a full collection
6334 // and is immediately followed by the tearing down of the young list.
6335 
6336 void G1CollectedHeap::abandon_collection_set(HeapRegion* cs_head) {
6337   HeapRegion* cur = cs_head;
6338 
6339   while (cur != NULL) {
6340     HeapRegion* next = cur->next_in_collection_set();
6341     assert(cur->in_collection_set(), "bad CS");
6342     cur->set_next_in_collection_set(NULL);
6343     cur->set_in_collection_set(false);
6344     cur->set_young_index_in_cset(-1);
6345     cur = next;
6346   }
6347 }
6348 
6349 void G1CollectedHeap::set_free_regions_coming() {
6350   if (G1ConcRegionFreeingVerbose) {
6351     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6352                            "setting free regions coming");
6353   }
6354 
6355   assert(!free_regions_coming(), "pre-condition");
6356   _free_regions_coming = true;
6357 }
6358 
6359 void G1CollectedHeap::reset_free_regions_coming() {
6360   assert(free_regions_coming(), "pre-condition");
6361 
6362   {
6363     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6364     _free_regions_coming = false;
6365     SecondaryFreeList_lock->notify_all();
6366   }
6367 
6368   if (G1ConcRegionFreeingVerbose) {
6369     gclog_or_tty->print_cr("G1ConcRegionFreeing [cm thread] : "
6370                            "reset free regions coming");
6371   }
6372 }
6373 
6374 void G1CollectedHeap::wait_while_free_regions_coming() {
6375   // Most of the time we won't have to wait, so let's do a quick test
6376   // first before we take the lock.
6377   if (!free_regions_coming()) {
6378     return;
6379   }
6380 
6381   if (G1ConcRegionFreeingVerbose) {
6382     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6383                            "waiting for free regions");
6384   }
6385 
6386   {
6387     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6388     while (free_regions_coming()) {
6389       SecondaryFreeList_lock->wait(Mutex::_no_safepoint_check_flag);
6390     }
6391   }
6392 
6393   if (G1ConcRegionFreeingVerbose) {
6394     gclog_or_tty->print_cr("G1ConcRegionFreeing [other] : "
6395                            "done waiting for free regions");
6396   }
6397 }
6398 
6399 void G1CollectedHeap::set_region_short_lived_locked(HeapRegion* hr) {
6400   assert(heap_lock_held_for_gc(),
6401               "the heap lock should already be held by or for this thread");
6402   _young_list->push_region(hr);
6403 }
6404 
6405 class NoYoungRegionsClosure: public HeapRegionClosure {
6406 private:
6407   bool _success;
6408 public:
6409   NoYoungRegionsClosure() : _success(true) { }
6410   bool doHeapRegion(HeapRegion* r) {
6411     if (r->is_young()) {
6412       gclog_or_tty->print_cr("Region ["PTR_FORMAT", "PTR_FORMAT") tagged as young",
6413                              r->bottom(), r->end());
6414       _success = false;
6415     }
6416     return false;
6417   }
6418   bool success() { return _success; }
6419 };
6420 
6421 bool G1CollectedHeap::check_young_list_empty(bool check_heap, bool check_sample) {
6422   bool ret = _young_list->check_list_empty(check_sample);
6423 
6424   if (check_heap) {
6425     NoYoungRegionsClosure closure;
6426     heap_region_iterate(&closure);
6427     ret = ret && closure.success();
6428   }
6429 
6430   return ret;
6431 }
6432 
6433 class TearDownRegionSetsClosure : public HeapRegionClosure {
6434 private:
6435   HeapRegionSet *_old_set;
6436 
6437 public:
6438   TearDownRegionSetsClosure(HeapRegionSet* old_set) : _old_set(old_set) { }
6439 
6440   bool doHeapRegion(HeapRegion* r) {
6441     if (r->is_old()) {
6442       _old_set->remove(r);
6443     } else {
6444       // We ignore free regions, we'll empty the free list afterwards.
6445       // We ignore young regions, we'll empty the young list afterwards.
6446       // We ignore humongous regions, we're not tearing down the
6447       // humongous regions set.
6448       assert(r->is_free() || r->is_young() || r->is_humongous(),
6449              "it cannot be another type");
6450     }
6451     return false;
6452   }
6453 
6454   ~TearDownRegionSetsClosure() {
6455     assert(_old_set->is_empty(), "post-condition");
6456   }
6457 };
6458 
6459 void G1CollectedHeap::tear_down_region_sets(bool free_list_only) {
6460   assert_at_safepoint(true /* should_be_vm_thread */);
6461 
6462   if (!free_list_only) {
6463     TearDownRegionSetsClosure cl(&_old_set);
6464     heap_region_iterate(&cl);
6465 
6466     // Note that emptying the _young_list is postponed and instead done as
6467     // the first step when rebuilding the regions sets again. The reason for
6468     // this is that during a full GC string deduplication needs to know if
6469     // a collected region was young or old when the full GC was initiated.
6470   }
6471   _hrm.remove_all_free_regions();
6472 }
6473 
6474 class RebuildRegionSetsClosure : public HeapRegionClosure {
6475 private:
6476   bool            _free_list_only;
6477   HeapRegionSet*   _old_set;
6478   HeapRegionManager*   _hrm;
6479   size_t          _total_used;
6480 
6481 public:
6482   RebuildRegionSetsClosure(bool free_list_only,
6483                            HeapRegionSet* old_set, HeapRegionManager* hrm) :
6484     _free_list_only(free_list_only),
6485     _old_set(old_set), _hrm(hrm), _total_used(0) {
6486     assert(_hrm->num_free_regions() == 0, "pre-condition");
6487     if (!free_list_only) {
6488       assert(_old_set->is_empty(), "pre-condition");
6489     }
6490   }
6491 
6492   bool doHeapRegion(HeapRegion* r) {
6493     if (r->is_continues_humongous()) {
6494       return false;
6495     }
6496 
6497     if (r->is_empty()) {
6498       // Add free regions to the free list
6499       r->set_free();
6500       r->set_allocation_context(AllocationContext::system());
6501       _hrm->insert_into_free_list(r);
6502     } else if (!_free_list_only) {
6503       assert(!r->is_young(), "we should not come across young regions");
6504 
6505       if (r->is_humongous()) {
6506         // We ignore humongous regions, we left the humongous set unchanged
6507       } else {
6508         // Objects that were compacted would have ended up on regions
6509         // that were previously old or free.
6510         assert(r->is_free() || r->is_old(), "invariant");
6511         // We now consider them old, so register as such.
6512         r->set_old();
6513         _old_set->add(r);
6514       }
6515       _total_used += r->used();
6516     }
6517 
6518     return false;
6519   }
6520 
6521   size_t total_used() {
6522     return _total_used;
6523   }
6524 };
6525 
6526 void G1CollectedHeap::rebuild_region_sets(bool free_list_only) {
6527   assert_at_safepoint(true /* should_be_vm_thread */);
6528 
6529   if (!free_list_only) {
6530     _young_list->empty_list();
6531   }
6532 
6533   RebuildRegionSetsClosure cl(free_list_only, &_old_set, &_hrm);
6534   heap_region_iterate(&cl);
6535 
6536   if (!free_list_only) {
6537     _allocator->set_used(cl.total_used());
6538   }
6539   assert(_allocator->used_unlocked() == recalculate_used(),
6540          err_msg("inconsistent _allocator->used_unlocked(), "
6541                  "value: "SIZE_FORMAT" recalculated: "SIZE_FORMAT,
6542                  _allocator->used_unlocked(), recalculate_used()));
6543 }
6544 
6545 void G1CollectedHeap::set_refine_cte_cl_concurrency(bool concurrent) {
6546   _refine_cte_cl->set_concurrent(concurrent);
6547 }
6548 
6549 bool G1CollectedHeap::is_in_closed_subset(const void* p) const {
6550   HeapRegion* hr = heap_region_containing(p);
6551   return hr->is_in(p);
6552 }
6553 
6554 // Methods for the mutator alloc region
6555 
6556 HeapRegion* G1CollectedHeap::new_mutator_alloc_region(size_t word_size,
6557                                                       bool force) {
6558   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6559   assert(!force || g1_policy()->can_expand_young_list(),
6560          "if force is true we should be able to expand the young list");
6561   bool young_list_full = g1_policy()->is_young_list_full();
6562   if (force || !young_list_full) {
6563     HeapRegion* new_alloc_region = new_region(word_size,
6564                                               false /* is_old */,
6565                                               false /* do_expand */);
6566     if (new_alloc_region != NULL) {
6567       set_region_short_lived_locked(new_alloc_region);
6568       _hr_printer.alloc(new_alloc_region, G1HRPrinter::Eden, young_list_full);
6569       check_bitmaps("Mutator Region Allocation", new_alloc_region);
6570       return new_alloc_region;
6571     }
6572   }
6573   return NULL;
6574 }
6575 
6576 void G1CollectedHeap::retire_mutator_alloc_region(HeapRegion* alloc_region,
6577                                                   size_t allocated_bytes) {
6578   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6579   assert(alloc_region->is_eden(), "all mutator alloc regions should be eden");
6580 
6581   g1_policy()->add_region_to_incremental_cset_lhs(alloc_region);
6582   _allocator->increase_used(allocated_bytes);
6583   _hr_printer.retire(alloc_region);
6584   // We update the eden sizes here, when the region is retired,
6585   // instead of when it's allocated, since this is the point that its
6586   // used space has been recored in _summary_bytes_used.
6587   g1mm()->update_eden_size();
6588 }
6589 
6590 void G1CollectedHeap::set_par_threads() {
6591   // Don't change the number of workers.  Use the value previously set
6592   // in the workgroup.
6593   uint n_workers = workers()->active_workers();
6594   assert(UseDynamicNumberOfGCThreads ||
6595            n_workers == workers()->total_workers(),
6596       "Otherwise should be using the total number of workers");
6597   if (n_workers == 0) {
6598     assert(false, "Should have been set in prior evacuation pause.");
6599     n_workers = ParallelGCThreads;
6600     workers()->set_active_workers(n_workers);
6601   }
6602   set_par_threads(n_workers);
6603 }
6604 
6605 // Methods for the GC alloc regions
6606 
6607 HeapRegion* G1CollectedHeap::new_gc_alloc_region(size_t word_size,
6608                                                  uint count,
6609                                                  InCSetState dest) {
6610   assert(FreeList_lock->owned_by_self(), "pre-condition");
6611 
6612   if (count < g1_policy()->max_regions(dest)) {
6613     const bool is_survivor = (dest.is_young());
6614     HeapRegion* new_alloc_region = new_region(word_size,
6615                                               !is_survivor,
6616                                               true /* do_expand */);
6617     if (new_alloc_region != NULL) {
6618       // We really only need to do this for old regions given that we
6619       // should never scan survivors. But it doesn't hurt to do it
6620       // for survivors too.
6621       new_alloc_region->record_timestamp();
6622       if (is_survivor) {
6623         new_alloc_region->set_survivor();
6624         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Survivor);
6625         check_bitmaps("Survivor Region Allocation", new_alloc_region);
6626       } else {
6627         new_alloc_region->set_old();
6628         _hr_printer.alloc(new_alloc_region, G1HRPrinter::Old);
6629         check_bitmaps("Old Region Allocation", new_alloc_region);
6630       }
6631       bool during_im = g1_policy()->during_initial_mark_pause();
6632       new_alloc_region->note_start_of_copying(during_im);
6633       return new_alloc_region;
6634     }
6635   }
6636   return NULL;
6637 }
6638 
6639 void G1CollectedHeap::retire_gc_alloc_region(HeapRegion* alloc_region,
6640                                              size_t allocated_bytes,
6641                                              InCSetState dest) {
6642   bool during_im = g1_policy()->during_initial_mark_pause();
6643   alloc_region->note_end_of_copying(during_im);
6644   g1_policy()->record_bytes_copied_during_gc(allocated_bytes);
6645   if (dest.is_young()) {
6646     young_list()->add_survivor_region(alloc_region);
6647   } else {
6648     _old_set.add(alloc_region);
6649   }
6650   _hr_printer.retire(alloc_region);
6651 }
6652 
6653 // Heap region set verification
6654 
6655 class VerifyRegionListsClosure : public HeapRegionClosure {
6656 private:
6657   HeapRegionSet*   _old_set;
6658   HeapRegionSet*   _humongous_set;
6659   HeapRegionManager*   _hrm;
6660 
6661 public:
6662   HeapRegionSetCount _old_count;
6663   HeapRegionSetCount _humongous_count;
6664   HeapRegionSetCount _free_count;
6665 
6666   VerifyRegionListsClosure(HeapRegionSet* old_set,
6667                            HeapRegionSet* humongous_set,
6668                            HeapRegionManager* hrm) :
6669     _old_set(old_set), _humongous_set(humongous_set), _hrm(hrm),
6670     _old_count(), _humongous_count(), _free_count(){ }
6671 
6672   bool doHeapRegion(HeapRegion* hr) {
6673     if (hr->is_continues_humongous()) {
6674       return false;
6675     }
6676 
6677     if (hr->is_young()) {
6678       // TODO
6679     } else if (hr->is_starts_humongous()) {
6680       assert(hr->containing_set() == _humongous_set, err_msg("Heap region %u is starts humongous but not in humongous set.", hr->hrm_index()));
6681       _humongous_count.increment(1u, hr->capacity());
6682     } else if (hr->is_empty()) {
6683       assert(_hrm->is_free(hr), err_msg("Heap region %u is empty but not on the free list.", hr->hrm_index()));
6684       _free_count.increment(1u, hr->capacity());
6685     } else if (hr->is_old()) {
6686       assert(hr->containing_set() == _old_set, err_msg("Heap region %u is old but not in the old set.", hr->hrm_index()));
6687       _old_count.increment(1u, hr->capacity());
6688     } else {
6689       ShouldNotReachHere();
6690     }
6691     return false;
6692   }
6693 
6694   void verify_counts(HeapRegionSet* old_set, HeapRegionSet* humongous_set, HeapRegionManager* free_list) {
6695     guarantee(old_set->length() == _old_count.length(), err_msg("Old set count mismatch. Expected %u, actual %u.", old_set->length(), _old_count.length()));
6696     guarantee(old_set->total_capacity_bytes() == _old_count.capacity(), err_msg("Old set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6697         old_set->total_capacity_bytes(), _old_count.capacity()));
6698 
6699     guarantee(humongous_set->length() == _humongous_count.length(), err_msg("Hum set count mismatch. Expected %u, actual %u.", humongous_set->length(), _humongous_count.length()));
6700     guarantee(humongous_set->total_capacity_bytes() == _humongous_count.capacity(), err_msg("Hum set capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6701         humongous_set->total_capacity_bytes(), _humongous_count.capacity()));
6702 
6703     guarantee(free_list->num_free_regions() == _free_count.length(), err_msg("Free list count mismatch. Expected %u, actual %u.", free_list->num_free_regions(), _free_count.length()));
6704     guarantee(free_list->total_capacity_bytes() == _free_count.capacity(), err_msg("Free list capacity mismatch. Expected " SIZE_FORMAT ", actual " SIZE_FORMAT,
6705         free_list->total_capacity_bytes(), _free_count.capacity()));
6706   }
6707 };
6708 
6709 void G1CollectedHeap::verify_region_sets() {
6710   assert_heap_locked_or_at_safepoint(true /* should_be_vm_thread */);
6711 
6712   // First, check the explicit lists.
6713   _hrm.verify();
6714   {
6715     // Given that a concurrent operation might be adding regions to
6716     // the secondary free list we have to take the lock before
6717     // verifying it.
6718     MutexLockerEx x(SecondaryFreeList_lock, Mutex::_no_safepoint_check_flag);
6719     _secondary_free_list.verify_list();
6720   }
6721 
6722   // If a concurrent region freeing operation is in progress it will
6723   // be difficult to correctly attributed any free regions we come
6724   // across to the correct free list given that they might belong to
6725   // one of several (free_list, secondary_free_list, any local lists,
6726   // etc.). So, if that's the case we will skip the rest of the
6727   // verification operation. Alternatively, waiting for the concurrent
6728   // operation to complete will have a non-trivial effect on the GC's
6729   // operation (no concurrent operation will last longer than the
6730   // interval between two calls to verification) and it might hide
6731   // any issues that we would like to catch during testing.
6732   if (free_regions_coming()) {
6733     return;
6734   }
6735 
6736   // Make sure we append the secondary_free_list on the free_list so
6737   // that all free regions we will come across can be safely
6738   // attributed to the free_list.
6739   append_secondary_free_list_if_not_empty_with_lock();
6740 
6741   // Finally, make sure that the region accounting in the lists is
6742   // consistent with what we see in the heap.
6743 
6744   VerifyRegionListsClosure cl(&_old_set, &_humongous_set, &_hrm);
6745   heap_region_iterate(&cl);
6746   cl.verify_counts(&_old_set, &_humongous_set, &_hrm);
6747 }
6748 
6749 // Optimized nmethod scanning
6750 
6751 class RegisterNMethodOopClosure: public OopClosure {
6752   G1CollectedHeap* _g1h;
6753   nmethod* _nm;
6754 
6755   template <class T> void do_oop_work(T* p) {
6756     T heap_oop = oopDesc::load_heap_oop(p);
6757     if (!oopDesc::is_null(heap_oop)) {
6758       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6759       HeapRegion* hr = _g1h->heap_region_containing(obj);
6760       assert(!hr->is_continues_humongous(),
6761              err_msg("trying to add code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6762                      " starting at "HR_FORMAT,
6763                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6764 
6765       // HeapRegion::add_strong_code_root_locked() avoids adding duplicate entries.
6766       hr->add_strong_code_root_locked(_nm);
6767     }
6768   }
6769 
6770 public:
6771   RegisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6772     _g1h(g1h), _nm(nm) {}
6773 
6774   void do_oop(oop* p)       { do_oop_work(p); }
6775   void do_oop(narrowOop* p) { do_oop_work(p); }
6776 };
6777 
6778 class UnregisterNMethodOopClosure: public OopClosure {
6779   G1CollectedHeap* _g1h;
6780   nmethod* _nm;
6781 
6782   template <class T> void do_oop_work(T* p) {
6783     T heap_oop = oopDesc::load_heap_oop(p);
6784     if (!oopDesc::is_null(heap_oop)) {
6785       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
6786       HeapRegion* hr = _g1h->heap_region_containing(obj);
6787       assert(!hr->is_continues_humongous(),
6788              err_msg("trying to remove code root "PTR_FORMAT" in continuation of humongous region "HR_FORMAT
6789                      " starting at "HR_FORMAT,
6790                      _nm, HR_FORMAT_PARAMS(hr), HR_FORMAT_PARAMS(hr->humongous_start_region())));
6791 
6792       hr->remove_strong_code_root(_nm);
6793     }
6794   }
6795 
6796 public:
6797   UnregisterNMethodOopClosure(G1CollectedHeap* g1h, nmethod* nm) :
6798     _g1h(g1h), _nm(nm) {}
6799 
6800   void do_oop(oop* p)       { do_oop_work(p); }
6801   void do_oop(narrowOop* p) { do_oop_work(p); }
6802 };
6803 
6804 void G1CollectedHeap::register_nmethod(nmethod* nm) {
6805   CollectedHeap::register_nmethod(nm);
6806 
6807   guarantee(nm != NULL, "sanity");
6808   RegisterNMethodOopClosure reg_cl(this, nm);
6809   nm->oops_do(&reg_cl);
6810 }
6811 
6812 void G1CollectedHeap::unregister_nmethod(nmethod* nm) {
6813   CollectedHeap::unregister_nmethod(nm);
6814 
6815   guarantee(nm != NULL, "sanity");
6816   UnregisterNMethodOopClosure reg_cl(this, nm);
6817   nm->oops_do(&reg_cl, true);
6818 }
6819 
6820 void G1CollectedHeap::purge_code_root_memory() {
6821   double purge_start = os::elapsedTime();
6822   G1CodeRootSet::purge();
6823   double purge_time_ms = (os::elapsedTime() - purge_start) * 1000.0;
6824   g1_policy()->phase_times()->record_strong_code_root_purge_time(purge_time_ms);
6825 }
6826 
6827 class RebuildStrongCodeRootClosure: public CodeBlobClosure {
6828   G1CollectedHeap* _g1h;
6829 
6830 public:
6831   RebuildStrongCodeRootClosure(G1CollectedHeap* g1h) :
6832     _g1h(g1h) {}
6833 
6834   void do_code_blob(CodeBlob* cb) {
6835     nmethod* nm = (cb != NULL) ? cb->as_nmethod_or_null() : NULL;
6836     if (nm == NULL) {
6837       return;
6838     }
6839 
6840     if (ScavengeRootsInCode) {
6841       _g1h->register_nmethod(nm);
6842     }
6843   }
6844 };
6845 
6846 void G1CollectedHeap::rebuild_strong_code_roots() {
6847   RebuildStrongCodeRootClosure blob_cl(this);
6848   CodeCache::blobs_do(&blob_cl);
6849 }