1 /*
   2  * Copyright (c) 2001, 2016, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "code/nmethod.hpp"
  27 #include "gc/g1/g1BlockOffsetTable.inline.hpp"
  28 #include "gc/g1/g1CollectedHeap.inline.hpp"
  29 #include "gc/g1/g1HeapRegionTraceType.hpp"
  30 #include "gc/g1/g1OopClosures.inline.hpp"
  31 #include "gc/g1/heapRegion.inline.hpp"
  32 #include "gc/g1/heapRegionBounds.inline.hpp"
  33 #include "gc/g1/heapRegionManager.inline.hpp"
  34 #include "gc/g1/heapRegionRemSet.hpp"
  35 #include "gc/g1/heapRegionTracer.hpp"
  36 #include "gc/shared/genOopClosures.inline.hpp"
  37 #include "gc/shared/space.inline.hpp"
  38 #include "logging/log.hpp"
  39 #include "memory/iterator.hpp"
  40 #include "memory/resourceArea.hpp"
  41 #include "oops/oop.inline.hpp"
  42 #include "runtime/atomic.inline.hpp"
  43 #include "runtime/orderAccess.inline.hpp"
  44 
  45 int    HeapRegion::LogOfHRGrainBytes = 0;
  46 int    HeapRegion::LogOfHRGrainWords = 0;
  47 size_t HeapRegion::GrainBytes        = 0;
  48 size_t HeapRegion::GrainWords        = 0;
  49 size_t HeapRegion::CardsPerRegion    = 0;
  50 
  51 HeapRegionDCTOC::HeapRegionDCTOC(G1CollectedHeap* g1,
  52                                  HeapRegion* hr,
  53                                  G1ParPushHeapRSClosure* cl,
  54                                  CardTableModRefBS::PrecisionStyle precision) :
  55   DirtyCardToOopClosure(hr, cl, precision, NULL),
  56   _hr(hr), _rs_scan(cl), _g1(g1) { }
  57 
  58 FilterOutOfRegionClosure::FilterOutOfRegionClosure(HeapRegion* r,
  59                                                    OopClosure* oc) :
  60   _r_bottom(r->bottom()), _r_end(r->end()), _oc(oc) { }
  61 
  62 void HeapRegionDCTOC::walk_mem_region(MemRegion mr,
  63                                       HeapWord* bottom,
  64                                       HeapWord* top) {
  65   G1CollectedHeap* g1h = _g1;
  66   size_t oop_size;
  67   HeapWord* cur = bottom;
  68 
  69   // Start filtering what we add to the remembered set. If the object is
  70   // not considered dead, either because it is marked (in the mark bitmap)
  71   // or it was allocated after marking finished, then we add it. Otherwise
  72   // we can safely ignore the object.
  73   if (!g1h->is_obj_dead(oop(cur))) {
  74     oop_size = oop(cur)->oop_iterate_size(_rs_scan, mr);
  75   } else {
  76     oop_size = _hr->block_size(cur);
  77   }
  78 
  79   cur += oop_size;
  80 
  81   if (cur < top) {
  82     oop cur_oop = oop(cur);
  83     oop_size = _hr->block_size(cur);
  84     HeapWord* next_obj = cur + oop_size;
  85     while (next_obj < top) {
  86       // Keep filtering the remembered set.
  87       if (!g1h->is_obj_dead(cur_oop)) {
  88         // Bottom lies entirely below top, so we can call the
  89         // non-memRegion version of oop_iterate below.
  90         cur_oop->oop_iterate(_rs_scan);
  91       }
  92       cur = next_obj;
  93       cur_oop = oop(cur);
  94       oop_size = _hr->block_size(cur);
  95       next_obj = cur + oop_size;
  96     }
  97 
  98     // Last object. Need to do dead-obj filtering here too.
  99     if (!g1h->is_obj_dead(oop(cur))) {
 100       oop(cur)->oop_iterate(_rs_scan, mr);
 101     }
 102   }
 103 }
 104 
 105 size_t HeapRegion::max_region_size() {
 106   return HeapRegionBounds::max_size();
 107 }
 108 
 109 size_t HeapRegion::min_region_size_in_words() {
 110   return HeapRegionBounds::min_size() >> LogHeapWordSize;
 111 }
 112 
 113 void HeapRegion::setup_heap_region_size(size_t initial_heap_size, size_t max_heap_size) {
 114   size_t region_size = G1HeapRegionSize;
 115   if (FLAG_IS_DEFAULT(G1HeapRegionSize)) {
 116     size_t average_heap_size = (initial_heap_size + max_heap_size) / 2;
 117     region_size = MAX2(average_heap_size / HeapRegionBounds::target_number(),
 118                        HeapRegionBounds::min_size());
 119   }
 120 
 121   int region_size_log = log2_long((jlong) region_size);
 122   // Recalculate the region size to make sure it's a power of
 123   // 2. This means that region_size is the largest power of 2 that's
 124   // <= what we've calculated so far.
 125   region_size = ((size_t)1 << region_size_log);
 126 
 127   // Now make sure that we don't go over or under our limits.
 128   if (region_size < HeapRegionBounds::min_size()) {
 129     region_size = HeapRegionBounds::min_size();
 130   } else if (region_size > HeapRegionBounds::max_size()) {
 131     region_size = HeapRegionBounds::max_size();
 132   }
 133 
 134   // And recalculate the log.
 135   region_size_log = log2_long((jlong) region_size);
 136 
 137   // Now, set up the globals.
 138   guarantee(LogOfHRGrainBytes == 0, "we should only set it once");
 139   LogOfHRGrainBytes = region_size_log;
 140 
 141   guarantee(LogOfHRGrainWords == 0, "we should only set it once");
 142   LogOfHRGrainWords = LogOfHRGrainBytes - LogHeapWordSize;
 143 
 144   guarantee(GrainBytes == 0, "we should only set it once");
 145   // The cast to int is safe, given that we've bounded region_size by
 146   // MIN_REGION_SIZE and MAX_REGION_SIZE.
 147   GrainBytes = region_size;
 148   log_info(gc, heap)("Heap region size: " SIZE_FORMAT "M", GrainBytes / M);
 149 
 150   guarantee(GrainWords == 0, "we should only set it once");
 151   GrainWords = GrainBytes >> LogHeapWordSize;
 152   guarantee((size_t) 1 << LogOfHRGrainWords == GrainWords, "sanity");
 153 
 154   guarantee(CardsPerRegion == 0, "we should only set it once");
 155   CardsPerRegion = GrainBytes >> CardTableModRefBS::card_shift;
 156 
 157   if (G1HeapRegionSize != GrainBytes) {
 158     FLAG_SET_ERGO(size_t, G1HeapRegionSize, GrainBytes);
 159   }
 160 }
 161 
 162 void HeapRegion::reset_after_compaction() {
 163   G1ContiguousSpace::reset_after_compaction();
 164   // After a compaction the mark bitmap is invalid, so we must
 165   // treat all objects as being inside the unmarked area.
 166   zero_marked_bytes();
 167   init_top_at_mark_start();
 168 }
 169 
 170 void HeapRegion::hr_clear(bool keep_remset, bool clear_space, bool locked) {
 171   assert(_humongous_start_region == NULL,
 172          "we should have already filtered out humongous regions");
 173   assert(!in_collection_set(),
 174          "Should not clear heap region %u in the collection set", hrm_index());
 175 
 176   set_allocation_context(AllocationContext::system());
 177   set_young_index_in_cset(-1);
 178   uninstall_surv_rate_group();
 179   set_free();
 180   reset_pre_dummy_top();
 181 
 182   if (!keep_remset) {
 183     if (locked) {
 184       rem_set()->clear_locked();
 185     } else {
 186       rem_set()->clear();  
 187     }
 188   }
 189 
 190   zero_marked_bytes();
 191 
 192   init_top_at_mark_start();
 193   _gc_time_stamp = G1CollectedHeap::heap()->get_gc_time_stamp();
 194   if (clear_space) clear(SpaceDecorator::Mangle);
 195 }
 196 
 197 void HeapRegion::par_clear() {
 198   assert(used() == 0, "the region should have been already cleared");
 199   assert(capacity() == HeapRegion::GrainBytes, "should be back to normal");
 200   HeapRegionRemSet* hrrs = rem_set();
 201   hrrs->clear();
 202   CardTableModRefBS* ct_bs =
 203     barrier_set_cast<CardTableModRefBS>(G1CollectedHeap::heap()->barrier_set());
 204   ct_bs->clear(MemRegion(bottom(), end()));
 205 }
 206 
 207 void HeapRegion::calc_gc_efficiency() {
 208   // GC efficiency is the ratio of how much space would be
 209   // reclaimed over how long we predict it would take to reclaim it.
 210   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 211   G1Policy* g1p = g1h->g1_policy();
 212 
 213   // Retrieve a prediction of the elapsed time for this region for
 214   // a mixed gc because the region will only be evacuated during a
 215   // mixed gc.
 216   double region_elapsed_time_ms =
 217     g1p->predict_region_elapsed_time_ms(this, false /* for_young_gc */);
 218   _gc_efficiency = (double) reclaimable_bytes() / region_elapsed_time_ms;
 219 }
 220 
 221 void HeapRegion::set_free() {
 222   report_region_type_change(G1HeapRegionTraceType::Free);
 223   _type.set_free();
 224 }
 225 
 226 void HeapRegion::set_eden() {
 227   report_region_type_change(G1HeapRegionTraceType::Eden);
 228   _type.set_eden();
 229 }
 230 
 231 void HeapRegion::set_eden_pre_gc() {
 232   report_region_type_change(G1HeapRegionTraceType::Eden);
 233   _type.set_eden_pre_gc();
 234 }
 235 
 236 void HeapRegion::set_survivor() {
 237   report_region_type_change(G1HeapRegionTraceType::Survivor);
 238   _type.set_survivor();
 239 }
 240 
 241 void HeapRegion::set_old() {
 242   report_region_type_change(G1HeapRegionTraceType::Old);
 243   _type.set_old();
 244 }
 245 
 246 void HeapRegion::set_archive() {
 247   report_region_type_change(G1HeapRegionTraceType::Archive);
 248   _type.set_archive();
 249 }
 250 
 251 void HeapRegion::set_starts_humongous(HeapWord* obj_top, size_t fill_size) {
 252   assert(!is_humongous(), "sanity / pre-condition");
 253   assert(top() == bottom(), "should be empty");
 254 
 255   report_region_type_change(G1HeapRegionTraceType::StartsHumongous);
 256   _type.set_starts_humongous();
 257   _humongous_start_region = this;
 258 
 259   _bot_part.set_for_starts_humongous(obj_top, fill_size);
 260 }
 261 
 262 void HeapRegion::set_continues_humongous(HeapRegion* first_hr) {
 263   assert(!is_humongous(), "sanity / pre-condition");
 264   assert(top() == bottom(), "should be empty");
 265   assert(first_hr->is_starts_humongous(), "pre-condition");
 266 
 267   report_region_type_change(G1HeapRegionTraceType::ContinuesHumongous);
 268   _type.set_continues_humongous();
 269   _humongous_start_region = first_hr;
 270 }
 271 
 272 void HeapRegion::clear_humongous() {
 273   assert(is_humongous(), "pre-condition");
 274 
 275   assert(capacity() == HeapRegion::GrainBytes, "pre-condition");
 276   _humongous_start_region = NULL;
 277 }
 278 
 279 HeapRegion::HeapRegion(uint hrm_index,
 280                        G1BlockOffsetTable* bot,
 281                        MemRegion mr) :
 282     G1ContiguousSpace(bot),
 283     _hrm_index(hrm_index),
 284     _allocation_context(AllocationContext::system()),
 285     _humongous_start_region(NULL),
 286     _evacuation_failed(false),
 287     _prev_marked_bytes(0), _next_marked_bytes(0), _gc_efficiency(0.0),
 288     _next(NULL), _prev(NULL),
 289 #ifdef ASSERT
 290     _containing_set(NULL),
 291 #endif // ASSERT
 292      _young_index_in_cset(-1), _surv_rate_group(NULL), _age_index(-1),
 293     _rem_set(NULL), _recorded_rs_length(0), _predicted_elapsed_time_ms(0),
 294     _predicted_bytes_to_copy(0)
 295 {
 296   _rem_set = new HeapRegionRemSet(bot, this);
 297 
 298   initialize(mr);
 299 }
 300 
 301 void HeapRegion::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
 302   assert(_rem_set->is_empty(), "Remembered set must be empty");
 303 
 304   G1ContiguousSpace::initialize(mr, clear_space, mangle_space);
 305 
 306   hr_clear(false /*par*/, false /*clear_space*/);
 307   set_top(bottom());
 308   record_timestamp();
 309 }
 310 
 311 void HeapRegion::report_region_type_change(G1HeapRegionTraceType::Type to) {
 312   HeapRegionTracer::send_region_type_change(_hrm_index,
 313                                             get_trace_type(),
 314                                             to,
 315                                             (uintptr_t)bottom(),
 316                                             used(),
 317                                             (uint)allocation_context());
 318 }
 319 
 320 CompactibleSpace* HeapRegion::next_compaction_space() const {
 321   return G1CollectedHeap::heap()->next_compaction_region(this);
 322 }
 323 
 324 void HeapRegion::note_self_forwarding_removal_start(bool during_initial_mark,
 325                                                     bool during_conc_mark) {
 326   // We always recreate the prev marking info and we'll explicitly
 327   // mark all objects we find to be self-forwarded on the prev
 328   // bitmap. So all objects need to be below PTAMS.
 329   _prev_marked_bytes = 0;
 330 
 331   if (during_initial_mark) {
 332     // During initial-mark, we'll also explicitly mark all objects
 333     // we find to be self-forwarded on the next bitmap. So all
 334     // objects need to be below NTAMS.
 335     _next_top_at_mark_start = top();
 336     _next_marked_bytes = 0;
 337   } else if (during_conc_mark) {
 338     // During concurrent mark, all objects in the CSet (including
 339     // the ones we find to be self-forwarded) are implicitly live.
 340     // So all objects need to be above NTAMS.
 341     _next_top_at_mark_start = bottom();
 342     _next_marked_bytes = 0;
 343   }
 344 }
 345 
 346 void HeapRegion::note_self_forwarding_removal_end(bool during_initial_mark,
 347                                                   bool during_conc_mark,
 348                                                   size_t marked_bytes) {
 349   assert(marked_bytes <= used(),
 350          "marked: " SIZE_FORMAT " used: " SIZE_FORMAT, marked_bytes, used());
 351   _prev_top_at_mark_start = top();
 352   _prev_marked_bytes = marked_bytes;
 353 }
 354 
 355 HeapWord*
 356 HeapRegion::object_iterate_mem_careful(MemRegion mr,
 357                                                  ObjectClosure* cl) {
 358   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 359   // We used to use "block_start_careful" here.  But we're actually happy
 360   // to update the BOT while we do this...
 361   HeapWord* cur = block_start(mr.start());
 362   mr = mr.intersection(used_region());
 363   if (mr.is_empty()) return NULL;
 364   // Otherwise, find the obj that extends onto mr.start().
 365 
 366   assert(cur <= mr.start()
 367          && (oop(cur)->klass_or_null() == NULL ||
 368              cur + oop(cur)->size() > mr.start()),
 369          "postcondition of block_start");
 370   oop obj;
 371   while (cur < mr.end()) {
 372     obj = oop(cur);
 373     if (obj->klass_or_null() == NULL) {
 374       // Ran into an unparseable point.
 375       return cur;
 376     } else if (!g1h->is_obj_dead(obj)) {
 377       cl->do_object(obj);
 378     }
 379     cur += block_size(cur);
 380   }
 381   return NULL;
 382 }
 383 
 384 HeapWord*
 385 HeapRegion::
 386 oops_on_card_seq_iterate_careful(MemRegion mr,
 387                                  FilterOutOfRegionClosure* cl,
 388                                  bool filter_young,
 389                                  jbyte* card_ptr) {
 390   // Currently, we should only have to clean the card if filter_young
 391   // is true and vice versa.
 392   if (filter_young) {
 393     assert(card_ptr != NULL, "pre-condition");
 394   } else {
 395     assert(card_ptr == NULL, "pre-condition");
 396   }
 397   G1CollectedHeap* g1h = G1CollectedHeap::heap();
 398 
 399   // If we're within a stop-world GC, then we might look at a card in a
 400   // GC alloc region that extends onto a GC LAB, which may not be
 401   // parseable.  Stop such at the "scan_top" of the region.
 402   if (g1h->is_gc_active()) {
 403     mr = mr.intersection(MemRegion(bottom(), scan_top()));
 404   } else {
 405     mr = mr.intersection(used_region());
 406   }
 407   if (mr.is_empty()) return NULL;
 408   // Otherwise, find the obj that extends onto mr.start().
 409 
 410   // The intersection of the incoming mr (for the card) and the
 411   // allocated part of the region is non-empty. This implies that
 412   // we have actually allocated into this region. The code in
 413   // G1CollectedHeap.cpp that allocates a new region sets the
 414   // is_young tag on the region before allocating. Thus we
 415   // safely know if this region is young.
 416   if (is_young() && filter_young) {
 417     return NULL;
 418   }
 419 
 420   assert(!is_young(), "check value of filter_young");
 421 
 422   // We can only clean the card here, after we make the decision that
 423   // the card is not young. And we only clean the card if we have been
 424   // asked to (i.e., card_ptr != NULL).
 425   if (card_ptr != NULL) {
 426     *card_ptr = CardTableModRefBS::clean_card_val();
 427     // We must complete this write before we do any of the reads below.
 428     OrderAccess::storeload();
 429   }
 430 
 431   // Cache the boundaries of the memory region in some const locals
 432   HeapWord* const start = mr.start();
 433   HeapWord* const end = mr.end();
 434 
 435   // We used to use "block_start_careful" here.  But we're actually happy
 436   // to update the BOT while we do this...
 437   HeapWord* cur = block_start(start);
 438   assert(cur <= start, "Postcondition");
 439 
 440   oop obj;
 441 
 442   HeapWord* next = cur;
 443   do {
 444     cur = next;
 445     obj = oop(cur);
 446     if (obj->klass_or_null() == NULL) {
 447       // Ran into an unparseable point.
 448       return cur;
 449     }
 450     // Otherwise...
 451     next = cur + block_size(cur);
 452   } while (next <= start);
 453 
 454   // If we finish the above loop...We have a parseable object that
 455   // begins on or before the start of the memory region, and ends
 456   // inside or spans the entire region.
 457   assert(cur <= start, "Loop postcondition");
 458   assert(obj->klass_or_null() != NULL, "Loop postcondition");
 459 
 460   do {
 461     obj = oop(cur);
 462     assert((cur + block_size(cur)) > (HeapWord*)obj, "Loop invariant");
 463     if (obj->klass_or_null() == NULL) {
 464       // Ran into an unparseable point.
 465       return cur;
 466     }
 467 
 468     // Advance the current pointer. "obj" still points to the object to iterate.
 469     cur = cur + block_size(cur);
 470 
 471     if (!g1h->is_obj_dead(obj)) {
 472       // Non-objArrays are sometimes marked imprecise at the object start. We
 473       // always need to iterate over them in full.
 474       // We only iterate over object arrays in full if they are completely contained
 475       // in the memory region.
 476       if (!obj->is_objArray() || (((HeapWord*)obj) >= start && cur <= end)) {
 477         obj->oop_iterate(cl);
 478       } else {
 479         obj->oop_iterate(cl, mr);
 480       }
 481     }
 482   } while (cur < end);
 483 
 484   return NULL;
 485 }
 486 
 487 // Code roots support
 488 
 489 void HeapRegion::add_strong_code_root(nmethod* nm) {
 490   HeapRegionRemSet* hrrs = rem_set();
 491   hrrs->add_strong_code_root(nm);
 492 }
 493 
 494 void HeapRegion::add_strong_code_root_locked(nmethod* nm) {
 495   assert_locked_or_safepoint(CodeCache_lock);
 496   HeapRegionRemSet* hrrs = rem_set();
 497   hrrs->add_strong_code_root_locked(nm);
 498 }
 499 
 500 void HeapRegion::remove_strong_code_root(nmethod* nm) {
 501   HeapRegionRemSet* hrrs = rem_set();
 502   hrrs->remove_strong_code_root(nm);
 503 }
 504 
 505 void HeapRegion::strong_code_roots_do(CodeBlobClosure* blk) const {
 506   HeapRegionRemSet* hrrs = rem_set();
 507   hrrs->strong_code_roots_do(blk);
 508 }
 509 
 510 class VerifyStrongCodeRootOopClosure: public OopClosure {
 511   const HeapRegion* _hr;
 512   nmethod* _nm;
 513   bool _failures;
 514   bool _has_oops_in_region;
 515 
 516   template <class T> void do_oop_work(T* p) {
 517     T heap_oop = oopDesc::load_heap_oop(p);
 518     if (!oopDesc::is_null(heap_oop)) {
 519       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 520 
 521       // Note: not all the oops embedded in the nmethod are in the
 522       // current region. We only look at those which are.
 523       if (_hr->is_in(obj)) {
 524         // Object is in the region. Check that its less than top
 525         if (_hr->top() <= (HeapWord*)obj) {
 526           // Object is above top
 527           log_error(gc, verify)("Object " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ") is above top " PTR_FORMAT,
 528                                p2i(obj), p2i(_hr->bottom()), p2i(_hr->end()), p2i(_hr->top()));
 529           _failures = true;
 530           return;
 531         }
 532         // Nmethod has at least one oop in the current region
 533         _has_oops_in_region = true;
 534       }
 535     }
 536   }
 537 
 538 public:
 539   VerifyStrongCodeRootOopClosure(const HeapRegion* hr, nmethod* nm):
 540     _hr(hr), _failures(false), _has_oops_in_region(false) {}
 541 
 542   void do_oop(narrowOop* p) { do_oop_work(p); }
 543   void do_oop(oop* p)       { do_oop_work(p); }
 544 
 545   bool failures()           { return _failures; }
 546   bool has_oops_in_region() { return _has_oops_in_region; }
 547 };
 548 
 549 class VerifyStrongCodeRootCodeBlobClosure: public CodeBlobClosure {
 550   const HeapRegion* _hr;
 551   bool _failures;
 552 public:
 553   VerifyStrongCodeRootCodeBlobClosure(const HeapRegion* hr) :
 554     _hr(hr), _failures(false) {}
 555 
 556   void do_code_blob(CodeBlob* cb) {
 557     nmethod* nm = (cb == NULL) ? NULL : cb->as_nmethod_or_null();
 558     if (nm != NULL) {
 559       // Verify that the nemthod is live
 560       if (!nm->is_alive()) {
 561         log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has dead nmethod " PTR_FORMAT " in its strong code roots",
 562                               p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 563         _failures = true;
 564       } else {
 565         VerifyStrongCodeRootOopClosure oop_cl(_hr, nm);
 566         nm->oops_do(&oop_cl);
 567         if (!oop_cl.has_oops_in_region()) {
 568           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has nmethod " PTR_FORMAT " in its strong code roots with no pointers into region",
 569                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 570           _failures = true;
 571         } else if (oop_cl.failures()) {
 572           log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] has other failures for nmethod " PTR_FORMAT,
 573                                 p2i(_hr->bottom()), p2i(_hr->end()), p2i(nm));
 574           _failures = true;
 575         }
 576       }
 577     }
 578   }
 579 
 580   bool failures()       { return _failures; }
 581 };
 582 
 583 void HeapRegion::verify_strong_code_roots(VerifyOption vo, bool* failures) const {
 584   if (!G1VerifyHeapRegionCodeRoots) {
 585     // We're not verifying code roots.
 586     return;
 587   }
 588   if (vo == VerifyOption_G1UseMarkWord) {
 589     // Marking verification during a full GC is performed after class
 590     // unloading, code cache unloading, etc so the strong code roots
 591     // attached to each heap region are in an inconsistent state. They won't
 592     // be consistent until the strong code roots are rebuilt after the
 593     // actual GC. Skip verifying the strong code roots in this particular
 594     // time.
 595     assert(VerifyDuringGC, "only way to get here");
 596     return;
 597   }
 598 
 599   HeapRegionRemSet* hrrs = rem_set();
 600   size_t strong_code_roots_length = hrrs->strong_code_roots_list_length();
 601 
 602   // if this region is empty then there should be no entries
 603   // on its strong code root list
 604   if (is_empty()) {
 605     if (strong_code_roots_length > 0) {
 606       log_error(gc, verify)("region [" PTR_FORMAT "," PTR_FORMAT "] is empty but has " SIZE_FORMAT " code root entries",
 607                             p2i(bottom()), p2i(end()), strong_code_roots_length);
 608       *failures = true;
 609     }
 610     return;
 611   }
 612 
 613   if (is_continues_humongous()) {
 614     if (strong_code_roots_length > 0) {
 615       log_error(gc, verify)("region " HR_FORMAT " is a continuation of a humongous region but has " SIZE_FORMAT " code root entries",
 616                             HR_FORMAT_PARAMS(this), strong_code_roots_length);
 617       *failures = true;
 618     }
 619     return;
 620   }
 621 
 622   VerifyStrongCodeRootCodeBlobClosure cb_cl(this);
 623   strong_code_roots_do(&cb_cl);
 624 
 625   if (cb_cl.failures()) {
 626     *failures = true;
 627   }
 628 }
 629 
 630 void HeapRegion::print() const { print_on(tty); }
 631 void HeapRegion::print_on(outputStream* st) const {
 632   st->print("|%4u", this->_hrm_index);
 633   st->print("|" PTR_FORMAT ", " PTR_FORMAT ", " PTR_FORMAT,
 634             p2i(bottom()), p2i(top()), p2i(end()));
 635   st->print("|%3d%%", (int) ((double) used() * 100 / capacity()));
 636   st->print("|%2s", get_short_type_str());
 637   if (in_collection_set()) {
 638     st->print("|CS");
 639   } else {
 640     st->print("|  ");
 641   }
 642   st->print("|TS%3u", _gc_time_stamp);
 643   st->print("|AC%3u", allocation_context());
 644   st->print_cr("|TAMS " PTR_FORMAT ", " PTR_FORMAT "|",
 645                p2i(prev_top_at_mark_start()), p2i(next_top_at_mark_start()));
 646 }
 647 
 648 class G1VerificationClosure : public OopClosure {
 649 protected:
 650   G1CollectedHeap* _g1h;
 651   CardTableModRefBS* _bs;
 652   oop _containing_obj;
 653   bool _failures;
 654   int _n_failures;
 655   VerifyOption _vo;
 656 public:
 657   // _vo == UsePrevMarking -> use "prev" marking information,
 658   // _vo == UseNextMarking -> use "next" marking information,
 659   // _vo == UseMarkWord    -> use mark word from object header.
 660   G1VerificationClosure(G1CollectedHeap* g1h, VerifyOption vo) :
 661     _g1h(g1h), _bs(barrier_set_cast<CardTableModRefBS>(g1h->barrier_set())),
 662     _containing_obj(NULL), _failures(false), _n_failures(0), _vo(vo) {
 663   }
 664 
 665   void set_containing_obj(oop obj) {
 666     _containing_obj = obj;
 667   }
 668 
 669   bool failures() { return _failures; }
 670   int n_failures() { return _n_failures; }
 671 
 672   void print_object(outputStream* out, oop obj) {
 673 #ifdef PRODUCT
 674     Klass* k = obj->klass();
 675     const char* class_name = k->external_name();
 676     out->print_cr("class name %s", class_name);
 677 #else // PRODUCT
 678     obj->print_on(out);
 679 #endif // PRODUCT
 680   }
 681 };
 682 
 683 class VerifyLiveClosure : public G1VerificationClosure {
 684 public:
 685   VerifyLiveClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 686   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 687   virtual void do_oop(oop* p) { do_oop_work(p); }
 688 
 689   template <class T>
 690   void do_oop_work(T* p) {
 691     assert(_containing_obj != NULL, "Precondition");
 692     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 693       "Precondition");
 694     verify_liveness(p);
 695   }
 696 
 697   template <class T>
 698   void verify_liveness(T* p) {
 699     T heap_oop = oopDesc::load_heap_oop(p);
 700     Log(gc, verify) log;
 701     if (!oopDesc::is_null(heap_oop)) {
 702       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 703       bool failed = false;
 704       if (!_g1h->is_in_closed_subset(obj) || _g1h->is_obj_dead_cond(obj, _vo)) {
 705         MutexLockerEx x(ParGCRareEvent_lock,
 706           Mutex::_no_safepoint_check_flag);
 707 
 708         if (!_failures) {
 709           log.error("----------");
 710         }
 711         ResourceMark rm;
 712         if (!_g1h->is_in_closed_subset(obj)) {
 713           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 714           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 715             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 716           print_object(log.error_stream(), _containing_obj);
 717           log.error("points to obj " PTR_FORMAT " not in the heap", p2i(obj));
 718         } else {
 719           HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 720           HeapRegion* to = _g1h->heap_region_containing((HeapWord*)obj);
 721           log.error("Field " PTR_FORMAT " of live obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 722             p2i(p), p2i(_containing_obj), p2i(from->bottom()), p2i(from->end()));
 723           print_object(log.error_stream(), _containing_obj);
 724           log.error("points to dead obj " PTR_FORMAT " in region [" PTR_FORMAT ", " PTR_FORMAT ")",
 725             p2i(obj), p2i(to->bottom()), p2i(to->end()));
 726           print_object(log.error_stream(), obj);
 727         }
 728         log.error("----------");
 729         _failures = true;
 730         failed = true;
 731         _n_failures++;
 732       }
 733     }
 734   }
 735 };
 736 
 737 class VerifyRemSetClosure : public G1VerificationClosure {
 738 public:
 739   VerifyRemSetClosure(G1CollectedHeap* g1h, VerifyOption vo) : G1VerificationClosure(g1h, vo) {}
 740   virtual void do_oop(narrowOop* p) { do_oop_work(p); }
 741   virtual void do_oop(oop* p) { do_oop_work(p); }
 742 
 743   template <class T>
 744   void do_oop_work(T* p) {
 745     assert(_containing_obj != NULL, "Precondition");
 746     assert(!_g1h->is_obj_dead_cond(_containing_obj, _vo),
 747       "Precondition");
 748     verify_remembered_set(p);
 749   }
 750 
 751   template <class T>
 752   void verify_remembered_set(T* p) {
 753     T heap_oop = oopDesc::load_heap_oop(p);
 754     Log(gc, verify) log;
 755     if (!oopDesc::is_null(heap_oop)) {
 756       oop obj = oopDesc::decode_heap_oop_not_null(heap_oop);
 757       bool failed = false;
 758       HeapRegion* from = _g1h->heap_region_containing((HeapWord*)p);
 759       HeapRegion* to = _g1h->heap_region_containing(obj);
 760       if (from != NULL && to != NULL &&
 761         from != to &&
 762         !to->is_pinned()) {
 763         jbyte cv_obj = *_bs->byte_for_const(_containing_obj);
 764         jbyte cv_field = *_bs->byte_for_const(p);
 765         const jbyte dirty = CardTableModRefBS::dirty_card_val();
 766 
 767         bool is_bad = !(from->is_young()
 768           || to->rem_set()->contains_reference(p)
 769           || !G1HRRSFlushLogBuffersOnVerify && // buffers were not flushed
 770           (_containing_obj->is_objArray() ?
 771           cv_field == dirty
 772           : cv_obj == dirty || cv_field == dirty));
 773         if (is_bad) {
 774           MutexLockerEx x(ParGCRareEvent_lock,
 775             Mutex::_no_safepoint_check_flag);
 776 
 777           if (!_failures) {
 778             log.error("----------");
 779           }
 780           log.error("Missing rem set entry:");
 781           log.error("Field " PTR_FORMAT " of obj " PTR_FORMAT ", in region " HR_FORMAT,
 782             p2i(p), p2i(_containing_obj), HR_FORMAT_PARAMS(from));
 783           ResourceMark rm;
 784           _containing_obj->print_on(log.error_stream());
 785           log.error("points to obj " PTR_FORMAT " in region " HR_FORMAT, p2i(obj), HR_FORMAT_PARAMS(to));
 786           if (obj->is_oop()) {
 787             obj->print_on(log.error_stream());
 788           }
 789           log.error("Obj head CTE = %d, field CTE = %d.", cv_obj, cv_field);
 790           log.error("----------");
 791           _failures = true;
 792           if (!failed) _n_failures++;
 793         }
 794       }
 795     }
 796   }
 797 };
 798 
 799 // This really ought to be commoned up into OffsetTableContigSpace somehow.
 800 // We would need a mechanism to make that code skip dead objects.
 801 
 802 void HeapRegion::verify(VerifyOption vo,
 803                         bool* failures) const {
 804   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 805   *failures = false;
 806   HeapWord* p = bottom();
 807   HeapWord* prev_p = NULL;
 808   VerifyLiveClosure vl_cl(g1, vo);
 809   VerifyRemSetClosure vr_cl(g1, vo);
 810   bool is_region_humongous = is_humongous();
 811   size_t object_num = 0;
 812   while (p < top()) {
 813     oop obj = oop(p);
 814     size_t obj_size = block_size(p);
 815     object_num += 1;
 816 
 817     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 818       if (obj->is_oop()) {
 819         Klass* klass = obj->klass();
 820         bool is_metaspace_object = Metaspace::contains(klass) ||
 821                                    (vo == VerifyOption_G1UsePrevMarking &&
 822                                    ClassLoaderDataGraph::unload_list_contains(klass));
 823         if (!is_metaspace_object) {
 824           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 825                                 "not metadata", p2i(klass), p2i(obj));
 826           *failures = true;
 827           return;
 828         } else if (!klass->is_klass()) {
 829           log_error(gc, verify)("klass " PTR_FORMAT " of object " PTR_FORMAT " "
 830                                 "not a klass", p2i(klass), p2i(obj));
 831           *failures = true;
 832           return;
 833         } else {
 834           vl_cl.set_containing_obj(obj);
 835           if (!g1->collector_state()->full_collection() || G1VerifyRSetsDuringFullGC) {
 836             // verify liveness and rem_set
 837             vr_cl.set_containing_obj(obj);
 838             G1Mux2Closure mux(&vl_cl, &vr_cl);
 839             obj->oop_iterate_no_header(&mux);
 840 
 841             if (vr_cl.failures()) {
 842               *failures = true;
 843             }
 844             if (G1MaxVerifyFailures >= 0 &&
 845               vr_cl.n_failures() >= G1MaxVerifyFailures) {
 846               return;
 847             }
 848           } else {
 849             // verify only liveness
 850             obj->oop_iterate_no_header(&vl_cl);
 851           }
 852           if (vl_cl.failures()) {
 853             *failures = true;
 854           }
 855           if (G1MaxVerifyFailures >= 0 &&
 856               vl_cl.n_failures() >= G1MaxVerifyFailures) {
 857             return;
 858           }
 859         }
 860       } else {
 861         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 862         *failures = true;
 863         return;
 864       }
 865     }
 866     prev_p = p;
 867     p += obj_size;
 868   }
 869 
 870   if (!is_young() && !is_empty()) {
 871     _bot_part.verify();
 872   }
 873 
 874   if (is_region_humongous) {
 875     oop obj = oop(this->humongous_start_region()->bottom());
 876     if ((HeapWord*)obj > bottom() || (HeapWord*)obj + obj->size() < bottom()) {
 877       log_error(gc, verify)("this humongous region is not part of its' humongous object " PTR_FORMAT, p2i(obj));
 878       *failures = true;
 879       return;
 880     }
 881   }
 882 
 883   if (!is_region_humongous && p != top()) {
 884     log_error(gc, verify)("end of last object " PTR_FORMAT " "
 885                           "does not match top " PTR_FORMAT, p2i(p), p2i(top()));
 886     *failures = true;
 887     return;
 888   }
 889 
 890   HeapWord* the_end = end();
 891   // Do some extra BOT consistency checking for addresses in the
 892   // range [top, end). BOT look-ups in this range should yield
 893   // top. No point in doing that if top == end (there's nothing there).
 894   if (p < the_end) {
 895     // Look up top
 896     HeapWord* addr_1 = p;
 897     HeapWord* b_start_1 = _bot_part.block_start_const(addr_1);
 898     if (b_start_1 != p) {
 899       log_error(gc, verify)("BOT look up for top: " PTR_FORMAT " "
 900                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 901                             p2i(addr_1), p2i(b_start_1), p2i(p));
 902       *failures = true;
 903       return;
 904     }
 905 
 906     // Look up top + 1
 907     HeapWord* addr_2 = p + 1;
 908     if (addr_2 < the_end) {
 909       HeapWord* b_start_2 = _bot_part.block_start_const(addr_2);
 910       if (b_start_2 != p) {
 911         log_error(gc, verify)("BOT look up for top + 1: " PTR_FORMAT " "
 912                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 913                               p2i(addr_2), p2i(b_start_2), p2i(p));
 914         *failures = true;
 915         return;
 916       }
 917     }
 918 
 919     // Look up an address between top and end
 920     size_t diff = pointer_delta(the_end, p) / 2;
 921     HeapWord* addr_3 = p + diff;
 922     if (addr_3 < the_end) {
 923       HeapWord* b_start_3 = _bot_part.block_start_const(addr_3);
 924       if (b_start_3 != p) {
 925         log_error(gc, verify)("BOT look up for top + diff: " PTR_FORMAT " "
 926                               " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 927                               p2i(addr_3), p2i(b_start_3), p2i(p));
 928         *failures = true;
 929         return;
 930       }
 931     }
 932 
 933     // Look up end - 1
 934     HeapWord* addr_4 = the_end - 1;
 935     HeapWord* b_start_4 = _bot_part.block_start_const(addr_4);
 936     if (b_start_4 != p) {
 937       log_error(gc, verify)("BOT look up for end - 1: " PTR_FORMAT " "
 938                             " yielded " PTR_FORMAT ", expecting " PTR_FORMAT,
 939                             p2i(addr_4), p2i(b_start_4), p2i(p));
 940       *failures = true;
 941       return;
 942     }
 943   }
 944 
 945   verify_strong_code_roots(vo, failures);
 946 }
 947 
 948 void HeapRegion::verify() const {
 949   bool dummy = false;
 950   verify(VerifyOption_G1UsePrevMarking, /* failures */ &dummy);
 951 }
 952 
 953 void HeapRegion::verify_rem_set(VerifyOption vo, bool* failures) const {
 954   G1CollectedHeap* g1 = G1CollectedHeap::heap();
 955   *failures = false;
 956   HeapWord* p = bottom();
 957   HeapWord* prev_p = NULL;
 958   VerifyRemSetClosure vr_cl(g1, vo);
 959   while (p < top()) {
 960     oop obj = oop(p);
 961     size_t obj_size = block_size(p);
 962 
 963     if (!g1->is_obj_dead_cond(obj, this, vo)) {
 964       if (obj->is_oop()) {
 965         vr_cl.set_containing_obj(obj);
 966         obj->oop_iterate_no_header(&vr_cl);
 967 
 968         if (vr_cl.failures()) {
 969           *failures = true;
 970         }
 971         if (G1MaxVerifyFailures >= 0 &&
 972           vr_cl.n_failures() >= G1MaxVerifyFailures) {
 973           return;
 974         }
 975       } else {
 976         log_error(gc, verify)(PTR_FORMAT " not an oop", p2i(obj));
 977         *failures = true;
 978         return;
 979       }
 980     }
 981 
 982     prev_p = p;
 983     p += obj_size;
 984   }
 985 }
 986 
 987 void HeapRegion::verify_rem_set() const {
 988   bool failures = false;
 989   verify_rem_set(VerifyOption_G1UsePrevMarking, &failures);
 990   guarantee(!failures, "HeapRegion RemSet verification failed");
 991 }
 992 
 993 void HeapRegion::prepare_for_compaction(CompactPoint* cp) {
 994   scan_and_forward(this, cp);
 995 }
 996 
 997 // G1OffsetTableContigSpace code; copied from space.cpp.  Hope this can go
 998 // away eventually.
 999 
1000 void G1ContiguousSpace::clear(bool mangle_space) {
1001   set_top(bottom());
1002   _scan_top = bottom();
1003   CompactibleSpace::clear(mangle_space);
1004   reset_bot();
1005 }
1006 
1007 #ifndef PRODUCT
1008 void G1ContiguousSpace::mangle_unused_area() {
1009   mangle_unused_area_complete();
1010 }
1011 
1012 void G1ContiguousSpace::mangle_unused_area_complete() {
1013   SpaceMangler::mangle_region(MemRegion(top(), end()));
1014 }
1015 #endif
1016 
1017 void G1ContiguousSpace::print() const {
1018   print_short();
1019   tty->print_cr(" [" INTPTR_FORMAT ", " INTPTR_FORMAT ", "
1020                 INTPTR_FORMAT ", " INTPTR_FORMAT ")",
1021                 p2i(bottom()), p2i(top()), p2i(_bot_part.threshold()), p2i(end()));
1022 }
1023 
1024 HeapWord* G1ContiguousSpace::initialize_threshold() {
1025   return _bot_part.initialize_threshold();
1026 }
1027 
1028 HeapWord* G1ContiguousSpace::cross_threshold(HeapWord* start,
1029                                                     HeapWord* end) {
1030   _bot_part.alloc_block(start, end);
1031   return _bot_part.threshold();
1032 }
1033 
1034 HeapWord* G1ContiguousSpace::scan_top() const {
1035   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1036   HeapWord* local_top = top();
1037   OrderAccess::loadload();
1038   const unsigned local_time_stamp = _gc_time_stamp;
1039   assert(local_time_stamp <= g1h->get_gc_time_stamp(), "invariant");
1040   if (local_time_stamp < g1h->get_gc_time_stamp()) {
1041     return local_top;
1042   } else {
1043     return _scan_top;
1044   }
1045 }
1046 
1047 void G1ContiguousSpace::record_timestamp() {
1048   G1CollectedHeap* g1h = G1CollectedHeap::heap();
1049   uint curr_gc_time_stamp = g1h->get_gc_time_stamp();
1050 
1051   if (_gc_time_stamp < curr_gc_time_stamp) {
1052     // Setting the time stamp here tells concurrent readers to look at
1053     // scan_top to know the maximum allowed address to look at.
1054 
1055     // scan_top should be bottom for all regions except for the
1056     // retained old alloc region which should have scan_top == top
1057     HeapWord* st = _scan_top;
1058     guarantee(st == _bottom || st == _top, "invariant");
1059 
1060     _gc_time_stamp = curr_gc_time_stamp;
1061   }
1062 }
1063 
1064 void G1ContiguousSpace::record_retained_region() {
1065   // scan_top is the maximum address where it's safe for the next gc to
1066   // scan this region.
1067   _scan_top = top();
1068 }
1069 
1070 void G1ContiguousSpace::safe_object_iterate(ObjectClosure* blk) {
1071   object_iterate(blk);
1072 }
1073 
1074 void G1ContiguousSpace::object_iterate(ObjectClosure* blk) {
1075   HeapWord* p = bottom();
1076   while (p < top()) {
1077     if (block_is_obj(p)) {
1078       blk->do_object(oop(p));
1079     }
1080     p += block_size(p);
1081   }
1082 }
1083 
1084 G1ContiguousSpace::G1ContiguousSpace(G1BlockOffsetTable* bot) :
1085   _bot_part(bot, this),
1086   _par_alloc_lock(Mutex::leaf, "OffsetTableContigSpace par alloc lock", true),
1087   _gc_time_stamp(0)
1088 {
1089 }
1090 
1091 void G1ContiguousSpace::initialize(MemRegion mr, bool clear_space, bool mangle_space) {
1092   CompactibleSpace::initialize(mr, clear_space, mangle_space);
1093   _top = bottom();
1094   _scan_top = bottom();
1095   set_saved_mark_word(NULL);
1096   reset_bot();
1097 }
1098