1 /*
   2  * Copyright (c) 2014, Oracle and/or its affiliates. All rights reserved.
   3  * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
   4  *
   5  * This code is free software; you can redistribute it and/or modify it
   6  * under the terms of the GNU General Public License version 2 only, as
   7  * published by the Free Software Foundation.
   8  *
   9  * This code is distributed in the hope that it will be useful, but WITHOUT
  10  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
  11  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
  12  * version 2 for more details (a copy is included in the LICENSE file that
  13  * accompanied this code).
  14  *
  15  * You should have received a copy of the GNU General Public License version
  16  * 2 along with this work; if not, write to the Free Software Foundation,
  17  * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
  18  *
  19  * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
  20  * or visit www.oracle.com if you need additional information or have any
  21  * questions.
  22  *
  23  */
  24 
  25 #include "precompiled.hpp"
  26 #include "gc_implementation/g1/g1CollectedHeap.inline.hpp"
  27 #include "gc_implementation/g1/g1OopClosures.inline.hpp"
  28 #include "gc_implementation/g1/g1ParScanThreadState.inline.hpp"
  29 #include "oops/oop.inline.hpp"
  30 #include "oops/oop.pcgc.inline.hpp"
  31 #include "runtime/prefetch.inline.hpp"
  32 
  33 #ifdef _MSC_VER // the use of 'this' below gets a warning, make it go away
  34 #pragma warning( disable:4355 ) // 'this' : used in base member initializer list
  35 #endif // _MSC_VER
  36 
  37 G1ParScanThreadState::G1ParScanThreadState(G1CollectedHeap* g1h, uint queue_num, ReferenceProcessor* rp)
  38   : _g1h(g1h),
  39     _refs(g1h->task_queue(queue_num)),
  40     _dcq(&g1h->dirty_card_queue_set()),
  41     _ct_bs(g1h->g1_barrier_set()),
  42     _g1_rem(g1h->g1_rem_set()),
  43     _hash_seed(17), _queue_num(queue_num),
  44     _term_attempts(0),
  45     _surviving_alloc_buffer(g1h->desired_plab_sz(GCAllocForSurvived)),
  46     _tenured_alloc_buffer(g1h->desired_plab_sz(GCAllocForTenured)),
  47     _age_table(false), _scanner(g1h, this, rp),
  48     _strong_roots_time(0), _term_time(0),
  49     _alloc_buffer_waste(0), _undo_waste(0) {
  50   // we allocate G1YoungSurvRateNumRegions plus one entries, since
  51   // we "sacrifice" entry 0 to keep track of surviving bytes for
  52   // non-young regions (where the age is -1)
  53   // We also add a few elements at the beginning and at the end in
  54   // an attempt to eliminate cache contention
  55   uint real_length = 1 + _g1h->g1_policy()->young_cset_region_length();
  56   uint array_length = PADDING_ELEM_NUM +
  57                       real_length +
  58                       PADDING_ELEM_NUM;
  59   _surviving_young_words_base = NEW_C_HEAP_ARRAY(size_t, array_length, mtGC);
  60   if (_surviving_young_words_base == NULL)
  61     vm_exit_out_of_memory(array_length * sizeof(size_t), OOM_MALLOC_ERROR,
  62                           "Not enough space for young surv histo.");
  63   _surviving_young_words = _surviving_young_words_base + PADDING_ELEM_NUM;
  64   memset(_surviving_young_words, 0, (size_t) real_length * sizeof(size_t));
  65 
  66   _alloc_buffers[GCAllocForSurvived] = &_surviving_alloc_buffer;
  67   _alloc_buffers[GCAllocForTenured]  = &_tenured_alloc_buffer;
  68 
  69   _start = os::elapsedTime();
  70 }
  71 
  72 void
  73 G1ParScanThreadState::print_termination_stats_hdr(outputStream* const st)
  74 {
  75   st->print_raw_cr("GC Termination Stats");
  76   st->print_raw_cr("     elapsed  --strong roots-- -------termination-------"
  77                    " ------waste (KiB)------");
  78   st->print_raw_cr("thr     ms        ms      %        ms      %    attempts"
  79                    "  total   alloc    undo");
  80   st->print_raw_cr("--- --------- --------- ------ --------- ------ --------"
  81                    " ------- ------- -------");
  82 }
  83 
  84 void
  85 G1ParScanThreadState::print_termination_stats(int i,
  86                                               outputStream* const st) const
  87 {
  88   const double elapsed_ms = elapsed_time() * 1000.0;
  89   const double s_roots_ms = strong_roots_time() * 1000.0;
  90   const double term_ms    = term_time() * 1000.0;
  91   st->print_cr("%3d %9.2f %9.2f %6.2f "
  92                "%9.2f %6.2f " SIZE_FORMAT_W(8) " "
  93                SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7) " " SIZE_FORMAT_W(7),
  94                i, elapsed_ms, s_roots_ms, s_roots_ms * 100 / elapsed_ms,
  95                term_ms, term_ms * 100 / elapsed_ms, term_attempts(),
  96                (alloc_buffer_waste() + undo_waste()) * HeapWordSize / K,
  97                alloc_buffer_waste() * HeapWordSize / K,
  98                undo_waste() * HeapWordSize / K);
  99 }
 100 
 101 #ifdef ASSERT
 102 bool G1ParScanThreadState::verify_ref(narrowOop* ref) const {
 103   assert(ref != NULL, "invariant");
 104   assert(UseCompressedOops, "sanity");
 105   assert(!has_partial_array_mask(ref), err_msg("ref=" PTR_FORMAT, p2i(ref)));
 106   oop p = oopDesc::load_decode_heap_oop(ref);
 107   assert(_g1h->is_in_g1_reserved(p),
 108          err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 109   return true;
 110 }
 111 
 112 bool G1ParScanThreadState::verify_ref(oop* ref) const {
 113   assert(ref != NULL, "invariant");
 114   if (has_partial_array_mask(ref)) {
 115     // Must be in the collection set--it's already been copied.
 116     oop p = clear_partial_array_mask(ref);
 117     assert(_g1h->obj_in_cs(p),
 118            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 119   } else {
 120     oop p = oopDesc::load_decode_heap_oop(ref);
 121     assert(_g1h->is_in_g1_reserved(p),
 122            err_msg("ref=" PTR_FORMAT " p=" PTR_FORMAT, p2i(ref), p2i(p)));
 123   }
 124   return true;
 125 }
 126 
 127 bool G1ParScanThreadState::verify_task(StarTask ref) const {
 128   if (ref.is_narrow()) {
 129     return verify_ref((narrowOop*) ref);
 130   } else {
 131     return verify_ref((oop*) ref);
 132   }
 133 }
 134 #endif // ASSERT
 135 
 136 void G1ParScanThreadState::trim_queue() {
 137   assert(_evac_failure_cl != NULL, "not set");
 138 
 139   StarTask ref;
 140   do {
 141     // Drain the overflow stack first, so other threads can steal.
 142     while (refs()->pop_overflow(ref)) {
 143       deal_with_reference(ref);
 144     }
 145 
 146     while (refs()->pop_local(ref)) {
 147       deal_with_reference(ref);
 148     }
 149   } while (!refs()->is_empty());
 150 }
 151 
 152 oop G1ParScanThreadState::copy_to_survivor_space(oop const old) {
 153   size_t word_sz = old->size();
 154   HeapRegion* from_region = _g1h->heap_region_containing_raw(old);
 155   // +1 to make the -1 indexes valid...
 156   int       young_index = from_region->young_index_in_cset()+1;
 157   assert( (from_region->is_young() && young_index >  0) ||
 158          (!from_region->is_young() && young_index == 0), "invariant" );
 159   G1CollectorPolicy* g1p = _g1h->g1_policy();
 160   markOop m = old->mark();
 161   int age = m->has_displaced_mark_helper() ? m->displaced_mark_helper()->age()
 162                                            : m->age();
 163   GCAllocPurpose alloc_purpose = g1p->evacuation_destination(from_region, age,
 164                                                              word_sz);
 165   HeapWord* obj_ptr = allocate(alloc_purpose, word_sz);
 166 #ifndef PRODUCT
 167   // Should this evacuation fail?
 168   if (_g1h->evacuation_should_fail()) {
 169     if (obj_ptr != NULL) {
 170       undo_allocation(alloc_purpose, obj_ptr, word_sz);
 171       obj_ptr = NULL;
 172     }
 173   }
 174 #endif // !PRODUCT
 175 
 176   if (obj_ptr == NULL) {
 177     // This will either forward-to-self, or detect that someone else has
 178     // installed a forwarding pointer.
 179     return _g1h->handle_evacuation_failure_par(this, old);
 180   }
 181 
 182   oop obj = oop(obj_ptr);
 183 
 184   // We're going to allocate linearly, so might as well prefetch ahead.
 185   Prefetch::write(obj_ptr, PrefetchCopyIntervalInBytes);
 186 
 187   oop forward_ptr = old->forward_to_atomic(obj);
 188   if (forward_ptr == NULL) {
 189     Copy::aligned_disjoint_words((HeapWord*) old, obj_ptr, word_sz);
 190 
 191     // alloc_purpose is just a hint to allocate() above, recheck the type of region
 192     // we actually allocated from and update alloc_purpose accordingly
 193     HeapRegion* to_region = _g1h->heap_region_containing_raw(obj_ptr);
 194     alloc_purpose = to_region->is_young() ? GCAllocForSurvived : GCAllocForTenured;
 195 
 196     if (g1p->track_object_age(alloc_purpose)) {
 197       // We could simply do obj->incr_age(). However, this causes a
 198       // performance issue. obj->incr_age() will first check whether
 199       // the object has a displaced mark by checking its mark word;
 200       // getting the mark word from the new location of the object
 201       // stalls. So, given that we already have the mark word and we
 202       // are about to install it anyway, it's better to increase the
 203       // age on the mark word, when the object does not have a
 204       // displaced mark word. We're not expecting many objects to have
 205       // a displaced marked word, so that case is not optimized
 206       // further (it could be...) and we simply call obj->incr_age().
 207 
 208       if (m->has_displaced_mark_helper()) {
 209         // in this case, we have to install the mark word first,
 210         // otherwise obj looks to be forwarded (the old mark word,
 211         // which contains the forward pointer, was copied)
 212         obj->set_mark(m);
 213         obj->incr_age();
 214       } else {
 215         m = m->incr_age();
 216         obj->set_mark(m);
 217       }
 218       age_table()->add(obj, word_sz);
 219     } else {
 220       obj->set_mark(m);
 221     }
 222 
 223     if (G1StringDedup::is_enabled()) {
 224       G1StringDedup::enqueue_from_evacuation(from_region->is_young(),
 225                                              to_region->is_young(),
 226                                              queue_num(),
 227                                              obj);
 228     }
 229 
 230     size_t* surv_young_words = surviving_young_words();
 231     surv_young_words[young_index] += word_sz;
 232 
 233     if (obj->is_objArray() && arrayOop(obj)->length() >= ParGCArrayScanChunk) {
 234       // We keep track of the next start index in the length field of
 235       // the to-space object. The actual length can be found in the
 236       // length field of the from-space object.
 237       arrayOop(obj)->set_length(0);
 238       oop* old_p = set_partial_array_mask(old);
 239       push_on_queue(old_p);
 240     } else {
 241       // No point in using the slower heap_region_containing() method,
 242       // given that we know obj is in the heap.
 243       _scanner.set_region(_g1h->heap_region_containing_raw(obj));
 244       obj->oop_iterate_backwards(&_scanner);
 245     }
 246   } else {
 247     undo_allocation(alloc_purpose, obj_ptr, word_sz);
 248     obj = forward_ptr;
 249   }
 250   return obj;
 251 }